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Abstract We describe a fully generic implementation of
two-body partial decay widths at the full one-loop level in the
SARAH and SPheno framework compatible with most sup-
ported models. It incorporates fermionic decays to a fermion
and a scalar or a gauge boson as well as scalar decays into
two fermions, two gauge bosons, two scalars or a scalar and
a gauge boson. We present the relevant generic expressions
for virtual and real corrections. Whereas wave-function cor-
rections are determined from on-shell conditions, the param-
eters of the underlying model are by default renormalised in
a DR (or MS) scheme. However, the user can also define
model-specific counter-terms. As an example we discuss
the renormalisation of the electric charge in the Thomson
limit for top-quark decays in the standard model. One-loop-
induced decays are also supported. The framework addi-
tionally allows the addition of mass and mixing corrections
induced at higher orders for the involved external states. We
explain our procedure to cancel infrared divergences for such
cases, which is achieved through an infrared counter-term
taking into account corrected Goldstone boson vertices. We
compare our results for sfermion, gluino and Higgs decays in
the minimal supersymmetric standard model (MSSM) against
the public codes SFOLD, FVSFOLD and HFOLD and explain
observed differences. Radiatively induced gluino and neu-
tralino decays are compared against the original implemen-
tation in SPheno in the MSSM. We exactly reproduce the
results of the code CNNDecays for decays of neutralinos
and charginos in R-parity violating models. The new ver-
sion SARAH 4.11.0 by default includes the calculation of

a e-mail: goodsell@lpthe.jussieu.fr
b e-mail: stefan.liebler@desy.de
c e-mail: florian.staub@kit.edu

two-body decay widths at the full one-loop level. Current
limitations for certain model classes are described.
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1 Introduction

While the large hadron collider (LHC) has completed the stan-
dard model (SM) of particle physics with the discovery of a
scalar which has all expected properties of the long searched
for Higgs boson [1–3], there is no indication for new physics
up to now. This has lead to impressive exclusion limits for
particles predicted by either supersymmetry (SUSY) or other
extensions of the SM which were proposed to resolve the
open questions of the SM. However, these exclusion limits for
beyond the standard model (BSM) particles depend strongly
on the decay properties of these particles. For instance, it
is well known that the often cited limits for SUSY squarks
and gluinos of 1.8 TeV and more hold only in vanilla models
where these states decay to 100 % into a given final state [4–
7]. Once realistic decay patterns for the particles are used, the
limits become much weaker [8–11]. Thus, a precise knowl-
edge of the branching ratios of BSM states is necessary to be
able to draw firm conclusions from the null results. On the
other hand, once a new particle is discovered, precise calcu-
lations become especially important to extract the underlying
parameters and compare against the predictions of many dif-
ferent models.

There has been a lot of effort to improve the pre-
dictions of the decay widths for new Higgs-like scalars
not only in the minimal supersymmetric standard model
(MSSM) [12–39] and the next-to-minimal supersymmetric
standard (NMSSM) [40], but also in several singlet and
doublet extensions of the SM [41–47]. These results are
implemented in public tools such as HDECAY [48,49],
FeynHiggs [50–52] or NMSSMCALC [53]. However, for
the plethora of other states, tree-level results are often used.
Exceptions are the MSSM, where one-loop corrections to all

sfermions and gauginos were discussed in Refs. [54–74];
and neutralino and chargino decays in the NMSSM [75,76].
For other SUSY models with R-parity violation and CP viola-
tion, only a few selected decay modes were discussed so far in
Refs. [77,78]. The available codes to study decays at the one-
loop level in the MSSM are SDECAY [79], SUSY_HIT [49]
and SFOLD [80] for sfermion decays, FVSFOLD for flavour
violating squark as well as gluino decays, and SloopS [76]
andCNNDecays [75,77] for neutralino and chargino decays
without and with R-parity violation.

This limited number of codes and supported models has to
be seen in contrast to the increasing number of models which
are currently studied. With the increasing limits on the SUSY
masses within the MSSM, other ideas for new physics are
seeing more and more attention. In order to be able to also
give more accurate predictions for the decays in non-minimal
SUSY models or also in non-supersymmetric extensions of
SM, a high-level of automatisation is needed. A very power-
ful ansatz to obtain robust results for BSM models has been
established with the Mathematica package SARAH [81–
86]: SARAH derives from a short model file all analytical
properties of a given model. This information together with
generic expressions for various observables is then used to
generate Fortran code for SPheno [87,88] which can be
used to obtain numerical results. Up to now, one- and two-
loop masses [89–91], one-loop flavour and precision observ-
ables [92], as well as two- and three-body tree-level decays
could be obtained via this setup. We have now enhanced the
decay calculation to the next level by a generic ansatz to cal-
culate two-body decay widths at the full one-loop level. These
extensions are now available with SARAH 4.11.0. In this
paper we give all necessary details about the calculation,
including the renormalisation scheme; the generic expres-
sions for virtual and real corrections; and the handling of
ultraviolet and infrared divergences.

While wave-function corrections are determined from on-
shell conditions, the default settings use a DR (or MS) renor-
malisation for the parameters of the underlying model. How-
ever, the user can also define model-specific counter-terms in
SARAH to be used in the numerical evaluation in SPheno.
For now the self-energies of all particles of the underlying
model are available for this purpose. Since many particle
species receive significant higher-order corrections to their
masses and mixing beyond tree level, we also allow the inclu-
sion of mass and mixing corrections for the involved external
states. This needs a careful treatment of the infrared diver-
gences, for which we add an infrared counter-term making
use of modified Goldstone boson vertices. The setup also
supports loop-induced decays. An extension to models with
CP violation or additional charged and massive, coloured
vector particles is left for future work. Higgs boson decays,
which are very sensitive to corrections of the external states,
will be more thoroughly addressed in the future.
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The paper is organised as follows: In Sect. 2 we discuss the
technical details of the implementation employing external
tree-level masses. The incorporation of higher-order correc-
tions for the external states is lined out in Sect. 3. In Sect. 4
we explain how the new features of SARAH and SPheno
can be used. In Sect. 5 we present some results obtained
with the new machinery: we first show the implementation
of counter-terms for two SM examples and then compare
our implementation in SARAH with other public codes as
SFOLD, HFOLD, CNNDecays. We conclude in Sect. 6. The
appendix contains all relevant generic expressions for virtual
and real corrections as well as a derivation of the employed
Goldstone boson vertices.

2 Calculation of decay widths at the full one-loop level

In this section we discuss the technical details of the cal-
culation of two-body decay widths at next-to-leading order
for decays that are mediated through a tree-level diagram
X → Y1Y2. Our implementation can handle the decays
S → SS, S → SV , S → VV , S → FF , F → FS and
F → FV , where S denotes a scalar, F a fermion and V a
heavy gauge boson. For loop-induced processesV can also be
a photon or gluon. At next-to-leading order we include full
QCD and electroweak corrections. Thus, apart from ultra-
violet divergences, which we need to address through the
renormalisation of the parameters of the underlying model,
infrared divergences due to massless photons and gluons
have to be taken care of. For loop-induced decays the subse-
quent discussion simplifies substantially, since neither ultra-
violet nor infrared divergences have to be tamed, i.e. also the
detailed renormalisation of parameters is not of relevance.
We continue as follows: we describe the generic form of
unpolarised squared matrix elements for two-body decays in
the subsequent subsection and thereafter present the various
ingredients in terms of tree-level and one-loop amplitudes.
This includes vertex and wave-function corrections as well
as a discussion of counter-terms. Then in Sect. 2.6 we dis-
cuss the relevant real corrections being 1 → 3 processes,
before we combine the results in Sect. 2.7. Finally, we list
the limitations of our implementation in Sect. 2.8.

2.1 Generic unpolarised squared matrix elements

For any two-body decay we write its partial width in the form

�X→Y1Y2 = 1

16πm3
X

λ
(
m2

X ,m2
Y1

,m2
Y2

)
CSCC

∑
h,p

|M|2,

(2.1)

where mX ,mY1 and mY2 are the masses of the mother and
daughter particles in the initial and final state, respectively.

We denote their momenta with p0, p1 and p2, respectively.
The sum runs over all helicities (h) and polarisations (p) in
the initial and final state. A symmetry factor CS and colour
factorCC have to be employed. The symmetry factor isCS =
1 by default. For X = F we have CS = 1

2 , if Y 1 = Y1 and
Y 2 = Y2. For X = S it is CS = 1

2 , if Y 1 = Y1 and Y 2 = Y2

and Y1 = Y2. Therein Y denotes the antiparticle of Y . The
colour factor CC for a decaying colour singlet is equal to the
dimension of the final states under SU(3)C . For example, for
a colour octet decaying into triplets, it yields CC = 1

2 , while
for more complicated colour configurations CC can easily
be extracted from the colour-dependent part of the vertex
triggering the decay: the colour of the initial state is fixed
and a sum over all possible colour combinations in the final
state is performed. The Källén function λ is given by

λ(p2
0, p

2
1, p2

2)

=
√
p4

0 + p4
1 + p4

2 − 2p2
0 p

2
1 − 2p2

1 p
2
2 − 2p2

0 p
2
2 . (2.2)

For decay modes with fermions and gauge bosons in the
initial and/or final state the matrix elements are a sum over
Lorentz structures; we label these with a lower index as Mi

and therefore split the total squared amplitude in sums of con-
tributions MiM∗

j , which are multiplied with different kine-
matic dependences obtained from helicity and polarisation
sums. The structures and their sums are given by

F → FS :
M ≡ M1v̄(p0)PLv(p1) + M2v̄(p0)PRv(p1),

∑
h,p

|M|2 = 1

2

(
m2

X + m2
Y1

− m2
Y2

) (
M1M

∗
1 + M2M

∗
2

)

+ mY1mY2(M1M
∗
2 + M2M

∗
1 ), (2.3)

S → FF :
M ≡ M1ū(p1)PLv(p2) + M2ū(p1)PRv(p2),∑

h,p

|M|2 =
(
m2

X − m2
Y1

− m2
Y2

) (
M1M

∗
1 + M2M

∗
2

)

− 2mY1mY2

(
M1M

∗
2 + M2M

∗
1

)
, (2.4)

S → SV :
M ≡ ε∗

μ(p2)(p
μ
0 + pμ

1 )M,

∑
h,p

|M|2 = 1

4m2
Y2

[
m4

X +
(
m2

Y1
− m2

Y2

)2

− 2m2
X

(
m2

Y1
+ m2

Y2

)]
MM∗, (2.5)

S → SS :
M ≡ M,∑

h,p

|M|2 = MM∗. (2.6)
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For S → VV we split the squared amplitude as follows:

M ≡ ε∗
μ(p1)ε

∗
ν (p2)

(
M1η

μν + M2 p
μ
0 pν

0

)
,

∑
h,p

|M|2 = 1

2m2
Y2
m2

Y3

[
m4

X + m4
Y1

+ 10m2
Y1
m2

Y2
+ m4

Y2

− 2m2
X

(
m2

Y2
+ m2

Y3

)]
M1M

∗
1

+ 1

8m2
Y2
m2

Y3

[
m4

X + (m2
Y1

− m2
Y2

)2

− 2m2
X (m2

Y2
+ m2

Y3
)
]2

M2M
∗
2

+ 1

4m2
Y2
m2

Y3

[
m6

X − 3m4
X

(
m2

Y1
+ m2

Y2

)

− (
m2

Y1
− m2

Y2

)2 (
m2

Y1
+ m2

Y2

)

+ m2
Y1

(
3m4

Y1
+ 2m2

Y1
m2

Y2
+ 3m4

Y2

)]

× (
M1M

∗
2 + M2M

∗
1

)
. (2.7)

Lastly the squared amplitude for F → FV is given by

M ≡ ε∗
μ(p2)

(
M1v̄(p0)γ

μPLv(p1)

+ M2v̄(p0)γ
μPRv(p1) + M3 p

μ
0 v̄(p0)PLv(p1)

+ M4 p
μ
0 v̄(p0)PRv(p1)

)
,

∑
h,p

|M|2 = 1

2m2
Y2

[
m4

X + m4
Y1

+ m2
Y1
m2

Y2
− 2m4

Y2

+ m2
X

(−2m2
Y1

+ m2
Y2

)] (
M1M

∗
1 + M2M

∗
2

)

+ 1

8m2
Y2

[(
m2

X + m2
Y1

− m2
Y2

) (
m4

X + (
m2

Y1
− m2

Y2

)2

− 2m2
X

(
m2

Y1
+ m2

Y2

))]
(M3M

∗
3 + M4M

∗
4 )

− 3mXmY1(M1M
∗
2 + M2M

∗
1 )

− 1

4m2
Y2

[
mY1

(
m4

X + (
m2

Y1
− m2

Y2

)2

− 2m2
X

(
m2

Y1
+ m2

Y2

))]

× (
M1M

∗
3 + M3M

∗
1 + M2M

∗
4 + M4M

∗
2

)

− 1

4m2
Y2

[
mX

(
m4

X + (
m2

Y1
− m2

Y2

)2

− 2m2
X

(
m2

Y1
+ m2

Y2

))]

× (
M1M

∗
4 + M4M

∗
1 + M2M

∗
3 + M3M

∗
2

)

+ 1

4m2
Y2

[
mXmY1

(
m4

X + (
m2

Y1
− m2

Y2

)2

− 2m2
X

(
m2

Y1
+ m2

Y2

))] (
M3M

∗
4 + M4M

∗
3

)
. (2.8)

We implemented special cases for final states with van-
ishing masses, which are not given here.1

1 In the calculation of one-loop decays we introduced a minimal
allowed mass for fermions and scalars of 10−15 GeV. Smaller masses

2.2 Tree-level amplitudes

For the two-body decays at tree level the contributions to the
matrix elements MT

i can be directly identified with the (left-
and right-handed) couplings as follows:

F → FV : MT
1 = icR, MT

2 = icL,

F → FS : MT
1 = −icR, MT

2 = −icL, (2.9)

S → FF : MT
1 = −icR, MT

2 = −icL,

S → SS : MT = ic, (2.10)

S → SV : MT = −2ic,

S → VV : MT
1 = ic. (2.11)

The conventions for the parametrisation of the vertices are
summarised in Appendix A. For F → FV MT

3 and MT
4 and

for S → VV MT
2 vanish at tree level, but contributions are

generated at the one-loop level.

2.3 One-loop amplitudes

Before discussing the detailed form of vertex and wave-
function corrections, we show their combination with the
previously presented results. Once the amplitude due to ver-
tex corrections MV and due to wave-function corrections
MW are split into MV

i and MW
i , which encode the vari-

ous contributions to different combinations of helicities and
polarisations, they can be added to the tree-level amplitudes
as follows:

Mi = MT
i + 2MV

i + 2MW
i . (2.12)

For an exact next-to-leading order calculation the complex-
conjugated part of this amplitude M∗

i is inserted in the
complex-conjugated matrix elements of Eqs. (2.3)–(2.8),
whereas MT

i is used for the non-conjugated ones. The total
partial width is obtained from the real part of the full expres-
sions in Eqs. (2.3)–(2.8). When squaring the amplitude one
needs to be careful if external coloured particles are involved.
For these cases, SARAH calculates individual colour factors
for tree- and loop-level contributions and sums them up con-
gruently. For loop-induced decays the sum of the amplitudes
of the vertex corrections MV

i and wave-function corrections
MW

i is inserted into all occurrences of matrix elements in
Eqs. (2.3)–(2.8).

2.4 Vertex corrections

In general, there are four different topologies contributing
to the vertex corrections MV , which are shown in Fig. 1.

are set to zero to stabilise numerics, see Sect. 5.3.1 for a discussion in
the context of R-parity violation.
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p0

p1

p2

m1

m2

m3 p0

p1

p2
m1

m2

p0

p1

p2

m1
m2

p0

p1

p2

m1

m2

Fig. 1 Possible topologies contributing to the vertex corrections

For decays involving fermions only the first topology is
of relevance. Depending on the considered decay, differ-
ent generic diagrams are associated with these topologies.
They are depicted for the different decays in Appendix A in
Figs. 15, 16, 17, 18, 19 and 20. The results are a function of
internal masses m1,m2 and m3 entering the loop diagrams,
but also of the external momenta p0, p1 and p2. In this sec-
tion, Sect. 2, their squared values correspond to the squared
external masses of the particles, i.e.m2

X ,m2
Y1

andm2
Y2

, respec-

tively. The calculation of the generic amplitudes M (k)
i for

each diagram is straightforward and all results are given in
Appendix A. They are obtained with FeynArts [93] and
FormCalc [94] in Feynman–’t Hooft gauge, i.e. charged
and neutral Goldstone bosons are included in the calculation
and cancel the unphysical contributions from heavy gauge
bosons.

Our results are expressed in terms of Passarino–Veltman
integrals obtained through dimensional reduction (DR).2

Thus, the ultraviolet divergences can be split off in terms of

 = 1

ε
−γE +ln(4π), where ε regularises the divergence and

equals the difference with four dimensions d = 4−2ε and γE

is the Euler–Mascheroni constant. Terms denoted by r need
to be set to zero in dimensional reduction and correspond to
the difference with respect to dimensional regularisation, i.e.
it yields r = 1 for calculations performed in the minimal sub-
traction scheme (MS). By default SARAH sets r = 0 in SUSY
models and r = 1 in non-SUSY models. In order to match
mass dimensions correctly in less than 4 dimensions, dimen-
sional reduction also introduces a new scale Q, the renor-
malisation scale. The generic particle U denotes a Faddeev–

2 FormCalcworks with constrained differential renormalisation [95],
which equals dimensional reduction at the one-loop level [94].

Popov ghost. In Feynman–’t Hooft gauge their masses are
identical masses to the gauge bosons masses, i.e. also ghosts
obtain the subsequently discussed regulator mass. Infrared
divergences due to massless photons and gluons are regu-
larised through a finite regulator mass. There are no diagrams
that contain both photons and gluons. The cancellation of
infrared divergences will be addressed in Sect. 2.6, whereas
the cancellation of ultraviolet divergences is obtained by
adding the subsequently discussed corrections MW .

The combinatoric part to populate the generic diagrams
with all possible field insertions in a given model is done by
SARAH. SARAH also checks for possible symmetry factors
which appear if in the topologies 2–4 in Fig. 1 two real and
identical particles are in the loop. In addition, it calculates
relevant colour factors to be multiplied with the interference
terms MT (MV )∗.

2.5 Wave-function corrections

The amplitude MW contains the corrections due to wave-
function normalisation as well as the counter-term for the
tree-level coupling. They cancel the ultraviolet divergences
of the vertex corrections MV and are mostly determined
through renormalisation prescriptions, in contrast to MV .
Omitting the complication of fermions and gauge bosons
for a moment the amplitude MW

i jk for a vertex of the form
ci jk XiY1 j Y2k for the process Xi → Y1 j Y2k yields

MW
i jk = i

(
δci jk + 1

2
cl jkδZXl Xi

+1

2
cilkδZY1l Y1 j + 1

2
ci jlδZY2l Y2k

)
(2.13)

with the counter-term δc of the tree-level coupling c and the
wave-function corrections δZ for the three particles involved.
In the last three terms a sum over l has to be performed. In the
following we will first describe the derivation of the wave-
function corrections and then comment on the counter-term
for the tree-level coupling.

For the wave-function corrections we employ an on-shell
scheme for the three fields S, V and F . For the fermions we
distinguish left- and right-handed components FL and FR .
In all cases we allow for mixing among particles induced
through loop effects, such that the wave-function corrections
are generally matrices. We have

Vμ,0
i → ZVi Vj Vμ, j =

(
δi j + 1

2
δZVi Vj

)
Vμ
j , (2.14)

S0
i → ZSi S j S j =

(
δi j + 1

2
δZSi S j

)
S j , (2.15)

FL0
i → ZL

Fi Fj
Fj =

(
δi j + 1

2
δZL

Fi Fj

)
FL
j , (2.16)
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FR0
i → Z R

Fi Fj
Fj =

(
δi j + 1

2
δZ R

Fi Fj

)
FR
j . (2.17)

In order to determine the wave-function corrections δZ from
on-shell conditions, we need the self-energies for our three
particle species. Their notation can be read off from the
inverse propagators at the one-loop level, which we write
as follows:

�Si S j (p
2) = i(p2 − m2

S)δi j + i�̂Si S j (p
2), (2.18)

�
μν
Vi Vj

(p2) = −igμν(p2 − m2
V )δi j − i

(
gμν − pμ pν

p2

)

× �̂Vi Vj (p
2) − i

pμ pν

p2 �̂L
Vi Vj

(p2), (2.19)

�Fi Fj (p) = i( /p − mF )δi j + i
[

/p
(
PL̂L

i j (p
2) + PR̂R

i j (p
2)

)

+PL̂SL
i j (p2) + PR̂SR

i j (p2)
]
. (2.20)

The renormalised self-energies are indicated through �̂ and
̂ compared to the unrenormalised ones � and , which are
of relevance for the subsequent discussion. �VV and �SS

are the self-energies of the gauge bosons and scalars, respec-
tively. For the gauge bosons we are only interested in the
transverse part �VV . The only mixing induced between the
gauge bosons of the SM is among the photon and the Z boson.
PL and PR are the left- and right-handed projection operators,
which split the self-energies of the fermions in L , R , SL

and SR . The topologies which can contribute are shown in
Fig. 2. Moreover, all possible generic diagrams contribut-
ing to the fermion, scalar and vector bosons self-energies
are shown in Appendix A in Figs. 12, 13 and 14. We give
also in Appendix A the expressions for the generic ampli-
tudes for the self-energies and their derivatives. Note that
the above structure for the gauge bosons implies the usage
of Feynman–’t Hooft gauge. The derivatives of the wave-
function corrections, denoted with �̇ and ̇, are defined as
follows:

�̇(k2) = ∂

∂p2 �(p2)

∣∣∣∣
p2=k2

and

p1
m1

m2

p1

m2

Fig. 2 Possible topologies contributing to the wave-function renor-
malisation

̇(k2) = ∂

∂p2 (p2)

∣∣∣∣
p2=k2

. (2.21)

Demanding on-shell conditions for the external states fixes
the wave-function corrections. Their derivation can for exam-
ple be found in Refs. [75,96] and results in similar expres-
sions for scalars and gauge bosons:

δZSi Si = − R̃e�̇Si Si (m
2
Si ),

δZVi Vi = − R̃e�̇Vi Vi (m
2
Vi ), (2.22)

δZSi S j = 2

m2
Si

− m2
S j

R̃e�Si S j (m
2
S j ),

δZVi Vj = 2

m2
Vi

− m2
Vj

R̃e�Vi Vj (m
2
Vj

). (2.23)

For the fermions we need to distinguish four cases:

δZL
Fi Fi = − R̃e

[
L
ii

(
m2

Fi

) + m2
Fi

(
̇L
ii

(
m2

F1

) + ̇R
ii (m

2
Fi )

)

+mFi

(
̇SL
ii

(
m2

Fi

) + ̇SR
ii

(
m2

Fi

))]

δZ R
Fi Fi = − R̃e

[
R
ii

(
m2

Fi

) + m2
Fi

(
̇L
ii

(
m2

F1

) + ̇R
ii

(
m2

Fi

))

+mFi

(
̇SL
ii

(
m2

Fi

) + ̇SR
ii

(
m2

Fi

))]

δZ L
Fi Fj

= 2mFj

m2
Fi

− m2
Fj

R̃e

[
mFj 

L
i j

(
m2

Fj

)
+ mFi 

R
i j

(
m2

Fj

)

+ mFi

mFj

SL
i j

(
m2

Fj

)
+ SR

i j

(
m2

Fj

)]

δZ R
Fi Fj

= 2mFj

m2
Fi

− m2
Fj

R̃e

[
mFi 

L
i j

(
m2

Fj

)
+ mFj 

R
i j

(
m2

Fj

)

+SL
i j

(
m2

Fj

)
+ mFi

mFj

SR
i j

(
m2

Fj

)]
. (2.24)

By R̃e we indicate that � and  entering δZ include only the
real parts of the loop functions, whereas couplings enter with
real and imaginary components. In case of CP violation the
definition of wave-function corrections usually distinguishes
between in- and outgoing particles in order to correctly multi-
ply absorptive parts of self-energies with complex couplings,
see the appendix of Ref. [66]. This is beyond our implemen-
tation. We note that despite the fact that we employ on-shell
conditions to determine the wave-function corrections our
external particles are not necessarily on-shell particles, see
the discussion at the end of this section.

With this setup at hand we can also define counter-terms
to be used for tree-level rotation matrices, which at lowest
order transform gauge into mass eigenstates. Those counter-
terms enter the counter-term of the tree-level coupling. For
any particle species � in mass eigenstates, which is obtained
from gauge eigenstates �′ through �i = R�

i j�
′
j , the counter-

term is given by
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δR�
i j = 1

4

∑
k

(
δZ�i�k − (δZ�k�i )

∗) R�
k j . (2.25)

For fermions left- and right-handed states are rotated with
two matrices, such that two counter-terms employing left-
and right-handed wave-function corrections also need to be
defined. For Majorana fermions we refer to Ref. [75]. It is
well known that the definition of such counter-terms for mix-
ing matrices based on the wave-function corrections needs
a proper treatment of Goldstone boson tadpole contributions
in order to achieve gauge invariance; see Ref. [75] for a more
detailed discussion. Since we work in Feynman–’t Hooft
gauge we can completely omit these Goldstone boson tad-
pole contributions, since they ultimately cancel between the
wave-function corrections and the counter-term of the mix-
ing matrices. As for the vertex corrections, SARAH inserts
all combination of particle species in the generated code,
and includes colour as well as symmetry factors.

The non-trivial and mostly non-automatisable part of the
calculation of two-body partial decay width is the renormali-
sation prescription used for the bare parameters of the under-
lying theory, which enter the tree-level coupling counter-term
of the two-body decay under consideration. The counter-
terms are usually chosen depending on the model and pro-
cess. However, a simple DR (or MS) prescription for the
renormalisation of the parameters of the underlying theory is
always easily applicable: from the β functions and anoma-
lous dimensions used for the renormalisation group equations
implemented in SARAH [97–104] we can define all counter-
terms of the parameters of the underlying theory to be just
proportional to the pure ultraviolet divergence only. We will
refer to this scheme as DR (or MS) scheme in the following.
It is well known that this scheme will not perform well in
various cases. Therefore, the user of SARAH can define their
own counter-terms; see Sect. 4.2 for a more detailed discus-
sion. We also add an example of a proper renormalisation of
the electric charge in Sect. 5.

A consequence of the application of the DR (or MS)
scheme is that our partial decay widths are left with a depen-
dence on the renormalisation scale Q introduced through the
regularisation of ultraviolet divergences. This is most promi-
nent in the running of the parameters that enter the tree-level
coupling obtained from the renormalisation group equations,
which is not cancelled at the one-loop level. In the gener-
ated code the scale Q is by default set to the average stop
mass √mt̃1mt̃2 in supersymmetric models and the top-quark
mass mt in non-supersymmetric models. However, the user
can control the scale Q in the input file, either throughout
SPheno or only for the calculation of the decays at one-loop
level; see Sect. 4.2. A common choice for the renormalisation
scale is also Q ∼ mX close to the mass of the decaying par-
ticle X . We refrain from making it the default option, since
Q ∼ mX slows down the numerical evaluation substantially.

In this case loop contributions need to be evaluated multiple
times. We recommend to vary the scale to check the stabil-
ity of the partial decay width calculation, as we demonstrate
in Sect. 5 for the decay of the SM Higgs boson into bottom
quarks. If the scale is changed throughout SPheno keep in
mind that also masses and thus kinematics can change. For
a full on-shell calculation the scale dependence also com-
pletely vanishes. We demonstrate this for the decay of the
top-quark in Sect. 5. In order to achieve a renormalisation-
scale-independent result, external states have to have fixed
masses and mixing, which for gauge bosons and fermions
can be achieved through the settings explained in Sect. 4.2.

Until now we ignored the fact that particles receive higher-
order mass corrections.3 By construction we have to employ
the mass values at lowest order throughout the calculation.
We will discuss in Sect. 3 how for the external states mass
corrections and mixing beyond tree level can be incorporated
into our calculation. If we allow for mass corrections we limit
the discussion to the inclusion of DR (MS) corrections to the
masses, whereas full on-shell prescriptions for BSM particles
(as it would be appropriate) are left for future work. With the
outlined procedure in the previous subsections, we obtain a
gauge-independent and ultraviolet finite result for the partial
width X → Y1Y2, which in the most general case, however,
is scale dependent. As mentioned, the cancellation of infrared
divergences is addressed in the next section.

2.6 Real corrections

In the previous calculation of vertex and wave-function cor-
rections we regularised infrared divergences through the
introduction of a finite, but small regulator mass for the pho-
ton and/or gluon. The artificial dependence of the cross sec-
tion calculation on that mass is cancelled by adding the real
emission of a photon and/or gluon to the two-body decay,
i.e. by adding three-body decays. For a soft photon and/or
gluon a divergence is induced, which can again be regu-
larised through a mass and cancels the mass dependence from
the vertex and wave-function corrections. With the help of
FeynArts [93] and FormCalc [94] we generated generic
results for the emission of one additional photon γ or gluon g
for the previously discussed two-body processes S → SS,
S → SV , S → VV , S → FF , F → FS and F → FV .
We denote the real corrections for X → Y1Y2 + γ /g by

�X→Y1Y2+γ /g = 1

(4π)3mX

1

π2

∫
d3 p1

2p0
1

d3 p2

2p0
2

d3k

2k0 δ4

× (p0 − p1 − p2 − k)C ′
S

∑
h,p,c

|M|2,

(2.26)

3 Also on-shell schemes can lead to finite shifts at higher orders, see e.g.
Refs. [65,105,106] for examples in the neutralino and chargino sector.
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where k denotes the momentum of the photon or gluon and
momenta with upper index 0 equal the zeroth component of
the corresponding four vector. External momenta are set to
p2

0 = m2
X , p2

1 = m2
Y1

, p2
2 = m2

Y2
and k2 = 0. We then

have C ′
S = CS for S → VV and S → SV , otherwise C ′

S =
1
2CS. The charge and colour structure is encoded in matrices
Ci j explained in Appendix B, which is why Eq. (2.26) only
contains an additional c for colour to be summed over. It is
clear that the real corrections due to photon emission and
gluon emission can be calculated individually and summed
up afterwards. By rewriting denominators in terms of eikonal
factors, the above integrals can be mapped onto

I j1 j2i1i2
(mX ,mY1 ,mY2) = 1

π2

∫
d3 p1

2p0
1

d3 p2

2p0
2

d3k

2k0 δ4

× (p0 − p1 − p2 − k)
(±2p j1 · k)(±2p j2 · k)
(±2pi1 · k)(±2pi2 · k) , (2.27)

where pi, j ∈ {p0, p1, p2} and the minus signs refer to cases
where pi, j equals the momentum p0 of the initial particle X .
The notation follows Ref. [96], where also results for the rel-
evant integrals are shown. Only integrals with double lower
indices are infrared divergent and thus dependent on the regu-
lator mass in addition. We present our results in Appendix B.
Through our procedure we calculate the full soft- and hard
emission of such photons and gluons and thus for the three-
body decay S → SV + γ /g also include the four-point
interaction, which does not diverge as the regulator mass
approaches zero. The correct charge and colour factor assign-
ments in the real corrections are done bySARAH as explained
in Appendix B. Where possible we compared to the analytic
results for real corrections implemented in SFOLD [80] and
HFOLD [107] as well as the result presented in Ref. [75].
Apart from finite contributions in S → SV we found com-
plete agreement.

We avoid additional collinear divergences by keeping
finite masses for all three particles in the initial and final
state of our two-body decay calculation, if they interact with
photons or gluons. Thus, this problem does not arise for e.g.
final-state neutrinos. For fully massless charge- and colour
neutral particles in the final state we implemented dedi-
cated routines for F → F ′Sγ and S → F ′Fγ , where one
final-state fermion F ′ can be massless. Keep in mind that if
final-state charged or coloured particles are very light, large
collinear logarithms can induce a bad numerical behaviour
of our routines. This should not cause problems in practi-
cal applications unless charged or coloured states with very
small masses (	keV) are present.

Lastly note that since the real correction decay widths are
gauge independent, we performed the calculation in unitary
gauge for simplicity. This ensures that the results depend
only on the gauge couplings and the original tree-level vertex,
and we are not obliged to include would-be Goldstone boson

vertices as we do for the corresponding loop corrections.
The exception is the decay S → SV + γ /g, where gauge
invariance fixes the form of the four-point vertex in terms of
the three-point one, and we implicitly assume this relation.

2.7 Combination of results

The partial width at next-to-leading order is thus obtained as
follows:

�NLO
X→Y1Y2

= �X→Y1Y2 + �X→Y1Y2+γ /g, (2.28)

where �X→Y1Y2 is obtained from Eq. (2.1) with the squared
amplitudes given in Eqs. (2.3)–(2.8). The individual parts Mi

are taken from Eqs. (2.12) and (2.9) for the complex con-
jugated and non-complex conjugated squared amplitudes,
respectively. �X→Y1Y2+γ /g are the real corrections from
Eq. (2.26), which are calculated individually for photons and
gluons and summed up. For loop-induced decays the virtual
contributions in MV are by definition ultraviolet finite, still
we also include the described wave-function corrections. We
note that ultraviolet finiteness can be checked through a vari-
ation of 
 defined in Sect. 2.4 and infrared finiteness through
a variation of the regulator mass for the photon and/or gluon,
see Sect. 4 for a description how to access them.

2.8 Current limitations

In the approach described so far, we made some assumptions
which make the results not applicable to all models which
are currently supported by SARAH.

• While complex parameters in all calculation can be han-
dled in principle, the setup is not yet supposed to be used
for CP violation. The reason is that, for decays of real par-
ticles into complex final states, only the decay mode Y1Y2

is calculated, while Y 1Y 2 is assumed to have the same
partial width. Also note that in the case of CP violation
a common approach is to define extended wave-function
corrections as discussed in the appendix of Ref. [66].

• The calculation of the real divergences has neglected
the possibility of massive, coloured vector bosons as
for instance in Pati–Salam, deconstructed, or trinification
models.

• When using loop-corrected external masses as described
in the next section, we need to cure all infrared diver-
gences through a proper treatment of Goldstone boson
vertices. Currently we assume that the W boson is the
only massive, charged vector boson, such that models
with a W ′ cannot be used with loop-corrected external
masses.

• Gauge boson decays are not implemented yet. This is
partially due to the previously two mentioned limitations.
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On the other hand for decays of the gauge bosons of
the SM our framework can easily be extended, which we
leave for future work.

3 Higher-order corrections to the external states

Our previous discussion was based on the usage of tree-level
masses for internal as well as external particles. However, the
masses of various particle species receive significant higher-
order contributions. One way to address this is to adopt an
on-shell scheme throughout the calculation, but pure on-shell
schemes are not always the best choice for such calculations,
as is well known from the Higgs sector of the MSSM. Also
even if the calculation is performed in terms of on-shell states
in particular in supersymmetric models the limited number of
renormalisable parameters in the Lagrangian does not allow
for a renormalisation procedure where all on-shell masses
correspond to their tree-level values.

Instead, if we do not want to change our renormalisation
prescription, we should use the LSZ reduction formula to
connect S-matrix elements of on-shell states with Feynman
diagrams in our scheme. This results in external normalisa-
tion factors and external loop-corrected masses (which need
to be distinguished from the previously discussed tree-level
masses and mixing matrices). A schematic picture is shown
in Fig. 3. For Higgs bosons the approach is discussed in detail
in Ref. [108], where such wave-function normalisation fac-
tors are denoted Z -factors. In particular, as noted there, since
we are working at only one loop, there are different trunca-
tions of the perturbative series that we can make and different
approximations can also be made for expediency. Here we
outline the choice(s) that we have made.

Firstly, in the gauge boson sector we recommend to use on-
shell values for gauge bosons, see the discussion in Sect. 4.

Y2

Y1

X
X

Y2

Y1

UY2

UY1

UX

Fig. 3 Schematic picture of our method to include higher-order mass
and mixing corrections. The calculation presented in Sect. 2 is combined
with external normalisation factors and external loop-corrected masses

For scalars and fermions, however, we introduce matrices that
we denote U . Let us introduce our notation for the example
of n scalars Si , which are mass eigenstates obtained from
gauge eigenstates Si = RS

i j S
′
j at tree level and mix at higher

orders: following Eq. (2.18) the mass matrices beyond tree
level take the form

Mi j (p
2) = m2

i δi j − �̂i j (p
2) (3.1)

with the tree-level masses mi . Let us suppose that for the
calculation of the external masses a MS or DR scheme is pre-
ferred, i.e. the self-energies �̂ and ̂ are renormalised such
that only the corresponding ultraviolet divergent part is omit-
ted. In a first approximation we set p2 = 0 and diagonalise
the obtained mass matrix M(0) through a unitary (n × n)

matrixU 0. The tree-level mass eigenstates Si are thus rotated
into states S̃i = U 0

i j S j with masses m̃i . This matrixU 0 incor-
porates the additional mixing induced at higher orders and in
principle corresponds to the Z -factors in the p2 = 0 approxi-
mation of Ref. [108].4 It is used to rotate the tree-level, vertex
and counter-term corrections uniformly by applying it at the
amplitude level. For the decay S̃i → S̃ j S̃k we for example
shift the amplitudes by

M̃i jk =
∑
s,t,u

U 0
isU

0
j tU

0
kuMstu (3.2)

for M = MT , MV and MW . Also we define rotated tree-
level couplings c̃i jk in the same manner to be used in the
calculation of tree-level ampltiude and real corrections as
discussed subsequently. This concept can be very similarly
employed for fermions, where again left- and right-handed
mixing matrices U have to be introduced. Before we discuss
the cancellation of ultraviolet and infrared divergences let us
note that we also implemented two more methods to obtain
the mixing matrixU : instead of setting p2 = 0 an alternative
choice is to use p2 = m2

i . This results in the mass eigenvalue
m̃i , which is used to repeat the procedure iteratively with
p2 = m̃i until the mass determination stabilises. Our default
choice is that the relative change between the masses of two
iterations should be below 10−6. This procedure needs to
be performed for each mass eigenstate S̃i separately and the
matrix U p is determined row by row and is thus not unitary
any more, as is also well known from the general form of Z -
factors. Lastly a possible choice is p2 = m2

1, i.e. the external
momenta is chosen to be equal to the lightest mass eigenstate.
In this case Um1 is again a unitary matrix. We note that the
outlined procedure to determine m̃ and U can be performed
beyond one-loop level, i.e. for supersymmetric Higgs boson
masses corrections at the two-loop level can be incorporated.

4 It differs by the prescription for how the self-energies � are renor-
malised.
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3.1 Ultraviolet and infrared divergences

The application of external masses m̃ different from the tree-
level valuesm and mixing matricesU in addition to tree-level
mixing induces a problem with the cancellation of ultravio-
let and infrared divergences. The first problem can be solved
easily. We employ tree-level masses m for all propagators
of loop functions as well as external momenta entering loop
functions. This applies to vertex and counter-term correc-
tions and guarantees the cancellation of ultraviolet diver-
gences.

The infrared problem is more demanding. In order to
achieve the cancellation of infrared divergences we define
infrared counter-terms. These counter-terms encode the mis-
match between the masses and mixings of internal and exter-
nal states and are formally of higher order. These counter-
terms are used to shift the wave-function and vertex correc-
tions:

MV → MV + δMV , (3.3)

MW → MW + δMW . (3.4)

The aim is to cancel the infrared divergences stemming from
2MT (MV + δMV + MW + δMW )∗ against the ones from
the real emission calculated with loop-corrected masses. The
counter-terms δMV , δMW are defined to be the difference of
the infrared divergences of our default scheme and the one
with loop-corrected masses m̃

δMV,W = IR
(
M̃V,W

)
− IR

(
MV,W

)
(3.5)

where IR(M) takes only the infrared divergent part of the
amplitude M . The definition of such counter-terms in super-
symmetric models is a common strategy: Ref. [66] intro-
duces an infrared counter-term for the decays t̃1 → b̃iW+,
see Eq. (191) in Ref. [66], which exactly encodes the dif-
ference between on-shell, i.e. loop-corrected, and tree-level
masses due to the limited number of renormalisable param-
eters in the stop and sbottom sectors. Reference [109] dis-
cusses the introduction of such counter-terms for the heavy
Higgs boson decay H → W+W−. Reference [110] dis-
cusses these aspects in detail in the context of a generalised
narrow-width approximation, where also infrared divergent
parts in the loop contributions are sorted out and evaluated
at a common mass scale.

It is clear that the subtraction and re-addition of infrared
divergent logarithms as discussed before induces a spurious
dependence on other masses, namely on the masses being
the counterpart of the regulator mass(es) in the logarithms.
This is unavoidable, however, numerically of minor rele-
vance.

In practice, the following procedure is applied:

1. We calculate the virtual corrections using tree-level
masses.

2. We extract the infrared divergences of all two- and three-
point functions using the results given in Appendix C.
These result are used to obtain IR

(
MV,W

)
.

3. We use loop-corrected masses m̃ throughout all infrared
divergent diagrams for the external legs and the particles
in the loop. We take again the infrared divergent parts of
these amplitudes to obtain IR

(
M̃V,W

)
.

4. The calculation of the kinematics as well as of the helic-
ity and polarisations sums for both, the virtual and real
corrections, is done with loop-corrected masses.

5. Lastly, the usage of an additional external mixing
applied through the mixing matricesU , namedU -factors,
works as follows: we rotate the amplitudes of the tree-
level, wave-function and virtual corrections according
to Eq. (3.2). Instead for the contribution of the infrared
counter-term we use rotated tree-level couplings c̃ rather
than rotated amplitudes M̃ . Those rotated couplings also
enter the calculation of the real corrections. In this context
we note that by construction the infrared counter-term
always contains exactly one occurrence of the coupling c
of the tree-level two-body decay.

These steps give for most cases infrared finite results. How-
ever, there is one complication: if the infrared counter-term
contains loops with massive gauge bosons, then there will
necessarily also be related diagrams with charged Goldstone
bosons, and the gauge symmetries require several relation-
ships between the couplings—and masses—of the internal
and external particles in order for the infrared divergences
to cancel. If we were to apply the above procedure then the
infrared counter-term would not be gauge invariant; for these
diagrams we therefore use loop-corrected masses and cou-
plings. Note that if we used unitary gauge we could avoid
a discussion of corrected couplings in Goldstone boson ver-
tices. Denoting a would-be Goldstone boson by G, massive
gauge bosons by VG with masses mG

V and massless ones by
γ a , real scalars as Si with masses mi and Dirac fermions as
FI with masses mI , the relevant couplings are

L ⊃1

2
cGi j V

G μ(S j∂μSi − Si∂μS j ) + 1

2
cai jγ

a μ(S j∂μSi − Si∂μS j )

+ 1

2
cG

′′
GG ′VG ′′ μ(G ′∂μG − G∂μG

′)

+ 1

2
caGG ′γ a μ(G ′∂μG − G∂μG

′) + caG
′

G Gγ a
μV

G ′ μ

+ 1

2
ci jG Si S jG + 1

2
ciGG ′ SiGG ′

+ 1

2
cG

′
iGV

G ′ μ(G∂μSi − Si∂μG) + cGG ′
i Si V

G
μ VG ′μ
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+ caGG ′
(

∂μγ a
ν V

G
μ VG ′ ν + γ a μ∂νV

G
μ VG ′ ν

+ γ a
μV

G
ν ∂μVG ′ ν

)
+

(
ca,L
I J γ a

μ + cG,L
I J V G

μ

)
F I γ

μPL FJ

+
(
ca,R
I J γ a

μ + cG,R
I J V G

μ

)
F I γ

μPRFJ

+ cLI JGGF I PL FJ + cRI JGGF I PRFJ . (3.6)

The couplings cai j , c
a
GG ′ , c

a,L/R
I J are just generators of the

unbroken gauge group in the appropriate representation mul-
tiplied by the unbroken gauge coupling. We find that we
must enforce the following relations, which we derive in
Appendix D:

caGG ′ = caGG ′ = 1

mG ′
V

caG
′

G , (3.7)

ci jG = 1

mG
V

(m2
i − m2

j )c
G
i j , (3.8)

ciGG ′ = m2
i

mG
Vm

G ′
V

cGG ′
i , cG

′
iG = 1

mG
V

cGG ′
i , (3.9)

cLI JG = 1

mG
V

[
mI c

G,L
I J − mJc

G,R
I J

]
,

cRI JG = − 1

mG
V

[
m∗

J c
G,L
I J − m∗

I c
G,R
I J

]
. (3.10)

The implementation in SARAH currently assumes that the
gauge sector is that of the SM; so there are no infrared diver-
gent diagrams with neutral Goldstone bosons, and we do not
shift their couplings to loop-corrected masses. In practice,
a new set of Goldstone vertices is derived by the following
relations which is then used in the calculation of the IR shifts:

cLF1F2G+ = mF1c
L
F1F2W

− mF2c
R
F1F2W

mW
,

cRF1F2G+ = mF1c
R
F1F2W

− mF2c
L
F1F2W

mW
, (3.11)

cS1S2G+ = m2
S1

− m2
S2

mW
cS1S2W ,

cSG+W = 1

2mW
cSWW , (3.12)

cG+Wγ = −mWcWWγ . (3.13)

Note that in Eq. (3.11) we explicitly assume no CP violation.
Employing the outlined procedure we obtain partial decay

widths at next-to-leading order with full cancellation of
ultraviolet and infrared divergences. Though the applica-
tion of loop-corrected masses in the infrared counter-term
can induce a spurious higher-order gauge dependence, for
phenomenological purposes this is, however, small, see e.g.
Refs. [75,77]. Note that for external heavy gauge bosons of

the SM we give the option to put the heavy gauge bosons on-
shell, such that the cancellation of a gauge dependence in the
real corrections among internal gauge bosons and Goldstone
bosons is always guaranteed.

3.2 Mixing of species

Particular attention is needed in the calculation of processes
where self-energy diagrams allow for the mixing between
different particle species beyond tree level. As an exam-
ple (CP-odd) Higgs bosons including the neutral Goldstone
boson can mix with the Z boson and even the photon. Then
wave-function corrections to the two-body decay come with
an internal propagator with a state different from the exter-
nal state. Such diagrams potentially need to sum up correctly
to ensure a gauge-independent partial width. For this pur-
pose, in order to avoid unphysical poles the momenta flow-
ing through the propagators have to match. As an example,
Ref. [36] keeps tree-level masses in diagrams mixing Higgs
bosons and the Z boson/Goldstone boson in the calculation
of Higgs decays to Higgs bosons. The Slavnov–Taylor iden-
tities then ensure that the sum of the Z and Goldstone con-
tributions give zero; see also Refs. [46,111]. Generally such
diagrams are beyond our generic implementation described
here and require a process-dependent treatment, i.e. they are
not included. Still, in our setup they can easily be added.

3.3 Loop-induced decays

We finish with a remark about loop-induced decays like
Fi → Fjγ . Since infrared divergences do not appear for
these processes at the one-loop level, there are fewer restric-
tions on which masses should be used to calculate the ver-
tex one-loop diagrams. As a default setting we therefore use
loop-corrected masses everywhere. The reason is that these
decays are of particular importance in regions of kinematical
thresholds. Thus, the mass splitting between the two massive
states should be taken properly into account in the one-loop
calculation.

4 Implementation in SARAH

4.1 SARAH–SPheno interface

The possibility to calculate one-loop decay widths is avail-
able from SARAH 4.11.0. This is a new feature of the
SARAH interface to SPheno which was established with
SARAH 3.0.0: SARAH generates Fortran code which
can be compiled together with the standard SPheno pack-
age to obtain a spectrum generator for a given model. The
main features of a spectrum generator obtained in that way
are a precise mass spectrum calculation including two-loop
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corrections to real scalars [89–91], a prediction for many
precision and flavour observables [92] and up to now the cal-
culation of two- and three-body decays mainly at tree level.

The general procedure to obtain the SPheno code for
a given model starts with the download of the most recent
SARAH version from HepForge:

http : / / sarah . hepforge . org /

Then the user should copy the tar-file into a directory called
$PATH in the following and extract it through:

tar −xf SARAH−4.11.0. tar .gz

Afterwards, start Mathematica, load SARAH, run a model
$MODEL and generate a SPheno version through

<< $PATH/SARAH -4.11.0/ SARAH.m;
Start["$MODEL"];
MakeSPheno [];

The last command initialises all necessary calculations and
writes all Fortran files into the output directory of the
considered model. These files can be compiled together with
SPheno version 3.3.8 or later. SPheno is also available at
HepForge:

http : / / spheno. hepforge . org /

The necessary steps to compile the new files are:

ta r −xf SPheno −4 . 0 . 2 . ta r . gz
cd SPheno−4.0 .2
mkdir $MODEL
cp −r $PATH/SARAH−4.11.0/Output/MODEL/EWSB/SPheno/∗ MODEL
make Model=$MODEL

This creates a new binary bin/SPheno$MODEL which
reads all input parameters from an external file.SARAHwrites
a template for this input file which can be used after filling it
with numbers by typing:

. / bin /SPheno$MODEL $MODEL/LesHouches . in .$MODEL

The output is written to

SPheno . spc .$MODEL

and contains all running parameters at the renormalisation
scale, the loop-corrected mass spectrum, as well as all other
observables calculated for the given model and parameter
point.

The time for generating the Fortran code for the one-
loop two-body decays as well as the compilation time of
SPheno are extended by these new routines. Therefore, in
the case that the user is not interested in the loop-corrected
two-body decays, they can be turned off via:

MakeSPheno[IncludeLoopDecays ->False];

They can be permanently turned off for a given model by
adding

1 SA ‘AddOneLoopDecay = False;

to SPheno.m. Usually, the calculation of the one-loop
decays triggers also the calculation of the RGEs even when
using the option “OnlyLowEnergySPheno = True;”
to generate the SPheno code. The reason is that the β-
functions are used to check the cancellation of ultravio-
let divergences. However, for non-supersymmetric models,
in particular in the presence of many quartic couplings in
the scalar potential, the RGE calculation can be very time-
consuming. In this case the option

1 SA ‘NoRGEsforDecays=True;

skips the RGE calculation. Of course, the verification of the
cancellation of ultraviolet divergences will not be performed
with this setting.

4.2 Definition of counter-terms

We included the possibility to define counter-terms to be used
in the calculation of the one-loop decays. This is done in
SPheno.m via the new array RenConditionsDecays.
For instance, the standard renormalisation conditions for the
electroweak gauge couplings are set via:

1 RenConditionsDecays ={
2 {dCosTW , 1/2* Cos[ThetaW] * (PiVWm/(MVWM ^2) - PiVZ/(mVZ^2))},
3 {dSinTW , -dCosTW/Tan[ThetaW]},
4 {dg2 , 1/2*g2*( derPiVPheavy0 + PiVPlightMZ/MVZ^2
5 - 2* dSinTW/Sin[ThetaW] + (2* PiVZVP*Tan[ThetaW ])/MVZ^2)},
6 {dg1 , dg2*Tan[ThetaW ]+g2*dSinTW/Cos[ThetaW]
7 - dCosTW*g2*Tan[ThetaW ]/Cos[ThetaW ]}
8 };

We give an example for the application of the above elec-
troweak counter-terms and their derivation in Sect. 5.1. If
RenConditionsDecays is not defined, a pure MS/DR
renormalisation for the bare parameters of the underlying
model is performed. The counter-terms can also be turned
on/off in the numerical session via new flags in the SPheno
input file as explained in the next subsection. The conventions
are:

• The names for the counter-terms are the names of the
corresponding parameter starting with d.

• For a rotation angle X, no counter-term for the angle
itself is introduced, but for the trigonometric functions
involving that angle. Those are called dCosX, dSinX
and dTanX.
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The following objects can be used to define the counter-
terms:

• Parameters of the model: the internalSARAH names must
be used.

• Masses of particles in the model: those are called MX
where X is the name of the particles in SARAH.

• Self-energies for scalars and vector bosons: those are
calledPiXwhereX is the name of the particles inSARAH.

• The derivatives of self-energies of scalars and vector
bosons: those are called derPiX where X is the name of
the particles in SARAH.

• Self-energies and their derivatives mixing vector bosons:
those are called PiXY, respectively, derPiXY, where
X and Y are the names of the particles in SARAH and
p2 = m2

Y .
• Special self-energies for vector bosons containing only

light/heavy states:

– PiVPlight0/derPiVPlight0: only light
degrees of freedom are included in the loops; external
momentum p2 = 0.

– PiVPlightMZ/derPiVPlightMZ: only light
degrees of freedom are included in the loops; external
momentum p2 = m2

Z .
– PiVPheavy0/derPiVPheavy0: only heavy

degrees of freedom are included in the loops; external
momentum p2 = 0.

– PiVPheavyMZ/ derPiVPheavyMZ: only heavy
degrees of freedom are included in the loops; external
momentum p2 = m2

Z .

• The different parts of the fermion self-energies and
their derivatives: those are called SigmaLX, SigmaRX,
SigmaSLX, SigmaSR, respectively, DerSigmaLX,
DerSigmaRX, DerSigmaSLX, DerSigmaSR, where
X is the name of the particles in SARAH.

When SARAH is finished generating the SPheno output, a
list of all self-energies and their derivatives which are avail-
able in SPheno is stored in SA‘SelfEnergieNames,
and the names for all counter-terms are saved in
SA‘ListCounterTerms.

One needs to be careful when using self-energies or their
derivatives for particles which come with several generations.
In this case, the objects defined above are arrays with three
indices. The last two indices give the involved generations,
the first one the external momentum, e.g.

�i j (m
2
Sk ) → PiS(k,i,j), (4.1)

L
i j (m

2
Fk ) → SigmaLF(k,i,j). (4.2)

When defining the counter-terms, commands for matrix
or tensor operators should already have been evaluated in
Mathematica. Although we offer the possibility to the
user to define counter-terms in that way, we want to stress
that it has not been tested in practice beyond the examples
given in this paper. Thus, this option should be used carefully
and the results should be tested throughout, e.g. the ultravi-
olet finiteness of the partial decay widths is a first test to
be performed. Again we emphasise that such counter-terms
are for now only applied in the calculation of decay widths.
Thus, on-shell prescriptions for the calculation of masses
as e.g. known from the neutralino and chargino sector, see
Refs. [65,75,105,106], cannot yet be incorporated.

4.3 Options for the evaluation with SPheno

There are several options to steer the performed one-
loop calculations which can be controlled via the block
DECAYOPTIONS in the Les Houches input file forSPheno.
In practice the most important options are:

1 Block DECAYOPTIONS #
2 ...
3 1001 ... # One -loop decays of particle X
4 1002 ... # One -loop decays of particle Y
5 ...
6 1114 ... # U-factors (0: off , 1:p2_i=m2_i , 2:p2=0, p3:p2_i=m2_1)
7 1115 ... # Use loop -corrected masses for external states
8 1116 ... # OS values for W,Z and fermions
9 (0: off , 1:g1,g2,v 2:g1 ,g2 ,v,Y_i)

10 1117 ... # Use defined counter -terms
11 1118 ... # Use loop -corrected masses for loop -induced decays

The following settings are possible:

• DECAYOPTIONS[10XY]: the one-loop decays for each
particle can individually be turned on (1) or off (0) via
these flags. The particle to which a given flag corresponds
to is written as comment by SARAH. The default value is
1.

• DECAYOPTIONS[1114]: this defines the choice for
the external U -factors:

– 0: no U -factors are applied.
– 1: theU -factors including the full p2 dependence are

used (U p).
– 2: theU -factors calculated for p2 = 0 are used (U 0).
– 3: the U -factors are calculated from the loop-

corrected rotation matrix for the lightest mass eigen-
state (Um1 ).

The default value is 1.
• DECAYOPTIONS[1115]:

– 0: the kinematics is done with tree-level masses.
– 1: the kinematics is done with loop-corrected masses.

The default value is 1.
• DECAYOPTIONS[1116]:
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– 0: MS/DR parameters are used for gauge couplings,
v and Yukawa couplings.

– 1: g1, g2 and v are set to reproduce the measured
values of MZ , αew(MZ ) and sin �W .

– 2: same as1, but in addition the Yukawa couplings are
set to reproduce the measured values of SM fermions.

The default value is 0.
• DECAYOPTIONS[1117]:

– 0: the counter-terms defined in RenConditions
Decays are not used.

– 1: the counter-terms defined in RenConditions
Decays are used.

The default value is 0.
• DECAYOPTIONS[1118]:

– 0: for loop-induced decays tree-level masses are used.
– 1: for loop-induced decays loop-corrected masses are

used.

The default value is 1.

In addition, the following options exist which are mainly
supposed to be used for testing and validation of the virtual
and real corrections:

1 Block DECAYOPTIONS #
2 ...
3 1101 ... # Only ultraviolet divergent parts of integrals
4 1102 ... # Ultraviolet divergence
5 1103 ... # Debug information
6 1104 ... # Only tree -level decay widths
7 ...
8 1201 ... # Photon/Gluon regulator mass
9 1205 ... # Renormalisation scale

The following settings are possible:

• DECAYOPTIONS[1101]: this option can be used to
check the cancellation of ultraviolet divergences.

– 0: One-loop functions employed in the calculation of
one-loop decay widths return the finite part and the
ultraviolet divergence defined in DECAYOPTIONS
[1102].

– 1: Only the ultraviolet divergence defined in
DECAYOPTIONS[1102] is returned.

The default value is 0 .
• DECAYOPTIONS[1102]: this option can be used to

check the cancellation of ultraviolet divergences. X sets
the value used for the ultraviolet divergence 
 defined in
Sect. 2.4. The default value is 0.

• DECAYOPTIONS[1103]:

– 0: No debug information is shown.
– 1: Additional information is shown on the screen.

This includes the individual contributions from ver-

tex, wave-function and real corrections, which are
useful to check the cancellation of ultraviolet and
infrared divergences.

The default value is 0.
• DECAYOPTIONS[1104]: this option can be used to

check the consistency between the tree-level and one-
loop calculation of decay widths.

– 0: The one-loop routines return decay widths at NLO.
– 1: The one-loop routines only return the tree-level

decay widths, which can be compared to the tree-
level results contained in Block DECAY.

The default value is 0.
• DECAYOPTIONS[1201]: this option can be used to

check the cancellation of infrared divergences. X defines
the value (in GeV) used for the photon/gluon mass. The
default value is 1.0E-5. Note that this option does
not work with loop-corrected masses. The user should
ensure that the regulator-mass dependence of vertex and
wave-function corrections cancels against the one of the
real corrections and yields a regulator-mass-independent
decay width. In order to show the individual contributions
DECAYOPTIONS[1103] should be set to 1.

• DECAYOPTIONS[1205]: this option can be used to
check the renormalisation scale dependence. If defined,
X sets the value (in GeV) used for the renormalisation
scale Q in all one-loop functions employed in the calcu-
lation of decay widths. The default option is to use the
same renormalisation scale as used in the calculation of
masses; see Sect. 2.5.

4.4 Output of SPheno

The results of the one-loop calculation of decay widths are
written in the SPheno output. For this purpose, we intro-
duced the keyword DECAY1L beside the standard Block
DECAY which lists the results of the ‘old’, i.e. leading order,
calculation. Thus, for an arbitrary MSSM point, the output
file contains:

1 DECAY 1000001 5.03001929E+01 # Sd_1
2 # BR NDA ID1 ID2
3 2.91393772E-01 2 6 -1000024 # BR(Sd_1 -> Fu_3 Cha_1)
4 1.70527978E-01 2 6 -1000037 # BR(Sd_1 -> Fu_3 Cha_2)
5 2.29399038E-04 2 3 1000023 # BR(Sd_1 -> Fd_2 Chi_2)
6 7.62216405E-03 2 5 1000022 # BR(Sd_1 -> Fd_3 Chi_1)
7 1.47930395E-01 2 5 1000023 # BR(Sd_1 -> Fd_3 Chi_2)
8 1.87674294E-03 2 5 1000025 # BR(Sd_1 -> Fd_3 Chi_3)
9 2.08779423E-03 2 5 1000035 # BR(Sd_1 -> Fd_3 Chi_4)

10 3.78314020E-01 2 1000002 -24 # BR(Sd_1 -> Su_1 VWm )
11 ...
12 DECAY1L 1000001 5.07518318E+01 # Sd_1
13 # BR NDA ID1 ID2
14 2.86487000E-01 2 6 -1000024 # BR(Sd_1 -> Fu_3 Cha_1)
15 1.63886304E-01 2 6 -1000037 # BR(Sd_1 -> Fu_3 Cha_2)
16 2.35164668E-04 2 3 1000023 # BR(Sd_1 -> Fd_2 Chi_2)
17 6.82861774E-03 2 5 1000022 # BR(Sd_1 -> Fd_3 Chi_1)
18 1.50793873E-01 2 5 1000023 # BR(Sd_1 -> Fd_3 Chi_2)
19 1.91193810E-03 2 5 1000025 # BR(Sd_1 -> Fd_3 Chi_3)
20 2.14376064E-03 2 5 1000035 # BR(Sd_1 -> Fd_3 Chi_4)
21 3.87696880E-01 2 1000002 -24 # BR(Sd_1 -> Su_1 VWm )

123



Eur. Phys. J. C   (2017) 77:758 Page 15 of 49  758 

Although this block DECAY1L is not officially supported
by the Les Houches conventions, there are the following rea-
sons not to overwrite the results of the ‘old’ calculation:

• The sizes of the one-loop corrections are immediately
apparent.

• The results given in DECAY are not only pure tree-level
decay widths, but include in particular for the Higgs
decays crucial higher-order corrections adapted from lit-
erature. Those are beyond the one-loop corrections which
we can provide in the new automatised framework at the
moment.

• The ‘old’ calculations also include tree-level three-body
decays. We leave the choice of how to combine them with
the two-body decay widths obtained at the one-loop level
to the user.

5 Numerical results

We start this section with two examples for the calculation of
two-body decay width in the SM, where we demonstrate the
relevance of model- and process-dependent counter-terms.
Our default implementation makes use of an MS or DR renor-
malisation of all parameters of the underlying theory. How-
ever, for many processes different schemes are actually better
suited. This is particularly true for the calculation of elec-
troweak corrections. For this purpose the user of SARAH can
define their own counter-terms, as outlined in Sect. 4.2. We
show two simple examples in the SM, namely the calcula-
tion of the partial decay width t → Wb and H → bb̄.
In the first example we discuss different schemes for the
renormalisation of the electric charge, in the second example
we show that our MS renormalisation for the bottom-quark
Yukawa coupling is actually sufficient. After these examples
we continue with a detailed comparison of our implementa-
tion with existing codes, among them SFOLD, HFOLD and
CNNDecays. Whereas SFOLD and HFOLD are also based
on a DR renormalisation of the parameters of the MSSM, the
codeCNNDecays calculates neutralino and chargino decays
in the MSSM, NMSSM and in models with R-parity violation
again renormalising the electric charge in the Thomson limit.
Thereafter, we compare loop-induced decays with the orig-
inal implementation of SPheno and lastly show the effect
of U -factors in the calculation of two-body decay widths. A
more thorough comparison for Higgs boson decays is left for
future work.

5.1 Renormalisation of α and the top-quark width

First we perform a calculation of the top-quark partial width
in the decay t → Wb including electroweak and QCD cor-
rections using a SM version of SPheno. Since this process

is mediated through the gauge coupling g2 of SU(2)L at tree
level, we will discuss the renormalisation of g2 in this con-
text. We choose the following input parameters:

mt =173.3 GeV, mb=4.75 GeV, mW =80.350 GeV,

(5.1)

αs(mZ ) = 0.1187, α(mZ ) = 1/127.9, Vtb = 1. (5.2)

We neglect quark mixing (i.e. the CKM matrix is approx-
imated by the identity matrix). Note that in a more gen-
eral approach the renormalisation prescription introduced in
Eq. (2.25) can be applied to quark mixing. Subsequently
we employ external tree-level masses without running, i.e.
we effectively calculate with on-shell masses for all three
involved particles (setting flag SPHENOINPUT[61]=0
to disable the RGE running for the parameters and flag
DECAYOPTIONS[1116]=2 to use on-shell mass values).
This also fixes g1, g2 and v,mW from GF ,mZ and α(mZ ).
Our simple MS scheme for the renormalisation of g2 [named
scheme (1)] yields

(1) δg2 = − 1

16π2

19

12
g3

2
. (5.3)

Next, we provide the decay width for the renormalisation
of the electric charge in the Thomson limit of the f f γ -
vertex, i.e. at zero momentum transfer [96]. The counter-
terms for the electric charge are given by (see Ref. [112] for
an overview)

(2) α(0) and δZe(0) = 1

2
�̇γ γ (0) − tan θW

m2
Z

�Zγ (0),

(5.4)

(3) α(mZ ) and δZe(mZ ) = δZe(0) − 1

2
�̇γ γ,light(0)

+ 1

2m2
Z

R̃e�γγ,light(m
2
Z ),

(5.5)

where we distinguish two schemes: At NLO we can make
use of the very precise value of α(0) together with the cor-
responding counter-term δZe(0) or we employ α(mZ ) and
compensate for the shift through the additional terms in
δZe(mZ ). The relevant self-energies include only contribu-
tions from light fermions. Ultimately we also need the renor-
malisation of the weak mixing angle, which is given by

δ cos θW = 1

2
cos θW

(
1

m2
W

�WW (m2
W ) − 1

m2
Z

�Z Z (m2
Z )

)

= − tan θW δ sin θW , (5.6)
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Table 1 Partial decay width
t → Wb in different schemes,
see text for details

Scheme �LO
t→Wb (GeV) �

NLO,EW
t→Wb (GeV) �

NLO,EW+QCD
t→Wb (GeV)

(1), α(0), Q = 173 GeV 1.443 1.487 [+3.0%] 1.352 [−0.135][−9.1%]
(1), α(mZ ), Q = 173 GeV 1.546 1.596 [+3.2%] 1.452 [−0.144][−9.0%]
(2), α(0) 1.443 1.519 [+5.3%] 1.384 [−0.135][−8.9%]
(3), α(mZ ) 1.546 1.522 [−1.6%] 1.378 [−0.144][−9.5%]

Table 2 Partial decay width
H → bb̄ for different values of
Q, see text for details

Scale �LO
H→bb̄

(MeV) �
NLO,EW
H→bb̄

(MeV) �
NLO,EW+QCD
H→bb̄

(MeV)

Q = 125 GeV 1.959 1.972 [+0.6%] 2.376 [+20.5%]
Q = 62.5 GeV 2.188 2.215 [+1.5%] 2.473 [+11.6%]
Q = 250 GeV 1.778 1.783 [+0.3%] 2.280 [+27.8%]

such that in schemes (2) and (3) we obtain

δg2 =
(

δZe − δ sin θW

sin θW

)
g2. (5.7)

In this section we keep α and αs fixed as a function of the
renormalisation scale Q and therefore schemes (2) and (3)

lead to a scale-independent partial decay width, whereas
scheme (1) develops a scale dependence. Also, in scheme
(1) it is a priori not clear whether α(0) or α(mZ ) is the bet-
ter choice, so we provide both values. The results are shown
in Table 1. We include the LO partial width as well as the
NLO partial width only including electroweak and including
electroweak and QCD corrections. We also provide (absolute

and) relative corrections in brackets. For �
NLO,EW+QCD
t→Wb they

are with respect to the partial width �
NLO,EW
t→Wb .

For scheme (1) evaluated with α(mZ ) we obtain
�

NLO,EW+QCD
t→Wb = 1.434 GeV at Q = 90 GeV, which demon-

strates that the renormalisation scheme dependence is not
very pronounced. The absolute QCD correction remains con-
stant (for fixed values of α and αs) and yields ∼ −9% as
expected [113,114]. It is apparent that schemes (2) and (3)
yield very comparable results at NLO despite the different
input values for α. This is due to the compensation through
the shift in the counter-term, which guarantees that the elec-
tric charge is renormalised in the Thomson limit. In contrast
scheme (1) shows a significant dependence on the input value,
where not surprisingly the choice α(0) comes closer to the
results in schemes (2) and (3).

We conclude that for precision predictions the proper
renormalisation of certain parameters is rather important.
The relevant counter-terms for scheme (3) can be defined
by the user in the SARAH framework as discussed in
Sect. 4.2 through RenConditionsDecays. Note that
such counter-terms will only apply at the moment to the cal-
culation of decay widths, not to the calculation of masses.

5.2 Renormalisation of Yukawa couplings and fermionic
Higgs decays

We also briefly discuss the calculation of H → bb̄ in the
SM, which is mediated through the bottom-quark Yukawa
coupling Yb, and it turns out that the MS renormalisation of
Yb is the preferred choice. A priori, we would expect that the
calculation of NLO electroweak corrections [115–117] would
again be optimally performed using an on-shell renormali-
sation of all parameters involved. The counter-term of the
bottom-quark Yukawa coupling in the on-shell case is given
by

δY os
b = 1

v

(√
2δmb − Ybδv

)
, (5.8)

such that renormalisation prescriptions for δmb and δv

are needed. Whereas δmb can be obtained from the self-
energies of the down-type quarks, the on-shell renormali-
sation of the vacuum expectation value depends on other
parameters: one requires that renormalised tadpoles van-
ish as well as the on-shell renormalisation of the Higgs
mass and the Higgs self-coupling, see e.g. Ref. [117]. Also,
such counter-terms can be implemented in principle through
RenConditionsDecays. However, it turns out that elec-
troweak corrections are small (∼ 1%) for a Higgs mass
of mH = 125 GeV. In contrast QCD corrections are much
larger and for them the renormalisation of the Yukawa
coupling in the MS scheme is more convenient, since it
resums large logarithms [118,119]. We demonstrate this
effect in Table 2, which is obtained with the SM version
of SPheno setting flag DECAYOPTIONS[1116]=1 and
flag SPHENOINPUT[61]=1. Through these settings Yb as
well as the gauge couplings, in particular αs , are evaluated
at the renormalisation scale Q and for Yb the MS scheme is
employed. We again depict the LO as well as the NLO par-
tial width with only electroweak as well as electroweak and
QCD corrections including relative corrections. The most rel-
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evant parameters are mH = 125 GeV, mb(mb) = 4.18 GeV
and αs(mZ ) = 0.1187. The running to Q = mH yields
Yb ∝ mb(mH ) = 2.781 GeV and αs(mZ ) = 0.1133.

We see from Table 2 that the electroweak corrections
are indeed small. The QCD corrections coincide with the
term found in the literature, being 5.667αs(mH )/π ∼
20.4% [120]. The depicted scale dependence can be used
to estimate the remaining uncertainties, which can be signif-
icantly reduced by including higher-order QCD corrections
beyond one-loop level.

5.3 Comparison with other codes

In order to further validate our calculations and implemen-
tations, we compared the obtained results for the MSSM and
in R-parity violating models against other public tools.

Our comparison is twofold: we compared neutralino and
chargino decays into neutralinos and charginos and heavy
gauge bosons withCNNDecays, where we employ a full on-
shell scheme for the gauge couplings, but work with tree-level
neutralino and chargino masses. We use the counter-terms for
the electroweak sector as outlined in Sect. 4.2. Given that we
adjust all input parameters to be identical, we can therefore
exactly reproduce the results of CNNDecays.

Secondly, we made use of the three codes SFOLD,HFOLD
and FVSFOLDwhich also use a DR scheme for the renormal-
isation of the parameters of the MSSM to calculate one-loop
corrections to two-body decays. Since these codes do not
make use of external U -factors, we have turned them off in
our evaluation withSPheno. In addition, we forced all codes
to use tree-level (DR) masses in all loops and for the kinemat-
ics. Thus, the partial widths and the size of the loop correc-
tions presented in the following might be of limited physical
interest since the inclusion of U -factors and external loop-
corrected masses can change the results substantially, see
also Sect. 5.4. Thus in this section our aim is to only demon-
strate the agreement (and disagreement) between the codes.
For the comparison with SFOLD, HFOLD and FVSFOLD we
have chosen a parametrisation for the general MSSM which
depends only on one dimensionful parameter m as follows:

M1 = 0.3m, M2 = 0.75m, M3 = 2.5m,

μ = 0.5m, M2
A = 3m2,

m2
d̃,11

= m2, m2
d̃,22

= m2, m2
d̃,33

= 0.5m2,

m2
ũ,11 = m2, m2

ũ,22 = m2, m2
ũ,33 = 0.5m2,

m2
q̃,11 = m2

q̃,22 = m2, m2
q̃,33 = 2m2,

m2
ẽ,11 = m2

ẽ,22 = m2
ẽ,33 = 0.25m2,

m2
l̃,11

= m2
l̃,22

= 0.25m2, m2
l̃,33

= m2,

Tu,33 = m, Te,33 = 0.5m. (5.9)

All other soft-terms are set to zero. This parametrisation has
no physical motivation but was chosen in a way to open
many different decay channels to be compared among the
codes. In addition, we fixed tan β = 10. We show results
for the predicted partial widths when varying m from 300 to
2500 GeV.

We also performed a comparison for the loop-induced neu-
tralino and gluino decays which were already implemented
in SPheno. The details of this comparison and the outcome
are summarised in Sect. 5.3.5.

5.3.1 Neutralino and chargino decays in the MSSM and in
bilinear R-parity violation: CNNDecays vs. SARAH

We compared the decay modes χ̃±
i → χ̃0

j W
± and χ̃0

i →
χ̃∓
j W

± as well as χ̃0
i → χ̃0

j Z and χ̃±
i → χ̃±

j Z in the R-
parity conserving MSSM and adding bilinear R-parity vio-
lation. Bilinear R-parity violation allows an explanation of
neutrino masses, but makes the lightest supersymmetric par-
ticle (LSP) unstable. Since its decay modes are related to
the R-parity violating parameters, which are small in order
to explain the size of neutrino masses, the decay width of
the LSP is also small. We remain with real parameters, both
in the MSSM as well as for the R-parity breaking param-
eters. We adjust the tree-level masses and mixing as well
as the gauge couplings g1 and g2 to be exactly identical in
both codes and also ensure to choose the same renormal-
isation scale (through DECAYOPTIONS[1205]), namely
Q = mZ . Since we employ the renormalisation of the elec-
tric charge in the Thomson limit as outlined in Sect. 4.2,
the partial decay widths are in principle all renormalisation-
scale independent, however, we also want to compare wave-
function and vertex corrections individually. We find full
agreement between both codes, i.e. numerically identical
results beyond 8 digits in the MSSM. In particular this is
also true for the vertex and wave-function corrections indi-
vidually as well as the individual pieces to the counter-terms.
Also for the R-parity violating decays χ̃0

4 → l∓W± in bilin-
ear R-parity violation we find agreement at the per mille
level; the smallness of couplings and masses makes those
decay modes more sensitive to numerical errors (factors too
small or large for the precision of the code). Decay modes
into light neutrinos and a gauge boson or a scalar like e.g.
χ̃0

4 → νZ or νS, which are of relevance for R-parity vio-
lating scenarios, suffer from bad numerical errors. There-
fore, neutrino masses, which are analytically zero at tree
level, are set to zero in the calculation of one-loop decays.
In contrast, the mixing matrix of neutrinos (and neutralinos)
remains exact, such that the associated error is small. As we
already explained a detailed check of CP-violating scenarios
as discussed in Refs. [67,70,78] is left for future work for
the reasons explained in Sect. 2.8.
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5.3.2 Sfermion decays in the MSSM: SARAH vs. SFOLD

Next we turn to the comparison of the two-body decays of
sfermions in the MSSM. For this purpose, we compared our
results against the public code SFOLD 1.2. We have applied
several modifications to the code SFOLD:

• The variable to use loop masses either in the loops or in
the kinematics are set to 0 in SFOLD.F:

1 osextmassesOn = 0
2 osloopmassesOn = 0

This is done to ensure that the two codes use exactly the
same masses everywhere.

• We find a disagreement for the bremsstrahlung routines
for S → SV decays. Therefore, we add to line 440 in
Bremsstrahlung.F of SFOLD the terms:

1 -2*g1**2*gt*gtC*Ii - 2*g1**2*gt*gtC*I0up1

• We find for S → SS and S → SV decays huge numer-
ical loop-corrections that could even cause a negative
width. We could trace back the problem to diagrams with
two massive vector bosons in the loop.5 The problem is
avoided by setting

1 Xipart1 = 0d0

in Decay.F of SFOLD. With this choice, it is no longer
possible to change the gauge in SFOLD, but the results
are only valid in Feynman-’t Hooft gauge, sufficient for
our comparison.

• We find that SFOLD uses a different renormalisation pre-
scription for the rotation matrices: it includes only the
divergent parts for the counter-terms, while SARAH cal-
culates the counter-terms from the wave-function renor-
malisation constants using Eq. (2.25). In particular for
S → SV decays this can induce large differences in the
one-loop corrections. If the finite parts for the counter-
terms of the rotation matrices are included, a cancellation
between the wave-function corrections and the counter-
term correction appears which in sum gives much smaller
one-loop corrections. Therefore, we added at the end of
the file CalcRenConst99.F of SFOLD the following
re-definitions of the counter-terms:

5 In a private discussion with one author of SFOLD the origin of the
problem could not be identified. It might be a numerical problem with
the high-rank loop integrals which appear when performing the calcu-
lation in Rξ gauge.

1 Do i1=1,3
2 Do i2=1,3
3 dUSf1(:,:,i1,i2) = 0.25* MatMul(dZSf1(:,:,i1,i2) &
4 & - Conjg(Transpose(dZSf1(:,:,i1,i2))),USf(:,:,i1,i2))
5 dUSfC1(:,:,i1,i2) = Conjg (0.25* MatMul(dZSf1(:,:,i1 ,i2) &
6 & - Conjg(Transpose(dZSf1(:,:,i1,i2))),USf(:,:,i1,i2)))
7 End Do
8 End Do
9 dVCha1 = MatMul(dZChaL1 - Conjg(Transpose(dZChaL1)),VCha)/4

10 dUCha1 = MatMul(dZChaR1 - Conjg(Transpose(dZChaR1)),UCha)/4
11 dZNeuRM1 = MatMul(dZNeuL1 - Conjg(Transpose(dZNeuL1)),ZNeu)/4
12 dVChaC1 = Conjg(dVCha1)
13 dUChaC1 = Conjg(dUCha1)
14 dZNeuRMC1 = Conjg(dZNeuRM1)

The results for some representative decays for the light and
heavy stop are shown in Fig. 4. Here and in the following we
give the partial widths at LO and NLO as well as the relative
size of the one-loop corrections defined as


� = �NLO − �LO

�LO . (5.10)

With our described adjustments we find an excellent
agreement for the heavy stop decays into a Higgs or a gauge
boson and a stop or sbottom. While the corrections for the
decays into gauge bosons are comparably small and only of
order of a few per-cent, the situation changes if the finite
parts for the counter-terms described above are not included.
In that case, i.e. when using SFOLD out of the box, the cor-
rections for the decays with a Z or W boson in the final state
can be a factor of 10 larger. For the decays into a pair of
fermions we also find very good agreement with only very
small differences for small values of m. Similarly we show
the results for the light and heavy sbottom decays in Fig. 5.
Here, the results are very similar to those of the stop decays.
We do not add figures for stau or τ -sneutrino decays, or the
decays of first and second generation sfermions; they would
look very similar to the ones for stop and sbottoms, only the
overall size of the loop corrections being smaller. Thus, in
total we found a very good agreement between SARAH and
SFOLD for all kinds of two-body decays of sfermions.

5.3.3 Gluino decays in the MSSM: SARAH vs. FVSFOLD

In this section we compare the decays of gluinos in the MSSM
obtained with SARAH and SPheno against the results gen-
erated with the code FVSFOLD. We also performed similar
adjustments in FVSFOLD as done for SFOLD for our com-
parison. However,FVSFOLD already includes the finite parts
of the counter-terms of the squark rotation matrices, i.e. it
was not necessary to add those. Therefore without any larger
adjustments, we find a very good agreement between SARAH
and FVSFOLD as shown in Fig. 6 Thus, SARAH reproduces
also the result of Ref. [121], namely that the one-loop cor-
rections to gluino decays reduce the decay width by about
10%.
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Fig. 4 Comparison between SARAH and SFOLD for selected stop decays. On the left, the loop-corrected partial widths are shown. On the right,
the relative size of the loop correction is given. Blue lines are obtained with SARAH, red lines with SFOLD

5.3.4 Heavy Higgs decays in the MSSM: SARAH vs. HFOLD

SARAH also makes predictions for the one-loop corrections
of Higgs boson decays. However, it must be clearly stated
that those predictions have to be interpreted with some care:
the automatised calculations are not yet optimised for the
calculation of Higgs boson decays, in particular for the SM-
like Higgs boson. For such decays, we leave an appropriate
definition of counter-terms, following our explanations in
Sect. 4.2, to future work. One reason is that for consistency it
will be necessary to use the counter-terms in the calculation
of the mass spectrum as well. This is, however, not yet pos-
sible. We want to stress that SARAH already calculates the
light Higgs into SM particle decays by adapting higher-order
corrections (even beyond NLO) for the SM and MSSM from

literature. Thus, the ‘old’ results obtained with SARAH are
expected to be more accurate.

On the other hand, for the decays of heavy Higgs bosons,
whose mass corrections are usually much smaller, and/or
for decays into BSM states the applied NLO corrections are
expected to work well, and the obtained results supersede
the pure tree-level calculations often done for these decay
modes. In order to validate these results, we compared them
against the codeHFOLDwhich also makes predictions for the
one-loop corrections of Higgs decays in the MSSM. Here, we
made the same adjustments as forFVSFOLD: on-shell masses
in loops and kinematics have been turned off. In addition, we
needed to turn off all improvements for the ‘old’ calcula-
tion in SPheno to obtain equivalent LO results to HFOLD.
The results are summarised in Fig. 7 where we compare our
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Fig. 5 The same as Fig. 4 for sbottom decays

Fig. 6 Comparison between SARAH and FVSFOLD for gluino decays. On the left, the loop-corrected partial widths are shown. On the right, the
relative size of the one-loop correction is given. Blue lines are obtained with SARAH, red lines with FVSFOLD
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Fig. 7 Comparison between SARAH and HFOLD for the heavy CP-even and -odd Higgs. On the left, the loop-corrected partial widths are shown.
On the right, the relative size of the loop correction is given. Blue lines are obtained with SARAH, red lines with HFOLD

results for the decays of the neutral heavy Higgs states H and
A0 into SUSY particles and SM-like Higgs bosons. Without
further modifications we find that the predictions of the size
of the one-loop corrections of both codes agree rather well
in particular in the dominant decay modes. However, we find
that for decay channels with small partial widths also size-
able differences can be present. A detailed investigation of
the remaining differences and also a comparison with other
Higgs boson decay widths calculations is left for a dedicated
work. Such a future investigation should also focus on the
detailed derivation and incorporation of theU -factors, which
admix the Higgs bosons beyond tree level. This is particu-
larly crucial when comparing to codes such as NMSSMCalc
or FeynHiggs, where the definition of their Z -factors is

different [40,108]. We briefly discuss the relevance of U -
factors for Higgs boson decays in Sect. 5.4.

5.3.5 Radiative neutralino and gluino decays: SARAH vs.
SPheno

SARAH does not only calculate the one-loop corrections to
tree-level two-body decays, but also calculates the LO result
for loop-induced decay widths.6 The most important applica-

6 Even if SARAH will use the new routines to obtain also loop-induced
decay width for Higgs states, one should still use the old results for
the diphoton and digluon rates. The latter also include the full model
dependence at LO but in addition also higher-order QCD corrections,
see Ref. [122].
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Fig. 8 Comparison between SARAH (blue) and SPheno (red) for the
loop-induced decays of the neutralino and gluino. On the left, the partial
widths are shown. Blue lines are obtained with SARAH, red lines with
SPheno. On the right, the relative difference between the codes as a
function of the mass splitting is shown (not 
� from Eq. (5.10)). In the

case of the neutralino decay we show the impact of theU -factors, while
for the gluino decays we compare the different kind of neutralinos. The
colour code for the upper right figure is: blue for a bino LSP and red for
a wino LSP

tions for these routines are radiatively induced decays of BSM
particles. The main candidates for such decays in the MSSM
are χ̃0

2 → χ̃0
1 γ and g̃ → χ̃0

1 g. Those decays were already
implemented in SPheno based on the results of Ref. [123].
For our comparison, we choose parameter points with a light
mass splitting between: (i) a bino and wino LSP and NLSP,
respectively; (ii) the gluino and all three kinds of neutrali-
nos. For the case of the neutralino decay, the result for the
obtained width as a function of the wino mass parameter
M2 as well as the relative difference between SPheno and
SARAH as a function of the mass splitting are shown in Fig. 8.
We show the SARAH results for three different choices of
the U -factors: (i) without U -factors, (ii) using the rotation
matrices obtained with the momentum being the mass of the
lightest neutralino in all vertices, (iii) using p2-dependent
U -factors. The second option corresponds to the procedure
applied in SPheno and thus we find a reasonable agreement
within 10%. The results without U -factors are very similar
and only very close to the level crossing visible differences
occur. However, when using the p2-dependentU -factors, the
obtained width is significantly smaller. This is due to a can-
cellation between the vertex and wave-function corrections,
which is most efficient when including the p2 dependence in
the U -factors. For the decays of the gluino into a neutralino
and gluon, we find very good agreement between SPheno

andSARAH for all three kinds of neutralinos, see again Fig. 8.
Note that throughout the calculation of loop-induced decays
loop-corrected masses are inserted.

5.4 Impact of external U -factors

Before we conclude, we want to give some impression of the
numerical impact induced by the inclusion of U -factors. For
this purpose, we show in Figs. 9, 10 and 11 the size of the one-
loop corrections for selected stop, sbottom and Higgs decays,
respectively, using the three available options to calculate the
U -factors. We apply loop-corrected DR masses for all cases
and particles, i.e. DECAYOPTIONS[1115]=1. We focus
on two effects: First we apply U -factors both at LO and NLO
equally and, in the left figures, show the relative correction
induced by the NLO corrections. Second, in the right figures,
we show the effect of including the U -factors in the NLO
calculation compared to the NLO decay width calculation
without external U -factors. More precisely, the value 
U

shown is defined as


U =
(

�NLO
0 −�LO

0

�LO
0

)−1 (
�NLO
U −�LO

U

�LO
U

− �NLO
0 − �LO

0

�LO
0

)
.

(5.11)
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Fig. 9 Impact of the external U -factors for sbottom decays. On the
left side, we show the relative NLO correction when equal U -factors
are applied at LO and NLO. On the right side, we show the relative

NLO correction for different U -factors normalised to the relative NLO
correction without U -factors defined in Eq. (5.11)

Fig. 10 Same as Fig. 9 for decays of stops
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Fig. 11 Same as Fig. 9 for decays of the heavy CP-even Higgs boson

Here, �0 are the decay widths without applying U -factors.

U encodes the difference in the relative correction factor
from LO to NLO when applying U -factors in contrast to not
applying U -factors. It thus encodes the effect of U -factors
in the one-loop correction, factoring out their effect already
present at tree level. Depending on the particle species the
effect at tree level can already be pronounced, and thus was
already included in previous SARAH and SPheno versions.
We therefore focus on the effect of the U -factors in the rela-
tive NLO correction.

For the sbottom decays into gauginos depicted in Fig. 9
the changes due to the inclusion of U -factors are moderate.
From the left figures it is apparent that the size of NLO cor-
rections is mostly independent of the inclusion of U -factors.
From the right figures we deduce that the effect of U -factors
on the relative NLO correction remains below 10% for all
choices. The reason is that the left–right mixing in the sbot-
tom sector is in general small and nearly identical at tree and
loop level. Thus the U matrices are almost diagonal. This is
different for the decays of stops shown in Fig. 10 where the
left–right mixing is more pronounced. This mixing receives
also a sizeable radiative correction which is encoded in the
U -factors. Consequently, there is also a larger sensitivity on
how this matrix is calculated and incorporated as shown in the
right two figures. We find that the results without momentum-
dependence can differ from the other two options by 30% for
the considered decays. For the heavy stop, this effect is even
more pronounced. However, for the decay width t̃2 → χ̃0

4 t ,
where the relative NLO corrections encoded in 
U differ by
more than 100%, the absolute NLO correction almost van-
ishes, as can be seen from the left figure. Thus, in all exam-
ples for stop and sbottom decays, the inclusion of U -factors
gives only a moderate change in the relative NLO correc-
tions once (momentum-dependent) U -factors are taken into
account compared to the calculation without U -factors.

This is slightly different for the heavy Higgs decays shown
in Fig. 11. As shown in the left figures all three options for the
U -factors can alter the size of the relative NLO corrections
significantly. In the right figures it is apparent that even for the

relative NLO correction differences of 50% and more com-
pared to the calculations without U -factors are easily possi-
ble, a fact which is well known for Higgs bosons. This shows
the need to properly include these factors for Higgs boson
decays even if the radiative corrections to the masses are mod-
erate and the particles are clearly separated in their masses.
Further studies for Higgs boson decays and a comparison of
the U -factors to Z -factors as discussed in Refs. [40,108] are
in order in future work.

6 Conclusions

In this paper we described a fully generic implementation
of the calculation of two-body decay widths at the full one-
loop level in the SARAH and SPheno framework, which
can be used in a wide class of supported models. We pre-
sented the necessary generic expressions for virtual and real
corrections. Wave-function corrections are determined from
on-shell conditions. On the other hand, the parameters of
the underlying model are by default renormalised in a DR
(or MS) scheme. We described how higher-order corrections
for the external states can be taken into account. We also
explained how we restore gauge invariance as well as ultra-
violet and infrared finiteness when setting the external masses
to their loop-corrected values. We commented on the draw-
backs compared to a full on-shell approach which is model
and process dependent.

We have shown how the new features of SARAH and
SPheno can be used and how the user can implement own
counter-terms to be used for the calculation of two-body
decay widths. We studied the impact and relevance of such
counter-terms for two examples in the SM, namely the decay
to the top-quark and the SM Higgs boson decay into bottom
quarks. In addition, we compared our implementation for
sfermion and gluino decays within the MSSM against other
available codes, namely SFOLD, HFOLD and FVSFOLD,
which also employ a DR renormalisation for the MSSM
parameters. After a few described adjustments in those codes
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we found an overall excellent agreement. For the MSSM and
R-parity violating models we also compared chargino and
neutralino decays against CNNDecays, which uses a full
on-shell scheme for masses and couplings and found numer-
ically identical results.

The new extension is included in SARAH 4.11.0 and
makes it possible to study radiative corrections to two-body
decay modes in many different supersymmetric and non-
supersymmetric models. However, models with CP viola-
tion and/or (additional) massive gauge bosons charged under
U(1)em ×SU(3)c are not yet supported. This is left for future
work. Other future extensions aim at necessary improve-
ments to better handle Higgs boson decays, in particular for
the decays of the SM-like Higgs boson to SM particles and
the inclusion of external higher-order mass and mixing cor-
rections. Lastly the inclusion of decays of gauge bosons is in
order, but it is left for future work.
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Appendix A: Conventions and expressions for loop con-
tributions

In this section we present our conventions for vertices and the
generic expressions for the loop contributions to the wave-
function corrections and the vertex corrections (Figs. 12,
13, 14, 15, 16, 17, 18, 19, 20). We factor out the Lorentz-
dependent part of the vertices and work with the following
conventions.

(a) (b)

Fig. 12 Generic one-loop diagrams for the fermion self-energy

• FFS vertex (F̄1F2S)

cL PL + cR PR . (A.1)

• FFV vertex (F̄1F2Vμ)

γμ(cL PL + cR PR). (A.2)

• SSV vertex (S∗
1 S2Vμ)

c(pS1
μ − pS2

μ ). (A.3)

• SV V vertex (S1V ν
1 V

μ
2 )

cgμν. (A.4)

• VVV vertex (V 1
μV

2
ν V

3
σ )

c
[
gμν(p

V2
σ − pV1

σ )+gνσ (pV3
μ − pV2

μ )+gμσ (pV1
ν − pV3

ν )
]
.

(A.5)

• VVVV vertex (V 1
μV

2
ν V

3
σ V

4
ρ )

c1gμνgσρ + c2gμσ gνρ + c3gμρgνσ . (A.6)

For the loop corrections SARAH inserts the various particle
species of the model under consideration also taking into
account additional symmetry and colour factors, which are
not depicted here. The various contributions are then summed
up using

MV
i =

∑
k

1

16π2 M
(k)
i (A.7)

and

� =
∑
k

1

16π2 �(k), �̇ =
∑
k

1

16π2 �̇(k), (A.8)

X =
∑
k

1

16π2 
(k)
X , ̇X =

∑
k

1

16π2 ̇
(k)
X . (A.9)

All results in the following are expressed in terms of
Passarino–Veltman integrals. The scalar loop functions A0,
B0 and C0 are calculated numerically in SPheno accord-
ing to the standard recipe of Ref. [124]. Tensor integrals
are related to the scalar functions according to the famous
techniques developed in Ref. [125]. Explicit expressions for
derivatives of two-point functions, Ḃ0, Ḃ1, which are used
by SPheno are given in the appendix of Ref. [75].
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(a) (b) (c)

(f)(e)(d)

(g)

Fig. 13 Generic one-loop diagrams for the scalar self-energy

(a) (b) (c)

(f)(e)(d)

(g)

Fig. 14 Generic one-loop diagrams for the gauge boson self-energy

123



Eur. Phys. J. C   (2017) 77:758 Page 27 of 49  758 

Fig. 15 Generic diagrams
contributing to F → FS decays

(a) (b) (c)

(f)(e)(d)

Fig. 16 Generic diagrams
contributing to F → FV decays

(a) (b) (c)

(f)(e)(d)

Fig. 17 Generic diagrams
contributing to S → FF decays

(a) (b) (c)

(f)(e)(d)
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(h)(g)(f)(e)

(l)(k)(j)(i)

(a) (b) (c) (d)

(m) (n) (o) (p)

Fig. 18 Generic diagrams contributing to S → SS decays

A.1: Wave-function corrections

A.1.1: Fermion

(a) FS diagram


(a)
L = − 2c1

Lc
2
L B1(p

2,m2
1,m

2
2), (A.10)


(a)
R = − 2c1

Rc
2
R B1(p

2,m2
1,m

2
2), (A.11)


(a)
SL = 2c1

Rc
2
Lm1B0(p

2,m2
1,m

2
2), (A.12)


(a)
SR = 2c1

Lc
2
Rm1B0(p

2,m2
1,m

2
2), (A.13)

̇
(a)
L = − 2c1

Lc
2
L Ḃ1(p

2,m2
1,m

2
2), (A.14)

̇
(a)
R = − 2c1

Rc
2
R Ḃ1(p

2,m2
1,m

2
2), (A.15)

̇
(a)
SL = 2c1

Rc
2
Lm1 Ḃ0(p

2,m2
1,m

2
2), (A.16)

̇
(a)
SR = 2c1

Lc
2
Rm1 Ḃ0(p

2,m2
1,m

2
2). (A.17)

(b) FV diagram


(b)
L = − 4c1

Rc
2
R

(
B1(p

2,m2
1,m

2
2) + 1

2
r

)
, (A.18)


(b)
R = − 4c1

Lc
2
L

(
B1(p

2,m2
1,m

2
2) + 1

2
r

)
, (A.19)


(b)
SL = − 8c1

Lc
2
Rm1

(
B0(p

2,m2
1,m

2
2) − 1

2
r

)
, (A.20)


(b)
SR = − 8c1

Rc
2
Lm1

(
B0(p

2,m2
1,m

2
2) − 1

2
r

)
, (A.21)

̇
(b)
L = − 4c1

Rc
2
R Ḃ1(p

2,m2
1,m

2
2), (A.22)

̇
(b)
R = − 4c1

Lc
2
L Ḃ1(p

2,m2
1,m

2
2), (A.23)

̇
(b)
SL = − 8c1

Lc
2
Rm1 Ḃ0(p

2,m2
1,m

2
2), (A.24)

̇
(b)
SR = − 8c1

Rc
2
Lm1 Ḃ0(p

2,m2
1,m

2
2). (A.25)

For Majorana fermions, an additional overall factor 1
2 is

present.
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(a) (b) (c) (d)

(h)(g)(f)(e)

(l)(k)(j)(i)

(m) (n)

Fig. 19 Generic diagrams contributing to S → SV decays

A.1.2: Scalar

(a) FF diagram

�
(a)
SS = (c1

Lc
2
L + c1

Rc
2
R)G0(p

2,m2
1,m

2
2)

− 2(c1
Lc

2
R + c1

Rc
2
L)B0(p

2,m2
1,m

2
2), (A.26)

�̇
(a)
SS = (c1

Lc
2
L + c1

Rc
2
R)Ġ0(p

2,m2
1,m

2
2)

− 2(c1
Lc

2
R + c1

Rc
2
L)Ḃ0(p

2,m2
1,m

2
2), (A.27)

with

G0(p
2,m2

1,m
2
2) = − A0(m

2
1) − A0(m

2
2)

+ (p2 − m2
1 − m2

2)B0(p
2,m2

1,m
2
2),

(A.28)

Ġ0(p
2,m2

1,m
2
2) = (p2 − m2

1 − m2
2)Ḃ0(p

2,m2
1,m

2
2)

+ B0(p
2,m2

1,m
2
2). (A.29)

(b) SS diagram

�
(b)
SS = c1c2B0(p

2,m2
1,m

2
2), (A.30)

�̇
(b)
SS = c1c2 Ḃ0(p

2,m2
1,m

2
2). (A.31)

(c) UU diagram

�
(c)
SS = − c1c2B0(p

2,m2
1,m

2
2), (A.32)

�̇
(c)
SS = − c1c2 Ḃ0(p

2,m2
1,m

2
2). (A.33)

(d) VV diagram

�
(d)
SS = 4c1c2

(
B0(p

2,m2
1,m

2
2) − 1

2
r

)
, (A.34)

�̇
(d)
SS = 4c1c2 Ḃ0(p

2,m2
1,m

2
2). (A.35)

(e) SV diagram

�
(b)
SS = c1c2F0(p

2,m2
1,m

2
2), (A.36)

�̇
(b)
SS = c1c2 Ḟ0(p

2,m2
1,m

2
2) (A.37)
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(a) (b) (c) (d)

(h)(g)(f)(e)

(l)(k)(j)(i)

(m) (n)

Fig. 20 Generic diagrams contributing to S → VV decays

with

F0(p
2,m2

1,m
2
2) = A0(m

2
1) − 2A0(m

2
2)

− (2p2 + 2m2
1 − m2

2)B0(p
2,m2

1,m
2
2),

(A.38)

Ḟ0(p
2,m2

1,m
2
2) = −2B0(p

2,m2
1,m

2
2)

− (2p2 + 2m2
1 − m2

2)Ḃ0(p
2,m2

1,m
2
2).

(A.39)

(f) S diagram

�
( f )
SS = − c1A0(m

2
1), (A.40)

�̇
( f )
SS = 0. (A.41)

(g) V diagram

�
( f )
SS = c1

(
A0(m

2
1) − 1

2
rm2

1

)
, (A.42)

�̇
( f )
SS = 0. (A.43)

A.1.3: Gauge boson

(a) FF diagram

�
(a)
VV = (c1

Lc
2
L + c1

Rc
2
R)H0(p

2,m2
1,m

2
2)

+ 4(c1
Lc

2
R + c1

Rc
2
L)B0(p

2,m2
1,m

2
2), (A.44)

�̇
(a)
VV = (c1

Lc
2
L + c1

Rc
2
R)Ḣ0(p

2,m2
1,m

2
2)

+ 4(c1
Lc

2
R + c1

Rc
2
L)Ḃ0(p

2,m2
1,m

2
2) (A.45)

with

H0(p
2,m2

1,m
2
2) = 4B00(p

2,m2
1,m

2
2) − A0(m

2
1) − A0(m

2
2)

+ (p2 − m2
1 − m2

2)B0(p
2,m2

1,m
2
2),

(A.46)
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Ḣ0(p
2,m2

1,m
2
2) = 4Ḃ00(p

2,m2
1,m

2
2)

+ (p2 − m2
1 − m2

2)Ḃ0(p
2,m2

1,m
2
2)

+ B0(p
2,m2

1,m
2
2). (A.47)

(b) SS diagram

�
(b)
VV = − 4c1c2B00(p

2,m2
1,m

2
2), (A.48)

�̇
(b)
VV = − 4c1c2 Ḃ00(p

2,m2
1,m

2
2). (A.49)

(c) UU diagram

�
(c)
VV = c1c2B00(p

2,m2
1,m

2
2), (A.50)

�̇
(c)
VV = c1c2 Ḃ00(p

2,m2
1,m

2
2). (A.51)

(d) VV diagram

�
(d)
VV = − c1c2V0(p

2,m2
1,m

2
2), (A.52)

�̇
(d)
VV = − c1c2V̇0(p

2,m2
1,m

2
2) (A.53)

with

V0(p
2,m2

1,m
2
2) = 10B00(p

2,m2
1,m

2
2)

+ (m2
1 + m2

2 + 4p2)B0(p
2,m2

1,m
2
2)

+ A0(m
2
1) + A0(m

2
2)

− 2r

(
m2

1 − m2
2 − 1

3
p2

)
, (A.54)

V̇0(p
2,m2

1,m
2
2) = 10Ḃ00(p

2,m2
1,m

2
2)

+ (m2
1 + m2

2 + 4p2)Ḃ0(p
2,m2

1,m
2
2)

+ 4B0(p
2,m2

1,m
2
2). (A.55)

(e) SV diagram

�
(e)
VV = c1c2B0(p

2,m2
1,m

2
2), (A.56)

�̇
(e)
VV = c1c2 Ḃ0(p

2,m2
1,m

2
2). (A.57)

(f) S diagram

�
( f )
VV = c1A0(m

2
1), (A.58)

�̇
( f )
VV = 0. (A.59)

(g) V diagram

�
( f )
VV = − (4c1

1 + c1
2 + c1

3)A0(m
2
1) + 2m2

1c
1
1r, (A.60)

�̇
( f )
VV = 0. (A.61)

A.2: Vertex corrections

A.2.1: Fermion to fermion and scalar decays

(a) SFF diagram

M (a)
1 = i

[
B0c

1
Rc

2
Rc

3
L + C1c

1
Rc

2
Rc

3
L p

2
0 − C2c

1
Lc

2
Lc

3
R p0 p1

− C0c
1
Rc

2
Rc

3
L p

2
1 − C1c

1
Rc

2
Rc

3
L p

2
1

− C2c
1
Rc

2
Rc

3
L p

2
1 + C0c

1
Rc

2
Rc

3
Lm

2
1

+ C1c
1
Lc

2
Rc

3
L p0m2 − C1c

1
Rc

2
Lc

3
R p1m2

− C2c
1
Rc

2
Lc

3
R p1m2 + (C1c

1
Lc

2
Rc

3
R p0

− (C1 + C2)c
1
Rc

2
Lc

3
L p1

+ C0(c
1
Lc

2
Rc

3
R p0 − c1

Rc
2
Lc

3
L p1 + c1

Rc
2
Rc

3
Rm2))m3

]
,

(A.62)

M (a)
2 = M (a)

1 |L ↔ R, (A.63)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

2, p
2
0, p2

1,m2
3,

m2
2,m

2
1).

(b) FSS diagram

M (b)
1 = − ic3(C2c

1
Lc

2
R p0 + C1c

1
Rc

2
L p1 − C0c

1
Rc

2
Rm1),

(A.64)

M (b)
2 = M (b)

1 |L ↔ R, (A.65)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(c) V FF diagram

M (c)
1 = − 2i

[
2B0c

1
Rc

2
Lc

3
R − c1

Lc
2
L p0(C1c

3
Rm2

+ (C0 + C1)c
3
Lm3)

+ c1
R(−c2

Lc
3
R(r + 2C1(−p2

0 + p2
1)

+ C2(p
2
0 + 3p2

1 − p2
2)

+ 2C0(p1 − m1)(p1 + m1))

+ 2C0c
2
Lc

3
Lm2m3 + c2

R p1((C1 + C2)c
3
Lm2

+ (C0 + C1 + C2)c
3
Rm3))

]
, (A.66)

M (c)
2 = M (c)

1 |L ↔ R, (A.67)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

2, p
2
0, p2

1,m2
3,

m2
2,m

2
1).

(d) FSV diagram

M (d)
1 = − ic3

[
B0c

1
Rc

2
L + 2C1c

1
Rc

2
L p

2
0 + 2C2c

1
Rc

2
L p

2
0

− 2C1c
1
Lc

2
R p0 p1 − C2c

1
Lc

2
R p0 p1 + C1c

1
Rc

2
L p

2
1

− 2C1c
1
Rc

2
L p

2
2 − ((2C0 + C2)c

1
Lc

2
L p0

+ (−C0 + C1)c
1
Rc

2
R p1)m1 + C0c

1
Rc

2
Lm

2
1

]
, (A.68)
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M (d)
2 = M (d)

1 |L ↔ R, (A.69)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(e) FV S diagram

M (e)
1 = ic3

[
B0c

1
Rc

2
R + C2c

1
Rc

2
R p

2
0 − C1c

1
Lc

2
L p0 p1

− 2C2c
1
Lc

2
L p0 p1 + 2C1c

1
Rc

2
R p

2
1 + 2C2c

1
Rc

2
R p

2
1

− 2C2c
1
Rc

2
R p

2
2 − ((−C0 + C2)c

1
Lc

2
R p0

+ (2C0 + C1)c
1
Rc

2
L p1)m1 + C0c

1
Rc

2
Rm

2
1

]
, (A.70)

M (e)
2 = M (e)

1 |L ↔ R, (A.71)

with Bi = Bi (p2
2,m2

3,m
2
2) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(f) FVV diagram

M ( f )
1 = 2ic3(C2c

1
Lc

2
L p0 + C1c

1
Rc

2
R p1 + 2C0c

1
Rc

2
Lm1),

(A.72)

M ( f )
2 = M ( f )

1 |L ↔ R, (A.73)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

A.2.2: Fermion to fermion and gauge boson decays

(a) SFF diagram

M (a)
1 = − i

[
B0c

1
Rc

2
Lc

3
R − 2C00c

1
Rc

2
Lc

3
R − C0c

1
Rc

2
Lc

3
R p

2
0

− C1c
1
Rc

2
Lc

3
R p

2
0 − C2c

1
Rc

2
Lc

3
R p

2
0

+ C2c
1
Lc

2
Rc

3
L p0 p1 + C1c

1
Rc

2
Lc

3
R p

2
1 + C0c

1
Rc

2
Lc

3
Rm

2
1

− C0c
1
Lc

2
Lc

3
R p0m2

− C1c
1
Lc

2
Lc

3
R p0m2 − C2c

1
Lc

2
Lc

3
R p0m2

− C0c
1
Rc

2
Rc

3
L p1m2 − C1c

1
Rc

2
Rc

3
L p1m2

+ (C1c
1
Lc

2
Lc

3
L p0 + C2c

1
Lc

2
Lc

3
L p0

+ C1c
1
Rc

2
Rc

3
R p1

− C0c
1
Rc

2
Lc

3
Lm2)m3

]
, (A.74)

M (a)
2 = M (a)

1 |L ↔ R, (A.75)

M (a)
3 = 2i

[
C12(−c1

Lc
2
Rc

3
L p0 + c1

Rc
2
Lc

3
R p1)

+ c2
R(−C22c

1
Lc

3
L p0 + (C0 + C1)c

1
Rc

3
Lm2

+ C2c
3
L(−c1

L p0 + c1
Rm2) − C1c

1
Rc

3
Rm3)

]
, (A.76)

M (a)
4 = M (a)

3 |L ↔ R, (A.77)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

2, p2
1, p2

0,m2
2,

m2
3,m

2
1).

(b) FSS diagram

M (b)
1 = 2iC00c

1
Rc

2
Lc

3, (A.78)

M (b)
2 = M (b)

1 |L ↔ R, (A.79)

M (b)
3 = − 2ic3

[
(C2 + C22)c

1
Lc

2
R p0

+ (C1 + C11)c
1
Rc

2
L p1

+ C12(c
1
Lc

2
R p0 + c1

Rc
2
L p1)

− (C0 + C1 + C2)c
1
Rc

2
Rm1

]
, (A.80)

M (b)
4 = M (b)

3 |L ↔ R, (A.81)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(c) V FF diagram

M (c)
1 = − i

[
2B0c

1
Lc

2
Lc

3
L − 4C00c

1
Lc

2
Lc

3
L − c1

Lc
2
Lc

3
Lr

− 2C0c
1
Lc

2
Lc

3
L p

2
0 − 2C1c

1
Lc

2
Lc

3
L p

2
0

− 4C2c
1
Lc

2
Lc

3
L p

2
0 − 2C2c

1
Rc

2
Rc

3
R p0 p1

+ 2C1c
1
Lc

2
Lc

3
L p

2
1 − 2C2c

1
Lc

2
Lc

3
L p

2
1

+ 2C2c
1
Lc

2
Lc

3
L p

2
2 + 2C0c

1
Lc

2
Lc

3
Lm

2
1

− 2C0c
1
Lc

2
Lc

3
Rm2m3

]
, (A.82)

M (c)
2 = M (c)

1 |L ↔ R, (A.83)

M (c)
3 = − 4i

[
C22c

1
Rc

2
Rc

3
R p0+C12(c

1
Rc

2
Rc

3
R p0−c1

Lc
2
Lc

3
L p1)

+ C2c
1
L(−c2

Lc
3
L p1 + c2

Rc
3
Rm2 + c2

Rc
3
Lm3)

]
,

(A.84)

M (c)
4 = M (c)

3 |L ↔ R, (A.85)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

2, p
2
1, p2

0,m2
2,

m2
3,m

2
1).

(d) FSV diagram

M (d)
1 = − ic3(−C2c

1
Lc

2
L p0 + C1c

1
Rc

2
R p1 + C0c

1
Rc

2
Lm1),

(A.86)

M (d)
2 = M (d)

1 |L ↔ R, (A.87)

M (d)
3 = − 2iC1c

1
Rc

2
Rc

3, (A.88)

M (d)
4 = M (d)

3 |L ↔ R, (A.89)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(e) FV S diagram

M (e)
1 = − ic3(C2c

1
Rc

2
L p0 − C1c

1
Lc

2
R p1 + C0c

1
Lc

2
Lm1),

(A.90)

M (e)
2 = M (e)

1 |L ↔ R, (A.91)

M (e)
3 = − 2iC2c

1
Lc

2
Rc

3, (A.92)
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M (e)
4 = M (e)

3 |L ↔ R, (A.93)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(f) FVV diagram

M ( f )
1 = ic3

[
2B0c

1
Lc

2
L + 4C00c

1
Lc

2
L − c1

Lc
2
Lr + 2C1c

1
Lc

2
L p

2
0

+ 3C2c
1
Lc

2
L p

2
0 + 3C1c

1
Rc

2
R p0 p1

+ 3C2c
1
Rc

2
R p0 p1 + 3C1c

1
Lc

2
L p

2
1 + 2C2c

1
Lc

2
L p

2
1

− 2C1c
1
Lc

2
L p

2
2 − 2C2c

1
Lc

2
L p

2
2

+ 3C0

(
c1
Rc

2
L p0 + c1

Lc
2
R p1

)
m1 + 2C0c

1
Lc

2
Lm

2
1

]
,

(A.94)

M ( f )
2 = M ( f )

1 |L ↔ R, (A.95)

M ( f )
3 = − 2ic3

[
− C1c

1
Rc

2
R p0 + 2C12c

1
Rc

2
R p0

+ 2C22c
1
Rc

2
R p0 + 2C11c

1
Lc

2
L p1 + 2C12c

1
Lc

2
L p1

− C2c
1
Lc

2
L p1 + 3(C1 + C2)c

1
Lc

2
Rm1

]
, (A.96)

M ( f )
4 = M ( f )

3 |L ↔ R, (A.97)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

A.2.3: Scalar to two fermion decays

(a) FFS diagram

M (a)
1 = i

[
B0c

1
Lc

2
Rc

3
R + C2c

1
Lc

2
Rc

3
R p

2
1 − C2c

1
Rc

2
Lc

3
L p1 p2

− C0c
1
Lc

2
Lc

3
R p1m1 − C2c

1
Lc

2
Lc

3
R p1m1

+ C0c
1
Rc

2
Rc

3
L p2m1 + C0c

1
Lc

2
Rc

3
Rm

2
1

− C2c
1
Rc

2
Lc

3
R p1m2 + C0c

1
Rc

2
Rc

3
Rm1m2

+ C1

(
c1
Lc

2
Rc

3
R p

2
0 − c1

Lc
2
Lc

3
R p1m1 + c1

Rc
2
Rc

3
L p2m1

−c1
Rc

2
Lc

3
R p1m2 + c1

Lc
2
Rc

3
L p2m2

) ]
, (A.98)

M (a)
2 = M (a)

1 |L ↔ R, (A.99)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

0, p2
2, p2

1,m2
1,

m2
2,m

2
3).

(b) SSF diagram

M (b)
1 = − ic1(C1c

2
Lc

3
R p1 + C2c

2
Rc

3
L p2 − C0c

2
Rc

3
Rm3),

(A.100)

M (b)
2 = M (b)

1 |L ↔ R, (A.101)

with Ci = Ci (p2
1, p

2
0, p2

2,m2
3,m

2
1,m

2
2).

(c) FFV diagram

M (c)
1 = − 2i

[
2B0c

1
Rc

2
Lc

3
R − (C0 + C1)c

1
Lc

2
Lc

3
L p2m1

+ c1
Lc

3
R

(
(C1 + C2)c

2
R p1 + 2C0c

2
Lm1

)
m2

+ c1
R

(
(C0 + C1 + C2)c

2
Rc

3
R p1m1

+ c2
L

(
c3
R

(
−r + 2C1 p

2
0 + C2

(
p2

0 + p2
1 − p2

2

)

+2C0m
2
1

)
− C1c

3
L p2m2

)) ]
, (A.102)

M (c)
2 = M (c)

1 |L ↔ R, (A.103)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

0, p
2
2, p2

1,m2
1,

m2
2,m

2
3).

(d) SV F diagram

M (d)
1 = ic1

[
B0c

2
Rc

3
R − C2c

2
Rc

3
R p

2
0 − C0c

2
Rc

3
R p

2
1

+ C2c
2
Rc

3
R p

2
1 − C1c

2
Lc

3
L p1 p2 − 2C2c

2
Lc

3
L p1 p2

+ C0c
2
Rc

3
Rm

2
1 −

(
(2C0 + C1) c

2
Lc

3
R p1

+ (−C0 + C2) c
2
Rc

3
L p2

)
m3

]
, (A.104)

M (d)
2 = M (d)

1 |L ↔ R, (A.105)

with Bi = Bi (p2
2,m

2
3,m

2
2) and Ci = Ci (p2

1, p
2
0, p2

2,m2
3,

m2
1,m

2
2).

(e) V SF diagram

M (e)
1 = − ic1

[
B0c

2
Lc

3
R + C2c

2
Lc

3
R p

2
0 − C0c

2
Lc

3
R p

2
1

− C2c
2
Lc

3
R p

2
1 − C2c

2
Rc

3
L p1 p2 + C2c

2
Lc

3
R p

2
2

+ C0c
2
Lc

3
Rm

2
1 + C0c

2
Rc

3
R p1m3

− 2C0c
2
Lc

3
L p2m3 − C2c

2
Lc

3
L p2m3

− C1

(
c2
Lc

3
R

(
2p2

0 + p2
1 − 2p2

2

)

+c2
R p1

(
2c3

L p2 + c3
Rm3

)) ]
, (A.106)

M (e)
2 = M (e)

1 |L ↔ R, (A.107)

with Bi = Bi (p2
2,m

2
3,m

2
2) and Ci = Ci (p2

1, p
2
0, p2

2,m2
3,

m2
1,m

2
2).

(f) VV F diagram

M ( f )
1 = 2ic1(C1c

2
Rc

3
R p1 + C2c

2
Lc

3
L p2 + 2C0c

2
Lc

3
Rm3),

(A.108)

M ( f )
2 = M ( f )

1 |L ↔ R, (A.109)

with Ci = Ci (p2
1, p

2
0, p2

2,m2
3,m

2
1,m

2
2).

A.2.4: Scalar to two scalar decays

(a) FFF diagram

M (a) = i
[
C1c

1
Rc

2
Rc

3
L p

2
0m1 + 3C2c

1
Rc

2
Rc

3
L p

2
0m1

123
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+ C1c
1
Lc

2
Lc

3
R p

2
0m1

+ 3C2c
1
Lc

2
Lc

3
R p

2
0m1 + 3C1c

1
Rc

2
Rc

3
L p

2
1m1

+ C2c
1
Rc

2
Rc

3
L p

2
1m1 + 3C1c

1
Lc

2
Lc

3
R p

2
1m1

+ C2c
1
Lc

2
Lc

3
R p

2
1m1 − C1c

1
Rc

2
Rc

3
L p

2
2m1

− C2c
1
Rc

2
Rc

3
L p

2
2m1 − C1c

1
Lc

2
Lc

3
R p

2
2m1

− C2c
1
Lc

2
Lc

3
R p

2
2m1 + C2c

1
Lc

2
Rc

3
L p

2
0m2

+ C2c
1
Rc

2
Lc

3
R p

2
0m2 + 2C1c

1
Lc

2
Rc

3
L p

2
1m2

+ C2c
1
Lc

2
Rc

3
L p

2
1m2 + 2C1c

1
Rc

2
Lc

3
R p

2
1m2

+ C2c
1
Rc

2
Lc

3
R p

2
1m2 − C2c

1
Lc

2
Rc

3
L p

2
2m2

− C2c
1
Rc

2
Lc

3
R p

2
2m2 +

(
c1
Rc

2
Lc

3
L + c1

Lc
2
Rc

3
R

)

×
(

2C2 p
2
0 + C1

(
p2

0 + p2
1 − p2

2

))
m3

+ 2B0

(
c1
R

(
c2
Rc

3
Lm1 + c2

Lc
3
Rm2 + c2

Lc
3
Lm3

)

+c1
L

(
c2
Lc

3
Rm1 + c2

Rc
3
Lm2 + c2

Rc
3
Rm3

))

+ C0m1

(
c1
R

(
c2
Rc

3
L

(
p2

0 + p2
1 − p2

2 + 2m2
1

)

+2c2
Rc

3
Rm2m3 + 2c2

Lm1

(
c3
Rm2 + c3

Lm3

))

+ c1
L

(
c2
Lc

3
R

(
p2

0 + p2
1 − p2

2 + 2m2
1

)

+2c2
Lc

3
Lm2m3 + 2c2

Rm1

(
c3
Lm2 + c3

Rm3

))) ]

(A.110)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(b) SSS diagram

M (b) = − iC0

(
p2

1, p
2
2, p2

0,m2
1,m

2
3,m

2
2

)
c1c2c3. (A.111)

(c) UUU diagram

M (c) = iC0

(
p2

1, p2
2, p2

0,m2
1,m

2
3,m

2
2

)
c1c2c3. (A.112)

(d) VVV diagram

M (d) = 4iC0

(
p2

1, p2
2, p2

0,m2
1,m

2
3,m

2
2

)
c1c2c3. (A.113)

(e) SSV diagram

M (e) = − ic1c2c3
[
B0 + (C1 + C2)(p

2
0 − p2

1)

+ (C2 − C1)p
2
2 + C0

(
p2

2 − p2
0 + m2

1

) ]
(A.114)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(f) SV S diagram

M ( f ) = − ic1c2c3
[
B0 − (C1 + C2)(p

2
0 − p2

1)

+ (C1 − C2)p
2
2 + C0

(
−p2

1 + p2
2 + m2

1

) ]

(A.115)

with Bi = Bi (p2
2,m

2
3,m

2
2) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(g) V SS diagram

M (g) = − ic1c2c3
[
B0 + C1 p

2
0 + 3C2 p

2
0 + 3C1 p

2
1

+ C2 p
2
1 − (C1 + C2)p

2
2

+ C0

(
2

(
p2

0 + p2
1 − p2

2

)
+ m2

1

) ]
(A.116)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(h) SV V diagram

M (h) = i

2
c1c2c3

[
2B0 − C1 p

2
0 − 3C2 p

2
0 − 3C1 p

2
1

− C2 p
2
1 + (C1 + C2)p

2
2

+ C0

(
p2

0 + p2
1 − p2

2 + 2m2
1

) ]
(A.117)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(i) V SV diagram

M (i) = i

2
c1c2c3

[
2B0 + 2C1

(
2p2

0 + p2
1 − 2p2

2

)

+ C2

(
7p2

0 − p2
1 + p2

2

)

+ 2C0

(
3p2

0 − p2
1 + p2

2 + m2
1

) ]
(A.118)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(j) VV S diagram

M ( j) = i

2
c1c2c3

[
2B0 − C1 p

2
0 + 2C2 p

2
0 + 7C1 p

2
1 + 4C2 p

2
1

+ (C1−4C2)p
2
2 +2C0

(
−p2

0 +3p2
1 + p2

2 + m2
1

) ]

(A.119)

with Bi = Bi (p2
2,m

2
3,m

2
2) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(k) SS diagram

M (k) = i

2
B0

(
p2

0,m
2
1,m

2
2

)
c1c2. (A.120)

123
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(l) VV diagram

M (l) = ic1c2
(

2B0

(
p2

0,m
2
1,m

2
2

)
− r

)
. (A.121)

(m) SS diagram

M (m) = i

2
B0

(
p2

1,m2
1,m

2
2

)
c1c2. (A.122)

(n) VV diagram

M (n) = ic1c2
(

2B0

(
p2

1,m
2
1,m

2
2

)
− r

)
. (A.123)

(o) SS diagram

M (o) = i

2
B0

(
p2

2,m2
1,m

2
2

)
c1c3. (A.124)

(p) VV diagram

M (p) = ic1c3
(

2B0

(
p2

2,m2
1,m

2
2

)
− r

)
. (A.125)

A.2.5: Scalar to scalar and gauge boson decays

(a) FFF diagram

M (a) = − 2i
[
B0c

1
Lc

2
Rc

3
L + B0c

1
Rc

2
Lc

3
R

+ C2c
1
Lc

2
Rc

3
L p

2
0 + C2c

1
Rc

2
Lc

3
R p

2
0

+ C1c
1
Lc

2
Rc

3
L p

2
1 + C1c

1
Rc

2
Lc

3
R p

2
1

+ 2C0c
1
Lc

2
Rc

3
Lm

2
1 + C1c

1
Lc

2
Rc

3
Lm

2
1

+ C2c
1
Lc

2
Rc

3
Lm

2
1 + 2C0c

1
Rc

2
Lc

3
Rm

2
1

+ C1c
1
Rc

2
Lc

3
Rm

2
1 + C2c

1
Rc

2
Lc

3
Rm

2
1

+ C0c
1
Rc

2
Rc

3
Lm1m2 + C1c

1
Rc

2
Rc

3
Lm1m2

+ C2c
1
Rc

2
Rc

3
Lm1m2 + C0c

1
Lc

2
Lc

3
Rm1m2

+ C1c
1
Lc

2
Lc

3
Rm1m2 + C2c

1
Lc

2
Lc

3
Rm1m2

+
(
(C0 + C1 + C2)

(
c1
Lc

2
Lc

3
L + c1

Rc
2
Rc

3
R

)
m1

+ (C1 + C2)
(
c1
Rc

2
Lc

3
L + c1

Lc
2
Rc

3
R

)
m2

)
m3

]

(A.126)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(b) SSS diagram

M (b) = − 2i (C0 + C1 + C2) c
1c2c3 (A.127)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(c) UUU diagram

M (c) = i (C0 + C1 + C2) c
1c2c3 (A.128)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(d) VVV diagram

M (d) = − 6i (C0 + C1 + C2) c
1c2c3 (A.129)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(e) SSV diagram

M (e) = − i (C0 − C1 − C2) c
1c2c3 (A.130)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(f) SV S diagram

M ( f ) = i (C0 − C1 − C2) c
1c2c3 (A.131)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(g) V SS diagram

M (g) = − 2ic1c2c3
[
4C00 + 5C2 p

2
0 + 3C22 p

2
0 + 3C2 p

2
1

+ C22 p
2
1 + 4C12(p

2
0 + p2

1)

− 2C12 p
2
2 − 3C2 p

2
2 − C22 p

2
2

+ (C0 + C1 + C2)m
2
1

+ 2C0 p
2
0 + 3C1 p

2
0 + C11 p

2
0

+ 2C0 p
2
1 + 5C1 p

2
1 + 3C11 p

2
1

− (2C0 + 3C1 + C11) p
2
2

]
(A.132)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(h) SV V diagram

M (h) = − ic1c2c3
[
4B0 − 4C00 + C1 p

2
0 − 4C12 p

2
0

− C2 p
2
0 − 3C22 p

2
0 − C1 p

2
1

− 4C12 p
2
1 + C2 p

2
1 − C22 p

2
1

+ (−2 (C1 − C12 + C2) + C22) p
2
2

+ C0

(
p2

2 + 4m2
1

)
− C11

(
p2

0 + 3p2
1 − p2

2

) ]

(A.133)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(i) V SV diagram

M (i) = − i (2C0 + C1 + C2) c
1c2c3 (A.134)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(j) VV S diagram

M ( j) = i (2C0 + C1 + C2) c
1c2c3 (A.135)

123
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with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(k) SV diagram

M (k) = − ic1c2(B0 − B1) (A.136)

with Bi = Bi (p2
0,m

2
1,m

2
2).

(l) SV diagram

M (l) = ic1c2(B0 − B1) (A.137)

with Bi = Bi (p2
1,m

2
1,m

2
2).

(m) SS diagram

M (m) = 0. (A.138)

(n) VV diagram

M (n) = 0. (A.139)

A.2.6: Scalar to two gauge boson decays

(a) FFF diagram

M (a)
1 = − i

[
2B0c

1
Lc

2
Lc

3
Lm1 + 2B0c

1
Rc

2
Rc

3
Rm1

+ C0c
1
Lc

2
Lc

3
L p

2
0m1 + C1c

1
Lc

2
Lc

3
L p

2
0m1

+ 3C2c
1
Lc

2
Lc

3
L p

2
0m1 + C0c

1
Rc

2
Rc

3
R p

2
0m1

+ C1c
1
Rc

2
Rc

3
R p

2
0m1 + 3C2c

1
Rc

2
Rc

3
R p

2
0m1

+ C0c
1
Lc

2
Lc

3
L p

2
1m1 + 3C1c

1
Lc

2
Lc

3
L p

2
1m1

+ C2c
1
Lc

2
Lc

3
L p

2
1m1 + C0c

1
Rc

2
Rc

3
R p

2
1m1

+ 3C1c
1
Rc

2
Rc

3
R p

2
1m1 + C2c

1
Rc

2
Rc

3
R p

2
1m1

− C0c
1
Lc

2
Lc

3
L p

2
2m1 − C1c

1
Lc

2
Lc

3
L p

2
2m1

− C2c
1
Lc

2
Lc

3
L p

2
2m1 − C0c

1
Rc

2
Rc

3
R p

2
2m1

− C1c
1
Rc

2
Rc

3
R p

2
2m1 − C2c

1
Rc

2
Rc

3
R p

2
2m1

+ 2C0c
1
Lc

2
Lc

3
Lm

3
1 + 2C0c

1
Rc

2
Rc

3
Rm

3
1

+ 2B0c
1
Rc

2
Lc

3
Lm2 + 2B0c

1
Lc

2
Rc

3
Rm2

+ C2c
1
Rc

2
Lc

3
L p

2
0m2 + C2c

1
Lc

2
Rc

3
R p

2
0m2

+ 2C1c
1
Rc

2
Lc

3
L p

2
1m2 + C2c

1
Rc

2
Lc

3
L p

2
1m2

+ 2C1c
1
Lc

2
Rc

3
R p

2
1m2 + C2c

1
Lc

2
Rc

3
R p

2
1m2

− C2c
1
Rc

2
Lc

3
L p

2
2m2 − C2c

1
Lc

2
Rc

3
R p

2
2m2

+ 2C0c
1
Rc

2
Lc

3
Lm

2
1m2 + 2C0c

1
Lc

2
Rc

3
Rm

2
1m2

− 4C00

(
c1
Lc

2
Lc

3
Lm1 + c1

Rc
2
Rc

3
Rm1

+c1
Rc

2
Lc

3
Lm2 + c1

Lc
2
Rc

3
Rm2

)

−
((

c1
Lc

2
Rc

3
L + c1

Rc
2
Lc

3
R

) (
2B0 + 2C2 p

2
0

+C1

(
p2

0 + p2
1 − p2

2

)
+ 2C0m

2
1

)

+2C0

(
c1
Rc

2
Rc

3
L + c1

Lc
2
Lc

3
R

)
m1m2

)
m3

]
, (A.140)

M (a)
2 = 2i

[
C0

(
c1
Lc

2
Lc

3
L + c1

Rc
2
Rc

3
R

)
m1

+ (2C12 + 3C2 + 2C22)
(
c1
Lc

2
Lc

3
L + c1

Rc
2
Rc

3
R

)
m1

+ (2C12 + C2 + 2C22)
(
c1
Rc

2
Lc

3
L + c1

Lc
2
Rc

3
R

)
m2

+ C1

(
c1
Lc

2
Lc

3
Lm1 + c1

Rc
2
Rc

3
Rm1 − c1

Lc
2
Rc

3
Lm3

−c1
Rc

2
Lc

3
Rm3

) ]
(A.141)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(b) SSS diagram

M (b)
1 = 4iC00c

1c2c3, (A.142)

M (b)
2 = 4i(C12 + C2 + C22)c

1c2c3, (A.143)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(c) UUU diagram

M (c)
1 = iC00c

1c2c3, (A.144)

M (c)
2 = i(C12 + C2 + C22)c

1c2c3, (A.145)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(d) VVV diagram

M (d)
1 = − i

2
c1c2c3

[
4B0 + 20C00 − 4r + C1 p

2
0

+ 4C2 p
2
0 + 5C1 p

2
1 + 2C2 p

2
1

− (C1 + 2C2)p
2
2 + C0(−4p2

0

+ 6p2
1 + 4(p2

2 + m2
1))

]
, (A.146)

M (d)
2 = − i(5C0 + C1 + 10(C12 + C2 + C22))c

1c2c3

(A.147)

with Bi = Bi (p2
2,m

2
2,m

2
3) and Ci = Ci (p2

1, p
2
2, p2

0,m2
1,

m2
3,m

2
2).

(e) SSV diagram

M (e)
1 = iC0c

1c2c3, (A.148)

M (e)
2 = 0 (A.149)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(f) SV S diagram

M ( f )
1 = 2iC00c

1c2c3, (A.150)

M ( f )
2 = 2i(C12 − C2 + C22)c

1c2c3 (A.151)
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with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(g) V SS diagram

M (g)
1 = 2iC00c

1c2c3, (A.152)

M (g)
2 = 2i(2C0 + 2C1 + C12 + 3C2 + C22)c

1c2c3

(A.153)

with Ci = Ci (p2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2).

(h) SV V diagram

M (h)
1 = ic1c2c3

[
B0 − C00 − (C1 + C2)(p

2
0 − p2

1)

+ (C1 − C2)p
2
2 + C0(−p2

1 + p2
2 + m2

1)
]
,

(A.154)

M (h)
2 = i(4C1 − C12 + C2 − C22)c

1c2c3 (A.155)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(i) V SV diagram

M (i)
1 = ic1c2c3

[
B0 − C00 + C1 p

2
0 + 3C2 p

2
0 + 3C1 p

2
1 + C2 p

2
1

− (C1 + C2)p
2
2 + C0(2(p2

0 + p2
1 − p2

2) + m2
1)

]
,

(A.156)

M (i)
2 = − i(2C0 − 2C1 + C12 + 3C2 + C22)c

1c2c3 (A.157)

with Bi = Bi (p2
2,m2

2,m
2
3) and Ci = Ci (p2

1, p2
2, p2

0,m2
1,

m2
3,m

2
2).

(j) VV S diagram

M ( j)
1 = − iC0(p

2
1, p

2
2, p2

0,m2
1,m

2
3,m

2
2)c

1c2c3, (A.158)

M ( j)
2 = 0. (A.159)

(k) SS diagram

M (k)
1 = i

2
B0(p

2
0,m2

1,m
2
2)c

1c2, (A.160)

M (k)
2 = 0. (A.161)

(l) VV diagram

M (l)
1 = ic1c2(3B0(p

2
0,m

2
1,m

2
2) − r), (A.162)

M (l)
2 = 0. (A.163)

(m) SV diagram

M (m)
1 = − i B0(p

2
1,m

2
1,m

2
2)c

1c2, (A.164)

M (m)
2 = 0. (A.165)

(n) SV diagram

M (n)
1 = − i B0(p

2
2,m2

1,m
2
2)c

1c3, (A.166)

M (n)
2 = 0. (A.167)

Appendix B: Expressions for real corrections

Following the notation introduced in Sect. 2.6, we present
here the formulae employed for the calculation of real cor-
rections (massless gauge boson emission) to the six generic
decays under consideration. Common to all processes is the
calculation of the group-theory factors, which we describe in
the first subsection.

B.1: Group-theory factors

For real three-body decays, we start with a two-body matrix
element M0 where a particle having four-momentum p0

decays to two others with four-momenta p1, p2, and we can
attach a photon in four ways: either to the incoming or out-
going legs, or to the vertex itself. This latter case is only
possible when the tree-level vertex involves two scalars and
a massive gauge boson; in SARAH such vertices are stored in
the form

L ⊃ −ici ja(Si∂μS j − S j∂μSi )V
a μ

→ ci ja Si S j V
a μ(pμ(Si ) − pμ(S j )). (B.1)

If we attach a massless gauge boson Ab
μ to the above term

then we can have the coupling

L ⊃ ci jabSi S j V
a μAb

μ. (B.2)

We should now understand that the indices for V, A cor-
respond to the unbroken gauge symmetry under which Ab

μ

transforms. By insisting on gauge invariance up to linear
order we find three sets of conditions:

0 = T c
ii ′(Si )ci ′ ja + T c

j j ′(S j )ci j ′a + T c
aa′(V )ci ja′ , (B.3)

= T c
ii ′(Si )ci ′ jab + T c

j j ′(S j )ci j ′ab + T c
aa′(V )ci ja′b (B.4)

+ i f cbb
′
ci jab′,= ci jab + ci j ′aT

c
j ′ j (S j ) − ci ′ jaT

c
i ′i (Si ).

(B.5)

Summation is only implied over the primed indices. The
first two equations arise from requiring simple gauge invari-
ance of the individual vertices, while the third involves the
derivatives of the gauge transformation cancelling against
the Aa

μ → Aa
μ + ∂μ�a + · · · part. Importantly, Eq. (B.5)

completely determines ci jab.
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If the gauge group is that of the SM, then the quartic cou-
pling can only be relevant for a W boson and a photon, for
which case the first two equations simply become charge
conservation and Eq. (B.5) implies

ci jW−A =(QSi − QS̄j
)ci jW− = (2QSi − 1)ci jW− . (B.6)

The above logic can also be used to compute the group-
theory factors for the Bremsstrahlung decay cross-sections,
where a particle with momentum p0 decays to final states
with momenta p1, p2 and a photon/gluon with momentum
k.

We first compute all of the relevant processes using only
the primitive vertices stripped of group-theory factors, and
split up the squared amplitude depending on which leg the
photon or gluon propagator has been attached. We first make
a general definition of the coupling ci jk in the same was as we
did in Eqs. (B.1) and (B.2) and strip off any Lorentz indices,
so for fields (scalars, fermions or vectors) �i in representa-
tions of the gauge group R0 → R1, R2 we have the coupling

L ⊃ ci jk�i� j�k × Lorentz part. (B.7)

Then the matrix element is

(M1) j0 j1 j2a =g
∑

j ′1

T a(R0) j ′0 j0c j ′0 j1 j2
f0(pi )

−2p0 · k

+ g
∑

j ′1

T a(R1) j1 j ′1c j0 j ′1 j2
f1(pi )

2p1 · k

+ g
∑

j ′2

T a(R2) j2 j ′2c j0 j1 j ′2
f2(pi )

2p2 · k
+ c j0 j1 j2a f3(pi ), (B.8)

where the functions f μ
i (pi ) may have spinor or other Lorentz

indices, and include the wave-function factors, as appropriate
to the final states; and the index i labels the leg to which
the photon/gluon is attached: 0 for incoming, 1, 2 for the
outgoing legs and 3 to denote the vertex in the case of scalar to
scalar plus gauge boson decays. We have explicitly included
the intermediate propagators to show the potential infrared
divergences—and also because they allow easy identification
of the appropriate diagram.

Then defining x0 ≡ −2p0 · k, x1 ≡ 2p1 · k, x2 ≡ 2p2 ·
k, x3 ≡ 1, a generic squared matrix element can be expressed
as

|M1|2 ≡
3∑

i, j=0

C̃i j

∑
spins

fi f ∗
j

xi x j
. (B.9)

Now all of the group-theory factors are encoded in C̃i j . How-
ever, while C̃ ji = C̃∗

i j , it is also clear from the hermiticity

of the generators that the C̃i j are real—for example using
d(R0) as the dimension of representation R0

(C̃12)
∗ = 1

d(R0)

⎛
⎝ ∑

i, j,k,i ′, j ′
ci ′ jkT

a(R0)i ′i T
a(R1)

∗
j j ′c

∗
i j ′k

⎞
⎠

∗

= 1

d(R0)

∑
i, j,k,i ′, j ′

c∗
i ′ jkT

a(R0)i i ′T
a(R1) j ′ j ci j ′k

= 1

d(R0)

∑
i, j,k,i ′, j ′

ci ′ jkT
a(R0)i ′i T

a(R1) j j ′c
∗
i j ′k = C̃12

(B.10)

and therefore we can write

|M1|2 =
3∑

i≤ j

C̃i jωi j , ωi j ≡
⎧⎨
⎩

∑
spins

fi f ∗
j + f j f ∗

i
xi x j

, i < j
∑

spins
fi f ∗

i
xi x j

, i = j
.

(B.11)

Using the gauge invariance of the Lagrangian terms, we
obtain for i < 3

0 = C̃0 j − C̃1 j − C̃2 j = C̃i0 − C̃i1 − C̃i2

= C̃i3 − C̃i0 − C̃i1 = C̃3i − C̃0i − C̃1i , (B.12)

where for S → SV decays we define the heavy gauge boson
as particle 2. These are almost enough to completely deter-
mine the colour factor of the amplitude in terms of the two-
body decay factor C ,

ci jkc
∗
i ′ jk ≡ Cδi i ′ , (B.13)

because we can write

C̃ii =C2(Ri )C. (B.14)

These conditions are sufficient to determine all of the group
factors in terms of C , the quadratic Casimir C2(Ri ), and one
remaining colour factor. However, we can also use the gauge
invariance of the Lagrangian term to second order to obtain

0 =C̃00 + C̃11 + C̃22 − 2C̃01 − 2C̃02

+ 2C̃12 = −C̃00 + C̃11 + C̃22 + 2C̃12. (B.15)

Hence all of the group-theory factors are proportional to C ,
and we can therefore define

Ci j ≡ C̃i j

C
, (B.16)

giving

Cii =C2(Ri ), i < 3,
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C12 = 1

2
(C2 (R0) − C2 (R1) − C2 (R2)) ,

C02 = 1

2
(C2 (R0) − C2 (R1) + C2 (R2)) ,

C01 = 1

2
(C2 (R0) + C2 (R1) − C2 (R2)) ,

Ci3 =C3i = Ci1 + Ci2, i < 3,

C33 = (C2(R0) + C2(R1))C + 2C01

= 2C2(R0) + 2C2(R1) − C2(R2), (B.17)

and we can write for a generic process

� ∝ � ≡
3∑

i≤ j

Ci j�i j . (B.18)

In the case of a U(1) gauge boson (the photon), we have
Ci j = Qi Q j and we define Q3 ≡ Q0+Q1. This also follows
from the above expressions, for example

C12 =1

2
(Q2

0 − Q2
1 − Q2

2) = 1

2

(
(Q1 + Q2)

2 − Q2
1 − Q2

2

)

=Q1Q2. (B.19)

B.2: F → FS

The real corrections for the fermionic decays F → FS are
given by

�F→FS+γ /g = c2
g

(4π)3mX
C ′

S

×
[
(cLc

∗
L + cRc

∗
R)�LL + (cLc

∗
R + cRc

∗
L)�LR

]
. (B.20)

The coupling cg is the electromagnetic coupling e or the
strong coupling gs for photon and gluon emission, respec-
tively. cL and cR are the left- and right-handed coupling of
the tree-level vertex of F → FS. We identify Fin = X ,
Fout = Y1 and S = Y2 with the indices 0, 1 and 2, respec-
tively. The individual contributions �AB

i j are given by

�LR
00 = − 8I00m

3
XmY1, (B.21)

�LR
01 = − 8I0mXmY1 − 8I1mXmY1

+ I01

(
−8m3

XmY1 − 8mXm
3
Y1

+ 8mXmY1m
2
Y2

)
,

(B.22)

�LR
02 = 8I0mXmY1 + I02

(
8m3

XmY1

− 8mXm
3
Y1

+ 8mXmY1m
2
Y2

)
, (B.23)

�LR
11 = − 8I11mXm

3
Y1

, (B.24)

�LR
12 = − 8I1mXmY1 + I12

(
8m3

XmY1

− 8mXm
3
Y1

− 8mXmY1m
2
Y2

)
, (B.25)

�LR
22 = − 8I2mXmY1 − 8I22mXmY1m

2
Y2

, (B.26)

�LL
00 = 2I + I0

(
−2m2

X + 2m2
Y1

− 2m2
Y2

)

+ I00

(
−4m4

X − 4m2
Xm

2
Y1

+ 4m2
Xm

2
Y2

)
, (B.27)

�LL
01 = − 8I − 2I 1

0 − 2I 0
1 + I0

(
−2m2

X − 6m2
Y1

+ 6m2
Y2

)

+ I1
(
−6m2

X − 2m2
Y1

+ 6m2
Y2

)

+ I01

(
−4m4

X − 8m2
Xm

2
Y1

− 4m4
Y1

+ 8m2
Xm

2
Y2

+ 8m2
Y1
m2

Y2
− 4m4

Y2

)
, (B.28)

�LL
02 = 4I − 2I 2

0 + I0
(

2m2
X + 6m2

Y1
− 6m2

Y2

)
+ 4I2m

2
Y2

+ I02

(
4m4

X − 4m4
Y1

+ 8m2
Y1
m2

Y2
− 4m4

Y2

)
,

(B.29)

�LL
11 = 2I + I1

(
2m2

X − 2m2
Y1

− 2m2
Y2

)

+ I11

(
−4m2

Xm
2
Y1

− 4m4
Y1

+ 4m2
Y1
m2

Y2

)
, (B.30)

�LL
12 = − 4I+2I 2

1 −4I2m
2
Y2

+ I1
(
−6m2

X − 2m2
Y1

+ 6m2
Y2

)

+ I12

(
4m4

X − 4m4
Y1

− 8m2
Xm

2
Y2

+ 4m4
Y2

)
, (B.31)

�LL
22 = 4I + I2

(
−4m2

X − 4m2
Y1

+ 8m2
Y2

)

+ I22

(
−4m2

Xm
2
Y2

− 4m2
Y1
m2

Y2
+ 4m4

Y2

)
. (B.32)

We also implemented real corrections for which Y1 is taken
to be massless, if Y1 is charge and colour neutral.

B.3: S → FF

The real corrections for the scalar decays S → FF are given
by

�S→FF+γ /g = c2
g

(4π)3mX
C ′

S

[(
cLc

∗
L + cRc

∗
R

)
�LL

+ (
cLc

∗
R + cRc

∗
L

)
�LR

]
. (B.33)

We follow the notation introduced in the previous subsection.
However, we now identify S = X , F = Y1 and F = Y2 with
the indices 0, 1 and 2, respectively. The individual contribu-
tions �AB

i j are given by

�LR
00 = 16I00m

2
XmY1mY2 , (B.34)
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�LR
01 = − 16I0mY1mY2 − 16I1mY1mY2

+ I01(−16m2
XmY1mY2 − 16m3

Y1
mY2 + 16mY1m

3
Y2

),

(B.35)

�LR
02 = 16I0mY1mY2 + I02(16m2

XmY1mY2

− 16m3
Y1
mY2 + 16mY1m

3
Y2

), (B.36)

�LR
11 = 16I11m

3
Y1
mY2 , (B.37)

�LR
12 = 16I1mY1mY2 + I12(−16m2

XmY1mY2

+ 16m3
Y1
mY2 + 16mY1m

3
Y2

), (B.38)

�LR
22 = 16I2mY1mY2 + 16I22mY1m

3
Y2

, (B.39)

�LL
00 = − 8I0m

2
X + I00(−8m4

X + 8m2
Xm

2
Y1

+ 8m2
Xm

2
Y2

), (B.40)

�LL
01 = 4I + 4I 0

1 + I1(12m2
X − 4m2

Y1

− 12m2
Y2

) + I0(−8m2
Y1

− 8m2
Y2

)

+ I01(8m
4
X − 8m4

Y1
− 16m2

Xm
2
Y2

+ 8m4
Y2

), (B.41)

�LL
02 = − 4I − 4I 0

2 + I2(−12m2
X + 12m2

Y1
+ 4m2

Y2
)

+ I0(8m
2
Y1

+ 8m2
Y2

)

+ I02(−8m4
X + 16m2

Xm
2
Y1

− 8m4
Y1

+ 8m4
Y2

),

(B.42)

�LL
11 = I1(4m

2
X + 4m2

Y1
− 4m2

Y2
)

+ I11(−8m2
Xm

2
Y1

+ 8m4
Y1

+ 8m2
Y1
m2

Y2
), (B.43)

�LL
12 = 8I + 4I 2

1 + 4I 1
2 + I2(−12m2

X + 12m2
Y1

+ 4m2
Y2

) + I1(−12m2
X + 4m2

Y1

+ 12m2
Y2

) + I12(8m
4
X − 16m2

Xm
2
Y1

+ 8m4
Y1

− 16m2
Xm

2
Y2

+ 16m2
Y1
m2

Y2
+ 8m4

Y2
), (B.44)

�LL
22 = I2(4m

2
X − 4m2

Y1
+ 4m2

Y2
)

+ I22(−8m2
Xm

2
Y2

+ 8m2
Y1
m2

Y2
+ 8m4

Y2
). (B.45)

We also implemented real corrections where one of the final-
state fermions can be massless. Again this fermion has to be
charge and colour neutral.

B.4: F → FV

The real corrections for the fermionic decays F → FV are
given by

�F→FV+γ /g = c2
g

(4π)3m2
Y2
mX

C ′
S

×
[(
cLc

∗
L + cRc

∗
R

)
�LL + (

cLc
∗
R + cRc

∗
L

)
�LR

]
.

(B.46)

The coupling cg is the electromagnetic coupling e or the
strong coupling gs for photon and gluon emission, respec-

tively. cL and cR are the left- and right-handed coupling of
the tree-level vertex of F → FV . The final-state gauge
boson Y2 is fixed to one of the two heavy gauge bosons,
Z or W . Clearly only the photon couples to the W boson,
such that we subsequently present results independently for
F → FW + γ on the one side and F → FZ + γ /g
and F → FW + g on the other side. For gluon emission
C00 = C11 = C01 = C2(RF ),Ci2 = 0; for photon emis-
sion Ci j = Qi Q j , where we again identify Fin = X and
Fout = Y1 with indices 0 and 1, respectively.

For F → FW + γ the individual contributions are given
by

�LR
00 = − 4ImXmY1 − 4I 2

0 mXmY1 + 24I0mXmY1m
2
Y2

+ 24I2mXmY1m
2
Y2

+ 24I00m
3
XmY1m

2
Y2

+ 24I02m
3
XmY1m

2
Y2

− 24I02mXm
3
Y1
m2

Y2
+ 24I02mXmY1m

4
Y2

+ 24I22mXmY1m
4
Y2

, (B.47)

�LR
01 = 12ImXmY1 + 4I 1

0mXmY1 + 4I 2
0 mXmY1

− 48I2mXmY1m
2
Y2

− 48I02m
3
XmY1m

2
Y2

+ 48I01mXm
3
Y1
m2

Y2

+ 48I02mXm
3
Y1
m2

Y2
− 48I22mXmY1m

4
Y2

, (B.48)

�LR
11 = 4I 0

1 mXmY1 + 24I1mXmY1m
2
Y2

+ 24I2mXmY1m
2
Y2

+ 24I01m
3
XmY1m

2
Y2

+ 24I02m
3
XmY1m

2
Y2

− 24I01mXm
3
Y1
m2

Y2

− 24I02mXm
3
Y1
m2

Y2
+ 24I11mXm

3
Y1
m2

Y2

− 24I01mXmY1m
4
Y2

− 24I02mXmY1m
4
Y2

+ 24I22mXmY1m
4
Y2

, (B.49)

�LL
00 = 2Im2

X + 2I 2
0 m

2
X − 4I0m

4
X − 4I2m

4
X − 4I00m

6
X

− 4I02m
6
X + 2Im2

Y1
+ 2I 2

0 m
2
Y1

+ 8I0m
2
Xm

2
Y1

+ 8I2m
2
Xm

2
Y1

+ 8I00m
4
Xm

2
Y1

+ 12I02m
4
Xm

2
Y1

− 4I0m
4
Y1

− 4I2m
4
Y1

− 4I00m
2
Xm

4
Y1

− 12I02m
2
Xm

4
Y1

+ 4I02m
6
Y1

+ 4Im2
Y2

+ 4I 2
0 m

2
Y2

− 8I 1
2m

2
Y2

− 8I 01
22m

2
Y2

− 4I0m
2
Xm

2
Y2

− 4I2m
2
Xm

2
Y2
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− 4I22m
2
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4
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, (B.50)
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(B.51)
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Y2
+ 8I22m
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. (B.52)

For F → FZ + γ /g and F → FW + g the individual
contributions are given by

�LR
00 = 24I00m

3
XmY1m

2
Y2

, (B.53)

�LR
01 = 8ImXmY1 + 4I 1

0mXmY1 + 4I 0
1 mXmY1

+ 24I0mXmY1m
2
Y2
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2
Y2
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4
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, (B.54)

�LR
11 = 24I11mXm

3
Y1
m2

Y2
, (B.55)

�LL
00 = − 2Im2
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, (B.56)
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0m
2
Y1

− 2I 0
1 m

2
Y1

+ 4I0m
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2
Xm
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− 6I1m
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2
Y1
m2
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2
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(B.57)

�LL
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. (B.58)

B.5: S → VV

The real corrections for the decays S → VV are given by

�S→VV+γ = e2

(4π)3m2
Y1
m2

Y2
mX

C ′
Scc

∗�. (B.59)
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The coupling c is the tree-level coupling of the vertex of
S → VV . Given that both final-state particles V are heavy
gauge bosons only photon emission is of relevance for this
process. We identify S = X , V = Y1 and V = Y2 with the
indices 0, 1 and 2, respectively. The individual contributions
�i j are given by

�00 = − 6Im2
X − 6I0m

4
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Y2
− 2I0m

4
Y2

− 2I00m
2
Xm

4
Y2

,

(B.60)
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− 4I0m
2
Xm

2
Y1

+ 4I1m
2
Xm

2
Y1

+ 2I01m
4
Xm

2
Y1

+ 2I01m
2
Xm

4
Y1

− 2I01m
6
Y1

− 4Im2
Y2

+ 2I 0
1 m

2
Y2

− 4I0m
2
Xm

2
Y2

+ 8I1m
2
Xm

2
Y2
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, (B.61)
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Y2
+ 18I02m

4
Y1
m2

Y2

+ 2I02m
2
Xm

4
Y2

− 18I02m
2
Y1
m4

Y2
− 2I02m

6
Y2

, (B.62)
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, (B.63)
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Y2

+ 20I2m
2
Y1
m2
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6
Y2

, (B.64)

�22 = − 4Im2
X − 2I 1
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2
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22m

2
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4
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2
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+ 4I22m
2
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2
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− 2I22m
4
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Y2
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4
Y2

+ 4I22m
2
Xm

4
Y2

− 20I22m
2
Y1
m4

Y2
− 2I22m

6
Y2

. (B.65)

B.6: S → SS

The real corrections for the decays S → SS are given by

�S→SS+γ /g = c2
g

(4π)3mX
C ′
Scc

∗�. (B.66)

The coupling cg is the electromagnetic coupling e or the
strong coupling gs for photon and gluon emission, respec-
tively. c is the coupling of the tree-level vertex of S → SS.
Therein we identify S = X , S = Y1 and S = Y2 with the
indices 0, 1 and 2, respectively. The individual contributions
�i j are given by:

�00 = − 4I0 − 8I00m
2
X , (B.67)

�01 = − 4I0 − 4I1 + I01(−8m2
X − 8m2

Y1
+ 8m2

Y2
), (B.68)

�02 = − 4I0 − 4I2 + I02(−8m2
X + 8m2

Y1
− 8m2

Y2
), (B.69)

�11 = − 4I1 − 8I11m
2
Y1

, (B.70)

�12 =4I1 + 4I2 + I12(−8m2
X + 8m2

Y1
+ 8m2

Y2
), (B.71)

�22 = − 4I2 − 8I22m
2
Y2

. (B.72)

B.7: S → SV

The real corrections for the decays S → SV are given by

�S→SV+γ /g = c2
g

(4π)3m2
Y2
mX

C ′
Scc

∗�. (B.73)

The coupling cg is the electromagnetic coupling e or the
strong coupling gs for photon and gluon emission, respec-
tively. In contrast to previous decays, S → SV+γ /g also has
a contribution from a four-point interaction, which accord-
ingly does not contribute to the infrared divergent part of
the real corrections, but yields a finite contribution. The sum
over the gauge factors thus includes four indices 0, . . . , 3.
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Since we assume a non-extended gauge sector in this work,
the four-point vertex is only present for photon emission, so
we can simplify the calculation of the group-theory factors
to Ci j = Qi Q j for i, j ∈ {0, 1, 2}, where the charges of the
incoming and outgoing scalars are Q0 and Q1 and the charge
of the outgoing gauge boson is Q2; the factors involving the
four-point interaction are then

C03 = Q0(Q0 + Q1), C13 = Q1(Q0 + Q1), (B.74)

C23 = Q2(Q0 + Q1), C33 = (Q0 + Q1)
2. (B.75)

For the emission of a gluon we can use Q2 = 0 and Q0 =
Q1 = 1. However, we stress that the results below are true
in general for any gauge groups; for extended gauge sectors
we would just need to employ Eq. (B.17). The individual
contributions �i j are given by

�00 = − 4Im2
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)
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)
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(
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)
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(
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)
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�33 =Im2
Y2

. (B.85)

Appendix C: Infrared divergent parts of Passarino–
Veltman integrals

Subsequently we present the infrared divergent parts of the
Passarino–Veltman integrals relevant for our purposes regu-
larised through a photon or gluon mass m�:
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Ḃ0(p
2,m2

�, p2) = Ḃ0(p
2, p2,m2

�)

= −Ḃ1(p
2, p2,m2

�) = − 1

2p2 log

(
m2

�

p2

)
, (C.1)

C0
(
p2

0, p2
1, p2

2,m2
�, p2

0, p2
2

) = 1

λ(p2
0, p2

1, p2
2)

× log

(
p2

0 − p2
1 + p2

2 + λ(p2
0, p2

1, p2
2)

2p0 p2

)
log

(
m2

�

p0 p2

)
,

(C.2)

C0
(
p2

0, p2
1, p2

2, p2
0,m2

�, p2
1

) = 1

λ(p2
0, p2

1, p2
2)

× log

(
p2

0 + p2
1 − p2

2 + λ(p2
0, p2

1, p2
2)

2p0 p1

)
log

(
m2

�

p0 p1

)
,

(C.3)

C0
(
p2

0, p2
1, p2

2, p2
2, p2

1,m2
�

) = 1

λ(p2
0, p2

1, p2
2)

× log

(
−p2

0 + p2
1 + p2

2 + λ(p2
0, p2

1, p2
2)

2p1 p2

)
log

(
m2

�

p1 p2

)
,

(C.4)

C1
(
p2

0, p2
1, p2

2, p2
0,m2

�, p2
1

) = −C0 (p0, p1, p2, p0,m�, p1) ,

(C.5)

C2
(
p2

0, p2
1, p2

2, p2
2, p2

1,m2
�

) = −C0 (p0, p1, p2, p2, p1,m�) ,

(C.6)

C11
(
p2

0, p2
1, p2

2, p2
0,m2

�, p2
1

) = C0(p0, p1, p2, p0,m�, p1),

(C.7)

C22
(
p2

0, p2
1, p2

2, p2
2, p2

1,m2
�

) = C0(p0, p1, p2, p2, p1,m�).

(C.8)

Therein we use the Källén function given in Eq. (2.2). The
result for C0 is consistent with the infrared divergent part
of Eq. (B.5) of Ref. [126]. For the cases p2

1, p
2
2 	 p2

0 and
p2

2 	 p2
1, p

2
0, which is of particular relevance for scalar

decays into light fermions, we also implemented formulae

C0(p
2
0, p2

1, p2
2,m2

�, p2
0, p2

2)

= 1

p2
2

log

(
m2

�

−p2
2

)
log

(
p0 p1

−p2
2

)
, (C.9)

C0(p
2
0, p2

1, p2
2,m2

�, p2
0, p2

2)

= 1

p2
2 − p2

1

log

(
p0(p2

1 − p2
2)

m2
� p1

)
log

(
p3

1 − p2
2

p0 p1

)
. (C.10)

These are equivalent to Eqs. (B.8) and (B.9) of Ref. [126].

Appendix D: Goldstone boson vertices

For decays into scalars and fermions, the cancellation of
infrared divergences is straightforward: they correspond to
summing the real emission of a massless gauge boson with

the virtual process of the same massless gauge boson in the
loop. Because the current of the unbroken gauge symmetries
are necessarily flavour diagonal, the only vertices involved
are the original two-body decay vertex and the gauge cou-
plings of the external states. Therefore, when we want to
use loop-corrected external masses to cancel the infrared
divergences for this case it is straightforward to either put all
masses of internal and external states to the loop-corrected
values, or (as we do here) to subtract off the infrared divergent
parts separately from the Bremsstrahlung and virtual correc-
tions before multiplying by a kinematic factor employing
loop-corrected masses.

However, for decays with a massive gauge boson in the
final state, the cancellation between the real and virtual
infrared divergences is a little subtle. The reason is that a
would-be Goldstone boson can propagate as an internal state.
While we perform the Bremsstrahlung calculation in the uni-
tary gauge (so there are no Goldstone bosons), for the vir-
tual corrections for practical purposes the default choice is
Feynman–’t Hooft gauge, and we must therefore sum the
diagrams with an internal massive gauge boson with those
having a massive Goldstone boson. We show the relevant
virtual corrections for the processes F → FV , S → SV
and S → VV (for decays to massive vectors) in Figs. 21,
22 and 23, respectively. Denoting the heavy gauge boson as
“V ”, the massless one as “γ ,” and the Goldstone boson as
“G,” we see that we have the gauge coupling of the unbro-
ken group appearing in FFγ, SSγ and VV γ vertices, but
we must maintain a relationship between the FFV and FFG
vertices, between the SSV and SSG vertices, the VV γ and
VGγ vertices, in order for these cancellations to occur. For
the S → VV process, we require a relationship between the
three sets of vertices SV V , SGV and SGG.

The required relations follow from the Slavnov–Taylor
identities, or alternatively we could examine the infrared
divergent part of the loop amplitudes. However, here we
will more simply derive the conditions imposed by symmetry
when inspecting the lagrangian at tree level. We first iden-
tify the would-be Goldstone boson by writing the symmetry
transformations of real scalars S0

i (before spontaneous sym-
metry breaking, and not necessarily in a mass-diagonal basis)
as

δS0
i ≡ εGαG

i = εGaGi j S
0
j , (D.1)

where εG is the gauge transformation parameter for each
broken direction G and aGi j are numbers for a linearly realised
gauge symmetry (as always assumed in SARAH). Then

aGi j = tGi j (D.2)

where tGi j are the generators of the gauge symmetry that will
be broken by appropriate vacuum expectation values; since
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(a)

F

V

F

γ
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V

(b)

F

V

F

V

F

γ

(c)

F

F

V

γ/g

F

F

(d)

F

V

F

γ

F

G

(e)

F

V

F

G

F

γ

Fig. 21 Diagrams in the decay F → F ′V that are potentially infrared-
divergent. Clearly a and d must combine in a gauge-invariant way, so
that when we put the masses of the external states to their loop-corrected

values we must also put the masses of the internal legs to those masses
and adjust the couplings accordingly. The same is true of the pair b and
e

(a)

S

S

V

S

G

γ

(b)

S

S

V

S

γ

G

(c)

S

S

V

γ/g

S

S

(d)

S

S

V

S

V

γ

(e)

S

S

V

S

γ

V

(f)

S

S

V

S

γ

(g)

S

S

V

S
γ

Fig. 22 Diagrams in the decay S → S′V containing a massless gauge boson propagator. The picture is almost identical to the fermion case, except
that we have more “benign” diagrams (f) and (g)

we are working with real scalars, the tGi j are antisymmetric
and real (to translate to complex fields we require roughly
tGi j → iT G

i j ). Then we find that the Goldstones G are defined
by

G = NGαG
j S

0
j , S0

i = NGαG
i G + · · · . (D.3)

The vectors should be chosen to be orthogonal with normal-

isation 1, so NG = 1/

√∑
i (α

G
i )2.

Looking at the vector-mass term we find for the scalars
S0
i having vacuum expectation values vi

− 1

2
DμS

0
i D

μS0
i ⊃ g∂μS

0
i V

a μtai jv j

− g2

2
tai jv j t

b
ikvkV

a
μV

bμ − g2tai j S
0
j t
b
ikvkV

a
μV

bμ

+ g

2
tai j V

a μ(S0
j ∂μS

0
i − S0

i ∂μS
0
j )
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(a)

S

V

V

V

V

γ

(b)

S

V

V

V

G

γ

(c)

S

V

V

G

G

γ

(d)

S

V

V

S

γ

G

(e)

S

V

V

S

γ

V

(f )

S

V

V

G
γ

(g)

S
V

V

G

γ

Fig. 23 Diagrams in the decay S → VV (for two heavy vectors) containing a massless gauge boson propagator. Diagrams (a), (b) and (c) must
combine in a gauge-invariant way; as do (d) and (e); diagrams (f) and (g) are “benign”

⊃ gαG
i ∂μS

0
i V

G μ − g2

2
αG
i αG ′

i vkV
G
μ VG ′ μ

− g2αG
i t

a
i j S

0
j V

a
μV

G μ

⊃ −g2

2

∑
G

1

N 2
G

VG
μ VG μ, (D.4)

and we see that

NG = g

mG
V

, (D.5)

where mG
V is the mass of the vector, and we define the SSV

coupling when we diagonalise the scalars to mass eigenstates
through S0

i ≡ Rik Sk (where RGj = NGαG
j ):

L ⊃1

2
cai j V

a μ(S j∂μSi − Si∂μS j ) → cai j = gRik R jl t
a
kl .

(D.6)

For the SGV coupling and SV V couplings, we read off

L ⊃ 1

2
cG

′
iGV

G ′ μ(G∂μSi − Si∂μG) + cGG ′
i V G

μ VG ′μ

→ cG
′

iG = − g2

mG
V

Rkiα
G
j t

G ′
jk , cGG ′

i = −g2Rkiα
G
j t

a
jk

→ cG
′

iG = 1

mG
V

cGG ′
i . (D.7)

This is the relationship that we enforce between the on-shell
vertices to ensure that infrared divergences are cancelled.

We can also read off the GVV coupling

−g2αG
i T a

i j S
0
j V

a
μV

G μ ⊃ − g2NGαG ′
i tai jα

G
j GV a

μV
G ′ μ.

(D.8)

For any unbroken gauge groups, the Goldstones must
transform as

L ⊃g

2
N 2
GαG

i t
a
i jα

G ′
j γ a μ(G ′∂μG − G∂μG

′)

=g

2
taGG ′γ a μ(G ′∂μG − G∂μG

′) (D.9)

and we therefore identify the αG ′
i tai jα

G
j factor in Eq. (D.8)

with T a
GG ′ to obtain

L ⊃ −gmG
V t

a
G ′GG

′γ a
μV

G μ. (D.10)

For the photon, this just becomes the familiar vertex

L ⊃ −emWG+γ a
μW

−μ + h.c.. (D.11)

Now the VV γ coupling will be given just in terms of the
gauge coupling of the unbroken gauge group, so the elec-
tromagnetic coupling e here; indeed from decomposing the
kinetic terms of the gauge bosons we will find

L ⊃ caGG ′
(

∂μγ a
ν V

G
μ VG ′ ν − VG

μ ∂νγ
a μVG ′ ν

− VG
μ γ a μ∂νV

G ′ ν + γ a
μV

G
ν ∂μVG ′ ν

)
. (D.12)

Of these, the first two terms vanish in the limit where the
massless gauge boson is soft, while we identify the last term
as the conventional gauge current and

caGG ′ = − gtaGG ′ . (D.13)

This leads to the relation between theγGV andγ VV vertices
of simply a factor of mG

V .
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To find the relationship between the Goldstone coupling to
scalars and the gauge boson coupling, we can use Eq. (2.32)
of Ref. [127] to find the derivative of the (effective) potential
V with respect to the scalars:

∂3V

∂G∂S0
i ∂S

0
j

= − N
∂αG

k

∂φi

∂2V

∂φk∂φ j
− N

∂αG
k

∂φ j

∂2V

∂φk∂φi

= − 1

mV

[
gtGkiM2

k j + M2
ik gt

G
k j

]
. (D.14)

When we diagonalise the masses this gives

ci jG ≡ − ∂3V

∂G∂Si∂S j
= 1

mG
V

(
m2

i − m2
j

)
cGi j . (D.15)

Again we enforce this relationship between the GSS cou-
pling and the SSV coupling when we use loop-corrected
masses in order to cancel infrared divergences.

The GGS coupling is a special case of the above, with the
understanding that we must use zero for the Goldstone boson
mass to obtain

ciGG ′ = m2
i

mG
Vm

G ′
V

cGG ′
i . (D.16)

We also find a similar relationship for fermions, which
can in that case also be derived from the fact that the masses
are Yukawa couplings; writing in terms of Weyl fermions we
have

L ⊃ − 1

2
Yi I J S

0
i ψ

0
I ψ

0
J

= − 1

2
MI Jψ

0
I ψ

0
J − g

2mV
Yi I J t

G
i j v j Gψ0

I ψ
0
J + · · · .

(D.17)

The gauge invariance of the Yukawa coupling gives

Yi ′ I J t
a
i ′i (i) + Yi I ′ J t

a
I ′ I (I ) + Yi I J ′ taJ ′ J (J ) =0 (D.18)

and so

− g

2mV
Yi I J t

G
i j (i)v j (D.19)

= g

2mV
Yi I ′ Jvi t

G
I ′ I (I ) + g

2mV
Yi I J ′vi t

G
J ′ J (J )

= g

2mV

(
MI ′ J t

G
I ′ I + MI J ′ tGJ ′ J (J )

)
. (D.20)

Now we write down the gauge coupling

L ⊃gψ Iσ
μψJ t

a
I J V

a (D.21)

and we diagonalise into ψ0
I = RI JψJ so we obtain

L ⊃ cGI Jψ Iσ
μψJ V

G μ + 1

2
cI JGψIψJ G,

cI JG = mI − mJ

mG
V

cGI J . (D.22)

If we now split the fermions into left- and right-handed states
with separate rotation matrices L and R, then the gauge cou-
plings are given in Dirac notation by

L ⊃ gF Iγ
μPL FJ (L

†ta L)I J V
a

+ gFMγ μPRFN (RT ta R∗)MNV
a, (D.23)

while the Goldstone couplings are

L ⊃ g

mV

(
MI ′ J t

G
I ′ I + MI J ′ tGJ ′ J (J )

)
Gψ L

I ψ R
J + h.c.

→ g

mV

(
− mJ (R

T tG R)I J + (LT tG L)I JmI

)
GF I PL FJ

+ g

mV

(
m∗

I (R
†tG R∗)I J −(L†tG L∗)I Jm∗

J

)
GF I PRFJ .

(D.24)

If we work in a basis where the fermion masses are com-
plex and the rotation matrices R, L are real, then we find the
relationship between the Goldstone boson couplings and the
gauge couplings

cLI JG = 1

mG
V

[
mI c

G,L
I J − mJc

G,R
I J

]
,

cRI JG = − 1

mG
V

[
m∗

J c
G,L
I J − m∗

I c
G,R
I J

]
. (D.25)
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