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Abstract
Common extensions to the Standard Model Higgs sector, such as two-Higgs-

doublet models as for example the Minimal Supersymmetric Standard Model,
predict the presence of additional Higgs bosons. In these extensions the coupling
of the additional Higgs bosons to down-type fermions, such as τ -leptons, is
enlarged for large parameter spaces. As a result, the decay of these Higgs bosons
into a pair of τ -leptons is one of the most promising channels to search for new
physics. In this thesis, this decay channel is explored using data recorded by the
CMS experiment in the year 2016 at a center-of-mass energy of

√
s = 13 TeV.

The analysis methods, selection criteria and the resulting uncertainty model
are detailed. No evidence for additional Higgs bosons is found and exclusion
limits on the cross section times branching ratio for further Higgs bosons are
set. These exclusion limits constrain the phase space for possible deviations
from the Standard Model Higgs sector. Examples of scenario-specific exclusion
limits are given and possibilities for interpretations in the context of further
scenarios based on the results of this analysis are discussed.

Zusammenfassung
Erweiterungen des Higgs-Sektors im Standardmodell, wie zum Beispiel Mod-

elle mit zwei Higgs-Dubletts, etwa das Minimale Supersymmetrische Standard-
modell, sagen weitere Higgs-Bosonen voraus. In diesen Erweiterungen ist die
Kopplung der weiteren Higgs-Bosonen an down-artige Fermionen, wie etwa τ -
Leptonen, erhöht in einem großen Phasenraum. Daraus folgend ist der Zerfall
dieser Higgs-Bosonen in Paare von τ -Leptonen einer der viel versprechensden
Kanäle für die Suche nach neuer Physik. In dieser Arbeit wird dieser Zerfallka-
nal mit Daten, die mit dem CMS Experiment im Jahr 2016 bei einer Schwer-
punktsenergie von

√
s = 13 TeV aufgenommen wurden, untersucht. Die Anal-

ysemethoden, Selektionskriterien und das resultierende Unsicherheitsmodell
werden dargestellt. Es wurde kein Hinweis auf zusätzliche Higgs-Bosonen gefun-
den. Entsprechende Ausschlussgrenzen werden auf das Produkt aus Wirkungs-
querschnitt und Verzweigungsverhältnis für weitere Higgs-Bosonen bestimmt.
Diese Ausschlussgrenzen schränken den Phasenraum für mögliche Abweichun-
gen vom Higgs-Sektor des Standardmodells ein. Ausschlussgrenzen für exem-
plarische Szenarien werden bestimmt und Möglichkeiten zur Interpretation der
Ergebnisse dieser Analyse im Kontext von weiteren Szenarien werden disku-
tiert.
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CHAPTER 1

Introduction

The Large Hadron Collider is the most powerful particle accelerator currently operated.
In combination with some of the most sophisticated detectors in particle physics, one of
them being the Compact Muon Solenoid, it offers unprecedented possibilities for precision
measurements as well as for searches for new physics beyond the Standard Model.
One major field of study at these detectors is the Higgs sector. With the discovery

of a new particle with a mass close to 125 GeV and properties compatible with those
of a Standard Model Higgs boson an important milestone was reached. However, many
open questions related to this discovery remain. Are the properties of the found Higgs
boson identical to those predicted for the Higgs boson of the Standard Model? Are there
additional heavier or lighter Higgs bosons, which can give clues towards physics beyond
the Standard Model?

Since the discovery of the Higgs boson, these two questions are being tackled in parallel.
With increasing amount of recorded data and better understanding of the detector, more
precise measurements of the properties of the found Higgs boson are being performed.
The aim of these measurements is to either confirm the Standard Model predictions or
find deviations from its predicted properties. Any such deviation might be a sign for
physics beyond the Standard Model. Complementary to these measurements, searches
for additional Higgs bosons are being performed.

Many suggested models beyond the Standard Model predict an enhanced coupling from
additional Higgs bosons to down-type fermions, like the τ -lepton. As a result, the direct
searches for additional Higgs bosons decaying into τ -leptons are flagship analyses offering
the farthest reach into the Higgs sector for those models. These searches are carried out
for charged Higgs bosons decaying into a single τ -lepton [1, 2] as well as neutral Higgs
bosons decaying into a pair of τ -leptons [3–5]. The results of several direct searches for
additional Higgs boson performed by the CMS collaboration based on the data recorded
in the years 2011 and 2012 at center-of-mass energies of 7 and 8 TeV respectively, is
shown in figure 1.1.
In the first full year of data taking at a center-of-mass energy of 13 TeV, data corre-

sponding to 35.9 fb−1 was recorded. With this increase in the amount of recorded data
and center-of-mass energy compared to the previous data taking, an even further reach
of searches for additional Higgs bosons can be achieved. An analysis performed using this
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Figure 1.1: Exclusion limits in a possible scenario predicting an extension of the Higgs sector
compared to the Standard Model, the mmod+

h scenario of the MSSM. The two free parameters
of this model, mA and tan β, span the plane in which the exclusion limits are derived. The
results are derived using the data recorded by the CMS experiment in the years 2011 and 2012
at center-of-mass energies of 7 and 8 TeV respectively. The search for additional neutral Higgs
bosons decaying into a pair of τ -leptons offers the farthest reach in this plane [6].

data to search for additional Higgs bosons decaying into a pair of τ -leptons is presented
in this thesis.
In chapter 2, an overview of the Higgs mechanism in the Standard Model of particle

physics and extensions is given. The Statistical basis and methods used in this thesis
are introduced in chapter 3. Subsequently, the concept and design of the Large Hadron
Collider and Compact Muon Solenoid detector are introduced in chapter 4. Furthermore,
in chapter 4, a brief overview of the basics for event and object reconstruction used for the
recorded events is given. In chapter 5, the performed analysis is detailed. Object selections,
background estimations as well as correction factors and considered uncertainties are
discussed. Finally, the results of this analysis using the methods introduced in chapter 3
are given in chapter 6.
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CHAPTER 2

The Higgs Sector in the Standard Model and
Beyond

This chapter introduces the theoretical background on which this thesis resides. In the
first section, a brief introduction to the Standard Model of Particle Physics is given. The
Higgs mechanism, which gives mass to the particles in the Standard Model is introduced
and the properties of the resulting Higgs boson are stated. Motivations for extensions
to the Standard Model are given and a minimal extension to the Standard Model is
introduced. The Higgs sector in this extension of the Standard Model is discussed.

For all notations in this thesis the natural unit notation is used. This means that the
reduced Planck’s constant ~ and the speed of light c are normalized to 1. The units for
all quantities are expressed in terms of the energy unit eV.

2.1 The Standard Model of Particle Physics

The Standard Model of Particle Physics (SM) is the fundamental theory used to describe
fundamental particles and the interactions between them. The interactions in the SM
are related to three fundamental forces, each acting on particles with different properties
and differing in strength and reach.
The three forces are identified as the electromagnetic, weak and strong interaction.

The electromagnetic force describes the interaction between electrically charged particles,
the weak force the interaction of subatomic particles causing radioactive decays and the
strong force the interaction between color charged particles. In the SM each force is
mediated by gauge bosons of spin 1. A summary of the gauge bosons and their properties
is given in table 2.1.

In addition to the gauge bosons, the SM contains twelve fermions with spin 1
2 (see table

2.2). They can be grouped into color neutral particles, the leptons, and color charged
particles, the quarks. Leptons carry an electric charge of 0 or ±1, whereas quarks are
the only particles with a non-integer electric charge of ±1/3 or ±2/3. However, isolated
quarks can not be observed on their own but only in states with integer electric charge.
Based on the weak isospin, leptons and quarks can be separated into up-type fermions,
with a weak isospin of +1

2 , and down-type fermions with a weak isospin of −1
2 .

5
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Table 2.1: Gauge bosons in the Standard Model mediating the electromagnetic, weak and strong
forces. For each gauge boson the corresponding electric charge, spin and parity transformation
JP and mass is given [7].

Interaction Gauge boson Charge JP Mass
electromagnetic Photon (γ) 0 1− 0 GeV

weak Z0 0 1 91.1876± 0.0021 GeV
weak W± ±1 1 80.385± 0.015 GeV
strong Gluon (g) 0 1− 0 GeV

Table 2.2: Fermions in the Standard Model. They can be grouped into up- and down-type
particles based on their weak isospin [7].

Generation charge Weak Isospin color charge
1 2 3

Leptons e µ τ −1 −1
2 no

νe νµ ντ 0 +1
2 no

Quarks u c t 2/3 +1
2 yes

d s b -1/3 −1
2 yes

2.1.1 The Higgs sector in the Standard Model

In the original gauge ansatz from which the SM evolves the gauge bosons are required
to be massless particles. However, as mentioned before, the W and Z bosons have been
found to be massive [8–11]. A new mechanism needs to be introduced in order to explain
these masses in the context of the SM. This mechanism is referred to as the Higgs
mechanism [12–17]. In the following, a brief introduction to the Higgs mechanism is
given. Interested readers can find further details in [18, 19].
In a first step, the Higgs mechanism in the case of a U(1) theory, as for example

quantum electrodynamics, is discussed. In this case, the Higgs mechanism is introduced
via a complex scalar field φ, the Higgs field, with a characteristic potential V (φ), as
illustrated in figure 2.1, which is given by

V (φ) = µ2φφ∗ + λ (φφ∗)2 , µ2 < 0, λ > 0. (2.1)

The Lagrangian density corresponding to this system is given by

L = [∂µφ∗][∂µφ]− V (φ) (2.2)

and is covariant under phase transformations and hence has a U(1) symmetry.
The potential V (φ) has degenerate ground states which are composed of all states

satisfying the condition

|φ0| =
√
φ2

1 + φ2
2 =

√
−µ2

2λ = v√
2
, (2.3)
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2.1 The Standard Model of Particle Physics

  

Figure 2.1: Illustration of the symmetric Higgs potential [20]. It has degenerate ground states
indicated by the red circle. The complex Higgs field can be expressed using the two real scalar
fields σ and η.

with the expression v√
2 being referred to as the vacuum expectation value. None of those

degenerate ground states does satisfy the U(1) symmetry and hence the symmetry is
said to be spontaneously broken in the ground state.

For the following considerations the ground state after spontaneous symmetry breaking
is chosen to be real and positive with φ0 = v/

√
2. Using two real scalar fields σ and η,

which vanish in the ground state, the Higgs field can then be expressed as

φ = 1√
2

(v + σ + iη). (2.4)

Using this formulation in the Lagrangian given in equation 2.2 leads to

L = 1
2[∂µσ][∂µσ]− 1

2(2λv2)σ2 + 1
2[∂µη][∂µη] + LI (2.5)

where the term LI sums up all terms of cubic or higher order in the fields σ and η. The
first and second term correspond to a free scalar boson σ with a mass of

√
2λv2. The

third term corresponds to a massless free scalar boson η.
To enforce the gauge invariant transformation of DµA

µ, the covariant derivative Dµ is
used instead of the partial derivative ∂µ. In the case of a U(1) symmetry, the covariant
derivative is given by

Dµ = ∂µ − ieAµ (2.6)
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with the gauge field Aµ. With the covariant derivative the Lagrangian given in equation
2.5 becomes

L = 1
2[∂µσ][∂µσ]− 1

2(2λv2)σ2 + 1
2[∂µη][∂µη] + 1

2e
2v2AµA

µ − evAµ∂µη + LI . (2.7)

In this Lagrangian, a massive gauge boson A with the mass-term 1
2e

2v2AµA
µ and conse-

quently the mass mA = ev can be identified. As a final point, the number of degrees of
freedom needs to be addressed. At the beginning of the considerations detailed before,
four degrees of freedom were present, two for the field A and two for the field φ. In
contrast to this, the Lagrangian in equation 2.7 has five degrees of freedom, one for the
field σ, one for the field η and three for the massive gauge boson A. This shortcoming
can be addressed by finding a gauge in which the field η vanishes and only the physical
fields remain. This gauge is referred to as unitary gauge.
The previous considerations introduced a massive gauge boson in a U(1) symmetry

using the Higgs mechanism. For the application of this mechanism in the electroweak
sector of the Standard Model, which has a SU(2)×U(1) symmetry, a different starting
point needs to be considered. A weak isospin doublet φ, referred to as the Higgs doublet,
whose components are both complex scalar Higgs fields is chosen:

φ =
(
φ1
φ2

)
. (2.8)

As before, the potential V (φ), sharing the SU(2)×U(1) symmetry, is defined as

V (φ) = µ2φ†φ+ λ[φ†φ]2, µ2 < 0, λ > 0 (2.9)

with the ground states given by

φ†0φ0 = |φ0
1|2 + |φ0

2|2 = v2

2 . (2.10)

Without loss of generality, the ground state is chosen to be

φ0 =
(

0
v/
√

2

)
(2.11)

and the Higgs doublet can be expressed using four real scalar fields, vanishing in the
ground state:

φ0 = 1√
2

(
η1 + iη2

v + σ + iη3

)
(2.12)

It can be shown that the same considerations presented before for the case of a complex
scalar Higgs field with the U(1) symmetry can also be applied for the doublet of complex
scalar fields. In the following, only the results of these considerations for the SM are
presented. For an explicit calculation, interested readers are referred to [18, 19]. As a
result of the spontaneous breaking of the SU(2)×U(1) symmetry one finds a Lagrangian

8



2.2 Extensions to the Standard Model

in which mass terms for the W± and Z gauge bosons can be identified and the photon
remains massless. The resulting masses for the gauge bosons and the massive Higgs boson
are

mW± = 1
2vg2, mZ = 1

2v
√
g2

1 + g2
2, mγ = 0, mH =

√
2λv. (2.13)

Up to now only the introduction of masses for the gauge bosons has been discussed.
Masses of fermions can be introduced in the SM via an interaction between the fermions
and the Higgs field. This coupling is expressed as a Yukawa coupling for which the
Lagrangian is given by

LYukawa = −λf ψ̄φψ (2.14)

with the fermion field ψ.
As a result of the non-vanishing vacuum expectation value one obtains the Lagrangian

LYukawa = − 1√
2
λfvf̄LfR −

1√
2
λfσf̄LfR (2.15)

where the first term can be identified as the Lagrangian of a massive fermion f with the
mass mf = λv/

√
2. The second term of the Lagrangian can be identified as a coupling

term between the fermion and the Higgs field σ. Likewise in the case of the gauge
bosons an interaction between the gauge bosons and the Higgs field can be found. The
corresponding coupling constants are given as

gHff = mf/v, gHV V = 2m2
V /v, (2.16)

meaning that for fermions and vector bosons the coupling to the Higgs boson is propor-
tional to the mass and mass squared respectively.

2.2 Extensions to the Standard Model

Up to now, the SM was found to be a theory which is able to explain experimental
findings with astonishing accuracy. However, several open questions exist, for which the
SM does not have any or only unsatisfactory answers. One of these open questions is the
problem of fine tuning. This refers to the problem of quadratically divergent corrections
to the Higgs mass which, especially at high energies, have to be handled by very specific
choices of the parameters of the SM.
Additional open questions arise from the field of cosmology. One of these questions

is the origin of matter in the universe. The current universe is dominated by matter.
However, it is expected that equal amounts of matter and anti-matter existed at the
early stages of the universe. A small portion of this asymmetry can be explained by the
CP violation in the SM. However, this effect is too small to explain the extent of the
asymmetry observed today.
A second open question is the presence of dark matter [21–23] and dark energy [24].

In cosmological observations, the universe was found to consist of only about 5 % visible
matter. About 25 % consist of dark matter, which does not interact electromagnetically
and hence has never been observed directly. The existence of dark matter and its properties
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are interfered from observations of gravitational interactions, such as the rotational speed
of galaxies and gravitational lensing. The remaining 75 % consists of dark energy. Like
the dark matter dark energy has not been observed directly and is only postulated as
a possible solution to explain the accelerating expansion rate of the universe. In the
SM neutrinos are the only potential candidates for dark matter. However, in most dark
matter models these are not sufficient to describe this sector. No explanation for the
dark energy is available in the SM.

In order to account for these limitations of the SM, extensions of the SM are proposed.
A common example for a theory beyond the SM is the Minimal Supersymmetric Standard
Model (MSSM). This model introduces a new symmetry between fermions and bosons.
New particles, the so-called superpartners of the SM particles, are predicted as a result
of this symmetry.

2.2.1 The Higgs sector in the MSSM

Extensions of the SM, such as the MSSM, also predict extended Higgs sectors compared
to the SM Higgs sector. In this section a brief introduction to the Higgs sector in the
MSSM and its implication for the couplings of the predicted Higgs bosons are given. A
more detailed description can be found in [25].

A common extension of the Higgs sector is installed by introducing two Higgs doublets
instead of a single one. The MSSM is a special type of two-Higgs-doublet model imposing
additional constraints. For a two-Higgs-doublet model, the two doublets can be expressed
as

φ1 =
(
φ0

1
φ−1

)
with Yφ1 = −1, φ2 =

(
φ+

2
φ0

2

)
with Yφ2 = +1. (2.17)

The vacuum expectation values of the neutral components of these Higgs fields are
defined as

〈φ1〉 = v1√
2
, 〈φ2〉 = v2√

2
(2.18)

and the parameter tan β is defined as the ratio of the vacuum expectation values of the
two doublets:

tan β = v2
v1

(2.19)

As a result of the spontaneous symmetry breaking five massive Higgs boson are pre-
dicted:

h,H,A,H+, H− (2.20)
Two of these Higgs bosons, h and H, are neutral scalar particles and one, A is a neu-
tral, pseudoscalar particle. The remaining two predicted Higgs bosons, H+ and H−, are
charged Higgs bosons with equal mass. At leading order, the masses of these five Higgs
bosons can be fully described using two free parameters. These two parameters are com-
monly chosen as tan β andmA. The resulting masses of the Higgs bosons then are given as

mH± = m2
A +m2

W (2.21)

m2
h,H = 1

2

[
m2
A +m2

Z ∓
√(

m2
A +m2

Z

)2 − 4m2
Am

2
Z cos2 2β

]
(2.22)
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2.2 Extensions to the Standard Model

As can be inferred from these equations, the mass of the light neutral scalar Higgs
boson h is required to fulfill mh ≤ min(mA,mZ) · cos 2β ≤ mZ . In addition, the heavy
scalar Higgs boson H is required to fulfill mH > max(mA,mZ). Given these masses and
the properties of the light scalar Higgs boson, it should have been observed in precision
measurements at LEP. As no observation of this particle has been made, the mass of the
light scalar Higgs boson needs to be higher and out of the reach of LEP [26]. For this
increase of the mass, higher order radiative corrections need to be taken into account.
These higher order corrections introduce additional parameters, on which the Higgs

sector in the MSSM depends. However, although the corrections themselves can be large,
they usually do not significantly alter the general description of the Higgs sector. For
searches exploring this sector the parameters associated with higher order corrections
are usually set to predefined values leaving mA and tan β as free parameters. Each set of
these values is referred to as benchmark scenario, with each of the benchmark scenarios
emphasizing a different aspect of the Higgs sector and MSSM. A selection of different
benchmark scenarios can be found in [27]. For the results presented later in this thesis
the mmod+

h benchmark scenario is used as a representative benchmark scenario. In this
scenario a large fraction of the phase space is compatible with the observed Higgs boson
at 125 GeV within theoretical uncertainties.
As an alternative possible description of the MSSM Higgs sector the hMSSM [28] is

used. The hMSSM incorporates the Higgs boson found with a mass close to 125 GeV.
It describes the Higgs sector using the parameter entering at tree level, mA and tan β,
and the mass of the observed Higgs boson. Higher order corrections to the neutral
Higgs boson mixing matrix are traded against the mass of the Higgs boson and the
experimental uncertainties on the mass measurement. As a result of this approach, the
hMSSM naturally predicts the existence of a Higgs boson compatible with the observed
Higgs boson for all values of the parametersmA and tan β. The difference in the predicted
masses of the Higgs bosons between the mmod+

h scenario and the hMSSM can also be
seen in figure 2.2, where the masses of the five Higgs bosons are illustrated for the mmod+

h
and hMSSM scenario as a function of mA for two values of tan β.
Similar to the masses of the Higgs boson, the coupling structure can also be fully

described using two parameters. These parameters are chosen to be tan β and the mixing
angle of the states φ0

1 and φ0
2, α. Using the parameters β, mA and mZ , the parameter α

can be expressed as

α = 1
2 arctan

(
tan(2β)m

2
A +m2

Z

m2
A −m2

Z

)
. (2.23)

In the decoupling limit, which is the case if mA � mZ , the parameter α follows the
relation

α→ β − π

2 . (2.24)

The coupling structure of the light neutral scalar Higgs boson in the decoupling limit
converges to the coupling structure of the Standard Model Higgs boson. A similar coupling
structure is predicted for both the heavy neutral scalar and the pseudoscalar Higgs
boson. The coupling to down-type fermions, for example the bottom quark or τ -lepton,
is modified by tan β, whereas the coupling to up-type fermions is modified by 1/ tan β
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Figure 2.2: Masses of the neutral scalar and charged Higgs boson predicted in the MSSM as a
function of the mass of the pseudoscalar Higgs boson mA. The masses are shown for the values
tan β = 5 and tan β = 30 in the mmod+

h (left) and hMSSM (right) scenario. In the hMSSM
scenario the masses of the light scalar and charged Higgs bosons are the same for both values of
tan β. The shaded gray indicated the region where the hMSSM scenario is not applicable. For
the mmod+

h scenario the masses are derived using Feynhiggs [29–34]. For the hMSSM scenario
inputs provided by the LHC Higgs cross section working group are used [35].

with respect to the Standard Model coupling. For vector-bosons, no coupling to the
pseudoscalar and a coupling converging to 0 for the heavy neutral Higgs boson is predicted.
The coupling structures are given in table 2.3.

For the heavy neutral scalar and pseudoscalar Higgs boson the two dominant production
mechanisms are the gluon-fusion and bottom quark associated production. Both are
shown in figure 2.3 as a function of mA for two values of tan β. The relative importance
of both production mechanisms largely depends on the value of tan β. For higher values of
tan β the bottom quark associated production mechanism dominates. At lower values the
gluon-fusion production has a larger cross section. This is compatible with the expectation
based on the coupling structure discussed before. Due to the coupling between bottom
quarks and both Higgs bosons being enhanced with tan β, also the cross section of the
bottom quark associated production mechanism increases with increasing tan β. For the
gluon-fusion both bottom and top quark contribute in the quark loop, resulting in a
non-trivial dependence of the cross section on tan β.
The branching ratios for each of the three neutral Higgs bosons can be determined

based on the prediction for the Higgs boson masses, coupling structure as well as the
coupling to additional particles in the MSSM. In figure 2.4 the branching ratios for the
decay of any of the Higgs bosons into SM particles are illustrated for two values of tan β.
For the light neutral scalar Higgs boson only a minor dependence on the tan β value is
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2.2 Extensions to the Standard Model
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Figure 2.3: Production cross sections for gluon fusion and bottom quark associated production
of a heavy scalar and pseudoscalar Higgs boson in the mmod+

h scenario. The cross sections are
given for tan β = 5 (left) and tan β = 30 (right) using inputs provided by the LHC Higgs cross
section working group [35]. For higher values of tan β the bottom quark associated production
dominates due to the scaling of the coupling between the bottom quark and the Higgs boson
with tan β.

Table 2.3: Coupling structure of the three neutral Higgs bosons in the MSSM, h,H,A. The
coupling to vector-bosons, up-type fermions and down-type fermions is given normalized to the
coupling of a SM Higgs boson. The coupling structure is given for the general case as well as
the decoupling limit. In the decoupling limits the coupling of the h converges to the coupling
of the SM Higgs boson and the coupling of H,A to down-type fermions is enhanced by tan β.

“reduced coupling” to h H A

vector boson sin(β − α)→ 1 cos(β − α)→ 0 0

up-type fermion cosα
sin β → 1 sinα

sin β →
1

tan β
1

tan β
down-type fermion sinα

cosβ → 1 cosα
cosβ → tan β tan β

observed. On the other hand, for both the heavy neutral scalar and the pseudoscalar
Higgs boson the expected enhancement of the branching ratio into down-type fermions
with higher values of tan β is can be seen.
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Figure 2.4: Branching ratios for the decay of the light scalar Higgs boson h (top), heavy scalar
Higgs boson H (middle) and pseudoscalar Higgs boson A (bottom) in Standard Model particles.
Decays into supersymmetric particles are included in the calculation but not shown. The
branching ratios are shown for tan β = 5 (left) and tan β = 30 (right) in the mmod+

h scenario
using inputs provided by the LHC Higgs cross section working group [35].
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CHAPTER 3

Statistical inference

The major goal of any search for new physics is to quantify the agreement or disagree-
ment of these results with a given prediction. This chapter introduces the methods and
techniques used for deriving the interpretation of the data as presented in chapter 6.
First, the basic principles of the likelihood function and the inclusion of systematic un-
certainties are discussed. In the second part, the application of such likelihood functions
to perform hypothesis tests and determine upper limits on parameters is detailed. As an
example the procedure for deriving exclusion limits for a specific MSSM scenario as they
are presented in chapter 6 is highlighted. A more detailed description of these basics and
methods can be found in [36, 37].

3.1 Basic principles

For this thesis the analysis is performed in binned histograms corresponding to indepen-
dent counting experiments in each bin. The probability for an outcome of a counting
experiment can be described using the Poisson distribution

P (n|ν) = νne−ν

n! ≡ Poisson(n|ν) (3.1)

where n is the observed and ν the predicted number of occurrences.
Similarly, a process following a Gaussian distribution can be described with the Gaus-

sian probability density function (PDF)

P (n|ν, σ) = 1√
2πσ

e−
(n−ν)2

2σ2 ≡ Gaussian(n|ν, σ) (3.2)

where in addition to the previously defined parameters ν and n, σ represents the standard
deviation of the distribution.
In the context of searches for new particles the prediction ν can be expressed as

ν = s+ b with b being the predicted number of events for all known backgrounds and s
the predicted number of signal events. In the likelihood the prediction further depends
on additional parameters θ. The likelihood function is then expressed as a function of
the observation, prediction and additional parameters

L(n|s, b, θ) (3.3)
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3.2 Systematic uncertainties

Generally, the predictions for s and b are known only within a given uncertainty. In the
following the incorporating of this uncertainty on the background b in the likelihood
function is discussed. The uncertainty on the background prediction is introduced in the
likelihood function using a nuisance parameter θb with a corresponding PDF P (θb). The
prediction for the background b is then written as

b→ b · (1 + θb) (3.4)

Leading to a resulting likelihood function of

L(n|s, b, θb) = Poisson(n|s+ b · (1 + θb))P (θb). (3.5)

In typical particle physics applications, more than one source of uncertainty needs to be
taken into account. This leads to the introduction of one nuisance parameter θib for each
uncertainty with a corresponding PDF P (θib). The background prediction can then be
expressed as

b→ b
N∏
i=1

(1 + θib). (3.6)

The specific choices of the PDFs for the nuisance parameter θib depend on the nature
of the uncertainty. Typically however, they all need to be constrained to values larger
than −1 in order to prevent non-physical negative contributions to the expected event
count. This is for example achieved by the choice of log-normal or truncated Gaussian
distributions.
Typical analyses have contributions from more than one background process. In the

likelihood formulation this is obtained by expressing the background prediction b as the
sum over all backgrounds bj .

b→
∑
j

bj

N∏
i=1

(1 + θi,jb ). (3.7)

Up to this point, only uncertainties uncorrelated between different background con-
tributions have been considered. To fully describe a measurement, correlations across
different background contributions need to be taken into account. For simplicity, only
fully correlated or uncorrelated uncertainties are introduced. Partial correlations are split
into their fundamental correlated and uncorrelated parts, which are accounted for by
means of dedicated nuisance parameters.
A correlated uncertainty means that multiple backgrounds bi are affected by one

uncertainty in a common way. To account for this a common nuisance parameter θc
and corresponding PDF P (θc) are introduced. Different magnitudes of the effect of this
common nuisance parameter on the individual backgrounds bi are accounted for by a
scaling factor

fi = σi
σc
, (3.8)
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with σc corresponding to the uncertainty of the PDF of the common nuisance param-
eter and σi corresponding to the uncertainty for the background i. In the case of two
background contributions with one fully correlated uncertainty, the resulting background
predictions are given by

b1 → b1(1 + θcbf1) and b2 → b2(1 + θcbf2). (3.9)

Positive values of fi denote a positive correlation, while negative values imply an anti-
correlation. The considerations presented before for the background b can also be applied
to the signal prediction s by substituting b and θb by s and θs respectively.

Up to now, only a single independent counting experiment has been discussed. In the
case of histograms, with each bin of a given histogram being a single counting experiment,
the likelihood function can be described as a combination of many counting experiments:

L(~n|~s,~b, ~θ) =
N∏
i=1

P (ni|si(~θ) + bi(~θ))×
M∏
j=1

P (θj) (3.10)

where ~n, ~s and ~b correspond to vectors of the individual observations, signal and back-
ground predictions respectively. The systematic uncertainties on the individual contri-
butions si and bi are incorporated in this likelihood function as discussed before taking
into account the correlation between them.

In the search for upper limits on cross sections, as presented in section 6.4, a common
approach is to introduce a global signal strength value µ relative to the predicted signal,
which is given by µ = 1. The signal prediction is then expressed as µsi. Leading to the
resulting likelihood function given by

L(~n|µ,~s,~b, ~θ) =
N∏
i=1

P (ni|µsi(~θ) + bi(~θ))×
M∏
j=1

P (θj). (3.11)

3.3 Maximum likelihood fit

Using the likelihood function given in equation 3.11 a maximum likelihood fit can be
performed. In this fit the values of the nuisance parameters ~θ and the parameter µ
maximizing the likelihood function are determined.
A common approach to simplify the procedure is to maximize the logarithm of the

likelihood function logL(~n|µ,~s,~b, ~θ) instead of the likelihood function itself.

logL(~n|µ,~s,~b, ~θ) =
N∑
i=1

logP (ni|µsi(~θ) + bi(~θ))×
M∑
j=1

logP (θj) (3.12)

This approach offers the advantage that instead of deriving the maximum for a product
of terms, the maximum only needs to be derived for a sum of terms.
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3.4 Hypothesis testing and the test statistic

To perform a hypothesis test discriminating between two hypotheses the profile likelihood
ratio λ is introduced. The profile likelihood ratio is given as the ratio of the likelihood for
the signal-plus-background (s+b) hypothesis and the likelihood for the background-only
(b-only) hypothesis:

λ(µ) = L(n|µ, θ̂µ)
L(n|0, θ̂0)

(3.13)

Values of λ larger than 1 favor the s+b hypothesis, whereas lower values favor the b-only
hypothesis. The simple likelihood ratio only quantifies the discrimination between the
s+b and b-only hypothesis based on the observation. For the following considerations
the text statistic qµ is constructed as

qµ = −2 log λ(µ). (3.14)

Based on the distribution of the test statistic for the s+b case f(qµ|µ) and b-only case
f(qµ|0) the confidence levels CLS+B and CLB are calculated (see figure 3.1). The CLS+B
value is obtained by integrating the distribution of f(qµ|µ) from the observed value to
+∞, corresponding to the probability to find a less s+b-like value of the test statistic.
Likewise, the value for CLB is obtained by integrating from the observed value to +∞,
corresponding to the probability to find a more b-only-like value of the test statistic.

CLS+B(µ) =
∫ ∞
qobs
µ

f(qµ|µ) dqµ (3.15)

CLB =
∫ ∞
qobs
µ

f(qµ|0) dqµ. (3.16)

The CLS+B does, however, not take into account how well the s+b and b-only hypothe-
ses can be separated. This is taken into account in the CLS method [38, 39] used by the
LEP experiments and ATLAS and CMS for setting upper limits on parameters. In this
approach the CLS+B and CLB measures are combined in the CLS value, which is defined
as

CLS(µ) = CLS+B(µ)
CLB

. (3.17)

Due to the normalization to the CLB value this measure takes into account how well the
s+b and b-only hypothesis can be separated.

The upper limits at a confidence level α on the parameter µ is then found for the value
of µ for which the CLS value satisfies

CLS(µup) = 1− α. (3.18)

Common choices for the confidence level are 95 %.
For the determination of the CLS value the distributions of the test statistic f(qµ|µ)

and f(qµ|0) need to be determined. These can be derived based on toys, for which the
observation n is replaced with toy observations drawn according to the given hypothesis.
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3.5 Exclusion limits in the mA-tan β plane

Figure 3.1: Illustration of the test statistic distribution for the background-only (HB) and signal-
plus-background (HS+B) hypotheses. The regions of the CLB and CLS+B values correspond
to the integrals of the corresponding distributions from the observed value of the test statistic
qobs
µ to ∞.

However, this can be computing resource expensive. By ATLAS and CMS a modified
approach is used. In this approach the profile likelihood ratio is not normalized to the
likelihood for the b-only hypothesis, but to the global maximum of the likelihood-function.
It is given by

λ(µ) = L(n|µ, θ̂µ)
L(n|µ̂, θ̂)

, 0 ≤ µ̂ < µ (3.19)

where µ̂ and θ̂ are the values of µ and θ which globally maximize the likelihood function
and θ̂µ are the parameters which maximize the likelihood function for a given fixed choice
of µ. The corresponding test statistic qµ is then given as

qµ =
{
−2 log λ(µ) µ ≥ µ̂
0 µ < µ̂

(3.20)

Using this definition of the profile likelihood and test statistic asymptotic formulae
[40, 41] can be used for deriving the distribution of the test statistic. In the case of
sufficiently large number of events these are found to provide good descriptions of the
test statistic distribution.

3.5 Exclusion limits in the mA-tanβ plane

The methods described before are used to set exclusion limits for a specific MSSM scenario
in the mA-tan β plane. For these limits the MSSM hypothesis needs to be distinguished
from the SM hypothesis. The corresponding profile likelihood ratio is given by

λ = L(BG + MSSM)
L(BG + SM) (3.21)
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For the methods presented in the previous section and especially to ensure the appli-
cability of asymptotic formulae, a likelihood function being able to express both probed
hypotheses needs to be found. As the hypotheses being probed do not depend on each
other, a dedicated method needs to be applied to merge both hypotheses into a single
likelihood function. The method used as well as advantages and disadvantages of this
approach are discussed in [42]. The chosen likelihood function is

L(x) = L (x · sMSSM + (1− x) · sSM + BG) , 0 ≤ x ≤ 1 (3.22)

with the parameter of interest x. For x = 0 this likelihood function corresponding to the
SM+BG case, whereas for x = 1 the MSSM+BG hypothesis is described. However, while
for the values x = 0 and x = 1 the described model is physically meaningful, values of
x in between 0 and 1 do not correspond to a physical model. Nonetheless, they are well
defined from a statistical point of view and can be used for the calculations presented in
the previous section.

When using the profile likelihood ratio given in equation 3.21 no asymptotic description
of the test statistic distribution is available. Consequently, these distributions need to
be derived in a toy based approach. For the exclusion limits in the mA-tan β plane this
means that for each parameter point in this plane the corresponding distributions need
to be derived. An illustration of the grid of points used for deriving the exclusion limits is
shown in figure 3.2. In order to reduce the computational efforts needed for these limits
the points on the grid are chosen such that they have the highest density close to the
expected exclusion limits and its uncertainties, while only few points are probed farther
away. Values for parameter points in between the probed points are interpolated.
As the toy based approach is computationally intensive an approach employing the

LHC test statistic given in equation 3.20 and corresponding asymptotic formulae are
used for the results presented in chapter 6. This approach was studied in [43] and the
difference of the results to the fully toy based approach were found to be small for the
central values of the expectation and observation and yield similar uncertainties for the
expectation.
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Figure 3.2: Illustration of the grid in the mA-tan β plane. Each yellow point corresponds to a
single point for which the test statistic distribution is derived and the CLS value is computed.
The grid has a higher density in regions close to the exclusion contours in order to improve
their resolution. For illustrational purpose the underlying plot is taken from [5].
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CHAPTER 4

Experimental Setup

This section gives an overview of the experimental setup and environment of this thesis.
Section 4.1 gives an overview of the accelerator complex at CERN and the parameters
of its largest accelerator, the Large Hadron Collider (LHC). Section 4.2 introduces the
design and components of the Compact Muon Solenoid Experiment (CMS). The com-
puting environment and the Worldwide LHC Computing Grid are sketched in section
4.3. Eventually, section 4.4 introduces the techniques and algorithms used to reconstruct
and identify particles at the CMS experiment.

4.1 The Large Hadron Collider

The LHC [44] is the worlds most powerful particle accelerator. The accelerator with a
circumfence of 27 km is build up in the tunnel of its predecessor, the Large Electron
Positron Collider (LEP), close to the CERN main site in Meyrin at a depth between 50
and 175 m. Using more than 1000 dipole magnets with a magnetic field of 8.3 T to bend
the proton beams onto the circular trajectory and around 400 quadrupole magnets to
focus the proton beams, the LHC is operated to accelerate protons up to an energy of
6.5 TeV.

Two beams inside the LHC are collided at four interaction points, where the four LHC
experiments - ALICE, ATLAS, LHCb and CMS - are located. The ALICE experiment
is designed to study the quark-gluon plasma using data collected during the heavy ion
operation on the LHC. These measurements are designed to draw conclusions about the
initial state of the universe. LHCb focuses on precisely measuring B-meson decays and
CP-violating processes. CMS and ATLAS are the two general purpose experiments at
the LHC build for studying a broad range of physics processes. These studies include
precision measurements of Standard Model processes and parameters, thereby deepening
our knowledge and understanding of the Standard Model. In addition, major fields of
study are searches for the Higgs bosons and study of their properties and searches for
physics beyond the Standard Model.
Prior to the injection into the LHC, the protons pass through a series of smaller

accelerators [45]. Starting from a bottle of hydrogen, the initial acceleration of the protons
up to an energy of 50 MeV takes place in a linear accelerator (LINAC2). From there
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Figure 4.1: The CERN accelerator complex consists of several particle accelerators which are
chained to accelerate the protons up to the energy with which they are injected into the LHC.
Alongside these accelerators further experiments are located serving a broad range of physics.
Taken from [46]

the protons are transferred to and further accelerated by four circular accelerators with
increasing size. The Proton Synchrotron Booster with a circumfence of 157 m accelerates
the protons up to an energy of 1.4 GeV. From there on the protons are transferred to the
Proton Synchrotron (PS) with a circumfence of 628 m where the energy is increased to
25 GeV. The 7 km long Super Proton Synchrotron (SPS) is the final step in this chain.
There the protons are accelerated to an energy of 450 GeV and eventually injected into
the LHC ring. In addition to feeding the LHC, these accelerators are also used for other
physics experiments on the CERN site like the Antiproton decelerator (AD), see figure 4.1.

4.2 The Compact Muon Solenoid Experiment

The data analyzed in this thesis has been taken with the CMS detector in the year 2016.
The CMS detector is build up in a barrel-like design around the interaction point of the
proton beams delivered by the LHC. The detector can be separated into two main parts,
the central part of the detector, referred to as barrel and the two sections closing the
detector in the direction of the LHC beampipe, referred to as endcaps.

The CMS experiment consists of four different subdetectors, each targeting a different
kind of measurement. The combination of these subdetectors allows to detect and measure
the properties of most stable particles being produced in proton-proton or heavy ion
collisions (see figure 4.2).
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4.2 The Compact Muon Solenoid Experiment

Figure 4.2: Illustration of the CMS detector (top) [47] and cross section of the barrel region of
the CMS detector (bottom) [48]. The components of the subdetectors are highlighted. In the
bottom figure the trajectories and energy deposits for five classes of particles observed in the
final state of proton-proton collisions are shown.
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First, the coordinate system used to describe interactions recorded with the CMS
detector is introduced in this section. Afterwards, a brief description of the individual
subdetectors of the CMS experiment is given. More details on the setup of the CMS
experiment can be found in [49–53].

Coordinate system at CMS

To describe interactions within the CMS detector an orthogonal right handed coordinate
system is used. The x axis of this coordinate system points towards the center of the
LHC ring, the y axis upwards orthogonal to the plane of the accelerator and the z axis
counterclockwise in the direction of the beam pipe. In addition, the two angles φ, defined
as the azimuthal angle to the x axis in the x-y plane, and θ, the polar angle measured
from the z axis, are used. The x-y plane is also referred to as the transverse plane.
Instead of the angle θ commonly the pseudorapidity η which is defined as

η = − ln
[
tan

(
θ

2

)]
(4.1)

is used. In the limit of massless particles, the pseudorapidity has the advantage of being
covariant under boosts along the z axis.

As a measure of the distance between two objects the metric ∆R is introduced, which
is defined as

∆R =
√

∆φ2 + ∆η2. (4.2)

Inner Tracking System

The inner tracking system is used for measuring the trajectory of charged particles, such
as charged leptons and charged hadrons (see figure 4.2), passing through the detector.
In combination with the magnetic field of the superconducting solenoid, this enables a
measurement of the momentum of these particles based on the curvature of the track.
The super conducting solenoid is located outside of the electromagnetic calorimeter and
generates a magnetic field of 3.8 T.

The inner tracking system itself is the first layer of the CMS detector located directly
around the beam pipe. This positioning as close as possible to the interaction point allows
to measure the interaction vertices and tracks with the best achievable resolution. The
tracking system used in the CMS experiment is built out of silicon based semiconductor
detectors. Two different types of detectors are used. For the innermost layers silicon pixel
detectors, which allow the best resolution for particle hits in the detector are used. This
setup is completed by layers of strip detectors used for the outer layers. The combination
of silicon pixel and strip detectors allows for a precise measurement of the trajectories
close to the interaction point.

The CMS tracking system covers the detector region up to |η| = 2.5 and has a resolution
of up to 10 µm in the x-y direction and 20 µm in the z direction. The transverse momentum
of tracks can be measured with a resolution of 1-2 % for muons with a pT of 100 GeV.
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Electromagnetic Calorimeter

The electromagnetic calorimeter (ECAL) is designed to measure the energy of electrons
and photons. It consists of 75000 lead tungstate (PbWO4) crystals. Lead tungstate is
chosen as material due to its radiation hardness, high density (8.28 g cm−3) and therefore
short radiation length (0.89 cm). It consists of two parts, the ECAL barrel (EB) extending
up to |η| < 1.479, the ECAL endcap (EE) covering 1.479 < |η| < 3.0. The crystals of the
EB are arranged in a cylindrical shape with an inner radius of 1.29 meter. Each crystal
in the EB has a depth of 23 cm, which corresponds to 25.8 radiation lengths X0, and is
2.2 cm× 2.2 cm large, covering an area of 1° in the η−φ plane.

The EE is made up from similar lead tungstate crystals with a depth of 22 cm, cor-
responding to 25X0, and a size of 2.86 cm × 2.86 cm. In front of the EE an additional
preshower (ES) is installed in the region 1.653 < |η| < 2.6. The ES allows for a precise
measurement of the position of electromagnetic showers, thereby allowing an improved
differentiation between the signatures of electrons and photons from π0 decays. The ES
consists of one layer of lead absorber followed by a layer of plastic scintillators. Both
layers have a total thickness of 4X0.
The resolution of the ECAL is characterized by three components:

σE
E

= S√
E
⊕ N

E
⊕ C (4.3)

where S corresponds to the stochastic part of the uncertainty for example due to statistical
fluctuations in the photon emission in the crystals. N represents the contribution to the
uncertainty due to noise in the electronics or pile-up. The constant term C accounts among
other effects for the uncertainty due to leakage of the energy from showers extending
beyond the end of the crystals. In a test beam setup, the terms have been measured as
S = 0.028

√
GeV, N = 0.12 GeV and C = 0.003 [53].

Hadron Calorimeter

The hadron calorimeter (HCAL) is designed to measure the energy of hadrons originating
from the collisions in the detector. It covers the region up to |η| < 3 and consists of
alternating layers of brass and plastic scintillators. It is 5.8 interaction lengths (λI) thick.
Combined with an additional system outside of the solenoid coil a total thickness of
≈ 11.8λI is reached.
In the forward and backward direction, the hadron calorimeter is completed by an

additional calorimeter covering small opening angles up to |η| < 5.2. Due to the high
particle fluxes in these regions this calorimeter is made up from radiation hard quartz
fibers embedded in steel.
The resolution of the hadron calorimeter is characterized by a term proportional to

the square root of the energy and a constant, described as

σE
E

= 84.7 %√
E/GeV

⊕ 7.4 % (4.4)
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Muon System

The muon system is the largest subdetector at the CMS experiment located outside of
the superconducting solenoid. Three different types of detectors are employed in the
muon system. In the barrel region of the CMS detector up to |η| ≈ 1.3 drift tubes and in
the endcap regions, for 0.9 < |η| < 2.4, cathode strip chambers are used. Both of these
detectors allow to measure the trajectories of muons passing through the detector and
hence, combined with the information of the inner tracking system, provide a precise
measurement of the muon momentum.

In addition, resistive plate chambers are employed in both the barrel and endcap region
up to |η| = 2.1. These types of detectors offer a poor spatial resolution in the order of a
few cm but provide a good time resolution of ≈ 3 ns. The resistive plate chambers are
used to provide a dedicated signal for triggering events with muons.

Triggering at CMS

Proton-proton collisions at the LHC take place once every 25 ns. Due to this high inter-
action rate, the data recorded by the detector can not be fully stored at a computing
center. In order to account for this, a tiered triggering approach is used by the CMS
collaboration. In a first step, the level 1 trigger is used to reduce the event rate to 100 kHz.
The level 1 triggering system is based on dedicated hardware, allowing for a fast enough
decision.
Events accepted by the level 1 trigger are sent on to the high level trigger. The high

level trigger is entirely software based and is run on a dedicated server farm. At the high
level trigger step, an initial reconstruction of each event is performed. This allows the
trigger to use high-level objects such as reconstructed τ -leptons.
Using the high level trigger, the event rate gets reduced to 100 Hz. These events are

then transferred to the computing center at CERN, reconstructed and made available
for analyses.

4.3 Computing environment and the Worldwide LHC
Computing Grid

Despite of the high level triggering and similar techniques employed by the CMS experi-
ment and other large scale experiments, they still produce large amounts of data. The
CMS experiment alone produced approximately 16 PB of data in the year 2016 [54].
Connected with this huge amount of data, a large amount of computing power is needed.
To account for this need of storage and provide corresponding computing facilities, the
experiments at the LHC make use of the worldwide LHC computing grid (WLCG).
The WLCG is a tiered structure connecting in the order of 170 computing centers

to provide the necessary storage and computing facilities (see figure 4.3). The primary
computing centers of the WLCG are located at the CERN site in Meyrin and the Wigner
datacenter in Budapest. It provides the initial reconstruction of recorded events and
storage for the obtained datasets. The tier 1 data centers are mainly used for generating
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Figure 4.3: The worldwide LHC computing grid (WLCG) provides the storage and computing
resources needed to process the data recorded by the CMS experiment and to provide them
to the users. The WLCG is organized in a tiered structure with the tier 0 being located at
CERN and Budapest. One of the six tier 1 datacenters is operated in Karlsruhe, Germany

simulated events and storing a copy of the raw data. Together with the tier 2 facilities
the tier 1 centers provide access to the simulated and measured data to the users. Finally,
at the tier 2 and tier 3 facilities analysis jobs of users of the WLCG can be run and the
results stored for further processing.

4.4 Object identification and reconstruction

CMS uses a particle flow approach for reconstructing and identifying particles. In this
approach, the information of all sub detectors is combined for the reconstruction of the
events. This allows for a more precise and reliable reconstruction compared to using the
information only from individual subdetectors. In the following section, the principle of
the reconstruction and identification which are used for particles most important for the
analysis - jets, electrons, muons and τ -leptons - is introduced. Further information on
the particle-flow approach employed at CMS can be found in [55].

General comment on the recorded data

An important aspect of the data recorded by the CMS experiment is the number of
collisions happening in a single crossing. Among these interactions, only a single one is of
interest, with the remaining ones leading to additional signatures in the detector. These
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additional interactions are referred to as pile-up. In the year 2016 on average around
23 collisions were recorded per crossing. The place within in the detector at which the
interaction takes place is reconstructed as vertex. Based on the sum of the transverse
momenta of all particles associated with each vertex and criteria for the quality of the
reconstruction and identification of each vertex, a single vertex, referred to as primary-
vertex, is selected among those. This primary vertex is used as basis for the object and
event reconstruction.

Jet reconstruction

Jets are reconstructed from particle-flow candidates, resembling trajectories in the tracker
and energy deposits in the electromagnetic and hadronic calorimeter. For the purpose
of the analysis presented in this thesis, jets are clustered using the anti-kt clustering
algorithm [56] with a cone size of 0.4. The clustering algorithm determines how the
contributions of individual particles and initial jets are combined in order to arrive at
the final jet selection.

A dedicated method is applied to mitigate the effect of pile-up. This is done by removing
the contribution from charged hadrons which, based on their track, are identified to
originate from other interaction vertices than the primary vertex.

B-tagging

A special class of jets are jets originating from bottom quarks. Hadrons containing
bottom quarks have a long enough lifetime to lead to a secondary decay vertex which is
displaced with respect to the primary vertex. The mean displacement is in the order of
a few millimeters. To differentiate between jets originating from bottom quarks and jets
originating from light quarks or gluons, b-tagging algorithms are used. Using a likelihood
or multi-variate approach, these algorithms exploit the lifetime of hadrons containing
bottom quarks to differentiate between these classes of jets.
For the analysis presented in this thesis the combined secondary vertex version 2

(CSVv2) b-tagging algorithm is used. This algorithm combines the information of dis-
placed tracks and reconstructed secondary vertices of the decay of hadrons containing b
quarks using a multivariate technique [57]. Three working points, loose, medium and tight,
are defined for the CSVv2 algorithm. The working points correspond to probabilities of
10, 1 and 0.1 % to mistag jets from light quarks as jets originating from bottom quarks
respectively. The efficiency to correctly identify jets originating from bottom quarks is
determined as 83, 69 and 49 % for the respective working point. The distribution of the
CSVv2 discriminator is shown in figure 4.4. The values of the discriminator corresponding
to the three working points are 0.46, 0.8 and 0.935 respectively.

Muon reconstruction and isolation

The muon reconstruction is based on the information from the tracking and muon system.
In a first step, an independent reconstruction of tracks of muons is performed for both
subdetectors. After this, two compatible tracks are searched for in the results of the
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individual reconstructions. A combined reconstruction of a muon is then performed using
the information from both subdetectors. The combination of both sources of information
leads to an improved resolution of the muon reconstruction.
Leptons from the hard interaction are expected to have little other activity in the

vicinity around them. In contrast to this, leptons originating from a cascade of hadronic
activity are expected to be less isolated from additional activity in the detector due to
the confinement. The amount of additional activity in the vicinity of leptons is referred
to as the isolation of a lepton. For both muons and electrons, an isolation based on the
output of the particle flow algorithm is used. It is defined as the energy deposited in a
cone with radius ∆R centered on the lepton and calculated as

IL =
∑

charged,PV
pT + max

(
0.0,

∑
neutral

pT −∆β
)

(4.5)

where the first term is the sum of the transverse momentum of all charged particles
associated to the same primary vertex, which contribute in the cone around the lepton.
The second term sums the contribution of all neutral particles. As neutral particles can
not be associated to the primary vertex this sum also includes contributions from pile-up
vertices. Finally, the ∆β term is introduced to take this into account. It is given by

∆β = 0.5
∑

charged,PU
pT (4.6)

where the factor of 0.5 is given by the expectation that pile-up contributions consist of
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equal contributions from charged and neutral particles and the sum is performed over
all charged particles within the cone not associated to the primary vertex.

A more common metric for the isolation of leptons is the relative isolation. It is derived
by dividing the isolation as defined above by the transverse momentum of the lepton:

Irel
L = IL

pLT
. (4.7)

Electron reconstruction and isolation

Electrons in the CMS detector are reconstructed based on their energy deposition in
the electromagnetic calorimeter and a track in the tracking system. The matching is
complicated by the fact that electrons while traversing the inner tracking system can
radiate off photons as bremsstrahlung. These photons then in turn may convert to
an e+e− pair. On average 35 % of the electrons radiate off 70 % of their energy in
this way before reaching the ECAL. To account for this dedicated "superclustering"
algorithms are employed combining the energy deposited by an electron and its respective
bremsstrahlung photons. As discussed before for electrons the lepton isolation given in
equation 4.5 is used.

Identification and reconstruction of hadronically decaying τ -leptons

The hadronic decay of a τ -lepton generally produces a jet with a narrow cone consisting
of one or three charged hadrons (π±) as well as additional neutral hadrons and tau
neutrinos. As neutrinos pass the detector without interacting with the detector material
they contribute to the /ET in the given event (see next section). The reconstruction
of hadronically decaying τ -leptons at CMS uses the "hadron-plus-strip" algorithm as
described in [58, 59]. In this algorithm, one charged hadron, reconstructed using the
particle-flow information, is combined with neutral pions, reconstructed from strips of
clusters in the electromagnetic calorimeter. All particles of the τ -lepton decay are required
to be contained within the same jet, which is clustered using the anti-kt algorithm with
a cone size of ∆R = 0.5.
Strips are formed following the following iterative procedure.

• the electron or photon (e/γ) with the highest pT not included in any strip is selected
as seed for a new strip

• The e/γ with the next highest pT within a ∆η-∆φ window is searched. The window
is defined as ∆η = 0.2

((
p
e/γ
T /GeV

)−0.66
+
(
pstrip

T /GeV
)−0.66

)
with a maximum of

0.3 and a minimum of 0.05 and ∆φ = 0.35
((
p
e/γ
T /GeV

)−0.71
+
(
pstrip

T /GeV
)−0.71

)
with a maximum of 0.15 and a minimum of 0.05. Where pstrip

T corresponds to the
sum of the pT of all e/γ assigned to the strip. These parameters have been obtained
based on simulated τ -lepton decays.
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Table 4.1: Decay modes of a hadronic τ decays. In decays which are via an intermediate meson
resonance the resonance and its respective mass are given [7]

Decay Mode Resonance Mass [MeV] Branching fraction [%]
τ± → π±ντ 11.6
τ± → π±π0ντ ρ 770 26.0
τ± → π±π0π0ντ a1 1260 10.8
τ± → π±π±π∓ντ a1 1260 9.8
τ± → π±π±π∓π0ντ 4.8

• The position of the strip is recomputed as pT weighted average of all e/γ assigned
to the strip.

For the reconstruction of hadronic τ decays, four decay modes are considered accounting
for a total of 63 % of all τ -lepton decays (see table 4.1).

• One charged hadron: reconstructed as decay τ± → π±ντ .

• One charged hadron and one strip: The invariant mass of the combination of hadron
and strip is required to suffice 0.3 GeV−∆mτ < m < 1.3 GeV

√
pT/100 GeV+∆mτ .

The mass cut selects τ± → π±π0ντ decays with an intermediate ρ meson.

• One charged hadron and two strips: the mass of the combination of the hadrons is
required to suffice 0.4 GeV−∆mτ < m < 1.2 GeV

√
pT/100 GeV+∆mτ . Leading to

the decay being identified and reconstructed as the decay of a a1 meson resonance,
τ± → a1ντ → π±π0π0ντ .

• Three charged hadrons: the invariant mass of the combination of the hadrons is
required to suffice 0.8 GeV−∆mτ < m < 1.5 GeV + ∆mτ . This leads to the decay
kinematics being compatible with the decay of an a1 meson resonance. The decay
is identified as τ± → a1ντ → π±π±π∓ντ decay.

The variable ∆mτ accounts for the change in mass of the reconstructed τ -lepton due to
the strip reconstruction performed before and depends on the energy and momenta of
the reconstructed τ -lepton and the strip.

All of the charged hadrons and strips are required to be within a cone with a radius of

∆R =


0.1 if pT < 28 GeV
2.8 GeV
pT

if 28 < pT < 56 GeV
0.05 if pT > 56 GeV

. (4.8)

After this selection, jets and other leptons can still be misidentified as hadronic τ decays.
One way to reduce the contributions of these misidentified objects is to require the
τ -lepton candidate to pass an isolation requirement.
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Figure 4.5: (left) Performance of the available isolation and identification definitions for hadron-
ically decaying τ -leptons. The MVA based identification offers a better discimination against
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working points very loose, loose, medium, tight, very tight and very very tight are defined with
signal efficiencies ranging from 40 to 75 %.
(right) Performance of the MVA based anti-electron discriminator. The rate of electrons misiden-
tified as hadronic τ decays is shown as a function of the transverse momentum of the electron
for the five defined working points [59].

For hadronically decaying τ -leptons a modified particle-flow isolation as given in equa-
tion 4.5 is used. This approach is modified by requiring a maximum distance from the τ
production vertex in the z direction of dz < 0.2 cm for the sum over the charged particles.
The contribution from pileup ∆β is estimated by summing over the objects within a cone
with radius ∆R = 0.8 and a minimal distance to the τ vertex of dz > 0.2 cm. To account
for this modification, the factor for the pileup correction is adapted to 0.2 resulting in
the following isolation definition

Iτh =
∑

charged,PV
pT(dz < 0.2 cm) + max

(
0.0,

∑
neutral

pT − 0.2
∑
PU

pT(dz > 0.2 cm)
)

(4.9)

To improve the identification of hadronic τ decays and improve the discrimination
against jets a multivariate discriminator is used. This discriminator combines the informa-
tion from the particle-flow isolation with information about the lifetime of the τ -lepton.
Six working points, very loose to very very tight, with τ -lepton identification efficiencies
ranging from 75 to 40 % are defined (see figure 4.5).

Additional methods are available to suppress the amount of muons or electrons misiden-
tified as hadronic τ decays. For muons, the discrimination is based on the presence of
signals in the muon system in the proximity of the τ -lepton [58]. Two working points are
defined for this discriminator
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Loose:
The τ -lepton is vetoed when more than two track segments in the muon system are
found within a cone with ∆R = 0.3 centered on the τ -lepton. It is also vetoed when
the energy deposition in the ECAL and HCAL identified as originating from the
τ -lepton amounts to less than 20 % of the momentum of the track of the τ -lepton.

Tight:
Requires the τ -lepton to pass the loose working point and in addition no hits in
the two outermost layers of the muon system within a cone of ∆R = 0.3 around
the τ -lepton.

For the discrimination against misidentified electrons, an MVA based method is avail-
able [59, 60]. This method uses information about the energy deposit in the ECAL and
HCAL, observables related to the bremsstrahlung and particle multiplicities to distin-
guish between hadronic τ decays and electrons. Five working points with misidentification
rates for electrons ranging from 0.001 to 0.1 are defined (see figure 4.5).

Missing transverse energy

Due to the topology and symmetry of the LHC setup and the design of the CMS detector
each event is expected to be balanced in the transverse plane. This means that the
transverse momenta of all particles originating from a given vertex sum up to 0. As
not all particles can be detected by the CMS detector, this does not hold true when
considering the reconstructed particles.
For this unmeasured momentum the quantity missing transverse energy /ET is intro-

duced. In the particle-flow approach, it is defined as the negative sum of the momenta
of all reconstructed particles

~/ET = −
∑
i

~pT. (4.10)

Corrections to the measured energy of jets are propagated to the calculation of the
/ET [61].
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CHAPTER 5

Search for additional heavy Higgs bosons
decaying into two τ -leptons

The H → ττ decays can be divided into three different decay channels based on the
number of hadronically decaying τ -leptons, in the following referred to as hadronic τ -
lepton, in the final state. These decay channels have none, one or two hadronic τ -leptons
in the final state. For the analysis presented in this thesis only the latter two decay
channels are considered. These decay channels sum up to approximately 88 % of all
H → ττ decays (see figure 5.1).

µµ
ee

eµ

µτh

eτh

τhτh

3.0 %
3.1 %

6.2 %
22.5 %

23.1 %

42.2 %

Figure 5.1: Branching ratios of the
decay of the di-τ system. The
outer red segment indicates the fi-
nal states which are studied in this
analysis [7].

Due to the different background compositions, the decay channels with one hadronic
τ -lepton in the final state are further divided into two decay channels with either one
electron or one muon in the final state. The former decay channel is referred to as eτh
and the latter one as µτh. The fully hadronic final state is referred to as τhτh.
In section 5.1 the processes contributing to the studied final states are described. In

section 5.2 the event selection for the studied final states is given. The kinematic selection
is motivated by the requirements of the high level triggers employed during data taking
as well as the optimisation of the signal efficiency and background rejection for each of
the final states.

The methods used to estimate the contributions from the individual processes are de-
scribed in section 5.3. For backgrounds involving jets which are misidentified as hadronic
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τ decays two independent estimation methods are presented. These two methods are
also used to cross-check each other.
The corrections employed in this analysis to improve the description of measured

data by the simulation are detailed in section 5.4. The uncertainties associated with
these corrections as well as further uncertainties due to the background estimations,
experimental setup and theory predictions which are considered in the statistical model
are given in section 5.5.

5.1 Considered processes

The final states studied in the analysis presented in this thesis are characterized by one or
two candidates for hadronic τ -leptons in the eτh, µτh or τhτh decay channel respectively.
In the eτh or µτh decay channels one additional electron or muon candidate is expected.

The processes contributing to these final states can be separated into two classes based
on the presence of a genuine hadronic τ decay or another object which is misidentified as a
hadronic τ decay. The latter case can further be divided into processes with misidentified
leptons or jets.

In this section, the processes contributing to the studied final states and the available
simulated events of these processes are given. A summary of the event generators used
for generating these processes and the corresponding cross sections is given in table A.3.
A general overview of Standard Model processes measured by the CMS collaboration,
from which most contribute to the studied final state, can be found in figure 5.2.

5.1.1 Higgs boson production

The Higgs boson production serves two purposes in this analysis. One on side Higgs
boson production processes in the context of the MSSM serve as signal hypothesis for
this analysis. One the other side the production of the Standard Model Higgs boson
serves as an alternative hypothesis against which the MSSM hypothesis is discriminated.

MSSM Higgs boson production

As mentioned in section 2.2.1, in the MSSM the two dominant production processes for
a Higgs boson are gluon-fusion and bottom quark associated production (see figure 5.3).
These two production processes are important for all three predicted neutral Higgs boson
h,H,A. In the following φ resembles any of these three Higgs bosons.
The simulated events used for these processes are generated at leading order using

the PYTHIA 8 generator [63]. For the results presented in chapter 6 the production cross
sections and branching ratios are provided by the LHC Higgs cross section working group
for the different MSSM scenarios [64]. These numbers are calculated taking into account
corrections up to next-to-next-to-leading-order. For the calculation SusHi [65], HIGLU [66],
bbH@nnlo [67], HDECAY [68, 69], FeynHiggs [29–34] and PROPHECY4f are used.
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Figure 5.3: Gluon-fusion (left) and bottom quark associated production (right) of a super
symmetric Higgs boson φ at leading order.
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Figure 5.4: Gluon-fusion (left), vector-boson fusion (middle) and vector-boson associated pro-
duction (right) of a Standard Model Higgs boson in hadron collisions at leading order.

Standard Model Higgs boson production

In the presented searches in the context of the MSSM the Standard Model Higgs boson
serves as an alternate hypothesis against which the signal hypotheses are tested (see
chapter 6). The three main production mechanisms for the Standard Model Higgs boson
are the gluon-fusion, vector-boson fusion and vector-boson associated production (see
figure 5.4). These three production processes are generated at next-to-leading-order
precision using POWHEG [70].
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5.1.2 Background processes

The studied final state includes contributions from further processes in addition to the
production of a Higgs boson, either in the MSSM or the SM. In the following section the
SM processes contributing to this final state are detailed.

Z boson production

The Z boson was discovered at the SPS in 1983 [10, 11] and its mass and decay width
measured with high precision at LEP to be mZ = 91.187 GeV, ΓZ = 2.495 GeV [7].
The major production mechanism at hadron colliders is the Drell-Yan process (see

figure 5.5). The Z boson decay contributes to the final state studied in this analysis in
two ways: via genuine τ -leptons, Z → ττ , as well as misidentified leptons and jets. For
the eτh and µτh decay channels a significant contribution comes from the Z → ll decay
where one of the leptons is misidentified as hadronic τ decay.

In order to sufficiently populate all kinematic regions used in this analysis, dedicated
events are simulated where up to four additional partons are required to be present
on the hard interaction level. Z boson events are generated using MadGraph with
leading-order precision for the corresponding parton multiplicity.

Z

g

q

q

l+

l−

W

q

g

q′

l

νl

Figure 5.5: Examplary feynman graphs for Drell-Yan Z boson production (left) and W boson
production (right) including one additional quark jet in the final state.

W boson production in association with jets

Like the Z boson, the W boson was discovered at the SPS in 1983 [8, 9]. It has a mass
of 80.385 GeV [7]. As the decay of the W boson by itself does not lead to the final state
studied in this analysis, the dominant contribution comes from W boson production in
association with a jet, which is referred to as W+jets (see figure 5.5). In these events,
the associated jet is misidentified as a hadronic τ decay. As for the Z boson, dedicated
events are produced to improve the population of relevant kinematic regions. The events
for this background are simulated at leading order in the respective parton multiplicity
using the MadGraph generator.
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Top quark pair production

The top quark was discovered at the Tevatron in 1995 [71, 72] and its mass is measured as
173.21 GeV [7]. The production of a top-anti-top quark pair, further referred to as tt̄, is a
significant contribution to the studied final states. The production can take place either
via gluon-fusion or quark anti-quark annihilation (see figure 5.6). It decays predominantly
into two W bosons and two bottom quarks in the final state. Hence the final state closely
resembling the final state of a di-τ pair decay. Most specifically due to the bottom quarks
it is also a significant background in searches for the bottom quark associated production.
tt̄ events are generated using the POWHEG generator at next-to-leading-order precision.
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Figure 5.6: Production of a top quark pair at leading order.

Single top quark production

In addition to the tt̄ process also the production of a single top quark contributes to the
studied final states (see figure 5.7). The corresponding events are generated using the
POWHEG generator at next-to-leading-order precision.
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Figure 5.7: Production of a single top quark at leading order.
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Di-boson

The Di-boson contribution comprises WW , ZZ and WZ production processes. With
decays involving either τ -leptons directly or electrons, muons and jets which can be
misidentified as τ decays, these processes contribute to the studied final states. The
events are simulated using the aMC@NLO generator [73]. The sum of Single top quark
production and Di-boson processes are also referred to as electroweak contributions in
the following.

QCD multi-jet

Remaining processes involving more multiple jets in the final state are summed up as
QCD multi-jet. These processes feature both jets, which can be misidentified as hadronic
τ decays, and non isolated leptons from leptonic decays in the final state. For the QCD
multi-jet processes no sufficient coverage with simulated events is available. As a result,
methods using observed data to estimate the contribution of QCD multi-jet are employed
(see section 5.3).

5.2 Event selection

The selection of relevant events from the large amount of data recorded by the CMS
experiment is the first step for any analysis. For this analysis, the selection is split into
two parts. In the first step, valid events are selected based on the presence of leptons
passing kinematic requirements. Afterwards, two leptons are selected as candidates for
the decay of a Higgs boson and additional vetoes are applied to increase the sensitivity
of the analysis.

5.2.1 Lepton and di-τ pair selection

The event selection and selection of the di-τ pair which is considered for a given event is
based on a tiered approach. The individual selection requirements for each decay channel
are given in table 5.1. As a first step valid leptons are selected from all leptons by
applying kinematic requirements which are motivated by the high level trigger selection
applied later in the process. Electrons are required to have a transverse momentum pe

T
larger than 26 GeV and a pseudorapidity smaller than 2.1. Furthermore, electrons are
required to pass identification criteria with an 80 % efficiency [74]. Muons are selected
with pµT > 23 GeV, |ηµ| < 2.1 and passing a medium muon identification requirement
with about 99 % efficiency [75].

Further requirements are placed on the distance between the leptons and the primary
vertex, also referred to as impact parameter. For muons and electrons criteria are applied
in the x-y and z plane with |dµ,exy | < 0.045 cm and |dµ,ez | < 0.2 cm. For hadronic τ -leptons
a requirement is imposed only in the z plane with |dτhz | < 0.2 cm.

After selecting the valid leptons based on the kinematic cuts all possible combinations
of one electron and one hadronic τ -lepton, one muon and one hadronic τ -lepton or
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two hadronic τ -leptons are formed for the eτh, µτh and τhτh decay channel respectively.
Lepton pairs passing a minimum separation requirement between the two leptons of
∆Rll > 0.5 are further considered as di-τ pair candidates. Events without any valid di-τ
pair candidate are not considered any further for the respective decay channel.

On average approximately 1.5 di-τ pair candidates with a maximum of 7 are found in
a single event. In case more than one di-τ pair candidate is found the di-τ pair with the
more isolated electron or muon is chosen in the eτh and µτh decay channel respectively.
If this selection is ambiguous the di-τ pair with the higher transverse momentum of the
electron or muon is chosen. In case this does not lead to a unique decision the di-τ pair
candidate with the more isolated hadronic τ -lepton and as a final criterion, the higher
transverse momentum of the hadronic τ -lepton is chosen. For the τhτh decay channel
the di-τ pair candidate which has the more isolated hadronic τ -lepton with a higher
transverse momentum and in case of ambiguities with the more isolated second hadronic
τ -lepton is chosen.

The leptons of the chosen di-τ pair are required to pass isolation requirements. For the
electron and muon the relative isolation introduced in section 4.4 and for the hadronic τ -
leptons the MVA based identification detailed in section 4.4 are used. These isolation and
identification variables are shown in figure 5.8. The muon is required to pass Irel

µ < 0.15
with the isolation being calculated for a cone of ∆R = 0.4. For electrons an isolation
requirement of Irel

e < 0.1 with an isolation cone of ∆R = 0.3 is used. In the eτh and µτh
decay channels the hadronic τ -lepton is required to pass a tight identification requirement
and in the τhτh channel both hadronic τ -leptons need to pass a medium identification
requirement.

5.2.2 Additional selection

After a single di-τ pair is selected for each event further selection criteria are applied. To
reduce the number of leptons misidentified as hadronic τ -lepton additional discriminators
are applied (see section 4.4). For the µτh channel, a natural abundance of muons which
can be misidentified as hadronic τ -lepton is present, for example in the Drell-Yan Z
boson production with the Z boson decaying into a pair of muons. As a result, the tight
anti-muon discriminator working point is chosen. In contrast to this only few events
with electrons misidentified as hadronic τ -lepton pass the selection for this channel.
Consequently, the very loose working point is chosen for the anti-electron discriminator
to uphold an as high as possible efficiency for the hadronic τ -lepton identification. For
the eτh channel the same considerations apply with inverted roles of muon and electron
leading to the choice of the tight working point for the anti-electron and the loose working
point for the anti-muon discriminator.
In the τhτh channel the number of events with electrons or muons misidentified as

hadronic τ -lepton is small. Consequently for both the anti-electron and the anti-muon
discriminator the working points with the highest efficiency for the identification of
genuine hadronic τ -leptons are chosen. These are the very loose and the loose working
points respectively.
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Figure 5.8: Distributions of the relative isolation of the muon (Irel
µ ) and MVA based identification

of the hadronic τ -lepton in the µτh decay channel (top), relative isolation of the electron (Irel
e )

and MVA based identification of the hadronic τ -lepton in the eτh decay channel (middle) and
MVA based identification of the leading and subleading hadronic τ -lepton in the τhτh decay
channel (bottom).
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Table 5.1: Event selection in the eτh, µτh and τhτh decay channels. After an initial selection of
leptons for each event di-τ pair candidates are formed. The leptons in these pairs are required to
pass additional isolation requirements and anti-lepton discriminators. Further vetos to suppress
background contributions are applied based on the presence of additional leptons in the event.
Loose e and µ refer to electrons or muons passing a looser selection requirement compared to
the selection given in this table.

eτh µτh τhτh

First lepton pe
T > 26 GeV,
|ηe| < 2.1

pµT > 23 GeV,
|ηµ| < 2.1

pτh
T > 40 GeV,
|ητh | < 2.1

Second lepton pτh
T > 30 GeV,
|ητh | < 2.3

pτh
T > 30 GeV,
|ητh | < 2.3

pτh
T > 40 GeV,
|ητh | < 2.1

Lepton identification 80 % ID
tight Iτh

medium ID
tight Iτh

medium Iτh

medium Iτh

Impact parameter
|de

xy| < 0.045 cm
|de

z| < 0.2 cm
|dτhz | < 0.2 cm

|dµxy| < 0.045 cm
|dµz | < 0.2 cm
|dτhz | < 0.2 cm

|dτhz | < 0.2 cm
|dτhz | < 0.2 cm

Trigger
(threshold in GeV) e(25) µ(22) τh(35)&τh(35)

Lepton isolation Irel
e < 0.1
−

Irel
µ < 0.15
−

−
−

τ anti-lepton
discriminator

anti-µ: loose
anti-e: tight

anti-µ: tight
anti-e: very loose

anti-µ: loose
anti-e: very loose

Lepton vetos

No loose e+e−
pair with
pe

T > 15 GeV

No loose µ+µ−

pair with
pµT > 15 GeV

−

No additional loose e with pe
T > 10 GeV and |ηe| < 2.5

No additional loose µ with pµT > 10 GeV and |ηµ| < 2.4

To further suppress the contribution from resonant di-electron or di-muon pair produc-
tion dedicated event vetos are defined for the eτh and µτh decay channel. Electrons used
for this veto are defined by pe

T > 15 GeV, |ηe| < 2.5 and Irel
e < 0.3. Furthermore, these

electrons are required to pass the identification requirements with 95 % signal efficiency.
Muons are defined by pµT > 15 GeV, |ηµ| < 2.4 and Irel

µ < 0.3. Both muons and electrons
are required to pass the impact parameter selection defined before. In case a pair of
electrons or muons with opposite charge, which are separated by at least ∆R = 0.15, is
found for the eτh or µτh decay channel respectively the event is vetoed.
To exclude a single event being selected for multiple decay channels any event with

additional electrons or muons passing a looser selection requirement than the one de-
tailed in section 5.2.1 are vetoed. The selection for these electrons is given as pe

T >
10 GeV, |ηe| < 2.5, Irel

e < 0.3 and in addition passing a predefined electron identifica-
tion with an efficiency of 90 % and quality requirements on the reconstructed track of
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5.2 Event selection

the electron. Muons are required to pass the medium muon identification and pµT >
10 GeV, |ηµ| < 2.4, Irel

µ < 0.3. Both muons and electrons are also required to pass the
impact parameter requirements given before.
As detailed in section 4.2 CMS employs triggering techniques to reduce the rate of

stored data and prefilter it for processing. Dedicated high level triggers are available for
events including electrons, muons and hadronic τ -leptons. For this analysis in the eτh
channel a trigger for a single electron with a triggering threshold of pe

T > 25 GeV, |ηe| < 2.1
and passing a tight identification is used1. In the µτh channel, the combination of four
triggers each with a triggering threshold of pµT > 22 GeV but differing |ηµ| thresholds and
identification requirements is considered2. For the τhτh channel two different triggers each
for different run periods are used. They both require two τ -leptons with pτh

T > 35 GeV
and |ητh | < 2.1 passing a medium identification working point3. For each of the events,
the electron or muon identified as part of the di-τ pair in the eτh and µτh decay channel
respectively is required to be matched with the object firing the high level trigger within
∆R < 0.5. In the τhτh decay channel both τ -leptons need to be matched to one object
firing the high level trigger each. The matching between reconstructed lepton and the
object firing the trigger in this cone has an efficiency of about 99 %.

5.2.3 Categorisation and final discriminator

Events with at least one di-τ pair passing the selection are further categorized to improve
the sensitivity of the analysis. For all three decay channels, a common categorisation is
applied based on the presence of b-tagged jets in the event. A b-tagged jet is defined as
a jet with pj

T > 20 GeV, |ηj| < 2.4 and passing the medium working point of the CSVv2
b-tagging algorithm described in section 4.4. In the category vetoing events with b-tagged
jets, referred to as no b-tag, the acceptance for the gluon-gluon fusion and the bottom
quark associated production processes is about the same, with the relative fraction of
the acceptance for the gluon-gluon fusion production varying between about 60 % for
low and 45 % for high Higgs boson masses. The second category, referred to as b-tag,
is targeting the bottom quark associated production process and requires at least on
b-tagged jet in the event. The relative fraction of the acceptance for the bottom quark
associated production in this category ranges between 75 % for low and 85 % for high
Higgs boson masses.
In the eτh and µτh decay channel, a further categorisation is applied based on the

transverse mass of the electron or muon and the missing transverse energy /ET. The
transverse mass ml

T for the lepton l is defined as

ml
T =

√
2plT /ET(1− cos ∆φ) (5.1)

where ∆φ is the difference in the azimuthal angle between the lepton and the vector of
the missing transverse momentum /~pT.

1HLT_Ele25_eta2p1_WPTight_Gsf
2HLT_IsoMu22 or HLT_IsoTkMu22 or HLT_IsoMu22_eta2p1 or HLT_IsoTkMu22_eta2p1
3HLT_DoubleMediumIsoPFTau35_Trk1_eta2p1_Reg or HLT_DoubleMediumCombinedIsoPFTau35_Trk1_-

eta2p1_Reg
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(a) µτh (b) eτh

Figure 5.9: Distributions of the transverse mass in the µτh (left) and eτh (right) decay channel.
The dashed lines indicate the selection requirements for the tight and loose mT categories.
The upper cut on the transverse mass significantly reduces the contribution from the W+jets
background.

The two considered categories are defined as mT < 40 GeV, referred to as tight, and
40 GeV < mT < 70 GeV, referred to as loose mT (see figure 5.9). The upper cut on the
transverse mass is used to suppress a large fraction of the contributions of the W+jets
background. The resulting categorisation is given in figure 5.10.
The statistical inference leading to the results presented in chapter 6, is performed

using the variable mtot
T as final discriminator. It is defined as the square root of the sum

of the squared transverse masses of the leptons in the di-τ pair and the /ET:

mtot
T =

√
m2

T(l1, /ET) +m2
T(l1, /ET) +m2

T(l1, l2) (5.2)

With the transverse mass being defined as

mT(p1, p2) =
√

2p1
Tp

2
T(1− cos ∆φ) (5.3)

where p1,2
T are the transverse components of the momenta p1,2 and ∆φ is the difference in

the azimuthal angle between the momenta. For muons and electrons the momentum of
the reconstructed objects are used and the definition corresponds to the transverse mass
given in equation 5.1. For hadronic τ decays the momentum of the visible decay products
of the reconstructed τ -lepton is used. In studies the variable mtot

T was found to give an
improved separation between the signal processes and the background contribution from
QCD multi-jet events [5].
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Figure 5.10: Categories used in the analysis. For all decay channels a categorisation based on
the presence of b-tagged jets in the event is applied. The semileptonic decay channels eτh and
µτh are further divided into two categories using the transverse mass mT. For the τhτh decay
channel no further catgorisation is applied.

5.3 Background estimation

The simplest method for estimating the contribution of a given background is to estimate
it based on simulated events of the given process. However, for a part of the considered
processes these simulated events are not available or do not agree well with the measured
data. In this analysis simulated events are used for all background processes which have
genuine hadronic τ -leptons or leptons misidentified as hadronic τ -leptons in the final
state. This applies to the Z → ττ process and parts of the Z → ll, Di-boson, Single top
quark production and tt̄ processes.

For the processes having jets misidentified as hadronic τ -leptons in the final state two
methods can be used to estimate the contribution. The first method relies on simulated
events to describe large extends of these contributions and introduces a data driven
approach to estimate the contribution of the W+jets and QCD multi-jet background. In
a second approach, the complete contribution from misidentified jets is estimated based
on control regions.
As both methods provide independent approaches for estimating the contribution of

these backgrounds, the results presented in chapter 6 for the individual approaches are
also used as a cross check of the methods.
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5.3.1 Simulation based estimation method

W+jets and QCD multi-jet estimation in the eτh and µτh decay channels

In the eτh and µτh decay channels the yield and the shape of the W+jets background
are estimated independently from each other. The shape is estimated based on simulated
events. For estimating the yield two control regions are used (see figure 5.11). These
control regions are defined by requiring mµ,e

T > 70 GeV and both leptons in the di-τ pair
to have opposite or same charge respectively. The contribution of W+jets in these control
regions is enriched compared to the signal region and amounts to about 50 %.

To estimate W+jets the other background contributions, which are estimated based on
simulated events, are subtracted from the observed data in these regions. The backgrounds
which are subtracted are Drell-Yan, Di-boson, Single top quark production and tt̄. The
resulting difference corresponds to the sum of the contribution from W+jets and QCD
multi-jet events. To derive the contribution from W+jets alone additional information
on the ratio of QCD multi-jet and W+jets events in the same charge and opposite charge
selection is needed. For W+jets this ratio is derived from simulated events, whereas for
QCD multi-jet a dedicated measurement detailed in the next section is performed.
The estimate for the W+jets contribution is derived by solving the linear equation

given by

DCR,SS =NW
CR,SS +NQCD

CR,SS (5.4)

DCR,OS =NW
CR,OS +NQCD

CR,OS (5.5)

=RW
OS,SS ·N

W
CR,SS +RQCD

OS,SS ·N
QCD
CR,OS (5.6)

where D corresponds to the result of subtracting simulated events from observed data
as detailed above, N corresponds to the contribution from a given background and
ROS,SS correspond to the ratios of the number of opposite charge to same charge events.
Quantities denoted with SS are taken from the selection requiring both leptons in the
di-τ pair to have the same charge whereas OS refers to requiring opposite charge for
both. The resulting estimate for W+jets in the signal region is then given by

NW
SR =RW

SR,CRR
W
OS,SS

DCR,OS −RQCD
OS,SS ·DCR,SS

RW
OS,SS −R

QCD
OS,SS

(5.7)

where RW
SR,CR is the extrapolation factor from the control region to the respective signal

region derived from simulated events. The values and statistical uncertainties of the
extrapolation factors are given in table 5.2.
In the b-tag category the region defined by mµ,e

T > 70 GeV is populated to a large
fraction with tt̄ events. W+jets events contribute about 4 % in this region (see figure
5.12). In order to define a region with higher fraction of the W+jets contribution the
requirement of at least one b-tagged jet in the event is relaxed to requiring at least one
jet with pj

T > 20 GeV and |ηj| < 4.7 which does not need to pass any further b-tagging
selections. In this relaxed selection, W+jets events contribute about 45 %. The resulting
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Table 5.2: Extrapolation factors for the determination of the W+jets background in the eτh and
µτh decay channel. The factors are determined from simulated events with the selection for
the no b-tag (top) and b-tag categories (bottom). The given uncertainties correspond to the
statistical uncertainty for these factors and are used to estimate the uncertainty incorporated in
the fit (see section 5.5). For the b-tag categories an additional extrapolation factor is determined
for a relaxed selection requiring the presence of at least one jet with pj

T > 20 GeV and |ηj| < 4.7.
The resulting correction to the yield of W+jets events is given.

eτh µτh
tight loose mT tight loose mT

RW
OS,SS 4.59± 0.05 4.50± 0.04

RW
SR,CR 0.386± 0.005 0.613± 0.007 0.443± 0.004 0.707± 0.006

Correction 0.91± 0.02 0.91± 0.02 0.94± 0.02 0.94± 0.01
(a) no b-tag

eτh µτh
tight loose mT tight loose mT

RW
OS,SS 4.16± 0.06 3.86± 0.04

RW
SR,CR 0.371± 0.006 0.584± 0.009 0.447± 0.005 0.685± 0.007

RW
relaxed 0.027± 0.002 0.028± 0.002 0.030± 0.002 0.025± 0.001

Correction 0.82± 0.10 0.82± 0.08 0.90± 0.08 0.90± 0.07
(b) b-tag

W+jets estimate is then given by

NW
SR = RW

relaxedR
W
SR,CRR

W
OS,SS

DCR,OS −RQCD
OS,SS ·DCR,SS

RW
OS,SS −R

QCD
OS,SS

(5.8)

where RW
relaxed corresponds to the extrapolation factor from the relaxed selection to the

selection requiring at least one b-tagged jet which is derived based on simulated events.
This extrapolation factor ranges between 0.025 and 0.03 (see table 5.2). The correction
for the W+jets yield derived with this method ranges between 0.82 in the eτh b-tag
categories and 0.94 in the µτh no b-tag categories.

The contribution from QCD multi-jet processes is estimated based on a control region
requiring both leptons in the di-τ pair to have the same charge. From the data in this
control region the contributions from all other backgrounds estimated from simulated
events, with the W+jets contribution being corrected as described above, are subtracted.
The resulting estimate is scaled by an extrapolation factor from this control region to
the signal region RQCD

OS,SS. The determination of this factor is detailed in the next section.
The final estimate for QCD in the signal region is then given by

NQCD
SR = RQCD

OS,SS ·DCR,SS. (5.9)
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Figure 5.11: Control regions for the estimation of the QCD and W+jets background in the
µτh and eτh decay channels. The control regions are chosen by inverting the opposite charge
requirement and the transverse mass requirement

Deriving the QCD multi-jet opposite charge to same charge extrapolation
factor

To derive the QCD multi-jet opposite charge to same charge extrapolation factor, control
regions which are orthogonal to the signal region in both the opposite and same charge
selection are studied. As seen in figure 5.8 requiring a looser relative isolation of the
muon (electron) in the µτh (eτh) decay channel enriches the fraction of QCD multi-jet
events in the selection.

The extrapolation factor is determined by a fit of the spectrum of the invariant mass of
the visible decay products of the di-τ system. For the QCD multi-jet process the initial
contribution is derived in a same charge control region with otherwise identical selections
by subtracting the other background contributions from the measured data. W+jets,
Drell-Yan, Di-boson, Single top quark production and tt̄ contributions are estimated
from simulated events. The normalisation of the QCD multi-jet contribution relative to
the initial normalisation from the same charge region is chosen as parameter of interest.
In appendix A.1 the uncertainties considered in the fit are detailed.
The fits are performed in three sideband regions of the relative isolation which are

given by 0.15 < Irel
µ < 0.25, 0.25 < Irel

µ < 0.5 and 0.15 < Irel
µ < 0.5 in the µτh and

0.1 < Irel
e < 0.2, 0.2 < Irel

e < 0.5 and 0.1 < Irel
e < 0.5 in the eτh decay channel. In figure

5.13 the pre- and postfit distributions are given for the b-tag category in the µτh and the
no b-tag category in the eτh decay channel. The corresponding figures for the other regions
are given in appendix A.1. The resulting extrapolation factors are given in table 5.3.
For the inclusive and no b-tag selection the extrapolation factors derived in the side-

bands with 0.15 < Irel
µ < 0.25 and 0.1 < Irel

e < 0.2 are used for the QCD estimation.
Due to the low acceptance for passing the b-tagged jet veto and this tight isolation re-
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Figure 5.12: Distributions of the transverse mass in µτh decay channel requiring at least one
b-tagged jet (left) or at least one jet with pj

T > 20 GeV and |ηj| < 4.7 (right) in the event. For
this figure the contribution of W+jets events is estimated based on simulated events. In the
selection with at least one b-tagged jet the region with mT > 70 GeV is dominated by tt̄ events.
Requiring the relaxed selection increases the fraction of W+jets in this region from about 4 %
to about 45 %.

quirement, the extrapolation factors derived in the 0.15 < Irel
µ < 0.5 and 0.1 < Irel

e < 0.5
regions are chosen for the b-tag category instead. Based on the results from the other
sidebands an uncertainty on this extrapolation factor is derived which is used for the
signal extraction (see section 5.5).

QCD multi-jet estimation in the τhτh channel

In the τhτh channel the W+jets background has only a small contribution compared to
the QCD multi-jet background. Consequently, it is estimated based on simulated events
without further data-driven corrections.

The estimation of the QCD multi-jet background is based on a control region requiring
the trailing τ -lepton to pass a very loose and fail a medium identification requirement
(see figure 5.15). This region consists to about 94 % of QCD multi-jet events. The QCD
multi-jet contribution is estimated by subtracting the predicted W+jets, Drell-Yan, Di-
boson, Single top quark production and tt̄ contributions from the measured data in this
region (see figure 5.14).
A scale factor Ranti-iso,SR from the loosely isolated to the signal region is derived in

the regions requiring the two τ -lepton candidates to have the same charge. The final
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Figure 5.13: Distributions of the invariant mass of the τ -lepton decay products in the opposite
charge regions with relaxed relative isolation in the µτh (top) and eτh decay channels (bottom).
The distributions are shown for a selection requiring a relative isolation of 0.15 < Irel

µ < 0.25
in the µτh decay channel requiring at least one b-tagged jet. For the eτh decay channel the
isolation sideband region defined by 0.1 < Irel

e < 0.2 and vetoing events with b-tagged jets is
shown. The distributions are shown prior to (left) and after (right) performing the fit of the
QCD contribution.
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Table 5.3: Extrapolation factors from the same charge to the opposite charge for the QCD
process in the µτh (top) and eτh (bottom) decay channels. Dedicated extrapolation factors
are determined using three different selections of Irel

µ (Irel
e ) and for selections with different

requirements on the number of b-tagged jets.

0.15 < Irel
µ < 0.25 0.25 < Irel

µ < 0.5 0.15 < Irel
µ < 0.5

inclusive 1.10± 0.05 1.17± 0.04 1.13± 0.03
no b-tag 1.10± 0.05 1.17± 0.04 1.13± 0.03
b-tag 0.77± 0.26 1.17± 0.35 1.05± 0.15

(a) µτh

0.1 < Irel
e < 0.2 0.2 < Irel

e < 0.5 0.1 < Irel
e < 0.5

inclusive 1.09± 0.09 0.97± 0.06 1.03± 0.06
no b-tag 1.07± 0.08 0.94± 0.06 1.00± 0.06
b-tag 1.17± 0.65 1.28± 0.27 1.19± 0.31

(b) eτh

estimate for the QCD process is then given as:

NQCD
SR = Danti-isoRanti-iso,SR (5.10)

Ranti-iso,SR = DSR,SS
Danti-iso,SS

(5.11)

where D refers to the simulated events subtracted from the observed data in a given
region.
It was found that a constant scale factor is not sufficient to describe the QCD multi-

jet contribution in the signal region. To account for this the scale factor Ranti−iso,SR is
derived in bins of the transverse momentum of the leading hadronic τ -lepton pτh,1

T and
the invariant mass of the visible decay products of the di-τ pair mvis

ττ (see figure 5.16).
The binning used to derive these extrapolation factors is chosen to reflect the available
statistic in the control region. This is done in order to minimize the impact of statistical
uncertainties on these factors.

5.3.2 Fake factor method

The fake factor method is an alternative approach to estimate the contribution of all
backgrounds where jets are misidentified as hadronic τ -leptons. This includes both
W+jets and QCD multi-jet events as well as parts of the Drell-Yan, tt̄ and Di-boson
backgrounds.

The basis of the fake factor method is to estimate extrapolation factors from a control
region with a looser identification requirement on the hadronic τ -lepton (aSR), which
has an enriched contribution from jets misidentified as hadronic τ -leptons, to the signal

55



Search for additional heavy Higgs bosons decaying into two τ -leptons

 / GeVT
totTotal Transverse Mass m

0 100 200 300

E
ve

nt
s

0

2

4

6

8

10

12

310×

ττ →Z 
 ll→Z 

 + jetstt
Di-boson
W + jets
QCD
Observation

 (13 TeV)-135.9 fbhτhτ

Figure 5.14: Distribution of the total transverse mass in the control region with relaxed identifi-
cation requirement for the trailing hadronic τ -lepton. The control regions consist to about 94 %
of QCD multi-jet events. The estimate for the QCD contribution is derived by subtracting the
remaining background contributions from the observed data.

regions. These extrapolation factors are referred to as fake factors. The identification
requirements for the aSR in the eτh, µτh and τhτh decay channels are given as

• eτh and µτh: hadronic τ -lepton failing the tight but passing the very loose identifi-
cation working point.

• τhτh: the leading hadronic τ -lepton passing the same identification working points
as for the signal region, which is chosen as the medium identification working
point. The trailing hadronic τ -lepton failing the medium but pass the very loose
identification working point. All di-τ pairs are considered twice with switched
isolation requirements for both τ -leptons. The result using both permutations is
weighted with a factor of 0.5 each.

As the fake factors differ for individual background contributions, independent fake
factors FFi are derived for the W+jets, tt̄ and QCD multi-jet process. Due to the similar
properties of Drell-Yan and W+jets events with a jet misidentified as hadronic τ -lepton
the W+jets fake factor is taken as estimate for the Drell-Yan fake factor. The combined
fake factor FF is then obtained by weighting the individual fake factors by their respective
expected fraction fi in the aSR.

FF =
∑
i

fi · FFi. (5.12)

The fractions fi are determined based on simulated events for the W+jets, Drell-Yan
and tt̄ process. The fraction for QCD multi-jet is chosen such that the fractions sum up
to 1.
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Figure 5.15: Estimation method for the QCD multi-jet background in the τhτh channel. The
control regions are chosen by inverting the opposite charge requirement and relaxing the
identification requirement for the trailing hadronic τ -lepton

The principle of deriving the fake factors is similar for each background contribution.
As a first step, a control region which is dominated by the desired background is defined.
This control region is split into two by requiring for one the identification of the hadronic
τ -lepton as defined for the signal region and on the other hand the identification as defined
for the aSR region. A first estimate of the fake factors FFraw is derived by determining
the fraction of events where the hadronic τ -lepton passes the nominal identification
requirement of the signal region NCR

isoSR to the number of events where it passes the
identification of the aSR region NCR

aSR

FFraw = NCR
isoSR
NCR

aSR
. (5.13)

The number of events referred to as N is given as the number of observed events minus
the number of expected events for the remaining processes. When the fake factors are
derived from simulated events, N refers to the plain number of events predicted in the
simulation. This is the case for the tt̄ fake factors. The initial determination of the fake
factors is performed differentially in bins of the transverse momentum of the hadronic
τ -lepton. To further refine the raw fake factors additional corrections detailed below are
applied as detailed in the following. The fake factors including the corrections depend on
the pT and the reconstructed decay mode of the hadronic τ -lepton, the number of jets
in the event, mvis, ml

T and the relative isolation of the lepton for the eτh and µτh decay
channel. For the τhτh decay channel, the fake factors depend on the pT of both τ -leptons,
the reconstructed decay mode of the misidentified τ -lepton, the number of jets, mvis and
mtot

T .
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Figure 5.16: Extrapolation factors from the anti-isolated to the signal region for the QCD
multi-jet contribution in the τhτh decay channel. The extrapolation factors are determined in
bins of the transverse momentum of the leading hadronic τ -lepton pτ

1
h

T and the invariant mass
of the visible decay products of the di-τ pair mvis

ττ .
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For the eτh and µτh channel, fake factors are derived for the W+jets, QCD multi-jet
and tt̄ processes. For the τhτh channel, QCD multi-jet is by far the leading background
contribution. Consequently, fake factors are solely derived for the QCD multi-jet back-
ground contribution and differences due to the contribution of other backgrounds are
introduced by uncertainties. In the following the regions and corrections used to derive
these fake factors are given.

W+jets fake factors in the eτh and µτh decay channel

The control region for the W+jets fake factor method is defined as the signal region
but requiring a transverse mass of mT > 70 GeV and no b-tagged jet in the event. The
raw fake factor estimate is corrected for two effects. First, a non-closure correction as
a function of mvis is applied. This correction is determined by applying the raw fake
factors in the control region and comparing it to the observed distribution. A smoothing
using a Gaussian kernel is applied to the ratio of these two distributions which is then
used as correction.
A second correction is derived for the transverse mass spectrum. For this purpose,

fake factors and non-closure corrections are derived based on simulated W+jets events
rather than observed data. These fake factors are then applied to the simulated W+jets
events and the spectrum of the transverse mass is compared to that of the simulated
W+jets events. After applying a smoothing the ratio of both is used as a correction for
the W+jets fake factors.

QCD multi-jet fake factors in the eτh and µτh decay channel

QCD multi-jet fake factors are derived in a control region requiring both di-τ pair
constituents to have the same charge. In addition, the relative isolation of the muon or
electron is required to suffice 0.05 < Irel

µ,e < 0.15 and the transverse mass is required to
be smaller than 40 GeV to further increase the purity of the control region.

Just like for the W+jets fake factors first a non-closure correction as a function of mvis
is derived in this control region. An additional correction is derived based on the isolation
of the electron or muon. To derive this correction the background is estimated using the
corrected fake factors in the control region as defined before excluding the requirement
on the lepton isolation. The resulting distribution is compared to the observed data in
the control region as a function of the lepton isolation. As the contamination of other
backgrounds extends up to 50 % depending on the lepton isolation, an estimation of
these backgrounds based on simulated events is subtracted from the observation before
computing the ratio. The smoothed ratio is applied as a correction to the fake factors.
The contamination by other backgrounds in the control region is further taken into
account in the uncertainty model for the fake factor method (see section 5.5).
A final correction for the QCD multi-jet fake factors is derived for the same to op-

posite charge extrapolation. For this correction, the fake factors are derived in regions
requiring the same charge for the di-τ pair constituents and passing 0.15 < Irel

µ < 0.25 or
0.1 < Irel

e < 0.2 for the µτh and eτh channel respectively. A non closure correction as de-
scribed before is applied to these fake factors. The resulting fake factors are then applied
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in the region requiring an opposite charge to derive an estimate for the background in
this region. This estimate is compared to the observed data as a function of the visible
mass and the smoothed ratio of both is applied as a correction.

QCD multi-jet fake factors in τhτh

In the τhτh channel the control region for deriving the QCD multi-jet fake factors is
defined by requiring the same charge for both di-τ pair constituents. The non closure
correction is derived and applied as detailed before. A further correction is derived as a
function of the transverse momentum of the trailing hadronic τ -lepton. The correction is
determined as the smoothed ratio of the observed data and the estimate of the background
determined using the raw fake factors in the control region. The opposite to same charge
extrapolation correction is derived as a function of mvis as for the eτh and µτh case but
applying the aSR identification requirement.

Fake factors for the tt̄ contribution in the eτh and µτh decay channel

As no suitable control region with similar properties as the signal region was found for the
tt̄ background a different approach is used. Fake factors for the tt̄ background are derived
based on simulated tt̄ events and are then corrected based on a tt̄ control region. Due
to the generally smaller contribution of tt̄ events compared to that of W+jets and QCD
multi-jet events, this is taken as a sufficient estimation and differences are accounted for
by assigning corresponding uncertainties.

The tt̄ control region for deriving the correction is chosen as having the same selection
as the signal region detailed in section 5.2 with the modification of requiring at least
one b-tagged jet in the event and not vetoing events with additional leptons but instead
requiring at least one isolated muon and one isolated electron in the event. In this
region fake factors are derived for observed data and simulated tt̄ events and the ratio
of both is taken as correction for the initial fake factors. This correction was found to be
independent of the transverse momentum within uncertainties and only depends on the
decay mode of the hadronic τ -lepton. The resulting corrections c for each decay mode
are given by

c1π±
µτh = 0.81 c3π±

µτh = 0.74

c1π±
eτh = 0.68 c3π±

eτh = 0.82

An additional non closure correction is derived by comparing the tt̄ events estimated
by applying the fake factors to the simulated tt̄ events passing the aSR identification
to the simulated tt̄ events passing the signal region identification. The ratio of both is
smoothed and applied as a correction.
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5.4 Corrections for simulated events

Although extensive time is spent on developing and refining the simulation of events
recorded with the CMS detector, differences between the simulated events and observed
data remain. To minimize these differences corrections are applied to the simulated
events.

Pile-up corrections

The simulated events for signal and background processes are usually produced prior to
or at the same time as the data taking to allow analysts to prepare for the recorded data.
However, this comes with the disadvantage that one has to choose pile-up conditions for
this simulation before knowing the actual conditions during data taking. Ideally, these
pile-up conditions are chosen to resemble the conditions at data-taking as close as possible.
Nonetheless, especially when studying data from extensive data taking periods, such as
the data taken during the whole year of 2016, differences remain. These differences are for
example driven by changing machine conditions allowing the experiments to collect more
data than anticipated before. To correct for these differences a reweighting technique is
used. This technique is based on the pile-up profile used for the simulated events and
the pile-up profile measured in data.

Corrections of the lepton triggering, isolation and identification efficiencies

The efficiency ε for a lepton, in this case electron or muon, to pass the requirements for
triggering, isolation or the identification differ in observed data and simulated events.
To account for this a correction given by εdata/εsim is applied. These corrections are
determined in bins of the pT and |η| of the lepton (see figure 5.17). In addition, isolation
and triggering corrections are determined for three different isolation requirements used
for the measurements detailed in section 5.3.1. The efficiencies for observed data and
simulated events are determined in a factorized approach. This means that for the
measurement of the efficiencies of the isolation requirement the leptons are required
to have passed the identification requirement. Likewise, for the measurement of the
triggering efficiency the leptons are required to pass both the isolation and identification
requirement. The corrections range up to 5 % for muons and 10 % for electrons. The
largest corrections, albeit with the largest uncertainties, are found for the triggering in
the phase space with large pT and |η|.

The measurement of the efficiencies is performed using a tag-and-probe approach which
is briefly described in the following. Further details on this measurement can be found
in [20]. The tag-and-probe measurement is performed for candidates of Z boson decays.
This means that each event is required to contain at least two electrons or muons and the
invariant mass of both needs to be in a window around the Z boson mass. The advantage
of this is to have little contamination from processes other than Z → ll in the selection.

For the purpose of this measurement one of the leptons, referred to as tag, is required
to pass the full set of selection requirements. The second lepton, referred to as probe,
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(a) identification (b) isolation

Figure 5.17: Results of the measurement of the efficiency for the identification (left) and isolation
(right) for muons with 0.9 < |ηµ| < 1.2 as a function of pµT using the tag-and-probe method.
The ratio given in the lower part is applied as a correction [20].

is required to pass all selections up to the selection for which the efficiency is being
determined for. Based on whether the probe lepton passes or fails the requirement on
the property which is being tested the pass and fail region respectively are populated.
The extraction of the efficiency is then performed using a maximum likelihood fit of the
invariant mass spectrum in both regions, where the pass region is scaled by ε and the
fail region is scaled by 1− ε.

Corrections of the identification and triggering of hadronic τ -leptons

For hadronic τ -leptons a discrepancy between observed data and simulated events is
observed for the triggering and identification requirement. The correction for the identi-
fication definition differs for the individual working points. For the tight working point
used in the eτh and µτh decay channel the correction is 0.95 and for the medium working
point used in the τhτh decay channel 0.97 [59].

For the trigger used in the τhτh decay channels correction factors are derived depending
on the transverse momentum and pseudorapidity of the two hadronic τ -leptons. Dedicated
corrections are available for genuine hadronic τ -leptons and objects misidentified as τ -
leptons [76].

62



5.4 Corrections for simulated events

Table 5.4: Energy corrections for reconstructed hadronic τ -leptons. Depending on the original
particle which is identified as a hadronic τ -lepton dedicated corrections are applied [59, 76].

decay mode genuine electron misidentified
hadronic τ -lepton as hadronic τ -lepton

τ± → π±ντ −0.5 % 2.4 %
τ± → π±π0ντ 1.1 % 7.6 %
τ± → π±π±π∓ντ 0.6 % −

Corrections of the measured energy of genuine hadronic τ -leptons and
electrons misidentified as hadronic τ -leptons

The reconstruction of the energy of hadronic τ -leptons depends on a precise description
of the CMS detector, especially the tracking and the electromagnetic calorimeter. Due to
differences between the simulation and the real detector, differences in the reconstructed
energy of hadronic τ -leptons in simulated events and observed data are found. To correct
for these misdescriptions a shift of the energy of the respective hadronic τ -lepton is
applied. This correction was found be to depend on the reconstructed decay mode of the
hadronic τ -lepton as well as the object which was identified as hadronic τ -lepton. It was
further found to be independent of the transverse momentum.
In the case of genuine hadronic τ -leptons the correction was found to range between
−0.5 % for the case of a reconstructed decay into a single charged pion and 1.1 % for a
reconstructed decay into a single charged pion and at least one neutral pion [59]. For
electrons misidentified as hadronic τ -leptons the correction was found to be between 2.4 %
and 7.6 % for decays into single charged pions and single charged pions plus additional
neutral pions [76]. For electrons being misidentified as a τ -lepton decay into three charged
pions as well as for muons being misidentified as hadronic τ -leptons no significant energy
shift was found. An overview of the corrections applied is given in table 5.4.

Anti-lepton discriminator scale factors

The Z → ll component with a lepton being misidentified as a hadronic τ -lepton is largely
reduced by applying anti-muon and anti-electron discriminators. The description of these
discriminators in simulated events is improved by applying a scale factor depending on
|η| of the hadronic τ -lepton candidate (see table 5.5) [59, 60].

B-tagging corrections

The CSVv2 b-tagging algorithm used in this analysis relies on the correct modelling of
several variables, such as the direction and impact parameter of tracks associated with
the b-tagged jet. As only the number of b-tagged jets enters the analysis an approach,
referred to as promotion-demotion method [77], suited to correct this variable is used.
The promotion-demotion method is a procedure which considers every jet in the event
which passes the kinematic requirements for a b-tagged jet and reevaluates the decision
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Table 5.5: Scale factors for the anti-electron and anti-muon discriminators. The scale factors
depend on |η| of the hadronic τ -lepton candidate [59].

anti-electron discriminator
|η| range eτh µτh and τhτh

|η| < 1.46 1.21± 0.06 1.40± 0.12
|η| > 1.558 1.38± 0.04 1.90± 0.30

anti-muon discriminator
|η| range eτh and τhτh µτh

0 < |η| < 0.4 1.47± 0.16 1.22± 0.04
0.4 < |η| < 0.8 1.55± 0.30 1.12± 0.04
0.8 < |η| < 1.2 1.33± 0.05 1.26± 0.04
1.2 < |η| < 1.7 1.72± 0.54 1.22± 0.15
1.7 < |η| < 2.3 2.50± 0.63 2.39± 0.16

whether this jet is to be considered b-tagged or not. It relies on correction factors for
the b-tagging performance which are provided depending on the pT, |η| and the flavour
of the parton from which the jet originated. Based on this information the probability
for each jet originating from a light quark or gluon to be falsely considered as b-tagged
is derived. Likewise, the probability for each jet originating from a bottom quark to be
falsely considered as not b-tagged is evaluated. Based on the comparison with a uniform
random number the decision whether to consider a non tagged jet as b-tagged, referred
to as promotion, or to consider a b-tagged jet as not tagged, referred to as demotion, is
taken. To ensure a full reproducibility of the analyses the random number generator used
for generating the random numbers is seeded on a per-jet basis using the η value of the
jet.

Top quark pT reweighting

In studies of the distribution of the transverse momentum of the top quarks in tt̄ events
a misdescription was found for the used event generator [78] (see figure 5.18). The
agreement is improved by applying a pT dependent weight for each top quark in the
event. The weight is parameterized as

SF (pT) = e0.156−0.00137pT/GeV. (5.14)

The resulting weight to be applied to each event is then given as

w =
√
SF (ptT) · SF (pt̄T) (5.15)
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Figure 5.18: Based on the measurement and the prediction for the differential tt̄ production cross
section a correction as a function of the transverse momentum of the top quark is derived [78].

Correction of the Z boson spectrum

The Z boson spectrum is found to be mismodeled in the used leading order simulation.
To account for this mismodelling correction factors depending on the mass and transverse
momentum of the generated Z boson are derived in a Z → µµ region [76] (see figure
5.19). The correction factors are applied for all simulated Drell-Yan events and were
found to improve the description of the Z boson spectrum when comparing to higher
order simulations and to observed data.

Recoil corrections

In simulated events for the Drell-Yan, W+jets and Higgs boson production processes
the hadronic recoil ~U to the involved bosons was found to be not well modeled. This is
corrected for by applying recoil corrections. For these corrections the hadronic recoil is
split into a component parallel (U1) and a component perpendicular (U2) to the direction
of the boson pT. Corrections for these two components are derived in a Z → µµ selection
where no neutrinos, and hence no genuine /ET, are expected. In this region a fit is
performed to determine the width σ(U) and central value 〈U〉 of the distributions of
U1 and U2. The fitted functions are a double asymmetric Gaussian with freely floating
central value and a double asymmetric Gaussian centred at 0 respectively. The values
are derived for observed data and simulated events and the corrected values for U1 and
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Figure 5.19: Correction factor on the Z boson leading-order spectrum. The correction factors
are derived in bins of the mass and the transverse momentum of the generated Z boson.

U2 are then given as

U ′1 = 〈U1〉data + (U1 − 〈U1〉sim)σ(U1)data
σ(U1)sim

(5.16)

U ′2 = U2
σ(U2)data
σ(U2)sim

(5.17)

The dependency between the hadronic recoil and the /ET is given as

~U = /ET − ~p νT (5.18)

where ~p νT is the sum of the transverse momentum of the neutrinos in the final state.
Corrections to the hadronic recoil are propagated to the /ET using this dependency. The
applied corrections and method are identical to those used in [76].

5.5 Uncertainty model

In the analysis presented in this thesis, several sources of uncertainty have to be considered
which are highlighted in the following section. Tables showing the uncertainties for each
category are given in appendix A.3.1. The first part of uncertainties are systematic
uncertainties due to finite precision of the measurement and calibration of objects. Such
uncertainties affect for example the measurement of the integrated luminosity or energy
measurements for jets and leptons. In addition, systematic uncertainties are also caused
by finite precision of theoretical predictions being used for this analysis. One example is
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the uncertainty on the cross section for a given process which is used to normalize the
simulated events.

Uncertainties can be split into two types. The first type are uncertainties which affect
only the normalisation and not the shape of the mtot

T spectrum. These are referred to
as normalisation uncertainties. A typical example for this type of uncertainty is the
uncertainty on the luminosity measurement.

The second type of uncertainties are uncertainties which affect both the normalisation
and the shape of the mtot

T spectrum. Such uncertainties are for example due to uncertain-
ties on variables correlated with mtot

T , such as the uncertainty on the energy of hadronic
τ -leptons. This type of uncertainty is referred to as shape altering uncertainty.
A last source of uncertainty which has to be considered is the uncertainty due to the

finite number of simulated events available for each process. The procedure for taking
these into account and arising challenges are detailed in section 5.5.2.

5.5.1 Systematic uncertainties

Luminosity uncertainty

The luminosity of the data recorded and certified as good by the CMS collaboration
corresponds to is measured by CMS with an uncertainty of 2.5 % [79]. This uncertainty is
a normalisation uncertainty affecting any process which is estimated based on simulated
events.

Cross section uncertainties

The cross section of the processes studied in the context of this analysis are only known
with a finite precision. The magnitude of this uncertainty is driven by the order in the
involved couplings, up to which the cross section calculation is performed. Cross section
uncertainties are taken into account as normalisation uncertainties for all backgrounds
which are not derived or corrected using methods relying on the measured data. It
amounts to 6 % for the tt̄, 4 % for the Z → ll and 5 % for the Single top quark production
and Di-boson processes. In the τhτh decay channel, an uncertainty of 4 % is applied for
the W+jets background. For the W+jets process in the eτh and µτh decay channel as
well as for the Z → ττ process dedicated control regions are included in the fit (see
section 5.6). Consequently, no uncertainties on the respective cross sections are included.

Lepton and hadronic τ -lepton identification uncertainty

The uncertainty on the lepton corrections described in section 5.4 amounts to 2 %. It is
applied as normalisation uncertainty to all contributions which are estimated based on
simulated events.

For the hadronic τ -lepton the uncertainty on the measurements amounts to 5 %. Due
to differences in the composition of hadronic τ -leptons in the individual decay channels
this uncertainty is broken down into a correlated and uncorrelated uncertainty. The part
correlated across decay channels amounts to 4 % and the uncorrelated part to 3 % in the
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(b) Z → ee, with one e misidentified as τh

Figure 5.20: Effect of shape altering uncertainties due to the energy corrections for hadronic
τ -leptons (left) and the energy corrections for electrons misidentified as hadronic τ -lepton
(right) on the total transverse mass spectrum. The shaded band corresponds to the statistical
uncertainty of the nominal distributions.

eτh and µτh channel. In the τhτh decay channel, the part correlated across decay channels
is 8 % and the uncorrelated part is 9.2 % including the uncertainty on the corrections for
τh triggering. These uncertainties are taken into account as normalisation uncertainties.

In addition, a shape altering uncertainty is used to account for the raising uncertainty
on the τh identification with raising pT of the hadronic τ -lepton. This uncertainty is
equal to ±20 % per 1 TeV pT and limited to a maximum of ±100 %.

Energy scale of genuine hadronic τ -leptons and electrons misidentified as
hadronic τ -lepton

The correction of the energy scale of genuine hadronic τ -leptons is measured with an
uncertainty of 1.2 %. The uncertainty is uncorrelated between the decay modes of the
τ -lepton, leading to in total three shape altering uncertainties. For electrons misidenti-
fied as hadronic τ -leptons the uncertainty is 1 % for the τ± → π±ντ and 0.5 % for the
τ± → π±π0ντ decay mode. Two uncorrelated shape altering uncertainties are added to
account for these. An illustration of the energy scales with the largest impact on the
total transverse mass spectrum for the Z → ττ and Z → ee processes with an electron
being misidentified as hadronic τ -lepton is shown in figure 5.20.
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5.5 Uncertainty model

Jet energy scale

The measured energy of jets is only weakly correlated with the total transverse mass.
Consequently, uncertainties on the energy of jets are taken into account as normalisation
uncertainties. These are derived by varying the measured energy of the jets by ±1σ of
the respective corrections [80].

Uncertainties on the recoil corrections and the /ET

The uncertainty on the recoil corrections and the corresponding propagated uncertainty
on the /ET is taken into account in two cases. For the /ET corrections described in
section 5.4 a corresponding uncertainty is applied for the W+jets, Drell-Yan and Higgs
boson production processes. These uncertainties are taken into account as uncorrelated
normalisation uncertainties for the response and resolution corrections.
For all remaining processes the uncertainties are split into uncertainties on the /ET

due to the jet energy scale and unclustered energy scales. They are taken into account
as normalisation uncertainties [61].

Electron energy scale

The uncertainty on the measured energy of the electrons is equal to 1 % in the barrel and
2.5 % in the endcap region. This uncertainty is taken into account as a shape altering
uncertainty in the eτh decay channel.

Uncertainty due to the correction of the Z boson spectrum

The uncertainty on the correction of the Z boson spectrum described before can be
broken down into three uncorrelated sources. For each of these sources, the corrections are
rederived when varying the corresponding parameter by ±1σ. The resulting corrections
are then used to derive shape altering uncertainties.
The three considered sources of uncertainty are

• The uncertainty due to the available statistics in the Z → µµ control region the
corrections are derived in. It was found that this effect is negligible in all but the
three bins with the highest requirement on the mass of the generator level Z boson
shown in figure 5.19. Consequently, in total three shape altering uncertainties, one
per bin, are derived and applied.

• The major source of background contamination in the control region comes from
tt̄ events. With the dominant systematic for this process being the uncertainty on
its cross section. Shape altering uncertainties are derived for the case of varying
the tt̄ cross section within its uncertainty.

• The major experimental uncertainty affecting the control region is the uncertainty
on the muon energy scale of 0.2 %. By varying the muon energy scale within this
uncertainty and rederiving the Z boson spectrum corrections the corresponding
shape altering uncertainty is derived.
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B-tagging uncertainties

The uncertainties for the b-tagging and its corrections are derived following pre-defined
procedures within the CMS collaboration [77]. Two dedicated uncertainties are derived
accounting for the contribution of jets originating from bottom quarks not identified as
b-tagged jet and other jets originating from other partons misidentified as b-tagged jets.
This correction has a very minor effect on the spectrum of the total transverse mass and
hence is taken into account as an normalisation uncertainty.

Top quark pT reweighting

For the shape altering uncertainty due to the top quark pT reweighting the up and down
shifts are derived by applying the corrections described above squared and not at all
respectively.

Misidentification rates of leptons and jets

Contributions where leptons are misidentified as hadronic τ -leptons are assigned an un-
certainty depending on the used working point of the anti-lepton discriminator described
in section 5.2.2. For misidentified muons the uncertainty amounts to 5 % in the τhτh and
12 % in the µτh decay channel. The difference of the uncertainties is due to the working
points chosen for the respective decay channels. In the eτh decay channel, this uncertainty
is not considered due to the contribution of misidentified muons below the percent level.

In the case of misidentified electrons, the uncertainty is 11 % in the eτh and 3 % in the
τhτh decay channel. Due to the contribution of misidentified electrons below the percent
level in the µτh channel no uncertainty is taken into account.

Theory uncertainties

On the predictions for the cross sections of the Higgs boson production processes the
uncertainties provided by the LHC Higgs cross section working group are considered.
These take into account the uncertainties due to variations of the renormalisation and
factorisation scale and different choices of the parton distribution function.

Dedicated uncertainties for the simulation based background estimation
method

Misidentification rates of jets:
The uncertainty on jets misidentified as hadronic τ -leptons amounts to 20 %. It
is taken into account as normalisaion uncertainty for all processes estimated from
simulated events.

pT dependency of the misidentification rate of jets:
A shape altering uncertainty is used to account for the raising uncertainty on the
rate of jets being misidentified as hadronic τ -lepton. It is derived by applying a
weight of 1± 20 %/(pT/100 GeV) for each hadronic τ -lepton in the event.
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5.5 Uncertainty model

Background estimation for W+jets and QCD multi-jet events:
As the regions used to derive the estimates for W+jets and QCD multi-jet events are
included in the fit to derive the results (see section 5.6) the statistical uncertainties
are estimated in-situ during the fit. Consequently, they do not need to be added
externally. However, the uncertainties on the involved extrapolation factors, both
for W+jets and QCD multi-jet events, are considered. For the QCD multi-jet same
charge to opposite charge extrapolation factor the uncertainty is given by the result
of the fit (see section 5.3.1).
For the W+jets process the uncertainties on the same charge to opposite charge
extrapolation factor is broken down into a systematic and a statistical component.
The systematic part was derived in a control region requiring the hadronic τ -lepton
to pass the very loose but not the tight identification working point. In this region
the extrapolation factor was derived for the simulated events and compared to
the extrapolation factor derived from data in a W+jets dominated region given
by 120 < mT < 160 GeV. The systematic uncertainty was found to be between
1 and 2 %. For the extrapolation factor from the W+jets control region to the
signal region an uncertainty of 20 % is applied. This uncertainty is based on studies
performed with the data recorded in 2015 [81].

Dedicated uncertainties for the fake factor method

Contamination uncertainties:
To account for the contribution of other backgrounds in the estimation regions
dedicated normalisation uncertainties between 3 and 4 % are added.

Normalisation effect:
For all other uncertainties the effect is split into a normalisation and a shape altering
effect. Two different sources of normalisation uncertainties are considered. For one
the statistical uncertainty on the estimated fake factors is taken into account. To
simplify the statistical model one single uncertainty is derived for each category.
This uncertainty is determined by adding up the statistical uncertainties on the
individual fake factors for each process in quadrature.
The effect of other systematic uncertainties is added as a single uncertainty corre-
lated between all categories. In a first step, the effect of the individual systematic
uncertainties is derived. The combined uncertainty is then calculated by adding up
the individual uncertainties in quadrature.

Shape altering effects:
As shape altering effects of the uncertainties mentioned before the following sources
are taken into account.

• Statistical uncertainties on the individual fake factors are treated as uncorre-
lated contributing to each decay channel. This adds 10 uncertainties for the
eτh and µτh decay channel and four for the τhτh decay channel.
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• The systematic uncertainties related to the W+jets fake factors are taken into
account as two uncertainties correlated among all categories in the µτh and
eτh decay channels respectively. This comprises the effect of the uncertainty
on the non-closure and transverse mass correction.

• The systematic uncertainties related to the tt̄ fake factors are taken into
account as two uncertainties correlated among all categories in the µτh and
eτh decay channels respectively. The effects of the uncertainty on the non-
closure and simulation to data corrections are considered.

• The systematic uncertainties on the QCD multi-jet fake factors are treated
as fully correlated between the categories in the individual decay channels.
They are formed by taking into account the effect of the uncertainty on the
non-closure, lepton isolation (for the eτh and µτh decay channel) or pT (for
the τhτh decay channel) and same to opposite charge correction.

• In the τhτh decay channel the systematic uncertainties on the fraction of
W+jets, Drell-Yan and tt̄ events are taken into account as one shape altering
uncertainty each.

5.5.2 Statistical uncertainty of simulated events

On top of the systematic uncertainties detailed before an additional source of uncertainty
caused by the finite number of events which are simulated or estimated from control
regions for a given process needs to be taken into account. This is done by introducing
one dedicated uncertainty per bin, called bin-by-bin uncertainty, which shifts the content
of this bin within its uncertainty while keeping the content of all other bins at their
nominal value. Due to the large number of bins involved in this analysis this leads to
1807 uncertainties in addition to the 69 normalisation and 15 shape altering uncertainties
mentioned before. This huge increase of the number of uncertainties by more than a
factor of 20 significantly impacts the time needed for performing the statistical inference.

To account for this problem the number of additional uncertainties needs to be limited,
thereby reducing the impact on the performance. For this the combination of the bin-
by-bin uncertainties for a fraction of the individual contributions per bin is estimated
by summing them up in quadrature. For example in the case that four contributions are
present in one bin the largest reduction can be achieved by combining the uncertainties of
all four contributions. As this method is only an approximation of taking into account all
individual uncertainties, a boundary on the relative fraction of the merged uncertainties
compared to the full uncertainty in the given bin is enforced.
The implementation of this method is done on a per bin basis as given below.
• For a given bin the contributions j with content xj and uncertainty σj are considered

and ranked according to their uncertainty.

• The total squared sum of all uncertainties σ2
tot = ∑

j σ
2
j is calculated.

• Starting from the contribution with the lowest uncertainty its squared uncertainty
is added to the substituted uncertainty σ2

sub = σ2
sub + σ2

j and set to 0.
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• The previous steps are repeated until the fraction of substituted uncertainties is
larger or equal to a cutoff value σ2

sub/σ
2
tot ≥ δmerge.

• All remaining uncertainties are scaled by the factor
√

1/(1− σ2
sub) to ensure the

squared sum of all uncertainties before and after applying this procedure is the
same.

The cutoff value introduced before used for this analysis is δmerge = 0.4. Employing
this procedure reduces the number of bin-by-bin uncertainties from 1807 to 421.

5.6 Control regions included in the fit

In addition to signal regions also control regions dominated by a single background
contribution can be included in the fit used to derive the results later. This offers the
possibility to introduce an in-situ calibration for a given background contribution while
taking into account uncertainties which are correlated between the signal region and the
control region. In the analysis presented in this thesis control regions for the Z → ττ
process are included for both the simulation based and fake factor background estimation
method. For the simulation based estimation method in addition control regions for the
QCD multi-jet and W+jets background are included.

Z → ττ control region

To constrain the overall normalisation of the Z → ττ process in simulated events using
lepton universality, one control region is introduced for the no b-tag and b-tag category
each. These control regions comprise di-muon events with an invariant mass of the muons
close to the Z boson mass and consists to more than 99 % and 89 % from Z → µµ events
in the no b-tag and b-tag category respectively.
In the fit, the correlation between the yield of the Z → ττ contribution in the signal

region and the Z → µµ in the control region is taken into account by introducing a fully
correlated multiplicative factor allowing to change the yield of both contributions. One
of these parameters is introduced for the no b-tag and b-tag category each.
Due to differences in the phase space of the Z boson leading to the di-muon pairs

selected for the control region compared to the phase space of the respective di-τ pair
an additional uncertainty is introduced. This uncertainty ranges between 2 % in the eτh
and µτh decay channels and 7 % in the τhτh decay channel. The larger uncertainty in
the τhτh decay channel is mainly caused by the higher pT requirements for the τ -leptons.
The uncertainty is derived based on variations of the parton density function and the
factorisation and renormalisation scale used for the simulation.

W+jets and QCD multi-jet control region

The control regions for W+jets and QCD multi-jet events are taken into account in
the eτh and µτh decay channel when using the simulation based background estimation
method. In this estimation method the contribution of other backgrounds, such as tt̄
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and Z → ττ , play an important role as they are subtracted from the observed data in
the control region as detailed in section 5.3.1. In the signal region, the contributions of
these backgrounds are subject to uncertainties which give the fit the freedom to shift the
normalisation of these backgrounds (see section 5.5). To account for the effect of these
uncertainties on the W+jets and QCD multi-jet estimation the three control regions
introduced for the estimation are included as additional categories. The contributions
of W+jets and QCD multi-jet in these regions and the signal region are correlated as
follows:

• The yield of the QCD multi-jet contribution is treated as fully correlated in cate-
gories which differ only in the opposite or same charge requirement. This leads to
6 independent QCD multi-jet event yields being considered per decay channel.

• The W+jets contribution is fully correlated in all four regions.

Taking into account the split into no b-tag and b-tag as well as in tight and loose mT
categories in total 16 control regions and 16 parameters to model the correlations are
introduced.
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CHAPTER 6

Results

Based on the results of the event selection and the uncertainties introduced in the pre-
vious chapter the results presented in this chapter are derived. For deriving the results
the methods introduced in chapter 3 are used. Unless specifically stated otherwise the
results shown in this chapter are derived using the simulation based background estima-
tion method introduced in section 5.3. For selected results, the fake factor background
estimation method is used to provide a cross check of the simulation based method.
In a first step, checks and tests performed to validate the uncertainty model are

presented. Following this, the prefit and s+b postfit distributions of the total transverse
mass mtot

T in the categories are discussed.
As no signal is observed, exclusion limits are derived and likelihood scans are performed.

The exclusion limits can be divided into two types. Firstly, results not specific to a
certain MSSM model are derived. These include exclusion limits on the cross section
times branching ratio for the gluon-fusion and bottom-associated production processes
of a Higgs boson. Secondly, exclusion limits for specific MSSM scenarios, like the mmod+

h ,
are determined and discussed. The likelihood scans performed in the plane spanned by
the cross section times branching ratios for the gg → φ and gg → bb̄φ processes grant an
easier access to compare the results of this analysis with alternative model and scenario
predictions.

6.1 Pulls and constraints

The uncertainties introduced in section 5.5 are resembled by nuisance parameters in the
statistical model as introduced in section 3.2. A maximum likelihood fit, as discussed in
section 3.3, is performed prior to deriving the results discussed in the following sections.
The results of this fit gives the best-fit values for the nuisance parameters θi and their
constraints σθ,i.

To quantify the difference of the best-fit values of the nuisance parameters with respect
to the pre-fit ones the corresponding pulls are calculated. These are given by

θ̂i − θi
σ̂θ,i

(6.1)
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Table 6.1: Results of the fit of a Gaussian distribution to the post-fit pulls and number of
nuisance parameters of the respective type.

bin-by-bin other systematics combination
number of nuisances 422 85 507

width 1.00± 0.08 0.70± 0.21 1.00± 0.07
mean 0.12± 0.06 −0.13± 0.12 0.09± 0.06

with the initial and best-fit value of the nuisance parameter θi and θ̂i respectively and
the corresponding best-fit constraint σ̂θ,i. To illustrate the difference in constraints of
the nuisance parameters in the fit this quantity is also calculated with respect to the
prior constraint on the nuisance parameter σθ,i. Pulls calculated with respect to the
prior constraint and best-fit constraint are referred to as pre-fit pulls and post-fit pulls
respectively.

In figure 6.1 the pulls for the involved nuisance parameters are shown. The nuisance pa-
rameters are separated into bin-by-bin uncertainties, accounting for the limited number of
simulated events, and systematic uncertainties accounting for the remaining effects. The
distribution of the pulls is expected to follow a Gaussian distribution centered on 0 with
a width of 1, indicated by the magenta line. The distribution of the post-fit pulls follows
the expected distribution, whereas for the pre-fit pulls a narrower distribution is observed.
This is compatible with a conservative choice of some of the uncertainties, which are
being constraint by the fit. For the post-fit pulls the results of a fit of a Gaussian to the
distribution is given in table 6.1. For the bin-by-bin uncertainties and combination of all
uncertainties the results are compatible with the expected distribution. For the remaining
systematic uncertainties a narrower distribution is fitted. This effect is also visible in figure
6.1, where a slight excess of uncertainties with a pull around 0 is observed. It can be ex-
plained by uncertainties, which are being accounted for although the analysis has only lit-
tle sensitivity to them, such as uncertainties on the Higgs boson production cross sections.

6.2 Goodness-of-fit test

To assess how well the uncertainty model corresponds to the data when performing a
fit of the background-only hypothesis a goodness-of-fit test with a saturated model is
performed [82]. The goodness-of-fit test relies on the evaluation of the profile likelihood λ

λ =
∏
i

e
− (di−fi)

2

2σ2
i (6.2)

where di, σi and fi are the measured data, uncertainty of the measured data and prediction
in bin i respectively. The evaluated value for this test is given by

χ2 = −2 lnλ (6.3)

which asymptotically follows χ2 distribution.
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Figure 6.1: Distribution of the pulls in the s+b fit of the nuisance parameters involved in the
fit. The pulls are given normalized to the prior constraint (left) and post-fit constraint (right)
of the nuisance parameters. The nuisance parameters are split into bin-by-bin uncertainties
resembling the uncertainty due to the limited number of simulated events per process and
other systematics. The pulls are expected to follow a Gaussian distribution centered on 0 with
a width of 1, which is indicated by the magenta line.

This value is evaluated for the measured data as well as for 1000 toy datasets. The toy
datasets are randomly sampled from the background expectation and the corresponding
uncertainty model. Based on the results of the toys the probability p to observe an at
least as large value based on the background expectation is calculated. Results with
a p-value of more than 5 % are accepted without further investigation, confirming the
chosen uncertainty model. The expected contributions from signal processes are small
compared to the background processes. As a result, the presence of signal in the observed
data is expected to only have a minor effect on the results of this test.

The goodness-of-fit test is performed for each category, the combination of all categories
of each decay channel and the global combination of all categories and decay channels.
The results per decay channel and category are given in table 6.2. The lowest p-value of
6.6 % is observed in the eτh decay channel in the no b-tag loose mT category and is still
compatible according to the criterion given before. Exemplary distributions for the two
categories with the lowest and highest p-value respectively are given in figure 6.2 and
the corresponding mtot

T distributions are given in the top and middle of figure 6.3.
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Table 6.2: Results of the goodness-of-fit test in the categories of the eτh, µτh and τhτh decay
channels using the simulation based background estimation method. In categories with results
larger than 0.05 the uncertainty model is considered to be chosen appropriately.

eτh no b-tag tight eτh no b-tag loose mT eτh b-tag tight eτh b-tag loose mT
0.546 0.066 0.110 0.238

(a) eτh

µτh no b-tag tight µτh no b-tag loose mT µτh b-tag tight µτh b-tag loose mT
0.463 0.266 0.984 0.993

(b) µτh

τhτh no b-tag τhτh b-tag
0.368 0.609

(c) τhτh
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Figure 6.2: Goodness-of-fit test performed in the µτh b-tag loose mT and eτh no b-tag loose
mT categories. The distributions of the χ2-like test statistic for 1000 toy datasets randomly
generated according to the background-only model and for the observed data is shown. The
p-value gives a measure of the agreement between this observation and the distribution for
the toys. For the two given categories the highest and lowest p-value respectively has been
obtained.
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6.3 Pre- and postfit distributions

To further assess the compatibility of the observed data and the expectation, the pre-
fit and s+b postfit distributions of mtot

T in the individual categories are studied. The
postfit distributions and their corresponding uncertainties are derived based on the pulls
and constraints of the individual nuisance parameters in a maximum likelihood fit as
mentioned in section 6.1. The fit is performed for the s+b hypothesis assuming a single
700 GeV Higgs boson with a cross section of 0.1 pb for both the gg → φ and gg → bb̄φ
production processes. The prefit distributions allow to assess this agreement based solely
on the selection and the corrections introduced in section 5.4 and how well disagreements
are covered by the uncertainty model prior to performing the fit. The postfit distributions
in addition take the pulls and constraints the fit imposes on the involved uncertainties
into account.
For the µτh b-tag loose mT, eτh no b-tag loose mT and τhτh no b-tag categories

these plots are shown in figure 6.3. The observed data is found to be described within
uncertainties by the background prediction prior to performing the fit for all categories
apart from the eτh no b-tag loose mT category. In this category, a deviation is observed
in the region around mtot

T = 200 GeV. After applying the shifts and constraints for the
nuisance parameters from the s+b fit also in this category no significant deviation is
found, indicating that this deviation is accounted for by the respective uncertainties and
a corresponding pull larger than 1σ. In general, the observed data is found to be well
described within uncertainties by the background prediction, indicating that the studied
phase space in the decay channels is well understood.

6.4 Model independent exclusion limits

As a first result, exclusion limits on the cross section times branching ratio (σB) for
the gluon-fusion and bottom-quark associated production processes are derived. These
limits are derived assuming a single Higgs boson φ with mass mφ using the narrow-
width approximation as signal hypothesis. While deriving the result for one production
process the contribution of the other process is profiled. Meaning the contribution of this
production process is allowed to freely float and assume its best-fit value.

The expected limits are derived as the limits in case the predicted background is being
observed. This allows to assess the sensitivity of the analysis. The sensitivity is derived
for the three decay channels eτh, µτh and τhτh as well as the combination of them (see
figure 6.4). Comparing the sensitivities of the individual decay channels allows to assess
the importance of each decay channel in a given mass range.
For both production processes a similar behaviour is observed. For the high mass

region the τhτh decay channel is more sensitive than the µτh and eτh decay channels
by approximately a factor of 3 and 6 respectively. For lower masses the semi-leptonic
decay channels gain more sensitivity compared to the τhτh decay channel and eventually
have the higher sensitivity for masses lower than ≈ 200 GeV. This effect is driven by
the signal acceptance for the respective masses. In the τhτh decay channel these are
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Figure 6.3: Prefit (left) and s+b postfit (right) distributions of mtot
T . The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the s+b fit. For the uncertainty
bands the full uncertainty model is considered. The distributions are given for the µτh b-tag
loose mT (top), eτh no b-tag loose mT (middle) and τhτh no b-tag (bottom) categories.
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Figure 6.4: Sensitivity of the searches to a single Higgs boson with a mass mφ. The sensitivity is
shown for the individual decay channels eτh, µτh and τhτh as well as the combination of them.
The sensitivity at high mφ is mainly driven by the τhτh decay channel while at low masses the
semi-leptonic decay channels are more sensitive.

lower compared to the semi-leptonic channels due to the higher triggering threshold and
resulting kinematic requirements of pT > 40 GeV compared to 26 GeV and 23 GeV for
the eτh and µτh decay channel respectively.

In addition to the expected sensitivity, the corresponding uncertainties and exclusion
limits for the observed data are derived. The results are given in figure 6.5. The expected
exclusion limit is indicated by the red line. The corresponding ±1σ and ±2σ uncertainties
are indicated by the green and yellow bands respectively. The observed exclusion limit,
represented by the black line and points, is found to be consistent with the expected
exclusion limits within the ±2σ band for all mass points. For the gg → φ production
process the observed exclusion limits in the mass regions up to 180 GeV and between 500
and 1400 GeV are found to be higher, within uncertainties, than the expected exclusion
limit. For the remaining mass points a, within uncertainties, lower exclusion limit than
expected is observed. For the gg → bb̄φ production, a within uncertainties lower exclusion
limit is observed for all mass points.

The results derived using the simulation based background estimation are cross checked
with those derived using the fake factor background estimation method. For the cross
check the difference between observed and expected exclusion limits normalized to the
±1σ uncertainty is calculated. The result is shown in figure 6.6. For both background
estimation methods similar trends are seen, indicating the compatibility of the findings
when using both methods.
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Figure 6.5: Expected and observed exclusion limits on the σB for the gg → φ (left) and gg → bb̄φ
(right) production process. The cross section for the SM Higgs boson with a mass of 125 GeV is
indicated by the blue marker. For the whole mass range no significant excess of the observation
compared to the expectation is observed.
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Figure 6.6: Comparison of the difference between observed and expected upper limits using the
simulation based and fake factor background estimation method. The difference is expressed in
multiples of 1 standard deviation as derived for the σB of the gg → φ (left) and gg → bb̄φ (right)
production process. Both background estimation methods show compatible results, indicating
similar findings using both methods.
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Figure 6.7: Comparison of the difference between observed and expected upper limits on the
σB of the gg → φ (left) and gg → bb̄φ (right) process. The difference is calculated for the
case of considering only the SM processes as the background hypothesis (black line) and
additionally considering the SM Higgs boson as part of the background hypothesis (yellow
line). The resulting limits differ mainly in the region around the mass of the Standard Model
Higgs boson.

A further point to consider is the sensitivity of the derived exclusion limits to the SM
Higgs boson. The derived observed exclusion limit around 125 GeV is 10 pb for the σB of
the gg → φ production process. The corresponding σB for the SM Higgs boson is 3 pb [64].
For the gg → bb̄φ production process the observed exclusion limit is 4 pb, whereas a σB of
0.03 pb is expected for the SM Higgs boson. As a consequence, a small impact is expected
for the gg → φ process, whereas no impact is expected for the gg → bb̄φ process.
The comparison of the exclusion limits when considering only the SM processes as

contributions to the background compared to also considering the SM Higgs boson as
background contribution is shown in figure 6.7. For the gg → φ process small differences
are found in the region around the SM Higgs boson mass. For higher Higgs boson masses
no deviations are found. This behaviour is expected due to the sensitivity of the mtot

T
spectrum to the mass of the Higgs boson. For the gg → bb̄φ production process no
significant deviations are found. As detailed before this insensitivity of the exclusion
limit on the gg → bb̄φ production process to the SM Higgs boson is expected due to the
significantly higher exclusion limit than the expected SM Higgs boson σB.
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Results

6.5 Likelihood scan in the ggφ-bbφ plane

The exclusion limits presented before only provide a handle on one of the production
processes while the other one is allowed to freely take any value. As such they are not
optimally suited to allow theoreticians to test the compatibility of a new scenario or
model with the results of this analysis. To provide additional information, a likelihood
scan is performed for each Higgs boson mass in the plane spanned by the σB of the
gg → φ and gg → bb̄φ processes, which is referred to as ggφ-bbφ plane in the following.
The likelihood value is evaluated for each pair of σB for the gg → φ and gg → bb̄φ
production processes and Higgs boson mass.
Using these results, an estimate of the likelihood for a new model or scenario can

be derived by looking up and combining the likelihood value for the production of all
Higgs bosons which are predicted by this model. This combination of the likelihood
values gives an estimate for the compatibility of this new model with the measure-
ment performed in this analysis. To further ease the lookup of the likelihood values
and make the results more widely usable tables of the likelihood scans are provided for
the corresponding results published by the CMS collaboration [83]. These tables then
also include reference likelihood values for asimov datasets representing the background-
only hypothesis. One possible tool for such interpretations is HiggsBounds [84]. It has
been shown that using this tool it is possible to derive comparable exclusion limits
in already studied scenarios as well as provide exclusion limits for alternative scenar-
ios [85].
As an additional point, the best-fit value in the ggφ-bbφ plane is derived assuming

the background prediction and the Higgs boson with mH = 125 GeV as predicted by the
Standard Model. The results for four exemplary mass points is shown in figure 6.8. The
observed best fit is found to be compatible with the results assuming only the background
processes, which is indicated by the origin in these figures, with a confidence level of at
least 95 %. For the majority of mass points a compatibility with a confidence level of
at least 68 % is observed. The best-fit point assuming a Standard Model Higgs boson is
close to the background-only expectation for all scans with mφ & 200 GeV. For masses
lower than this value the compatibility with this point is found to be well within the 68 %
confidence level. The largest deviations between the best-fit point and the one assuming
a Standard Model Higgs boson is found in the region of mφ = 600 GeV with a confidence
level just above 68 %. This observation is compatible with the results given in section
6.4, where in this mass region an over fluctuation in the exclusion limits for the gg → φ
production process is observed.
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Figure 6.8: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 125, 600, 1200, 2000 GeV. The expected best-fit point in case the observation is equal
to the background plus the Standard Model Higgs boson with a mass of mH = 125 GeV is
indicated. The best fit point is found to be compatible with the Standard Model Higgs boson
within at least the 95 % confidence level for all masses. The largest deviation is found for a
Higgs boson mass of mφ = 600 GeV for the gg → φ process. This behaviour is compatible with
the slight excess observed in the exclusion limits around this mass.

85



Results

6.6 Model dependent exclusion limits

As detailed in section 2.2.1, several different scenarios are available for the MSSM pre-
dicting slightly different Higgs sectors. All of these scenarios include the free parameters
mA and tan β, which can be used to fully characterize a given model point.

For the two scenarios mmod+
h and hMSSM, exclusion limits are derived in the mA-tan β

plane. As introduced in section 3.5, these limits are derived taking the background plus
Standard Model Higgs boson as null-hypothesis and background plus MSSM Higgs bosons
as alternative hypothesis. Hence, taking the Higgs boson observed at mH ≈ 125 GeV into
account.

The resulting exclusion contours are shown in figure 6.9. The region excluded by this
analysis is indicated by the blue area. The expected exclusion if only the SM would be
observed is given by the dashed gray curve. Its corresponding ±1σ and ±2σ uncertainty
bands are indicated by the dark gray and light gray bands respectively. The excluded
parameter space in the mmod+

h scenario extends from tan β = 6 for mA around 200 GeV
up to tan β = 60 for mA = 1800 GeV. In the hMSSM scenario the whole tan β range is
excluded for mA around 300 GeV. For lower mA the exclusion extends down to tan β = 6.
The highestmA value excluded for tan β = 60 is 1900 GeV. In both scenarios no deviation
between the expected and observed exclusion contours larger than the 2σ uncertainty is
found.
The exclusion contours in this plane using the data of analyses previously published

by the CMS collaboration are also shown. These were rederived taking into account
only the eτh, µτh and τhτh decay channels for integrated luminosities corresponding to
2.3 fb−1 [81] and 12.9 fb−1 [5]. The resulting exclusion limits are indicated by the brown
and blue curves respectively. Comparing the exclusion limits derived in this thesis to
these exclusion limits the increased sensitivity in the mA-tan β plane in both scenarios
due to the increased amount of data is visible.
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Figure 6.9: Exclusion limits in the mA-tan β plane for the mmod+
h (top) and hMSSM (bottom)

scenarios. The exclusion limits derived in previous analyses using less data are also shown.
The results for 2.3 fb−1 are evaluated based on the results from [81] and for 12.9 fb−1 from [5].
For both analyses the results are rederived using the asymptotic approach and limiting the
analyzed channels to the eτh, µτh and τhτh decay channel.
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CHAPTER 7

Conclusion

With the Run I of the LHC a new milestone in the field of particle physics has been
reached. After the discovery of a Higgs boson with a mass of about 125 GeV in 2012
[86, 87], the field of analyses in the Higgs sector shifted towards conducting more extensive
searches for clues for physics beyond the Standard Model, such as additional Higgs bosons.
With the outstanding performance of the LHC and the CMS experiment during the

LHC Run II data taking period, it was possible to collect 35.9 fb−1 of data at a center-
of-mass energy of 13 TeV suitable for analyses.

First analyses targeting the search for additional Higgs bosons decaying into a pair of
τ -leptons have been conducted using a subset of this data. The results of these analyses
already gave an unprecedented reach, allowing to surpass the results from Run I in a
large fraction of the phase space.

In this thesis, the search for additional Higgs bosons in the decay to a pair of τ -leptons
using the full 2016 dataset of 35.9 fb−1 has been presented. Background estimation
methods complementary to those used in the analysis as published by CMS have been
introduced. These allow an independent cross check of the published results. Correction
factors for the simulated events have been either derived or common corrections, derived
in the scope of the analysis published by CMS, have been used where applicable. The
combination of these background estimation methods and corrections for simulated events
was found to give a good description of the collected data.

No significant excess hinting at additional Higgs bosons was found. Corresponding
exclusion limits for new physics in the Higgs sector are set as a result of this thesis.
Model independent interpretations, in the form of upper limits on the cross sections
times branching ratio into two τ -leptons for the Higgs boson production mechanisms,
are derived. In addition, model dependent interpretations of the results are given for
the mmod+

h and hMSSM scenarios. Finally, likelihood-scans in the plane span by the
cross section of the gluon-fusion and bottom-quark associated production mechanisms
are performed. These offer an easy access to estimate a measure for the compatibility of
new models and scenarios with the analysed data.

The results derived in this thesis represent the up to now most stringent limits set in
direct searches for additional Higgs bosons. Compared to the limits derived in analyses of
Run I data [3] the exclusion limits are extended by a factor of two in the mA range. They
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Figure 7.1: Exclusion limits for the mmod+
h scenario in the mA-tan β plane. The exclusion limits

derived based on the data recorded during Run I are also shown [3]. With the presented analysis
of Run II data the exclusion limits are extended beyond those derived in any previous analysis.

further manifest the claim of the φ→ ττ analysis as the leading analysis in searches for
further Higgs bosons.

The derived results show no significant deviation from the Standard Model hypothesis.
Consequently, the methods presented for estimating the background contributions in
this analysis offer one of the best and furthest reaching descriptions of Standard Model
processes in the di-τ final state used up to now.

Future improvements of results presented in this thesis can originate from two sources.
For one the LHC is expected to be operated until the end of 2018 with similar performance
as in 2016. By this time CMS is will have recorded about three times the current amount
of data. With this increase of data, a significant improvement in the understanding of
the detector and further improvements in the modelling of background contributions is
expected. A second frontier of improvement is opened by more sophisticated analysis
techniques and tools. Examples for these are multivariate analysis techniques, such as
Boosted Decision Trees. The application of these tools and techniques is an active field
of study as of today. First steps and studies towards the usage in a full analysis have
already been taken and future analyses may greatly profit from these improvements.
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APPENDIX A

Appendix

A.1 QCD multi-jet opposite charge to same charge
extrapolation factors

Table A.1: Uncertainties used in the fit for the determination of the QCD multi-jet opposite to
same charge extrapolation factors in the eτh and µτh decay channels. Shape uncertainties refer
to uncertainties involving shape altering effects. VV refers to the Di-boson processes.

Systematic Process µτh eτh

Luminosity uncertainty tt̄, VV, W+jets, Drell-Yan 6.2 % 6.2 %
Muon ID efficiency tt̄, VV, W+jets, Drell-Yan 2 % -
Electron ID efficiency tt̄, VV, W+jets, Drell-Yan - 2 %
Tau ID efficiency tt̄, VV, W+jets, Drell-Yan 8 % 8 %
τh energy scale Z → ll shape shape
e→ τh fake energy scale Z → ll - shape
top pT reweighting tt̄ shape shape
anti-µ discriminator Z → ll 30 % -
anti-e discriminator Z → ll - 30 %
Drell-Yan cross section uncertainty Drell-Yan 20 % 20 %
Di-boson cross section uncertainty Di-boson 10 % 10 %
tt̄ cross section uncertainty tt̄ 10 % 10 %
W+jets cross section uncertainty W+jets 10 % 10 %
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Figure A.1: Distributions of the invariant mass of the visible τ -lepton decay products in the
opposite charge regions with relaxed relative isolation in the µτh decay channel vetoing events
with b-tagged jets. The distributions are shown for a selection requiring a relative isolation
of 0.15 < Irel

µ < 0.25 (top), 0.25 < Irel
µ < 0.5 (middle) and 0.15 < Irel

µ < 0.5 (bottom). The
distributions are shown prior to (left) and after (right) performing the fit of the QCD multi-jet
contribution.
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Figure A.2: Distributions of the invariant mass of the visible τ -lepton decay products in the
opposite charge regions with relaxed relative isolation in the µτh decay channel requiring at
least one b-tagged jet in the event. The distributions are shown for a selection requiring a
relative isolation of 0.15 < Irel

µ < 0.25 (top), 0.25 < Irel
µ < 0.5 (middle) and 0.15 < Irel

µ < 0.5
(bottom). The distributions are shown prior to (left) and after (right) performing the fit of the
QCD multi-jet contribution.
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Figure A.3: Distributions of the invariant mass of the visible τ -lepton decay products in the
opposite charge regions with relaxed relative isolation in the µτh decay channel. The distri-
butions are shown for a selection requiring a relative isolation of 0.15 < Irel

µ < 0.25 (top),
0.25 < Irel

µ < 0.5 (middle) and 0.15 < Irel
µ < 0.5 (bottom). The distributions are shown prior

to (left) and after (right) performing the fit of the QCD multi-jet contribution.
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A.1 QCD multi-jet opposite charge to same charge extrapolation factors
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Figure A.4: Distributions of the invariant mass of the visible τ -lepton decay products in the
opposite charge regions with relaxed relative isolation in the eτh decay channel vetoing events
with b-tagged jets. The distributions are shown for a selection requiring a relative isolation
of 0.1 < Irel

e < 0.2 (top), 0.2 < Irel
e < 0.5 (middle) and 0.1 < Irel

e < 0.5 (bottom). The
distributions are shown prior to (left) and after (right) performing the fit of the QCD multi-jet
contribution.
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Figure A.5: Distributions of the invariant mass of the visible τ -lepton decay products in the
opposite charge regions with relaxed relative isolation in the eτh decay channel requiring at
least one b-tagged jet in the event. The distributions are shown for a selection requiring a
relative isolation of 0.1 < Irel

e < 0.2 (top), 0.2 < Irel
e < 0.5 (middle) and 0.1 < Irel

e < 0.5
(bottom). The distributions are shown prior to (left) and after (right) performing the fit of the
QCD multi-jet contribution.
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A.1 QCD multi-jet opposite charge to same charge extrapolation factors
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Figure A.6: Distributions of the invariant mass of the visible τ -lepton decay products in the op-
posite charge regions with relaxed relative isolation in the eτh decay channel. The distributions
are shown for a selection requiring a relative isolation of 0.1 < Irel

e < 0.2 (top), 0.2 < Irel
e < 0.5

(middle) and 0.1 < Irel
e < 0.5 (bottom). The distributions are shown prior to (left) and after

(right) performing the fit of the QCD multi-jet contribution.
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Appendix

A.2 Tables of recorded datasets and generated events

Table A.2: Summary of datasets recorded by CMS during the year 2016 of the LHC Run II.
The datasets are split by the objects triggered at level 1 and by run period. The corresponding
integrated luminosity (int. L) and number of recorded events are given.

Dataset Run period Int. L (fb−1) Number of recorded events
Single Muon Run 2016 B 5.788 158,145,722
Single Muon Run 2016 C 2.573 67,441,308
Single Muon Run 2016 D 4.248 98,017,996
Single Muon Run 2016 E 4.009 90,963,495
Single Muon Run 2016 F 3.102 65,489,554
Single Muon Run 2016 G 7.540 149,916,849
Single Muon Run 2016 H 8.606 174,035,164
Single Electron Run 2016 B 5.788 246,440,440
Single Electron Run 2016 C 2.573 97,259,854
Single Electron Run 2016 D 4.248 148,167,727
Single Electron Run 2016 E 4.009 117,321,545
Single Electron Run 2016 F 3.102 70,593,532
Single Electron Run 2016 G 7.540 153,330,123
Single Electron Run 2016 H 8.606 129,018,252
Tau Run 2016 B 5.788 68,727,458
Tau Run 2016 C 2.573 36,931,473
Tau Run 2016 D 4.248 56,827,771
Tau Run 2016 E 4.009 58,348,773
Tau Run 2016 F 3.102 40,549,716
Tau Run 2016 G 7.540 79,557,782
Tau Run 2016 H 8.606 76,758,754
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A.2 Tables of recorded datasets and generated events

Table A.3: Summary of generated samples for signal and background processes with their cross
section and number of generated events

Process Monte Carlo generator σB [pb] Number of events
gg → φ→ ττ pythia 8 − 100,000-500,000
gg → bb̄φ→ ττ pythia 8 − 100,000-500,000
Z → ll, m=50 GeV madgraph 5765.4 49,144,274
Z → ll +1 jet, m=50 GeV madgraph 1012.5 65,485,168
Z → ll +2 jets, m=50 GeV madgraph 332.8 19,970,551
Z → ll +3 jets, m=50 GeV madgraph 101.8 5,856,110
Z → ll +4 jets, m=50 GeV madgraph 54.8 4,197,868
Z → ll, 10 GeV<m<50 GeV madgraph 18610.0 49,144,274
W+jets madgraph 61526.7 86,731,806
W+1 jet madgraph 9644.5 42,207,819
W+2 jets madgraph 3144.5 29,895,373
W+3 jets madgraph 954.8 19,864,549
W+4 jets madgraph 485.6 29,995,313
tt̄ powheg 831.76 92,925,926
Single top quark, t-channel powheg 136.02 67,240,808
Single anti-top quark, t-channel powheg 80.95 38,811,017
Single top quark, tW powheg 35.6 998,400
Single anti-top quark, t̄W powheg 35.6 967,600
WW → 1l1ν2q aMC@NLO 49.997 5,176,114
WZ → 3l + 1ν+jets aMC@NLO 4.708 1,930,828
WZ → 2l2q aMC@NLO 5.595 26,517,272
WZ → 1l3ν aMC@NLO 3.05 1,703,772
WZ → 1l1ν2q aMC@NLO 10.71 24,221,923
ZZ → 4l aMC@NLO 1.212 17,379,772
ZZ → 2l2q aMC@NLO 3.22 15,345,572
V V → 2l2ν aMC@NLO 11.95 9,741,469
SM Higgs boson, gg → h→ ττ powheg 3.05 1,471,061
SM Higgs boson, VBF h→ ττ powheg 0.237 1,499,400
SM Higgs boson, W+h→ ττ powheg 0.0059 428,036
SM Higgs boson, W−h→ ττ powheg 0.0037 445,200
SM Higgs boson, Zh→ ττ powheg 0.0594 571,597
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Appendix

A.3 Results using the simulation based background
estimation method

A.3.1 Systematic uncertainties

Table A.4: Uncertainties used in the fit for the case of using the simulation based background
estimation method in the eτh, µτh and τhτh decay channel. Shape uncertainties refer to uncer-
tainties involving shape altering effects. VV refers to the Di-boson processes. MC represents
all processes estimated based on simulated events.

Systematic Process µτh eτh τhτh

Luminosity uncertainty MC 2.5 % 2.5 % 2.5 %
Muon ID efficiency MC 2 % – –
Electron ID efficiency MC – 2 % –
Tau ID efficiency, correlated MC 4 % 4 % 8 %
Tau ID efficiency, uncorrelated MC 3 % 3 % 9.2 %
High-pt tau ID efficiency MC shape shape shape
τh energy scale Z → ll shape shape shape
e→ τh fake energy scale Z → ll – shape –
electron energy scale MC – shape –
top pT reweighting tt̄ shape shape shape
Z pT reweighting Drell-Yan shape shape shape
anti-µ discriminator Z → ll 12 % – 5 %
anti-e discriminator Z → ll – 11 % 3 %
anti-jet discriminator, uncorrelated Z → ll 20 % 20 % 20 %
b-tagging efficiency MC 1–3 % 1–4 % 1–4 %
b-tagging misstag rate MC 1–4 % 1–3 % 1–5 %

/ET resolution Drell-Yan
W+jets, signal 1–2 % 1–3 % –

/ET scale Drell-Yan
W+jets, signal 1–4 % 1–4 % –

/ET unclustered energy tt̄, VV 1–5 % 1–5 % –
/ET jet energy tt̄, VV 1–3 % 1–4 % –
Z → ττ acceptance Z → ττ 1–2 % 2 % 5–7 %
QCD normalisation, syst QCD multi-jet 4–60 % 12–60 % 12–14 %
QCD normalisation, stat QCD multi-jet – – 2–20 %
W+jets OS/SS factor, syst W+jets 1.2–2.4 % 1.9 % –
W+jets OS/SS factor, stat W+jets 1.8–2.2 % 2.4–2.9 % –
W+jets mT factor, syst W+jets 20 % 20 % –
W+jets mT factor, stat W+jets 2–14 % 2–17 % –
Drell-Yan cross section uncertainty Drell-Yan 4 % 4 % 4 %
Di-boson cross section uncertainty Di-boson 5 % 5 % 5 %
tt̄ cross section uncertainty tt̄ 6 % 6 % 6 %
W+jets cross section uncertainty W+jets – – 4 %
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A.3 Results using the simulation based background estimation method

A.3.2 Goodness-of-fit test
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Figure A.7: Goodness of Fit in the eτh channel using the simulation based method and the
saturated approach.
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Figure A.8: Goodness of Fit in the µτh channel using the simulation based method and the
saturated approach.
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A.3 Results using the simulation based background estimation method
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Figure A.9: Goodness of Fit in the τhτh channel using the simulation based method and the
saturated approach.
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A.3.3 Prefit mtot
T distributions
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Figure A.10: Prefit distributions of mtot
T in the µτh decay channel. The distributions are given

for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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A.3 Results using the simulation based background estimation method
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Figure A.11: Prefit distributions of mtot
T in the µτh decay channel. The distributions are given

for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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Figure A.12: Prefit distributions of mtot
T in the eτh decay channel. The distributions are given

for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.

106



A.3 Results using the simulation based background estimation method
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Figure A.13: Prefit distributions of mtot
T in the eτh decay channel. The distributions are given

for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.
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Figure A.14: Prefit distributions of mtot
T in the τhτh decay channel. The distributions are given

for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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Figure A.15: Prefit distributions of mtot
T in the τhτh decay channel. The distributions are given

for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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A.3 Results using the simulation based background estimation method

A.3.4 Postfit mtot
T distributions
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Figure A.16: Postfit distributions of mtot
T in the µτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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Figure A.17: Postfit distributions of mtot
T in the µτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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A.3 Results using the simulation based background estimation method
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Figure A.18: Postfit distributions of mtot
T in the eτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.
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Figure A.19: Postfit distributions of mtot
T in the eτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.
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A.3 Results using the simulation based background estimation method
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Figure A.20: Postfit distributions of mtot
T in the τhτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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Figure A.21: Postfit distributions of mtot
T in the τhτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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A.3.5 Exclusion limits
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Figure A.22: Expected and observed exclusion limits at 95 % CLS on the σB for the gg → φ
(left) and gg → bb̄φ (right) production process. The exclusion limits are derived for the µτh
(top) and eτh (bottom) decay channel. The cross section for the SM Higgs boson with a mass
of 125 GeV is indicated by the blue marker. For the whole mass range no significant excess of
the observation compared to the expectation is observed.
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A.3 Results using the simulation based background estimation method
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Figure A.23: Expected and observed exclusion limits at 95 % CLS on the σB for the gg → φ
(left) and gg → bb̄φ (right) production process. The exclusion limits are derived for the τhτh
decay channel. The cross section for the SM Higgs boson with a mass of 125 GeV is indicated
by the blue marker. For the whole mass range no significant excess of the observation compared
to the expectation is observed.
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A.3.6 Likelihood scan in ggφ-bbφ plane
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Figure A.24: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 90, 100, 110, 120 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses but the 600 and 700 GeV point.
Likewise the origin indicating no Higgs boson with the given mass is observed is compatible
within the 95 % confidence level for all masses.
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A.3 Results using the simulation based background estimation method
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Figure A.25: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 130, 140, 160, 180 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses but the 600 and 700 GeV point.
Likewise the origin indicating no Higgs boson with the given mass is observed is compatible
within the 95 % confidence level for all masses.
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Figure A.26: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 200, 250, 350, 400 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses but the 600 and 700 GeV point.
Likewise the origin indicating no Higgs boson with the given mass is observed is compatible
within the 95 % confidence level for all masses.
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A.3 Results using the simulation based background estimation method
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Figure A.27: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 450, 500, 700, 800 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses but the 600 and 700 GeV point.
Likewise the origin indicating no Higgs boson with the given mass is observed is compatible
within the 95 % confidence level for all masses.
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Figure A.28: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 900, 1000, 1400, 1600 GeV. The expected best-fit point in case the observation is equal
to the background and the Standard Model Higgs boson with a mass of mH = 125 GeV is
indicated. It is found to be within the 68 % confidence level for all masses but the 600 and
700 GeV point. Likewise the origin indicating no Higgs boson with the given mass is observed
is compatible within the 95 % confidence level for all masses.
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A.3 Results using the simulation based background estimation method
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Figure A.29: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 1800, 2300, 2600, 2900 GeV. The expected best-fit point in case the observation is equal
to the background and the Standard Model Higgs boson with a mass of mH = 125 GeV is
indicated. It is found to be within the 68 % confidence level for all masses but the 600 and
700 GeV point. Likewise the origin indicating no Higgs boson with the given mass is observed
is compatible within the 95 % confidence level for all masses.
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A.4 Results using the fake factor background estimation
method

A.4.1 Systematic uncertainties

Table A.5: Uncertainties used in the fit for case of using the fake factor background estimation
method in the eτh, µτh and τhτh decay channels. Shape uncertainties refer to uncertainties
involving shape altering effects. VV refers to the Di-boson processes. MC represents all processes
estimated based on simulated events.

Systematic Process µτh eτh τhτh

Luminosity uncertainty MC 2.5 % 2.5 % 2.5 %
Muon ID efficiency MC 2 % – –
Electron ID efficiency MC – 2 % –
Tau ID efficiency, correlated MC 4 % 4 % 8 %
Tau ID efficiency, uncorrelated MC 3 % 3 % 9.2 %
High-pt tau ID efficiency MC shape shape shape
τh energy scale Z → ll shape shape shape
e→ τh fake energy scale Z → ll – shape –
electron energy scale MC – shape –
top pT reweighting tt̄ shape shape shape
Z pT reweighting Drell-Yan shape shape shape
anti-µ discriminator Z → ll 12 % – 5 %
anti-e discriminator Z → ll – 11 % 3 %
anti-jet discriminator, uncorrelated Z → ll 20 % 20 % 20 %
b-tagging efficiency MC 1–3 % 1–4 % 1–4 %
b-tagging misstag rate MC 1–4 % 1–3 % 1–5 %
/ET resolution Z → ττ , signal 1–2 % 1–3 % –
/ET scale Z → ττ , signal 1–4 % 1–4 % –
/ET unclustered energy tt̄, VV 1–5 % 1–5 % –
/ET jet energy tt̄, VV 1–3 % 1–4 % –
Z → ττ acceptance Z → ττ 1–2 % 2 % 5–7 %
Drell-Yan cross section uncertainty Drell-Yan 4 % 4 % 4 %
Di-boson cross section uncertainty Di-boson 5 % 5 % 5 %
tt̄ cross section uncertainty tt̄ 6 % 6 % 6 %
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A.4 Results using the fake factor background estimation method
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Appendix

A.4.2 Pulls and constraints
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Figure A.30: Distribution of the pulls in the signal plus background fit of the nuisance parameters
involved in the fit. The pulls are given normalized to the prior constraint (left) and post-fit
constraint (right) of the nuisance parameters. The nuisance parameters are split into bin-by-bin
uncertainties resembling the uncertainty due to the limited number of simulated events per
process and other systematics. The pulls are expected to follow a Gaussian distribution, which
is indicated by the magenta line.

Table A.7: Results of the fit of a Gaussian distribution to the poist-fit pulls and number of
nuisance parameters of the respective type.

bin-by-bin other systematics combination
number of nuisances 317 114 431

width 0.49± 0.03 0.38± 0.07 0.47± 0.03
mean 0.01± 0.03 −0.06± 0.05 0.00± 0.02
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A.4 Results using the fake factor background estimation method

A.4.3 Goodness-of-fit test
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Figure A.31: Goodness of Fit in the eτh channel using the fake factor method and the saturated
approach.
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Figure A.32: Goodness of Fit in the µτh channel using the fake factor method and the saturated
approach.
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Figure A.33: Goodness of Fit in the τhτh channel using the fake factor method and the saturated
approach.
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A.4.4 Prefit mtot
T distributions
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Figure A.34: Prefit distributions of mtot
T in the µτh decay channel. The distributions are given

for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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Figure A.35: Prefit distributions of mtot
T in the µτh decay channel. The distributions are given

for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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Figure A.36: Prefit distributions of mtot
T in the eτh decay channel. The distributions are given

for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.

130
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Figure A.37: Prefit distributions of mtot
T in the eτh decay channel. The distributions are given

for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.
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Figure A.38: Prefit distributions of mtot
T in the τhτh decay channel. The distributions are given

for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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Figure A.39: Prefit distributions of mtot
T in the τhτh decay channel. The distributions are given

for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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A.4 Results using the fake factor background estimation method

A.4.5 Postfit mtot
T distributions
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Figure A.40: Postfit distributions of mtot
T in the µτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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Figure A.41: Postfit distributions of mtot
T in the µτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the µτh no b-tag tight (top left), µτh b-tag tight (top right), µτh no b-tag loose mT (bottom
left) and µτh b-tag loose mT (bottom right) categories.
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Figure A.42: Postfit distributions of mtot
T in the eτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.
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Figure A.43: Postfit distributions of mtot
T in the eτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the eτh no b-tag tight (top left), eτh b-tag tight (top right), eτh no b-tag loose mT (bottom
left) and eτh b-tag loose mT (bottom right) categories.

136



A.4 Results using the fake factor background estimation method

 (
1/

G
eV

)
to

t
T

dN
/d

m

0

1000

2000

3000

4000 Observation

 fakeshτ→jet

ττ→Z

Electroweak

tt

Background uncertainty

 (13 TeV)-135.9 fb no b-taghτhτ

 (GeV)tot
Tm

0 50 100 150 200O
bs

./E
xp

.

0.5

1

1.5

 (
1/

G
eV

)
to

t
T

dN
/d

m

0

20

40

60

Observation

 fakeshτ→jet

ττ→Z

Electroweak

tt

Background uncertainty

 (13 TeV)-135.9 fb b-taghτhτ

 (GeV)tot
Tm

0 50 100 150 200O
bs

./E
xp

.

0.5

1

1.5

Figure A.44: Postfit distributions of mtot
T in the τhτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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Figure A.45: Postfit distributions of mtot
T in the τhτh decay channel. The postfit distributions

are evaluated based on the pulls of the nuisance parameters in the signal-plus-background fit.
For the uncertainty bands the full uncertainty model is considered. The distributions are given
for the τhτh no b-tag (left) and τhτh b-tag (right) categories.
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A.4.6 Exclusion limits
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Figure A.46: Sensitivity of the searches in the individual decay channels eτh, µτh and τhτh as
well as the combination of them to a single Higgs boson with a mass of mφ. The sensitivity
at high mφ is mainly driven by the τhτh decay channels while at low mass the semi-leptonic
datasets
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A.4 Results using the fake factor background estimation method
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Figure A.47: Expected and observed exclusion limits at 95 % CLS on the σB for the gg → φ
(left) and gg → bb̄φ (right) production process. The exclusion limits are derived for the µτh
(top) and eτh (bottom) decay channel. The cross section for the SM Higgs boson with a mass
of 125 GeV is indicated by the blue marker. For the whole mass range no significant excess of
the observation compared to the expectation is observed.
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Figure A.48: Expected and observed exclusion limits at 95 % CLS on the σB for the gg → φ
(left) and gg → bb̄φ (right) production process. The exclusion limits are derived for the τhτh
(top) decay channel and the combination of the µτh, eτh and τhτh decay channel (bottom). The
cross section for the SM Higgs boson with a mass of 125 GeV is indicated by the blue marker.
For the whole mass range no significant excess of the observation compared to the expectation
is observed.
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Figure A.49: Exclusion limits in the mA-tan β plane for the mmod+
h (top) and hMSSM (bottom)

scenarios. The exclusion limits derived in previous analyses using less data are also shown.
The results for 2.3 fb−1 are evaluated based on the results from [81] and for 12.9 fb−1 from [5].
For both analyses the results are rederived using the asymptotic approach and limiting the
analyzed channels to the eτh, µτh and τhτh decay channel.
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A.4.7 Likelihood scan in ggφ-bbφ plane
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Figure A.50: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 90, 100, 110, 120 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses. Likewise the origin indicating
no Higgs boson with the given mass is observed is compatible within the 95 % confidence level
for all masses.
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Figure A.51: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 125, 130, 140, 160 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses. Likewise the origin indicating
no Higgs boson with the given mass is observed is compatible within the 95 % confidence level
for all masses.
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Figure A.52: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 180, 200, 250, 350 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses. Likewise the origin indicating
no Higgs boson with the given mass is observed is compatible within the 95 % confidence level
for all masses.
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Figure A.53: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 400, 450, 500, 600 GeV. The expected best-fit point in case the observation is equal to the
background and the Standard Model Higgs boson with a mass of mH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses. Likewise the origin indicating
no Higgs boson with the given mass is observed is compatible within the 95 % confidence level
for all masses.
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Figure A.54: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 700, 800, 900, 1000 GeV. The expected best-fit point in case the observation is equal to
the background and the Standard Model Higgs boson with a mass ofmH = 125 GeV is indicated.
It is found to be within the 68 % confidence level for all masses. Likewise the origin indicating
no Higgs boson with the given mass is observed is compatible within the 95 % confidence level
for all masses.
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Figure A.55: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 1200, 1400, 1600, 1800 GeV. The expected best-fit point in case the observation is equal
to the background and the Standard Model Higgs boson with a mass of mH = 125 GeV is
indicated. It is found to be within the 68 % confidence level for all masses. Likewise the origin
indicating no Higgs boson with the given mass is observed is compatible within the 95 %
confidence level for all masses.
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Figure A.56: Likelihood scan in the ggφ-bbφ plane for four Higgs boson mass hypotheses
mφ = 2000, 2300, 2600, 2900 GeV. The expected best-fit point in case the observation is equal
to the background and the Standard Model Higgs boson with a mass of mH = 125 GeV is
indicated. It is found to be within the 68 % confidence level for all masses. Likewise the origin
indicating no Higgs boson with the given mass is observed is compatible within the 95 %
confidence level for all masses.
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