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Design Iterations & Neutronics Performance Thermohydraulic Performance

* |nput data:

« DEMO fusion power: 2060 MW
522.641

« HCPB BB thermal power: 27964 MW 494813
(considering a constant FW heat flux of 0.5 139,156
MW/m?)

411.328
 Total HCPB BB mass flow: 2690.4 kg/s

 Maximization of the TBR and
shielding capabilities have
driven the design iterations
with this new architecture:
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» VO: initial configuration, Li,SiO, 11mm,
Be 33mm, “thin” caps, long BZ, CP in
cap region
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» Comprehensive CFD analyses have
been performed to a unit slice of the ooz
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* Temperatures are about the material | s
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* V1.1: same as V0 but ,double-caps”

* V1.2: same as V1.1 but no CP in cap
region

« \V2: same as V1.1 but shorter BZs "

* V3: same as V2 but Li,SiO, 15.5mm,
Be 40mm (baseline)
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armomechanical Performance Conclusions and Outlook
. 24 Von-Mises stress [MPa] ] . . .
* TM assessment with RCC-MRXx code. ' s » A new HCPB architecture based on an integrated FW (“HCPB-I") have
. In-box LOCA (9 MPa): HCPB fulfills the o # M released the high potential of the solid breeding blanket for DEMO,
criteria at level C after implementing a o which stalled with the ITER-like concept.
| e Good neutronic performance figures: TBR=1.20 in the baseline design;

“double-cap” and stepped FW.

shielding, nuclear heating and dpa under design Ilimits; i.e. this
,sandwich” architecture can mitigate future adverse configurations for
the blanket coverage (DN, detached FW, bigger divertor).

 Normal operation: good global behavior at T
level A, local modifications needed in future %125

consolidated design. Paths Region R1  Paths Regiczfﬁ R2 Paths Region R4 Paths Region R5
- — Paths Region R3 - :

Good overall TH and TM performance figures: temperature peaks in
structural and functional materials are localized and can be relatively
easily mitigated in a future consolidated design.

Due to the large uncertainty in the FW heat flux, a variant with a

J ) . . : .
— S R —— detached FW (,HCPB-D") based on this architecture will be studied
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200 R1:FWto | PathA 353.2 1090 | 1650 | 066 | 2506 | 2475 | 101 | 2688 | 313.0 0.86 2128 | 2758 | 0.77 be a COOIant Optlon for the detaChed FW
350,03 e header Path B 351.0 107.5 165.0 0.65 122.4 247.5 0.49 230.0 313.0 0.73 141.9 278.1 0.51
328:8; R2: Path A 372.2 176.2 160.0 1.10 721.9 240.0 3.01 281.2 313.0 0.90 635.4 256.5 2.48
200,1 | Distributor | Path B 368.5 58.1 160.0 0.36 560.2 | 240.0 2.33 208.1 313.0 0.66 4595 | 260.3 1.77 Oth f t I t " I b I t d d th I I tt t t
150,13 Farita _ Path A 310.7 45.7 170.0 0.27 444 | 2550 017 | 4606 | 3130 1.47 512 | 3208 | 0.16 er tunclional materials are elng studie ’ Wi eSpeCIa atienton to
R3'B';V; to Path B 347.6 88.9 165.0 0.54 63.5 2475 0.26 211.2 313.0 0.67 80.2 281.6 0.28 . . . .
0.77675 Path C 344.6 81.9 | 1650 | 050 69.8 | 2475 | 028 | 1980 | 313.0 0.63 746 | 2847 | 026 alternatlve nelJtron mUItIpllerS that can pOtentIa”y replace Be and Be
’ R4: FW Path A 406.6 15.7 156.0 0.10 20.4 234.0 0.09 279.2 313.0 0.89 18.4 222.8 0.08 . . . . . . .
plasma side Path B 457.9 16.4 145.0 0.11 22.4 217.5 0.10 299.5 313.0 0.96 23.5 175.7 0.13 m|XtureS e||m|nat|ng the |Ssues related W|th the use Of th|S element
- - Path B 464.9 31.2 139.0 0.22 46.1 208.5 0.22 309.2 313.0 0.99 45.7 169.5 0.27 !
' R5: Path A 464.9 39.7 139.0 0.29 70.9 208.5 0.34 346.3 313.0 1.11 71.2 169.5 0.42
Backplate Path C 437.8 85.9 148.0 0.58 111.3 222.0 0.50 410.1 313.0 1.31 107.4 193.7 0.55
bridge Path D 438.8 80.1 148.0 0.54 103.9 222.0 0.47 439.0 313.0 1.40 108.0 192.8 0.56
Path E 467.6 12.1 139.0 0.09 19.2 208.5 0.09 615.1 313.0 1.97 17.0 167.2 0.10
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