

Karlsruhe Institute of Technology

Impact of pretreatment conditions on defect formation during the fabrication of Al-based corrosion barriers by ECX process

Sven-Erik Wulf, Wolfgang Krauss, Jürgen Konys

KIT, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Motivation

HCLL blanket

- In different blanket designs (HCLL, DCLL), reduced-activation ferritic-martensitic steels (RAFM) are supposed to be in direct contact with flowing Pb-15.7Li (breeder). Unfortunately, RAFM steels, e.g. Eurofer, suffer from strong corrosion attack in Pb-15.7Li due to dissolution.
- Fe-Al scales made by different coating techniques, e.g. hotdipping aluminization (HDA), and electrochemical aluminization (ECA, ECX process) proved to protect Eurofer steel from corrosion for high exposure times in flowing Pb-15.7Li at temperatures up to 550°C.

Results

Impact of anodic pretreatment and storage duration

- However, reliable pretreatment processes are needed; especially prior to electrodeposition of aluminum in non-aqueous electrolytes for electrochemical processes to ensure sufficient aluminum coating qualities and to obtain optimized protective Fe-Al coatings.
- Until now, only scarce data and experiences exist on the influence of pretreatment processes especially with respect to electroplating of aluminum on RAFM steels such as Eurofer.

Experimental procedure

General comments

Usual processing route of protective Fe-Al scales consists of two main steps:

Extended uncovered areas / In case of stored samples partly detachment of Al coating

- Improved adhesion of the deposited AI coating on Eurofer / No failures in case of freshly prepared samples
- No / strongly reduced coating failures in case of stored samples (dependency on storage time)

Influence on open circuit potential (OCP) vs. Al-wire reference

- OCP of Eurofer specimens vs. REF between approx. 580mV and 650 mV
- Dependency of measured OCP on the storage time
- Indication of at least partial natural surface passivation/oxidation with increasing time between preparation and experiment \rightarrow Insufficient adhesion between Eurofer and electrodeposited Al layer

Electrochemical anodic behavior and coating properties

Potentiostat

CE:

Al-sheet

REF:

Al-wire

WE:

Eurofer sample

EmimCI:AICI₃ (1:1.5)

Electrolyte:

and later on of the heat-treated Fe-Al barriers.

Experimental setup

- Three electrode setup: Working electrode (WE), Counter electrode (CE), Quasi-reference electrode (REF)
- **Control via IVIUM Potentiostat**
- Volume of electrolyte: 500 ml
- Process temperature: 100°C +/- 1°C
- No agitation
- Pulse current density: 35 mA/cm²
- Deposition time: 34.5 min (2070 cycles)

- Only mechanical pretreatment (grinding) is not sufficient.
- Anodic polarization / dissolution as additional pretreatment step increased the reliability of the coating quality.
- Time span between sample preparation and deposition influences surface activation achieved by anodic polarization \rightarrow Storage above 1 week decreases reliability.
- Control of potential during anodization shows good correlation with coating quality.

Acknowledgment

This work has been partly carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

www.kit.edu

KIT – The Research University in the Helmholtz Association