
Mining Flexibility Patterns in Energy Time
Series from Industrial Processes

Nicole Ludwig, Simon Waczowicz, Ralf Mikut, Veit Hagenmeyer

Institute for Applied Computer Science, Karlsruhe Institute of Technology
E-Mail: nicole.ludwig@kit.edu

1 Introduction

The transition from traditional energy sources to renewable ones is
not trivial. Various components in today’s energy system are built for
traditional suppliers and cannot cope with the new requirements imposed
by the use of renewable energy sources (RES). The most commonly
mentioned aspect differentiating renewable from traditional energy sources
is the intermittent power generation. Although enough power can be
supplied from renewable energy sources on average, the power is not
always generated when actually demanded. While changing the supply
strategy is not an option as RES depend on e. g. wind and sunshine,
changing the demand side is possible. Methods to change the energy
demand behaviour are usually summarized under the term Demand
Side Management (DSM). For these management strategies to work
sufficiently, the consumer’s flexibility has to be determined, as there
is the possibility for potential usage shifts. DSM potential has been
analysed in great detail for households as well as some energy-intensive
industry processes, however industrial batch processes have not yet been
considered. As a first step in detecting demand side flexibility potential,
this paper investigates the mining of patterns in energy time series data
from industrial processes and introduces a new way of properly finding
reoccurring motifs in industrial energy data.

Motif discovery, for example the Mueen-Keogh algorithm [9], has been
applied to a great variety of problems, e. g. seismology [2], outlier detec-
tion [7], activity detection from sensor data [1], classifying heart sounds
[6] and audio-based music structures [12]. In the realm of energy sys-
tems, [13] use motif discovery to reduce the dimensionality of large time
series data sets and reduce the prediction errors when forecasting energy
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consumption. More prominently, motif discovery is used to identify indi-
vidual appliances in energy consumption data. Some examples are [4]
who are able to disaggregate the energy consumption in an household
from a single-point of entry, but need a training phase of one week to
find the characteristics in the household. [5] give an overview over more
methods for disaggregation of an end-users smart meter data. However,
all the methods mentioned work supervised and thus need labelling of
the data.

Motif Discovery algorithms are very efficient at finding similar patterns
in time series data. They excel if the found motifs are of approximately
the same length. In energy time series this is the case for e. g. daily load
curves from residential buildings. However, given industrial production
data, the algorithms find proper motifs, but cannot identify the correct
starting points if the motifs vary greatly in their length.

This paper uses a novel two-stage algorithm to correctly identify reoc-
curring motifs in industrial process time series data. We first use an
event search algorithm to find possible starting points for the motifs
and then use a standard motif discovery algorithm to identify which of
those events are triggered by the same process. It is the aim to evaluate
those motifs e. g. process lengths, energy intake etc. and classify the
processes according to their degree of potential flexibility. The variability
in the motifs is used as an indicator for potential flexibility but does not
guarantee that this flexibility can also be used.

The remainder of the paper is structured as follows. Section 2 introduces
the used motif discovery and event search algorithms, before Section 3
describes the found motifs and categorizes the resulting motifs in terms
of their flexibility. Afterwards we discuss the implications (Section 4)
before concluding in Section 5.

2 Methodology

The approach we chose can be split in four parts; first we discover
where the events start with the help of a minimum search algorithm,
then we find how a usual motif looks like with the help of a univariate
motif discovery, afterwards we compare the motif found to the processes
after the events, establishing whether they are similar. And lastly, we
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Figure 1: SAX transformation of an example time series.

categorize the differences in the found motif according to their flexibility
potential.

In this section we first introduce a common motif discovery algorithm
before explaining our event search approach. The notion of flexibility as
well as the measures we use to describe it will be introduced thereafter.

2.1 Univariate Motif Discovery

Patterns in the load profile of the different buildings can indicate a
potential to shift electricity demand or find times in which we could reduce
the demand through energy efficiency measures. Especially deviations
from a specific pattern but also variations in the same pattern can be good
indicators for these demand side management or flexibility potentials.

Thus, we want to model normal behaviour for the steam demand of every
building to be able to later detect deviations from this normal shape.
While traditional clustering approaches tend to be slow on larger data
sets, [3] developed an algorithm which can detect reoccurring patterns
in time series while scaling very well and being robust to noise. This
so-called motif discovery can be applied to many applications, but has
not yet been applied to steam consumption load patterns for the purpose
of finding demand side management potentials.

The algorithm is based on the symbolic aggregated approximation (SAX)
of time series. For this approximation, the normalised time series are
discretised and transformed into equal length words which are part of
an alphabet with predefined length. With the help of a sliding window
a matrix 𝑆* ∈ (𝑛 − 𝑚 + 1) * 𝑤 is generated, with 𝑛 being the number
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of observations, 𝑚 the number of subsequences and 𝑤 the word length.
The SAX representation of all subsequences, i. e. the words, are saved
row-wise in this matrix. In every iteration of the algorithm, we randomly
select 𝑙 of the 𝑤 columns of 𝑆*, where 𝑙 is a user-defined mask length and
𝑙 ≤ 𝑤. The word built with 𝑙 columns is compared to all (𝑛−𝑚 + 1) rows
of 𝑆*. If there exists similarity, the corresponding entry in the collision
matrix is incremented. The entries with the highest values in the collision
matrix are considered potential motifs. Those motifs are then iterated
over the original time series and their distance is calculated to find the
instances where the motif occurs. The distance measure here is a simple
euclidean distance, but could also be e. g. dynamic time warping.

2.2 Event Search

Motif discovery often fails if the motif is not behaving regularly, particu-
larly variation in the length of the process are hard to detect for fixed
word or window lengths. While Industrial processes, especially chemical
ones are often repeated batch processes, the batch processes do not have
to be exactly the same for every iteration, but can vary in length and
intensity. As we struggle finding proper starting points with the fixed
window approach of the motif discovery described before, we want to find
the starting points separately. We chose to do a simple minima search in
a predefined window, to find the supposed starting points for each batch
process and save the time series subsequence between two minima as our
batch process. We treat the subsequences found equally to the motives
found with the motif discovery algorithm before.

2.3 Dynamic Time Warping

ToDo

Dynamic time warping (dtw) is a method to find the optimal alignment
given two time-dependent sequences.

For further explanation see e. g. [10]
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2.4 Flexibility

Given we found proper motifs with the above described methods, we
want to examine their potential flexibility. We work with the flexibility
definition of [11]. They describe flexibility as “the amount of energy and
the duration of time to which the device energy profile (energy flexibility)
and/or activation time (time flexibility) can be changed.” Thus, trans-
lating this to a data-driven approach; there are several cases, where we
identify a potential degree of flexibility.

1. Energy Flexibility. The pattern always starts to occur at the
same time and weekday but the length and intensity varies. This
would indicate that the process can run in different modi and there
is thus some degree of flexibility in the decision on the modi.

2. Time Flexibility. The same pattern in the time series occurs
in the same form at different e. g. times of day or days of week,
depending on the length of the pattern. For example, a process
always runs Mondays, but the time varies greatly, this would in-
dicate some level of flexibility regarding the starting time of the
process on Mondays.

3. A combination of the above mentioned cases is also possible.

We describe the measures we use to judge those types of flexibility in the
following.

2.4.1 Energy Flexibility

As stated before, the energy flexibility is mainly concerned with variations
in the motif itself as opposed to when the motif occurs. We have a look
at three different measures: the length, intensity and ramping time of
the motifs.

The length is described by the time steps between the current local
minimum and the next local minimum found through the event search.

length = 𝑡(loacalmin[𝑗]) − 𝑡(localmin[𝑖]) for 𝑖 < 𝑗 (1)

The intensity is measured as the area under the curve, thus the energy
used by the process. We approximate the area under the curve (AUC)
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using the composite trapezoidal rule. Given an interval [𝑎, 𝑏], we split
this interval in 𝑀 subintervals [𝑥𝑘, 𝑥𝑘+1] of equal width ℎ = (𝑏−𝑎)/𝑀 by
using the space nodes 𝑥𝑘 = 𝑎 + 𝑘ℎ ∀𝑘 = 0, 1, . . . , 𝑀 . The composite
trapezoidal rule for 𝑀 subintervals can then be expresses as

𝑇 (𝑓, ℎ) = ℎ

2

𝑀∑︁
𝑘=1

(𝑓(𝑥𝑘−1) + 𝑓(𝑥𝑘)), (2)

which is an approximation for the integral of 𝑓(𝑥) over [𝑎, 𝑏]

∫︁ 𝑏

𝑎

𝑓(𝑥)𝑑𝑥 ≈ 𝑇 (𝑓, ℎ). (3)

We compare the ramping of the motifs by measuring the time steps
needed between the local minimum, thus starting point, and the local
maximum of the time series.

Ramping = 𝑡(localmax) − 𝑡(localmin). (4)

2.4.2 Time Flexibility

In contrast to the energy flexibility described before, the time flexibility is
only concerned with the starting times, days of week and length, thus end
times and days of week. We assume that if a process runs every Monday
at 8am it has to run at this specific point in time, while running always
at a different day of the week would indicate that we have a certain
flexibility here, as to when the process has to start. This is obviously
a simplification as we neglect dependencies from other processes at the
moment.

2.5 Framework

We use three steps to get to a categorisation of flexibility from steam
consumption data. The whole framework is graphically shown in Figure 2.
We start with the event search algorithm, saving the subsequences between
each event as possible motifs. Afterwards, we run the motif discovery
algorithm using the average length of the event subsequences as the word
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Figure 2: The framework used in this paper to extract flexibility potential
from steam consumption data via motif discovery.

and window length. We then measure the similarity of the found motifs
with the subsequences, using dynamic time warping. The motifs which
are similar enough are used to examine their differences more closely and
categorize their flexibility potential.

3 Results

To evaluate the proposed method we have a look at the steam consumption
time series from a building of a chemical factory. The steam consumption
is measured as hourly average in tons over a period of five weeks. Due to
commercial sensitivity issues, no true measures or time indicators will
be presented in this paper. Although we do not have information on the
products manufactured, we know that there are possibly one or several
repeating processes in the factory building. Given this consumption data
we want to find the shapes of those recurring processes. The time series
is depicted in Figure 3. The graph indicates a pattern which repeats
itself on different levels of steam intake.

This section presents the individual steps described in the framework,
starting with the motif discovery and event search, before analysing and
categorizing the flexibility.
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Figure 3: Original time series data of a buildings steam demand over five
weeks.

3.1 Motif Discovery

Following the framework we have established, we run the above described
minima search algorithm with a window size of 100 and store the local
minima found in a vector. We then build subsequences of the time series,
starting at each of those minima.

The minima search gives a very good result to find the different time
series subsequences which look similar enough to be from the same batch
process. Figure 4 shows some exemplary subsequences found through
the event search. The structure of the process seems to remain the same
over the different instances. However, the length and intensity of the
process varies, which is useful for our purpose as it could be an indicator
for flexibility. Figure 5 shows a heatmap of all the subsequences, where
we have normalized all subsequences with mean 𝜇 = 0 and standard
deviation 𝜎 = 1. The subsequences are aligned at their minimum point.
We can clearly see that they exhibit a similar structure but differ in
length.

Next, we run the motif discovery algorithm using the additional informa-
tion we have about the processes. We chose a relatively small alphabet
size of 𝑎 = 10 as the variations in patterns do not seem to be high.
Choosing the word length is more difficult as it has a great impact on
the found motifs. Additional information on the normal length of the
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Figure 4: Exemplary subsequences of the steam consumption time series.
Each subsequence starts after a minimum detected through the
minima event search with a window of size 100.
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Figure 5: Heatmap of the individual subsequences found through the minima
search. The subsequences start at the minimum and end at the next
minimum. For a better comparison of their structure they are
normalized (𝜇 = 0, 𝜎 = 1).
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Figure 6: The steam consumption time series with the starting and ending
point of the discovered motifs marked by the vertical lines.

process running would be the obvious choice for those parameters, which
we do not have in our case. However, given the subsequences found in the
event search, we can now use the mean time distance between the local
minima found (w = 94). For the moment we do not allow for overlaps
between the motifs.

The algorithm finds two different motifs, whose starting points in the time
series can be seen in Figure 6. The individual instances of the motifs are
displayed in Figure 7. Motif 1 occurs two times in the time series, while
Motif 2 occurs three times. There are variations in the motifs, which is
helpful for our flexibility examination later. However, they also do not
look very different, which lets us assume they might be similar enough
to be the same motif, if their comparison would start at the minimum as
with the event search sequences.

To further investigate this idea, we compare the dtw distances of the
motifs within themselves and in between each other. To be comparable,
the motifs have all been normalized with mean 𝜇 = 0 and standard
deviation 𝜎 = 1. The result can be found in Table 1. The distances vary
between 20.96 and 76.97, with the first one being the distance between
the two instances in the first motif and the second one being the distance
between the third instance of the second motif and the first instance of
the first motif. The third instance of the second motif seems to be the
odd one out.

This might be to the rather large drop at the beginning of the instance.
The heatmap (Figure 8 confirms this idea, with the motif in the top row
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(b) The second motif and its three
instances (2a – 2c).

Figure 7: The two motifs found by the motif discovery algorithm.

Table 1: The dynamic time warping distances for the motifs within themselves.

Motif 1a 1b 2a 2b 2c

1a 0 20.96 52.51 47.13 76.97
1b 20.96 0 49.04 42.25 75.07
2a 52.50 49.04 0 27.83 59.43
2b 47.13 42.26 27.83 0 59.63
2c 76.97 75.07 59.43 59.63 0

avg 39.51 37.46 37.76 35.37 54.22
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Figure 8: Heatmap of the two motifs found with their respective instances.
The motifs are normalized with 𝜇 = 0 and 𝜎 = 1.

(2c), having a shorter period at a high level energy intake before dropping.
However, we will assume that the distance also for the third instance is
small enough for our purposes and so assume that all five instances are
triggered by the same mechanism.

As a next step we want to have a look at the subsequences from the event
search. We have seen from the heatmap before, that they all exhibit
a similar pattern but differ mainly in length (see Figure 5). We now
compare the motifs found through the motif discovery algorithm with
the subsequences determined through the event search. It is our aim
to find how similar those motifs are to each other. Table 2 shows the
difference calculated between each motif found with the motif discovery
algorithm (1a – 2c) and the event search subsequences (a – q). We
exclude subsequence g from further analysis as it is only five time steps
long in comparison to the above 70 steps all other sequences are long.

As we can see in the table, the distances are for many sequences greater
than those for the motifs within themselves. further describe dtw dis-
tances
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Table 2: The dynamic time warping distances for each event search
subsequence (a – q) with the motifs (1a – 2c).

Motif a b c d e f g h

1a 89.43 57.26 57.52 62.80 64.21 73.88 84.65 76.25
1b 93.45 62.16 61.59 65.89 63.81 78.00 94.78 78.00
2a 63.71 46.32 49.84 48.99 44.44 63.37 58.19 37.16
2b 70.06 60.01 58.86 62.49 62.87 74.96 74.75 45.24
2c 44.90 53.19 61.79 50.12 40.87 41.94 37.07 39.55

avg 72.31 55.79 57.92 58.06 55.24 66.43 69.89 55.24

Motif i j k l m n o p q

1a 50.15 48.50 52.50 46.95 57.39 56.30 44.55 49.01 42.53
1b 53.47 52.31 53.78 46.72 58.73 59.77 57.35 50.18 49.43
2a 50.00 52.37 33.36 46.43 49.22 39.94 42.81 45.48 23.90
2b 42.31 44.16 37.70 32.58 42.19 33.34 52.59 44.18 32.43
2c 71.95 79.56 53.62 70.60 62.55 28.45 38.24 62.91 54.49

avg 53.57 55.38 46.19 48.65 54.02 43.56 47.11 50.35 40.56

3.2 Flexibility Measures

Given the subsequences we have found as which are similar enough
to stem from the same underlying process, we now want to determine
their flexibility. However, before going further into the analysis of the
flexibility we can find by comparing the subsequences according to our
flexibility measures, we first match the subsequences with the five motif
instances. Thus, we will not take the motifs into our analysis if one of
the subsequences already describe them.

Which subsequences are described already by the motifs?

Having established that the motifs are included in the subsequences ??,
we now analyse the subsequences with the help of the above established
flexibility measures. We first examine the energy flexibility of the motifs,
before delving into the time flexibility of them.

3.2.1 Energy Flexibility

According to our three measures described before, we inspect the differ-
ences in energy usage from our subsequences. The results are displayed
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Table 4: Characteristics of the found patterns in the steam demand time series.

Characteristic Min Median Max StdDev

Length 71.00 103.00 132.00 15.02
Intensity 293.94 294.37 390.97 10.31
Ramping Time 2.00

in Table 4. The length of the processes varies between 71 and 132 time
steps. However, the intensity for some motifs is rather similar although
the lengths differ. This might indicate that no matter how long or short
the process is, we need to use roughly the same amount of energy. The
ramping time changes considerably between the instances. While the
shortest ramping takes only two time steps, the longest takes more than
update the time steps (exclude the negative ones).

Correlation between the length of the process and the intensity as mea-
sured by the area under the curve is 𝜌 = 0.8446. Indicating that a longer
process also uses more energy. However, ramping steps and the length of
the process are only slightly positively correlated with 𝜌 = 0.2832, as are
the ramping steps and the intensity 0.3649.

Explain further

3.2.2 Time Flexibility

Finally, we consider the time flexibility of our sequences. Table 5 shows
the hour and the day of the week where each local minimum is. As we
can see, the weekdays and times of these possible starting points are well
distributed throughout the week and day. This indicates that there is
no dependency on the weekday or hour of the day to start the process.
This might thus be a highly automated process or one with several shifts
throughout the day. The fact that there is no clear pattern in the time
could mean we are free to choose the starting point time-wise and thus
have a great flexibility there. It could however also imply that the process
highly depends on some other variables which we do not consider here.

3.3 Categorization of Flexibility

Best: Time Flexibility
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Table 5: Starting date and time for each event.

Motif Hour Day of Week

a 9 am Tuesday
b 0 am Saturday
c 10 pm Monday
d 9 am Sunday
e 11 pm Thursday
f 11 am Tuesday
h 2 pm Saturday
i 10 pm Saturday
j 1 am Thursday
k 1 pm Monday
l 7 pm Friday
m 11 am Tuesday
n 5 pm Saturday
o 3 pm Thursday

Second Best: Ramping, Length

ToDo: Use correlations

4 Discussion

The flexibility we find in this paper is only potential flexibility. As we do
not know anything about the process in terms of its technical properties
or dependencies of other processes before or after it is running, we only
indicate that there might be a potential as there has been some variety
in the past. If this variety is only driven by technical features it would
not be considered flexibility. Thus, in a next step to properly quantify
the flexibility one has to talk to the process manager and let him rate
the potentials found according to their usability.

The length of the motif varies thus all fixed window clustering approaches
fail. One could run the algorithm several times with different window
sizes but as we have no information about the processes possible lengths
this approach seems tedious.

discuss results properly
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5 Conclusion and Outlook

This paper proposed a new method to find motifs in chemical bath
processes from steam consumption data.

In a next step we use sequence alignment to match the SAX representa-
tions of the subsequences and find how the motifs differ and are similar
to each other instead of measuring the dynamic time warping distance.
This would allow for a more detailed investigation into what can be used
for flexibility purposes in the future. Furthermore, given the potential
flexibility found we want to find market mechanisms to encourage the
use of this flexibility by the process manager whenever this would be
more efficient or cheaper and so forth
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