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Preface

This work concerns the existence and discreteness of transmission eigenvalues for
acoustic scattering problems for periodic media in R2.

The interior transmission eigenvalue problem is a boundary value problem for
a coupled set of equations defined on the support of the scattering object. Its
eigenvalues, the transmission eigenvalues, appear in the study of scattering by in-
homogeneous media and are closely related to non-scattering waves. They play an
important role in inverse scattering theory, more precisely in target identification
and nondestructive testing.

However, not only the physical point of view is interesting. The interior trans-
mission eigenvalue problem is also a challenging mathematical problem, because
it is a non-selfadjoint eigenvalue problem. It cannot be treated by the theory of
eigenvalue problems for elliptic operators. However, some helpful analysis to deal
with this problem has been established which will be used as a basis for some parts
of this thesis.

The interior transmission eigenvalue problem is of major interest and a lot of
research is still beeing done. This thesis should at least make a small contribution
to it. It is organised as follows.

Chapter 1 contains a section about the history of transmission eigenvalues and
a rough description of the physical background of acoustic scattering problems
for penetrable scattering objects. Furthermore, a detailed explanation of periodic
media is included.

In Chapter 2, we present some basic tools we will need in this work.

Two different scattering problems for periodic media, will be introduced in Chapter
3. We will then consider the case of non-scattering incident fields. In both cases,
this will lead us to the study of the interior transmission eigenvalue problem.

The main results of this thesis are contained in Chapter 4. Here, the expressions
‘interior transmission eigenvalue problem’ and ‘transmission eigenvalue’ will be
introduced in detail. Furthermore, Chapter 4 contains some results for bounded
domains and some analysis that will be adopted for the purpose of this work.
An example motivates, why it is interesting to consider the interior transmission
eigenvalue problem for periodic media. Finally, we present some results on the
existence and discretenes of the transmission eigenvalues for the two scattering
problems. The work concludes by presenting some results about complex trans-
mission eigenvalues for periodic media.
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1 Introduction

This work will study transmission eigenvalues for acoustic scattering problems for
periodic media in R? and focus on the existence and discreteness of transmission
eigenvalues. Also, we will present some results on complex transmission eigenvalues
for periodic media. To arouse interest in this topic, we will start with an abstract
of the history of transmission eigenvalues.

1.1 The History of Transmission Eigenvalues

Although nowadays the transmission eigenvalue problem is an area of significant
interest, the history of transmission eigenvalues started rather slowly.

In 1986, Andreas Kirsch studied the injectivity of the farfield operator [13]|. In his
paper, the transmission problem and the transmission eigenvalues were mentioned
for the first time. Soon after this work, David Colton and Peter Monk [10] discov-
ered that transmission eigenvalues for spherically stratified media form at most a
discrete set. Proving the existence of transmission eigenvalues was difficult due to
the non-selfadjointness of the transmission eigenvalue problem. Actually, for the
next 20 years, only the discreteness of transmission eigenvalues was studied. Other
than that, they were more or less ignored. This is because sampling methods for
reconstructing the support of an inhomogeneous medium [16] fail if the interro-
gation frequency corresponds to a transmission eigenvalue. Hence, transmission
eigenvalues were to be avoided and since they form at most a discrete set, this
result was sufficient.

In 2007 Fioralba Cakoni, David Colton and Peter Monk showed that transmission
eigenvalues could be used to obtain material properties of the scattering object
from farfield data [1]. Then, transmission eigenvalues suddenly became very in-
teresting. The question of existence was answered for the first time in 2008, by
John Silvester and Lassi Paivarinta [25]. They showed the existence of at least one
transmission eigenvalue provided that the contrast in the medium is large enough.
In 2010, it was then proven by Fioralba Cakoni, Drosses Gintides and Houssem
Haddar, that there exists an infinite discrete set of transmission eigenvalues, under
the assumption that the contrast does not change sign and is bounded away from
zero [2].

The interest in transmission eigenvalues has increased since then.

For some new results we would like to mention [15], where Andreas Kirsch and
Hayk Asatryan studied in 2014 the interior transmission eigenvalue problem for a
spherically-symmetric domain with anisotropic medium and a cavity. In general,



existence of an infinite set of transmission eigenvalues for regions with cavities is
an open problem.

Also, a new integral equation formulation to compute transmission eigevalues for
constant refractive index has been established by Fioralba Cakoni and Rainer Kress
in 2017 [5].

The numerical calculation of interior transmission eigenvalues for anisotropic media
in two dimensions is considered in [19] by Andreas Kleefeld and David Colton.

Nevertheless, the transmission eigenvalue problem is still a resarch subject of major
interest in inverse scattering theory with many open problems. For a list of open
problems, see for example [4].

In this thesis, we will study transmission eigenvalues for periodic media and focus
on the existence and discreteness. Also, some results about complex transmission
eigenvalues will be presented.

1.2 Physical Background

When talking about the interior transmission eigenvalue problem, we should not
forget, where the problem comes from. Acoustic scattering problems form the basis
of this work. It therefore makes sense to roughly explain the physical background
of acoustic scattering problems before we go into details. To give it a meaning,
we will depict the three-dimensional case. However, we will later only study the
two-dimensional case as a simplification.

Let us describe the physical background for acoustic scattering problems in R3.
For more information, see for example [9]. These problems refer to the scattering
of an acoustic incident field at some scattering object, which is embedded in some
background medium in R3. We will consider penetrable objects, that means the
incident field can propagate inside the obstacle. The function n(z) = ¢2/c*(z) € C,
x € R3 is called the refraction index. Here, the local speed of sound is denoted by
c and ¢ is the speed of sound in air. We assume the background medium consists
of air, that means n is equal to one there and it is n > 1 inside the scatterer.
The wave number k is given by k = w/cy, where w denotes the frequency of the
incident wave. The physical properties of the material of the scattering object are
such that a wave propagates inside the medium with refraction index n > 1, that
means it satisfies Au + k*nu = 0 inside and Au + k*u = 0 outside the medium.
On the boundary, which is assumed to be Lipschitz, some transmission conditions
are valid.

We will consider periodic media, which we will describe in the following chapter.
Furthermore, we will restrict ourselves to the two-dimensional case from now on.



1.3 Periodic Media

To describe periodic media, we need to consider the contrast ¢ € L>(R?), which
is defined as q(z) = n(z) — 1, x € R?. The contrast is assumed to be periodic in
sense of the definition below.

Definition 1.1 Periodicity

o Let ¢ : R? s C and e; denote the first unit vector in R?. We call ¢ to be
periodic with period p > 0 (in x1-direction) if

d(x1 + p, x2) = P(x1, 22) for almost all x1, x5 € R.

e We call a set S C R? periodic with period p > 0 (in xy-direction) if its
indicator function Idg is periodic with the same period p, that is, (x1+p, x2) €
S, if, and only if, (x1,z2) € S. In particular, if ¢ is periodic with period p > 0
(in x1-direction), then supp ¢ is periodic with period p.

We will only consider periodicity in z;-direction. That means, whenever we talk
about periodicty, we mean periodicity with respect to x;.

We are now going to specify periodic media in detail. To this end, let ¢ € L=(R?)
be a periodic contrast with some period p in z;-direction. Let © C R? be an
open periodic set with finite extension in xs-direction, such that suppq = Q. We
furthermore require €2 to be a Lipschitz set of the form

Q = {(z1,22) e R*: 21 €R, f(w1) < 22 < g(x1)} (1.1)

with periodic Lipschitz functions f, g : R — R. Additionally, we restrict ourselves
to the cases, when

e /) < plpeten)

We call 2 a periodic medium. Figure 1 illustrates the situation.

Assumption 1.2 o Whenever we talk about a periodic medium, respectively
periodic contrast ¢ € L*(R?), we assume that there exist hi,hy € R with
hy < hy such that q(x) = 0 for almost all x € R? with ©9 < hy or hy < x5.

e We can assume q, and hence €2, to be 2mw-periodic. Indeed, if q is periodic
with period p # 2w, we apply a simple change of variables. We define a

function q := q 5 ) Then q 1s 2mw-periodic, since
T

qly+2m) = q(%(wzw)) = q(%yﬂ?) = q(%@ = q(y).



X2

T

Figure 1: The periodic medium 2.

o We assume q to be real-valued such that q. < q < ¢* for some q, > 0 and
q" < oo almost everywhere inside of €.

In this work we will make use of a cell €, u € Z fixed, defined as
Q, = {xeQu e p2m (u+1)2n]}, (1.2)

see Figure 2. The dotted lines symbolize the part of the boundary which does not
belong to 2.

Remark 1.3 Note that (), is neither closed nor open.

Figure 2: The cell €2,,.
For simplicity, we denote the upper and the lower part of the boundary by
Cuto == {2 € Q2 € [p2m, (u+1)27), 2o = f(z1)}

and
Cpwp = {2 €Q, 21 € [p2m, (u+1)27), 23 = g(x1)}
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and the left and right part of the boundary by
Tue == {x€Q, 2= p2m, f2ru) < xs < g(2mp)}
and

L. = {xe ﬁu cxy = (pu+1)2m,

fRr(p+1)) <zp < g(2n(p+1))}
2 {2 €eQ, iz = (u+1)2m, f2mu) < x9 < g(2mp)}.

Note that () is due to the 27-periodicity. We further define

Py o= Tuup UT 0.

In the same way, we use the notation I';,, I'y, and I' = I',, U I'},, when we talk
about an unbounded (with respect to z) periodic medium Q.

1.4 Quasi-periodicity
Additionally to periodic functions we will consider quasi-periodic functions.

Definition 1.4 Quasi-periodicity
Let p, a € R. A function ¥ : R — C 1is called quasi-periodic with period p and
phase-shift a, if

v(t+p) = ePP(t).

We will mainly consider quasi-periodicity with phase-shift & € R and period p = 27
with respect to 1. We then use the expression a-quasi-periodicity as explained
below.

Definition 1.5 a-Quasi-periodicity
A function ¢ : R? — C is called a-quasi-periodic (in x,-direction) with parameter
a €R, if

Play +2m,00) = €TP(x1, x2), (1.3)
for almost all x € R2.

Note that for a = 0, a-quasi-periodicity equals 27-periodicity.

In the following, we omit the expression ‘in x;-direction’, whenever this is clear.

5



Remark 1.6
a-quasi-periodicity can analogously be defined by the following:

A function ¢ is called a-quasi-periodic, if v, — e "1 p(xq, 15) is 2m-periodic for
every xs.

This is because e ™ ¢(xy,x5) is 2m-periodic if, and only if, e @1+ p(z) +
27, 19) = e " (xy, x9), which is eqivalent to (1.3).

Notation 1.7 We denote by M,, a # 0, the operator of multiplication by e~***1,
that means

Mag(z) = e (x).

Taking the derivative with respect to x; on both sides of (1.3), one easily sees that

if ¢ is a-quasi-periodic, the function g—i is a-quasi-periodic as well.



2 Basic Tools

2.1 Basic Function Spaces

We consider a periodic medium €2 and a cell €2, 1 € Z fixed, as described in Chap-
ter 1.3. By construction (see (1.2)), €, is neither closed nor open. To generalize
this situation, we consider some set D with D = D for some Lipschitz domain D.
This is useful to define the Sobolev spaces in this chapter.

Throughout this chapter we assume a € R. Restrictions on this will be made when
needed. The following function spaces are taken as a basis.

C®(D) = {u:D - C: uis infinitely often differentiable
in D and all derivatives can be extended
continuously to D},
Ce(D) = {ueC®D):supp ucC D},
Coa(y) = {ueC®(Q,):supp uCQ, (2.1)
e DMy (1, T9) = D™u(wy + 270, o),

for all z € Q,, n € Z and m € N*},

where m = (my, my) € N2 is a multiindex. Here, the notation

dlmly,

Dmu =
8’"1:1:1 8m21‘2’

where |m| = my + my is used.

For oo = 0 the space Cg%,(€2,) denotes the 27-periodic functions on Q2. We call this
space Cg5(£2,).

Remark 2.1 Bysuppu C €, the case when supp u touches the left and right part
of the boundary of Q, (T and L'y, ,;), is included, see Figure 3. This is because
Lyie and Iy i belong to Q.



__________________

! F/t,’l‘i

F,uJe

__________________

Figure 3: The support of a function u touching the left and right part of the
boundary.

Before introducing Sobolev spaces, we should clearly define weak derivatives.

Definition 2.2 Let m = (my, my) € N2 be fized.

a) Foru e L*(D), f is called the weak derivative of u of order m, if there exists
a function f € L*(D) such that

[ t@p@ids = (-0 [ w0 ) da,

for all p € C°(D). We write f = D™u.

b) Forue L*(,), f is called the weak derivative of u of order m and parameter
«, if there exists a function f € L*(S2,) such that

/ f(x)e(x)de = (—1)"”'/Q u(x) D" p(z) de,

o

for all o € C§%,(92,). We write f = D"u.

Note that we consider a-quasiperiodic test functions in part b) of the definition
above.

Now we define the following Sobolev spaces of first and second order.

Definition 2.3 The Sobolev space HP(D), p = 1,2, is defined by
H?(D) = {u€ L*(D): D™u € L*(D), for all Im| < p}.

8



The inner product reads

(U, U)Hp(D) = Z (Dmu, DmU)Lp(D) (22)
Im|<p
and || - || e (py is the corresponding norm. The derivatives have to be understood as

in Definition 2.2 a).

Definition 2.4  a) The space H{(D) is defined as the closure of C§°(D) with
respect to the norm || - ||gr(py, p = 1,2.

b) The space Hyo(Q,) is defined as the closure of C§%(S2,) with respect to the
norm || - | gra,), p = 1,2, where the norm || - ||gr(q,) is defined analogously
to (2.2) with derivatives as in Definition 2.2 b).
The space HSO(QH) is called the Sobolev space of 2m-periodic functions on €,
with vanishing traces.

w

With help of the operator M, we define the corresponding Sobolev space of a-
quasi-periodic functions on 2,, o # 0, with vanishing traces.

Definition 2.5 The space Hf ,(€,), o # 0, is defined as
Hg,a<Qu) = {u S LQ(Qu) : Mau € Hg,o(Qu>} :

We call this space the Sobolev space of a-quasi-periodic functions on 2, with van-
1shing traces.

Lemma 2.6 Let ﬁg}a(Qu), a # 0, be the space defined as the closure of C§5,(€2,)
with respect to the norm || - ||mr(,), p = 1,2. Then

f{g,a(QH) = H(I]),a(QN)'

Proof: To obtain the space ﬁg’a(Qu), a # 0, we consider the space C§5(€2,)
and shift it to C§%,(€,,) by applying M, " to the functions in C§(€2,). We then
take the closure with respect to the norm | - ||gr(q,), p = 1,2. Since the opera-
tor M, of multiplication is continuous and thus commutates with the limit, the
space ]:I(I)),a(Qu) coinsides with H ,(€2,,), where we first take the closure of C§%(€,,),

obtain H{(€2,) and then apply the operator M_ ' to the functions in H{(€2,).
O

We keep Lemma 2.6 in mind, when using density arguments for a-quasi-periodic
function spaces.



Remark 2.7 We understand the Sobolev spaces Hg’a(QH), p=1,2, in a different
way from HE(SY,). Roughly speaking, here, Hy ,(Q,,) implies that the trace u is zero

only on the upper and lower part of the boundary, H&a(ﬂu) means that the trace

g—jf vanishes there as well. In contrast to HY(S2,), we do not have this property on

the left and right part of the boundary, but periodicity.

Definition 2.8  a) We equip HZ(D) with the inner product
(w, V) 20y = [} %AUATJ dz and the corresponding norm || - || g2 p)

b) For a € R, we equip H;§ (Q,) with the inner product
(u, ) m2(0,) fQ LAuAD dx and the corresponding norm || - I rr2(q,)- The

derivatives have to be understood as in Definition 2.2 part b).

On HZ(D) the two norms, ||- I 2(py and || -[|g2(p) are equivalent, see [16], Theorem
4.13.

We will show that the two norms are equivalent on Hg ,(€,) as well. To this end,
we need two tools, the Friedrich inequality and integration by parts.

Lemma 2.9 Friedrich Inequality
For any cell §2,, there exists ¢ > 0 with

lullz2,) < clVullz2@,)
for allu € Hy ().

Proof: The idea of this proof is taken from Theorem 4.15 from [17]. Let for fixed
weZ

Qu = [p2m, (p+ 1)27] X (b1, bo)]
with by, by € R such that by < ming, g f(21) and by > max,, cg g(x1), where f and

g denote the upper and the lower part of the boundary of 2 as described in (1.1).
Let u € Cg5,(2,) and extend u by zero to Q. It holds

2 Ou

w(x) = u(zy,z2) = w(xy,by) + / —(xq,t) dt
b1 a X2
2 0u
= xq,t),dt
by ax2< 1 )
because u(xy,b;) = 0. By Cauchy-Schwarz,
5 z2 | Au 2
lu(@)]” < (22 —b1) —(1,1)| dt
b | 022
b 2
< et [ |t de
by )

10



We conclude

bo bo bo ou 2
/ ‘U(Z‘)Fdl’g S / (bg—bl)/ —(:cl,t) dtdl’g
by by b |07
b2 | du 2
= b—bQ/ —(z1,t)| dt
=0 [ |t
and hence
lullf2,y = Iullizeq
27r,u+1 by
= / / .’131,1'2 | dl’g d[[’l
by
,Ur‘rl) b2
S bg—bl / / Il,t dtdl‘l
b1 al'g

< (b2 = 0)*Vullzoq,)
= (b2 = 01)*[|VulZ2q,)

Since C§%, () is dense in Hj ,(€,,), the latter holds true for all u € Hg ,(,), a €
R.

O

Lemma 2.10 Partial Integration on Hg ().
Let Q, be a cell of Q2. Then it holds

Vuv + uVode = 0,
2

for all u,v € Hy ().

Proof: We know from the Theorem of Gauf (see [17] for example) that for all
u,v € G55, (), 7 = 1,2,

/Q(ﬁju)ﬂd:c = —/Q

“w

u(aﬁ)d:c +/ U@VJ’ dS,

" o9,

where v denotes the outward pointing unit normal vector. Due to the zero bound-
ary condition on the upper and the lower part of the boundary, the boundary

integral reduces to
/ uvvrds = / uvvrds + / uvv ds,
0, r r

wle KT

11



and vanishes, because the integral on the left part of the boundary reads

J

where v, = (—1,0)" denotes the outward pointing unit normal vector on I, ..
The integral on the right part of the boundary reads

g(2mp)
uvvds = / w(27mp, xo) V(27 , T2) Ve ds,
f

w,le (Qﬂ-“)

gQ2mp) ,
/ uvvds = / e (2, ) €U(2Tp, T2) Vry dS
r f

T (271’[14)

9(2mp)
= / u(27ru, .1'2) @(271_#, -TQ) Vri d87
!

(2mp)

where v,; = (1,0)". Since v, = v,

/Q(aju)vdx + / u(0;v)dx = 0,

QM
for all u,v € Cg5,(2,), j =1,2.

Let now u,v € Hy ,(€,,). Then there exist sequences (ty)nen, (Vn)nen in C5% (€2,
with
|t — ullgr,) — 0 and |v, — v,y — O.

Then

/Q (Ojun) Uy — (Oju) Vdx

"

<

/Q (O5,) (57 — 0) da

o

1/2
(/ |0t |” dw) (/ v — v da:)
QH Qu
1/2 1/2
+ (/ |01, — Ojul? dx) (/ |v]? dx) ,
Q. Q.

7 = 1,2, which tends to zero because

+ / (Ojuy, — Oju) Vdx
Q

o

1/2

IN

105unll 20 — 1105ull 220,y < 105un — Ojullr2(q,)
< Hun—qup(Qu) — 0,

12



as n tends to infinity. Analogously, it is

/ Uy, (0;0,) dx — u (0,0) dz.
o

Qp

We obtain

0 = / (O5un) Uy, + (Ojuy) Uy dx — (0;u) T + (0ju) vdz,
o

Qu

as n tends to infinity, and hence

/ (@u)@ + (@u)@dz = 0.
Qu

O
Theorem 2.11 On H; (), the norm Il 20,y s equivalent to the norm | - [|m2(q,,)-
That means, there exist two positive constants mq, my € R such that
mill - iz, < 1 lrzen < mell - llpze,)-
Proof: Let u € C%,(€2,). Then, with integration by parts, for 4,7 = 1,2,
Pu | ou 0%
/ Cldr = - 22T g
Q, c%ﬁxj Qu aZEI 81;18%8%
0%u 0*u
= — — dx.
Hence, it holds true that
Pu | Pu Pu  O%u 0%
2/ e = T (2.3)

By a density argument, (2.3) holds true for u € Hg ,(€,).

13



For ¢, and ¢* being the minimum and the maximum of the function ¢ we estimate

1 1
gy = [ Tlaufde < [ —|aufds

m o 1*
1 Pul® 0P| Pudm  DPud’Tu p
= a2 ) x
¢ Jo, || 0] 03 0?2 Ox3 O3 0x2
23 1 1 62u | O%u|? 5 O?u |? p
= a2 =) x
4 Jo, | 0x? 03 011015
1 / 9
= — D™ul” dx
) > D™yl
|m|=2
1 / 9
< — [ > D™ da
a4« Jq, iml<2
1

= ;Hu\ﬁnmu)-

On the other hand, we see with Friedrichs inequality that for u € Cg%,(€2,),

/ ul® de < c/ \Vul? d,
Q. Q

n

with ¢ > 0, as well as for i = 1,2

2
/ dr < ¢ /
Q. o

with ¢ > 0. Again, by a density argument this holds true for functions in Hg ,(€2,.).

2

0
“ dx,

aZEi

ou

14



We compute

By = [ |32 0l + 1l + | do
Q| |m|=2
< / Z ID™ul? dz + c/ \Vul® da
e fn|=2 i
2 2
:/Z|Dmu|2dx+c/ Oul” 12ul| g
Qu Im|=2 Qu 81’1 8x2
[ _ ou|? ou |
< D™u|? dx + c’/ ‘V— + ‘V— dz
/Qu ;2’ ’ Qu i 81'1 8&32
[10%u]®  |0%u|® 2u |
= Dmu2dx+c'/ —| +|=| +2 dx
/f;u 7nz—:2| | Qu i 01‘% 83:% (99318:1:2
) /" 2
< ¢ / |Au|” dx
Q.
<

1
c”q*/ = |Aul? dx
Q. 4

14

2
Mullzz ).

with constants ¢, ¢, ¢’, ¢” € R. In (x) we have used Cauchy-Schwarz inequality
and equation (2.3). O

2.2 Embeddings

Let us now consider for fixed pu € Z a square @), as in the proof of Theorem 2.9,
that is
Qu = [/1271—7 (/JJ + CL)27T] X (bla b2)7 VS Z ﬁxed,

with b1,by € R and a € N such that

by < min (1), by > 2?25{59(9”1)'

Furthermore, we require here that
bg—bl = 27TCL, a € N.

Here f,g: R — R determine the upper and lower part of the boundary of €.

15



Remark 2.12

e Note that QQ,, as well as 1, are neither closed nor open.

o The cell S, is contained in the square Q. Figure 4 illustrates the setting.
The dotted lines denote the part of the boundary which do not belong to @,
respectively €,,.

e For the following, without loss of generality, we assume a = 1. Indeed, if
a > 1 we redefine Q, as {x € Q,z1 € (p27, (u+ a)2m)}.

It may appear easier to define ), as a rectangle {[p2m, (1t + 1)27] X (b1, b9)}. The
reason to postulate by — b; = 27 is to make the following Fourier coefficients, and
hence the following definitions, more clearly arranged.

We will list some basic results from the theory of Fourier series.

Theorem 2.13 For u € L*(Q,) the Fourier coefficients u, € C are defined by

1 )
Uy = — u(z)e ™ dx  forn € Z2.
47T2 Qu

Then u(z) = 3", ze un€™ in the L*-sense.

With Parsevals’ equation, we yield for v € H*(Q,), respectively u € H*(Q,),

(Vu, Vo) 2, = 47° Z 1?1, 0y,

nez?

Z (D"u, D™0) 12,y = 4 Z (n} + ninj + n3) u,v,.

|m|=2 nez?

Using this, we can now define the Sobolev space H3.(Q,) and H3 (Q,) of 27-
periodic functions on Q).

Definition 2.14

Hn(Qu) = {u € L2 (Qu): Y (1+n’) fun]” < OO}
nez?
with inner product

(u:)agg, (@ = 47 D (L [nf?) Ty

nez?

16
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Figure 4: The setting of €2, and @, for a = 1.

and
H3(Qu) = {u € L*(Qu) : Y (1+|nf +nf +nin + nd) |u,|* < oo}
nezZ?

with inner product

(u, )32 (@) = 47° Z (1 + [nf® +ni + nin3 + n3) u,v,.

nez?

Furthermore, we denote the corresponding norms by || - [ (q,) and | - llxz 0,
respectively.

Again, we use the operator M, to define the Sobolev spaces of a-quasi-periodic
functions.

Definition 2.15 The Sobolev space of a-quasi-periodic functions HP(Q,) on @,
1s defined by setting

uwe H(Q,) &= MyueH) (Q).
forp=1,2.

The next lemma ensures that the zero-extensions of functions of Hg(€2,) belong
to Hy(Qu), p = 1,2,

17



Lemma 2.16 The extension operator

u on
0 on Qu\9Q,
is linear and bounded from H((S2,) into H5 (Qu), p = 1,2.

E:u»—)ﬁ:{

Proof: Before we begin to prove this lemma, we note that €2, is contained in @),
in such a way that only the upper and lower part of the boundary lie completely in
Q- Therefore, a zero-extension of any function u € Cgy(€2,) belongs to C55(Q,.).
Here, C5%(Q,) is defined as in (2.1), for o = 0 and for ,, replaced by Q.

Knowing this, we can transmit the same idea and the same structure as in the
proof of Theorem 4.11, chapter 4 from [17].

Let u € Cg5(£,), then obviously 4 € Cg5(Q,). We verify for the Fourier coeffi-
cients

1 4 v 1 .
L= ~ - g — 2 ~ —inz g
u w ), u(x)e T w1 o, u(z) o, e x
« 1 ot .
gL [ B ey, (24
n; 47 Q 3:16]-

1 1 [ du(z) & _,,,
= e dx
njny, 4m? Q. 0z; Oxy

= —1 1 Pu(z) .
njny, 4m? Qu 8a:j3xke o (2:5)

for j,k=1,2, n = (ny,ns) € Z%

Here, (x) is due to partial integration and the boundary conditions in C§5(Q,). To

be more precise, on the upper and lower part of the boundary it holds a(x) = 0.

Also, due to the 2m-periodicity, ﬂ(m)%e*m'“, as well as dg(?)%e*m'x take the
T Tj O

same value on the left and the right part of the boundary.

From (2.4) and (2.5) we obtain that

11 ou(x) s 7.
Up = ———— e der = ——1,,
n; 4m 0u Oz, n;
where 4,, denote the Fourier coefficients of % and
J
~1 1 o%u(x) . ~1 .
Uy = — — ¢ dr = Uy,
niny 4m Q. Ox;j0xy, o

18



where 4,, denote the Fourier coefficients of aza 8’; -

It holds
am Y funl® = 72, = lullfz,)
nez?
47y ) = 47 ) i)
nez? nEZ2
o7 P
O L2(Q O L2(Q,) 7
4 Z ninglu,|? = 4w’ Z |zln|2
nez? neZz?
_’ o*u | _‘ %u ||’
8:cj8$k L2(Q) ax]8$k L2(9,)
(2.6)
and hence
lulline,) = lullzzq,) + IIVUIIiQ
_ 2
= ol + | H ="
= 47 Z Jun| (1 + |n| ) = ||u||H%ﬂ(Qu)7
nez?
as well as

m 2
HUHJ%P(QM) = ||U||%2(QH) + ||VUH%2(QN) + Z D" ull 72

|m|=2
=47 Y |un|* (14 |nf” + nf + nind + n3) = 155 (.-

nez?

This holds for all functions u € C§9(€2,). Because u € C5%(€,,) is dense in Hj (€,
we conclude

el = 40 S Tl (1 -+ [+t + 0203 +0) = [31E,s g,
nez?
for all u € H§((€2,) and therefore E is bounded. 0
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Theorem 2.17 The embedding I, - Hjo() — L*(2,) is compact.

Proof: We will use the same arguments as in the proof of Theorem 4.14, Chapter 4
from [17]. Sketching the idea quickly, the proof reduces to show that the embedding
J H3.(Qu) — L*(Q,) is compact. We are going to formulate this as a lemma
subsequently. Then the composition

RoJokE: Hé,o(Qu> = 'H%W(QM) 4 LQ(QM) S LQ(QM)

is compact, because E and R are bounded. Here, E : Hjy(,) — Hy, (Q,)
denotes the extension operator as in the Lemma 2.16 and R : L*(Q,) — L*(2,)
denotes the restriction operator.

For more details see [17], Theorem 4.14. O

As mentioned in the previous proof, we formulate the following lemma.

Lemma 2.18 The embedding J : H (Q,) — L*(Q,.) is compact.

For a proof see [17], Theorem 4.14. This lemma leads us to the following corollary.
Corollary 2.19 The embedding J : H3.(Q,) — Hi.(Q,) is compact.

This can be shown analogously to the proof of the following corollary. Theorem
2.17 will also be used for this purpose.

Corollary 2.20 The embedding Iy : H§ () — Hgo(Qy) is compact.

Proof: We consider a bounded sequence (u;)jen € Hg(€2,). We will show that
(u;)jen € H§o(Q,) has a convergent subsequence in Hjo(£,).

Du, , . :
aUJ-) , for i = 1,2, are bounded in H} ,(,,) since
T4 ]EN )

First, we see that (u;);ey and (

for i = 1,2, with constants ¢ and ¢ € R. Hence, (u;);en as well as (g’ﬁ) have
i/ jeN

convergent subsequences in L*(£2,,), because the embedding Hj(€,,) < L*(£2,) is
compact according to Theorem 2.17.

2
il < Muilheg,, < clluilieg,)
an 2

8@

2
< Nl < iz,
H Q)

20



Let now o
u; ,
Ol = axij’ m=0,1, i=1,2,
describe these convergent subsequences with j € Ny C N, |N;| = oo. Since L?(€,,)
is complete, (9"u;)jen,, is a Cauchy sequence in L?(2,), that means there exists

N and e such that

£
||a;nt,n1 —@muj,nzHLz(Q#) S ﬁ for all Ny, N9 Z N.

Then

Huj,m — Ujny HHl(Q#)

-

2
= (ltims = WimalZ2(,) + Vim0 = Vit )

2\ 2
< 3— = €.
< (53) =

Thus, u;, j € Ny, is a Cauchy sequence in H&O(QH) and, due to the completeness
of Hjy(€2,), convergent in Hjy(€,). O

The following corollary is a simple consequence of Theorem 2.17.
Corollary 2.21 The embedding I, : H} () = L*(Q,) is compact.

Proof: Let (u);en be a bounded sequence in Hy ,(€,).
Then, (u)jen := (u§ e7***1);en is bounded in Hj,(€,). By Theorem 2.17, there
exists a convergent subsequence (u?k) jken of (ug) jen. Hence, there is a convergent

subsequence (u?k)j,keN of (u?)jeN in L2(Qu), namely (u?k)j,kEN = (qu@mzl)

7 j,k’EN N

(|

We have collected all the tools for a proof of the following corollary. It can be
proven analogously to Corollary 2.20, we just need to use Corollary 2.21 instead
of Theorem 2.17. For brevity, we will skip the proof.

Corollary 2.22 The embedding I, : Hg ,(Q,) — Hj () is compact.

21



2.3 Spectral Theory

Let H be a Hilbert space and let A be a compact normal operator. Then A has
an eigensystem (\;, ;) ey such that

AY = DN (W), € H,
jeN
where (-, ) denotes the inner product on H.

The spectrum o(A) of A is the set of all values A\ € C such that A — A is not
boundedly invertible. It is well known that the spectrum of a compact operator is
the union of its eigenvalues A;, j € N, and 0, that means

o(A) = {0} U {);: jeN}L
The multiplicity of each eigenvalue is finite and the only possible accumulation

point of the eigenvalues is zero.

Theorem 2.23 Courant min-max principle.

Let H be a Hilbert space and let (-,-) and || - || denote the inner product and
the corresponding norm on H. Furthermore, let A : X — X a non-negative
self-adjoint compact operator, and (\,) denote the non-increasing sequence of the
nonzero eigenvalues repeated accordingly to their multiplicity. Then

A= [|A]] = sup{(A¢, ¢) : [|o]] = 1}

A1 = . ir%bfexsup{(Agb,qb) coLhy, ., ol =1 n=1,2,....
Proof: The proof can be found in [21], Theorem 15.14. 0

Note that if A is a non-positive, self-adjoint compact operator, the first eigenvalue
is defined as

A = inf{(A¢, ¢) : [|o]| = 1}

and is negative. Furthermore,

)\nJrl: sup Xlnf{<A¢7¢)¢J—wla7wn7“¢”:1}7 n:1727""
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2.4 The Floquet-Bloch Transformation

The content of this chapter is basically taken from [22]|. For more details we refer
to this article.

Let Q :={z € R? : 25 € (0,1)} be a strip and let , for fixed p € Z be a cell of
), that means
Q, = {zeQ:x e 2mp2r(p+1)}

Let S be the Schwartz space of C§°-functions decay faster than any negative power,
o8
¢@)| _ OO} '

OzP
Let A :=[0,1) and e; := (1,0)" € R?. We define the Floquet-Bloch transform first
from S into C§°(Q, x A) := {u € C*(Q, x A) : suppu(-,a) C Q, for all a € A},

xOL

S = {(;56080(9): for all o, B € N : sup

€

(Tu)(z, ) = @(zr,a) = Zu(x—l—Zﬂmel) e~i@mtmma (2.7)

meZ

for v € Q,, o € A and for u € S. Note that (2.7) is well defined and (T'u)(z, a) €
C(Q, x A), because u(x + 2wme;) e @1+ g infinitely often differentiable
with respect to both variables and u decays with any derivative.

Note that the boundary conditions in C$°(£2, x A) only apply to ©,,.

Furthermore, @ has an extension to a Cg°-function on 2 x R such that @ is 27-
periodic with respect to x; and quasi-periodic in the second argument (see Defi-
nition (1.4)). Indeed, for [ € Z,

ﬁ(a: + 27ley, a) = Z u(x + 27r(m + l)el) e i@1t2m(mtl))a
meZ

= Z u(x + 2mmey) e t@1t2mmla
meZ
= a(z,®).

Also, for any 8 € Z, u(x,-) is quasi-periodic with period  and phase-shift —z,
since

ﬁ(l’, o+ 5) = Z U(ZE + 27Tm61) e—i(x1+27rm)(a+ﬁ)
meEZL

e~ im1f Z u(x + 2mmey) e~i@1+2mm)a
meZ
= e 8(z, ).
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We can express u € S by @ = Tu. Let u(-,z2) € S. Then

/ﬂ(x,oz) e do = Zu(m—l—Qﬂmel)/e_%ima da = u(z), (2.8)
A

meZ A

for z € Q, because [, e7*™™* =1 for m = 0 and zero for m # 0. We will extend
T to L*(Q) and show that T is unitary, that means 7*T = Id. We then show
subsequently that 7' is invertible and obtain 7% = T~ 1.

For u,v € S,

(@ 0) 20, xn) = / [ Z u(z + 2mmey )v(z + 2nley)
Q

m,lEZ

./ei(x1+27rm)aei(21+27rl)a dOé] dr
A

— /Q [Z u(z + 2mmey )v(z + 27Tm61>] dx

meZ

= Z / u(z + 2mmey )v(z + 2mmey ) dz
Qp

MEZ

= /Qu(:c)v(:c) dx
= (u,0)120q)- (2.9)

We see that ||Tul|z2(q,xa) = [|ul[z2() for all u € S and therefore T has a bounded
extension from L?(2) into L*(©2, x A). Also, we conclude that T*T = Id, that
means, 7T’ is unitary. We are now going to show invertability of 7" in this space,
that means T* = T~!. We first note that T is injective and therefore bijective on
its range. Also, 7" is bounded. By the closed graph theorem (see for example [29],
Theroem IV.4.5), we conclude that the image is closed. Therefore, it is sufficient
to show that the range of T is dense in L*(Q, x A). Let f € Cg°(©, x A) and
extend f(-, ) to a 2m-periodic function with respect to 1 in Q2. We define u by

u(z) = /Af(az:,a)em"’“"1 da, x €.

Every arbitrarily often differentiable function with compact support isin S. There-
fore, for fixed «, f(-, ) is in S and we conclude by partial integration, that u € S.
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Therefore (see (2.8)), u has a representation as
u(z) = /a(x,oz)eWC1 do, x €L
A

Defining g = f — u, we conclude

/g(m,a)ei‘”l da = 0, ze€
A

We will show that for fixed a € A, g(z,a) = 0 for all z € Q. This proves f = Tu
and that T is invertible with T~ given by

(T*f)(z) = (T f)z) = /Af(gc,@)em“:1 da, x €1, (2.10)

where f(-, «) has to be extended 27-periodically into €.

To show that g(z,a) = 0 for all x € Q and fixed «, we use the periodicity of g.
We fix x and substitute x + 2mme; for x with arbitrary m € Z. This yields

0 = /g<$+2ﬂ'm€1,a>eia(xl+2ﬂ'm) doa = /g(x’a)eiaxle%iam dov
A A
A

with g,(a) = g(z, a)e"™ a € A.

From (2.11) we conclude that all Fourier coefficients of g, vanish and thus g, = 0
for every x € Q. Hence, g(z,a) =0 for all z € Q.

Corollary 2.24 Let q € L>(R?) be 2m-periodic. Then T(qu) = qTu.
Proof: With

u(z) = /ﬁ(yc,oz)em‘“1 da, x €. (2.12)
A
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We define the following space

L*(A, Hg,o(Qu)) = {fe LQ(QH xA): f(-,a) € H&O(QH) a.e. on A\,
a = [1FC )z, in L2(A)}

We equip this space with the norm

sy = [ 176 g,y
Also, we define

L*(A,L*(Q,) = {fe€L*(Q.xA): f(-,a) € L*(,) ae. on A,
a = [[f( )z, in LH(A)},

with the norm

s = [ 1760 Exg,yd

Below, we show in Theorem 2.25 that 7' maps Hg(Q) into L*(A, Hg o(2,)).
Analogously, but much simpler, one sees that 7" maps L?(Q) into L?(A, L*(£2,,)).

Theorem 2.25 The operator T is well-defined and a bounded isomorphism from
H§(Q) onto L*(A, Hi o(,)). Furthermore, it holds true that

TVu = V,Tu+ieiaTu,
T0.,0p,u = 00, Tu+iaT0,,u,
TAu = A Tu+ 2iaT0,u+ o *Tu.

Proof: For simplicity, in this proof, we use the general H?-norm || - || m2(0,)- This
is possible, because the norms [|-[|i2(q,) and [| - | y2(q,,) are equivalent on H,($2,,).

Let first w € S. Then Tu € C§°(2 x R) and thus from (2.12)

Vu(x) = / [Vai(z, a) +iejadi(z, )] €™ da,
A
Oy, Opyu() = / [81181211(%04)—l—’ia@mfz](x,a)]em“ da
A

AU,($) - / [Amﬂ(x, a) —+ Ziaﬁzlﬂ(x, a) — 0421](1;7 Oé)} etort dOé,
A
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for x € Q2. That means,

TVu = V,Tu+ieaTu, (2.13)

170,000 = 03,0,Tu+ 100, Tu (2.14)
(2.13) 02,0z, Tu + 10T 0y, u

TAu = ATu+2iad,, Tu— o*Tu (2.15)

G A, Tu+ 2iaT8,,u + a*Tu. (2.16)

We estimate for u € S,

HTUH%%Q#XA) + ||V:cTUH%2(quA) + ”AITU+ZaﬂﬁlaﬂﬁzTUH%Q(Q“xA)

= ||Tu||%2(ﬂu><A) + | TVu — TielofUH%%Q“xA)

2
+ HTAu — T2ia0,,u — To*u + 2(T0,,0,,u — Tiad,,u) ‘

L2(Q,xA)
< clHTUH%Q(QHXA) + C2||TVU”%2(9MA) + ”TAU+T28x1aﬂczu“%2(ﬂuxA)
= a HU||%2(Q) + C2||VU||2L2(Q) + ||AU+23r1asz||%2(Q)
< ez lullfe), (2.17)

with real constants ¢y, ¢ and c3. Now we extend u to HZ(2) and show boundedness
of T from Hg(Q) into L*(A, Hg (),

|TU||L2 AHZ ()

= [ It 0}, da
= /A|:||Tu<'>a)||%2(ﬂu)+HVHCTU('JQ)H%?(QH)_{—||A$Tu+2aﬂﬂlaszuH%2(QM) do

= HTUH%Q(QNXA) + HVITUH%%QNXA) + [[ATu + QaIIaIZTUH%Q(QHXA)

(2.17) )
< G HUHH2(Q)

We conclude T is well defined and bounded.

To show surjectivity, we let Tu € L*(A, H3(€,)). In particular, this means that
Tu(-, o) € Hjy(9,) and hence Tu(-, ), V,Tu(-, ) and A Tu(-, ) are in L*(€,,)
almost everywhere on A.

With the identities (2.13) and (2.15) we see that TVu and TAu are in L*(Q,, X A).
Since T is invertible in this space, we conclude that u, Au and Vu are in L*(Q),
and hence u € HZ(Q).
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2.5 Entire Functions

This chapter provides some basic knowledge about entire functions.

Definition 2.26 (Entire Functions)

A function f: C — C, f £ 0, is called an entire function if it is holomorphic in
the entire complex plane.

e The maximum modulus M (r) is defined by

M(r) = max ‘f (rew)|,

0<0<2n
e the order p of f(2) is defined by

_ loglog M (r)
p = limsup ————=
r—00 logr

e and if f(z) is of order p then the type T is defined by

, log M (r)
7 = limsup ———.
r—00 rf

Definition 2.27 An entire function of order p =1 and type T is called an entire
function of exponential type T.

The following elementary propositions are taken from [6], page 242 and 245.

Lemma 2.28 e Let f and g be two entire functions of exponential type at
most 7. Then f + g is of exponential type at most 7.

o Let f and g be two entire functions of exponential type 75 and 7,4, respectively.
Then the function f-g is an entire function of exponential type at most Tp+T7,.

o Let f and g be two entire functions of exponential type 74 and T, with T > T,.
Then the function f + g is an entire function of exponential type 7¢.

Furthermore, the following holds true.
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Lemma 2.29 Let f be an entire function of exponential type. Then g(k) := kf(k)
1s an entire function of the same exponential type.

Proof: It holds true that

M,(r) = max g(rei9)| = max r‘f(rewﬂ = rM;(r),

0<6<2m 0<6<2m

where M, and M; denote the maximum modulus of f and g respectively. For the
order p, of g it holds

= limsup log log M,(r) — limsup log (log 7 + log M¢(r))
g r—00 IOgT r—00 lOgT
() log(2log M log 2 + log log M
< limsup 0g(210g M;(r)) = limsup 0g 2 + log log My (r) = py,
r—00 IOgT r—00 IOgT’

where py denotes the order of f. Note, that in (*) we have used that My (r) > r for
r large enough. We can assume this, because if r was growing faster than M(r),
then ps = 0 and hence f would not be an entire function of exponential type.

log log(rMy (7)) > log log(Mg¢(r))
logr — logr

On the other hand we see that for r large enough it is
and hence

log1 M
b = i sup OB
r—00 log r r—00 log r

We conclude p; = py = 1. For the type we see that

log M 1 log M
7, = limsup 08 Hg\1) o(7) = limsup 08T + og M;(r)
g r—+00 r r—00 r r
log M
= limsup log My(r) = Tf,
r—00 T

where 7; and 7, denote the type of f and g respectively.

Hence, f and g are exponential functions of the same type. O
The following theorem can be found in 28], page 266.

Theorem 2.30 Laguerre

Let f be an entire function of order less than two that is real for real z and has
only real zeros. Then the zeros of ' are also all real and are separated from each
other by the zeros of f.
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Corollary 2.31 Let f be an entire function of order less than two that is real for
real z. Suppose that f has infinitely many real zeros and only a finite number of
complex ones. Then f' vanishes only once on each interval (2, zn+1) formed by
two consecutive real zeros of f when the interval is sufficiently far from the origin.

For a proof see [23], Theorem 2.3. The well known Paley-Wiener Theorem can be
found for example in [20], page 30.

Theorem 2.32 Paley- Wiener
The entire function f is of exponential type less or equal to T and belongs to L*(R),
if, and only if, it has the form

flz) = /T ot)e™dt, z€R,

—T

for some o € L? (—7,7). [ is of type T if ¢ does not vanish on a neighborhood of
T or —T.
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3 Two Scattering Problems

We will describe two scattering problems for periodic media in this chapter. We
will then consider the case of non-scattering incident waves, that means that the
scattered field vanishes. This will lead us to a system of differential equations,
which is set up inside of the periodic medium. The problem of solving this system
of equations is called the interior transmission eigenvalue problem.

To set up the scattering problem, we will need to consider for R € R+
I, = [2mu, (p+1)27] xR,
I, r = [27r,u, (1 + 1)27?} X ( — R, R),

with p € Z fixed. Also, the following additional function spaces will be useful to
describe the scattering problems. For p = 1,2, we define

HY(I1,) == {ue€ HP(IL,) : e*2™ (2, 29) = u(z) + 270, 9),
for all x € I1,, n € Z},

and analogously HY,(II, g). Furthermore, we define

HP

loc

(D) == {u:D—C: U‘D € HP(D) for any open and bounded set D € D},
for some Lipschitz domain D, and

H}fd,loc<ﬂu) = {u:1I, - C: u‘nm € H} (11, r), for any R € Roo}.

3.1 Scattering Problem 1

We consider the periodic medium
Q = {(z1,22) €ER*: 21 €R, f(21) < x2 < g(21)}

as described before in (1.1). Let g denote the 2w-periodic contrast, that is

supp ¢(z) = Q. Again, we denote by I' the boundary of Q. We first describe the
scattering problem formally. To this end, we do not yet care about the regularity
of the contrast or of the scattered field. The periodic medium (2 is excited by an
incident plane wave !, which is given by

ul(ac) — eikx-@j
where k > 0 denotes the wave number and
O = (sinp,—cosp)’, |p| <7/2, (3.1)
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is the direction of propagation. We denote the first component of © by d := sin ¢,
ld| < 1.
In general, the incident plane wave u’(z) = €***© does not share the 27-periodicity

of €. It rather holds

u'(xy +2m,15) = exp (ik(zy 4 27) sin ¢ — ikxo cos )
p

(
= exp (tkxy sin o — ikxs cos ) exp (1k2m sin )

= exp (tkx - 0) exp (ik2m sin p)

(]

= u'(x)exp (ik2msin p) .
Plugging in d = sin ¢ we see
(21 + 27, 23) = P (21, 25).

We compare this with the definition of quasi-periodicity and see that u’ is a kd-
quasi-periodic function. It is Aui(z) = Ae**® = —k2e**® = _[2yi(x) and
therefore u’ satisfies the Helmholtz equation in R2

Aut + k*u' =0 in R

The scattering problem reads, given u‘, determine the scattered field u* and the
total field u := u® + u®, which satisfies

Au+Ek*(1+qu=0 inR? (3.2)

such that u® satisfies the Rayleigh radiation condition, which we will introduce in
a moment.

On the boundary I' of the periodic medium the following transmission conditions
are valid

(W], = 0 and [%]F =0, (3.3)

where v denotes the outward pointing unit normal vector, and [ f] =f ‘ L fL.

Given that u' satisfies the Helmholtz equation in R? from (3.2) we obtain the
following equation for the scattered field.

Au® + E*(1+ ¢u® = —k*qu’  in R% (3.4)

Furthermore, we assume the scattered field to be kd-quasi-periodic.
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As already mentioned, we require u® to satisfy the Rayleigh radiating condition.
That is, there exist uX € C such that

ui(x) = Zufei(o‘”“ﬂ”“), (3.5)

nel

with a,, = n + kd and (3, are defined by

5, - VEE—a2, o <k,
" ina2 — k2, |a,| > k.

The plus and the minus sign in (3.5) refer to the cases when xo > max{g(z1), 21 €
R} or xo < min{f(x1), 1 € R}, respectively. Note that since we consider quasi-
periodic functions, we can restrict ourselves to x; € (2mu,2m(pu + 1)) for fixed
1 € Z from now on.

The Rayleigh radiation condition is recovered by a Fourier expansion with respect
to z; of e”* 1y (x), that means u(z) = . _; an(z2)e™ . Using furthermore
that u satisfies the Helmholtz equation outside of Q, yields a! + (k* — a2)a, = 0
with o,, = n + kd. Solving this and using that in u = u® + u’ the incident field
is given by e****® naturally leads to the Rayleigh expansion radiation condition,
which ensures that the scattered field is outgoing with respect to x,. For more
details, we refer to [24].

Let us now consider a 27-periodic contrast ¢ € L>°(R?). Classically, the scattering
problem is studied for u € Hy;,,.(I1,,), see for example [27]. That means, equation
(3.2) is understood in the weak sense, that is

Vu- Ve — k(14 qupdr = 0, (3.6)
m

for all ¢ € H},(I1,) with compact support with respect to a2, that means, there
exists a compact set D C I, such that ¢ is supported in D. All terms in (3.6)
are well defined and w satisfies the first transmission condition, u|, = wu|_,
by u € Hjyy,.(I1,). However, only if a weak solution u to (3.6) is sufficiently
regular, it can be interpreted as a solution to (3.2) with (3.3). In this case, the

second transmission condition, % %’ is well defined and included in the
_l’_ —

formulation (3.6). This can easily be seen by multiplying Au + £k?(1 + ¢)u with
a testfunction ¢ € H},(I1,) with compact support with respect to 2, integrating
over €2, and II, \ ©, and applying Green’s first identity. Due to the kd-quasi-
periodicity, the boundary integrals on the vertical boundaries cancel out. To finally
obtain (3.6), the remaining boundary integrals also have to cancel out, which shows
the second transmission condition in (3.3).
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By standard elliptic regularity results, see for example [11], Theorem 8.8, a weak
solution to (3.2) lies in fact in HZ;,,.(II,). It is even a classical solution in R?\
(see [11], Corollary 8.11) and hence analytic there (see [8], Theorem 3.5). For more
details on the scattering problem, we refer to [27].

In this work, we are interested in non-scattering waves, that means that the scat-
tered field u® vanishes outside of €2, and hence v = v’ in II,, \ ©2,,. The transmis-
| A ?;; = % on I', and inside of €2, it holds
Au' + k*u' = 0 and Au + k*(1 + ¢)u = 0. The scattering problem above hence
leads to the following problem, which is set up only inside of €,. (We will first
write the system of equations formally and comment on regularity afterwards.)

sion conditions then yield v = u® and

We wish to find non-trivial kd-quasi-periodic solutions v and w to the system of
equations,

Aw+kw = 0  inQ, (3.7)
Av+E(1+quv = 0 inQ, (3.8)
w = v onl, (3.9)

ow Jv
5 = % on FH‘ (310)

This problem is called the interior transmission eigenvalue problem. The values for
k such that the interior transmission eigenvalue problem has non-trivial solutions
are called transmission eigenvalues.

Remark 3.1 Note that k appears in the differential equation and also in the so-
lution space.

We will go into more details in Chapter 4.2.

Closing this subsection, we would roughly like to comment on regularities of the
solutions to the interior transmission eigenvalue problem. Up to now, we have used
the space Hjy,.(I1,) as an ansatz space, which was suitable to treat the trans-
mission conditions. However, when considering the interior transmission eigen-
value problem independently of the scattering problem, we will seek for solutions
(v,w) € L*(Q,) x L*(€,) such that the difference u :=w — v is in Hg ,,(Q,). We
then write the equations in the ultra weak formulation, that is

/ w [AD + k(1 + ¢)p| dz = 0,
o

for all ¢ € H§,4(€2), and the analogous form for v. With this formulation, the
two equations on the boundary, (3.9) and (3.10), are included in the Sobolev space
H3 1,4(), when considering u = w — v € Hg ,,(Q,).
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3.2 Scattering Problem 2

Let again k£ > 0 be the wave number. We will consider the case that a point source
at some point y € R? with y, > 1 is scattered by an inhomogeneous layer Q, =
R % (0,1), which is contained in a strip /. = R x (0, 1+ h), for some h > 0, on top
of a perfect conductor. The point source is defined as @y (z,y) = %Hél)(km —y|),
x # y, which is the fundamental solution of the Helmholtz equation, with the
Hankel function Hél) of the first kind of order zero. We enlarge €, by choosing h
big enough, such that y is contained in the strip €2/, .

By I'i, = R x {0} we denote the lower part of the boundary of €2, and €, and by

Lypy =R x {1} and I, ,, =R x {1+ h} the upper parts, respectively.

We reflect this setting at I', and obtain a strip € := R x (—1,1) and we extend
the point source as an odd function with respect to xo into the lower half space
R? := R x (—00,0). This yields an additional point source —®;(z,y*) with y* =
(y1, —y2)". The complete setting is illustrated in Figure 5.

up+ "~ - T
! (©) ),
Fup+ - — / -
o,

) (@) /

Figure 5: The Setting for Scattering Problem 2

We consider the scattering problem in the upper half space R% := R x (0, 00). We
note that due to the reflection and the odd extension, (with some modifications)
similar results can be shown for the lower half space as well. Therefore, it is
sufficient to consider the upper half space.

The incident wave is given by u'(z) := ®y(z,y) —Pi(z,y*), z € R2, x # y, for fixed
y € R2 and y* = (y1, —y2) " (compare with Figure 5). We note some properties of
the incident field u’. First, it is u* = 0 on T';,. Second, for z € Q, and |z;| > 1,
there exist some constants ¢ and ¢”, which only depend on k and y such that

i T2
[u'(z)] < Cl|x|—3/27 (3.11)
i L2
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These estimates follow directly from the proof of Lemma 4.1 in [26]. There, it is
shown that

Toya k
X
v 4 |z —y| le—yrI<s<la—yl

u'(e)] < [H (k)]

Using the asymptotic behaviour

2 . T 1
HO() = 4 ZeCnid) (1+o(—)), 2] = 00, arg 2| < 72,
Tz 4

for the Hankel function of order n and of the first kind, we see that |u’(z)| <

CI:E:EW’ where ¢ depends on k and y. Now we use, that for |z;| large enough,

there exists a constant ¢ > 0 such that |x — y| > |z|(1 —|y|/|z|) > ¢|z|. This
shows that |u'(z)] < ¢ =225 < ¢z for |r;| > R, for some R € R. We define

[a=yP7% = cTa37?

¢ 1= Maxi<|z <R {‘U;@MP/?} and ¢ := max {¢, £}. This yields |u'(z)| < ¢ i

for |z1] > 1, the first estimate (3.11).

For the second estimate (3.12), we first evaluate Vu'(z) which can be done anal-

ogously to the proof of Lemma 4.1 in 26|, where V,, (®y(z,y) — ®r(x,y*)) is con-

sidered. Taking the gradient with respect to x simply leads to some additional

minus sign. We obtain analogously to equation (4.15) of [26], that for |z;| large
)

enough, Vu! < ¢ —%2_- ¢ > 0. Using the same arguments as above, we obtain
) |z—y\3/ ) )

the second estimate (3.12).
From (3.11) and (3.12) we see that u* € L'(2,) as well as Vu' € L' ().

We are now going to describe the scattering problem. Let ¢ be the 27-periodic
contrast. We do not yet care about the regularity of q. The incident field satisfies
the Helmholtz equation Au’ + k*u’ = 0 in R% \ {y}. The scattering problem is to
determine u' € H} (R% \ {y}) which satisfies

Au' +E(1+qu' = 0 inR2\{y}, u'=0onTy, (3.13)

such that the scattered field u® = u! —u’ is in H}

Le(R2). On Ty, the transmission
conditions (3.3) are valid for u’.

Moreover, we need a suitable radiation condition, which we will introduce in a
moment. First, we will transform the problem into an inhomogeneous equation in
H} (R%), to avoid dealing with singularities. To this end, we fix some ¢ > 0 such

that 0 < 2¢ < min{y, — 1, 1 + h — yo}, and choose a function p € C*(R?), that
satisfies

p(x) = 0 for|z—y|<e,
p(x) = 1 for|z—y|>2e.
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We then consider
u = pu'+u' = u'+(p—u' € HL (R2).
Then it is
uw=u'for |z —y| >2 and wu=u’for |z —y|<e

In particular, v = v’ in Q, and u vanishes on I',.

We now consider Au+k?(1+q)u, which vanishes for |z —y| > 2. Since furthermore
u = pu’ + u* and u® satisfies Au® + k*(1 4 q)u® = Au® + k*u® = 0 outside of Q.
(and hence inside the disc D := {x € R% : |z — y| < 2¢}), we obtain

Au+E*(1+ q)u
(A +#(1+q)) (pu')
= Apu'+2Vp-Vu' + ¢ (Au' + k(1 + g)u')
= 2Vp VU + (Ap + pk*q) v’ = T, (3.14)

where f € L?*(R2) has support in the disc D = {z € R : |z — y| < 2¢}.

Let now ¢ € L°(R?%). Equation (3.14) is understood in the weak sense, that is for
u € H} (R%) with u =0 on I},

Vu Vi — k(1 +quidr = /f@da:.
D

RY
for any ¢ € H'(R?%) with compact support.

The scattering problem is now undestood as to determine u® = u — pu’ and with
this the total field u! = u*® + u’. In the same way as in Scattering Problem 1,
by choosing a weak solution u regular enough, u provides a solution to (3.14).
Then, (note that u = u’ for |¢ — y| > 2e and hence on the boundary I'y,;) the
transmission condition (3.3) make sense for u.

Furthermore, as mentioned before, to set up the scattering problem properly, a
suitable radiation condition needs to be introduced. To this end, first, we require
u® to satisfies the upward propagating radiation condition (UPRC) (see |7]) that
is, there exists ¢ € L>(R) with

0

ww =2 s tle)is), > 1+
Rx{14+h} Y2

Note that the integrand exists because %@k(x, ) € LY(Qy) for x € R3\ . This
can be shown analogously to (3.12).
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Theorem 2.9 in |7] shows that u’ also satisfy the UPRC for x5 > 1+ h, because it is
a radiating solution in terms of Definitions 2.5 in [7|. Therefore, we conclude that
u satisfies the UPRC above (2 . However, this condition is not sufficient, as one
can not expect uniqueness of the solutions to the scattering problem, see Example
2.3 in [18]. We therefore need a second condition, that treats u when z; tends to
+00. A proper radiation condition is introduced in [18]. We will roughly describe
this condition. For more details, we refer to this article.

As shown in [18], u is of the form
u = v 4 @
that means
ut = (1—)u' + u + u®,
where uM is in HY(R x (0,1 + H)), for all H > h and u® has the form

u?(z) = Yt () Z Z afipii(x) + (1) Z Z a;,¢5(x), =eR:.

J€J1ery J€J leLy
Here, ¥* are functions such that
VE(x) — 1, as x; — oo,
vE(r) — 0, as x, — Foo
and ¢;;, € H} (]Ri), j e J, |l € LT, with some finite index sets J and L;-t,

loc ;

are surface waves, that means they ;re weak «j-quasi-periodic solutions to the
Helmholtz equation in R%, with some parameter o; € [0,1), j € J. They are
orthonomalized, equal zero on I';, and satisfy the Rayleigh expansion condition.
They are determined by some eigenvalue problem (compare with Lemma 5.6 in
[18]). The subsets Lj and L; separate the surface waves which travel to the right

and left, respectively.
We set for abbreviation,
+ ) + 2
uj(v) = Z a;¢(z), TeERY
leLF

for j € J and for some coefficients a;%l € C. Then u;t(x) € H}

2\ .
lOC(R+>7 Je J, S&tley
the Helmholtz equation in Ri.

Let us now consider the case, that u® vanishes above the strip 2, = R x (0,1).
Then, the transmission conditions yield

7

u o= u,
Ou_ Ou
E‘)xg N 81'2’
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on I'y,. This leads us to the following system of equations, which we formally
write as

Au'+ K = 0, inQy, (3.15)
Au+E(1+q¢u = 0, inQ, withu=ub+u® (3.16)
v’ = u on Lup.+
ou’ ou
- — T,
81’2 8%2 on Pt
W = u =0 only.

The following result shows, that if u® vanishes above the strip 2 = R x (0, 1), the
surface waves vanish.

Lemma 3.2 Let u® be the scattered field to (3.13). Then, u® = 0 above the strip
Q=R x (0,1) implies that u® =0 in Q, and hence u = vV € H' ().

Proof:

If u® vanishes above the strip 24, on the boundary I',,; it holds, using the o;-
quasi-periodicity of the functions ¢;;, j € J,

u'(zy 4 2mm, 1)
= u(xq + 27m, 1)
= uW(zy + 2mm, 1) + (21 + 27m) Z Z atigi(xy + 2mm, 1)

jGJleLj

+ ¢ (z1 + 2mm) Z Z a;,¢0(x1 + 2mm, 1)

J€J ieLy

= V(x4 2mm, 1) + ¢ F (x4 27m) Z Z a;fl(bj,l(x)eﬁ“mo‘j

JjeJ leL].+

+ ¢~ (21 4+ 2mm) Z Z a;lqu,l(x)ei%maj, (3.17)

JjeJ leL;

as well as
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iu Y(z1 + 27m, 1)

3$2
3} 0
= 8_U( Nxy 4+ 2mm, 1) + ¥ F (@1 + 27m) Z Z Gige pji(w)e2™me
2 j€liery 2
+Y(m+2mm) Y Y a ﬂax ¢;.(x)e?™™(3.18)
J€J 1Ly

Equation (3.17) and (3.18) yield,

Zuj:(atl,l)ei%maf = ZZafl(bj,l(x)ei%mo‘f — 0, (3.19)

JjeJ JjeJ leLj+
as well as
2 : ﬁﬂma 2 :E mea~
a$ xl, i ],l ax ¢jl J _> 07 (3.20)
jeJ 2 jEJl€L+

for m — 400, because v’ and uV, as well as their derivatives with respect to zo,
decay, as |r1| — oo and ¥* () tends to one or zero, respectively, as |z1] — oo.

We order the distinct o; € (0,1), j = 1,...,n as a decreasing sequence, that means
ajp1 < oj forall j =1,...,n. We will show that for all n € N, for all «; and for
all surface waves u; € HJ (R?%) that satisfy (3.19) and (3.20),

uji:() and —u =0 on Iy

3x2

We start with showing that (3.19) implies
ui(z1,1) =0 forallj=1,...n. (3.21)

For simplicity, we prove this for m — oco. Analogously, one can show the result
for m — —oo. We use mathematical induction for this proof. For n = 1, from
uf (x1,1)e?™™m* — 0, as m — oo, we see that uj (z;,1) = 0. Let us now assume
that the claim (3.21) holds true for one n € N. We will show that it also holds
true for n + 1. It is

n+1

Zu;r(xl, 1)e™™me 5 ()

Jj=1

& el?mmani <un+1 x1, 1 Zu x1,1 Z%m(aja”“)> — 0, (3.22)
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as m — oo. We define a; — a1 =: ;. Note, that §; € (0, 1), because the «;
are distinct and o, 11 < oy, j =1,...,n. Then, (3.22) is satisfied if, and only if,

> uf (wn, e o —ut (2, 1), (3.23)
j=1
as m — oo, which yields
Zuj@la 1)ez‘27rm6j _ Zu;r(wl’l)ei%r(m+l)ﬁj )
Jj=1 j=1

as m — oo. This is satisfied if, and only if,

J/

-~

=@} (z1,1)

n
Z uy (1, 1) (1 —e™m5) el — ),
=1

as m — o0o0. From the induction hypothesis, we see that ﬁj(wl, 1) = 0 for all
j=1,...,n and since 1 — ™% +£(, u;“ must be equal to zero for all j =1,...,n.
This shows with (3.22) that u, ;(21,1) = 0 as well. Additionally, we conclude
with analogous arguments from (3.20), that %u}(ml, l)=0forall j=1,...n.

Furthermore, uj[ are classical solutions to the Helmholtz equation in €2, and hence
analytic there (see [11], Corollary 8.11 and [8], Theorem 3.5) . We use Holmgren’s
Uniqueness Theorem (see for example [8], Theorem 6.12) and conclude that uf

are zero inside of €. This yields that u(® = 0 and hence u = u") € H'(Q) inside
Q..

O

This lemma shows that if we assume u® to vanish above ., we arrive at the
system of equations

Au'+ K = 0 in Q.
AuY + 21+ quP = 0 inQy,

w = u on Loup+
ou’ ouV
0xy - 0xo on Tup.+
v = v =0 on Ty.

Now we extend u® and v’ as odd functions with respect to x5 to the strip Q =
R x (—1,1). We arrive at the interior transmission eigenvalue problem (replacing
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v’ and uY) by v and w), set up inside the strip 2, where we wish to find non-trivial
solution v and w to the following system of equations.

Aw+Ew = 0 inQ,

Av+k*(1+qv = 0 inQ,
w = v onl
ow ov
—_— = — r 3.24
8;152 65132 ont ( )

where I' := (R x {—1}) U (R x {1}) denotes the boundary of €. Just as for
Scattering Problem 1, it makes sense to study this problem in the ultra weak sense.
That is, we seek for solutions (v,w) € L*(Q) x L*(Q2) such that v — w € HZ(Q)
and we understand the differential equations as

/w[A@+k2(1+q)¢} dr = 0,
Q

for all ¢ € HZ(Q2), and the corresponding form for v. We will go into more details
later in Chapter 4.2.3

Note, that neither the incident field u’, nor u(") is periodic or quasi-periodic. Nev-
ertheless, there will be an interesting relation to a-quasi-periodic functions, which
we will point out later in Chapter 4.2.3.2.

42



4 Transmission Eigenvalues

The main focus of this work lies in the study of transmission eigenvalues for periodic
media. Since we will use some analysis for bounded domains, we will start with
this case in Chapter 4.1. We will study transmission eigenvalues for Scattering
Problem 1 and Scattering Problem 2 in Chapter 4.2. In Chapter 4.3 we will show
that there exist complex transmission eigenvalues for some periodic medium and
with some conditions on the contrast.

Although already mentioned, we will clearly define the expressions transmission
eigenvalue and interior transmission eigenvalue problem for both, bounded do-
mains and for periodic media in the following chapters.

Throuout this work we consider the contrast ¢ to be bounded away from zero
and positive. With some modifications, similar results can be obtained when
considering negative contrast.

4.1 Transmission Eigenvalues for Bounded Domains

Let D be some bounded domain and let 0 < ¢, < ¢ < ¢x < oo inside D. For
v,w € L*(D) we consider the system of equations

Aw+ Kk (14+qw = 0 in D (4.1)
Av+k* =0 inD (4.2)

w = v ondD (4.3)

o,w = J,v on 0D. (4.4)

The equations (4.1) and (4.2) have to be understood in the ultra weak sense, that
1s

/D w AT+ R+ Qg de = 0 (4.5)
/v[A@—I—kF@] dr = 0 (4.6)

for all p € H3(D).

The question is, do there exist k& € C and non-trivial solutions (v,w) € L*(D) X
L*(D) such that
u = w—v € HJ(D)?
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If so, we call k € C, Re (k) > 0 a transmission eigenvalue and u the corresponding
transmission eigenfunction. Furthermore, we use the expression eigenpair (v, w).

Note that the boundary conditions are already included in the space HZ(D).
We subtract (4.5) from (4.6) and obtain

/ w[ AP+ K (1+q)plde = k:2/ vqpdr,
D D
for all p € H3(D). Using Green’s identities, the equation reads

/D[A—i-k’Q(l-i-q)]u@ de = k2/vq¢ dx, (4.7)

D
with ¢ € H3(D). With a densiy argument (4.7) holds for ¢ € L*(D).
Let us now choose ¢ = %[A + k29 for all v € HZ(D). We arrive at
1 —
/5[A+k2(1—l—q)} u [A+ K] Yde = 0, (4.8)
D

for all ¢» € HZ(D). Note that we have used (4.6) on the right hand side of the
equation.

Notation 4.1 Motivated by (4.8), for future convenience we define the sesqui-
linear form

agq.p(u, ) = /Dé [A+l{:2(1+q)] U [A—i—kﬂ@daz

_ / Liau+ k2] [AT +120] do + K2 / u [AY + K] do
D4 D

for u,v in HX(D). By splitting up ay,p into this sum, we can treat the part that
depends on q seperately.

Lemma 4.2 k is a transmission eigenvalue, if, and only if, there exists a non-
trivial uw € HZ(D) such that ag 4 p (u,v) =0 for all b € HZ(D).

Proof: We have just seen that if k is a transmission eigenvalue relating to the cor-
responding eigenpair (v, w) € L?(D) x L*(D) then u = HZ(D) solves the equation
arq.p(u,v) =0 for all v € HF(D).
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If, on the other hand, there exists a non-trivial u € HZ(D) such that ay, p (u, ) =
0 for all ¢» € H2(D), then,

1
V= =n [Au+ E*(1+ q)u]

belongs to L?(D) and satisfies

[olav e ar = [ (0o (7470 @ 4o
D p k*q

for all ¢» € H2(D), the ultra weak formulation for Av + k*v = 0 on HZ(D).

Analogously, we can show that w := u—v € L?(D) satisfies the ultra weak formu-
lation for Aw + k*(1 + q)w = 0. O

This result is used to prove the discreteness of the transmission eigenvalues.

Lemma 4.3 The transmission eigenvalues to the interior transmission eigenvalue
problem as stated in (4.1) - (4.4) form at most a discrete set.

We will do a similar proof of discreteness later (Lemma 4.11) and therefore skip
the details here. Nevertheless, we note here that the discreteness can be shown
independently of the proof of existence for transmission eigenvalues.

Theorem 4.4 There exists a discrete set of real transmission eigenvalues to the
interior transmission eigenvalue problem as stated in (4.1) - (4.4). The only pos-
sible accumulation point is infinity.

A complete proof can be found in [3|, see also [14] for the contrast beeing large
enough. (The proof of Lemma 4.3 is part of this proof.) For the proof of Theorem
4.12 later we will use similar methods. To show existence of the transmission
eigenvalues in Theorem 4.4 (as well as later in Theorem 4.12), the following result
is used.

Lemma 4.5 There exists a discrete set of real transmission eigenvalues for a disc
B of radius R centered at zero with constant contrast ¢ = q. > 0, that means

Aw+Kk(1+g)w = 0 inB (4.9)
Av+k*v = 0 inB (4.10)

w = v ondB (4.11)

dw = v onIB, (4.12)

for v,w € L*(B) such that v —w € HZ(B).
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Proof: We will only show that transmission eigenvalues exist, as discreteness
follows from Lemma 4.3.

Looking for solutions to the Helmholtz equation in polar coordinates leads to the
Bessel differential equation. Solutions are the Bessel functions. We will choose
Bessel functions of order 0 and solving the system of equations (4.9)-(4.12) leads
to the determinant

- Jo(kR) Jo(kv/TF ¢.R)
W) = el D) T T i)
= Jo(kR)\/1+ q. Jy(k\/1+ q.R) — Jo(ky/1+ qR)\/1+ q. J5(kR)
= —Jo(kR)\/1+ g Ji(ky/1+ q.R) + Jo(ky/1+ gR)\/1+ ge Ji(kR).

If W has a zero, the system of equation (4.9) and (4.12) has non-zero solutions
and hence, transmission eigenvalues exist.

We will show that there exist k£ € R such that W (k) = 0. For easier understanding
of the following argumentation, we note some facts about Bessel functions.

e The first zero of Jy(kv/1+ ¢.R) is smaller than the first zero of Jy(kR).

o It is Ji(k) = —J1(k). We will use this to have an idea if J; is positive or
negative at some k.

e Jo(k) and J;(k) do not have a common zero.

e Jy(0) =1 and J;(0) = 0.

Let k1 be the first zero of Jy(ky/1+ q.R) = 0 and let ky be the first zero of
Jo(kR) = 0. Furthermore, we deonote by k3 the second zero of Jy(k+/1 + ¢.R) = 0.

There are three cases to consider.

First, let ko be a zero of Jy(kv/1+ q.R) = 0 and of Jy(kR) = 0. Then we have
found a zero of W (k) = 0.

Second, let k1 < ko < k3. We have illustrated the situation in Figure 6 (with R =1
and ¢. = 9). Then we choose k* between ko and k3 such that Jo(k*v/1+ ¢.R) =
Jo(k*R). Then, J;(k*\/1T+ ¢.R) < 0 and J;(k*R) > 0. With this, we obtain

W) = —Jo(k*R)\/1+ ¢ (K" /1 +q.R) + Jo(k*\/1+ q.R)\/1+ q.J1(k*R)
= Jo(k' R J1 k? R \/l—i—chl k*\/1+ch > 0.
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Figure 6: Second case, k1 < ko < k3

On the other hand, plugging k; into W yields

W(ki) = —Jo(kiR)\/1 + q.Ji(k1y/1+q.R) < 0,
because Jo(k1) and Jy(k1y/1 + q.R) are positive.

With the mean value theorem, we conclude, that W (k) has at least one zero.

Third, consider the case that k; < k3 < ky. For better understanding, see Figure
7. (The situation is illustrated with R = 1 and ¢ = 2.) Then we evaluate the
determinant at k; and at ks and obtain

1 T T T

N \\\ —— J(kR)
™~ — Jo(kyTF gR)
N
N
\\
05 - \ . 4
\\\\
N
//X\\ \\
// N N yd
0 AN /
k K Ko /
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/ —
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Figure 7: Third case, ki < k3 < ko

W(k’l) = —Jo(klR)\/1+qCJ1<k1\/1+QCR) < O,

because Jo(k1R) > 0 and Jy(k1+/1+ ¢.R) > 0, as well as

W(kg) = —Jo(kgR)\/1+ch1<k2\/1"—ch) > 0,

because Jo(k1R) > 0 and J;(k1v/T+ ¢.R) < 0.
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Again, with the mean value theorem, we conclude, that W (k) has at least one
ZETo.

O

Remark 4.6 In general, transmission eigenvalues can be complex valued. This is
shown for the case of sperically stratified media in [25].

4.2 Transmission Eigenvalues for Periodic Media

Let us now define transmission eigenvalues and the interior transmission eigenvalue
problem for periodic media. Basically, the definitions are analog to those for
bounded domains. However, to avoid confusion with the corresponding function
spaces, we will (again) define the expressions explicitely.

Let €2 be a periodic medium and let ¢ be a 27w periodic contrast with 0 < ¢, < g <
g* < oo inside §2. Analogously to the case of bounded domains, we consider for
v,w € L*(Q) the system of equations

Aw+k(1+q@w =0  inQ (4.13)
Av+k*v =0 inQ (4.14)

w o= v on I’ (4.15)

Jw = O,v onl, (4.16)

where I' denotes the boundary of Q. Equation (4.13) and (4.14) are again under-
stood in the ultra weak sense, that is

/w[A¢+k2(1+q)¢}da¢ = 0
Q
/v[A@%—kz@}dx = 0
Q

for all ¢ € HF(Q).

We call k£ a transmisson eigenvalue, if there is a non-trivial solution (v,w) €
L3(Q2) x L*(2) such that v :=w — v is in HZ(Q) and we call u the corresponding
transmission eigenfunction.

Studying periodic media, will also lead us to the case of a-quasi-periodic solutions.
In this case, due to the 2m-periodicity of €2, it makes sense to study the system of
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equations on a cell 2,,, that means for v,w € L*(,),

Aw+k (1+qw =0 in Q, (4.17)
Av+kv =0 inQ, (4.18)

w o= onl, (4.19)

dw = d,v onl, (4.20)

where I',, denotes the union of the upper and the lower part of the boundary of
2,. We understand (4.17) and (4.18) in the ultra weak sense,

/ w[AP+ K (1+q)p|de = 0
Q
/U[A¢+k2¢]daﬁ =0
Qu

for all ¢ € Hg ,(€,), and we call k a transmisson eigenvalue in the a-quasi-periodic
case, if there are non-trivial solution (v, w) € L?(Q,)x L?(£2,,) such that u® := w—v
is in Hg ,(€,).

The following example shows that we might find different transmission eigenvalues
when considering the interior transmission eigenvalue problem on a cell (a bounded
domain) folu, p € Z fixed, with transmission eigenfunctions in H3(f2,) and when
considering a-quasi-periodic solutions v, w on a 27-periodic medium €2. In the
latter, we consider the same cell €2, but with zero boundary conditions only on
the upper and the lower part of €2,. On the left and right part of the boundary,
we have (quasi-)periodicity. The transmission eigenfunctions in this case are in

HS,O&(QU)'

4.2.1 An Example

Let us consider the interior transmission eigenvalue problem for a strip,
Q= {reR’: 2 €R 2y € (0,27)},

and let the solutions of the interior transmission eigenvalue problem be 27-periodic.
A cell of € is defined as

Q, = {xeQ:x e [p2r, (n+1)27]},

w € Z fixed. For the corresponding system of equations see (4.17) - (4.20). Note
that €, is a square here.
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Let ¢ = 1 in Q and choose £k = 1. We will show that £ = 1 is a transmission
eigenvalue. Let

w’(z) = cos(xy)cos(wy),
v0(x) = cos(m).
These functions satisfy
AV + k0 = A"+ =0 inQ,

Aw’ + (1 +gu’ = Aw’ +2u” = 0 inQ,

as well as w” —v" € Hj ().
Hence, k = 1 is a transmission eigenvalue for this choice of €2 and ¢!

Note that the functions here are 27-periodic, but we can also consider them as
a-quasi-periodic functions with a = 0.

Let us now consider the interior transmission eigenvalue problem on flﬂ. We
will show that in this case £k = 1 is not a transmission eigenvalue for constant
q = q. > 1. The system of equations for the interior transmission eigenvalue
problem (4.1)-(4.4) for SO)M reads

Aw+kE(14+g)w = 0 inQ, (4.21)
Av+Kkv = 0 in folu (4.22)

on 09, (4.23)

d,w = J,v on 09, (4.24)

w =

<

for v,w € L*(Q,). Note that now, the boundary data is defined on the whole
boundary 02, of the square €2,,.

From Lemma 4.2, we know that k is a transmission eigenvalue if, and only if, there
exists a non-trivial u = w — v € HZ(Q,) such that

0 = / L [Au + k(1 + qc)u] [AE—&— k2m dz,
Qu qc

for all ¢ € HZ(Q,).
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Writing v as a Fourier series and using Parseval’s equation, for v = u we obtain

0 = / l\Au+k2u|2dx+k2/ u [AT+ K1) da
Q, e Q

_ qi S Junl? (82 = [02)° + 82 3 Juaf? (2 — |nf?)
¢ nez? nez?2
_ EZWH%W_pw)C;wtqma+kﬁ, (4.25)
nez? ¢

where u,, n € Z* denote the Fourier coefficients. The sum in (4.25) splits up into
positive and negative terms. A term is not positive, if

1

0 = 1) (3 02 = 1) +#2) < o

C

which is true if and only if
K< nl? <E(1+ qe) (4.26)

We are now going to prove the following statement.
Theorem 4.7 Let q. = 1. Then k =1 is not a transmission eigenvalue for SQZM.
Proof: For ¢. = 1 and k? =1 (4.25) and (4.26) read

0 = Y |wl*(1=nf) 2-nP), (4.27)

nez?

1< |n* <2 (4.28)

We recap that a summand of (4.27) is not positive, if (4.28) is satisfied, which is
only possible for |n|? =1 or |n|*> = 2. But for these values for |n],

S lwl 1= n) @=1Inf) and > fu* (1—|nf) (2 |n/?)

[n|2=1 |n|2=2

vanish. For |n|? > 2 all (1 — |n|?) (2 — |n|?) are strictly positive and we conclude
u, = 0. Also, u,, = 0 for |n|* = 0.

It remains to study wu, for |n|*> =1 and |n|?> = 2 and check whether they are zero
as well. There are eight possible tupels (n;,ns) to obtain |n|? equal to one or two,
namely all possible combinations (n1,ns) with ny € {—1,0,1} and ny € {—1,0, 1},
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except (ny1,n2) = (0,0). We will show that u,, = 0 for these tupels as well. To this
end, we use the boundary conditions on 0%, that is 0 = u(z) and 0 = J,u(x). If
To is on the upper part of the boundary I it holds x5 = 27 and

Hyups
0 = u(z,2m) = Z (Z un> ent
ni1€EZ no€Z
0 = &,upu(:vl,%r) = Z (Z un> inge™ T,
n1E€Z n2€Z
Here v,, := (0,1)" denotes the outward pointing unit normal vector on T, .

These two equations hold true if, and only if,

0= Z u, and 0= Z UpN2, (4.29)

ngo€{—1,0,1} no€{—1,0,1}

for all ny € {—1,0,1}. From this we obtain six equations,

ng=0: 0 = po1 + Hoo) + Ko,-1) = HKo,1) T H0,-1)

( (
0 = o1 = Ho-1
ni=1: 0 = pao + sy + Ha-1)
0 = pan — K-
n=-1: 0 = pe10+pe1+ pme-1,-1)
0 (-

= N 1,1) _,U(—l,—l)- (430)

Considering the lower part of the boundary I',, ;,, that is xo = 0, we analogeously
obtain the two identities (4.29) and hence the system of equations (4.30).

In the same way, the boundary conditions on the right and left part of the bound-
ary, I',, ,; and I, ¢, lead to two further equations, namely

0= Z u, and 0= Z Upny, (4.31)

n1€{—1,0,1} n1e{—1,0,1}

for all ny € {—1,0,1}, which gives us

ny =0: 0= pu0) + K00 T =10 = K10 T (-1,

)
0= fa,0) — K1,
ng=1: 0= pa1)+ poa + =11
0= a1 — M1
neg=—1: 0=pu-1)+ mo-1) + K-1,-1)
0= -1y = fi-1,-1): (4.32)
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Solving this system of equations (4.30) and (4.32) above shows that u,, = 0 for
the tupels (n1,m2) of all possible combinations with n; € {—1,0,1} and ny €
{—1,0, 1}, except (n1,n2) = (0,0).

We arrive at u, = 0 for all n € Z? and hence, the system of equations for the
interior transmission eigenvalue problem only has the trivial solution. Therefore
k =1 is not a transmission eigenvalue! O

4.2.2 Transmission Eigenvalues for Scattering Problem 1

In this chapter, we consider the transmission eigenvalue problem for Scattering
Problem 1 as described in Chapter 3.1. That means, we are interested in a periodic
medium 2 and the system of equations (4.17) - (4.20) with « := kd. Defined
analogously to Notation 4.1, we consider here

1
ak#],ﬂu (ukd7 @ZJ) = / -

g [A—I—kQ(l—l—qﬂ uke [A—l—k’z]@d:v,

for u*, ¢ € H§,,(€,). We are going to prove that there exists a discrete set
of transmission eigenvalues in the kd-quasi-periodic case. To avoid dealing with
function spaces depending on the wave number k we plug in u*¢ = u%e?**1 where
u® is a 2m-periodic function. We obtain for v replaced by et 21

ak,q’Q’u (uoeikdxl , d}eikdm1>

0

= / E [Auo + 2@'kdai + k2 (1 +q— d2) uo]
Q. 4 Oy

[AE — 2ikd§w

— +k(1-d% E] dr,
4o
u’,1p € Hg(€,). For future convenience we define the sesquilinear form

)

CNLk,q,QH (u07¢) = arg0, (erikdml,weikdzl)

93



for u®,v € Hg(€,), and rewrite dy q,0, in the following form

~ 1 a
Ahe\q, (uo,w) = /S;u 5 [Au + 22kda—x1 + k2 (1 ( _ dQ) uo}
[AE - 2z'k:da—w + k(1 —d?) E] dr
a$1
0
= / ! {Auo T 2ikd? 4 g2 (1—d?) UO]
Q, 4 0

T

[A¢ — 2i k:d(;w + £ (1-d) E] dzx
_ _
- /Q M k*u° [M + Zdea—z + k% (1—d?) w] dz, (4.33)

for u®, ¢ € Hg ().

The following lemma can be shown analogously to Lemma 4.2.

Lemma 4.8 k is a transmission eigenvalue in the kd-quasi-periodic case, if, and

only if, there exists a non-trivial u® € Hg(Q,) such that ayq0, (u®, 1) =0 for all

(PRS Hg,o(Qu)-

Let us now consider the sesquilinear form a4, again. We rewrite it in the form
drg0, = Go + kay + Kay + Kaz + k'aa,

where

1 _
ap(u’,1p) = / —AWCAY dx
Q, 4

describes the inner product ((-,-)) on H§(€2,) and the sesquilinear forms a, ... a4
are defined by

ar (u’, 1) =/ 12zdaim/;——2 dAu° ¢dm
0 0 0

L 4 T1 1
0 — 1 R 0 0 2(9_U08_Q/} 0N
( ,w)/%q(l &*) (W’AY + AuY) + 4daxlaml+A u’ A da
I B N A LA N L
(u’, ) —/Quq27,d(1 d)(axlw 8%) 2idu alda:
s (u°,0) :/ é(l—dQ) (1— 2+ q) ¥ da,
Q

x

o4



with u®, ¢ € H§ ().

We note two properties of the sesquilinear forms. First, a;, [ = 1,...,4 are hermi-
tian. This is obvious for a; and a4. For as, we see this by applying Green’s second
identity and for as, by applying Lemma 2.10.

Second, @y, ...,as are bounded. We can show this by estimating the || - [|12(q,)
norm against the || || 2(q,) norm. We prove the boundedness of @, as an example.

With ¢, being the minimum of the function ¢, we obtain for u°, ) € H&O(QM)

_ ou® %Zf
0 = ~2id—A ——2 dAY°
artat)| = | [ L2idgenT — oiaat G s
< Q_d/ Ou? A¢‘+’Au06—w dz
4 Ja, 0z, 014

2d (|| Ou® o

< — | |ls= A + || Au® —
s« ( I, L2(Qu) | wHLQ(Q”) H HLQ(QF‘) 0xy Lz(m))
2dc 2dd

< —ullmullllae, < N1l

*

for some positive constants ¢, ¢ € R.
Analogously, the boundedness of as, az and a4 can be shown.

Knowing this, we can apply Riesz’ representation theorem. For a; : (H&O(Q#))2 —
C, I = 1...4, there exist unique bounded operators A; from H;§o(9,) into itself,
such that a;(u°,v) = (Au, V) r2(,), for all u® ¢ € H§o(2,).

The operators A;, [ = 1,...4, are all self-adjoint. Indeed, since the sesquilinear
forms a;, [ = 1,...4 are hermitian, we have

(A, V)2, = a(uwv) = al,u) = (A, w)me
= ((u, AY) n2(a,)- (4.34)

The equation dy g0, (u’, 1) = 0 for all ¢ € HF(€2,) takes the form
u® 4+ kflluo + k2/~12u0 + k3f13u0 + k4fl4u0 = 0.
Defining
A(k) = Id+ KA, + KAy + kP A3 + k' Ay (4.35)

we now state our result in the following lemma.
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Lemma 4.9 k is a transmission eigenvalue in the kd-quasi-periodic case, if, and
only if, there exists a non trivial u® € Hgy(2,) such that A(k)u® = 0.

Our aim is to show the discreteness of the wavenumbers with help of the analytic
Fredholm theory. To this end, we show that the inverse operator A(k)~" does not
exist for at most a discrete set of values for k. In other words, we show that the
equation A(k)u® = 0 can be solved by a non-trivial u® € Hgy(2,) for at most
a discrete set of values for k. We prove the compactness of the operators A,
l=1...4 first.

Lemma 4.10 The operators A;, | = 1...4 mapping Hg’O(Q“) into itself are com-
pact.

Proof: Let (u));en be a sequence that converges weakly in Hg(€,) to zero. The
embedding Iy : Hjy(Q,) — Hj,(€,) is a compact operator, see Corollary 2.20.
We conclude |[u]| g1 — 0, j — oo, in particular

HVUE]HLQ(QM) —0 and HU?HLQ(Q;L) — 07 j — OQ.
Additionally, we know fllug — 0 in H§ (), because A; is bounded. Hence for
l=1,...4,
||VAZU?||L2(QM) — 0 and ||Alu?||L2(QN) — 0, ] — OQ.

Since (u2)jen and (Ajuf);en are bounded in Hgy(€,), (Aul)jen and (AAul)jen
are bounded in L?(Q,,).

We have now collected all the tools to show the compactness of the operators.
As an example we consider A;. By similar arguments the compactness of Ay, As

and A, can be shown as well. Riesz’ representatlon theorem, the Cauchy-Schwarz

inequality and the fact that ‘”Alu Alu ) lead to

Miseqe,y = (e

1A,y = (. A1)

1 o 1 Ayud
_ (—2¢d§i, AAlu()) — (—2idAu0,aalu )
¢ on @) \1 ) 1)

~24 H

IN

1'1 L2(Q,)

+ qud |Au : (4.36)

’ HLQ(QN)
L2(Qy)
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where ¢, denotes the minimum of q.

. 0 it 0 Buo aAluo
Since HVUJ’HB(QM) and HVAluj Lo tend to zero, ||5:* L) H o .
tend to zero as well. Hence, both terms in (4.36) tend to zero and we arrive at
H\AW?H\; — 0, as j — oo. Thus, A; is a compact operator. O
()
We define . ) ) . .
G(k) = kAl -+ k2A2 -+ k3A3 -+ k4A4,
and write

A(k) = Id + G(k),

where G(k) is a compact operator for every k € C. For fixed ¢ > 0 we consider
the set
A:={z€C, Imz € (—¢,¢)}.

Now we use the analytic Fredholm theory (see [9], Theorem 8.26) to show the
discreteness of the wavenumbers. It holds either

a) A(k)™' = (Id+ G(k))~" does not exist for any k € A or
b) A(k)™' = (Id+ G(k)) ™! exists for all k € A\ S, where S is a discrete subset
of A.

With k = 0 we obtain A(0) = Id, which is invertible. It follows that (A(k)) w0 =0
can only be solved by u® = 0 for all k € A\ S, where S is a discrete set. Thus,
u® # 0 solves <f~1(k)> u = 0 for at most a discrete set of values for k. We have
proven the lemma stated below.

Lemma 4.11 There exists at most a discrete set of transmission eigenvalues in
the kd-quasi-periodic case.

We have not yet discussed whether transmission eigenvalues exist. This will be
done in the proof of the theorem below.

Theorem 4.12 There exists a discrete set of real transmission eigenvalues in the
kd-quasi-periodic case. The only possible accumulation point is infinity.

Proof: We consider a disc By of radius 1 and a constant contrast ¢g.. Let k;
be the first transmission eigenvalue to B; with contrast g.. Note that k; exists
according to Lemma 4.5. By a scaling argument, k. = k; /e is the first transmission
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eigenvalue to a disc B. with contrast g.. Indeed, let x/e € Bj, which is true
if, and only if, + € B.. Then define v.(z) := v(x/e), where v is a solution of
the Helmholtz equation, and w.(z) := w(x/e), where w satisfies the equation
(A+ k(14 ¢.))w =0.

With k; being the first transmission eigenvalue to B;, we obtain
1 x k¥ sx k2
Aue) = 500 (3) = 30 (3) = —Fu@,

which is true if, and only if,
k2
(A + E—é) ve(z) = 0.

Analogously, we can treat w and obtain
kY
(A + ;(1 + qc)) we(z) = 0.

Defining k. := % shows that k. is the first transmission eigenvalue to B..

For any m > 1, there exists ¢ = ¢(m), such that €, contains m disjoint discs BY,
j=1,...m. We call u; € H{(B?), j = 1,...m, the transmission eigenfunctions
to k. and the disc BY.

Now we extend every u;, j = 1,...m by zero to {2, and then k.d-quasi-periodically
to the whole €2. We call these extensions ué’?ed, j = 1...m. Due to the zero

conditions on 0BY it holds that u}*? € HZ, ,(€,). Additionally, u}=?, ... u¥:? have
disjoint supports. We know that a,_ . 5 (u;,u;) =0, for u; € HZ(B?), and hence

ked  ked
k. g0, (uje  Us© ) = 0,

for u?fd € Hg’kgd (Q,),7=1,....,m.

Furthermore, for ¢, beeing the minimum of the function ¢ (and hence constant),

1 2
g, (5w ) = /Q SIA + Rt + k2t A 4 k2wt da

4
1
< [T R R A Rl
Q, =
= akqu*vgu (U?Sd,u;?sd) = 0,

forj=1,...,m.
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Again, to avoid dealing with function spaces depending on k. we substitute ufsd =

0 ikeda: 0 2
uze™= ¥ where uj € Hg (€2,). That means,

k. 4.0, (u;?,ug?) <0, j=1,...,m. (4.37)

We recall A (k) =1+ kA, + k2Ay 4+ k*As + k*A,. Note that since A (0) = Id the
spectrum o (A(0)) consists of 1 only. We conclude from (4.37)

(A (k) u UQ))H2(QH) <0 J7=1....m.

7770

The min-max principle (Theorem 2.23) shows that the smallest eigenvalue of A (k.)
is less or equal to zero. Indeed,

0 > it {(Ak)u, W),y Bl =1}

= 1+ it {(Glh)uww) ey + Nulyaa, =1}
= 14+ A = A

min,G min, A

g and \_. ; denote the smallest eigenvalue of G (k.) and A (k.), re-

where )\min, min,A

spectively.

The eigenvalues depend continuously on k. This is a simple consequence of [12],
Chapter 2, §1, 6., Theorem 1.10. We conclude that there must be a k between
0 and k. such that fl(l%) has zero as the smallest eigenvalue. This means that
there exists u € Hg,(€2,) such that A(k)u = 0 and therefore k is a transmission
eigenvalue. This shows the existence of transmission eigenvalues.

d

Furthermore, the k.d-quasi-periodic functions uy<®, ... u*¢ and therefore the 27-

periodic functions uY, ..., u®, have disjoint supports, which means they are linearly

independent and orthogonal on Hg (€2,). Since also (A (k) uf, u3)) g2,y < 0 for
j=1,...,m, we conclude that A(k.) is non-positive on a m-dimensional subspace

U, spanned by the vectors u{,...,u?. With the min-max principle we have m

I m”*

non-positive eigenvalues, counting multiplicity. Indeed, the eigenvalues are of the
form

M o= inf {(A(k) 6.6Vt Bolle,) =1}

and
)\n—‘rl = sup inf {((A (kE) ¢7 ¢))H2(Q,,,) : ¢J— ¢17 s ’wn’ |||¢|||H2(QM) = 1}7
V1, €U
with n =1,2,...,m — 1. With the arguments above, we conclude with the mean

value theorem that there exist m transmission eigenvalues inside [0, k.].
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We now let m — oo, which yields e(m) — 0. The multiplicity of each eigenvalue
is finite (note that A(k) = Id +G(k), where G(k) is compact). Also, since € — 0,
k. tends to co. We conclude that the only possible accumulation point of the
transmission eigenvalues is infinity. Indeed, if we had infinitely many identical
transmission eigenvalues k := k,, n = 1,2, ..., that means 0 = fl(/;:)un = AUy,
(where u,, and A\, denote the corresponding eigenfunction and eigenvalue at k=

X

k,), then all \,,, n =1,2,... would be zero, which is not possible.

O

4.2.3 Transmission Eigenvalues for Scattering Problem 2

In this chapter, we study the interior transmission eigenvalue problem relating
to the scattering problem from Chapter 3.2. That means, we consider a strip
Q2 =R x (—1,1). The goal of this chapter is to show that there exist transmission
eigenvalues. That means, we are looking for eigenpairs of the form (v, w) € L?(Q) x
L?(2). To show this, we first need to study transmission eigenvalues for a-quasi-
periodic solutions as auxiliary problem. With the Floquet-Bloch transform we will
see in Chapter 4.2.3.2 that these two problems are closely related.

4.2.3.1 «-Quasi-Periodic Solutions

Let v, w be a-quasi-periodic functions on the strip @ = R x (—1,1) and let
Q= p2m, (p+1)27] x (—1,1) for fixed o € Z describes a cell of Q. The system
of equations we consider reads

Aw+E(1+qw = 0 in Q, (4.38)
Av+ Ko = 0 in Q, (4.39)

w = v onl, (4.40)

o,w = 0,v onl,. (4.41)

Note that we study this problem in the ultra weak sense. Analogously to the
previous Chapter 4.2.2, we can show again, that there exists a discrete set of real
transmission eigenvalues in the a-quasi-periodic case. Note, that there is no need
to pass over to the 27-periodic functions. Everything can be proven with a-quasi-
periodic functions, which indeed simplifies the analysis of Chapter 4.2.2 slightly.
We formulate this in the following theorem.
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Theorem 4.13 For fized a € [0, 1), there exists a discrete set of real transmission
eigenvalues in the a-quasi-periodic case as stated in (4.38) - (4.41). The only
possible accumulation point is infinity.

To avoid repetition, we will not include the complete proof here. Nevertheless, in
the following, we will mention some parts of the proof, which we will need later.
Note, that in the same way as before (Lemma 4.2) it is possible to prove the lemma
below.

Lemma 4.14 k is a transmission eigenvalue in the a-quasi-periodic case, if, and
only if, there exists a non-trivial u® € Hj ,(Q,,) such that ayqq,(u®, 1) =0 for all
sz € Hg,a(QH)‘

We now split a0, i ayq0, = a0 + ka1 + k*ay where

ap(u, ) = i éAuO‘Awdw

describes the inner product (-, ) y2(q,) on Hj ,(£,) and

1 — 1 _
e v) = [ L0+ uaT + AT

= / luaAE + u*AY + lAu%daz, (4.42)
0, 4 4q
e v) = [ <1+, (4.43)

with u®, ¢ € Hf (). The sesquilinear forms a; and a, are hermitian (easy to
see with Green’s second identity) and bounded, which can be shown analogously
to the previous chapter (Chapter 4.2.2). Riesz’ representation theorem provides
that for a; : Hy,(Q,) — C, I = 1,2, there exist unique bounded operators A; from
H;§ ,(€,,) into itself, such that

ai(u®, ) = ((Aluaa¢))H2(QM)v 1=1,2,

for all u®, ¢ € H§,(€,). These operators are self-adjoint, since a; and ay are
hermitian. The equation aygqq,(u®, ) = 0 for all v € Hj,(€Q,) can now be
written as

u+ kK2 Au+ k' Asu = 0.

We define the operator
A(k) = 1d+k*A; + k' Ay (4.44)

from Hg ,(€2,) into itself and formulate the lemma below.
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Lemma 4.15 k is a transmission eigenvalue in the a-quasi-periodic case, if, and
only if, there exists a non trivial u® € Hg ,(Q,) such that A(k)u® = 0.

It can be shown analogously to Lemma 4.9.

4.2.3.2 Solutions for a Periodic Layer

We are now interested in transmission eigenvalues to the system of equations

Aw+E(14+qw=0 inQ (4.45)
Av+k*v=0 inQ (4.46)

w=v onl (4.47)

Jyw=0,v onl, (4.48)

that means we are looking for non-trivial solutions v,w € L*(Q), where Q is the
strip R x (—1,1). The equations (4.45) und (4.46) have to be understood in the
ultra weak sense.

To study transmission eigenvalues we will use the results for a-quasi-periodic so-
lutions from the previous chapter (Chapter 4.2.3.1).

We start with adopting some analysis, which is similar to the approach of the previ-
ous chapters. For this purpose, analogously to Notation 4.1, we define ay, 4q(u, )
for functions on HZ(2). The following lemma holds true. We will skip the proof,
as it can be done in the same way as for Lemma 4.2.

Lemma 4.16 k is a transmission eigenvalue if, and only if, there exists a non-
trivial w € HZ(Q) such that ay,0(u,¥) =0 for all ¢ € HZ(Q).

Again, we split ax 40 in ag 40 = ao+k?a; +k*ay where ag(u, 1) describes the inner
product (-, ) g2 on HF(Q) and a1(-,¢) and as(-, 1)) are as in (4.42) and (4.43)
for all ¢ € H3(Q).

There exist unique bounded operators A;, [ = 1,2, from HZ()) into itself such
that a;(u,v) = (Aw, V) g2(q), for all u,vp € HF(Q). Defining A(k) from Hg(Q)
into itself as in (4.44), we obtain the following result.

Lemma 4.17 k is a transmission eigenvalue if, and only if, there exists a mon-
trivial u € H(Q) such that A(k)u = 0.

Remark 4.18 Note that we do not have an analogous statement about embeddings

as in Corollary 2.20 or Corollary 2.22. We therefore cannot show the compactness
of the operators and hence, we cannot apply the Analytic Fredholm Theory.
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For convenience, we rewrite Lemma 4.16 in the formal way, that is, k is a trans-
mission eigenvalue if, and only if, there exists a non-trivial solution u € HZ(Q)
to

[A + k] é [A+ K (1+q|u=0 (4.49)
on the strip €.

Definition 4.19 We say k is in the resolvent set p of (4.49) if

1
g q0(U, @) = /Q p [A+E1+q)|u[A+K]pde = /an dr, (4.50)

for all p € HZ(Q), is uniquely solvable for u € HZ(Q) for all g € L*(Q). Further-
more, we denote by ( := C\ p the spectrum.

This is equivalent to saying A(k) = Id+ k*A; + k*A, is an isomorphism in HZ ().

Now consider a-quasi-periodic functions u® € Hg,(€,) with « € A = [0,1) and
rewrite Lemma 4.14 in the formal way, that is, k is a transmission eigenvalue, if,
and only if, there exists a non-trivial solution u* € Hg ,(€2,) to

[A+ k7] % [A+E(1+q)]u* = 0 (4.51)

on §)

-
Definition 4.20 We say k is in the resolvent set p, of (4.51) for a € A, if

kg0, (U, P) = /Q 3 A+ K1+ q)|u* [A+ K] ¢ de = /Q fo dz, (4.52)

for all ¥ € Hf (Q,), is uniquely solvable for u® € H&Q(QM) for all f € L*(Q,).
Furthermore, we denote by ¢, = C\ pa, @ € A, the spectrum for the a-quasi-
pertodic case.

As already mentioned, we would like to use the Floquet-Bloch transform to elab-
orate the relation of the set of transmission eigenvalues to (4.49) and the set of
transmission eigenvalues to (4.51). To this end, we express a q0, (u®,?) in (4.52)
with 27-periodic functions by using u® = u%**. We obtain with v replaced by
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¢6iaaz1
a’aq,ﬂu (uoeiozwl 7 ¢eiax1 )

1 0
= / - {Auo + 22'04ai + K (1 + q)u’ — azuo]
Q. 4 O

. [AE — 2iaa—w + k%) — agﬂ} dx
8:101

= aa(u’, )

= aa,O(uo? ¢) + k2aa,1(u07 1/}) + k4aa,2<u07 w)a

for u®, ¢ € Hgy(€,.), where

aa,O(u07 @D)
1] 0 11— ) —
= / — AU’ + 22'(1ai — ol Ay — 2iaa—w — oY dz,
Qu q | axl ] 8.171
aa,l(u(]? ¢)
1] 0 1-
:/ Au0+2@'048i —ou’ | Y
9,49 L dxq
1 — o _
+=(1 4+ g)u® {Aw - Qia—w - a%b] dz,
q 0,
1 _
nali ) = [ 1+ i,
Q, 4
for u®, 1) € Hg(Qp).
Hence, k is in the resolvent set of (4.51) if, and only if,
a0, ) = /Q O de, e H2o(Q,) (4.53)

is uniquely solvable for all f € L*(©,). This is easy to see by replacing f by fe'
(and 1 by e™*1) in (4.52).

Again, the sesquilinear forms a, o, a1 and a,2 are bounded and there exist
unique operators A, ;, 7 = 0,1,2, from H&O(QM) into itself with a, ;(u’ ) =
(A’ 9) g2(q, for all u® 1 € Hiy(,), such that k is in the resolvent set of
(4.51) if, and only if,

Au(k) == Aao+ Kk Ag1 + k' Ay (4.54)
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is an isomorphism in Hy(,).

We note that if & is in the resolvent sets of (4.49) or (4.51), respectively, (A(k))™*
and (A4 (k))~! exist and are bounded by the bounded inverse theorem.

Using the Floquet-Bloch transform, see Chapter 2.4, we will now show that there
is a connection between ay , o as in (4.50) and a, as in (4.53). Let u, ¢ € HF(Q)
and © =Tu and ¢ =T,

ak7q7ﬂ(u7 (ID)

_ (1 [A+ K (14 q)] u, [A + &7 90>L2<m

2 2
SR a]eT (AR

= (7
(1 TA+TkK(1+q)]u, [TA+ Tk] ‘P>
= (Gl

L2(9,xA)

1
[A,Tu+ 2i00,, Tu — o*Tu+ k*(1 + q)Tu] ,
q

[Ango + 2i00,, T — *Tp + szgo} )L2(Q R
nX

N / G [A; +2iad,, —a® + (1 +q)] a(, @),
A

(A, + 2i00,, — o® + k] ¢(-, 04))>L2(Q : da

— Aaa(a(-,a),¢(~,a)) dov, (4.55)

where we have used the formulas from Theorem 2.25 in (x). The main result is
formulated in the following theorem.

Theorem 4.21 Let ( C C be the spectrum as in Definition 4.19 and {, C C the
spectrum as in Definition 4.20 for all « € A :=1[0,1). Then

U ¢

a€EA

Note that the set of transmission eigevalues in the a-quasi-periodic case equals
Ca, due to the compactness of the operators A,; and A, in (4.54), whereas we
only know that the set of transmission eigenvalues for the periodic medium €2 is
contained in (.
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Proof:

Let first k& € (, for some o € A = [0,1). Then, k is a transmission eigenvalues
and hence there exists a non-trivial solution u” € Hg(€2,,) to as(u’,v) = 0 for all
Y € H§ (). Let @ be the a-quasi-periodic extension of u® := u’e™**" € Hg ()
to L.

We will show that k& € (. To this end, we define for fixed 1 € Z the sequence
O = {r e, 1€ 2r(p—n),2r(p+1+n)},

with n € N. Hence, (0 is a cell of length (2n + 1) times the length of ,, with
respect to x1. We choose v, € C*°(Q2) such that v, = 0 for z & QZH and ¢, =1
in 2} and such that [V, (z)| + A, (z)] < ¢ for all x and some constant ¢ > 0.
Then, u, := —5¢,i, n € N, is in H§(2) and

2
ol 2 clunline = ¢ [ lufds

Ut

c R c(1+ 2n) 19
= — R —/ |a|“dx, (4.56)
n2/3 /Qﬁ n2/3 o,

with a constant ¢ € R. Note that the right hand side tends to infinity as n tends
to infinity. Furthermore, for any ¢ € HZ(S2),

1
g 0tn, ) = /Qg[ﬁ+k‘2(1+q)} U, [A+ K] §dr

_ #/Q% A+ 121+ )] (0w ) [A + K] B
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With the product rule we compute that ay,q(u,, @) is equal to

1
nl/3

é[m%wnmmw-va+k2<1+q>wna] [A+F]7de

_ nL/ / é[mwnm+k2[<1+q>a<wnm>+Aa (¢n )]
+ K1+ )i (VaP)| da

1 1
L8 80, AP 429V, AP+ K (0 Ao 7+ 2V VY F) | da

nl/3

_ ni/ E[Amwn@ + B2 (1 + Q) @ A, B) + At (4, 7))

o)
+ K (1+ 0 (4, )| da

1 (1
/g[amanw-V%Aa—mmpn@—2Aaw}n-va
Q

+n1/3

F R (2Va VY, B — qi Ab, B — 2(1 + q) it Vi, - V@)] dx

- # /Q % [(A+ 1+ k) a(A + k) (4,P)] da (4.57)

1 1
7 E[M% AG + 2V - Viby AG — Ad Ay B — 200V, - VE
+k2(2VA Vi, B — qit A, B — 2(1 + q)it Vi, - va)] dr. (4.58)

We will now prove, that

Cc

1/2
laq0(un, @)l < —35 [ /Q [U"‘JQHVUQ]?HAU“]QM] ol sz (4:59)

for some real constant ¢ and for all ¢ € H3(Q).

The first integral (4.57) on the right hand side is equal to

a2 [ B 0 g )

. [A(%@)@ + 2nler) + k2(vnP) (@ + 27rl61)] 2 i (4.60)
because @ is the a-quasi-periodic extension of u* € Hg ,(€2,). We now define

plz,a) = T(¥,p)(z,q)
ZE (z + 2nler) p(x + 2mle; ) e~ @ F2me
€z
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Here, by T" we denote the Floquet-Bloch transform, a bounded isomorphism from
H§(Q) onto L*(A, H§ o(2,)), see Chapter 2.4. Note that ¢, € HF(€2). Using the
formulas from Theorem 2.25, the integral (4.60) reads

1
/3

/Q é Au® + k(1 + que | | A7 - 2mg—z — %+ k| e da.

With u® = u’e’*1 this is equal to

1 1 0 o’ 2.0 2 0
m/m&[Au +22aa—xl—au +k (1+q)u}

. [Aﬁ — 22'04@ —a’p+ k:2ﬁ] dz
a$1
1

= maa(uoa P) = 0,
because p(-, a) € Hg(€2,,) and u” is a solution to a (u”, ¢) = 0 for all ¢ € Hg(€2,).

Let us now consider the second integral (4.58) and note that due to the properties
of the function 1, € C*(2) we only have to integrate over Qi+ \ Q. We take
the absolute value and obtain with Cauchy-Schwarz inequality,

1
/3

1
/ —[ﬁA%A@JrVﬁ-V%A@—AﬁA%@—QA&V%-V@
Qn+1\Qn q
w p

+ K (Va Vi, 7 — qu Ay, B — 2(1 + q)a Vi, - V@)] dx

aon

1/2 1/2
(%) . . A
< [ [ v+ [Aum] [ | o P4l [Agode]
n QZ+1\QE QLL+1\Qﬁ

1/2
¢ ~12 ~12 P
S B [/QZ“\QQ [a]” + [Va]” + [Ad] dx] Il g2
for real constants ¢ and ¢. In (%) we have used that k is fixed, |V, (z)| +

|A¢p(x)] < cand 0 < ¢, < ¢ < g* < 0.

The set Q' \ Q7 consists of 2(n + 1) +1 — (2n + 1) = 2 cells of the same size as
2,. Since 1 is the a-quasi-periodic extension of u®, we obtain

- 1/2
¢ 12 12 12
A 2
e [ / o, T V(2 dw] el
1/2
eV2 N . .
= E?EIK;WJ2+{Vu]2+{Au]2¢4 loll g2 e
i
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i 1/2
and hence, (4.59) is proven. We note that &2 [fﬂu [u]? 4+ [Vu®]? + [Au*]? dx}

SVE]
tends to zero as n tends to infinity, and is therefore the second integral is obviously
bounded uniformly with respect to n.

We define the sequence (g, )nen in HZ(Q) such that
kg2 (Uns @) = (Gns ©)) m2(),  for all o € HF(Q).

Note, that (g, )nen exists by Riesz representation theorem.

We can now show that k is in (. Indeed, if k£ was in the resolvent set, then A(k)
would be bounded invertible, that means A(k)u = ¢ is uniquely solvable for all
g € H2(Q) and the mapping g +— w is continuous. Then, on the one hand,

lunll 2y < cllgnllaz o),

for a constant ¢ € R and

lgnllzre@y = (9nsgu) a2y = [(AK)un, g)reey| = lalun, ga)

1/2
C a o o
17 [/ﬂ [u®? + [Vu]? + [Au®]? dx] Ngnll 2

which shows that

&
ool <~ [ /

as n tends to infinity. Therefore,

1/2
[u®]? + [Vu]® + [Au®]? d:v] — 0,

n

luall ey — 0 asn — oo

On the other hand, we have seen in (4.56), that
|||Un|HH2(Q) — 00 asn — oQ.

This yields a contradiction.

To show the opposite inclusion, let & € C be in the resolvent set of (4.51) for all
a € A, that is (see (4.53)),

CLa(UOﬂﬂ) = (f7 2ﬂ)LQ(QH)a for all ¢ € Hg,O<Q#>7 (461)

is uniquely solvable for all f € L*(,) and all o € A.
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Let now g € L*(2) and g = T'g. Note that g € L*(A, L*(Q2,)).
There exists a unique (-, a) € Hg,(€,) with

aa<’L~L(-, O‘)ﬂvb) = (9(7 O‘)7¢)L2(QM) ) for all @Z) € HS,O(QM)7 (462)

because k is in the resolvent set of (4.51) for all a € A.

Let us assume for a moment that @ € L*(A, Hg(€2,)). We will show this subse-
quently. We define v = T~'4 and we know from Theorem 2.25 that u € HZ().
The identity (4.55) yields for ¢ € HZ(Q) and ¢ = Ty that

ak,q,ﬂ(ua 90) = / aa(ﬁ('a@)a(ﬁ('aa)) dov
A
= (a0 g0, da = (3. )1xe
A
This proves that k is in the resolvent set of (4.49) and ends the proof.

It remains to show that for @ as in (4.62), @ € L*(A, H§ o(2)).
For ¢ € Hj((€,) it holds

/Q )y de

< gC, a)llzznll®llz2,)

< gCs llzz@n vl 2o,

hence, Riesz representation theorem guarantees the existence of a function f (,a) €
H§ (€2,) such that

(G0, 0), V)2, = (), ¥)mee,),  forall ¥ € Hig(). (4.63)

We write this as (using (4.62))

Au(R)a(-, @) = f(a) in H3o(Q,) forall o€ A.

with A, (k) as in (4.54). A,(k) is invertible for all @ € A, because k is in the
resolvent set. Also, A, (k) depends continuously on a. Hence, the mapping o —
| (An (k)] is continuous.

Since A is compact, we know that there exists a positive constant ¢ such that

(Ao (k) M| < ¢ for all @ € A.
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Furthermore, to § € L* (A, L*(2,)) there exists a sequence g, € C (A, L*(€,))
with g, — g in L? (A, L*(€,)), as n — co. Here, C (A, L*(€2,,)) is defined as

C (A, L*(Q,)) = {u:R?— C such that u € L*(,) almost everywhere on A,

o ||u(-,oz)||L2(QM) in C(A)}.
Then for fixed @ € A,

A, (ﬂn(a Oé)ﬂﬁ) - (gn(7 OZ), w)LQ(QH)’ for all 77Z) € Hg,O(QM)

is uniquely solvable. Again, with Riesz’ representation theorem there exists a
sequence f, (-, ) € Hfo(€2,) such that

(G @), ¥)i20,) = (ful @) W) m2a,y . forally € Hyp()  (4.64)
and hence, 3
Aoy (an(ﬂ Oé), ¢) = ((fn(a Oz), ¢))H2(Qu),
for all ) € Hgo(€2,). Writing again A, (k)i (-, o) = fu(-, @), we conclude i, (-, o) =
AZY(E) fo(-, @) and thus @, € C (A, H3((Q,)), where

C (A, H3y(€,)) = {u:R*>— C such that u € H,(€2,) almost everywhere on A,

a = |lu(-, @)||g2q,) in C(A)}.
Furthermore, it is for fixed «

lan(-; @) = al, )l g2 q,)

= AT (R ful @) = AT RV )l e,
< ellfal@) = FE ),

c € R.

We estimate

—~
*
~

(gn(> ) - §<'>a)7 fn('? a) - f('aa))LQ(QH)
1Gn (- ) = G-, @) [ L2(0,) an('aa) - Jf(',a)HH(Q#)
Hgn(? ) - g(UO‘)“LQ(Qu) mfn(va) - f Y

1£(s @) = FC )z

Q

IN A
Q

( O‘)|”H2(QH)7

which shows,

1F:Coa) = FC iz, < 190 @) = 3¢, )|z,
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In (%) we have used (4.63) and (4.64).

We conclude,

~ 2 x 3 ~ ~
/A |||un - “|||H2(Qu)d0‘ < c ||fn - f||L2<A’Hg,o(Qu)) <c Hgn - gHLQ(A,LQ(QH)))

which tends to zero as n tends to infinity. This shows that @ € L*(A, H§((€,)).
(]

Theorem 4.21 shows that transmission eigenvalues exist for Scattering Problem 2.
It would be interesting to know, if there are real intervals for k, such that k is
not a transmission eigenvalue in the a-quasi periodic case for any o« € A. That
means that & is in the resolvent set p, for all & € A and hence in the resolvent set
p. These intervals are called band gaps for transmission eigenvalues. This topic is
not covered in this thesis but is, in our opinion, worth mentioning.

4.3 Complex Transmission Eigenvalues

This chapter is about some studies on complex transmission eigenvalues. We
consider the transmission eigenvalue problem for Scattering Problem 1. However,
we choose the periodic medium here to be a strip on top of a perfect conductor
with constant contrast.

4.3.1 The Geometric Setting

We consider a strip €2 of height 1 in the upper half plane,
Q= {zeR*: 2 €R 2, € (0,1)}.

The strip is excited by an incident plane wave, which will lead us to the study of
kd-quasi-periodic functions. We will make use of a cell €, defined as

Q, = {x € Q:ay € [p2m, (u+ 1)27]},

for fixed u € Z. Let ¢ > 0 be a constant contrast. We call the upper and the
lower part of the boundary I', ., and I, ;,, respectively, and we require I',;, to
be a perfect conductor. The interior transmission eigenvalue problem is to find
non-trivial kd-quasi-periodic solutions (0,w) € L*(Q,) x L*(,) to the system of
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equations,

A+ Kk (1+qw =0  inQ,
AT+ KD =0 inQ,

W =0 on I'y

Ow = 0,0 only,,

w =0 =0 on ') .

We are going to show that under some conditions on the contrast there exist (real
and) complex transmission eigenvalues in this case.

Remark 4.22 Note that the existence of real transmission eigenvalues has already
been shown in Chapter 4.2.2. Nevertheless, we will do some (different) analysis
on this topic again, which will help us to study complex transmission eigenvalues.

Let £ € R. We consider the following two kd-quasi-periodic functions.

1~)(ZL’1, 1]2) _ 6i(n+kd)wlv<x2)7

) _ 6i(n+kd)a:1

U~}(.ZU17.T2 w(x2)7

with n € Z. The functions (0, w) € L*(Q,) x L*(Q,) are solutions to the inte-
rior transmission eigenvalue problem, if, and only if, v(z3) and w(zy) satisfy the
boundary conditions,

w(l) = o(l),
W/(1) = (),
w(0) = v(0) = 0. (4.65)
as well as
w(z2) + (K*(1+q) — (n+ kd)*) w(zs) = 0, (4.66)
v"(22) + (K* — (n + kd)*) v(z2) = 0. (4.67)

Now we choose k large enough such that for constant ¢ > 0 and n € Z fixed,
(1 +q)— (n+kd)?=k(1+q—d*) — (n*+2nkd) >0

and
k? — (n+ k:d)2 = k2(1 — d2) — (n2 + 2nkd) > 0.
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Note that d* < 1 (see (3.1)).
Now, all solutions to these differential equations (4.66), (4.67) and bounary con-

ditions (4.65) are given by
w(zy) = asin(y/E2(1+q) — (n + kd)2x)

v(zy) = Bsin(\/k? — (n + kd)2z,),

a, 8 € R. For convenience, we define

a = \/1+qg—d> >0 and b := vV1—d?> > 0

as well as
(4.68)

Ao(k) = VE2(1+q) — (n+kd)? = k/a®>—n2/k*>—2nd/k

and
(4.69)

Ap(k) = k2= (n+kd)? = k\/b>—n2/k2 — 2nd/k.

With these definitions, it is
w(22)
v(z2)

asin(Ag(k)xs)
= [Bsin(Ay(k)zs),

a, 8 € R. The boundary conditions on I',, ,,;, are satisfied if o and /3 satisfy

0 = Psin(Ap) — asin(A,),
0 = [BApcos(Ay) — al, cos(Ay,). (4.70)

To find the zeros, we consider the determinant D, which is given by

~ sin(Ay) —sin(A,)
D= det Apcos(Ay) —A, cos(Ay,)
Ap(k) sin(A,) (k) cos(Ap) — A, sin(Ay) cos(Ag) , (4.71)

and the mapping 3
kD(k)
kw— D(k) := .

— D(k) A,

It is

D(k) = k;(sni/i—‘;\b) cos(Ay) — sin/ii&a) cos(Ab)>.

Note that A — % and A — cos(A) are even functions and hence there appear no
square roots in the power series. We can therefore extend D to the entire complex

plane and prove the following lemma.
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Lemma 4.23 The mapping D : C — C s an entire function of exponential type

at most T = a + b.

Proof: For simplification, we ignore the multiplication by &k for a moment and
write D(k) = kD(k). We will consider the four arising power series of D separately
and apply Lemma 2.28 afterwards to show that k +— D(k) is an entire function
of exponential type. According to Lemma 2.29, the multiplication by k£ has no
further influence on the order or the type, therefore we can transmit the result to

D.
Let us start with Sm(Ab CItis
sin(Ay (k) i": ; (K20? — n? — 2ndk)!
AR & 2z ¥ 1)!

We plug in k = re? in the expression k26> — n? — 2ndk and obtain

|T262i0b2 —n?— Qnreigd} = 7 ‘emb2 — (n/r)? — 2(n/r)ei9d|
< (|0 +£(r))
= 7 (b2 + 5(7’))

with e(r) — 0, as  — oo. Note that the square root of ¢ exists for all r.

With this we obtain

o0 220002 _ 2 2nd’rei9)l
M = —1 l(r ¢
(r) 02623 ;< ) (20 + 1)!

_ > ‘T262i9b2 —n?— 2ndrei9‘l
= 0% £ 20+ 1)!

% I
< Z o(r)

(25 1)

IA
M
%
+
[M]8
%
=
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(4.72)



which shows that the order is at most 1, because

. loglog M (r)
p = limsup ———=
r—00 10g T

log log e"V¥*+()

< limsup
r—00 10g T

1 | b2
— Jmsup ogr + log( +e(r))

r—00 log r
= 1,

because £(r) — 0, as r — o0o. Now we choose j € N large enough, such that

j2 —TL2 TL2 d2

b2 b*

is positive and we define for these j the sequence (k;);jen by

nd . [j2—n?2 n2d?
kj = " —|—Z\/ T (4.73)

We write k; = r;e%, with absolute value

ot _
r;=k;| = 7 < b (4.74)

and 6; € [0, 27]. Furthermore, from (4.73) we obtain

k30> —n® — 2ndk; = —j5°. (4.75)
For k; = rjewj with the corresponding pair r; and 0,
> (r2e*p? — n? — 2ndr;e')!

> (1= (20 + 1)!

M(r;) = max

0<6<2r

> (r2e*®ib? — n® — 2ndr;e)!

21 (20 +1)!

=0

(475) @)
- XV T L@y

=

4.76
for j large enough. From this, we obtain

log M (r;) > j —log4j > j/2
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for 7 large enough which shows for the order,

, loglog M (r)
p = limsup ————=
r—00 IOg(T)
> lim log log M (r;)
j=oo log(ry)
S i 08U/2)
j—oo log(r;)
. logj —log?2
= lim —=————=—
j—oo  log(r;)
(4.74) o
2 im log]. log 2
j—oo log g —logb
= 1.

We conclude p = 1. For the type 7 we obtain

log M(r) (472) log e" V¥ +(r)

7 = limsup—= < limsup =b
r—00 T r—o0 T
as well as
log M (4.76) 1 7 /(45
7 = limsup o B\ (7’) > limsup CAAT ) (6 /< ‘7))
r—0o0 r Jj—00 rj
(4.74) b(j —log4j

> limsup —(‘] .og J)

Jj—00
b log4j

= limsup b — Og J b.

j—00
sin Ab(k))

We conclude, that k —
gously, k — cos(A,(k)) is an entire function of exponential type a and with Lemma

is an entire function of exponential type b. Analo-

2.28 we conclude, that the product of Sm(?b and cos(A,) is an entire function of
at most a + b.

Of course, everything holds true for b replaced by a and the other way around.

Therefore Sm/g—A) cos(Ap) is again an entire functions of exponential type at most
a + b. Lemma 2.28 shows that k& — D(k‘) is an entire function of type at most
a + b. Lemma 2.29 ends the proof. O

Lemma 4.24 Let again a = \/1+q—d?, b = /1 —d? and A,, Ny as in ({.68)
and (4.69). Then,

Ay(k) = ka —nd/a +r.(k)
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and
Ao(k) = kb — nd/b+ ro(k),
with some functions r,(k) and ry(k) which satisfy

ra(k) = O(1/k),
r(k) = O(1/k),

for k — .

Proof: We consider

k (Ay(k) — ka 4+ nd/a)

= k <\/k’2(1+q)—(n+kd)2—k 1+q—d2+n—d>

V1+qg—d?

—n? — 2nkd n 2nkd
Vitg—n/k+d2+\/1+q-a2 2\/1+q—d

This splits up into two parts, namely

—n2 —n2

% Y
Vitg—(n/k+d?2+\/1+q—d 2¢/1+4q— d?

and

k k
2nd - — .
(2\/1+q—d2 \/1—|—q—(n/k:—|—d)2—|—\/1+q—d2>

In the latter, let us consider the part in brackets and reduce it to a common
denominator,

kv/1+q— (n/k+d)? —k\/1+q— d?
2T+ q— & (VT+q—/k+d?+/T+q— &)

(4.77)

Extending the fraction by \/1 +¢ — (n/k +d)? + /14 q — d? shows that (4.77)
tends to m as k tends to infinity. This is a bounded expression and we
conclude that

lim |k (Ay(k) — ka +nd/a)| < oo.

k—o0
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Analogously, we can show

Ap(k) — kb+nd/b= O (1/k).

O
With this lemma, we see the following.
Lemma 4.25 Let r(k) = O (1/k), k — oo. Then,
sin(r(k)) =O(1/k) and cos(r(k))—1=0(1/k). (4.78)
Lemma 4.26 Let again a = +/1+q—d? and b =+/1 — d?. Then,
k
D(k) = %—l—(’)(l/k), k — oo,
with
b
Fk) = “; sin (k(a— ) dn (1/a—1/5))
—b
~ 2 % in (k;(a+b) —dn(l/a+1/b)>. (4.79)
Proof:

First we prove,
sin (A4 (k)) = sin (ka —nd/a) + O (1/k), k — oo.

This can be seen by replacing A, (k) by ka — nd/a + r.(k) (see Lemma 4.24) and
using trigonometric identities, sin(u + v) = sin(u) cos(v) £ sin(v) cos(u),

sin (Ay(k)) — sin (ka — nd/a)
= sin(ka —nd/a + r.(k)) — sin (ka — nd/a)
= sin(ka —nd/a) (cos(r.(k)) — 1)

+ cos (ka — nd/a) sin(r,(k))
= O(1/k),

where the last equality holds true because of Lemma 4.25 in the last step. With
the same arguments it holds for large k

cos (Ay(k)) = cos (ka —nd/a) + O (1/k).
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Everything holds true for a replaced by b and we compute
sin(Ay(k)) cos(Aq(k))
= sin (kb —nd/b) cos (ka — nd/a) + O (1/k)
and
sin(A,(k)) cos(Ay(k))
= sin (ka — nd/a) cos (kb — nd/b) + O (1/k) .

Let us now consider the determinant D as in (4.71). We use A,(k) = ka — nd/a +
O(1/k), k — oo, and the results above and plug them in. We obtain

D(k) = (kb—nd/b+ O (1/k))
- (sin (ka — nd/a) cos (kb — nd/b) + O (1/k))

— (ka—nd/a+ O (1/k))
- (sin (kb — nd/b) cos (ka — nd/a) + O (1/k) )

= kf(k)+tk)+O(1/k),
k — oo, with

f(k) = bsin(ka —nd/a) cos(kb — nd/b)
— asin(kb — nd/b) cos(ka — nd/a) (4.80)

and some bounded function ¢(k)

. Again, using trigonometric identities, we can
rewrite f(k) as

o= b sin (k(a +b) — dn (1/a + 1/b))

_a ; " in (k(a — b) — dn (1/a — 1/b)).

Furthermore, from Lemma 4.24 we conclude AQT(’C) —a+ Z—g =0 (k—g) and therefore
Aq(k)

=2~ — a, k — oco. The same holds true for a replaced by b and we finally arrive
at

D) = ED(E)  k(kf(k) +t(k) + O(1/k))
- ARk Aa(k)As(F)
= fg;)+0(1/k).
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This ends the proof.

]
We extend f analytically to the entire complex plane and prove the lemma below.

Lemma 4.27 The function f : C — C defined as

a—>b

f(k) = 5 sin (k(a+b) —dn (1/a+ 1/b))

- a;bsin(k‘(a—b)—dn(%—%))

1s an entire function of at most exponential type T := a + b.

Proof: We first show for ¢; > 0 and ¢y € R that eike1+¢2) g an entire function of
exponential type ¢;. The maximum modulus is

M(T’) —  max 61(r(cos€+zsm9)cl+02)
0<0<2m
— max e—rclsmG
0<#<2m
= e,

For the order, it holds true that

. log log(e“") log(eqr)
p = limsup =
r—00 IOg(r) 10g(7“)

and for the type, we have

, log(e“™) or
7 = limsup ——— = — = ¢;.
r—00 r r

kci+c2)

Analogously, e~ is an entire function of exponential type c;.

We apply Lemma 2.28 to see that sin(kc; +¢3) is an entire function of at most type
¢1. Plugging in ¢; = a+ b and ¢; = dn (% + %) shows sin (k:(a +b) —dn (i + %))
is an entire function of exponential type at most a + b.

In the same way, we see that sin (k(a —b) —dn (% — %)) is an entire function of

exponential type at most a — b. Therefore, again with Lemma 2.28, f is an entire
function of exponential type at most a + b. Note that a +b > a — b. O
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4.3.2 Existence of Complex Transmission Eigenvalues

Theorem 4.28 Let a = /1 4+ q—d? and b = /1 — d? and let ¢ > 0 be constant
such that § ¢ N. Then, there exist infinitely many real and complex transmission

ergenvalues.

Proof: We will first show that there exist infinitely many real transmission eigen-
values and use this result to show that there are also infinitely many complex
transmission eigenvalues. By former chapters of this work, we already know that
real transmission eigenvalues exist. Nevertheless, with the following analysis on
real transmission eigenvalues we can use Corollary 2.31 to prove the existence of
complex transmission eigenvalues.

e Real transmission eigenvalues

Let first £ € R. We consider D(k) = % + O (1/k), k — oo, as in Lemma 4.26
with f(k) as in (4.79). We will show that D (and hence, the determinant D as in
(4.71)) has infinitely real zeros.

To this end we choose k = ]%l,l such that

. 1 1 7r
/‘Cl,l(a—b)—dn(g—g) :§+27Tl, leN,

which implies,

.3 1 1
S <k1,l(a - b) - dn (a — E)) g 17
and hence
2 a—0o . (3 1 1 a+b
f(ky) = 5 sin <k’1,l(a +b) —dn (E + 5)) -
a—b a-+b
< — = —b )
= T2 2 <0
This shows
D(kyy) < —bjab+ O1/k,) = —1/a+ O(1/ky) < 0,

for large {. Now let k = ]%271 such that

. 1 1 T
kzl(a — b) — d’l’L (a — 5) = —5 + 27Tl,
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[ € N. We see analogously f (12:271) > b > 0 and hence
D(kyy) > 1/a+O(1/ky) > 0,

for large I.

D is a continuous function. Hence, there exists some [y € N such that for all
[ > ly, we find k; between k;; and ko, such that D(k;) = 0. That means, there are
infinitely many real transmission eigenvalues.

e Complex transmission eigenvalues

To show that there are complex eigenvalues, we will use Corollary 2.31. Note, that
f is an entire function of order 1, as we have shown in Lemma 4.27. Thus f is
an entire function of order less than 2. We assume f has only a finite number of
complex zeros. As seen before (in (4.80)), f can be written as

f(k) = acos (k:a - %L) sin (kb — d%)
— bcos <k:b — c%n) sin (k:a — c%n) . (4.81)

f'(k) = —gsin (k:a - %) sin (kb - d%) ,

with ¢ = a®> — b? > 0.

The real zeros of f/(k) are given by k,; = In/a + dn/a® and ky; = I7 /b + dn/V?,
l € Z. For simplicity, we omit the index [ in the following and write k, and k.

We compute

The idea is to show that there are infinitely many intervals formed by two con-
secutive zeros k, and k;, of f’, where the sign of f(k,) and f(k;) does not change,
that means f(k,) - f(ky) > 0. Note that there cannot exist an additional zero of f
between k, and ky, because this would lead to an additional zero of f’ between k,
and k. This is not possible, since k, and k;, are two consecutive zeros of f’.

We will split the rest of the prove in two cases.
Case 1:

Let us consider the situation that &, is a zero of sin(kb— dn/b) and not of sin(ka —
dn/a). The directly following zero of f’ is a zero of sin(ka — dn/a), because a > b.
We call this zero k,. Let us further assume that the derivatives of sin(kb — dn/b)
at k, and of sin(ka — dn/a) at k, are negative, that means bcos(kyb — dn/b) < 0
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— sin(ka-dn/a)
—— sin(kb-dn/b) [|

Figure 8: sin(ka — %) and sin(kb — %”)

a

and a cos(k,a — dn/a) < 0. We have illustrated the situation in (¢) in Figure 8 on
the left hand side.

Since the derivative of sin(ka — dn/a) in k, > k; is negative and since there is no
other zero of sin(ka—dn/a) between k;, and k, we conclude that sin(kya—dn/a) > 0.
A similar argument shows sin(k,b — dn/b) < 0. Comparing with (4.81) shows
f(ky) > 0 and f(k,) > 0 and therefore f does not change sign.

Assuming b cos(kyb — dn/b) and a cos(k,a — dn/a) to be positive yields with anal-
ogous arguments that f does not change sign. Also, changing the order of the
consecutive zeros, that means k, < kj, shows the same.

Let us now consider the case that for two consecutive zeros k, and ky, k, < k,, of
sin(ka — dn/a) and sin(kb — dn/b) respectively, the derivatives have the opposite
sign, that means bcos(k,b — dn/b) > 0 and acos(kya — dn/a) < 0. We have
illustrated the situation in (4i) in Figure 8 on the right hand side. With similar
arguments as before, we conclude that sin(kya — dn/a) and sin(k,b — dn/b) are
positive and hence f(k,) < 0 and f(k,) < 0.

Again, assuming b cos(k,b—dn/b) < 0 and a cos(kya—dn/a) > 0 as well as changing
the order of the zeros shows in the same way that f does not change sign.

Note that it is not possible that the following zero of f’ after k; is a zero of
sin(kb — dn/b), because a > b.

Case 2:
Now we consider the situation that ky is a common zero of sin(kb— dn/b) and also

of sin(ka — dn/a). Hence, there exist |, and [, € Z with

dn T dn

T
ki = l,—4+ — = l—+ —. 4.82
! aa+a2 bb+b2 (4.82)
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The next zero of sin(kb — dn/b) is

T dn
ky = (b+1)—+ —.
b= bty + 3
It is not possible that k; is also a zero of sin(ka — dn/a) because otherwise there
must exist some [ € Z such that

(lb+1)%+i—7; - l2+i—z,
that means with (4.82)

I L R

b 2 a a®
This is satisfied if, and only if,

a

=1-1
2 a €N,

which yields a contradiction, because we excluded the case that § € N.

To sum up, if k; is a common zero of sin(kb — dn/b) and also of sin(ka — dn/a),
then the next following zero of sin(kb — dn/b) provides a zero of sin(kb — dn/b)
only and hence, we are back in Case 1.

Due to the periodicity of the sine and the cosine function, there are infinitely
many intervals formed by two consequtive zeros of f’ where the sign of f does not
change. In other words, that means, there are infinitely many situations, where
we find at least two zeros of f’ between two zeros of f. With Corollary 2.31,
this yields a contradiction to the assumption that f only has a finite number of
complex transmission eigenvalues.

O

Theorem 4.29 Let a and b as in Theorem 4.28. Assume that ¢ > 0 is constant
such that ¢ ¢ N. Then the complex transmission eigenvalues all lie in a strip
parallel to the real axis.

Proof: For k € C, from Lemma 4.27 we know that f is an entire function of type
7 =a+b. In Lemma 4.23 we have seen that D is also an entire function of the
same type 7. Hence, by Lemma 2.28 g(k) := D(k) — %, for k € C, is an entire
function of exponential type at most 7.
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For real k it holds D(k) = £ + O (1/k), k — oo, and therefore g(k) = O (1/k).
We conclude that g belongs to L?*(R) and hence by Paley-Wiener Theorem 2.32
there exists ¢ € L*[—7, 7] such that

o) = [ "ot

—T

With Cauchy-Schwarz inequality we obtain
T 2 T 5
2 i 2 i
o 0F = | [ e at] < Lol [ Jefa

2 T
— el / e,

—T

with y := Im k. Computing the integral
/T gy _ 1 [em]T_ _ sinh(2y7)
- 2y T Yy

yields

T ' 1 ‘ 1/2
9(k)] = ' / so(t)e““dt‘ < llola (th<2\ym) .

It follows that |g(k)|e™ ™ — 0 as |y| — oo, because

. 1/2
(smh<2ry|f>> G-
]

o2yl _ o2yl 1/ 1 — e—4lylr\ /2
= | ———— = (———) —0
( 2[yle2rlvl ) < 2Jy| ) ’

Let us now suppose that D has a sequence of zeros k;, with imaginary part |y;| —
00, as 7 — 00. Then it holds,

as |y| — oo.

k)

o +g(k;j) =0, forevery j € N, (4.83)

and, as we have just seen

lg(k)|e™ ™! =0, asj — oo. (4.84)
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We will show subsequently, that

k; —b
‘%e—%' - “47 >0, asj— oo, (4.85)
which yields a contradiction, because ‘( oL ) e~ Tlvs] equals zero on the

one hand (see (4.83), but tends (using (4.84 ) and (4.85)) to 2= for j — oo on the
other hand.

We conclude that D cannot have an infinite number of zeros with imaginary part
tending to infinity.

It is left to show the claim ‘%e”'y‘

— “—f > 0 as |y| — oo. First, we note that

sin (k(a+b) —dn (1/a+1/b))
_ 1 (ei(k(a+b)dn(i+;)) _ ei(k(a+b)dn(i+;)))

21

% <€z’(Rek(a+b)dn(}l+},)) —Im k(a+b)
1

o (Rek(atb)—dn(L+1)) +Imk(a+b)) .

We write k = x + 1y and assume y = Im k > 0 for the moment. We conclude

sin (k(a +b) —dn (1/a + 1/b) )e~ (@0l
1 (€i<x(a+b)—dn(a+b)) “oy(atd) e-i(m(a+b)_dn(;+;)))

2
_i (e—i (z(a-}—b)—dn(i-&-i)))
21
as y — oo. The limit as y — —oo is

l (ei(:(;(a-i-b)—dn((ll-i-ll)))) )

2

9

which tends to

Analogously, we see that
sin (k(a —b) —dn (1/a —1/b) )e” (a+b)lyl
1
b

_ l (ez(;r(a b)— dn(% ))—an N e—i(x(a—&-b)—dn(;—&—i)—Zyb))

21
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tends to zero as y — 0o, and that

sin (k(a —b) —dn(1/a—1/b) )6—(a+b)ly|

_ Ql (ei (m(a—b)—dn(%—%))—i&yb _ 6—i (m(a+b)—dn(é+i)+2ya>>
]

tends to zero, as y — —oo. Bringing the results together shows with (4.79) that

F(K) FK) —(asbly
ab ab
—b
= a2 7 sin (k(a + b) —dn (1/a + 1/b) )ef(a+b)|y\
a
b
_ a2+b sin (k(a — b) — dn (1/a — 1/b) )e~ @ Dll|
a

which tends to

a—>b :i:i(:c(a-l—b)—dn(l-i—%)) a—b
a = 0
4ab (e dab

as y — Foo.
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