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ABSTRACT:

Geo-spatio-temporal topology models are likely to become a key concept to check the consistency of 3D (spatial space) and 4D (spatial
+ temporal space) models for emerging GIS applications such as subsurface reservoir modelling or the simulation of energy and water
supply of mega or smart cities. Furthermore, the data management for complex models consisting of big geo-spatial data is a challenge
for GIS and geo-database research. General challenges, concepts, and techniques of big geo-spatial data management are presented.
In this paper we introduce a sound mathematical approach for a topologically consistent geo-spatio-temporal model based on the
concept of the incidence graph. We redesign DB4GeO, our service-based geo-spatio-temporal database architecture, on the way to the
parallel management of massive geo-spatial data. Approaches for a new geo-spatio-temporal and object model of DB4GeO meeting
the requirements of big geo-spatial data are discussed in detail. Finally, a conclusion and outlook on our future research are given on
the way to support the processing of geo-analytics and -simulations in a parallel and distributed system environment.

1. INTRODUCTION AND RELATED WORK

Geo-spatio-temporal or in general nd-topology models are very
useful to automatically check the consistency of polytope models
in emerging GIS and CAD applications such as Building Infor-
mation Modelling (BIM), city and infrastructure planning, sub-
surface reservoir modelling, and BIM-GIS integration. Further-
more, they will help to keep the overview by navigating through
complex 3D (spatial space) and 4D (spatial + temporal space)
above- or sub-surface models consisting of big geo-spatial data
generated from terra- or petabytes of point cloud data. There
is no doubt that the consistent storage and efficient retrieval of
big geo-spatial data will significantly improve today’s usability
of geo-database management systems for emerging applications
such as reservoir modelling or the computation of energy and wa-
ter supply in future (smart) mega cities. Furthermore, unless a
very efficient indexing of the topology is possible, topological
data models are not well suited for handling big geo-spatial data
streams (Li et al., 2016). This, however is a challenge, as the
worst-case storage complexity of the topology is quadratic in the
number of objects (Bradley and Paul, 2010).

This is the first in a series of papers being concerned with the
issue of processing big geo-spatial data. The aim of this arti-
cle is to present a theoretical model for spatio-temporal tempo-
ral online analytic processing (ST-TOLAP) which also supports
simulation analytics. The following papers deal with implemen-
tation and tests. We here focus on a mathematical model for topo-
logical consistency checking and on the preparation of DB4GeO
(Breunig et al., 2016), our service-based geo-spatio-temporal
database architecture, to handle big geo-spatial data with embed-
ded complex analytics and simulations on parallel database sys-
tem architectures. A brief discussion about big data in conjunc-

tion with GIS is given in (Goodchild, 2016). A generic model for
spatio-temporal data is presented in (Oosterom et al., 2002). In
(Bradley and Paul, 2010) a topological model for data without re-
striction on dimension (including spatial or temporal) is presented
based on the notion of Alexandrov topology. The rest of the paper
is organized as follows: Section 2 gives a general overview on big
geo-spatial data challenges and introduces big data concepts and
techniques including spatio-temporal data management, work-
flows, online programming paradigms and NoSQL systems. Sec-
tion 3 highlights topological consistency checking and introduces
a theoretical model based on the concept of the incidence graph.
Section 4 presents the redesinged object model of DB4GeO wich
now contains the topological consistency constraint in order to
support a topological big geo-spatio-temporal data distribution
within the computer cluster. The concept of topological con-
sistency from Section 3 is realised as a geo-spatio-temporal in-
cidence graph. This incidence graph supports the checking of
topological consistency on geo-spatio-temporal polytopes in par-
ticular, and nd-objects in general. Finally, Section 5 gives a con-
clusion and an outlook on our future research.

2. BIG DATA CHALLENGES, CONCEPTS AND
TECHNIQUES

In this section, we will aim to reflect on general issues of big data
management and processing and current challenges to the field
caused by the ever-growing GIS and remote sensing data sets.

2.1 Challenges

Over the past years new technologies have been developed to han-
dle large amounts of daily produced structured and unstructured
data with more or less high user interaction. Those technologies
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may be used to handle spatial archives and analytics, especially
concerning geo-spatio-temporal data. The five big V’s defining
big data (value, variety, veracity, velocity and volume) suit to geo-
spatio-temporal data and their common use cases. Those data
sets consist of large amounts of information concerning mov-
ing, morphing, geo-spatio-temporal topology and the trend of
attributes of the given geographic objects (high volume). Geo-
spatio-temporal data are structured, processed and analyzed by
scientists of a broad variety of different expertise, working tightly
together to generate added value of measured data (value). Be-
cause of the number of scientists, their different use cases and
missing standards geo-spatio-temporal data could be seen as rel-
ativly heterogenous (variety). In any case, the data needs to be
analyzed quickly (velocity) and needs to be trustable (veracity).
It is to mention that all geographic information is subject to un-
certainty (Goodchild, 2016). So when dealing with veracity of
big geo-spatio-temporal data we have to deal with uncertainty in-
formation about the data.

Due to the complexity and the large scale of GIS and remote
sensing data, it is desirable to identify and analyse geographic
objects when designing complex distributed systems. For exam-
ple, in urban planning, there is an interest in current land cover
and land use data objects at various spatial and temporal hier-
archies. Easy and efficient programing of these systems can be
challenging (Ma et al., 2014). GIS experts are focused on accu-
rate mappings and handling relevant big data related to human
and natural risks. This data can be unstructured, which increases
the challenge of extracting meaningful content out of it, in partic-
ular aggregation and correlation of multisource real time data that
includes ground surveys and remote sensing images. One possi-
ble approach is to utilise a combination of different resolutions to
enable the analysis of areas at semantic level rather than to focus
on one particular resolution.

The availability of a wide range of analysis methods facilitates
the success of a data mining task, however this relies heavily on
the data and GIS experts ability to configure the appropriate se-
lected algorithm. This challenge requires familiarity and knowl-
edge of these algorithms. Big data being temporally distorted
due to changes of the urban state or agronomical distortions may
cause cyclic data changes, however the class theme may stay per-
sistent.

The differing backgrounds of GIS experts and variability of com-
puting skills can raise another challenge in big data manage-
ment. This variability can generate what is known as a se-
mantic gap caused by the lack of homogeneity between low-
level information such as information extracted from an image
and high-level information such as urban experts analysis (As-
suncao et al., 2015). During the last decade of GIS big data
management, region based image analysis methodologies (object
based) was adopted to deal with this problem. Such as, initia-
tives on the use of domain knowledge for classifying urban ob-
jects. This approach generated new challenges when attempting
to formalise and exploit knowledge such as the difficulty of build-
ing knowledge-based systems due to the implicit nature of expert
knowledge added to the challenge.

Another area that will benefit from big data research progress is
the issue of scalability and the ability of exploiting big distributed
data sets of images that do not fit into memory. The need to re-
think current data analysis algorithms is evident and will impose

more pressure on data analysts as graphical data sets grows expo-
nentially. This will also affect the ability to deal with data impre-
cision, evaluate and correct errors in graphical raw data or seg-
mentation data. This gives rise to the need to define sets of robust
algorithms capable of incorporating data errors and imprecisions
by defining the appropriate methodology to evaluate and correct
errors or imprecisions in data and therefore on knowledge. This
methodology will need to show significant success in combining
all the information available on studied areas regardless of their
media to enhance that data analysis process and therefore reflect
positively on knowledge generation and management.

In summary the challenges facing GIS big data management is in
the design and development of data analysis platforms adopting
multi-level analysis to use all available data sources and methods
to develop interdisciplinary data analysis methodologies integrat-
ing and merging data and knowledge from different domains such
as geology, geophysics, environment sciences, and data mining.

2.2 Workflows

Traditional workflows depend on data transfer by streaming the
data to some analyzing unit. Sensors record some entities in
the first step and stream them for further modelling or analytics.
Present research topics address edge-based computing as a mod-
ern way by pre-analyzing and filtering relevant data by sensor-
networks to reduce data transfer. A second step is the modeling
of the geographic object in form of a 3d representation in combi-
nation with thematic attributes. Further monitoring and modeling
leads to moving and morphing multi dimensional representations
of the geographic object of interest. To run analytics on the gen-
erated data as the third step, data usually needs to be transferred
to some GIS or analyzing tool. Obviously, data transfer is a bot-
tleneck when dealing with big data. Processing analytics also
overloads the hardware capacities of the scientists’ laboratories.
In case of simulations e.g. finite element method, scientists usu-
ally write their own simulation applications or use specialized
software products. Simulation results are written to some persis-
tent memory to copy from for further analytics and visualization.
Even only for the visualization of the simulation results the data
transfer between main memory and the graphics cards memory
turns out to be a bottleneck when dealing with large simulation
results. In-situ solutions help to solve that problem by visualizing
and analyzing the data side by side to the running simulation in
real-time, concurrent, also on high performance computing clus-
ters (Rivi et al., 2012). Scientists are able to see results immedi-
ately while running the simulation. Time consuming simulations
do not need to run until the end if real-time results show strange
behaviors.

Nevertheless, modern workflows use DBMS’s (database-
management-systems) to store the representations and integrate
some analytic intelligence into the DBMS. Some of the analyz-
ing work and even modeling different representations can be done
faster by the “intelligent” geo-spatio-temporal DBMS itself, run-
ning centralized on more powerful servers than the workstations
of the scientists. Furthermore, DBMS’s are built to select, query
and analyze large amounts of data efficiently where else file based
solutions tend to fail. Multi-user support and privacy controls are
further advantages of DBMS’s. But parallel multi-dimensional
DBMS’s for geographical use are still research topics nowadays
and therefore not commonly used. Achieving global scientific
modeling and analytics on big geo-spatio-temporal data leads
to high performance computing and its distributed/parallel data
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processing power on clusters with new ways of data manage-
ment such as NoSQL-DB (Not-Only-Standard-Query-Language-
Database) support. Virtualization, cloud-based software products
and services will be established to outsource the hardware into
data centers or data warehouses which are built to archive big
data and solve analytics centralized in a parallel multi-user envi-
ronment. Programming paradigms such as vectorization, parallel
algorithms, data streaming algorithms (Li et al., 2016), calcula-
tions on GPGPUs (General-Purpose-Computation-on-Graphics-
Processing-Unit), the map-reduce programming model or test-
and behavior-driven-development show new ways of developing
efficient analytic software products to the environmental, eco-
nomical or any other science community with different skills in
computer sciences or programming to solve their tasks. To bring
all of those modern technologies, programming paradigms and
scientists together new workflows have to be developed to ease
the way of cooperative working. From the geo-informatic point
of view this is one of the challenges to support the efficient pro-
duction of added value to geo-spatio-temporal data.

2.3 Online processing paradigms

In the following we refer to two main online processing
paradigms. The first focuses on the efficient transaction pro-
cessing known as OLTP (online transaction processing) and the
second on analyzing the data known as OLAP (online analytic
processing). Both, OLTP and OLAP are of great importance for
geo-spatio-temporal DMS (data-management-systems). While
modern OLTP-applications may focus on real time processing
of sensor data in sensor-networks, OLAP-applications focus on
complex analytics of structured data usually done in data ware-
houses. Both online processing paradigms hinder each other
when working on the same datastock. Data warehousing can
be differentiated by SOLAP (spatial OLAP, GIS interaction with
OLAP), TOLAP (temporal OLAP, evolution of dimension in-
stances available through the definition of temporal dimensions
in OLAP), S-TOLAP (spatial TOLAP, GIS interaction with TO-
LAP), ST-OLAP (spatio-temporal OLAP, OLAP capabilities on
spatio-temporal data-structures) and finally ST-TOLAP (spatio-
temporal TOLAP, TOLAP capabilities combined with spatio-
temporal data-structures) (Vaisman and Zimanyi, 2009). This
paper focuses on ST-TOLAP, the most general form where ge-
ographic objects move and morph over time and carry some the-
matic attributes as geo-spatio-temporal data sets combined with
spatial free dimensions of OLAP which evolve over time by inte-
gration of temporal dimensions (TOLAP).

A point of interest is the hardware setting to use for ST-TOLAP.
Distributed DBS’s (database-systems) suit best for distributed al-
lies being part of the workflow while parallel DBS’s are made
for massive OLTP where several DBS servers host a copy of the
same DBS to provide massive multi-user usage or for OLAP to
solve one complex analytic query in parallel on one large data
set distributed on a cluster as mentoined in common computer
science literature. A Cluster usually is made of high speed con-
nected racks consisting of high speed connected blades which are
basic computers with a HDD (Hard Disk Drive) or a SSD(Solid
State Drive), RAM (Random Access Memory) and a CPU (Cen-
tral Processing Unit) in case of a Shared-Nothing-System. In case
of a Shared-Disk-System the blades share a number of HDDs or
SSDs. High efficiency is expected by Shared-Nothing-Systems
if the data is well distributed such that every blade has average
work load to do for nearly all transaction/processe-types. Shared-
Disk-Systems are not as dependent on data distribution as Shared-
Nothing-Systems but synchronization efforts could slow down

the system. In-Memory grids use only RAM as main storage to
reduce read and write operation times.

2.4 NOSQL systems

NoSQL Systems are DMS’s (data-management-systems) that
seem to be well suited to handle Big Data. Four groups are to
mention. These are Key-Value-Stores, Extended-Record-Stores,
Document-Stores and Graph-DBs. Each system differs in data-
quality and -quantity. While Key-Value-Stores manage huge
quantities of data, data itself has less structure. On the other hand
Graph-DBs manage less data quantities but have more structure.
The map-reduce programming model (e.g. hadoop) is a suitable
mechanism to solve some analytics on big data. It is from great
interest how this model may be used for ST-TOLAP purposes.
Further investigations need to be done concerning the speedup
and scaleup of parallel processing in ST-TOLAP and the physi-
cal or virtual data integration. Some operations on specific geo-
spatio-temporal data distributions might result in too large intra-
communication or synchronization overheads. Therefore, how
the data is being distributed, the load-balancing and sharding, has
impact on the processing time of geo-spatio-temporal queries.
For example, if algorithms dependent on the local neighbour-
hood of spatial objects the local neighbourhoods need to be ac-
cessible within one node/blade as far as possible to reduce intra-
communication (e.g. simulations, interpolations etc.). As a sec-
ond example, if algorithms depend on distributed local neighbor-
hoods of spatial objects the local neighbourhoods should be dis-
tributed across the cluster such that every node/blade has nearly
the same work load to query or calculate all pieces (distributed R-
Tree for searching in parallel or editing etc.). In both cases read-
ing data from other nodes will turn into a massive communication
between the blades for certain tasks within a Shared-Nothing-
System or synchronization efforts within a Shared-Disk-System.
A good topological structure of the geo-spatio-temporal data will
help the controlled distribution.

3. FIRST STEP: THEORETICAL MODEL FOR
TOPOLOGICAL CONSISTENCY

In the literature there are various differing definitions of the no-
tion ”topological consistency”, cf. e.g. (Li, 2006, Kang and Li,
2005, Rodrguez et al., 2010, Dušan and Branislav, 2004). Prob-
ably the one closest to our point of view is found in (Dušan and
Branislav, 2004), in which topological consistency usually refers
to the lack of topological errors, like unclosed polygons or dan-
gling nodes. Instead, we will define it as the equality of the topo-
logical model with the topology derived from geometry in a cer-
tain way. The idea is that a model is consistent, if and only if
it is properly embedded into Euclidean space. The main advan-
tage of this new definition is that in this case, costly geometric
computations can be avoided in topological queries by using the
topological model only. Our notion of topological consistency
then guarantees the correctness of topological query results.

Let P be an n-dimensional polytope. We associate to P the fol-
lowing finite topological spaceX(P ) which we call cell space of
P : the points of X(P ) are the interiors of all k-faces of P for
k = 0, . . . , n. The topology on X(P ) is the one generated by
the bounded-by relation > on the open faces: a > b (or b < a) if
b is in the boundary of a. For example, if P is a polygon (we call
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then X(P ) = X(P1) can be depicted as:

A

a b e c d

β δ α γ ◦

In the literature, the topology generated by the bounded-by rela-
tion is often called incidence graph. It is a so-called finite T0-
space or poset. The T0 indicates that the relation > yields an
acyclic graph structure on the points of X(P ). An introduction
to finite topological spaces can be found in (Barmak, 2011).

A geometrical realisation of a polytope can be obtained e.g. by
assigning coordinates to the vertices of a boundary-representation
model. However, if not enough care is taken, then one can obtain
something like this (we call it P2):

α

b
c

γ

d
e

β
a

A

◦ δ

Here, there is a topological inconsistency: in the bounded-by
topology, ◦ is in the boundary of the slanted edges only. How-
ever, in this geometric realisation, ◦ is in the boundary also of the
punctured horizontal edge. Another problem is that in this geo-
metric realisation the interior is disconnected. This is not what
we usually think of as a polytope (or here: polygon). In any case,
we can construct another finite topological space X̄(P ) which
extends X(P ) as follows: the points are all non-empty intersec-
tions a∩b for a, b ∈ X(P ). The relation≺ is defined as follows:
Let a, b ∈ X(P ), then a ≺ b if a < b, and for i = a ∩ b 6= ∅:
i ≺ a if i 6= a. The space X̄(P ) is called the overlay space of
P . We say that P is topologically consistent if the overlay space
X̄(P ) coincides with the space X(P ). In the above inconsis-
tent example, we have that ◦ ≺ a in addition to < in the overlay
space. In any case, the overlay space X̄(P ) is also a finite T0-
space.

This notion of topological consistency was introduced in
(Bradley, 2015) in a slightly different formulation in the con-
text of configurations of polygons. Here, we can also consider
configurations of objects of the following kind: First of all,
we can define X = X(P1 ∪ · · · ∪ P`) and the overlay space
X̄ = X̄(P1 ∪ · · · ∪P`) for polytopes P1, . . . P` in the same way
as for a single polytope. Again we call P1 ∪ · · · ∪ P` topologi-
cally consistent if X = X̄ . Then, an n-primitive P is the interior
of a polytope P of dimension n minus the union H of finitely
many polytopes of dimension ≤ n, provided that this union is
topologically consistent. A primitive is defined as an n-primitive
for some n. We call the closure of P \ H the closure clP of P,
and write X(clP) for the set of interiors of the faces of P \ H
including P. Again, the overlay space X̄(clP) can be defined,
together with topological consistency.

The final step is to build up spaces from primitives: let C =
cl(P1) ∪ · · · ∪ cl(P`) be such a space. Then again we extend the
definition of the cell space to obtainX(C), and the overlay space
X̄(C). Notice that the elements of X(C) are in general not open
cells in the sense of topology, but can be viewed, like in the case
of cell complexes, as building blocks for a space C.

In our example of the topologically inconsistent polygon P2,
X̄(P2) has the same points as X(P2). The difference is in the
topology: X̄(P2) can be depicted as

A

a b e c d

β δ α γ ◦

If the goal is to decide whether a geometric realisation of a space
is topologically consistent or not, then it is enough to find the dif-
ference between X and X̄ . However, if one wants to tell by how
much the geometric realisation is inconsistent, one can compute
the Betti numbers of the skeleta of X and X̄ and compare them.
The Betti numbers bi of a simplicial complex can be intuitively
interpreted as the number of i-dimensional holes, where b0 is the
number of connected components, b1 the number of loops, b2 the
number of voids etc. For a finite poset X , there also exist Betti
numbers by associating to X the order complex K(X), a simpli-
cial complex whose k-simplices are the chains a0 < · · · < ak of
length k. Then bi(X) is defined as bi(K(X)).

The dimension of a poset X is the length of the longest chain in
X . In (Bradley and Paul, 2013), this is seen as a form of Krull
dimension. If the dimension of X is n, then the n − 1-skeleton
Xn−1 is obtained from X by removing all points which are at
the top of a chain of length n. Iterating this process yields the
skeleta Xk with k = 0, . . . , n, where Xn = X . We now define
the numbers bki (X) = bi(Xk) as the Betti numbers of the skeleta
of X . If X = X(C) for a space as above, then we finally can
define the topological defect numbers as

µk,i(C) = bki (X(C))− bki (X̄(C))

In our example, we have

µk,0(P2) = 0, k = 0, 1, 2 (1)

µ1,1(P) = 1, µ2,1(P2) = 0 (2)

which can be seen as follows: X2(P), X1(P2), X̄2(P2) and
X̄1(P2) are all connected, and X0(P2) = X̄0(P2). This implies
(1). In order to see the (2), observe thatX1(P2) is the loop-graph
with vertices a, b, c, d, e, α, β, γ, δ, ◦, which has b1(X1(P2)) =
1; and X̄1(P2) has two loops with the same vertices, and its first
Betti number is two. We have used the fact that for 1-dimensional
posets, the Betti numbers coincide with the Betti numbers of the
underlying graphs, the reason being that the order complex of a 1-
dimensional poset is a graph. This explains the first part of (2). In
higher dimension, things are not quite so simple, but if a poset has
a unique maximal element, then all higher Betti numbers vanish
(as such a space is contractible) (Barmak, 2011). This explains
the second part of (2).

What remains for future work is to find efficient algorithms for
computing Betti numbers of finite posets.
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4. SECOND STEP: IMPLEMENTATION OF A
GEO-SPATIO-TEMPORAL DATABASE

ARCHITECTURE TO ENABLE BIG DATA ANALYSIS

Resuming the big data concepts and techniques from above and
postulating a sound mathematical approach for a topologically
consistent geo-spatio-temporal model, in a second step we intro-
duce the theoretical and practical procedure of redesigning our
geo-spatio-temporal database architecture called DB4GeO (Bre-
unig et al., 2016) to implement parallel and distributed data-
management concepts for a centralized workflow to reduce data
transfer for ST-TOLAP in conjunction with simulation analytics.
The main goal is to set up a hybrid data managment system which
is able to provide a controlled data transfer from persistent stor-
ages to in-memory on RAM and provides a PlugIn-based service
infrastructure which supports parallel algorithms to be plugged
into the parallel database architectures where few different types
of servers deal with the same data stock. Additional specialized
NoSQL Servertypes running on the same cluster should be able
to deal with other datatypes. In this way we address the issues
of scalablity and use of distributed data-management raised in
Section 2. If the analytic algorithms are parallelizable with ac-
ceptable synchronization overheads the analytic processing will
be sped up and the general data transfer will be reduced because
analytic processing will run on the same computer cluster, the
same data stock and streams only the results of the algorithms to
the clients. Archiving process-code versions and meta-data of the
process-model for quering analytic work and reusing it with new
data sets also leads to process-databases for historical scientific
work. This has a lot of benefits for efficient research and collabo-
ration even within one research center dealing with heterogenous
data.

Figure 1. DB4GeO’s approach to run parallel to the In-Situ
framework of Paraview

In our present work we are connecting VTKs (Visualization
Toolkit) (Schroeder et al., 2006) and ParaViews (Ahrens et al.,
2005) In-Situ technology with DB4GeO and are exchanging the
backend to a NoSQL-DB to support persistent big data stor-
age. The connection to VTK and ParaView enables a lot of
new features to DB4GeO not only in computational geometry
and visualization for geo-spatio-temporal use. At the moment the
DB4GeO architecture is based on db4o (database for objects) to
handle the persistency of the stored geo-spatio-temporal objects
and uses a RESTful (Representational State Transfer) Paradigm
for web-communication (Breunig et al., 2016). But reading and
writing to the physical hardware of VTKs geometry types and
data sets is going to be managed, structured and distributed by
DB4GeO in accordance with its own geo-spatio-temporal model
and object model using a NoSQL-DB as backend to provide an
efficient physical data integration in parallel DB environments.
The operation-layer is going to be changed to provide integra-
tion of vtk/in-situ based source code, stored/archived, compiled
and executable at run-time on a ParaView cluster. Results will
be streamed to the clients or stored in DB4GeO for further pro-
cessing. The source-codes for analytics shall be provided by
modern programming paradigms such as test- or behavior-driven-

development. In this way DB4GeO will run synchronized in par-
allel to the simulation and the visualization / analytics cluster to
feed the two clusters from persistent shared nothing drives to the
shared nothing In-Memory Grid and backwards (see Fig. 1). As
theoretically prepared in Section 3 the first step focuses on the de-
velopment of geo-spatio-temporal topological models to provide
control of load-balancing and sharding. A suitable topological
model is the key to have control over efficient data distribution
for load-balancing and sharding in case of processes depending
on topological constraints. DB4GeO is an object oriented geo-
spatio-temporal DBMS prototype developed to handle moving
and morphing volumes, surfaces, lines and pointclouds written
in JAVA programming language (Breunig et al., 2016).

4.1 Object Model

Recently the object model has been redesigned to support ISO
19107 (Simple Feature Model) and ISO 19109 (General Fea-
ture Model) design patterns. Fig. 2 shows the class diagram of
the newly implemented object/feature model and Fig. 3 shows
the class diagram of the redesigned DB4GeO geometry model.
Each DB object/feature (DB4GeO-DB4Object) within the ob-
ject/feature model is now able to carry a spatial part (see Fig. 3),
temporal part (DB4GeO-TemporalSequence, -TemporalInterval,
-TemporalStamp) and/or a thematic part. Thematic classes are
compiled at runtime and instances are referenced to the specific
DB4GeO-DB4Object. A DB4GeO-DB4Object is a subclass of
the abstract DB4GeO-Cell class which implements the basic gen-
eral feature model (see Fig. 2). Each DB4GeO-Cell is part of a
graph and carries its own thematic objects and tables of all child
thematic objects where each table or object record belongs to one
specific thematic class as schema definition.

Figure 2. New object-model in DB4GeO (follows OGC’s
General Feature Model)

Figure 3. New class-hierarchy of geometry-package (allows cells
to use all kinds of geometries and sets of geometry-package)

The DB4GeO-DB4Object graph can be arranged by needs e.g.
level of detail (see Fig. 4), topological incidence graphs, mod-
eling steps (from point cloud to simulation data set), CSG (con-
structive solid geometry) or data distribution etc. Specializations
of the DB4GeO-Cell class provide functionalities to manage their
child-instances and their spatial-, temporal- and thematic-part and
the interconnection of those parts. This general api approach shall
provide the ability to adapt to big data concepts as needed in a
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parallel distributed DBMS’s for ST-TOLAP in conjunction with
simulation analytics.

Figure 4. EXAMPLE: LOD-graph using new object-model;
green nodes: spatial parts with dimension;
blue node: time-stamp with dimension;

orange nodes: thematic parts with n dimensions;
white nodes: cells (red boundary: root node)

4.2 Geo-spatial simplices

The geometry model uses 0,...,3-dimensional simplices to support
computational geometry tasks more efficiently. For a valid geo-
spatial simplex (DB4GeO-Element3Ds) c = {p0, . . . , pd}, p ∈
R3 (spatial space) of dimension d := 0, 1, 2, 3 at a certain time-
stamp t ∈ R (temporal space) let p̄i = pi − p0 for 0 ≤ i ≤ d.
The constraint:

d = dim(span(p̄0, . . . , p̄d)) (3)

has to hold. The topological features are based on simplicial com-
plexes with further constraints. As most GIS geometry cores
the data types are classified by their dimension. Each 0,...,3-
dimensional geo-spatial complex (DB4GeO-Component3D) is a
well defined topological object. For a valid geo-spatial complex
C within DB4GeO containing some simplices (or cells/polytops,
in general) the following constraints have to hold:

C is topologically consistent (4)

All maximal cells are d-cells for d ≥ 0 (5)

Betti numbers b0 = 1 and bi = 0 for i > 0 (6)

Every (d− 1)-cell is boundary element of two d-cells only (7)

All d-cells are equally oriented (8)

We use here the notion of topological consistence as defined in
Section 3. Constraint 5 states that all cells of a complex C within
DB4GeO are d-dimensional. It has less-dimensional sub-cells but
only for topological reasons as follows. Constraint 6 claims that
there is only one connected component and there are no holes of
any dimension within a complex C. Constraint 7 implies a One-
To-One relation of neighbouring d-dimensional cells sharing one
(d − 1)-dimensional boundary cell (Breunig et al., 2016). This
constraint ensures that a complex C is a d-dimensional manifold.
And constraint 8 ensures that every complex C is an oriented
manifold.

Geo-spatial complexes are collected in nets (DB4GeO-Net3Ds)
with no topological constraints. However, those geo-spatial sim-
plices and their sets exist at certain time-stamps only (so across
R3 only) and because of that no temporal neighbors other than
themselves are able to be identified. Navigating through geo-
spatial complexes or even over neighboring geo-spatial com-
plexes sharing boundary elements is partly done by the G-Maps
paradigm (Breunig et al., 2016). The topological incidence graph
for two neighboring geo-spatial triangle-simplices c0, c1 ∈ C
forming a valid geo-spatial complex at some time-stamp by the
new object model looks like this:

c0 c1

s0 s1 s2 s3 s4

p0 p1 p2 p3

It is to mention that the segments s0 to s5 are not referenced
by the geo-spatial simplices of the geometry-model. Geo-spatial
simplices in DB4GeO are defined on their points only. The edges
or faces are able to be calculated at runtime if needed. But the
cell-nodes could be instantiated to realize the topological inci-
dence graph. How the spatial parts of those additional boundary
cells are going to be integrated is a question of the applicational
needs.

4.3 Geo-spatial simplices on spatio-temporal point tubes

With the help of spatio-temporal point tubes we are able to move
and morph geo-spatial simplices over time (Breunig et al., 2016).
Spatio-temporal point tubes are interpolation functions from R
(temporal space) and a set of points in R4 (spatio-temporal space)
to R3 (spatial space). They replace all pi ∈ R3 (spatial space)
from a geo-spatial simplex in the 3D model at time-stamp t ∈ R
(temporal space) with a function f over t and a set of pij ∈ R4

(spatio-temporal space) for 0 ≤ i ≤ d and j ∈ N. So each pi be-
comes a function f(t, pi0, . . . , pin) representing the i.th spatio-
temporal point tube at a time-stamp t for n points pij ∈ R4. For
a valid geo-spatial simplex and geo-spatial complex on spatio-
temporal point tubes the above typical 3D model constraints
have to hold, too. In this case for a valid geo-spatial simplex
c(t) = {f(t, p00, . . . , p0n), . . . , f(t, pd0, . . . , pdn)} of dimen-
sion d := 0, 1, 2, 3 in R3 with the explained definitions above
let f̄(t, pi0, . . . , pin) = f(t, pi0, . . . , pin)− f(t, p00, . . . , p0n).
The constraint:

d = dim(span(f̄(t, p00, . . . , t, p0n), . . . , f̄(t, pd0, . . . , t, pdn)))
(9)

has to hold for each time slice at t ∈ R. For a valid geo-spatial
complex C within DB4GeO containing some cells of that kind
the above constraints 4, 5, 6, 7 and 8 have to hold for each time
slice at t ∈ R, respectivly. But for each geo-spatial complex de-
fined like that we are still missing true geo-spatio-temporal poly-
topes to setup some geo-spatio-temporal topology easily.

4.4 Geo-spatio-temporal polytopes

The geo-spatio-temporal model is based on polytope complexes
which are also loosely collected in nets (DB4GeO-Net4Ds).
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It follows the Polthier and Rumpf model (Breunig et al.,
2016). A geo-spatio-temporal polytope complex (DB4GeO-
Component4D) is a collection of geo-spatio-temporal polytope
sequences (DB4GeO-Sequence4Ds) for the spatial space coordi-
nates combined with one single temporal-sequence (DB4GeO-
TemporalSequence) for the temporal space coordinates. All
geo-spatio-temporal polytope sequences within a geo-spatio-
temporal polytope complex share the same temporal-sequence
to reduce memory costs. A temporal-sequence is a linearly
sorted interconnected collection of temporal-intervals (DB4GeO-
TemporalIntervals), where else each single geo-spatio-temporal
polytope sequence describes the movement and deformation of
one geo-spatial simplex over time by temporally linear sort-
ing interconnected geo-spatio-temporal polytopes (DB4GeO-
Element4Ds). Therefore, a single geo-spatio-temporal polytope
within a geo-spatio-temporal polytope sequence could be seen as
one change in movement and/or shape of one single geo-spatial
simplex by referencing a geo-spatial pre-simplex for the first
time-stamp (DB4GeO-TemporalStamp) t0 ∈ R (temporal space)
of some temporal-interval referenced by the temporal-sequence
of the geo-spatio-temporal polytope complex it is being part of
and a moved/morphed geo-spatial post-simplex at the second
time-stamp t1 ∈ R of the same temporal-interval. The next geo-
spatio-temporal polytope within the geo-spatio-temporal poly-
tope sequence shares the last geo-spatial post-simplex of the
last geo-spatio-temporal polytope as geo-spatial pre-simplex and
adds a new changed geo-spatial post-simplex to itself. There-
fore, special kinds of spatio-temporal point tubes mentioned in
the model defined above do exist implicitly. Anyway, all geo-
spatial pre- or post-simplices belonging to the same time-stamp
of each geo-spatio-temporal polytope sequence within a geo-
spatio-temporal polytope complex form a geo-spatial complex
as a geo-spatial topological constraint. For a valid geo-spatio-
temporal polytope c = {p̂0, . . . , p̂2d−1} in R4 with dimension

d := 1, 2, 3, 4, points p̂i =

(
pi
ti%2

)
∈ R4 (spatio-temporal

space), pi ∈ R3 (spatial space), two time-stamps t0, t1 ∈ R
(temporal space) with t0 6= t1, 0 ≤ i ≤ 2d − 1 and “%” as
modulo operator let p̄i = p̂i − p̂0. The constraint:

d = dim(span(p̄0, . . . , p̄2d−1)) (10)

has to hold where the points p̂i containing the temporal coor-
dinate t0 belong to the geo-spatial pre-simplex and the points
containing t1 belong to the geo-spatial post-simplex. For a valid
geo-spatio-tempoal complexC within DB4GeO containing some
cells of that kind the above constraints 4, 5, 6, 7 and 8 have to
hold, the same way as the geo-spatial complex constraints of the
3D model but in R4. Geo-spatio-temporal polytopes of that kind
and their collections/sets may exist over spatial intervals (not in
case of points) but have to have a temporal expension. They are
able to have temporal neighbors at the time-stamp of their tempo-
ral boundary and we are able to set up a geo-spatio-temporal topo-
logical incidence graph by the new object model. As an exam-
ple for a valid geo-spatio-temporal segment-polytope complex C
(see Fig. 5) with two neighboring geo-spatio-temporal segment-
polytopes c0, c1 ∈ C

p̂5

s1

s0
p̂3

s4

s5p̂1
s3

p̂2 s2
p̂4 s6

c0

p̂0

c1

Figure 5. EXAMPLE: Valid geo-spatio-temporal
segment-polytope complex C for two neighboring

geo-spatio-temporal segment-polytopes c0, c1 ∈ C with
s2, s0 ∈ c0 and s6, s4 ∈ c1 and s2, s6 as geo-spatial

pre-segment-simplices and s0, s4 as geo-spatial
post-segment-simplices and s1, s3, s5 as implicit linear

spatio-temporal point tubes

the geo-spatio-temporal topological incidence graph will be:

c0 c1

s0 s1 s2 s3 s4 s5 s6

p̂5 p̂1 p̂2 p̂3 p̂4 p̂0

There are a couple of different ways of dealing with geo-spatio-
temporal changes technically. Every case has benefits for keeping
track of geo-spatio-temporal topological consistency. If a tem-
poral change leads always to some changes in position and/or
shape of some geo-spatial simplex by definition the geo-spatio-
temporal polytope complex needs to be split if at least one
geo-spatial simplex of the geo-spatio-temporal polytope complex
does not change over time because it contradicts with the def-
inition. Splitting this kind of polytope complex leads to par-
tial redundant temporal-sequences or redundant referencing of
equal temporal-sequence parts. A second definition could be that
no spatial changes are allowed by ongoing time but this would
lead to redundant referencing of the same simplex (or parts of it)
within the polytope as pre- and post-simplices (or pre- and post-
parts of it, respectively). Investigations to invent models which
are geo-spatio-temporal topologically consistent while keeping
minimum redundancy and redundant referencing is part of our
ongoing research.

4.5 Geo-spatio-temporal polytopes on spatio-temporal
point tubes

With the help of spatio-temporal point tubes we are able to op-
timize the geo-spatio-temporal polytope complexes to a more
dynamic and temporal scaleable data set and to keep the bene-
fits of a true geo-spatio-temporal topology. Furthermore, we are
able to simplify the class-hierachy by removing the polytope se-
quence class used to organize for moving and morphing of a sin-
gle geo-spatial simplex. In this case, a geo-spatio-temporal poly-
tope complex may be a collection of polytopes only and query-
ing a polytope sequence is a geo-spatio-temporal topological al-
gorithm and not a return of a specialiazed geo-spatio-temporal
polytope sequence instance/object within a geo-spatio-temporal
polytope complex. Anyway, the definition follows the geo-spatial
simplex model on spatio-temporal point tubes. We evaluate the
spatio-temporal point tubes at special time-stamps t ∈ R (tem-
poral space) but not only for one simplex at time-stamp t for the
materialization of a simplex at the specific time-stamp but with
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evaluating two time-stamps t1, t2 ∈ R with t1 6= t2 and use the
returned spatial coordinates for the pre-, respectivly post-simplex
of the geo-spatio-temporal polytope.

5. CONCLUSION AND OUTLOOK

In this paper we introduced the theory of a geo-spatio-temporal
topological model to support the topological consistency check
of geo-spatio-temporal polytopes in particular and nd-objects in
general. Challenges and techniques for the handling of big geo-
spatial data and data distribution have been discussed. With the
help of DB4GeO’s geo-spatio-temporal and object model, topo-
logical incidence graphs are able to be stored in the database.
By the use of big data property graph databases as backend
of DB4GeO, these incidence graphs are going to be used for
the controlled distribution of big geo-spatio-temporal data across
cluster nodes and for topological analysis by the functionality of
the used backend database. To execute topological consistency
analytics, those topological models may be extended while not
necessarily touching the geometries themselves and to reorganize
the whole geometric structure.

In our future research we will continue on the examination of the
introduced topology model focusing on dynamic objects. It will
include the development of a suitable service infrastructure for
efficient parallel processing of geo-analytics and -simulations in
a parallel and distributed system environment. Furthermore, we
strive for a centralized workflow for the storage and processing of
big geo-spatio-temporal data. Efficient calculations of Betti num-
bers will help to topologically analyse geo-spatio-temporal data
sets. As applications we plan to have a look on near-to real-time
applications and on big geo-spatial data applications of Dubai
City in the United Arab Emirates.
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