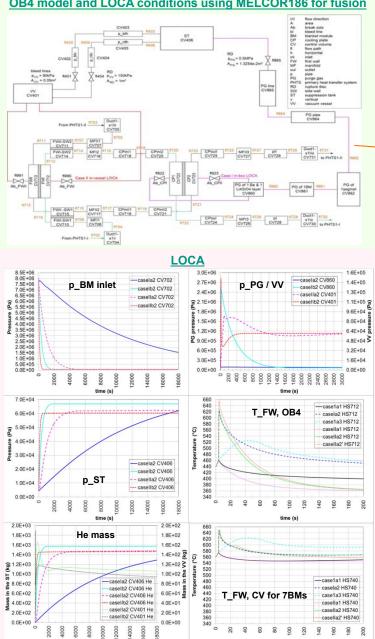
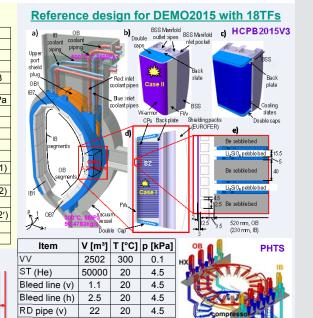


EUROfusion Institute of Neutron Physics and Reactor Technology (INR) P.O. Box 3640 D-76021 Karlsruhe, Germany

P1.129


BB LOCA analysis for the reference design of the EU DEMO HCPB blanket concept

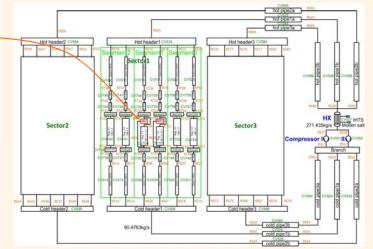

Xue Zhou Jin

PG

	Acci	dent	sequend	es and a	<u>ssumpti</u>	ons		
LOCA case					I (in-BB)		II (in-vessel)	
Failure condition					CP in BZ		FW	
Scenario					la	lb	lla	llb
Assumptions	Failed cooling channel				1	32 (1 CP)	1	10
	A _b (m ²)				3.0e-5	9.6e-4	3.125e-4	3.125e-3
	He ingress into				PG		VV	
	Bleed line / RD				p _{PG} > 0.5MPa		p _{vv} > 90kPa / 150kPa	
	A_PG / A_VV / A_RD (m²)				1.3254e-2		0.05 / 1.0	
Time evolution (s)	Steady state / LOCA				1000			
	HTC = 0.0				> 1000			
	compressor shutdown				1003			
	Plasma shutdown	FPSS	S Plasma (1) no		1004		1004	
	condition		disruption (0.5 GJ)		(casela1)	(caselb1)	(casella1)) (casellb1)
				(2) 100 ms	1004 ~ 1004.1		1004 ~ 1004.1	
					(casela2)	(caselb2)	(casella2)) (casellb2)
			(2') 10 ms	-		1004 ~ 1004.01		
							(casella2') (casellb2'
		(3) Soft plasma shutdown			1004 ~ 1064		-	
		(60 s)			(casela3)	(caselb3)		

45

4.5


MELCOR modelling for one OB loop with the integrated OB4

32

RD pipe (h)

20

20

Conclusion

- The model for one OB loop including 3 OB sectors results comparable He flow behaviour to the blanket design in normal operation.
- He inventory of one loop is 1.5848e3kg \Rightarrow 9.5090e3kg for 6 OB loops \Rightarrow challenge for the dimensioning of the pressure relief systems in case of invessel, in-BB or ex-vessel LOCA.
- The break size has impact on the He ingress with respect to the time evolution of the mass flow rate, pressure, temperature and mass:
- Small FW break size decelerates the He loss speed, pressure drop and temperature decrease in the affected module, and He accumulation in the VV.
- The plasma shutdown condition has impact on the FW temperature: The high heat flux load caused by short disruption time leads to high temperature peak exceeding the design limit.
- The in-vessel LOCA affects the VV, while the in-BB LOCA can affect the tritium extraction removal (TER) system potentially.
- In casellb, the final pressure at equilibrium (p_fin) is ~60kPa with VsT of 50000m³. To reach p_{fin} at 200kPa (p_{VV_limit}), V_{ST1} is 12476m³ \Rightarrow 74856m³ for 6 OB loops.
- To reduce Vsr: add subcooled water in the ST & heat exchange to the environment. Investigation of 3D thermal analysis for T_FW, and loop update for new design.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

KIT – University of the State of Baden-Wuerttemberg and 13th International Symposium on Fusion Nuclear Technology National Research Center of the Helmholtz Association

time (s)

25 – 29 September 2017, Kyoto Japan