Impact of pretreatment conditions on defect formation during the fabrication of Al-based corrosion barriers by ECX process

Sven-Erik Wulf, Wolfgang Krauss, Jürgen Konys
KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Motivation

- In different blanket designs (HCLL, DCLL), reduced-activation ferritic-martensitic steels (RAFM) are supposed to be in direct contact with flowing Pb-15.7Li (breeder). Unfortunately, RAFM steels, e.g. Eurofer, suffer from strong corrosion attack in Pb-15.7Li due to dissolution.
- Fe-Al scales made by different coating techniques, e.g. hot-dipping aluminization (HDA), and electrochemical aluminization (ECA, ECX process) proved to protect Eurofer steel from corrosion for high exposure times in flowing Pb-15.7Li at temperatures up to 550°C.

However, reliable pretreatment processes are needed; especially prior to electrodeposition of aluminum in non-aqueous electrolytes for electrochemical processes to ensure sufficient aluminum coating qualities and to obtain optimized protective Fe-Al coatings.

Until now, only scarce data and experiences exist on the influence of pretreatment processes especially with respect to electrodeplating of aluminum on RAFM steels such as Eurofer.

Results

<table>
<thead>
<tr>
<th>Impact of anodic pretreatment and storage duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freshly prepared</td>
</tr>
<tr>
<td>Without anodic pretreatment</td>
</tr>
<tr>
<td>Fe-Al scale made by ECX process process, after 4,000 h in flowing Pb-15.7Li</td>
</tr>
</tbody>
</table>

- Extended uncovered areas / in case of stored samples partly detachment of Al coating
- Improved adhesion of the deposited Al coating on Eurofer / No failures in case of freshly prepared samples
- No / strongly reduced coating failures in case of stored samples (dependency on storage time)

Experimental procedure

General comments

Usual processing route of protective Fe-Al scales consists of two main steps:

- Electrolytic (cathodic) degreasing; Potential
- Electrodeposition of aluminum in non-aqueous electrolytes for Fe-Al scales made by ECX process

Procedure

1. Eurofer steel sheet 150mm x 150mm x 1mm
2. Grinding with 1000 grade SC paper
3. Electrolyte (cathodic) degreasing: NaOH based electrolyte, 4%a
5. Storage in exsicator at RT and 7% R.H. 1 - 3 weeks
6. Transfer into Glove Box
7. Immersion + OCP measurement (60s)
8. Plating without further treatment
9. Anodic pretreatment 45s
10. Anodic treatment for 45s (dc-swept 1.1V)
11. Rinsing: dried without / acetone
12. Rinsing outside Glove Box: dest. water / isopropanol
13. Characterization: SEM/BSE + light microscopy

Electrochemical control and electrodeposition procedure

Schematic E-t plot of the procedure

- Open circuit potential: Active surface
- Applied current density: low potential
- Pulse plating: Good coverage
- Anodic polarization: Good adhesion
- Characterization: SEM/BSE + light microscopy

Experimental setup

- Three electrode setup: Working electrode (WE), Counter electrode (CE), Quasi-reference electrode (REF)
- Control via IVUM Potentiostat
- Voltage of electrolyte: 500 ml
- Process temperature: 100°C +/- 1°C
- No agitation
- Pulse current density: 35 mA/cm²
- Deposition time: 34.5 min (2070 cycles)

Conclusions

The investigations showed that a sufficient pretreatment of Eurofer substrate is needed to produce reliable quality of the electrodeposited Al layer by ECX process and later on of the heat-treated Fe-Al barriers.

- Only mechanical pretreatment (grinding) is not sufficient.
- Anodic polarization / dissolution as additional pretreatment step increased the reliability of the coating quality.

Acknowledgment

This work has been partly carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

KIT – The Research University in the Helmholtz Association

www.kit.edu