

 Karlsruhe Reports in Informatics 2017,12
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

Model-Driven Specification and Analysis of

Confidentiality in Component-Based Systems

Max E. Kramer, Martin Hecker, Simon Greiner, Kaibin Bao, and Kateryna

Yurchenko

 2017

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/

Model-Driven Specification and Analysis of
Confidentiality in Component-Based Systems

Max E. Kramer, Martin Hecker, Simon Greiner, Kaibin Bao, and Kateryna
Yurchenko

Karlsruhe Institute of Technology
Competence Center for Applied Security Technology (KASTEL), Karlsruhe

firstname.lastname@kit.edu

Abstract. Many software systems have to be designed and developed
in a way that guarantees that specific information remains confidential
with respect to considered adversaries. Such guarantees depend on the
internal information flow inside individual components and the system ar-
chitecture, e.g., the deployment on hardware nodes and properties of their
communication links. Therefore, we propose a novel architecture-driven
approach for specifying and analyzing the confidentiality of information
processed by component-based systems. It includes an architectural anal-
ysis that is able to infer leaks of confidential information from abstract
architecture models, adversary models, and confidentiality specifications.
Our approach supports re-usability of components and specification parts
across systems as well as specifications with custom labels, e.g., accessi-
bility of hardware and service interfaces. Additionally, our information
flow specifications for components are compositional and supported by
tools for non-interference verification on source code level. In two case
studies, we show how our specification approach is applied and how the
architectural analysis is able to detect information leaks of a system in
an early design phase.

1 Introduction and Motivation

In distributed software systems, keeping data confidential while it passes the
boundaries of logical components, physical machines, and communication stacks
is a major security challenge. To avoid unintended information leaks, the flow of
confidential data has to be considered during system design because modifying an
existing architecture later to increase the security can be very costly. Therefore,
the confidentiality of data has to be addressed in a way that allows early up-front
analyses. If components that were already developed and verified can be reused,
this can further decrease costs. This requires the analyses to be compositional.

Current approaches analyze either inter-component or intra-component data
flows and focus on specific concerns, such as protocols [13], policies [1], or gen-
erated code [18]. However, whether a component-based system fulfills a confi-
dentiality specification can not be evaluated solely with such focused analyses:
Many confidentiality leaks are the result of the combination of inter- and intra-
component data flows and depend on the capabilities of potential adversaries.

Therefore, an integration of sound analysis methods should examine components,
their connection and communication as well as adversary capabilities.

In this paper, we propose an approach for specifying and analyzing the confi-
dentiality of information processed by component-based systems based on archi-
tectural models and specifications. After modeling the software, hardware, and
communication of a system, confidentiality requirements can be added, e.g., the
sets of data that shall not interfere or the accessibility of hardware nodes and
service interfaces. Potential adversaries and their capabilities to acquire infor-
mation, e.g., via communication links, can be specified. Our analysis is able to
identify vulnerabilities, i.e., potential leaks of confidential information. It is im-
plemented by Prolog inference rules on these models and specifications. In case
the analysis finds no leaks, hardware and communication requirements are to be
verified in the implemented and configured system as they are not guaranteed
automatically.These requirements are made explicit in our model to facilitate
later assessment. Software requirements can be transformed to non-interference
requirements that can be checked by tools like KeY [26] and JOANA [11] during
system verification. In case the analysis finds a leak, the proof-tree is generated
to document where and why a system is vulnerable with respect to an adversary.
The specification and analysis code as well as all case study models are available
online1.

The approach has four key properties: First, the architecture analysis with
generic non-interference rules can directly be applied to models with custom con-
fidentiality specification labels. Thus, domain experts can use domain concepts
to label system and adversary properties when specifying confidentiality require-
ments. Both the architecture analysis and the code verification do not need to
be adapted to specific systems or adversaries. Second, by inspecting an abstract
model, the analysis allows for the identification of architectural designs that can-
not meet the confidentiality requirements before the complete system is designed
in detail. Third, the analyses are compositional so that results for components or
subsystems that were already analyzed can be reused in new systems. Last, the
approach scales to complex systems because specifications are only needed for
interfaces of system-level components. Specifications for the internal structure
of composite components can be added and refined as necessary.

Alltogether, our approach supports developers and architects during the de-
sign and analysis of component-based distributed systems so that they can

– specify confidentiality requirements in architectural models for software, hard-
ware, and communication using the graphical editors of the Palladio Bench [24],

– analyze the accessibility of confidential data based on adversary models and
architectural models with abstract confidentiality requirements,

– derive source code and annotations for non-interference specifications from
models and confidentiality requirements, and

– prove that the manually completed source code complies to the confidential-
ity requirements using non-interference analyses of KeY [26] and JOANA [11].

1 https://github.com/KASTEL-SCBS/PCM2Java4KeY
https://github.com/KASTEL-SCBS/PCM2Prolog

https://github.com/KASTEL-SCBS/PCM2Java4KeY
https://github.com/KASTEL-SCBS/PCM2Prolog

utilityroom outdoors

passer-by

inhabitant guest

Energy MeterEnergy Visualization

livingroom

inhabitant

Wireless

Link

guest inhabitant

Fig. 1. The example scenario on energy visualization in the household

The paper is structured as follows: In Section 2, we introduce the application
scenario of a running example. In Section 3, we explain the concepts of the
component-based modeling language that we use and its formal semantics. In
Section 4 and 5, we present our extension of this language for the specification of
properties used for confidentiality analysis and the new concepts for adversary
modeling. In Section 6, we explain the architecture and code analyses based
on the modeling language. In Section 7, we present an extension that allows
parameterized sets of data. In Section 8, we present case studies. In Section 9,
we discuss related work and in Section 10, we draw some final conclusions.

2 Exemplary Application Scenario

We briefly introduce a scenario to exemplify the proposed confidentiality spec-
ification and analysis. The scenario consists of a household where the energy
consumption of the inhabitants is monitored (see Figure 1). Consumption data
is acquired by an energy meter and transmitted wirelessly to an energy visu-
alization system. The visualization system stores the consumption data in the
internal database and generates consumption graphs for the inhabitants of the
household. The energy meter has a wireless consumer interface, which is used by
the inhabitant to read the meter values. It also provides additional information
for billing purposes, for example the consumer identification. The energy meter
is located inside a utility room and the visualization system is in a living room.
The locations in Figure 1 are depicted as boxes with dashed lines. Whenever a
user is able to gain physical access to a location, a user symbol is placed inside
the box. There are three types of users who are interacting with the system:
inhabitant, guest and passer-by. Inhabitants have access to all areas but guests
have no access to the utility room. Users of type passer-by are not able to enter
the house.

3 Formal Architecture Model

In this section, we introduce the architectural model on which our confidential-
ity specification and analyses are built and we provide a formal definition for
the used model elements. We use a subset of the Palladio Component Model
(PCM) [24], which is a modeling language for component-based systems that
also provides a graphical notation. It is based on the concept of components as
composable software units that provide and require services [29]. We introduce
a set-theoretic notation for the elements of the architectural model and provide
formal semantics for it through the set-theoretic relations and inference rules of
our analysis Section 4.

A PCM model for the scenario of Section 2 is shown in Figure 2. For our
specification and analysis of confidentiality, we use the following model elements
provided by the PCM: Service, Parameter , Interface, Component, Assembly Context,
Resource Container and Linking Resource. These elements and their relationships are
depicted in Figure 8 in the Appendix and described in the following paragraphs.

A Service realizes parts of the functionality provided by a system and may
have input parameters and a return Parameter . In the example, drawEnergyConsump-
tionGraph() (Figure 2, 1) is a Service with no input Parameters (as it uses data
provided by the DBMS), but a return parameter of type image. In our set-theoretic
formalization, the set Services contains all Services and the set Parameters is the
set of all input parameters and return parameters. The relation hasParameter ⊆
Services × Parameters defines the input parameters of a service and the relation
returnParameter ⊆ Services × Parameters defines its return parameter. Both
relations are directly extracted from the architectural model of a the system.

An Interface, such as DatabaseInterface (Figure 2, 3), groups multiple Services.
In the set-theoretic formalization, we define Interfaces as the set of all interfaces
and the relation hasServices ⊆ Interfaces × Services groups Services to Interfaces.

A Component is a reusable building block of software that is defined inde-
pendent of its realization. Component-based software engineering is a contract-
oriented development approach: every Component guarantees to provide Services
via Interfaces if the environment provides the Services that are explicitly required
by the Component. In the example scenario, the Component Energy Meter (Figure 2,
11) provides the Interface EnergyMeasurement, which is required by the Component
Energy Visualization (Figure 2, 7). The set-theoretic counterpart of Components
is the set Components. The relation requires ⊆ Components × Interfaces defines
the Interfaces a Component requires to fulfill its contract. The required Services of
a Component c can be inferred from it. By analogy, provides ⊆ Components ×
Interfaces defines the Interfaces provided by a Component.

To use a Component in a concrete system, the Component has to be instantiated
in an Assembly Context. Every Assembly Context instantiates exactly one Compo-
nent, but a Component can be instantiated in several Assembly contexts. In the com-
pact representation in Figure 2 the Assembly Contexts are represented as boxes
surrounding Components, e.g. 11 for Energy Meter. The set AssemblyContexts
is the set of all Assembly Context in the model. The relation componentOf ⊆

<<ResourceContainer>> Energy Meter

<<runtime exclusive >>

<<location utilityroom,(sealed) >>

<<connection complete >>

<<ResourceContainer>> Energy Visualization

<<runtime shared>>

<<location livingroom,(none)>>

<<connection possible>>

<<ui EnergyVisualization>>

Energy Meter AssemblyContext

<<Interface>>

EnergyMeasurement

EnergyMeasurement

Energy Meter

inhabitant

<<mayknow consumptiondata>>

<<mayknow billingdata>>

<<mayknow public>>

<<canAccess utilityroom>>

<<canAccess outdoors>>

<<canAccess livingroom>>

Energy Visualization

AssemblyContext

EnergyVisualization

Energy

Visualization

<<Interface>>

EnergyVisualization

<<consumptiondata includes result>>

image drawEnergyConsumptionGraph()

<<LinkingResource>> Wireless

<<location utilityroom, (none)>>

<<location livingroom, (none)>>

<<location outdoors, (none)>>

passer-by-adversary

<<mayknow public>>

<<canAccess outdoors>>

<<canTamper (seal) at outdoors>>

Database

DatabaseInterface

DBMS

<<Interface>>

DatabaseInterface

<<consumptiondata includes result, start, end>>

int[] getValues(int start, int end)

<<consumptiondata includes timestamp, value>>

storeValue(int timestamp, int value)
guest

<<mayknow consumptiondata>>

<<mayknow public>>

<<canAccess outdoors>>

<<canAccess livingroom>>

Interface

Component

Assembly Context

ResourceContainer

LinkingResource

user or adversary

Interface

Legend

<<billingdata includes result>>

int getCustomerId()

<<consumptiondata includes result>>

int getEnergyValue()

Service

Fig. 2. Specification of the example scenario

AssemblyContexts × Components defines which Component is instantiated using
an Assembly Context.

A Resource Container represents hardware nodes, e.g. servers or embedded
devices, on which Assembly Contexts are deployed. Every Assembly Context can
be deployed in at most one Resource Container of a resource environment, but
a Resource Container may host several Assembly contexts. Our example has two
Resource Containers on which two (5) and one (10) Assembly Contexts are deployed.
ResourceContainers is the set of all Resource Containers. The relation runsOn
⊆ AssemblyContexts × ResourceContainers defines the Resource Container an
Assembly Context is deployed on.

For communication, links between Resource Containers can be specified using
Linking Resources. In the scenario, there is only one Linking Resource (Figure 2, 9)
connecting the two Resource containers (5 and 10). All linking resources are
represented by the set LinkingResources. Which Resource Containers are linked
by a Linking Resource is defined by the relation connects ⊆ LinkingResources ×
ResourceContainers × ResourceContainers.

4 Confidentiality Specification

We present a model-based security specification language with a formal basis.
To express security-relevant properties for model elements of a component-based
system, we extended the concepts of the Palladio Component Model with spec-
ification primitives, based on UML-like stereotypes. The specification approach
achieves a separation of concerns by specifying confidentiality in two steps:

First, domain-specific labels can be added to resource containers and linking
resources to define how systems and components can be accessed by a user of the
system, and possible adversaries. Second, input- and output-information of com-
ponents can be divided into sets to specify information flow properties implied
by these sets. All specification possibilities of these two steps directly influence
the results of our architecture analysis. The code analysis is only influenced by
specifications that are added in the second step.

We use UML-like stereotypes with parameters as a notion for specification in
the model. For a model elementm being annotated with stereotype s, the relation
hasStereotype(m, s) is true. We define relations between system elements and
specification primitives as a set-theoretic representation of the specification. In
the remainder of this paper, the set-theoretic representation of the model allows
us to give formal semantics for the presented security analysis.

When modeling complex systems, the specification language as described
here can be verbose. This can be overcome by introducing syntactic sugar into
the language, by reusing existing specifications, and by defining implicit default
specifications. Experience will show how these abbreviations are introduced the
most useful way.

4.1 Domain-Specific Labels

The security requirements for a system usually depend on the domain they are
used in. We consider three dimensions of security to be domain-specific: Locations
on which hardware and wiring is physically installed, Tamper Protection mecha-
nisms which are used for securing hardware, and Datasets representing types of
information processed by the system. It is up to the domain expert to decide
which instantiations for these dimensions are useful in a concrete scenario. An
overview of the domain-specific labels can be seen in Figure 3.

Symbol represents Semantics
Location Locations in the do-

main
Each label in the set describes one location. Each
location may be a geographic location or a parti-
tioning according to safety levels, specified outside
of the modeled system’s domain.

Tamper-
protection

Methods used for pro-
tection against physi-
cal tampering

Each label in the set stands for one protection
mechanism against physical tampering.

Dataset Groups of information
in the system

Each label stands for a set of information. The con-
tent of the set is indirectly defined by input- and
output-information. The grouping of information
can be performed along user groups or along pur-
pose of the information, like payment information,
personal information, or others.

Fig. 3. Domain-specific sets

The example in Figure 2 uses the geographical represenatations

Location := {livingroom, utilityroom, outdoors} .

Alternatively, it is possible to define the labels according to levels of protection,
like high-security area and similar. A user who has access to the livingroom area
also has physical access to a resource container deployed in the location livingroom.

The only restriction for these labels is that it has to be possible to determine
unambiguously for every resource container whether it has a certain label or not.
An explicit description of the different locations is not part of the modeled sys-
tem, but is highly recommended as part of the system documentation. Tamper
protection mechanisms describe methods used to protect hardware from physical
manipulation. Candidates here are for example seals, special screws used for cas-
ing and others. The set Tamperprotection defines the possibly used anti-tamper
mechanisms in the system. Again, the labels can be used to define whatever
tamper-protection categorization may be relevant for a given system. It only
has to be unambiguously decidable for an expert, whether a resource container
is protected by a mechanism described by a certain label or not. We recommend
thorough explanations of the anti-tamper methods as part of the documentation.

The example in Figure 2 defines the set of anti-tamper mechanisms as

Tamperprotection := {sealed, none} ,

where none is a default label, which we assume to be always element of Tamper-
protection. The label sealed describes the usage of a seal on a hardware enclosure.
A seal does not necessarily prevent tampering, but it usually allows easy detection
of tampering. Adversaries unwilling to risk being caught tampering would refrain
from breaking the seal.

Our core concern is the protection of confidentiality of information. We use
the concept of Datasets to have an abstract representation for categories of infor-
mation. Again, it is up to the domain expert to decide in which dimensions the
categorization of information is performed. In the example, datasets are defined
according to the purpose of information by

Dataset := {consumptiondata, billingdata, public} .

In other cases, it may be reasonable to define datasets according to stakeholders,
who may have an interest in some kind of information, or according to security
classifications of information.

The labels defined in Location, Tamperprotection, and Dataset can then
be used to provide a system model including security specifications. These spec-
ifications are provided in the dimensions of hardware protection, connectivity,
hardware usage, confidentiality of information and encryption of communicated
information. Figure 4 shows a list of the stereotypes which can be used for specifi-
cation in the model. In the following, we will describe their intuitive and semantic
meaning and how they are applied in the model.

4.2 Hardware Protection and Accessibility

Hardware can be protected from physical manipulation by placing it in a secure
location or by preventing persons from physically tampering with the hardware.
Applying the stereotype �location l, (T)� specifies that a Resource Container
or Linking Resource is placed on the specified location l and protected against
tampering by the specified mechanism T .

Formally, the relation location ⊆ ResourceContainers×Location×Tamper-
protection is defined as {(rc, l, t) | hasStereotype(rc, s)∧ s =�location l, (T)�
∧ t ∈ T}. The relation linkLocation ⊆ LinkingResources×Location×Tamper-
protection is defined similarly. In order to specify that at a given location no
tamper protection is applied, the special label none ∈ Tamperprotection is used.

Especially for a Linking Resources, it can be useful to apply this stereotype more
than once to express that different tamper protection mechanisms are used at
different locations of the same linking resource. A cable, for example, may bridge
several locations with different security levels and may be protected differently
at each location. In Figure 2, the Energy Meter 10 is specified to be installed in
the utility room and it is protected against tampering using a seal. Energy visu-
alization (Figure 2, 5), on the other hand, does not use any tamper protection

St
er
eo
ty
pe

A
pp

lic
ab

le
to

A
rg
um

en
ts

In
tu
it
iv
e
Se

m
an

ti
cs

�
lo
ca

ti
on

l,
(T

)�
R
es
ou

rc
eC

on
ta
in
er
,

L
in
ki
ng

R
es
ou

rc
e

l
∈
L
oc
a
ti
on

,
T
⊆

T
a
m
p
er
p
ro
te
ct
io
n

C
om

bi
na

ti
on

of
lo
ca
ti
on

l
of

th
e
ha

rd
w
ar
e

el
em

en
t
an

d
th
e
ta
m
pe

r
pr
ot
ec
ti
on

T
us
ed

at
th
is

lo
ca
ti
on

.
�

co
nn

ec
ti
on

ex
is
ti
ng
�

R
es
ou

rc
eC

on
ta
in
er

–
T
he

re
ar
e
co
nn

ec
ti
on

s
fr
om

th
e
re
so
ur
ce

co
n-

ta
in
er

to
it
s
en
vi
ro
nm

en
t,

w
hi
ch

ar
e
no

t
ex
-

pl
ic
it
ly

m
od

el
ed

.
�

co
nn

ec
ti
on

po
ss
ib
le
�

R
es
ou

rc
eC

on
ta
in
er

–
If
ha

vi
ng

ph
ys
ic
al

ac
ce
ss
,i
t
is
po

ss
ib
le

to
es
-

ta
bl
is
h
fu
rt
he

r
co
nn

ec
ti
on

s
to

th
e
re
so
ur
ce

co
nt
ai
ne

r.
�

co
nn

ec
ti
on

co
m
pl
et
e�

R
es
ou

rc
eC

on
ta
in
er

–
E
ve
n
w
it
h
ph

ys
ic
al

ac
ce
ss
,t
he

re
ar
e
no

t
fu
r-

th
er

co
nn

ec
ti
on

s
to

th
e
en
vi
ro
nm

en
t,
ex
ce
pt

th
os
e
ex
pl
ic
it
ly

st
at
ed

in
th
e
m
od

el
.

�
ru

nt
im

e
ex
cl
us
iv
e�

R
es
ou

rc
eC

on
ta
in
er

–
A
ll
so
ft
w
ar
e
ru
nn

in
g
on

th
e
ha

rd
w
ar
e
is

ex
-

pl
ic
it
ly

m
od

el
ed

.
�

ru
nt

im
e
sh
ar
ed
�

R
es
ou

rc
eC

on
ta
in
er

–
O
th
er

so
ft
w
ar
e
th
an

th
e
on

e
m
od

el
ed

m
ay

ru
n
on

th
e
ha

rd
w
ar
e.

�
en

cr
yp

ts
ex

ce
pt

d
�

L
in
ki
ng

R
es
ou

rc
e

d
∈
D
a
ta
se
t

A
ll
in
fo
rm

at
io
n
co
m
m
un

ic
at
ed

ov
er

th
e
L
in
k-

in
g
R
es
ou

rc
e
is

en
cr
yp

te
d,

ex
ce
pt

in
fo
rm

a-
ti
on

co
nt
ai
ne

d
in

da
ta
ba

se
d
.

�
d

in
cl

ud
es

P
�

Se
rv
ic
e

d
∈
D
a
ta
se
t,

P
⊆

P
a
ra

m
et
er
s
∪

{/
re
su

lt
s
v
,/
ca
ll
s
v
}

T
he

in
fo
rm

at
io
n
en

co
de

d
in

th
e
pa

ra
m
et
er
s,

re
tu
rn

va
lu
es

an
d

ca
lls

of
sv

in
P

is
pa

rt
of

th
e
in
fo
rm

at
io
n
ab

st
ra
ct
ly

re
fe
rr
ed

to
as

da
ta
se
t
d
.

�
ca

nA
cc

es
s
l�

A
dv

er
sa
ry

l
∈
L
oc
a
ti
on

T
he

ad
ve
rs
ar
y
ca
n
ph

ys
ic
al
ly

ac
ce
ss

lo
ca
ti
on

l.
�

ca
nT

am
pe

r
(T

)
at

l�
A
dv

er
sa
ry

T
⊆

T
a
m
p
er
p
ro
te
ct
io
n
,

l
∈
L
oc
a
ti
on

T
he

ad
ve
rs
ar
y
ca
n
ov
er
co
m
e
ta
m
pe

r
pr
ot
ec
-

ti
on

m
ec
ha

ni
sm

s
T

at
lo
ca
ti
on

l

�
m

ay
kn

ow
d
�

A
dv

er
sa
ry

d
∈
D
a
ta
se
t

T
he

ad
ve
rs
ar
y
m
ay

kn
ow

th
e
in
fo
rm

at
io
n
be

-
lo
ng

in
g
to

da
ta
se
t
d

F
ig

.4
.
O
ve
rv
ie
w

of
co
nfi

de
nt
ia
lit
y-
re
le
va
nt

sp
ec
ifi
ca
ti
on

pr
im

it
iv
es

mechanisms. The wifi connection (Figure 2, 9) covers the living room as well
as the utility room. Since a wireless network is used, it is not avoidable that the
connection is accessible from the outside, as well. Physical tamper protection, by
the nature of a wireless connection, can not be applied. In order to validate the
configuration and deployment of a system, a checklist for each resource container
and linking resource can easily be generated from the model.

To the knowledge of the authors, there are no tools available that are able to
automatically check for an actually installed system whether it satisfies the spec-
ification in terms of location and tamper protection mechanisms. Nevertheless,
the specification allows an easy generation of a checklist, which states where some
hardware has to be installed and how it has to be protected from tampering. It
is up to the domain expert, knowing the location specifications and the tamper
protection mechanisms to use this checklist for quality assurance purposes.

4.3 Connectivity

Linking Resources represent connections between resource containers in the model.
Apart from the connections explicitly modeled, a resource container may pro-
vide further possibilities for physical connections. If we assume that there can
be no connection that is not modeled, we would have to model all connections
for every container in every system, which may not be feasible. Instead, we pro-
vide three options to specify connections of resource containers. The stereotype
�connection complete� applied to a resource container expresses that only ex-
plicitly modeled connections can exist. �connection possible� expresses that
the resource container does provide further ports that are currently not con-
nected, for example, USB or Ethernet ports. To express that some of the existing
connections are not modeled, the stereotype �connection existing� is used.

The formal representation for connectivity properties is the defined by the re-
lation furtherConnections ⊆ ResourceContainers×{possible, complete, existing}
with {(rc, c) | hasStereotype(rc, s) ∧ s =�connection c�}.

In our scenario, the Energy Meter 10 is a closed system that only has a wireless
connection. The Energy Visualization 5 , however, does provide further possibilities
for connections, like USB ports and possibly others.

4.4 Hardware Usage

Whether additional software is deployed on a resource container has implications
on the confidentiality of information. Similar to the problem of whether or not to
completely specify all possible connections of a resource container, it is important
whether all deployed software is modeled. The stereotype �runtime shared�
expresses that further software might be deployed on a system, as shown in the
scenario for the Energy Visualization 5 . If the system is closed and all software
is represented in the model the stereotype �runtime exclusive� is used, as for
the Energy Meter in our example 10 .

The formal representation is given by the relation sharing ⊆ Resource-
Containers×{shared, exclusive} with sharing := {(rc, sh) | hasStereotype(rc, s)∧
s =�runtime sh�}.

4.5 Confidentiality of Information

The goal of our specification and analysis approach is to ensure the confiden-
tiality of information provided to the modeled system as input and provided by
the system as output. The stereotype �d includes P�, with dataset d and pa-
rameters P , specifies for a service that all information in the parameters in P is
included in the dataset d.

In our scenario, the interface specification for Measurement Acquisition 13 ex-
presses that all information in the input to the service setEnergyValue() is in the
dataset consumptiondata, which represents information about the consumption of
the household. The specification of the Energy Visualization interface 1 states
that all input information influencing the output of the service is in the dataset
consumptiondata.

The formal representation of confidentiality properties for services is given
by the predicate includes ⊆ (Parameters ∪

⋃
sv{/resultsv, /callsv})×Dataset

with includes := {(p, d) | ∃serv. hasStereotype(sv, s) ∧ s =�d includes P�
∧ p ∈ P}.

The �d includes P� stereotype states an information flow requirement for
the implementation of a component providing or requiring the annotated in-
terface. It is up to the implementation to ensure that the specified separation
of information regarding the datasets is a property of the implementation. A
common way to formalize this kind of information flow is non-interference. The
semantics we use for formalizing non-interference is discussed in detail in [7], a
notion of non-interference specially designed for component-based systems. This
non-interference property is compositional and specifications re-usable in differ-
ent contexts, both properties which a important for component-based systems.
Also, the notion of non-interference takes common contracts between components
into account, which makes it more precise for our application.

In a nutshell, a component is non-interferent if the environment who can
access and read at most system output specified as low (i.e. observable), can not
gain information about inputs provided to the system and specified as high, i.e.
confidential. To model the environment, so-called strategies provide input to a
component after observing previous outputs sent by the component.

Datasets as abstract information flow specifications allow a black box view on
components. Thus, domain experts only require the specification of a component
to judge which information may be contained in an output.

4.6 Encryption of Communicated Information

Encryption can be used to ensure the confidentiality of information communi-
cated over insecure channels. But even for encrypted data some information,

like the size of the data or protocol control information (IP addresses, MAC ad-
dresses, etc.) cannot be kept confidential. Therefore, the stereotype �encrypts
except d� can be applied to a Linking Resource, to express that all information
communicated over it is encrypted except for information in dataset d. If a Link-
ing Resources does not have any �encrypts except d� annotation, this specifies
that no encryption is used at all.

Note that by encryption, the information whether a service was called and
whether a service was terminated, can never be hidden. This is because the fact
that something is communicated can be observed by observing the presence of
communication.

The formal representation of encrypted data is given by the relation encrypts-
Except ⊆ LinkingResources×Dataset defined by {(lr, d) | hasStereotype(lr, s)∧
s =�encrypts except d�}∪{(lr, d) | d ∈ Dataset∧¬∃s, d′. hasStereotype(lr, s)∧
s =�encrypts except d′�}.

5 Formal Adversary Specification

Our contractual approach towards adversary specification is driven by physical
accessibility of adversaries to locations, and abilities an adversary is willing to use.
The goal is to support abstract adversary modeling in cooperation with domain
experts who can assess which persons have physical access to which parts of the
system and can decide which types of adversaries and what abilities have to be
considered. This can be done in an iterative process based on previous analysis
results or, for example, based on a risk assessment step. The domain expert can
exclude particular types of adversaries due to other security measures, e.g., access
control to the premises, guards on the premise, or camera surveillance.

By modeling adversaries with certain properties a user of our approach con-
tractually specifies that these properties will hold in the final system. This also
applies to the architectural model and confidentiality specification for the system
but there is an important difference: for the final system our code level analysis
can verify individual components and it would be possible to technically support
checks of conformance to the prescribed architecture, e.g. for deployment config-
urations. But, we have no means to technically verify whether adversaries fulfill
the modeled properties.

We model adversaries as entities that are potentially interacting with the sys-
tem under design. They can represent persons with malicious intentions, but also
legitimate users, who are only allowed to use the system in the way prescribed
by the architectural model and confidentiality specification. An adversary is rep-
resented as an Adversary model element and graphically represented as shown in
Figure 2 (2 , 4 , 8) and three properties can be specified: First, which domain-
specific locations an adversary may gain access to. Second, which actions an
adversary is willing to perform in terms of physically tampering with hardware
of a system. Finally, which information an adversary is intended to gain access
to.

An adversary has physical access to a Location l if the stereotype�canAccess
l� is applied to it. In Figure 2, the adversary inhabitant 2 has access to all
locations in the domain, while passer-by 8 is only able to access the locations
outside of the house. It is up to the domain expert to know why an adversary does
not have physical access to other locations and by which means this is ensured
in order to model the right properties. The stereotype defines the relation

locationAccessibleBy := {(a, l) | hasStereotype(a, s) ∧ s =�canAccess l�} .

Even if an adversary is, in principle, able to circumvent a given anti-tampering
mechanism, he might not be willing to do so. For example, an adversary might
be able to pick a lock, and yet refrain from doing so if he has to be afraid of
being caught while tampering with it, e.g. due to video surveillance. Therefore,
an adversary’s willingness of tampering with a given protection mechanism de-
pends on the location. Again, it is up to the domain expert to assess which
assumptions according the motivation and ability of tampering should be made.
If an adversary is labeled with the stereotype �canTamper (T) at l�, he is
willing and able to overcome at least one of the tamper protections T at location
l. In order to perform tampering, the adversary additionally has to have access
to the respective location. The adversary passer-by in the example specification
(Figure 2, 8) has the ability to overcome seals, but can not access to the utility
room. The stereotype defines the relation

tamperingAbilities :=

{a, l, t | hasStereotype(a, s) ∧ s =�canTamper (T) at l�∧ t ∈ T} .

Finally, an adversary might be a legitimate user of a system and therefore
obtain knowledge about some information processed in the system. In many non-
trivial systems everybody may get knowledge about some but not all information.
Every ATM user, for example, may know the current system time or information
displayed on a welcome screen but not the balance of all accounts. Therefore, we
provide the possibility to specify that an adversary may know about information
of a dataset d using the stereotype �mayknow d�. The relation

mayknow := {(a, d) | hasStereotype(a, s) ∧ s =�mayknow d�}

represents this specification formally. In our example, the adversary guest (Fig-
ure 2, 4) may gain knowledge about the consumption data in the system, but
he may not get any information about the billing data.

6 Confidentiality Analyses

The confidentiality properties (Section 4, 5) for an architecture model express
requirements to be fulfilled by the system. The intra-component information flow
requirements as expressed by�d includes P� annotations can be checked using

Accessibility

Links/Containers

Hardware Protection

Communication Protection

Software Usage

Assembly

Components

Interface Usage

Accessibility

Services/

Parameters

Information Flow

isInSecure

WithRespectTo(a)

S
e

c
u

rity

P
ro

p
e

rtie
s

Adversary SpecificationAdv.

System

Model

Fig. 5. Work flow of the three-stage architectural access analysis

formal code-level analyses on the actual implementation. Other requirements,
such as expressed by �canAccess l�, can only be checked informally.

Fulfillment of every single requirement, however, is not sufficient to ensure
confidentiality. It also has to be ensured that no violations of confidentiality are
inherent to the architecture model. To this end, we propose an automatic access
analysis. This analysis reports every unavoidable leak and therefore identifies
all faulty architecture models. Only if system external properties do not hold
although they are guaranteed, for example because cryptographic keys are not
used correctly, the analysis result could be considered a false positive.

6.1 Access Analysis

Under the assumption that
– each component fulfills its information flow specification,
– the protection mechanisms for resource containers and linking resources are

properly employed, and location specifications are followed,
the access analysis determines whether the system is vulnerable against any of
the specified adversaries, i.e., whether they can obtain unintended access to in-
formation. For every vulnerability the analysis generates an explanation of how
a given adversary may exploit it. The explanation guides the architect or domain
expert to the model and specification elements that cause the vulnerability.

An adversary who has full physical access to a resource container also has
access to any information that is communicated via interfaces available at that
container. Similarly, he has access to unencrypted information communicated
along linking resources to which he has physical access. We must assume that
adversaries are in control of additional software installed on shared containers. If,
additionally, such software can communicate information to the adversary (by
any further connection), the adversary has access to all information available at
that container.

The access analysis process is depicted in Figure 5. From the architecture and
adversary models and the confidentiality specification the analysis determines
which links, containers, and interfaces are accessible to a given adversary. It then
checks whether the adversary can access information that is not intended for him
by these means, e.g., by circumventing a protection mechanism at a location. The
analysis is designed to support extensions to the specification primitives.

Our analysis is explained in terms of inference rules that formalize the intu-
ition given for the different confidentiality properties.

Similarly to the relational notation of the architecture model (Section 3),
the confidentiality and the adversary specifications are stated in terms of rela-
tions between model elements. For example, the annotation �ds includes P�
states that the relation includes holds for all p ∈ P , i.e.: includes(ds, p). In
addition to these relations that we directly obtain from the architecture model
and the confidentiality- and adversary-specification, we define inferred relations
(Figure 6), such as containersFullyAccessibleBy(a, rc), which holds whenever
an adversary a can—by whatever means—obtain access to all information avail-
able at a resource container rc. Ultimately, we are interested in the inferred
relation isInsecureWithRespectTo(a), where a is an adversary.

As an example, consider the inference rule for sharing and location:

containerAccessibleBy(a, rc)
sharing(rc, shared) furtherConnections(rc,possible)

containersFullyAccessibleBy(a, rc)

It defines that any information that reaches a resource container rc is fully ac-
cessible to an adversary a if a

– can access an resource container physically, i.e., by reaching its location,
– rc is shared, i.e., an adversary can coerce some (unmodeled) program running

on rc to access data processed by a modeled component on rc,
– and further connections are possible (to communicate data to the adversary).

The access analysis depicted in Figure 5 is staged : relations of one stage are in-
ferred only from relations of preceding stages. Accessibility relations for links and
resource containers, for example, are inferred only from the hardware protection,
communication protection, software usage, and tampering-properties. Figure 10
in the Appendix shows a selection of the corresponding inference rules.

The analysis answers the question “Is the architecture model vulnerable with
regard to the modeled adversaries?”. For the example scenario in Figure 1, Fig-
ure 2, we start by inspecting the adversary guest. One might be tempted to
conclude that there are no vulnerabilities concerning guest, because billingdata
is only available from the interface EnergyMeasurement, which is not provided to
users by the system. A guest can also access consumptiondata, which is intended.
The automated access analysis, however, exposes four vulnerabilities for guest.

The explanation for the first vulnerability is that it is possible for guest to
obtain access to billingdata via return values of the service getCustomerId. This
service is part of the interface that is used for the link Wireless to connect the
resource containers Energy Visualization and Energy Meter. This link is located at
livingroom, which is accessible to guest, but billingData is not encrypted on the link
Wireless. Thus, guest has unintended access to billingData via the link Wireless. The
access analysis reports a second, similar vulnerability at location outdoors and a
third and fourth vulnerability because the resource container Energy Visualization
has a shared run-time and possible connections but no tamper protection.

R
elation

r
A
rgum

ents
Intuitive

M
eaning:

r(...)
holds

w
henever

..

Links/Containers

con
ta
in
erA

ccessibleB
y
(a
,rc,l)

a
∈
A
d
v
ersa

ries
rc
∈
R
esou

rceC
on

ta
in
ers

l∈
L
oca

tion

a
can

access
rc

physically
by

reaching
its

location
l

con
ta
in
ersF

u
lly

A
ccessibleB

y
(a
,rc)

a
∈
A
d
v
ersa

ries,
rc
∈
R
esou

rceC
on

ta
in
ers

a
can

–
by

w
hatever

m
eans

–
obtain

access
to

allinform
ation

available
at

rc
lin

k
A
ccessibleB

y
(a
,lin

k
,l)

a
∈
A
d
v
ersa

ries,
lin

k
∈
L
in
k
in
g
R
esou

rces
l∈

L
oca

tion

a
can

access
lin

k
physically

by
reaching

its
location

l

lin
k
sD

a
ta
A
ccessibleB

y
(a
,l,d

s)
a
∈
A
d
v
ersa

ries,
l∈

L
in
k
in
g
R
esou

rces
d
s
∈
D
a
ta
set

a
can

–
by

w
hatever

m
eans

–
obtain

access
to

inform
ation

from
dataset

d
s
transm

itted
via

l

Interface
Usage

p
rov

id
ed

I
n
terf

a
cesA

ccessibleT
o(a

,i)
a
∈
A
d
v
ersa

ries
i∈

I
n
terf

a
ces

a
can

directly
access

interface
i
provided

by
the

system
requ

ired
I
n
terf

a
cesA

ccessibleT
o(a

,i)
a
∈
A
d
v
ersa

ries
i∈

I
n
terf

a
ces

a
m
ay

offer
interface

i
to

the
system

Services/
Parameters

a
ccessibleP

a
ra

m
eters(a

,p
)

a
∈
A
d
v
ersa

ries
p
∈
P
a
ra

m
eters

a
can

–
by

w
hateverm

eans
–
obtain

access
to

all
inform

ation
obtainable

from
the

passing
of

p
to

som
e
service

observ
a
bleS

erv
ices(a

,s)
a
∈
A
d
v
ersa

ries
s
∈
S
erv

ices
a
can

–
by

w
hatever

m
eans

–
observe

any
callto

service
s

p
a
ra

m
eterA

llow
ed

T
oB

eA
ccessed

B
y
(a
,p
)
a
∈
A
d
v
ersa

ries
p
∈
P
a
ra

m
eters

is
a
allow

ed
to

obtain
access

to
inform

ation
from

param
eter

p
serv

iceA
llow

ed
T
oB

eO
bserv

ed
B
y
(a
,s)

a
∈
A
d
v
ersa

ries
s
∈
S
erv

ices
is

a
allow

ed
to

observe
any

callto
service

s

isI
n
secu

reW
ith

R
esp

ectT
o(a

)
a
∈
A
d
v
ersa

ries
the

system
is

insecure
w
ith

respect
to

a

F
ig.6.

O
verview

of
inferred

access
relations

Given such an explanation, the architect may decide to either require stronger
guarantees in the confidentiality specification, to alter the architecture model,
or to leave models and specification unchanged, but to document and assess
the possible risk associated with the given vulnerability and the corresponding
adversary.

To eliminate the first two vulnerabilities in the sample scenario, an obvious
modification of the confidentiality specification is to require encrypted commu-
nication by labeling Wireless with �encrypts except public�. This modification
imposes new requirements on implementations of the linking resource Wireless.

Alternatively, one may decide to remove any services dealing with billingdata
from the interface EnergyMeasurement and to put them into a new interface that
is not required by the component EnergyVisualization. Implicitly, this forbids the
component EnergyVisualization to call any of these services. Hence, no billingdata is
transmitted along Wireless, and there is no need to encrypt communication via
the Wireless link, at least to achieve confidentiality with respect to guest.

Implementation The inference rules form a stratified [2] (even: hierarchi-
cal [4]), allowed—and hence: flounder-free [16]—general logic program. Therefore,
we were able to directly implement them in Prolog. The architecture model, ad-
versary specification and confidentiality properties are expressed as Prolog facts
and the model entities are atoms.

For a given adversary a, the analysis result is simply the answer to the query
isInsecureWithRespectTo(a). Whenever it succeeds, the system is insecure, and
for each violation an explanation is given in form of a proof-tree, which can be
generated by a suitable proof-collecting Prolog (meta-)interpreter [23,10,27,30].
The explanation given in the example above is just an informal rendering of the
proof tree where the leafs are facts. Figure 9 in the Appendix shows the proof
tree for the first vulnerability concerning the adversary guest.

6.2 Extensions

The annotations from Section 4 allow a simple and comprehensive modeling of
security properties, yet in some applications these may be deemed to unspecific.
For example, due to the inference rules, it is implicitly assumed that whenever
some adversary can reach some resource containers location, he can also directly
access any of the user interfaces provided on that container. Instead, we might
want to specify that different interfaces on the same container are protected by dif-
ferent forms of access control (based on, e.g., passwords or security tokens). The
access analysis provides optional extensions that support more detailed modeling
whenever it is required. Further extensions can be defined easily by extending ex-
isting rules and/or replacing simple specification facts by relations inferred from
the new specification facts. Investigation of the relations from Figure 6 reveals
opportunities for extending the specification and analysis, for example:

Access Control Instead of inferring the relation providedInterfacesAccessibleTo
from the system model, we introduce new annotations (and corresponding sets

and relations) that allow formulation of access policies for each interface. For
example, for each interface, we allow specification which access domain they be-
long to, and for each access domain which group of users may access it. The new
inference rule will then read:

containerAccessibleBy(a, rc)
providedInterfacesOn(rc, i) isInDomain(i, dom)

isMemberOfGroup(a, group) hasAccessToDomain(group, dom)

providedInterfacesAccessibleTo(a, i)

Detailed Encryption Specification Instead of just specifying for any giving link
whether it encrypts or not, one could allow a more detailed modeling of which
protocols, ciphers and even implementations are to be used. Together with a
knowledge base of (currently known) vulnerabilities of these encryption building
blocks, and with reasonable assumptions on each adversaries capability to abuse
these, one could replace encryptsExcept by a more specific inference rule and
a relation exposesPhsicallyAccessibleDataTo(link, a, dataset).

6.3 Code Level Analysis

Annotations �d includes P� specify information flow requirements for param-
eters and return values of components. In order to check whether a component
fulfills these requirement and does not—by accident or on purpose—leak infor-
mation, we formally verify non-interference: Input and output is classified as low
or high and it is required that low output is at most influenced by low input, i.e.
low output cannot reveal any information about high input.

For each dataset d, all annotations of the form �d includes P� imply such
a classification for our code analyses: In- and output included in d is considered
low. All other in- and output is considered high. A component implementation
fulfills its information flow specification if it is non-interfering with respect to all
these parameter classifications.

Non-Interference for components is compositional, i.e. non-interferent compo-
nents can be composed to non-interferent compositions and systems. A thorough
account on non-interference in component-based systems is out of scope of this
paper, but can be found in [7].

Several tools for language based security can verify non-interference for pro-
gram code. Two such tools for Java are KeY [26] and JOANA [11]. Both support
the specification of non-interference requirements via source code annotations in
Java programs, which can be derived from �d includes P� annotations. Simi-
larly, tool independent information flow policies for Java programs in the RIFL
specification language [6] can be derived.

Code and architecture analyses do not depend on each other, even if mod-
els and code evolve: the architectural analysis can be used if parts of the code
specification are outdated and the code analysis can be used if the architectural
model is outdated as long as the specification input was corrected according to

code changes. We are currently improving the support for co-evolution of archi-
tectural models, specification and code. If the architectural model is outdated,
the code can still be verified if the specification input was kept consistent with
code changes. Likewise, the architectural analysis could still be used if generated
code stubs are not only completed but also modified as long as these changes
are not in conflict with the architectural model. Fully automated co-evolution of
code, specification and implementation is an unsolved problem in the literature
but we already keep parts of JML specifications consistent with Java code [15].

7 Parameterized Datasets

The confidentiality specifications we have described so far assign to each Parameter
of a service one or more fixed Datasets. Any information that was able to interfere
with information of the service parameter was considered to be able to interfere
with information in the respective Dataset. Which component used a service in
which context had no influence on these possible interferences.

In complex systems, components often process information from different
sources. For example, information provided by different components or informa-
tion that is only confidential with respect to certain users or adversaries. Com-
ponents are required to keep such information separate in order to sustain con-
fidentiality of the provided information, even if the information was provided to
the same service or service parameter.

Consider a simple cloud storage provider that offers the Services putSelf(file,
data) and get(file) to store and retrieve files, as shown in Interface FileManagerGUI
in Figure 7. It has to be made sure that data that was provided by a given
user (i.e.: a client of this Service) is only available for this user. More specifically,
information in the data service parameter of a call to the putSelf service for a given
user must not be retrievable with calls to the get service made by a different user.
We cannot express this requirement by including the service parameter data in
a single fixed Dataset. Instead, we need distinct Datasets for each user although
the used service parameter is the same.

A user of a service call is usually identified and authenticated by additional
parameters which are passed to the called service whenever the service is invoked.
Such additional parameters may, for example, contain user-name/password pairs,
or an authentication token. For our cloud storage example, we assume that every
service of the cloud storage provider has an additional service parameter s, carry-
ing a security token to identify the user. We extend our confidentiality specifica-
tion approach to support families of separate Datasets indexed by corresponding
identifiers obtained from values of such service parameters s. In the example, the
specification parameter Self, which indexes the parameterized Dataset UserData
is in each call defined by the service parameter s, as specified by the stereotype
�s defines Self�. Self ranges over {A,B}, giving rise to corresponding concrete
Datasets UserData[A] and UserData[B].

When the code of the component-based system, which we partially generate
from the models and specification, is verified the relation between service param-

eters that define a specification parameter is as follows: For every specification
parameter S such that �s1 defines S�, . . . , �sn defines S�, a Java method
has to be implemented which extracts from values for (s1, . . . , sn) an identifier
ranged over by S, or fails if (s1, . . . , sn) do not encode a valid identifier. In our
cloud scenario, this extractor may, for example, test if s is a valid authentication
token for either identifier A or B.

This extension for parameterized Datasets and specification parameters can
be used to define the allowed flow of information for a service of a component
prior to the binding of the service parameter. In our example, we specify that
at Interface FileManagerGUI, the parameterized Dataset UserData[Self] includes any
Parameter (abbreviated: *). In particular, it includes data and the output of Service
get, with Self ranging over {A,B}, and defined by the service parameter s. This
means that an implementation is, in a result for a call to get(name,s’), only allowed
to provide data that was obtained in a call to putSelf(file,data,s) if the extractor
method returns the same specification parameter value for s and s’. A static
verification method for the corresponding notion of non-interference for value-
dependent security labels is explained in, e.g. [17].

Restrictions on specification Parameters If only certain values for a specification
parameter are allowed in a certain usage context of a service it is possible to
specify a binding for this parameter in the architectural specification. This is
done by specifying a specification parameter and a set of allowed specification
parameter values for an assembly connector between an assembly context of a
component that provides the service and an assembly context of a component
that requires the service. In the example, the assembly connector for service
ObjectStorage required by the component File Manager at User A PC restricts the
specification parameter Self to A. This models the requirement that any service
call from that component (at User A PC) to the ObjectStorage interface (at Cloud
Service) is made with values s such that s encodes the identifier A. Since any
valid implementation of component File Manager is allowed to handle a request
putSelf(file, data, sb) at it’s interface FileManagerGUI by calling the service putSelf(file,
data sb) at interface ObjectStorage, even if sb encodes B instead of A, this also
implies the requirement that putSelf(file, data, sb) at FileManagerGUI, too, is only
ever called with values s such that s encodes the identifier A. Informally: User B
never uses A’s PC.

Access Analysis With regard to the access analysis, note that wheter a given
Parameter is included in some Dataset now depends on the allocation context a
corresponding component is deployed in: In the example, the Parameter data of
Interface FileManagerGUI at User PC A is included in UserData[A], while the same
Parameter at User PC B is included in UserData[B].Hence, instead of a binary rela-
tion includes (p, d) on Parameters and (concrete), Datasets, we now have a relation
includes (p, d, ac) with ac : Assembly Context.
Also note that we can, in the example from Figure 7, not interpret the specifica-

ResourceContainer

<<ResourceContainer>> User A PC
<< runtime shared >>
<< location userahome >>

<<ResourceContainer>> Cloud Service
<< runtime exclusive >>

<< location datacenter, (perimeterprotection) >>

<< connection possible >>

File Manager Instance A

<<Interface>>

FileManagerGUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>
<< PublicData includes sizeOf(*) >>

File Manager GUI [A]

File Manager

Cloud Storage Instance

 <<LinkingResource>> Internet
 <<location internet>>

Assembly Context LinkingResource

user or adversary

Interface

Le
ge

nd

<< UserData[Friend] includes file, data, f >>
int putFriend(string file, byte[] data, token f)

int putSelf(string file, byte[] data)

Service
Interface

Component

ObjectStorage [Self,Friend]

Cloud Storage

End User A
<< mayknow UserData[A] >>
<< mayknow PublicData >>

<< location internet >>
<< location userahome >>

End User B
<< mayknow UserData[B] >>
<< mayknow PublicData >>

<< location internet >>
<< location userbhome >>

<<ResourceContainer>> User B PC
<< runtime shared >>
<< location userbhome >>

File Manager Instance B

File Manager GUI [B]

File Manager

<< PublicData includes file, data >>
int putPublic(string file, byte[] data)

byte[] get(string file)

<<Interface>>

ObjectStorage [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>
<< PublicData includes sizeOf(*) >>

<< UserData[Friend] includes file, data, f >>
int putFriend(string file, byte[] data, token f)

int putSelf(string file, byte[] data)

<< PublicData includes file, data >>
int putPublic(string file, byte[] data)

byte[] get(string file)

Self <- A

Self <- B

Fig. 7. A simple example scenario using parameterized Datasets

tion to mean that simultaneously

includes (data,UserData[A],Cloud Storage Instance)

and includes (data,UserData[B],Cloud Storage Instance) ,

since otherwise an attacker who may know UserData[A] (but not: UserData[B])
would be allowed to learn values of, e.g., data (say, by fully accessing the resource
container Cloud Service). Instead, we have to analyze two worlds separately: one
in which

includes (data,UserData[A],Cloud Storage Instance) ,

which has no violation w.r.t. such an attacker, and one in which

includes (data,UserData[B],Cloud Storage Instance) ,

which witnesses the confidentiality violation.

8 Case Studies

We applied our approach to two case studies to evaluate its applicability: In
a case study discussing the information-flow security of a travel planer system,

we show that we can express security properties previously discussed in related
work in [28]. In a second case study, we modeled a cloud storage scenario. The
purpose of this second case study was to explore the kind of security specifications
we can provide for a non-trivial system and show how our different levels of
security model elements and analysis technique allow to detect errors early in
the development of a system.

The models for both case studies can be downloaded online2.

Travel Planer System The travel planer system of the first case study consists
of a travel agency, an airline, a travel planner and a credit card center component.
The system offers services for booking flights, confirmation of payment informa-
tion, setting available flights and others to stakeholders like the airline, a travel
agency and customers. An example for a requirement for the confidentiality of
information in this system is “The user’s credit card data does not flow to the
travel agency.”

We extended the original specification with explicit adversaries, links and
physical access properties. In order to keep our specification as close to the
original as possible, we used datasets for each involved party. The original system
defines a temporal declassification property: “The credit card data flows to the
airline only after explicit confirmation and declassification”. We modeled this
property, as in IFlow, by adding a declassifying service to the model.

We applied our architectural analysis to the model and verified that there
is no architectural leak. As our approach does currently not support declassifi-
cation annotations in the model, we are not able to generate such source code
specifications for KeY or JOANA.

Cloud Storage

As a second case study, we modeled a multi-tenant cloud storage system.
The scenario is inspired by a typical medium-scaled deployment of ownCloud3

or Nextcloud4.

System Architecture The modeled system consists of components representing
databases, logging functionalities, cloud instances and administration tools. In
Figure 11, these components are deployed on individual Resource Containers. Each
of these components are instantiated twice in the system, either for redundancy
purposes (database and central logging), or representing copies of the same cloud
instance which are run in parallel for performance purposes. We additionally
modeled a load balancer which distributes request to the cloud storage system
to the two cloud instances. On user level, to model contains components for the
cloud client systems (a file manager app and a calendar app), each instantiated

2 https://github.com/KASTEL-SCBS/Examples4SCBS
3 owncloud.org
4 nextcloud.com

https://github.com/KASTEL-SCBS/Examples4SCBS
owncloud.org
nextcloud.com

for two distinctly different users and a guest user with limited access. These com-
ponents together provide functionalities for uploading, downloading, and sharing
files as well as for managing a calendar with access rights for private-use, friends,
or the public.

The components are instantiated on different machines. Two resource contain-
ers model virtual machines which are meant to be under the control of a cloud
service provider. These resource containers instantiate the central functionality,
i.e., the database and central administration tools. Two additional virtual ma-
chines, also modeled as Resource Container , are meant to be under control of a
cloud service administrator. They manage the two cloud instances. Also, a sepa-
rate Resource Container models the virtual machine which runs the load balancer.
For each of the three users, a separate Resource Container models the machine on
which the user runs their client app. The client’s machines are connected via the
internet to the load balancer, which is connected via an intranet to the machines
running the cloud instances, which themselves are connected to the database
machines via another intranet.

Security Model Our security model consists of distinct locations representing the
home of each user, an outer zone of a computing center, where the load balancer
and the cloud instances are located, and an inner zone, where the database is lo-
cated. In the inner- and the outer zone, special perimeter protections are applied
for physically protect the machines from tampering. Apart from the modeled
connections, the machines in the inner and outer zone allow for additional con-
nections, if physical access is possible, while for the user machines, which may
be personal computers, tablet or mobile phones, we have to assume further con-
nectivity to be existing.

We introduce a parameterized dataset for the users, a distinct dataset for
guests: One for logging data, admin data, and general public data. For each
interface which provides external access to the overall system, we identified which
dataset the input parameters belong to. For each of the outputs, we identified
which input datasets the output is influenced by. For all internal interfaces, we
decided from a domain point of view,which information is communicated via each
service and parameter over the respective interface and added the parameters to
respective datasets using our security modeling language.

Attacker Model We modeled several explicit attackers. One attacker represents
each user of the system. These attackers have access to the respective location
where their client machine is located and they may have access to information
which is contained in the dataset for the respective user. A general adversary is
modeled by an outsider, who may know only public information and can only
access public locations, like the internet. Additional users represent the cloud
service provider as well as the cloud administrator. They can access the inner
and outer zone, as well as public location and may gain access to logging and
admin data, and are willing to tamper with protection mechanisms.

Please note that the purpose of this last attacker type is to show that our
analysis actually finds insecurity. An attacker equipped with this power will have

access to user’s private information. We do not provide a cloud model which
prevents this.

Security Analysis We applied our security analysis, as introduced in Section 6,
and identified several causes why we provided a model representing an insecure
system.

First, we found that we missed several �d includes p� specifications asso-
ciating input parameters to datasets. As a result, for example, a user was able
to learn input information which was meant to be known only by the user who
uploaded it. We identified that this was a mistake in the model. Since the input
information was meant to be shared with other users, this insecurity did not
actually represent an attack. We fixed this insecurity by adding the respective
missing specifications.

Second, we found that basically any attacker was able to read information
on users’ machines. The cause of this was that we assumed, correctly, in the
model that the users’ machines had additional existing connectivity, over which
user’s private information could be read. However, while this is correct, it leads
to an unrealistic assumption that any information on a private device is actually
knowable by anybody. We therefore made the management decision that the pri-
vate devices have common security mechanisms installed, e.g., operating system
firewalls, sandboxing mechanisms, anti-virus software, and others. While keeping
this assumption in mind, we changed the specification of the private devices from
existing to possible, expressing that further connectivity to the client’s apps is
only possible for an attacker with physical access to the device. Note that this
assumes that there are no exploitable attack vectors on the client’s operating
systems.

Another finding was that our system is insecure with respect to the attackers
modeling the cloud provider and the administrator, since they can learn user
information. Since this was the purpose of these attackers, this finding was not
very surprising.

Experience Adding security-relevant specifications to the system model did cause
extra effort. For one, we had to decide at modeling time which entities in the
system should gain access to which input information on a very detailed level.
We also had to decide at modeling time how the components are distributed in a
deployment environment at an early stage. The benefit of this was that we were
forced to keep security in mind during specification from the very beginning.

Our specification mechanism allowed us to abstract from concrete attack sce-
narios, where one particular functionality is attacked by one particular attacker.
We could reduce security to an abstract location- and stakeholder-focused general
consideration of accessibility and who-may-know-what analysis.

Further, the security analysis method as described in Section 6 allowed us
to double-check for unwanted mistakes in the model before implementing the
system. Without the check, we would have provided incomplete requirements for
single components, such that either the components most likely would have been
implemented in an insecure way, or quality assurance for single components would

have been incomplete. We also were able to find out that the security concept
as modeled contained unrealistic assumptions. We had to make a management
decision why we assume user’s devices to be more secure than they would real-
istically be. By being forced to explicitly make an argument why we assume a
resource container to be more secure than it actually is, allows us to make this
assumption explicit together with a documented argument why we think it is
OK to make this unrealistic assumption.

9 Related Work

Various approaches for the design or analysis of distributed systems that pro-
cess confidential data have been presented in the literature. But to our knowl-
edge, no method for verifying confidentiality requirements both at the design and
implementation level according to architectural confidentiality requirements for
abstract components was presented so far. A thorough review of model driven
development approaches focusing on security properties can be found in [20]. We
restrict our presentation here to the most prominent and closest approaches.

UMLsec [13,12], for example, provides analyses for security properties that
can be checked formally for the design of individual components. However, the ap-
proach does not combine results of implementation and design analyses and only
provides an explicit link to source code for role-based access control (RBAC) [19].
UMLsec does not support modeling physical aspects of a system.

Another related approach is IFlow [21][14], which introduced the travel plan-
ner system that we used as a case study. The component model of IFlow is
similar to that of our approach. IFlow uses application-specific security domains
and a specification of allowed flows between security domains to specify the
confidentiality of messages (i.e. service calls). As we showed in the case study,
our approach allows a similar specification technique using datasets, but also
provides additional specification possibilities. IFlow does not support explicit
adversaries, specification of physical accessibility properties or links. IFlow, how-
ever, supports explicit temporal declassification of information. Our approach
does currently not support declassification specification in the model.

Other approaches are restricted to different security concerns, e.g. RBAC for
SecureUML [3], or to special domains, e.g. web-services for SECTET [1] or smart-
cards for SecureMDD [18]. They also lack information flow analyses for code.

The access analysis we propose in this paper is formulated in terms of logical
facts and inference rules. It can be seen as an automatic generation of attack
trees (e.g. [25]) from an architectural system description. Interpreted this way,
the adversary capabilities modeled in our approach determine whether the at-
tacks (the tree’s leafs) are feasible. Attack tree generation from process algebraic
specifications instead of architectural specifications is described in [31]. [22] gen-
erate attack graphs from network models, also modeled as logical inference rules.
There, the possibility of multi-stage network penetration attacks is analyzed, not
the confidentiality of information.

Note that it is not necessary to express security mechanisms and patterns
explicitly with our approach. If the effects of a mechanism or pattern are correctly
specified, the analysis can consider the resulting information flow. Therefore, it
indirectly supports patterns such as complete mediation or minimum exposure.

In [32], the authors discuss a code generation technique, which allows the
generation of code stubs for components implemented in Java, enriched with
information flow specifications formulated in an extension of the Java Modeling
language. In [9], the authors present a code analysis technique for Java Enterprise
beans, which can be seen as components implemented in Java. Their approach
extends the modeling approach as discussed in this paper with verification tools
to ensure that component satisfy the non-interference properties as specified in
models. In [8], information flow properties of a cash register system are specified
using the non-interference specification mechanisms presented here.

10 Conclusions and Future Work

We presented an integrated method for the specification and analysis of con-
fidentiality in component-based systems. It requires abstract information set
specifications for the in- and output of a system and its components as well
as accessibility specifications for hardware and communication links. Based on
this confidentiality specification and additional adversary models, we presented
architecture and code analyses, which can be used to eliminate faulty designs,
data leaks, and specification violations.

Our approach provides a consistent way to specify confidentiality at different
stages of development and makes it possible to assess confidentiality requirements
from the very beginning. Information about the deployment in terms of resource
containers, locations, and linking resources as well as user roles and datasets
can be specified with custom labels for confidentiality requirements. Based on
the judgment of domain experts, it can be specified which users and adversaries
are allowed to know information of which datasets and which locations they are
allowed to access. Similar, for resource containers and linking resources it can be
defined how they can be accessed at specific locations and how they are protected
against tampering. By assigning parameters and return values to datasets, we
are able to infer which information flow is permissible, thus complementing code-
level non-interference analysis methods. At model level, possible violations of
confidentiality can be identified in an automated architecture analysis by taking
the abilities of adversaries into account. By focusing on the information flow
at an abstract level, our analysis method reveals weaknesses at an early design
stage but also offers a way to re-use components and code analysis results in a
confidentiality-preserving manner.

As future work we will implement support for security properties apart from
confidentiality, e.g. integrity. One could also add support for frequently used pro-
tection mechanisms, like role-based access control. On the level of components
that are deployed on a resource container, it could be useful to have a possibil-
ity of modeling sandboxing mechanisms. Furthermore, we plan to evaluate how

much vulnerabilities can be identified with our architectural analysis based on
histories of architecture models. We could also take advantage of the fact that
the architecture analysis is implemented by a logic program and infer adversaries
that are able to obtain access to a given dataset by abductive logic programming
(e.g. [5]) instead of checking for vulnerabilities with respect to a given set of
adversaries. We plan to investigate the practicability of this approach, e.g. by
using a suitable notion of weakest adversaries.

References

1. Alam, M., Breu, R., Hafner, M.: Model-driven security engineering for trust
management in sectet. Journal of Software 2(1), 47–59 (2007), http://ojs.
academypublisher.com/index.php/jsw/article/view/02014759, sECTET

2. Apt, K.R., Blair, H.A., Walker, A.: Foundations of deductive databases and logic
programming. chap. Towards a Theory of Declarative Knowledge, pp. 89–148. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

3. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From uml models to
access control infrastructures. ACM Trans. Softw. Eng. Methodol. 15(1), 39–91
(Jan 2006), http://doi.acm.org/10.1145/1125808.1125810, secureUML

4. Clark, K.: Negation as Failure. In: Gallaire, H., Minker, J. (eds.) Logic and
Data Bases, pp. 293–322. Springer US (1978), http://dx.doi.org/10.1007/
978-1-4684-3384-5_11

5. Denecker, M., Kakas, A.C.: Abduction in logic programming. In: Computational
Logic: Logic Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part I. pp. 402–436. Springer-Verlag, London, UK, UK (2002)

6. Ereth, S., Mantel, H., Perner, M.: Towards a common specification language for
information-flow security in rs3 and beyond: Rifl 1.0 - the language. Tech. Rep.
TUD-CS-2014-0115, TU Darmstadt (2014)

7. Greiner, S., Grahl, D.: Non-interference with what-declassification in component-
based systems. In: IEEE 29th Computer Security Foundations Symposium, CSF
2016, Lisbon, Portugal, June 27 - July 1, 2016. pp. 253–267 (2016)

8. Greiner, S., Herda, M.: Cocome with security. Tech. rep., Karlsruhe Institute of
Technology, Faculty of Informatics, Karlsruhe (Apr 2017)

9. Greiner, S., Mohr, M., Beckert, B.: Modular verification of information flow security
in component-based systems. In: Cimatti, A., Sirjani, M. (eds.) 15th International
Conference on Software Engineering and Formal Methods (SEFM 2017). Lecture
Notes in Computer Science, vol. 10469, pp. 300–315. Springer (Sep 2017)

10. Guo, H.F., Ramakrishnan, C., Ramakrishnan, I.: Speculative beats conservative
justification. In: Codognet, P. (ed.) Logic Programming, Lecture Notes in Com-
puter Science, vol. 2237, pp. 150–165. Springer Berlin Heidelberg (2001), http:
//dx.doi.org/10.1007/3-540-45635-X_18

11. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive in-
formation flow control based on program dependence graphs. International Journal
of Information Security 8(6), 399–422 (Dec 2009)

12. Jürjens, J.: Umlsec: Extending uml for secure systems development. In: Jézéquel,
J.M., Hussmann, H., Cook, S. (eds.) «UML»2002 – The Unified Modeling Lan-
guage, Lecture Notes in Computer Science, vol. 2460, pp. 412–425. Springer Berlin
Heidelberg (2002), http://dx.doi.org/10.1007/3-540-45800-X_32

http://ojs.academypublisher.com/index.php/jsw/article/view/02014759
http://ojs.academypublisher.com/index.php/jsw/article/view/02014759
http://doi.acm.org/10.1145/1125808.1125810
http://dx.doi.org/10.1007/978-1-4684-3384-5_11
http://dx.doi.org/10.1007/978-1-4684-3384-5_11
http://dx.doi.org/10.1007/3-540-45635-X_18
http://dx.doi.org/10.1007/3-540-45635-X_18
http://dx.doi.org/10.1007/3-540-45800-X_32

13. Jürjens, J.: Secure systems development with UML. Springer-Verlag, Berlin, Ger-
many (2005), uMLSec

14. Katkalov, K., Fischer, P., Stenzel, K., Reif, W.: Model-Driven Code Generation of
Information Flow Secure Systems with IFlow. Technical Report 2012-04, Univer-
sität Augsburg (2012), http://www.informatik.uni-augsburg.de/lehrstuehle/
swt/se/publications/

15. Kramer, M.E., Langhammer, M., Messinger, D., Seifermann, S., Burger, E.: Change-
driven consistency for component code, architectural models, and contracts. In:
Proceedings of the 18th International ACM SIGSOFT Symposium on Component-
Based Software Engineering. pp. 21–26. CBSE ’15, ACM, New York, NY, USA
(2015)

16. Lloyd, J.W., Topor, R.W.: A basis for deductive database systems II. The Jour-
nal of Logic Programming 3(1), 55–67 (Apr 1986), http://dx.doi.org/10.1016/
0743-1066(86)90004-x

17. Lourenço, L., Caires, L.: Dependent information flow types. In: Proceedings of the
42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. pp. 317–328. POPL ’15, ACM, New York, NY, USA (2015), http://
doi.acm.org/10.1145/2676726.2676994

18. Moebius, N., Haneberg, D., Reif, W., Schellhorn, G.: A modeling framework for
the development of provably secure e-commerce applications. In: Software Engi-
neering Advances, 2007. ICSEA 2007. International Conference on. pp. 8–8 (2007),
secureMDD

19. Montrieux, L., Jürjens, J., Haley, C.B., Yu, Y., Schobbens, P.Y., Toussaint, H.:
Tool support for code generation from a umlsec property. In: Proceedings of the
IEEE/ACM International Conference on Automated Software Engineering. pp.
357–358. ASE ’10, ACM, New York, NY, USA (2010), http://doi.acm.org/10.
1145/1858996.1859074

20. Nguyen, P.H., Kramer, M., Klein, J., Traon, Y.L.: An extensive systematic review
on the Model-Driven Development of secure systems. Information and Software
Technology 68, 62–81 (2015)

21. Ochoa, M., Pape, S., Ruhroth, T., Sprick, B., Stenzel, K., Sudbrock, H.: Report on
the RS3 Topic Workshop “Security Properties in Software Engineering”. Tech. Rep.
2012-2, Augsburg University (2012)

22. Ou, X., Boyer, W.F., McQueen, M.A.: A Scalable Approach to Attack Graph Gen-
eration. In: Proceedings of the 13th ACM Conference on Computer and Com-
munications Security. pp. 336–345. CCS ’06, ACM, New York, NY, USA (2006),
http://dx.doi.org/10.1145/1180405.1180446

23. Pemmasani, G., Guo, H.F., Dong, Y., Ramakrishnan, C., Ramakrishnan, I.: On-
line justification for tabled logic programs. In: Kameyama, Y., Stuckey, P. (eds.)
Functional and Logic Programming, Lecture Notes in Computer Science, vol.
2998, pp. 24–38. Springer Berlin Heidelberg (2004), http://dx.doi.org/10.1007/
978-3-540-24754-8_4

24. Reussner, R., Becker, S., Burger, E., Happe, J., Hauck,M., Koziolek, A., Koziolek, H.,
Krogmann, K., Kuperberg, M.: The Palladio Component Model. Tech. rep., KIT,
Fakultät für Informatik, Karlsruhe (2011), http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000022503

25. Salter, C., Saydjari, O.S., Schneier, B., Wallner, J.: Toward a Secure System En-
gineering Methodolgy. In: Proceedings of the 1998 Workshop on New Security
Paradigms. pp. 2–10. NSPW ’98, ACM, New York, NY, USA (1998), http://dx.
doi.org/10.1145/310889.310900

http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://www.informatik.uni-augsburg.de/lehrstuehle/swt/se/publications/
http://dx.doi.org/10.1016/0743-1066(86)90004-x
http://dx.doi.org/10.1016/0743-1066(86)90004-x
http://doi.acm.org/10.1145/2676726.2676994
http://doi.acm.org/10.1145/2676726.2676994
http://doi.acm.org/10.1145/1858996.1859074
http://doi.acm.org/10.1145/1858996.1859074
http://dx.doi.org/10.1145/1180405.1180446
http://dx.doi.org/10.1007/978-3-540-24754-8_4
http://dx.doi.org/10.1007/978-3-540-24754-8_4
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://dx.doi.org/10.1145/310889.310900
http://dx.doi.org/10.1145/310889.310900

26. Scheben, C., Schmitt, P.H.: Verification of information flow properties of java pro-
grams without approximations. In: FoVeOOS. pp. 232–249 (2011)

27. Specht, G.: Generating Explanation Trees even for Negations in Deductive
DataBase Systems. LPE 1993, 8–13 (1993)

28. Stenzel, K., Katkalov, K., Borek, M., Reif, W.: A model-driven approach to
noninterference. JoWUA 5(3), 30–43 (2014), http://isyou.info/jowua/papers/
jowua-v5n3-3.pdf

29. Szyperski, C., Gruntz, D.,Murer, S.: Component Software: Beyond Object-Oriented
Programming. ACM Press and Addison-Wesley, New York, NY, 2 edn. (2002)

30. Viegas Damásio, C., Analyti, A., Antoniou, G.: Justifications for logic programming.
In: Cabalar, P., Son, T. (eds.) Logic Programming and Nonmonotonic Reasoning,
Lecture Notes in Computer Science, vol. 8148, pp. 530–542. Springer Berlin Hei-
delberg (2013), http://dx.doi.org/10.1007/978-3-642-40564-8_53

31. Vigo, R., Nielson, F., Nielson, H.R.: Automated Generation of Attack Trees. In:
Computer Security Foundations Symposium (CSF), 2014 IEEE 27th. pp. 337–350.
IEEE (Jul 2014), http://dx.doi.org/10.1109/csf.2014.31

32. Yurchenko, K., Behr, M., Klare, H., Kramer, M., Reussner, R.: Architecture-driven
reduction of specification overhead for verifying confidentiality in component-based
software systems. In: MoDeVVa at MoDELS (2017), accepted

http://isyou.info/jowua/papers/jowua-v5n3-3.pdf
http://isyou.info/jowua/papers/jowua-v5n3-3.pdf
http://dx.doi.org/10.1007/978-3-642-40564-8_53
http://dx.doi.org/10.1109/csf.2014.31

Appendix

Component

Assembly
Context

Resource
Container Linking

Resource

Interface
Service

provides 1..*1..*

connects 0..*2

has 1..*1

 componentOf
1

1..*

requires 0..*1..*

runsOn 1..*1..*

Parameter

returns 0..11 has0..*1

Fig. 8. Entities of architectural models and their relationships

isInSecureWithRespectTo(guest)
+- accessibleParameters(guest,return(getCustomerId))
| +- linksDataAccessibleBy(guest,wireless,billingData)
| | +- linkAccessibleBy(guest,wireless,livingRoom)
| | | +- linkLocation(wireless,livingRoom,none)
| | | ‘- locationsAccessibleBy(guest,livingRoom)
| | +- linkLocation(wireless,livingRoom,none)
| | +- tamperingAbilities(guest,livingRoom,none)
| | | ‘- locationsAccessibleBy(guest,livingRoom)
| | ‘- exposesPhysicallyAccessibleDataTo(wireless,guest,billingData)
| | ‘- encryptsExcept(wireless,billingData)
| +- connects(wireless,energyVisualizationRC,energyMeterRC)
| +- hasService(energyMeasurement,getCustomerId)
| +- requires(energyVisualization,energyMeasurement)
| +- parametersOf(getCustomerId,return(getCustomerId))
| ‘- includes(return(getCustomerId),billingData)
‘- not parameterAllowedToBeAccessedBy(guest,return(getCustomerId))

+- includes(return(getCustomerId),billingData)
‘- not mayknow(guest,billingData)

Fig. 9. Proof tree of a vulnerability (excerpt)

location(rc, loc, t) locationAccessibleBy(a, loc)

containerAccessibleBy(a, rc, loc)

linkLocation(link, loc, t) locationAccessibleBy(a, loc)

linkAccessibleBy(a, link, loc)

containerAccessibleBy(a, rc, loc)
tamperingAbilities(a, loc, t) location(rc, loc, t)

containersFullyAccessibleBy(a, rc)

containerAccessibleBy(a, rc, loc)
sharing(rc, shared) furtherConnections(rc,possible)

containersFullyAccessibleBy(a, rc)

sharing(rc, shared) furtherConnections(rc, existing)
containersFullyAccessibleBy(a, rc)

linkAccessibleBy(a, link, loc)
tamperingAbilities(a, loc, t) location(rc, loc, t) encryptsExcept(link, ds)

linksDataAccessibleBy(a, link, ds)

containerAccessibleBy(a, rc, l)
providedInterfacesOn(rc, i) uiInterfaceOn(rc, i)

providedInterfacesAccessibleTo(a, i)

containerAccessibleBy(a, rc, l)
requiredInterfacesOn(rc, i) uiInterfaceOn(rc, i)

requiredInterfacesAccessibleTo(a, i)

providedInterfacesAccessibleTo(a, i)
hasServices(i, s) returnParameter(s, p)

accessibleParameters(a, p)

requiredInterfacesAccessibleTo(a, i) hasServices(i, s) hasParameter(s, p)

accessibleParameters(a, p)

containersFullyAccessibleBy(a, rc)
providedInterfacesOn(rc, i) ∨ requiredInterfacesOn(rc, i)

hasServices(i, s) returnParameter(s, p) ∨ hasParameter(s, p)

accessibleParameters(a, p)

linksDataAccessibleBy(a, link, ds) connects(link, rcleft, rcright)
runsOn(assemblyleft, rcleft) runsOn(assemblyright, rcright)

componentOf(assemblyleft, componentleft) requires(i, componentleft)
systemAssembledTo(assemblyleft, i, assemblyright) hasServices(i, s)

returnParameter(s, p) ∨ hasParameter(s, p) includes(ds, p)

accessibleParameters(a, p)

includes(p, ds) mayknow(a, ds)

parameterAllowedToBeAccessedBy(a, p)

accessibleParameters(a, p) ¬parameterAllowedToBeAccessedBy(a, p)

isInsecureWithRespectTo(a)

Fig. 10. Access Analysis: selected inference rules. Rules concerning the observation of
service calls (i.e.: their presence, but not their content) are omitted.

<<Interface>>

Calendar [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

<<Interface>>

Calendar [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

calentry get(int id)

int put(int id, calentry data)

int[] list(datetime start, datetime end)

Cloud End User A
<< mayknow UserData[A] >>

<< mayknow UserData[Public] >>
<< location internet >>

<< location userahome >>

Cloud Service Provider
<< mayknow LBData >>
<< location innerzone >>
<< location outerzone >>
<< location internet >>

<< canTamper perimeterprotection at innerzone >>

<< canTamper perimeterprotection at outerzone >>

Cloud Service Administrator
(Tenant Admin)

<< mayknow LBData >>
<< mayknow LogData >>
<< location innerzone >>
<< location outerzone >>

<< location internet >>

<<ResourceContainer>> Virtual Machine C
<< runtime exclusive >>
<< location outerzone, (perimeterprotection) >>

<< further physical connections possible >>

OwnCloud InstanceOwnCloud Instance

<<LinkingResource>> Internet
<< location internet >>
<< encrypts except LBData, LogData >>

<<ResourceContainer>> End User Machine A
<< runtime shared >>
<< location userahome >>
<< further physical connections existing >>
<< ui FileMan GUI [A] >>

<< ui Calendar GUI [A] >>

int delete(int id)

FileManager InstanceFileManager Instance

<<LinkingResource>> Intranet inner
<< location innerzone>> << encrypts except UserData, PublicData >>

<<ResourceContainer>> Virtual Machine B
<< runtime exclusive >>
<< location innerzone, (perimeterprotection) >>
<< further physical connections possible >>

Calendar InstanceCalendar Instance

<<ResourceContainer>> Virtual Machine A
<< runtime exclusive >>
<< location innerzone, (perimeterprotection) >>
<< further physical connections possible >>

Database InstanceDatabase Instance

<<LinkingResource>> Intranet outer
<< location outerzone >> << encrypts except UserData, PublicData >>

<<ResourceContainer>> Virtual Machine E
<< runtime exclusive >>
<< location outerzone, (perimeterprotection) >>

<< further physical connections possible >>
Load Balancer InstanceLoad Balancer Instance

Cloud End User B
<< mayknow UserData[B] >>

<< mayknow UserData[Public] >>
<< location internet >>

<< location userbhome >>

AdminTool InstanceAdminTool Instance

<<Interface>>

AdminTool

<<Interface>>

AdminTool

<< UserData[*] includes result >>
byte[] doFSBackup()

Logging InstanceLogging Instance

Adversary
<< mayknow UserData[Public] >>

<< location internet >>

Cloud Guest User
<< mayknow UserData[Public] >>

<< location internet >>

<< location userguesthome >>

<<Interface>>

LogReader
<<LogData includes *>>

<<Interface>>

LogReader
<<LogData includes *>>

(datetime,level,string)[] getEntries(int level)

<<Interface>>

LogWriter
<<LogData includes *>>

<<Interface>>

LogWriter
<<LogData includes *>>

int log(int level, string entry)

AdminTool InstanceAdminTool Instance

Logging InstanceLogging Instance Network Filesystem InstanceNetwork Filesystem Instance

Logging InstanceLogging Instance

<<ResourceContainer>> Virtual Machine D
<< runtime exclusive >>
<< location outerzone, (perimeterprotection) >>

<< further physical connections possible >>

OwnCloud InstanceOwnCloud Instance Logging InstanceLogging Instance

<<Interface>>

Load Balancer Mgmt API
<< LBData includes * >>

<<Interface>>

Load Balancer Mgmt API
<< LBData includes * >>

addBackend(string host, int state)

removeBackend(string host)

(string,int)[] listBackends()

Logging InstanceLogging Instance

<<Interface>>

FileMan GUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

<<Interface>>

FileMan GUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

application open(string filepath)

directory connect(string host)

string[] list(directory dir)

string copy(string filepath1, string filepath2)

string delete(string filepath)

<<Interface>>

Calendar GUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

<<Interface>>

Calendar GUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

string view(int id)

string edit(int id, string entry)

int[] list(datetime start, datetime end)

int delete(int id)

shareFriend(string file, token f)

<<ResourceContainer>> End User Machine B
<< runtime shared >>
<< location userbhome >>
<< further physical connections existing >>
<< ui FileMan GUI [B] >>

<< ui Calendar GUI [B] >>

FileManager InstanceFileManager Instance Calendar InstanceCalendar Instance

<<ResourceContainer>> End User Machine Guest
<< runtime shared >>
<< location userguesthome >>
<< further physical connections existing >>
<< ui Public FileMan GUI >>

<< ui Public Calendar GUI >>

FileManager InstanceFileManager Instance Calendar InstanceCalendar Instance

<< UserData[Friend] includes result, id, data, f >>
int putFriend(int id, calentry data, token f)

<< UserData[Public] includes result, id, data >>
int putPublic(int id, calentry data)

Network Filesystem (A/B/Pub)

Network
Filesystem

Network Filesystem (A/B/Pub)

Network
Filesystem

SQL (A/B/Pub)

Database

SQL (A/B/Pub)

Database

<<Interface>>

Public FileMan GUI [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

<<Interface>>

Public FileMan GUI [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

application open(string filepath)

directory connect(string host)

string[] list(directory dir)

string copy(string filepath, string filepath)

string delete(string filepath)

Public Calendar [Friend]
Public ObjStore [Friend]

OwnCloud

Calendar [Self, Friend]
ObjStore [Self, Friend]

Public Calendar [Friend]
Public ObjStore [Friend]

OwnCloud

Calendar [Self, Friend]
ObjStore [Self, Friend]

<<Interface>>

Network Filesystem [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

<<Interface>>

Network Filesystem [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

handle open(string filepath, int mode)

byte[] read(handle h, int size)

<< UserData[Public] includes result, h, data>>
int writePublic(handle h, byte[] data)

int seek(handle h, int pos)

int close(handle h)

direntry[] readdir(handle h)

int write(handle h, byte[] data)

<< UserData[Friend] includes result, h, data, f >>
int writeFriend(handle h, byte[] data, token f)

<<Interface>>

Public Network Filesystem [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

<<Interface>>

Public Network Filesystem [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

handle open(string filepath, int mode)

byte[] read(handle h, int size)

int writePublic(handle h, byte[] data)

int seek(handle h, int pos)

int close(handle h)

direntry[] readdir(handle h)

int write(handle h, byte[] data)

<< UserData[Friend] includes result, h, data, f >>
int writeB(handle h, byte[] data, token f)

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

AdminTool InstanceAdminTool Instance AdminTool InstanceAdminTool Instance

<< LogData includes * >>
(datetime,level,string)[] readLogs(int level)

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

AdminTool InstanceAdminTool Instance

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

<< UserData[*] includes result >>
byte[] doSQLDump()

<<Interface>>

SQL [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

<<Interface>>

SQL [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

string[][] query(string q)

int insert(string table, string[] data)

<< UserData[Friend] includes result, table, data, f >>
int insertFriend(string table, string[] data, token f)

<< UserData[Public] includes table, data >>
int insertPublic(string table, string[] data)

int delete(string table, string condition)

<<Interface>>

Public SQL [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

<<Interface>>

Public SQL [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

string[][] query(string q)

int insert(string table, string[] data)

<< UserData[Friend] includes result, table, data, f>>
int insertFriend(string table, string[] data, token f)

<< UserData[Public] includes result, table, data >>
int insertPublic(string table, string[] data)

int delete(string table, string condition)

FileMan GUI [A]

FileManager

FileMan GUI [A]

FileManager

Calendar GUI [A]

Calendar

Calendar GUI [A]

Calendar

FileMan GUI [B]

FileManager

FileMan GUI [B]

FileManager

Calendar GUI [B]

Calendar

Calendar GUI [B]

Calendar

Public FileMan GUI

FileManager

Public FileMan GUI

FileManager

Public Calendar GUI

Calendar

Public Calendar GUI

Calendar

int log(int level, string entry)

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

<<Interface>>

ObjStore [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

<<Interface>>

ObjStore [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

byte[] get(string filepath)

int put(string file, byte[] data)

string[] list(string filepath)

int delete(string filepath)

int mkcol(string filepath, string name)

<< UserData[Friend] includes result, file, data, f >>
int putFriend(string file, byte[] data, token f)

<< UserData[Public] includes result, file, data>>
int putPublic(string file, byte[] data)

Mgmt API
Public Calendar [Friend]
Public ObjStore [Friend]

Load Balancer

Calendar [Self, Friend]
ObjStore [Self,Friend]Mgmt API

Public Calendar [Friend]
Public ObjStore [Friend]

Load Balancer

Calendar [Self, Friend]
ObjStore [Self,Friend]

Public Calendar [Friend]
Public ObjStore [Friend]

Calendar [Self, Friend]
ObjStore [Self, Friend]

OwnCloud

Public Calendar [Friend]
Public ObjStore [Friend]

Calendar [Self, Friend]
ObjStore [Self, Friend]

OwnCloud

<<Interface>>

Public ObjStore [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

<<Interface>>

Public ObjStore [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

byte[] get(string filepath)

int put(string file, byte[] data)

string[] list(string filepath)

int delete(string filepath)

int mkcol(string filepath, string name)

<< UserData[Friend] includes result, file, data, f >>
int putFriend(string file, byte[] data, token f)

int putPublic(string file, byte[] data)

<<Interface>>

Public Calendar [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

<<Interface>>

Public Calendar [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

calentry get(int id)

int put(int id, calentry data)

int[] list(datetime start, datetime end)

int delete(int id)

<< UserData[Friend] includes result, id, data, f >>
int putFriend(int id, calentry data, token f)

putPublic(int id, calentry data)

<<Interface>>

Public Calendar GUI [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

<<Interface>>

Public Calendar GUI [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

string view(int id)

string edit(int id, string entry)

int[] list(datetime start, datetime end)

int delete(int id)

<< UserData[Public] includes * >>
sharePublic(string file)

shareFriend(string file, token f)

<< UserData[Public] includes * >>
sharePublic(string file)

shareFriend(string file, token f)

<< UserData[Public] includes * >>
sharePublic(string file)

shareFriend(string file, token f)

<< UserData[Public] includes * >>
sharePublic(string file)

Self <- A Self <- B

<<Interface>>

Calendar [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

calentry get(int id)

int put(int id, calentry data)

int[] list(datetime start, datetime end)

Cloud End User A
<< mayknow UserData[A] >>

<< mayknow UserData[Public] >>
<< location internet >>

<< location userahome >>

Cloud Service Provider
<< mayknow LBData >>
<< location innerzone >>
<< location outerzone >>
<< location internet >>

<< canTamper perimeterprotection at innerzone >>

<< canTamper perimeterprotection at outerzone >>

Cloud Service Administrator
(Tenant Admin)

<< mayknow LBData >>
<< mayknow LogData >>
<< location innerzone >>
<< location outerzone >>

<< location internet >>

<<ResourceContainer>> Virtual Machine C
<< runtime exclusive >>
<< location outerzone, (perimeterprotection) >>

<< further physical connections possible >>

OwnCloud Instance

<<LinkingResource>> Internet
<< location internet >>
<< encrypts except LBData, LogData >>

<<ResourceContainer>> End User Machine A
<< runtime shared >>
<< location userahome >>
<< further physical connections existing >>
<< ui FileMan GUI [A] >>

<< ui Calendar GUI [A] >>

int delete(int id)

FileManager Instance

<<LinkingResource>> Intranet inner
<< location innerzone>> << encrypts except UserData, PublicData >>

<<ResourceContainer>> Virtual Machine B
<< runtime exclusive >>
<< location innerzone, (perimeterprotection) >>
<< further physical connections possible >>

Calendar Instance

<<ResourceContainer>> Virtual Machine A
<< runtime exclusive >>
<< location innerzone, (perimeterprotection) >>
<< further physical connections possible >>

Database Instance

<<LinkingResource>> Intranet outer
<< location outerzone >> << encrypts except UserData, PublicData >>

<<ResourceContainer>> Virtual Machine E
<< runtime exclusive >>
<< location outerzone, (perimeterprotection) >>

<< further physical connections possible >>
Load Balancer Instance

Cloud End User B
<< mayknow UserData[B] >>

<< mayknow UserData[Public] >>
<< location internet >>

<< location userbhome >>

AdminTool Instance

<<Interface>>

AdminTool

<< UserData[*] includes result >>
byte[] doFSBackup()

Logging Instance

Adversary
<< mayknow UserData[Public] >>

<< location internet >>

Cloud Guest User
<< mayknow UserData[Public] >>

<< location internet >>

<< location userguesthome >>

<<Interface>>

LogReader
<<LogData includes *>>

(datetime,level,string)[] getEntries(int level)

<<Interface>>

LogWriter
<<LogData includes *>>

int log(int level, string entry)

AdminTool Instance

Logging Instance Network Filesystem Instance

Logging Instance

<<ResourceContainer>> Virtual Machine D
<< runtime exclusive >>
<< location outerzone, (perimeterprotection) >>

<< further physical connections possible >>

OwnCloud Instance Logging Instance

<<Interface>>

Load Balancer Mgmt API
<< LBData includes * >>

addBackend(string host, int state)

removeBackend(string host)

(string,int)[] listBackends()

Logging Instance

<<Interface>>

FileMan GUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

application open(string filepath)

directory connect(string host)

string[] list(directory dir)

string copy(string filepath1, string filepath2)

string delete(string filepath)

<<Interface>>

Calendar GUI [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

string view(int id)

string edit(int id, string entry)

int[] list(datetime start, datetime end)

int delete(int id)

shareFriend(string file, token f)

<<ResourceContainer>> End User Machine B
<< runtime shared >>
<< location userbhome >>
<< further physical connections existing >>
<< ui FileMan GUI [B] >>

<< ui Calendar GUI [B] >>

FileManager Instance Calendar Instance

<<ResourceContainer>> End User Machine Guest
<< runtime shared >>
<< location userguesthome >>
<< further physical connections existing >>
<< ui Public FileMan GUI >>

<< ui Public Calendar GUI >>

FileManager Instance Calendar Instance

<< UserData[Friend] includes result, id, data, f >>
int putFriend(int id, calentry data, token f)

<< UserData[Public] includes result, id, data >>
int putPublic(int id, calentry data)

Network Filesystem (A/B/Pub)

Network
Filesystem

SQL (A/B/Pub)

Database

<<Interface>>

Public FileMan GUI [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

application open(string filepath)

directory connect(string host)

string[] list(directory dir)

string copy(string filepath, string filepath)

string delete(string filepath)

Public Calendar [Friend]
Public ObjStore [Friend]

OwnCloud

Calendar [Self, Friend]
ObjStore [Self, Friend]

<<Interface>>

Network Filesystem [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

handle open(string filepath, int mode)

byte[] read(handle h, int size)

<< UserData[Public] includes result, h, data>>
int writePublic(handle h, byte[] data)

int seek(handle h, int pos)

int close(handle h)

direntry[] readdir(handle h)

int write(handle h, byte[] data)

<< UserData[Friend] includes result, h, data, f >>
int writeFriend(handle h, byte[] data, token f)

<<Interface>>

Public Network Filesystem [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

handle open(string filepath, int mode)

byte[] read(handle h, int size)

int writePublic(handle h, byte[] data)

int seek(handle h, int pos)

int close(handle h)

direntry[] readdir(handle h)

int write(handle h, byte[] data)

<< UserData[Friend] includes result, h, data, f >>
int writeB(handle h, byte[] data, token f)

LogReader
LogWriter

Logging

AdminTool Instance AdminTool Instance

<< LogData includes * >>
(datetime,level,string)[] readLogs(int level)

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

LogReader
LogWriter

Logging

AdminTool Instance

LogReader
LogWriter

Logging

<< UserData[*] includes result >>
byte[] doSQLDump()

<<Interface>>

SQL [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

string[][] query(string q)

int insert(string table, string[] data)

<< UserData[Friend] includes result, table, data, f >>
int insertFriend(string table, string[] data, token f)

<< UserData[Public] includes table, data >>
int insertPublic(string table, string[] data)

int delete(string table, string condition)

<<Interface>>

Public SQL [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

string[][] query(string q)

int insert(string table, string[] data)

<< UserData[Friend] includes result, table, data, f>>
int insertFriend(string table, string[] data, token f)

<< UserData[Public] includes result, table, data >>
int insertPublic(string table, string[] data)

int delete(string table, string condition)

FileMan GUI [A]

FileManager

Calendar GUI [A]

Calendar

FileMan GUI [B]

FileManager

Calendar GUI [B]

Calendar

Public FileMan GUI

FileManager

Public Calendar GUI

Calendar

int log(int level, string entry)

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

AdminTool

<<Interface>>

ObjStore [Self, Friend]
<< implicit parameter token s >>
<< s defines Self >>
<< f defines Friend >>
<< UserData[Self] includes * >>

<< UserData[Public] includes sizeOf(*) >>

byte[] get(string filepath)

int put(string file, byte[] data)

string[] list(string filepath)

int delete(string filepath)

int mkcol(string filepath, string name)

<< UserData[Friend] includes result, file, data, f >>
int putFriend(string file, byte[] data, token f)

<< UserData[Public] includes result, file, data>>
int putPublic(string file, byte[] data)

Mgmt API
Public Calendar [Friend]
Public ObjStore [Friend]

Load Balancer

Calendar [Self, Friend]
ObjStore [Self,Friend]

Public Calendar [Friend]
Public ObjStore [Friend]

Calendar [Self, Friend]
ObjStore [Self, Friend]

OwnCloud

<<Interface>>

Public ObjStore [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

byte[] get(string filepath)

int put(string file, byte[] data)

string[] list(string filepath)

int delete(string filepath)

int mkcol(string filepath, string name)

<< UserData[Friend] includes result, file, data, f >>
int putFriend(string file, byte[] data, token f)

int putPublic(string file, byte[] data)

<<Interface>>

Public Calendar [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

calentry get(int id)

int put(int id, calentry data)

int[] list(datetime start, datetime end)

int delete(int id)

<< UserData[Friend] includes result, id, data, f >>
int putFriend(int id, calentry data, token f)

putPublic(int id, calentry data)

<<Interface>>

Public Calendar GUI [Friend]
<< f defines Friend >>

<< UserData[Public] includes * >>

string view(int id)

string edit(int id, string entry)

int[] list(datetime start, datetime end)

int delete(int id)

<< UserData[Public] includes * >>
sharePublic(string file)

shareFriend(string file, token f)

<< UserData[Public] includes * >>
sharePublic(string file)

shareFriend(string file, token f)

<< UserData[Public] includes * >>
sharePublic(string file)

shareFriend(string file, token f)

<< UserData[Public] includes * >>
sharePublic(string file)

Self <- A Self <- B

Fig. 11. Case Study: Cloud Storage

	2017,12_Titelbl.pdf
	2017,12_techreport.pdf
	Model-Driven Specification and Analysis of Confidentiality in Component-Based Systems

