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fIntroduction R

To protect First-Wall materials, e.g. reduced activation ferritic martensitic steels, against the plasma of future fusion reactors tungsten (W)-coatings are a
feasible option. The difference in coefficient of thermal expansion (CTE) between the W and the substrate can be compensated by functionally graded
(FG)-layers in between. Such layer system, with stepwise graded FG-layers, were successfully produced by vacuum plasma spraying (VPS). The
fabricated layer system have satisfactory interface toughness with the substrate at 550 °C. Thermo-mechanical tests show that the layer systems can
withstand thermal shocks of 0.19 GW/m? and are resistant to thermal fatigue for at least 500 cycles between 350 and 550 °C. Despite these advantages

QPS reduces, however, the hardness of the substrate during coating. [1-3_:/
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The substrate hardness loss, caused by VPS, can be moderated by Based on the promising results at small scale the coatings are transferred
modified spraying parameters. Layer adhesion tests are performed to to larger scale, with a Mock-Up as first upscaling step. Its behavior, after
investigate the effect of the modified parameters on the interface VPS and during operation, is estimated beforehand by finite element (FE)-
toughness. simulations in form of a sequential thermal-stress analysis.
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