

Reactor Safety Investigations at KIT with the HGF NUSAFE Program

V. Sanchez, W. Tromm and R. Stieglitz <u>Victor.sanchez@kit.edu</u>, <u>walter.tromm@kit.edu</u>, <u>robert.stieglitz@kit.edu</u>

KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

www.kit.edu

Outline

- KIT Reactor safety program within NUSAFE
- Experimental facilities for LWR
- Experimental facilities for innovative systems
- Numerical simulations for LWR
- Summary

HGF NUSAFE Program at KIT

Topic 1: Nuclear Waste Management

- Subtopic 1.1: Safety Research for Nuclear Waste Disposal
- Subtopic 1.2: Waste management strategies

Topic 2: Reactor Safety

3

- Subtopic 2.1: Reactor Operation and Design Basis Accidents
 - Reactor Dynamics and Accident analysis
 - Thermal hydraulics
- Subtopic 2.2: Beyond Design Basis Accidents and Emergency Management
 - Severe Accident Analysis
 - Emergency Management

KIT Experimental investigations for Reactor Safety

Design basis accident research

- LWR thermal hydraulics and safety:
 - COSMOS-L (CHF water) and COSMOS-H (CHF water)
- GEN-IV Thermal hydraulics, Materials and safety:
 - L-STAR (Helium loop)
 - KALLA-Bundle test (Lead Heat transfer and pressure drop)
 - KASOLA (sodium loop)
 - COSTA, CRISLA, THEADES (Materials, components)

Severe accident research

- LWR in-vessel phenomena
 - QUENCH (early phase: reflooding of degraded bundles)
 - LIVE (molten material in RBD-lower plenum)
- LWR: ex-vessel phenomena
 - DISCO (Corium dispersion out of reactor pit into containment)
 - MOCKA (MCCI: molten corium concrete interactions)
- LWR Containment phenomena
 - Hydrogen Safety Test Centre (2 pressure vessels (A1 and A3, h distribution, h combustion in large range of geometrical and energetic scales)
 - Detonation Tube (H detonation tests)
 - Flow test chamber (vented combustion and detonation, shock waves)

Experimental Investigations for LWR DBA and Severe Accidents

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

Programme Nuclear Waste Management, Safety and Radiation Research

COSMOS-H Facility

Critical Heat Flux On Smooth And Modified Surfaces – High Pressure Loop

Facility

Test section

Scientific objectives

- Detailed investigations on Critical Heat Flux (CHF) under reactor typical conditions
- Provide data for code validation

System parameters

- Working fluid: demineralized water
- System pressure: 17 MPa
- System temperature: 360°C
- Power: 2 MW
- Test section length: 4 m (modular, 600 kW)

" Instrumentation

- 246 Sensors
- Temperature, void, pressure, velocity, mass flow, power, liquid level
 - 8 glass windows
 - LDA, PIV, shadowgraphie

QUENCH Tests Program

- Objective:
 - Reflooding of overheated rod bundle
- Facility description:
 - bundle facility 21-31 electrically heated fuel rod simulators
 - Bundle overheating up to >2000°C
 - Extensive instrumentation for T, p, flow rates, level, mass spectrometry
- Test program:17 tests (since 1996-today)
 - Influence of pre-oxidation, initial temperature, flooding rate
 - B4C, Ag-In-Cd control rods
 - Air ingress
 - Debris formation
 - Advanced cladding alloys
- LOCA experiments: 7
 - separately pressurized fuel rods (55 bar)

M. Steinbrück et al., **Synopsis and outcome of the Quench experimental program**, NED 240 (2010), 1714-1727.

Main goal: contribute to understand physics and provide data for code validation for PWR, VVER, BWR

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

QUENCH-LOCA (L5: 17.2.2016)

Peculiarities:

8

- pre-hydrogenated Zirlo[™] cladding
- Post-test examinations:
 - mechanical testing, metallography, neutron radiography and tomography,
 - micro hardness measurements, and
 - X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM)

QUENCH-L5:test conduct

rod #1: burst opening rod #1: neutron tomography

QUENCH Investigations: Accident Tolerant Fuel Claddings

- Participation on
 - OECD-NEA Expert Group on Accident Tolerant Fuels for LWRs (EGATFL)
 - IAEA CRP on Accident Tolerant Fuel Concepts for Light Water Reactors (ACTOF), and
 - EC project IL TROVATORE
- Experiments on high-tem. oxidation of ATF claddings in various prototypical experimental scales
 - Small-scale separate-effects tests
 - Single-rod experiments including quench phase
 - Large-scale bundle tests in The QUENCH facility
 - > FeCrAI test with ORNL on 2017
 - SiC under discussion with Westinghouse

QUENCH bundle for large-scale tests

Inductively heated single-rod test

SiC-SiC_f cladding after 64 h at 1600°C in steam

Programme Nuclear Waste Management, Safety and Radiation Research

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

Selected Experimental Facilities for Innovative Systems (GEN-IV)

Programme Nuclear Waste Management, Safety and Radiation Research

KIT Tests on Liquid Metal Science:

Goals:

- Develop measurement techniques for liquid metal flows
- Investigate the compatibility of coolants structural materials
- Investigate material corrosion
- Coolants: Lead, Lead-Bismuth, Indium-Gallium-Tin, Sodium, Sodium-Potassium, Tin

KIT Experience:

11

- Liquid metal technology: pumps, heat exchangers, instrumentation, operation and control safety
- > 30 years, leading partner in German and European LM research

Combination of Experiments and Simulation

Test Facilities of Different Scales: Laboratory Scale...

COSTA: COrrosion test stand for STagnant liquid lead Alloys

- Operative since 1997
- Pb, Pb-Bi, Sn

12

- Equipped with O2-control
- Influence of protection layers and coatings on corrosion

CRISLA: Creep-to-Rupture In Stagnant Lead Alloys

- Operative since 2007
- Pb or PbBi at max. 650°C
- Equipped with O2-control
- Impact of liquid-metal environment on creep performance

... to Prototype Dimensions, e.g. THEADES Facility Karlsruhe Institute of Technol **Parameters:** T-range: 190°C -450°C **MYRRHA** G: 42 m³/h target I test port pump P: 10 bar expansion motor tank V: 4 m³ / 44 t PbBi air-Power: 1 MWth cooler flow direction pump oxygen control fill and drain LBE rod system lines bundle heater unit experiment PbBi aircooler port por test port flow direction. sump tank

13

LBE THESYS2 Loop at KALLA: Fundamental Research for LM Heat Transfer in Rod Bundles

19 Pins Bundle

14

Spacer grids

- Understand key phenomena
 - Provide data for code validation

KIT Numerical Investigations

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

Programme Nuclear Waste Management, Safety and Radiation Research

KIT Strategy for Numerical Simulations

- Strategy: combination of
 - innovative research and education and training and
 - in-house code developments and use of external codes
- Selection of KEY TOPICS for improved design and safety assessment
- Integration in national / international activities / programs
- Strategic Partnership with Key Players
- Selected innovative research directions:
 - Advanced physical models and mathematical methods
 - "High-fidelity" multi-physics and multi-scale simulations
 - Uncertainty quantification

17

- Verification, validation and application & analysis
- Massive use of High Performance computing (HPC)

HPC computer Centers in state Baden Württemberg

KIT: Research High Performance Computer ForHLR II (> hundred thousands processors)

KIT Numerical Simulation for Design Basis Accidents

Thermal Hydraulics

- ANSYS-CFX, OpenFOAM
- Own development:
 - SUBCHANFLOW, TWOPORFLOW
- RELAP5, TRACE
- TRACE/SUBCHANFLOW (ECI)

Neutron Physics and Dynamics

- Lattice pyhsics: SCALE6, SERPENT
- Own development: High fidelity pbp
 - MCNP5/SCF, SERPENT/SCF
- Reactor dynamics
 - PARCS, DYN3D-MG

Multi-physics Simulations

- Nodal solutions: TRACE/PARCS, TRACE/DYN3D
- High fidelity solutions: DYNSUB5 (sp3 and subchannel TH)
- N/TH/ TM: PARCS/SCF/TRANSURANUS
- NURESIM Platform:
 - SCF/DYN3D, SCF/COBAYA, SCF/CRONOS

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

Programme Nuclear Waste Management, Safety and Radiation Research

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

Thermal Hydraulics: Code Validation and CFD Simulations

KIT CFX Model of integral VVER-1000

- Improvement of heat transfer by surface roughness
- Qualification and improvement of turbulence models
- Provide data for code validation

20

L-STAR: CFX LES simulation: Instantaneous velocity distribution

SUBCHANFLOW: Fast Running Code for LWR and Gen-IV Reactors

Coupling with MC-codes SERPENT, MCNP5 and TRACE, PARCS and TRANSURANUS

VVER Core: Hexagonal FA

PWR Core: Square FA

SUBCHANFLOW Validation: BWR **NUPEC**

European NURESIM Platform (based on SALOME)

• The SALOME platform:

- Open Source
- Large user community

Peculiarities:

23

- NURESIM components, coupling procedures and input decks
- Multi-physics coupling based on mesh superposition: N, TH and TM
- Multi-scale coupling (methods: MEDMED; ICOCO)
- URANIE for uncertainty & Sensitivity
- Powerful pre-and postprocessor
- Parallel capability

SALOME PLATFORM

• HGF (KIT, HZDR) Contribution to NURESIM (NURISP and NURESAFE Projects):

- Integration of DYN3D and SUBCHANFLOW as component
- Coupling of SUBCHANFLOW with DYN3D, CRONOS and COBAYA3
- URANIE procedures for U&S quantification of subchannel codes CFT and SUBCHANFLOW

Tools of NURESIM Simulation Platform (NURESAFE)

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

Coupling of SCF inside SALOME Platform

25 J.Jimenez, U. Imke, V.Sanchez HGF Codeentwicklungstreffen, HZDR, April 2015 Institut für Neutronenphysik und Reaktortechnik (INR)

NURESIM Platform: SCF Coupling with RD Codes

- Coupling of SCF with CRONOS INTERP_2_5D SCF, python scripts
- Simulation of PWR TMI core HFP conditions

Programme Nuclear Waste Management, Safety and Radiation Research

27

High Fidelity Coupled code: Serpent2/SCF:

- Goal: Provide reference solutions for lower order solvers e.g. PPR, SP3
- Realization: Internal coupling

• Application: PWR MOX/UO2 Benchmark

			-					
U 4.2%	U 4.5%	M 4.3%	U 4.5%	1				
32.5	17.5	35.0	20.0					20
U 4.5%	M 4.0%	U 4.5%	M 4.3%	U 4.2%	U 4.5%			
(CR-C)		(CR-B)		(CR-SC)				
0.15	0.15	0.15	0.15	17.5	32.5			
M 4.3%	U 4.2%	M 4.3%	U 4.5%	U 4.5%	M 4.3%	U 4.5%		
	(CR-SB)		(CR-SC)					
17.5	32.5	17.5	20.0	0.15	0.15	32.5		
U 4.%	U 4.2%	U 4.2%	U 4.2%	U 4.2%	U 4.5%	U 4.2%		
(CR-SB)				(CR-D)		(CR-SA)		
37.5	0.15	22.5	0.15	37.5	0.15	17.5		
U 4.5%	M 4.0%	U 4.2%	M 4.0%	U 4.2%	U 4.5%	M 4.3%	U 4.5%	
					(CR-SC)			
0.15	22.5	0.15	37.5	0.15	20.0	0.15	20.0	
U 4.2%	U 4.5%	U 4.2%	U 4.2%	U 4.2%	M 4.3%	U 4.5%	M 4.0%	
(CR-A)		(CR-C)				(CR-B)		
22.5	32.5	22.5	0.15	22.5	17.5	0.15	35.0	
U 4.2%	U 4.2%	U 4.5%	M 4.0%	U 4.2%	U 4.2%	M 4.0%	U 4.5%	
					(CR-SB)			
0.15	17.5	32.5	22.5	0.15	32.5	0.15	17.5	
U 4.2%	U 4.2%	U 4.2%	U 4.5%	UOX 4.5%	M 4.3%	U 4.5%	U 4.2%	
(CR-D)		(CR-A)				(CR-C)		
35.0	0.15	22.5	0.15	37.5	17.5	0.15	32.5	

Core data: 193 Fuel assemblies

28

Quantity	Value	
Power	$3565\mathrm{MW}$	
Core mass flow rate	$15849.4\mathrm{kg/s}$	
Inlet pressure	$15.5\mathrm{MPa}$	
Coolant inlet temperature	$560\mathrm{K}$	

SERPENT/SCF pin-by-pin model:

Core model at subchannel level:

- Neutronics nodes: 55777 pins and guide tubes
- Thermal hydraulics: 35 axial levels, 62532 sub channels
 - Fluid: 2.2 M cells, Solid: 23.4 M

MC parameters per iteration step:

- 4 E6 neutrons per cycle
- 650/2500 inactive/active cycles

Convergence criteria:

T-Doppler and M-density= < 0.5 %

Validation of SERPENT2/SCF: PWR Cycle 1 (MIT BEAVRS Benchmark)

HZP physics tests (25 MWth)

HP measurements at 18 calendar days (692.7 MWth) after BOL

30

M. Daeubler, L. Mercatali, V. Sanchez, R. Stieglitz und R. Macian-Juan, "Validation of the Serpent 2-DYNSUB code sequence using the Special Power Excursion Reactor Test III (SPERT III)," p. Submittet to ANE for publication, 2015.

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

31

2nd Sino-German Symposium on Fundamentals of Advanced Nuclear Safety Technology

LWR Severe Accident Investigations for the Optimization of SAMG

Programme Nuclear Waste Management, Safety and Radiation Research

KIT Activities for Accident Management

Goal:

- Evaluate the capability of simulation tools for SA-sequences
- Extend the technical basis for SAM-optimization

- KIT activities:
 - German WASA-BOSS project of universities and research centres (PWR, BWR)
 - > ATHET-CD code
 - Participation in different EU projects e.g. EU CESAM, FASTNET, IVMR (22 partners, PWR, VVER, BWR, PHWR)
 ASTEC code
- Use of KIT experimental facilities such as QUENCH, LIVE, etc. to validate SA codes

KIT Activities for Accident Management

Code validation using e.g. KIT • experiments

CORA, QUENCH, LIVE, etc.

QUENCH Test Facility: Severe accident phenomena

Simulation vs. Data: Temperature and hydrogen

BWR Plant

PWR RPV

ATHLET-CD: Core degradation (10234 s: RPV failure)

H2mass

H2-Exp

Programme Nuclear Waste Management, Safety and Radiation Research

200.0

208.0

Summary

Investigations are focused on

- experiments
- Modelling and simulations
- Experimental investigations covers both LWR and innovative reactors
 - Design basis accidents and
 - Severe accidents

Key activities are:

- Provide key-data for code validation
- Develop own codes complementary to external codes
- Perform code validation and application
- Activities are embedded in national and international co-operations
- Strategic partnerships with key-players is very important