KIT | KIT-Bibliothek | Impressum | Datenschutz

Numerical Integrators for Maxwell-Klein-Gordon and Maxwell-Dirac Systems in Highly to Slowly Oscillatory Regimes

Krämer, Patrick

Abstract (englisch):

Maxwell-Klein-Gordon (MKG) and Maxwell-Dirac (MD) systems physically describe the mutual interaction of moving relativistic particles with their self-generated electromagnetic field. Solving these systems in the nonrelativistic limit regime, i.e. when the speed of light $c$ formally tends to infinity, is numerically very delicate as the solution becomes highly oscillatory in time. In order to resolve the oscillations, standard time integrations schemes require severe restrictions on the time step $\tau\sim c^{-2}$ depending on the small parameter $c^{-2}$ which leads to high computational costs.
Within this thesis we propose and analyse two types of numerical integrators to efficiently integrate the MKG and MD systems in highly oscillatory nonrelativistic limit regimes to slowly oscillatory relativistic regimes.

The idea for the first type relies on asymptotically expanding the exact solution in the small parameter $c^{-1}$. This results in non-oscillatory Schrödinger-Poisson (SP) limit systems which can be solved efficiently by using classical splitting schemes. We will see that standard Strang splitting schemes, applied to the latter SP systems with step size $\tau$, allow error bounds of order $\mathcal{O}(\tau^2+c^{-N})$ for $N\in \mathbb N$ without any time step restriction. ... mehr


Volltext §
DOI: 10.5445/IR/1000076449
Veröffentlicht am 10.11.2017
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte und Numerische Mathematik (IANM)
Publikationstyp Hochschulschrift
Publikationsjahr 2017
Sprache Englisch
Identifikator urn:nbn:de:swb:90-764490
KITopen-ID: 1000076449
Verlag Karlsruher Institut für Technologie (KIT)
Umfang V, 199 S.
Art der Arbeit Dissertation
Fakultät Fakultät für Mathematik (MATH)
Institut Institut für Angewandte und Numerische Mathematik (IANM)
Prüfungsdatum 29.08.2017
Projektinformation GRK 1294/3 (DFG, DFG KOORD, GRK 1294/3)
SFB 1173/1 (DFG, DFG KOORD, SFB 1173/1 2015)
Schlagwörter Klein-Gordon, Dirac, Maxwell, Wave Equations, Schrödinger, Highly Oscillatory, Nonrelativistic Limit, Numerical Time Integration, Uniformly Accurate, Splitting
Referent/Betreuer Schratz, J. Prof. K.
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page