

Reactor Physics and Dynamic Group (RPD)

KIT Multi-Physics Developments for Reactor Analysis

Víctor Hugo Sánchez Espinoza (victor.sanchez@kit.edu)

Institute for Neutron Physics and Reactor Technology (INR)

KIT – The Research University in the Helmholtz Association

Content

- Motivation
- KIT strategy for R&D
- Coupling of transport solvers with subchannel codes
- How to validate pin-by-pin deterministic solutions?
- Coupling of Monte Carlo with subchannel codes
- Validation of high fidelity codes
- Summary and Outlook

3 1st KIT-SJTU Student Workshop

Motivation-Increasing Cheap and Powerful Computer Clusters

- PRACE: Partnership for Advanced Computing in Europe
 - Barcelona Supercomputing Center (Spain),
 - CINECA Consorzio Interuniversitario (Italy)
 - EPCC at the University of Edinburgh (UK),
 - GCS Gauss Centre for Supercomputing (Germany)
 - Maison de la Simulation (France)
- HPC computer Centers in state Baden Württemberg

KIT HPC Infrastructure

bwUniCluster (bwHPC concept, Tier 3, BW Unis)

 872 SMP-parallel nodes, 86 TB main memory, 444 TFLOPS peak power and Job with small number of processors

bwForCluster (4 Research HPC Clusters in BW)

- bwForCLuster MLS/WISO: Economics /social sciences (Mannheim/Heidelberg)
- bwForCLuster JUSTUS: Chemistry (Ulm)
- bwForCLuster NEMO: Neuro sciences. Microsystems, elementary particle physics (Freiburg)
- bwForCLuster BinAC: Bio informatics and astro physics

Research High Performance Computer ForHLR I and II (Trier 2)

- Phase I: applications with many thousands processors
- Phase II: applications with many hundred thousands processors (
 - Intel Xeon-processors, 1.2 PFLOPS power, 24 000 cores
 - KIT/INR: McSAFE Project: 100 000 CPUs

KIT SCC ForHLR I

KIT SCC ForHLR II

September 10-15, 2017

4 1st KIT-SJTU Student Workshop

KIT/INR

Strategy for the Development of Safety Analysis Codes

Selection of Key Safety Topics combining innovative Research with E&T

- Reflecting needs of German situation
- Following international trends

Integration of RPD activities in national / international activities and programs

- EU projects
- National programs and projects of BMBF, BMWi, etc.

Strategic Partnership with Key Players

- Industry partnership based on innovative research
- Regulators and TSO
- Research centers and universities (national, international)

Combination of In-house code development and use of external numerical tools

Make use of HPC and development of algorithms

KIT/INR Research Topics (Examples)

Selected research directions:

- Code development /extensions for improved core analysis including neutronics, thermal hydraulics, thermo-mechanics, chemo-physical phenomena important for DBA and SEVERE ACCIDENTS
- Extend and improve prediction capability by multi-physics and multi-scale approaches for DBA analysis
- Development and validation of SEVERE ACCIDENT codes
 - SAM-optimization for BWR and PWR
- Uncertainty quantification of numerical safety analysis tools
- Verification, validation and application to different reactor types

KIT Multi-Scale Thermal Hydraulic Coupling

Goal: Improve the description of TH phenomena inside the RPV, Core

8 1st KIT-SJTU Student Workshop

Coupling of Neutronics-Thermal Hydraulics and Thermo- Mechanics

MPI-based Coupling of PARCS/SCF/TRANSURANUS

Goals:

- Improve description of core behaviour under irradiated conditions during life time
- Coupling approach:

MPI-based Approach

Тс	Coolant temperature			
Dc	Coolant Density			
Tf	Fuel Temperature			
Trod	Rod radial temperature			
Lin Pow	Linear Power			
Pres	Pressure			
СС НТС	Clad-Coolant heat transfer coefficient			

Transferred variables

See presentation of PhD J. Basualdo

Coupling of Transport Solvers with subchannel codes (DYNSUB5)

Best-estimate codes: based on nodal diffusion and coarse TH (1D, 3D)

TRACE/PARCS, ATHLET/DYN3D, CATHARE/CRONOS2, etc.

Next step: Advanced Neutronic /thermal hydraulic coupling:

Replace nodal diffusion by transport solvers (SP3) and system TH by SCF: DYNSUB5

How to Validate the Pin-by-Pin Deterministic Solutions?

15 1st KIT-SJTU Student Workshop

Internal coupling of MCNP5/SUBCHANLOW

Internal coupling of SERPENT2/SUBCHANFLOW

M. Daeubler, B. L. Sjenitzer, A. Ivanov, V. Sanchez, R. Stieglitz und R. Macian-Juan, "High-fidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW," *Annals of Nuclear Energy*, pp. 352-375, 2015.

PhD: M. Däubler

SERPENT2/SCF Coupling: Main Features

Feedback treatment: same as original SERPENT

Fuel temperature:

- Predicted by SUBCHANFLOW (Cartesian mesh-based)
- TMS is <u>not applicable</u> to thermal bound scattering (S(α,β) thermal scattering data) and unresolved resonances probability table sampling
 - New approach to treat thermal bound scattering: Automatically fall back of SERPENT to stochastic mixing where TMS is not applicable

Moderator density:

- Predicted by SUBCHANFLOW and passed to MC tracking routine via multi-physics interface
- Methods to pass density to MC tracking routine: Cartesian mesh-based, point-wise and user-defined functional distribution

Internal coupling

- <u>Automatic generation of geometry tables for TH solver (SCF)</u> assuring appropriate mapping between N and TH
- Relaxation scheme based on Stochastic Implicit Euler method (J. Dufek)
- Convergence criteria based on <u>l²-norm</u> (Euclidean Norm) for feedbacks (Doppler or moderator density)

Serpent2/SCF: High fidelity Simulation of the HFP PWR MOX/UOX Core (1/2) Karlsruhe Institute of Technology

Channel and sub-channel TH model of OECD NEA and U.S. NRC PWR MOX/UO2 core transient benchmark

U 4.2%	U 4.5%	M 4.3%	U 4.5%				í.	
32.5	17.5	35.0	20.0					
U 4.5%	M 4.0%	U 4.5%	M 4.3%	U 4.2%	U 4.5%			1
(CR-C)		(CR-B)		(CR-SC)				
0.15	0.15	0.15	0.15	17.5	32.5			
M 4.3%	U 4.2%	M 4.3%	U 4.5%	U 4.5%	M 4.3%	U 4.5%		
	(CR-SB)		(CR-SC)					
17.5	32.5	17.5	20.0	0.15	0.15	32.5		
U 4.%	U 4.2%	U 4.2%	U 4.2%	U 4.2%	U 4.5%	U 4.2%		
(CR-SB)				(CR-D)		(CR-SA)		
37.5	0.15	22.5	0.15	37.5	0.15	17.5		
U 4.5%	M 4.0%	U 4.2%	M 4.0%	U 4.2%	U 4.5%	M 4.3%	U 4.5%	
					(CR-SC)			
0.15	22.5	0.15	37.5	0.15	20.0	0.15	20.0	
U 4.2%	U 4.5%	U 4.2%	U 4.2%	U 4.2%	M 4.3%	U 4.5%	M 4.0%	
(CR-A)		(CR-C)				(CR-B)		
22.5	32.5	22.5	0.15	22.5	17.5	0.15	35.0	
0 4.2%	U 4.2%	0 4.5%	M 4.0%	0 4.2%	04.2%	M 4.0%	0 4.5%	
					(CR-SB)			
0.15	17.5	32.5	22.5	0.15	32.5	0.15	17.5	-
0 4.2%	U 4.2%	04.2%	0 4.5%	UOX 4.5%	M 4.3%	04.5%	0 4.2%	
(CR-D)		(CR-A)				(CR-C)		
35.0	0.15	22.5	0.15	37.5	17.5	0.15	32.5	

Core Thermal hydraulics:

- 193 subchannels
- 20 axial levels

Quantity	Value
Power	$3565\mathrm{MW}$
Core mass flow rate	$15849.4\mathrm{kg/s}$
Inlet pressure	$15.5\mathrm{MPa}$
Coolant inlet temperature	$560\mathrm{K}$

Core model at subchannel level:

- Neutronics nodes: 55777 pins and guide tubes
- Thermal hydraulics: 35 axial levels, 62532 sub channels Fluid: 2.2 M cells, Solid: 23.4 M
- Solution approach: Pin-by-pin solution

Per iteration step:

- 4 E6 neutrons per cycle
- 650/2500 inactive/active cycles

Convergence criteria:

• T-Doppler and M-density= < 0.5 %

How to make sure that MC/TH solutions are accurate?

21 1st KIT-SJTU Student Workshop

Serpent2/SCF Validation

Code-to-code comparison

 OECD NEA/ US NRC PWR MOX/UOX REA Core Transient Benchmark (ss conditions)

Code-to-data comparison

- Experiments like VENUS 1 and 2 critical experiments
- MIT BEAVRS benchmark
 - HZP physics test
 - HP measurements at 18 days (693 MWth) after BOL
- SPERT III E steady state conditions

PWR BEAVRS Cycle 1

HZP physics tests (25 MWth)

HP measurements at 18 calendar days (692.7 MWth) after BOL

M. Daeubler, L. Mercatali, V. Sanchez, R. Stieglitz und R. Macian-Juan, "Validation of the Serpent 2-DYNSUB code sequence using the Special Power Excursion Reactor Test III (SPERT III)," p. Submittet to ANE for publication, 2015.

Final Conclusions and Outlook

Conclusions:

- Numerical simulation tools for safety evaluations undergo continuous developments and must correspond to the state-of-the-art
- Need to move towards the increase of the spatial and energy resolution is recognized
- Advances in computer power paves the ways for high fidelity simulations and full use of big HPC clusters now available

Outlook:

- New powerful full transport solvers based on PN, SN and MOC are under development e.g. SCOPE2, nTRACER, MPACT
- Development of dynamic Monte Carlo codes (prompt and delayed neutrons, control rod movements) strong competitors of classical deterministic codes safety-related applications (long term)
 - EU H2020 McSAFE Project (KIT Coordinator): 2017-2020

Outlook: Dynamic MC/TH: REA Analysis (PWR 3x3 Minicore)

Boundary conditions HFP				
Core Power	100MW			
Mass flow rate (core)	739.08 kg/s			
Mass flow rate (FA)	82.12 kg/s			
Core Outlet pressure	15.40 Mpa			
Coolant inlet temperature	560 K			
Boron concentration	200 ppm (nuclide density)			
Insertion depth control rods	0.0 cm			
Boundary conditions HZP				
Core Power	1 W			
Mass flow rate (core)	739.08 kg/s			
Mass flow rate (FA)	82.12 kg/s			
Core Outlet pressure	15.40 Mpa			
Coolant inlet temperature	560 K			
$k_{eff} \ (t = 0 \ s)$	1.0000			
Insertion depth control rods	232.433 cm			
Scenario	CR ejection, linear speed			
	fully out at 0.1 s			

and NodalDiffusion/TH Codes

REFL	REFL	REFL	REFL	REFL
REFL	1 MOX 4.3%	2 MOX 4.3%	3 MOX 4.3%	REFL
REFL	4 MOX 4.3%	5 UO2 4.5%	6 MOX 4.3%	REFL
REFL	7 MOX 4.3%	8 MOX 4.3%	9 MOX 4.3%	REFL
REFL	REFL	REFL	REFL	REFL

Minicore: 3x3 FA (UOX/MOX)

REA Scenario:

HZP Ejection of CR within 0.1 s

Bart L. Sjenitzer, J. Eduard Hoogenboom , Javier Jiménez Escalante , Victor Sanchez Espinoza; Coupling of dynamic Monte Carlo with thermal-hydraulic feedback. ANE 76 (2015)27-39.

27 1st KIT-SJTU Student Workshop

For papers, see HPMC site: http://www.fp7-hpmc.eu/

Miriam Knebel, Luigi Mercatal, Victor Sanchez, Robert Stieglitz, Rafael Macian-Juan; Validation of the Serpent 2-DYNSUB code sequence using the Special Power Excursion Reactor Test III (SPERT III). Annals of Nuclear Energy 91 (2016) 79-91

L. Mercatali, A. Venturini, M. Daeubler, V.H. Sanchez; SCALE and SERPENT solutions of the OECD VVER-1000 LEU and MOX burnup computational benchmark. Annals of Nuclear Energy 83 (2015) 328–341

Däubler M., Ivanov A., Sjenitzer B., Sanchez V., Stieglitz R., Macian-Juan R.; High-Fidelity coupled Monte Carlo Neutron transport and thermalhydraulic simulations using Serpent 2/SUBCHANFLOW - Part I: Implementation and Solution Verification. Annals of Nuclear Energy 83 (2015) 352–375

Bart L. Sjenitzer, J. Eduard Hoogenboom, Javier Jiménez Escalante, Victor Sanchez Espinoza; Coupling of dynamic Monte Carlo with thermalhydraulic feedback. ANE 76 (2015)27-39.

Miriam Daeubler, Nico Trost, Javier Jimenez, Victor Sanchez, Robert Stieglitz, Rafael Macian-Juan; Static and transient pin-by-pin simulations of a full PWR core with the extended coupled code system DYNSUB. Annals of Nuclear Energy 84 (2015) 31–44

Ivanov, V. Sanchez, R. Stieglitz, K. Ivanov; Large-scale Monte Carlo neutron transport calculations with thermal hydraulic feedback. Annals of Nuclear Energy 84 (2015) 204–219

Ivanov, V. Sanchez, R. Stieglitz, K. Ivanov; Internal multi-scale multi-physics coupled system for high fidelity simulation of light water reactors, Annals of Nuclear Energy, 66C (2014) p.104 - 112.

A. Ivanov, V. Sanchez and R. Stieglitz, K. Ivanov; High Fidelity Simulation of Conventional and Innovative LWR with the Coupled MONTE-CARLO Thermal Hydraulic System MCNP-SUBCHANFLOW. Nuclear Engineering and Design 262 (2013) 264-275.

Ivanov and V. Sanchez; VARIANCE REDUCTION IN HIGH RESOLUTION COUPLED MONTE CARLO - THERMAL-HYDRAULICS CALCULATIONS. MC2015 – P304. Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, Tennessee. April 19–23, 2015, (invited).

V. Sanchez and A. Ivanov, J.E. Hoogenboom; TOWARDS THE DEVELOPMENT OF COUPLED MONTE CARLO /SUBCHANNEL THERMAL HYDRAULIC CODES FOR HIGH-FIDELITY SIMULATION OF LWR FULL CORES. MC2015 – P134. Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, Tennessee. April 19–23, 2015, (invited).

J. Eduard Hoogenboom, Aleksandar Ivanov and Victor Sanchez; MAXIMUM EFFICIENCY IN MASSIVELY PARALLEL EXECUTION OF MONTE CARLO CRITICALITY CALCULATIONS; MC2015 – P139. Joint International Conference on Mathematics and Computation (M&C), Supercomputing in Nuclear Applications (SNA) and the Monte Carlo (MC) Method, Nashville, Tennessee. April 19–23, 2015.