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3 Università & INFN Roma I

E-mail: domenico.giordano@cern.ch

Abstract. In a commercial cloud environment, exhaustive resource profiling is beneficial
to cope with the intrinsic variability of the virtualised environment, allowing to promptly
identify performance degradation. In the context of its commercial cloud initiatives, CERN
has acquired extensive experience in benchmarking commercial cloud resources. Ultimately,
this activity provides information on the actual delivered performance of invoiced resources.
In this report we discuss the experience acquired and the results collected using several fast
benchmark applications adopted by the HEP community. These benchmarks span from open-
source benchmarks to specific user applications and synthetic benchmarks. The workflow put
in place to collect and analyse performance metrics is also described.

1. Introduction
Since the early days of computing, benchmarking has represented a powerful method to assess the
relative performance of computing systems. Benchmarking applications have evolved together
with computing architectures, programming languages and the problems being tackled with the
computing resources. To be meaningful, benchmark applications should provide measurements
which are compatible with the performance that a real application would experience at runtime.
Benchmarks decouple the measurement process from the specific and often difficult task of
systematically reproducing features of real workloads.
Benchmarking is a consolidated activity in High Energy Physics (HEP) computing where large

computing power is needed to support scientific workloads. In HEP, great attention is paid to the
speed of the CPU in accomplishing tasks characterised by a mixture of integer and floating point
operations and a memory footprint of few gigabytes. The benchmark widely adopted by the HEP
community to measure CPU performance is HEP-SPEC06 (HS06) [1]. It has been defined by
the HEPiX Benchmarking Working Group [2] and is based on a subset of the industry standard
SPEC CPU2006 benchmark suite. As of 2009, HS06 is the official CPU performance metric used
by WLCG sites to describe experiments’ computing requirements, assess data centres’ computing
capacity and procure new hardware. It is distributed under a license that allows site-wide
deployment and, on modern architectures, it normally requires several hours for a single run.
As a consequence, it is adequate for a limited number of tests executed on individual bare-metal
servers or individual server models during hardware acceptance or service commissioning.
With the evolution of computing services towards virtualised IaaS and the increasing adoption

of public and private cloud resources in the WLCG, a need for repeated benchmark tests
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is emerging, in order to capture performance variations of the VM, caused not only by the
configuration of the VM itself and the underlying hardware, but also by changes in load
conditions of neighbouring VMs. For this reason, in the HEP community a quest for fast
benchmark applications has started with the objective of identifying benchmarks that can run
quickly enough to avoid wasting compute resources, but still accurate enough to represent HEP
workloads running on the cloud.
The next sections describe the benchmark applications that have been studied and the

peculiarities identified, the application areas addressed and the workflow put in place to collect
and analyse performance metrics.

2. HEP benchmarks
The benchmark applications included in this study aim to assess the speed of the CPU
in accomplishing specific computing tasks. Since pseudo-random number generation is a
core task of Monte Carlo simulations (one of the most frequent type of WLCG workload
running on commercial clouds), the selected benchmark jobs consist mainly of pseudo-random
number generations via synthetic code or using submodules which are part of the experiments’
applications. The seed used by the random number generator is fixed at configuration level in
order to guarantee the reproducibility of the sequence across different tests. This approach also
makes sure that the comparison between tests is not affected by the variation of the sequence,
which would result in a decreased resolution of the measurements and higher spread. The
synthetic benchmarks used in this study are called ATLAS Kit Validation (KV) [3] , Dirac
Benchmark 2012 (DB12) [4] and Whetstone benchmark (WSN).
The KV is a toolkit adopted by the ATLAS collaboration for the validation of their software

installation in Grid sites. The tests include, among others, the GEANT4 [5] simulation of the
ATLAS detector. A KV benchmark simulates N independent events of a single muon particle
propagating through the detector. The CPU time needed to simulate each event is recorded and
the average over the N events is computed as the final benchmark result. In order to remove
from the measurement the overhead coming from the initialization of the software libraries and
the configuration of the simulation parameters (detector geometry, list of particles, properties
of the materials), the first event in the sequence is excluded from the final average.
DB12 is a Python script that iteratively samples a sequence of pseudo-random numbers from

a Gaussian distribution. The number of iterations is fixed at 12.5 · 106, which corresponds to
250 HS06 seconds. Even if rather simple in its conception, it has been proven to scale well with
the duration of LHCb simulation jobs [6].
WSN is a synthetic benchmark introduced in 1972 consisting in several modules meant to

represent a mix of “typical” operations executed by scientific calculators, including floating point
computations, such as sin, cos, sqrt, exp, and log as well as integer calculations, array accesses,
conditional branches, and procedure calls. Despite its synthetic mix of operations, the goal of
this benchmark is to measure the performance of both integer and floating-point arithmetic and
it is mostly representative of small engineering/scientific applications that fit into cache memory.
With a given configuration, the benchmarks above-mentioned run very quickly, with execution
times around 5 minutes, 2 minutes and 1 minute for KV, DB12 and WSN respectively.

3. Benchmarking suite
In order to allow for a fast scale-out of the benchmarking process and ease the systematic
collection of measurements, a benchmark suite has been built, based on a scalable architecture
capable of representing HEP workloads on compute resources. The open-source suite features a
light set of dependencies, a configurable set of executable benchmarks jobs and a JSON-based
measurement report. The JSON document contains not only the benchmark results but also
metadata information such as the unique identifier and timestamp of the test, the name of the
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machine under test, its IP address, operating system and CPU model. In the implemented
data flow (Fig. 1) the JSON documents are transferred through an AMQ [7] transport layer,
and sinked with Logstash into Elasticsearch [8], where the data is subsequently monitored
with Kibana [9] or extracted and analysed with other analytic tools, such as Jupyter [10] and
Pandas [11] libraries. The benchmarks adopted are single threaded as are most of the LHC
experiments’ software applications. In order to fully load the compute resources and reproduce
the worst case load scenario, where all the compute slots are running jobs and CPU idle time
is minimized, the benchmarking procedure is, by default, configured to run in parallel with as
many threads as the number of logical cores of the server and the benchmark result is calculated
as the arithmetic average over the set of threads.

Figure 1: Example of a benchmarking data flow implementation. Applied in several use cases,
summing up a total of 4M results collected throughout the last 1.5 years, from over 77k different
machines and 89 different CPU architectures.

4. Profiling commercial clouds
CERN has acquired extensive experience in benchmarking cloud resources from commercial
providers [12], including Microsoft Azure [13], IBM, ATOS [14], T-Systems and the Deutsche
Börse Cloud Exchange. The CERN cloud procurement process has also greatly profited from
benchmark measurements to assess the compliance of the bids with the capacity requested in the
technical specifications. During the tendering phase, cloud providers are invited to benchmark
their resources. The results collected by CERN (Fig. 2) are used not only to verify compliance
with the technical requirements but also to evaluate the effective cost, renormalised to the
performance, of the different cloud offers.
In addition, recurring benchmarking is performed during the cloud production activity in

order to monitor the delivered performance. VMs are generally benchmarked every 8 or 12 hours.
In situations where the delivered performance falls under certain pre-defined reference values,
penalties may be applied according to the contractual terms. Figure 3 shows how recurring
benchmarking can help identifying poorly and well performing providers throughout the delivery
period.

4.1. Estimation of WLCG jobs performance
The majority of the workloads executed in the WLCG are simulation jobs, and as these are
mainly CPU intensive, a recurring CPU benchmarking can also be used to anticipate their real
performance on the delivered resources. Such representative measurements have been tested with
several commercial cloud providers, where the KV benchmark results were compared with the
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Figure 2: Average CPU performance of VMs provisioned in several commercial cloud providers
during a procurement process. The green and red dashed lines identify the requested
performance and the rejection threshold respectively. The anonymous identifiers are used for
confidentiality reasons.

(a)

(b)

Figure 3: Example of a poorly performing (a) and well performing (b) cloud provider, based on
the recurring KV benchmarking of the delivered resources. The blue dots report the average
performance of the running VMs over 24 hours. The number of measurements performed during
each day is reported by the histogram bins.The compensation region is defined by the area above
the green dashed line (1.2 sec/evt).

average CPU time spent by the VM to simulate ATLAS events, as reported by the experiment’s
job monitoring framework. Figure 4a shows the correlation between these two independent
measurements for a large range of benchmark results obtained from VMs of different flavours
running in several Azure data centres, as shown in Figure 4b.

5. A systematic study
A recent benchmark study has examined the compute performance of a new set of 240 physical
servers located in the CERN Wigner data centre (Hungary). The servers are part of the CERN
OpenStack cloud Infrastructure-as-a-Service, based on KVM [15], and expose compute resources
dedicated to the Tier-0 batch system activity as VMs. Each bare-metal server consists of two
8-core Intel Xeon E5-2630v3 processors providing a total number of 32 threads per server with
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(a) (b)

Figure 4: Correlation between KV measurements and average CPU time per event of ATLAS
jobs (a) running in several Azure data centres within VM flavours of different performance (b).

Figure 5: Four VMs of eight vCPUs each (VM-8). Within each physical CPU, software
threads were not pinned to the hardware counterparts. The external rectangle, labeled “pnode”,
represents the physical host and the two internal squares represent the physical CPUs with 16
logical cores. The VMs provisioned are represented with a dotted line, each using a number of
threads (black squares) equivalent to the number of vCPUs.

simultaneous multithreading enabled. The server memory adds up to 64 GiB of DDR4 RAM
in fully balanced configuration, with each memory channel populated with the same number of
dual in-line memory modules (DIMM) of equal capacity.
VMs with different numbers of virtual processors (vCPUs) have been provisioned, keeping

fixed the amount of memory (1.875 MiB) and storage (30 GB) per vCPU. A VM with n vCPUs
is hereinafter referred to as VM-n. Five configurations have been tested, each consisting of VMs
of the same size n, with n={32, 16, 8, 4, 1}. In order to collect performance metrics under similar
load conditions, the number of provisioned VMs per server in a given configuration VM-n has
been fixed to 32/n. The benchmark jobs are executed synchronously on all the VMs in order
to guarantee the full utilization of host resources. Each qemu-kvm [16] thread belonging to
the same VM has been configured via libvirt to run on a single Non-Uniform Memory Access
(NUMA) node, with the result that each VM, with the exception of VM-32, was confined to a
specific socket (Figure 5).
The VM-8 configuration, consisting of four VMs each with 8 vCPUs, offered the opportunity

to easily compare the performance of a setup where a single VM is allocated to one socket
instead of two: this new configuration, referred to as VM-83, is achieved by destroying one
VM per hypervisor in a VM-8 configuration. The resulting setup consists of 3 VMs: two VMs
(labeled VM-83T) hosted by one of the two sockets and the remaining VM (labeled VM-83A)
hosted by the other socket and potentially making use of the complete set of CPU resources as
it would be in the case of simultaneous multithreading (SMT) disabled.
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Figure 6 shows for each benchmark the relative performance across configurations defined as
Ratio(bmkA,V MX) = 2 · μ(bmkA,V MX )

μ(bmkA,V M−83A)
, where the performance of VM-83A is taken as reference

and the factor of 2 takes into account the double number of running threads when SMT is
enabled. In addition to the fast benchmarks, the relative performance obtained running HS06
is also reported for the configuration VM-8 and VM-16.

Figure 6: Relative performance of DB12 (diamond), WSN(circle), KV (triangle down) and HS06
(triangle up) across different configurations. The performance of VM-83A is used as reference.

The results show that SMT enabled implies a benefit of 24% in throughput for HS06 when
all hardware threads are in use. On the contrary KV has a benefit in throughput smaller
than 10% and DB12 results in practically little or no benefit from running multiple hardware
threads because it is penalised for most of the configurations up to the 20%. Finally WSN
shows remarkable results with a throughput improvement of 70%. These different performance
profiles can be explained with an analysis of the peculiarities of the three workloads under test.
DB12 is a Python benchmark and as a consequence it is significantly affected by the behavior

of the interpreter, CPython in this case. The core component of CPython is a large switch
statement in function PyEval EvalFrameEx that is used to dispatch bytecode instructions to
the corresponding case branches. This construct highly benefits from a performant branch
target prediction unit, in order to correctly feed the processor pipeline and avoid as much as
possible wasted/stalled cycles on indirect jumps. On the Haswell architecture, the front-end of
the pipeline does an excellent job in speculatively fetching instructions upon encountering the
indirect jump that dispatches Python bytecode. This reduces drastically the number of stalled
cycles due to unpredictable or mispredicted branches compared to previous architectures, e.g.
Sandy Bridge and Ivy Bridge, reducing the time during which a single hardware thread can
make forward progress without having to share resources with the neighbouring thread. With
the pipeline constantly serving two hardware threads, the per-thread throughput drops by 50%.
KV is a complex tool consisting of a very large code and data segments and leveraging tens of

shared libraries from Geant4 framework: caches and Translation Lookaside Buffers (TLB) are a
critical resource for this type of workload, especially Instruction Translation Lookaside Buffers
(iTLB), and when shared between hardware threads, conflicts might lead to a severe performance
hit. This is especially true for iTLB, since even though part of the address space is shared
between software processes, e.g. page frames hosting code pages from shared libraries, entries
for virtual to physical translation are necessarily distinct. WSN performance instead reflects
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an excellent use of hardware multithreading, without highlighting any of the aforementioned
bottlenecks.

5.1. Single Thread Performance
The analysis of the performance profiles of the three benchmarks revealed a bimodal gaussian
distribution of ATLAS Kit Validation samples, with a 2% difference between the mean of the
two gaussians (Figure 7a) . This effect was negligible with DB12 and WSN, showing respectively
a 0.8% (Figure 7b) and 0.4% delta.

(a) (b)

Figure 7: Distribution of the execution speed of KV (a) and DB12 (b) for VM-8. The two small
bumps in (a) are due to the different behaviour of few servers.

After an in-depth analysis of the samples, it was observed that the slower results were
systematically collected from the VM running on the second physical CPU of the dual-socket
server. Further single-thread runs highlighted the presence of two hardware threads performing
worse than the others, i.e. bare-metal threads number 8 and 24, both belonging to the first
physical core of the second CPU. When testing a VM-8 configuration with pinning of qemu-
kvm threads to hardware counterparts, a single-thread KV run on either one of the virtual
processors corresponding to hardware threads 8 or 24 was showing a 16% increase in the final
average simulation time, which could easily explain the 2% spread highlighted by the statistical
distribution when averaged over 8 virtual processors. The presence of a slower hardware thread is
normally attributed to additional workload, either in userspace or in kernel space (e.g. interrupt
service routines, softirqs), that due to scheduling affinity is assigned to one of the threads
belonging to the same physical core. Further investigations disproved this hypothesis, making it
necessary to collect performance counters as close as possible to the microarchitecture. In order
to do so, perf was attached to KV running on the bare-metal server, where the same performance
asymmetry could be easily reproduced. The resulting profile showed an unexpectedly high
number of cycles spent on the initial instructions of the functions constituting the major
contributors to the additional runtime required by KV when executed on hardware threads 8 or
24. A first hypothesis pointed in the direction of instruction cache or iTLB misses: even though
this could not explain the presence of two hardware threads slower than the others, the large code
footprint of KV seemed a good candidate for a high number of such events compared to other
workloads. The first attempt to validate this hypothesis involved the creation of a synthetic
benchmark aimed at generating instruction cache misses. The idea behind the benchmark is to
generate a large number of functions carrying out the same computation, which are then called
randomly at runtime. A Python script was used to automatically produce C code compiled with
gcc 4.8.5
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Initial results highlighted the same performance asymmetry when running on hardware
threads 8 or 24, with the performance counters still pointing in the direction of a slower front-
end. An additional synthetic benchmark was written to identify a possible correlation between
this effect and the size of the “hot” portion of the code segment being executed. Interestingly
enough, this benchmark reported identical performance for all cores on the machine up to a
code segment size of around 512 KiB, with hardware threads 8 and 24 starting to show higher
runtime beyond this point. This number is very interesting, as it is the portion of code that can
be addressed using 128 iTLB entries and 4 KiB pages. It does not come as a surprise that the
iTLB on Haswell and Broadwell processors can store exactly 128 entries. A further attempt was
aimed at reproducing this asymmetry using large pages, 2 MiB in this case. After compiling
the benchmark with support for huge pages and preloading libhugetlbfs.so, the results did not
highlight any performance difference: by using 2 MiB pages the load on the iTLB is drastically
reduced when executing the relatively small-sized code segment of the synthetic benchmark,
supporting the hypothesis that the iTLB is behaving differently on the first physical core of
the second CPU. After additional tests, the same asymmetry was observed on servers fitted
with Broadwell-EP CPUs and on quad-sockets Haswell-EP systems, but it was not possible
to reproduce on SandyBridge-EP and IvyBridge-EP processors. The final explanation to this
performance asymmetry is to date still unknown.

6. Conclusion
A study of candidate applications to quickly benchmark virtual computing resources running
HEP workloads has been presented. Each benchmark highlights peculiarities that result in
different behaviours under high CPU load and simultaneous multithreading enabled. The
systematic collection, under controlled conditions, of a large amount of benchmark results has
revealed an unexpected performance profile of the first physical core on the second socket on
Intel Haswell and Broadwell architectures. The adoption of a toolkit to configure and manage
the benchmark tests proved to be effective to enable the prompt monitoring and analysis of the
results.
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