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1 Introduction

In the course of the ongoing climate change and the resulting need for an energy rev-
olution, superconductivity is one of the key technologies. Especially high-temperature
superconductors have great potential for application in efficient technologies. They are
of strong interest because of their ability of a loss-free transmission of electrical en-
ergy at temperatures above the boiling temperature of liquid nitrogen. To date, several
technical applications of superconductors have already been realized. Some examples
of these are high-power magnets for medical purposes and scientific research, mag-
netic levitation trains (e.g. Maglev in Shanghai) and high-temperature superconductor
(HTS) cables with a high power transmission capacity. "Ampacity," which means that
an HTS cable operates in conjunction with an electric power transformer substation,
is one example of an HTS cable installed in Germany. Of course, the economic effi-
ciency of high-temperature superconductors would be higher if these materials were
less fragile and did not require such a high cooling power. The discovery of a solid
room-temperature superconductor would help to drastically reduce the losses in elec-
tric power transmission. Its discovery is still a dream. This goal encourages funda-
mental research and is the motivation of this thesis.

Superconductivity is not only interesting with respect to applications, but it is one
of the most fascinating phenomena in condensed matter physics. The discovery of
superconductivity in mercury by H. Kamerlingh Onnes in 1908 [1] had challenged the-
oretical physicists for decades until the microscopic Bardeen Cooper Schrieffer (BCS)
theory explained this phenomenon by the formation of Cooper pairs due to electron-
phonon coupling [2]. In this model, the exchange of a virtual phonon leads to an
effective attractive interaction between two electrons with opposite momentum and
spin. The repeated scattering between such electron pairs finally leads to an instability
of the electronic band structure with a superconducting energy gap A opening at the
Fermi surface. This superconducting gap is the new order parameter of the supercon-
ducting phase. Almost all superconductors that had been discovered up to that time
could be explained by electron-phonon coupling, and for a while, superconductivity
was thought to be understood. That is the reason why nowadays, these supercon-
ductors are called conventional. Nevertheless, for some conventional superconductors,
the BCS theory turned out to be insufficient. We call them strong-coupling supercon-
ductors. Even though the mechanism of superconductivity is still based on electron-
phonon coupling, in these materials, retardation effects become important due to a
stronger electron-phonon coupling. In this context, the Eliashberg theory, which can
be regarded as an extension of the BCS theory, was developed by G.M. Eliashberg in
1960 [3]. It includes retardation effects and could explain experimental deviations from
a BCS-type behavior [4] with the help of renormalization effects of the electronic band
structure.



1 Introduction

The first material that could not be understood as a conventional phonon-mediated
superconductor was superfluid *He [5, 6]. Superfluid *He is characterized by spin-
triplet p-wave pairing symmetry. Therefore, electrons with parallel spin alignment
form Cooper pairs, and the superconducting order parameter changes its sign and size
for different directions in reciprocal space. This is in contrast to the pairing symmetries
of all conventional superconductors which are of spin-singlet s-wave type. In this case,
the gap size and the phase are constant for all directions.

A new era of superconductivity started with the discovery of cuprates in 1986 [Z].
Compounds of this new material class showed critical temperatures of up to 140K.
So they are above the boiling point of liquid nitrogen. Among several other classes,
the recently discovered iron-based superconductors [8] attracted much attention. The
interesting aspect of these compounds is the inclusion of Fe, which is a magnetic el-
ement. In conventional superconductors, a concentration of magnetic impurities of
less than 1 % destroys superconductivity, while it is robust against non-magnetic im-
purities. Therefore, iron-based superconductors are prime examples of unconventional
superconductors. The pairing mechanism and the exact pairing symmetry of these
unconventional superconductors have not yet been fully understood.

In this thesis, experiments on three different systems belonging to the class of iron-
based superconductors will be presented.

The thesis will start with a chapter on superconductivity in general. The focus will
be on electron-phonon coupling and on the appearance of related elastic and inelastic
features in tunneling experiments.

The second chapter will illustrate the experimental setups used for the measure-
ments done within the framework of this thesis. All measurements were carried out
by scanning tunneling microscopy (5TM), a technique that was invented by G. Binnig
and H. Rohrer in 1982 [9]. An STM is an ideal tool for the investigation of supercon-
ductivity, since it can directly measure the superconducting energy gap. Additionally,
in can spatially resolve the density of states (DOS) as well as inelastic excitations. By
applying Fourier transformation on the acquired data, information in the reciprocal
space can be extracted as well (FI-STM).

The third chapter will explain the theoretical basics of STM. Furthermore, it con-
tains the exact formulas for elastic and inelastic contributions to the first and second
derivative of the tunneling current in the superconducting and in the normal state.
Related calculations were performed by our collaborators J. Schmalian and P. Hlobil.
This chapter refers to results of the first system studied in the framework of this thesis,
namely Pb films on a Si(111) substrate [10].

The details of the experiment on Pb/Si(111) will be explained in chapter four. This
chapter is based on Ref. [10]. Lead, a conventional strong-coupling superconductor,
was used in order to find out how elastic and inelastic features appear in tunneling
spectroscopy data and how they are connected to the superconducting pairing glue.
Investigations of the next compounds described in this thesis, which belong to the
iron-based superconductors, are based on the experimental findings of this chapter.

General properties of the iron-based superconductors are introduced in chapter five.
The focus will be on band structure, phase diagram, pairing symmetry and a possi-
ble pairing mechanism, the spin-fluctuation mechanism. In the framework of spin-



fluctuation-mediated superconductivity, again P. Hlobil and J. Schmalian performed
the calculation concerning the occurrence of related features in tunneling spectroscopy
[11].

Experiments on the compound SrFe;(As,_,P,), will be presented in the sixth chap-
ter. In this rarely studied compound, a nodal superconducting energy gap could be
measured. Furthermore, the coherence length was found to be of only a few nanome-
ters. The intrinsic doping inhomogeneities are, however, a drawback of this system.
The superconducting properties are locally affected by these doping inhomogeneities
in combination with a short coherence length, which makes detailed investigations
difficult.

This was the reason why we moved on to the stoichiometric superconductor FeSe,
the simplest compound among the iron-based superconductors. It is a building block
of every iron-based superconductor. Results of highly resolved tunneling spectra of
this compound in the superconducting state will be presented in chapter seven. It
will be shown that this system exhibits nodeless superconductivity. Furthermore, the
complicated multiband nature of this system will be illustrated. Features occurring in
the measured tunneling spectra are discussed in the framework of the spin-fluctuation
mechanism.

In the last chapter, experiments on a monolayer FeSe on a SrTiO3 substrate will be
presented. In this case, the critical temperature of FeSe is increased from 8K (in the
case of bulk FeSe) up to 100K [12}13]. Chapter eight will focus on the fabrication of
these FeSe monolayers and on results of a quasiparticle interference (QPI) measure-
ment. We succeeded in extracting the electron-band dispersion. Furthermore, these
results show evidence of a spin wave dispersion. In combination with a spin-polarized
electron energy loss (SPEELS) experiment, this would pave the way for understanding
the underlying pairing mechanism of this system.












2 Superconductivity

Superconductivity is one of the most interesting phenomena in condensed matter physics.
As a result, superconductivity was studied intensively from various points of views.
More than 100 years after the discovery of superconductivity, many (important) ques-
tions are still open, even though conventional superconductivity could be explained
by the Bardeen Cooper Schrieffer (BCS) theory. In this chapter, the main features of
phonon-mediated electron-electron coupling, BCS theory and its extensions will be ex-
plained. Furthermore, relevant tunneling experiments will be elucidated in order to
grasp the starting point of this thesis.

2.1 Conventional Superconductivity

The liquefaction of “He in 1908 in the laboratory of H. Kamerlingh Onnes in Leiden [14]
marked the beginning of the field of low-temperature physics [6]. Shortly after that,
Kamerlingh Onnes discovered the sudden resistance drop in mercury to an unmeasur-
able small value [1], and hence, he discovered superconductivity. In 1933, the second
characteristic of superconductivity was discovered by Meissner and Ochsenfeld [15].
They showed that a superconductor expels the magnetic flux from its interior, which is
an important feature for applied research considering magnetic levitation. Two years
later, this effect could be explained by using the Maxwell equations within the frame-
work of the macroscopic London theory [16, [17]. After these two milestones, it took
a bit longer until a way to formulate a microscopic theory of superconductivity was
found. In the pursuit of this objective, one has to mention two important develop-
ments in 1950. One of them is the phenomenological Ginzburg-Landau theory: The su-
perconducting state was treated as a macroscopic quantum state with a complex order
parameter VU [18] based on Landau’s general theory of phase transitions. Within this
theory, the formation of Cooper pairs in a superconductor is described, which exhibit a
phase coherence over macroscopic distances, characterized by the coherence length &.
For a clean, conventional and elementary superconductor, & is in the range of 100 nm
to 1000 nm. The other important occurence in 1950 was the discovery of the isotope ef-
fect in superconductors by Meissner [19], Reynold, Serin and Wright [20]. It turned out
later that the discovery of this effect provided an important input since it was used as
one of the fundamental ideas for the formulation of the BCS theory six years later [2].
The isotope effect describes the dependence of the critical temperature 7 on the mass
of the isotopeﬂ Hence, at this point, it became evident that the mechanism produc-
ing superconductivity is likely to be based on phonons. The BCS theory, formulated

IT. ~ M, where a ~ 1/2 for many materials



2 Superconductivity

by Bardeen, Cooper and Schrieffer in 1957, thus assumes an attractive interaction be-
tween electrons that is due to phonons. The key idea of this theory is the formation of
electron pairs, so-called Cooper pairs.

2.1.1 From the Normal State to the Frohlich Model

Quasiparticles: To be precise, the idea of an effective attraction between two elec-
trons near the Fermi surface was first formulated by Frohlich in 1950 [6, 21]. Super-
conductivity can be understood to occur as a result of an instability of the electron
gas which is usually accompanied by a divergence of a susceptibility xo(q,w) thatis a
function of momentum q and frequency w. For reason of completeness, it should be
mentioned that the retarded susceptibility x{(q,w) can be expressed within the ana-
lytic continuation x{'(q,w) = x0(q,i¢, — w+in). In general, y(q,w) can be understood
as a charge-charge correlation function, that is, a polarization function. In an electron
gas, the polarizable particles are electrons and ions. The time-dependent polarization
function of such bare particles is given by [22]

X0(@7) =~ (Tl 7). (=)o @)

Here, V is the normalization volume, 7 is the imaginary time variable, 7 is the time
ordering operator and p is the density operator. If for example an electron is added
to the system, its additional charge is compensated by either the redistribution of the
electrons or by a displacement of the surrounding nuclei, which produces a polariza-
tion cloud. During a redistribution of the electrons, they move for a short time from a
position 1 to a position 2, leaving a hole at position 1 [22]. Due to the Coulomb inter-
action, the electrons interact with each other. It turns out that Eq. can be written as
a two-particle function assuming two-particle scattering events where two electrons in
an initial state |k, o; k', 0’) are scattered to a final state |k + ¢, 0; k' — q,0”) [22]:

Xol@ ™) =~ S0 (T (kg (D) (Pekgor (7)o 22)

’ /
kX 0,0

The involved distortions of the ions around an electron can be regarded as a polar-
ization of the electron due to virtual phonons. A quasiparticle is now considered to
consist of a bare electron plus its lattice distortion in its surroundings. With respect
to superconductivity, it is useful not to consider the bare electrons themselves, which
would repulse each other due to the Coulomb interaction, but quasiparticles instead.
The quasiparticle picture is especially useful when dealing with correlated electrons
where exchange interactions play a crucial role [6]. The idea of a quasiparticle was first
introduced by Landau as an idea of a polarization cloud due to ions surrounding an
electron [23, 24]. This interaction then renormalizes, among other things, the proper-
ties of the electron [24]. The whole quasiparticle still moves like an electron, but now
has a higher mass m — me.q since the motion of bare electrons also drags the lattice
in their close environment. The change to the effective mass leads to a change in the
dispersion relation as well. Due to the occurring polarization, the effective potential of
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the system is a sum of the external potential ®.,., induced by the additional electron,
plus an induced internal potential ®;,4 [22]:

Cbtot<qa ZQn) - q)ext<q7 ZQn) + (I)ind(qa ZQTL) (23)

If nothing but static screening is taken into account, ®;,4(q) can be expressed in terms
of @, [22]:

Dina(q) = =W (q)pmalq)/e, (2.4)

where 47e? /¢? is the Fourier transformation of the unscreened Coulomb potential 1V (q)
with e as the elementary charge and ¢ = £ —k'. pi,q is the charge density induced by the
external potential. In the present case of static screening, ping = P01 - @ with v(ep) as
the density of states at the Fermi energy er. A combination of Eq.[2.3land Eq.[2.4] yields
the screened Coulomb potential, and hence, the renormalized effective potential is [22]

Pexi(q)
RPA — @, = : : 2.
" S - W(ai(e,0) )

The equation is valid in the sense of the random phase approximation (RPA), which is
valid for high electron densities. As a result, the long-range Coulomb potential turns
into a short-range Yukawa potential [22].

In order to describe the dynamics of this system, the prevailing interactions between
quasiparticles, i.e., Coulomb interactions, have to be taken into accountﬂ In general,
the dynamical dielectricity function ¢(q,w) is defined as [22]

4re?
e

6<q7 w) =1- X<q7 w) (26)

and can be interpreted as the renormalization function of the potential [22]

_ Vext(q7w>
WRPA(q,w) = m (27)

The retarded dielectric susceptibility x*(q, w), which is also called Lindhard function, is
given by [22]

Z np(&k) — np(§ieq)
R ~ §k = Sierq T W H N

(2.8)

where np is the Fermi-Dirac dlstrlbutlon function, & = e — p (dispersion relation
minus chemical potential), o is the spin index and 7 an infinitesimal value within the
analytic continuation. The inclusion of Coulomb interactions can lead to a decay of
a quasiparticle into a many-body state and as a result to the creation of an additional
electron-hole pair in the system. The lifetime of this state can be calculated by using
Fermi’s golden rule for time-dependent perturbation theory and corresponds to the
imaginary part of the susceptibility Im (y*(q,w)) which contains information about

2The response of the electron gas to an external perturbation potential V. can be calculated by pertur-
bation theory in this case.
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dissipation in the system. Within many-body condensed matter physics, Green’s func-
tions are an ideal tool to describe the behaviour of fermions or bosons and the interac-
tion between them. A Green’s function can be considered as a propagator, describing
how a particle can propagate from a position z; at time ¢; to a position z, at time ¢,.
Furthermore, Feynman diagrams illustrate the propagation and interactions between
particles in a nice way.

A
Figure 2.1: The figure illustrates that due
r 1 AN, to the occurrence of x(, some physical
foA <> WRPA=AAAAAA = — & quantities like the Coulomb potential and
X" ="1"= MAO Xo itself are renormalized. The renormal-
ization of fermionic propagation can be

expressed within the self-energy ZRPA,
G Gy
—_—— = ——

As just explained, the occurrence of an induced charge density renormalizes the total
potential of the system. The propagation of the bare particles is renormalized as well.
The renormalization can be expressed within the so-called self-energy ¥ (see Fig. 2.1).
The change of the propagation of a free electron G to the dressed one G can be ex-
pressed in terms of the self-energy and is illustrated in Fig. The analytic structure
of the retarded Green’s function G%(w) can be interpreted as representing these quasi-
particles [25]. Hence, these new particles are assumed to be weakly interacting and to
determine the low-energy excitation spectrum of the many-body system. The real part
of the pole gives the energy of the quasiparticle, whereas the inverse of the imaginary
part corresponds to its lifetimeﬂ

For the occurrence of superconductivity, it is also important to consider real phonons
as another type of quasiparticles. They are called collective modes. Phonons now corre-
spond to the dynamical part of the ions. If an electron moves through a crystal, it can
scatter off ionic displacements while emitting or absorbing a phonon [22] (see Fig.[2.2).

Additionally, it is necessary to consider how the phonon propagator is renormalized
by the electron density. Therefore, the coupling of the electronic quasiparticles to the
phonons will be discussed now.

Electron-phonon interactions The interaction potential between electrons and phonons
consists of a static and a dynamic part: Vi_ion = Vei—tat + Vei—ph. Vei—1at has already
been considered in the sense of the quasiparticle picture (Born-Oppenheimer approx-
imation). So the focus is on the dynamic part. In general, the ionic response in an

3The lifetime is further renormalized by the quasiparticle weight Z.

10
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ko) o

...C.+00

Figure 2.2: The upper panel illustrates the scat-
tering of an electron off an ion displacement.
Adapted from Ref. [22]. The lower panel shows
two Feynman diagrams. The left one describes
the scattering of an electron in an initial state
k to a final state k+q while a phonon is emit-
ted. The right one describes an electron that is
scattered while a phonon is absorbed. Adapted
from Ref. [22].

|k+q+G,0)e| |k+q+Gr0>el

94,61

19,A Y pn

electron gas takes place on a much slower time-scale (~ 1/wp) compared to the elec-
trons (~ 1/EFr) due to their quite different masses (meg/Mion ~ 107%) . As a result, it
can be said that the electrons first couple to the phonons, then vice versa. Due to this
coupling, however, the effective potential V},,_,, between ions interacting with each
other is further screened by the electrons. Hence, also the phonon propagator D, — D
is renormalized via a bosonic self-energy. This leads to a total effective potential which
is compared to W4 given in the last paragraph, now further renormalized due to a
combination of the Coulomb and the electron-phonon interaction (Vog = Vj, + WEPA),
It can be written as [22]

, 1 2 _
VA ig,) =~ (@) — - [0 DA (q, ign)
o )2
_ _pyreagy (B 2.9
()(an)g_wq (29)
In this case, ;" 4 is the q = k — k' dependent renormalized electron-phonon coupling

constant in the random phase approximation, and D#74(q, ig,) is the renormalized
phonon propagator in Matsubara frequencies [22]. V' is the normalization volume and
wq is the renormalized phonon frequency [22]. The analytic continuation ig, — w +in
to the complex w plane using the so-called bosonic Matsubara frequency ig, is typically
used for real-time analysis.

On the real frequency plane, the potential can be written as

Ver(q,w) = 902" = (2.10)

The crucial point of Eq. is that the potential is attractive for frequencies in
a range of w < w,, which leads to an effective attractive electron-electron interaction
within this region (see Fig. 2.3b). Such an interaction can be depicted by Feynman
diagrams and is shown in the lower part of Fig.[2.3p. Here, two vertices are combined
and illustrate the following: In a scattering process, an electron with momentum k
emits a phonon that propagates for a while and is then absorbed by another electron

11



2 Superconductivity

with momentum k’. Hence, a net momentum of q is exchanged between these two
electrons via a virtual phonon that leads to an effective interaction between them [6].
The interaction is retarded, since the lattice distortions, caused by moving an electron,
relax much slower than the electron and therefore can attract a second electron after
the first electron has already moved on (see Fig.[2.3¢).

a) b) Re (Veff*PA (q, w))
A
|k+9+G,0 ) Ik+q+G,0 ),
WRPA (@)
|qr)\>ph T
wq G
k+q C) P
® € ® @ e
@,\ ! /@ 4 Q\ % /@
» @ O -®® ®» @ —-® ®
@ {\\6\ . % t\
L ® @ ®
K I
© time

Figure 2.3: a) Illustration of the effective electron-electron attraction (lower panel) due to
electron-phonon coupling (upper panel) by means of Feynman diagrams. Within the Frohlich
model, the interaction potential is a function of momentum and frequency-dependent. In the
lower panel, the Migdal theorem is taken into account. Adapted from Ref. [22]]. b) Sketch of
the effective potential becoming attractive for w < w,. Adapted from Ref. [22]. c) Illustration
of the retarded nature of the interaction and the exchange of a virtual phonon. Adapted from
Ref. [24, 26].

Thus, the total momentum of this two-electron system is conserved.

Eq. 2.9/shows the renormalized electron-phonon coupling in the RPA approach which
neglects vertex corrections. Since the ratio of the effective mass of the electron-like
quasiparticles at the Fermi surface and the ion mass y/m/M is of the order 10~*, Migdal
proved that the movement of the electrons and ions can be regarded as decoupled. Cor-
rections to this decoupling can be made by using the Born-Oppenheimer approxima-
tio with a power series in /m/M. By using the Born-Oppenheimer approximation,
Migdal finally showed that renormalizations of electron-phonon vertex gq) are sup-

“detailed explanation in [27]

12
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pressed by a factor ~ y/m/M [28] and can be neglected (see Fig. , which is known
as the Migdal Theorem and justifies the Feynman diagram in the lower panel of Fig.[2.3p.

Figure 2.4: [llustration of the Migdal the-
orem. Renormalizations of the electron-
phonon vertex gq» are suppressed by a
factor ~ +/m/M [28] and can be ne-
glected. Adapted from [29].

By applying perturbation theory to the occurring potential resulting from the electron-
ion interaction, the Frohlich Hamiltonian for the electron-phonon interaction can be
established [27]:

H=>"ek)c,crt+ Y {quchgckgbq + g-chL,qgckabfl] +> " hwgblbg.  (211)
ko kqo q

_ \

Hox Hy Hos

Here, Hy; and Hy; denote the unperturbed electron and phonon Hamilton opera-
tors with ¢y, CLT /bxos bL7 as the creation and annihilation operators for electrons and
phonons, respectively. H; represents the electron-phonon interaction with gq) as the
electron-phonon vertex and is therefore the perturbation term. This Hamiltonian has
the form of H = H, + H, and can be rewritten by using a canonical transformation of
the form Hr = e~ He' with an Hermitian operator S which results in the following
Hamiltonian [27]:

Hir =Y > Vers(q,w)chs g kot gorCicor- (2.12)
kk'co’ q

Here, it becomes apparent that the phonon-induced electron-electron interaction

now occurs directly within the Frohlich model as mentioned at the beginning of this
section.

2.1.2 BCS Theory

For the formulation of the BCS theory, the derived effective interaction is further sim-
plified. In this case, it is instantaneous and independent of the phonon wave vector q,
branch and frequency. The interaction is approximated by averaging over all q vectors.

13



2 Superconductivity

This leads to a constant effective interaction vertex gqx — ges, and the Debye frequency
wp is introduced as an energy scale of the phonon frequencies wq . As a result, the
constant interaction potential is given by [6]

2w
Ver(qw) = gea” 5, (2.13)

D
which is attractive in case of w < wp and repulsive in case of w > wp. Since those
electrons that are responsible for superconductivity have an energy in the range of
+kgT" and since hwp > kg1 in the case of conventional superconductors, the repulsive
part can be neglected [6]. So Eq. can be simplified to [24]

|geff|2
Wp

Vert(q, w) = Vige = —2

O(wp — [(ex — w))O(wp — [(ew — p)l)- (2.14)

Here, w was replaced by eic — (f] At this point, we introduce the electron-phonon
coupling parameter \:

2 |geﬂ |2
WD
We can finally write down the BCS Hamiltonian for the effective electron-electron in-

teraction, where only electrons with opposite momenta are considered.

A:

v(er). (2.15)

H = Z(Ek - M)CL,Cka - |geff|2 Z CL¢CT_k¢C—k'¢Ck'T- (2.16)
ko kk'co’

In Eq. the nomenclature was now sightly changed since the attractive interaction

between electrons (quasiparticles) near the Fermi surface cause the formation of elec-

tron pairs, so-called Cooper pairs [k 1,—k |], where the two electrons involved have

opposite momentum k; = —k, and spin o, = —o9 [30].

-k k

Figure 2.5: Scattering events in the case
of constant interaction potential applied
within BCS theory. The time axis is
supposed to be horizontal, whereas the
space axis is aligned vertically.

The repeated scattering between electrons occupying such time-reversed states of the
form |k, 1) and | — k, ]) leads to a divergence of the scattering amplitude. It can be
expressed by the pair susceptibility xpair [22]
Xo\q, W
Xpair = (‘21 ) s (217)
1 —|ges|” x0(q, w)
*Note that already in Eq. only electrons that lie within the range of +Awp are involved.
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2.1 Conventional Superconductivity

which leads to an instability of the Fermi gas below a certain critical temperature 7
[22]. An energy gap A opens and is the new order parameter of the emerging su-
perconducting phase. By applying a mean-field approximation to the Hamiltonian in
Eq. the determination of the BCS gap parameter A is possible. In doing so, a trial
BCS wave function and the variational parameters uy and vy are used in order to mini-
mize the total energy E = (Upcs|H|Ugcs) [6]. In this case, the BCS gap parameter A at

zero temperature is given by

A = [gen| Zuk’v*k = |gest|* Z<ka¢07kT>-
k k

(2.18)

With the coherence factors |ux|? and |vk|?, it is possible to specify the probability that

the excitation of a superconductor is a hole [6],

1 €k — W
2
=—(1+
[t 2( Ex >’

or an electron (see left panel in Fig. [6l],

1 €x — M
2
— _ 1_
[ 2( FEx )’

with the superconducting energy dispersion (see right panel in Fig. [6]

B = /(e — )2 + |AP.

=
(=

(2.19)

(2.20)

(2.21)

Probability
o o
o ©

o
»

o
[N

00F——=3 =2 =1 ¢ 1 2 3 a 00— =2 =1 %

Gk/A Ek/A

Figure 2.6: Left: Coherence factors (blue and green) and the pairing amplitude

1 2 3 4

g (red) are

shown. Right: Quasiparticle excitation energy of a superconductor (cyan) in comparison to the

excitation energy of electrons and holes in a normal metal (dashed black line).

By inserting Eq. and into Eq. and by using the Fermi-Dirac dis-

tribution for the temperature T and the quasiparticle energy Ej, Bardeen, Cooper and

Schrieffer obtained the BCS equation of the gap parameter [2]

A E
_ 2§
A= |geff| Etanh<2kBT)
k

(2.22)
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2 Superconductivity

Within the BCS theory, the amplitude of the gap simplifies for zero temperature to

|A| = 2hwpe™ Y. (2.23)
In order to derive the transition temperature 7¢, one sets A — 0. This yields the con-
verted BCS gap equation [2]
fep 1 E
1= —tanh 2.24
)\/0 deEtan (2kBT) (2.24)
from Eq. and thus [2]
kgT: = 1.136hwpe "/, (2.25)

with the dimensionless electron-phonon coupling constant A as defined in Eq.
Equation is valid for the weak coupling regime in which |ges|?g(er) < 1. The com-
bination of Eq. and Eq. results in the universal ratio of the gap value for weak
coupling superconductors [2]

2A(0)
~ 3.53. 2.26
Tl (2.26)
5
Ao
4
3
= A(T)
32 /
1 e | I B o —
0
0 0 T.
-4 -3 -2 -1 0 1 2 3 4

E/A T
Figure 2.7: Left: Normalized superconducting quasiparticle DOS (cyan) and normal conduct-
ing background (dashed blue line). Right: superconducting gap width as a function of
temperature.

The zero temperature gap parameter in Eq. describes the energy gain due to the
formation of Cooper pairs, i.e., due to the breakdown of the Fermi surface and the
resulting splitting of the density of states (DOS) at the transition to the superconducting
state. This splitting of the DOS becomes obvious when looking at the excitations of the
superconducting state. An excitation would mean the breaking of a Cooper pair in two
independent electrons, which would cost an energy of 2A, i.e., 1A for each electron.
Thus, the single-electron dispersion in the superconducting state displays a gap of 1A
as illustrated in Fig. In the superconducting state, a gap occurs without any single
particle states in an energy range +A around the Fermi energy. The quasiparticle DOS
resulting from BCS theory for energies |e — u| > A is given by

le —

VBCS(G):VH(N>' \/(G_M)—Z_N?

(2.27)
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2.1 Conventional Superconductivity

with v, as the DOS of the normal conductor, which is shown in Fig. IZZ] as dashed line.
The quasiparticle coherence peaks above and below the gap are clearly visible.

Soon after the formulation of the BCS theory, it turned out that the simplifications
done by the assumptions of the BCS theory are too crude to be valid for every super-
conductor. Especially for the so-called strong-coupling superconductors, an extension of
the theory is required, which was presented by Eliashberg in 1960 [3].

2.1.3 Eliashberg Theory

In the case of a strong-coupling superconductor, the electron-phonon coupling con-
stant is of order unity or larger. This leads to a stronger renormalization of the elec-
tronic properties around the Fermi energy Er. As a result, the self-energy of the elec-
trons and the associated band structure change more significantly. The calculated devi-
ation from the simple free electron results in a parameter, the dimensionless coupling

constant: )
& F
A=2 / W) (2.28)
0

v

by which the electron mass is enhanced due to the self-energy of the electron and
phonon in the normal state [24]

Met = m(1+ A). (2.29)

In sec. mes Was introduced as the mass of the considered quasiparticle. A further
consequence of the stronger electron-phonon coupling is the larger ratio between the
gap value and the critical temperature (> 3.53) compared to Eq. A nice example
of a strong-coupling superconductor is lead for which this ratio is enhanced to 4.3 [31].
For this reason and because of the relatively high 7¢, Pb was studied intensively in the
past. Besides, deviations from the BCS-type behavior in the quasiparticle DOS were
observed in Pb for the first time. The related experiment was done by Giaever et al. in
1962 with an improved planar tunneling junction setup. He observed fine structures in
the quasiparticle DOS outside the superconducting gap range [4]. These fine structures
could not be explained by the BCS theory, but by the Eliashberg theory [3], which can
be seen as an extension to the BCS theory. Here, the effective electron-electron interac-
tion is averaged over reciprocal space. While the interaction potential is assumed to be
constant in energy in the BCS theory, the interaction is frequency-dependent and influ-
enced by the phonon DOS in the Eliashberg theory. Thus, it is assumed to be local in
space, but retarded in time. As will become clear in the following sections, the Eliash-
berg function o*F(w) is a central quantity within this theory. According to this theory,
the effective electron-phonon spectral function consists of the squared electron-phonon
coupling parameter and the phonon DOS. In contrast to the BCS theory, the supercon-
ducting order parameter in the Eliashberg formalism is not constant anymore, but a
frequency-dependent complex function A(w).

Some other people apart from himself contributed significantly to the Eliashberg the-
ory [32]. For example, Migdal derived the mass renormalization at the Fermi surface
in 1958 for the normal state [28] as has already been discussed already in the case of the
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2 Superconductivity

k-q k+q

Figure 2.8: Feynman diagram of the
electron-phonon coupling within the
Eliashberg model. Like in the previous
diagrams, the time axis is horizontal.

Frohlich model. Eliashberg applied the self-energy calculation to the superconducting
state and showed that, based on the Migdal theorem, the phonon-mediated pairing
problem can be formulated exactly by using the Green’s function technique [3} 24, 33].
The electron-phonon problem can be summarized with the help of the Dyson equation
as a function of momentum and the imaginary frequency [24]:

G(K, iwpn) = [Go(K, iwn) " — S(K, itw)] " (2.30)

in case of electrons with a dressed /free one-electron Green’s function
G(k,iwn)/Go(k, iw,,), and

-1

— @(q, iv,)]"! (2.31)

in case of phonons with a dressed/free phonon propagator D(q, iv,)/D.(q, iv,,). Here,
¥ and @ are the electron and phonon self energies (without vortex corrections).

In order to derive the Eliashberg equation on the imaginary axis, the Gorkov-Nambu
Green’s function method is used [24,34]. In doing so, the Gorkov-Nambu spinors [35]

o \Ijkﬂ‘
Uy = ( o ) (2.32)

are used to formulate the matrix Green function Gy = — <TT\i/k\i/L).
The Eliashberg equations on the imaginary axis are given by [34, 36]

. 2w - a*F(w) Z (W )W
Z(iwy,) =14+ — d dey - )
(iwon) =1+ wz / “(wn —wom)? +w2/ W iom) - wonl? + &+ D(iwn)?

D(q7 iyn) = [D0<q’ iyn)

(2.33a)
2w - a*F(w) . (1w,
Blien) TZ U . IR } / e T i) ~om]? + €&, + D(iam)?
(2.33b)

where Z (iw,,) is the renormalization factor occurring in the self-energy for the electrons
and p* is the renormalized Coulomb pseudopotential [37] which inhibits superconduc-
tivity. Further, o*F(w) is the Eliashberg function [34]

—ImDZ ., (w)©
Z §(ex)d ()| ap_yo|? () (w), (2.34)

@’ F(w) =
Il T

VQVF
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2.1 Conventional Superconductivity

which is proportional to the squared (because two electrons with momenta k, k' are in-
volved when a phonon is exchanged) electron-phonon coupling parameter « times the
phonon density of states F'(w). Furthermore, vf is the Fermi velocity, V' states the nor-
malization volume, © denotes the Heaviside function and Im Dljf—kﬂ ,(w) is the imagi-
nary part of the retarded phonon propagator. The summation runs over the scattering
wave vector ¢ = k — k’ and the polarization \. The latter states how many vibra-
tional excitations there are for a certain frequency. These equations can be reduced to
the much simpler BCS form by using a square well model of the phonon distribution
[36] and by assuming weak coupling and mean-field-like behavior. With an analyti-
cal continuation iw, — w + 7, it is possible to derive the Eliashberg equations on the
real-frequency axis.
The Eliashberg equations on the real axis are then given by [36]

ZR(w) = 1— 5 /0 ! dwlRe{ N —QEIARM)P} [K+(w,w1) + K (w, —wl)], (2.35a)
i (w) = Z%(w)AF(w) (2.35b)

_ /OA dwlRe[\/(MA_R[(ZQ(M)P} [K(w,wl) C K (w0, —wi) — [l — 2nF(w1)}].

Here, p* is the screened Coulomb potential and the integral kernel K is given by
(34, 36]

A
1 1
K = [ dwd®F — +
£l 1) /0 a0 F ()l (wa) e wl)](w+wl+w2+m w—wl—w2+in)’

(2.36)
with np  as the Bose-Einstein and Fermi-Dirac distribution. The frequency-dependent
order parameter is now given by [34)] 36]

. P (w +in)
R — —
A (w) = Alw +in) = 7 T in) (2.37)
which allows to express the superconducting DOS via [34, 36]
v(e) = Re vr ] . (2.38)
e — [AR(e)]?

The reduction to the BCS gap-equation is also possible for the equations on the real
axis even though a few more approximations are required [36]. The two presented
formulations of the Eliashberg equations can be related to each other, and hence, they
are equivalent except for a small deviation in the Coulomb pseudopotential at some
cut-off frequencies w, [36]. Usually, the cut-off frequencies are chosen to be w. ~ 10wp,
with wp as the Debye frequency for the phonons. In general, the BCS theory as well
as the Eliashberg theory are valid for all kinds of electron-boson interactions. Only
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2 Superconductivity

choosing the cut-off frequency to be of the order of the Debye frequency of the phonons
leads to a restriction to phonons.

After this theoretical introduction of BCS theory and the Eliashberg theory, the fol-
lowing sections will concentrate on related experimental work done in the past. Most
of them are related to tunneling phenomena. In these sections, part of the experiments
performed within this thesis will be motivated.

2.2 History of Tunneling Phenomena in View of
Superconductivity

Electron tunneling experiments have greatly contributed to unveil the electronic struc-
ture of materials in condensed matter physics. Furthermore, they are an ideal tech-
nique to directly measure the quasiparticle DOS as well as the size of the supercon-
ducting energy gap A. A tunnel junction experiment made the direct measurement
of the BCS DOS possible for the first time [38]. Electron tunneling spectroscopy was
refined over the years and is still used with a multitude of variations. Although the
experiments within this thesis were conducted with a Scanning Tunneling Microscope
(STM), this section will focus on the history of electron tunneling experiments in gen-
eral and will emphasize their importance in view of superconductivity.

2.2.1 Quantum Mechanics of Tunneling

The basic principle of electron tunneling experiments is the quantum mechanical tun-
neling effect. In case of one dimension, it describes the phenomenon of a particle in a
state with energy £ and a wave function ¥(z) passing through an insulating barrier of
a width d with energy ® > E. Classically, this process would be forbidden. Only in
quantum mechanics, this process is allowed and is called tunneling. In this case, |V (z)|?
denotes the probability density of the particle. ¥(z) can be determined by solving the
Schrodinger equation within the different areas in front of, inside and behind the bar-
rier. Behind and in front of the barrier, solutions for the wave function are plane waves

vacuum

Evac Figure 2.9: Sketch of an electron tunnel-

® ing experiment. Two normally conduct-

ing electrodes are separated by an insu-
\ lating barrier of a width d. The wave
function of the tunneling electron with
energy E is shown in blue.

Eparticle

solid solid

0 d >

with momentum k = v2m£FE/h, whereas inside the barrier, an exponentially decaying
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2.2 History of Tunneling Phenomena in View of Superconductivity

wave function ¥(z) = U(0)e™"* occurs with xk = y/2m(® — F)/h. Considering the con-
tinuity conditions at the transitions between the different areas, the transmission of an
electron through the barrier is given by [39]

T = |V(d)|* =~ |¥(0)[?e2~. (2.39)

Hence, a tunneling current can flow between two conducting materials, separated by
an insulating layer as depicted in Fig.

a ) vacuum b)

el
(0}
Eparticle ------ e
normal [ normal” "
conducting conducting
solid solid
< >
Vnc 0 z=d Vnc
vacuum
C) d) 2.0
pe
Evac
1.5
® 3
3
=~ 1O - I
Eparticle :C
nc ™ Sl Y. ;:
I ) TEEEETTTr . oo 0.5
conducting
. Jsuperconductin ,
solid ot 00,37 1T 0 1 2 3 4
- eU/A
Ve 0 z=d >\)sc

Figure 2.10: a) Sketch of elastic electron tunneling between two normally conducting electrodes
(NIN kunction) and c) between a normally conducting electrode and a superconducting elec-
trode (SIN junction), b)/d) differential conductance corresponding to a)/c). The differential
conductance in d) corresponds to the normalized BCS DOS. A slight thermal broadening is
included in this illustration.

Tunneling across an insulator was first described by Frenkel in 1930 [40, 41]. The
first metal-insulator-metal (MIM) tunnel junctions were presented by J. C. Fisher and
I. Giaever in 1959 [42]. In the following years, these planar tunnel junctions turned
out to be a capable tool to study the quasiparticle DOS. Giaever used SIN junctions
instead of regular NIN junctions by replacing one of the normal conducing electrodes
by superconducting material like Al or Pb. He could show that the derivative of his
measured current-voltage spectra coincide with BCS DOS [38),43]. Since this proved
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2 Superconductivity

to be a milestone in the history of tunneling experiments, Giaever shared the Nobel
Prize with Esaki and Josephson in 1973. Before we continue with the experimental
overview of electron tunneling experiments on superconductors, the next paragraph
shortly presents an important theoretical model established by Bardeen for calculating
the tunneling current through a MIM junction.

2.2.2 Bardeen Model

Bardeen provided a model of the tunneling current flowing through a MIM junction
[44]. He calculated the transition probability between two unperturbed states of a left
and a right electrode. In the beginning, the two electrodes are assumed to be decou-
pled from each other. As a starting point, the Hamiltonian can be written as a sum of
Hamiltonians of the three regions: H = H; + H, + Hp (left/right electrode and bar-
rier). Only due to a perturbation, a transition of the electron from one electrode to the
other can be induced. Such a perturbation occurs because an electron that occupies a
state of one of the electrodes is influenced by the presence of the other electrode due to
the overlap of the wave functions inside the barrier. By using first-order perturbation
theory, the transition probability can be calculated by using Fermi’s golden rule:

2
Weny = %ugnﬁa(er —¢), (2.40)

where t¢  is the matrix element for elastic tunneling from the left to the right electrode,
|Wl) — |Ur). Bardeen showed that it can be calculated with the help of a surface
boundary integral [44]

h2

" 2m

te = (U |H|W) = (m:ﬁw; - xpﬁxp;ﬁ;) ds. (2.41)
boundary
The total Hamiltonian H can be written in terms of the transfer Hamiltonian H;. In

leading order of t;, , H can be written in second quantization as [34]

mn’/

H=H+H,+ Hf (2.42)
S I (e e e ) [ 8 My e

n,m

with H,, = H,,+ Hp as the perturbated Hamiltonians of the left/right electrode. 71, /#f,
is the electron creation operator of the left/right electrode and L, /7, denotes the annihi-
lation operator of the left/right electrode. The tunneling current through the junction
can be calculated by using Eq. and by summing over all possible initial and final
states, which yields [45]:

(U = 4xlt e / devi(€)v, (e — eU) (np@ (e — eU)), (2.43)

with 1, as the DOS of the left/right electrode and U as the applied voltage across the
junction. In order to show that by using planar tunnel junctions, one can directly probe
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2.2 History of Tunneling Phenomena in View of Superconductivity

the superconducting DOS, we now assume one electrode (e.g. the right one) to be
superconducting and the other one as normally conducting with a flat DOS v;(¢) = v}
(see Fig.[2.10). In this case, according to Eq. the differential conductance o(U) =
dI/dU can be written as

T=0
o(U) = —47ﬂ/?|te]262/deur(e)n}(e —eU) = 4n)lt|*e*v,(el). (2.44)

Hence, by measuring the first derivative of the elastic tunneling current, there is direct
access to the superconducting DOS (here DOS of left electrode v).

After this explanation of how to measure the superconducting DOS by using a pla-
nar SIN tunnel junction, the following section will focus on the proof of the Eliashberg
theory by electron tunneling experiments.

2.2.3 Experimental Proof of the Eliashberg Theory by using
Electron Tunneling Spectroscopy

As already mentioned, Giaever succeded in measuring the BCS DOS in 1960 for the
first time [38, 43]. One year later, with an improved setup, he observed some addi-
tional features next to the quasiparticle peaks in the superconducting DOS of lead at
temperatures of 1K [4]. The measured data are displayed in Fig. 2.1Ta. The relevant
fine structures are located in the area which is marked with a box. Rowell and Ander-
son [46] investigated these fine structures in more detail (see green curve in Fig.[2.11p)
and showed that the downward steps can be seen exactly at the energies of Van Hove
singularities (in the DOS of Pb) [47, 48] which occur (in the superconducting DOS)
shifted by the energy of the superconducting gap A. In Fig.[2.11p, the experimental
data of Rowell and Anderson [46] (green) and a theoretical calculation of Schrieffer
and Scalapino [49] (purple) are compared to a BCS spectrum (cyan). Deviations from
BCS theory are visible around 5 and 9 meV.

Soon after this measurement, Scalapino and Schrieffer could show that these fea-
tures can be explained by the Eliashberg theory [51]. Hence, Pb turned out to be a
prime example of a strong-coupling superconductor because the renormalization of
the electronic DOS in the superconducting state becomes directly visible due the strong
electron-phonon coupling. In order to point this out more clearly, a model calculation
for a single-phonon mode done by Scalapino et al. [51] will now be presented.

For his model calculation Scalapino et al. used a Lorentzian profile of the phonon DOS
of a single phonon mode at wy (see Fig.[2.12a). Assuming a constant «(w) and neglect-
ing the Coulomb pseudopotential, they solved the Eliashberg equations in order to
calculate the real and imaginary part of the energy-dependent order parameter A% (w)
which are shown in Fig. 2.12b. The imaginary part Ay, (w) has a rather simple form
and only shows a peak at energies slightly above wy + A(. The feature of the real part
Age (w) is slightly more complicated. Coming from low energies it is constant up to an
energy of roughly w, + A at which it has a peak. Going to higher energies, Age (w) de-
creases with a maximum slope at wy+A( and has a dip at slightly higher energies before
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Figure 2.11: a) Deviations from the BCS-type behavior of the differential conductance outside
the superconducting energy gap range. Reprinted with permission from Ref. [4]. Copyright
(1962) by APS. The black box marks the measurement area of another detailed investigation
[46, 49] which is shown in b): The BCS spectrum (dashed cyan line) is compared to the exper-
imental spectrum of Rowell and Anderson [46] (green) and to a calculated one of Schrieffer
and Scalapino [49]. Reprinted with permission from Ref. [49]. Copyright (1963) by APS. c)
The Eliashberg function that has been derived from the measured spectrum in a) by using the
McMillan inversion algorithm [50]. Data taken from Ref. [50].
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Figure 2.12: Eliashberg calculation for a single-phonon model. a) Lorentzian shaped phonon
spectral function. b) Real and imaginary part of the frequency dependent order parameter
blue/green. c) Calculated quasiparticle DOS resulting from the inclusion of Af(w) (orange)
compared to the BCS DOS (blue). Reprinted with permission from [51]. Copyright (1966) by
APS.
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Figure 2.13: Illustration of the inversion algorithm of McMillan and Rowell [50]. Starting point
is a guessed Eliashberg function 1) from which the superconducting DOS is calculated 2) and
compared to the measured one 3) [4]. In the case of deviation, an adapted Eliashberg function 1)
is used in the next cycle until the calculated 2) and measured superconducting DOS 4) coincide
resulting in a final Eliashberg function 5) [50].

it increases again and approaches zero. The importance of this model calculation be-
comes obvious when calculating the corresponding DOS by using Eq. The latter is
shown in Fig. and was calculated by Scalapino et al. in the strong-coupling limit.
In comparison to the fine structures in the data of Giaever et al. shown in Fig.
great similarities can be observed. Thus, the step-like features shown in Fig. could
be explained by the Eliashberg theory by means of the model of Scalapino et al. This
proves that the features in Fig. which arise at energies of the phonon modes of
Pb, shifted by the energy of the superconducting gap A, are due to the renormalization
of the electronic DOS caused by a strong electron-phonon coupling. Hence, these are
elastic features due to the coupling to virtual phonons and not inelastic excitations. This
fact will become crucial for the results presented in Chapter 4.

After these fine structures in the electronic DOS had been detected experimentally
with electron tunneling spectroscopy in planar junctions [4} 42} 46,49|52,53], McMillan
and Rowell soon succeeded in another pioneering study [50]. They used the concept of
reconstructing the Eliashberg function from the superconducting DOS by an inversion
algorithm. Here, the starting point is the measured superconducting DOS, the width
of the superconducting energy gap A, and an initial guess for o*F(w) (e.g. from neu-
tron scattering) which they used for calculating the gap function A(w) and the final
Eliashberg function as well as the Coulomb pseudopotential. Subsequently, they made
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Figure 2.14: In the left panel, the measured superconducting dI/dU spectrum (B) and its
derivative (A) are shown as well as the corresponding Eliashberg function calculated by the
McMillan inversion algorithm. Reprinted with permission from Ref. [50]. Copyright (1965)
by APS. The right panel shows the Pb phonon DOS. For the red line, spin-orbit coupling was
included [48], which was not done for the black line [47]. Reprinted with permission from
Ref. [48]. Copyright (2010) by APS.

a guess for the Eliashberg function a*F(w), calculated A(w) and finally the supercon-
ducting DOS out of it and compared to the experimental one. In the case of deviation,
the Coulomb pseudopotential was adjusted and the whole process repeated using a
corrected Eliashberg function until the resulting superconducting DOS converged to
the measured one. By Using the measured superconducting DOS of Pb, which is
shown in the left pannel of Fig. Rowell and McMillan extracted the Eliashberg
function (see Fig.[2.13). When comparing the calculated Eliashberg function with the
phonon DOS extracted from Neutron scattering experiments [47] 48] one finds that
their shapes are quite similar (cf. Fig.[2.14). Small deviations arise due to the fact that
within Neutron scattering experiments, all phonons contribute to the measured signal,
whereas in the case of the Eliashberg function, only those bulk phonons are considered
that can be excited by electrons that scatter at the Fermi surface. Furthermore, neutrons
couple to phonons with a different matrix element than the bulk electrons do.

The McMillan inversion algorithm has been used to identify fingerprints of the phononic
pairing glue in the electronic spectrum and thus to determine the pairing mechanism
leading to superconductivity [36}51]]. It is considered as a hallmark of condensed mat-
ter physics and is illustrated in Fig.

Note that the plots shown in Fig. and Fig. were measured by using a Pb-
oxide-Pb, which is a SIS tunnel junction. The advantage of using an SIS instead of an
SIN tunnel junction is the enhanced energy resolution. Nevertheless, due to the oxide
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layers, inelastic processes can occur where electrons interact with collective excitations
of the insulating layer and which have been neglected so far.

2.2.4 Beyond Eliashberg Theory and McMillan-Rowell Inversion
Algorithm

Despite its usefulness, there are some drawbacks of the McMillan-Rowell inversion
algorithm. First of all, it is not unique. Starting with different superconducting DOSs,
one ends up in highly similar Eliashberg functions. And as we will see in chapter 5,
depending on how large the inelastic contributions are, wrong conclusion about the
pairing glue in the superconducting state might be drawn. Furthermore, there are
alternative, more direct ways to determine the Eliashberg function. For example, the
Eliashberg function can be, at least for phonons, directly measured when performing
inelastic tunneling experiments in the normal state using MIM junctions [54-61].
When performing tunneling experiments, the measured tunneling current usually
consists of an elastic and an inelastic part. This is illustrated in Fig. An elec-
tron can tunnel through a barrier either elastically or, if its energy is high enough, it
can tunnel inelastically while exciting a phonon. The latter leads to the opening of an
additional tunneling current at a certain voltage (related to the phonon mode), which
is visible as a kink in the otherwise linear current-voltage /(U) spectrum. In the first
derivative of the tunneling current (d//dU), this kink leads to a step-like feature and
turns out to be a dip-peak feature for negative/positive voltages in the second deriva-
tive of the tunneling current. Note that the elastic contribution to the d//dU spectrum
is a constant in the case of a normal metal, and hence, d*I/dU? vanishes. As a result,
d?I/dU? consists only of the inelastic part and is directly proportional to the spectrum
of the collective excitations. Hence, one can directly measure the phonon DOS which
were created by the inelastic scattering of the tunneling electrons, in the normal state.
This is possible because the electron-phonon coupling is not only restricted to the
superconducting state. The idea to measure the Eliashberg function by performing in-
elastic tunneling experiments in the normally conducting state already came up in the
1960s i.e., at the same time as the McMillan inversion algorithm. Nevertheless, the au-
thors had to struggle with some problems, which might be the reason why McMillan’s
method received more attention. Firstly, since the used MIM junctions which usually
consist of a metal-oxide-metal structure, they had to deal with impurities in the oxide
barrier interacting with the tunneling electrons and with related complex calculations
[59, 62-66]. Secondly, compared to SIS-junctions, MIM junctions have lower energy
resolution at the same temperature. Hence, the results were not as beautiful as those
that were measured in the superconducting state. Thirdly, for a few years, there was
no consistent interpretation of the measured signals reported in the given citations.
Finally, Taylor came up with new model in 1992 [66] and showed that for a normal
conductor, the second derivative of the tunneling current / with respect to the bias
voltage U is, under general assumptions, directly proportional to o?F(w). Further-
more, it is quite obvious that the increased complexity due to an oxide barrier can be
circumvented by using a vacuum barrier. Therefore, a scanning tunneling microscope
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Figure 2.15: Left panel: Sketch of NIN junction, where an electron can tunnel elastically (or-
ange arrow) or inelastically (red arrow) while exciting a real phonon. The resulting spectra
are shown in the right panel. For a normal metal, the current-voltage I(U) curve has a lin-
ear behavior, whereas a kink occurs at a voltage wy/e corresponding to a phonon mode which
produces an additional tunneling channel. Such a kink appears in the first derivative (dI/dU)
as a step and in the second derivative (d1/dU?) as a peak. Note that in the normal state, the
d?I/dU? spectrum consists of only an inelastic part.
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is an appropriate tool for these experiments because its atomically sharp tip can be ap-
proached to about 5 A to a conducting sampldﬂ After the investigations of the Eliash-
berg function, experiments on inelastic tunneling were not considered promising for
some years due to the above-mentioned complications. Recently, this topic has been
reconsidered and STM has been applied to obtain local information on the Eliashberg
function of Pb on a Cu(111) substrate by Schackert et al. [67]. The fact that
2
I

% x o’ F(w) (2.45)
becomes evident in this work when the measured d?1/dU?-signal of normally conduct-
ing Pb is compared with the Eliashberg function extracted from McMillan and Rowell

(see Fig.[2.16).

Figure 2.16: Antisymmetrized inelastic tunnel- /\ é
ing spectrum taken on normally conducting Pb \ f e
films at 800 mK (green dots) [67] in comparison v S
with previous results of a.F'(w) [50] (black line). R/
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Despite this nice result, one has to keep in mind that the direct proportionality of
Eq. is only valid in the case of normally conducting materials with a rather flat
DOS around the Fermi energy. Only in this case, features that are due to the elas-
tic part of the tunneling current disappear in the second derivative of the tunneling
current and Eq. can be applied, which is not true for the superconducting state.
Nevertheless, also in the superconducting state, the tunneling current has to consist of
an elastic and an inelastic tunneling current. Thus, it is probably possible to measure
inelastic features (e.g. features that are due to real phonons) in a superconductor as
well. One only has to keep in mind that in the superconducting state, these inelas-
tic features should appear as peaks at wy + A since the respective mode energies are
shifted by the energy of the superconducting gap A. Nevertheless, they are not visible
in the upper curve in the left panel of Fig. Instead of peaks, there are dips at the
corresponding energies resulting from the derivative of the renormalization features
in the superconducting DOS. Another point that should be mentioned is that, so far,
there has been no unified theoretical model that is able to describe elastic and inelastic
tunneling processes in the normal state as well as in the superconducting state.

This is now the starting point of this thesis. Especially in chapter 4 and 5 it will be
discussed how to extract inelastic features from the superconducting state and what

®For more details see next two chapters.
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conclusions can be drawn if unconventional superconductivity is also taken into ac-
count.
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3 Experimental Setup and Methods

The experiments of this work were performed with three different Scanning Tunnel-
ing Microscopes. Most of the measurements where done with a Joule-Thomson low-
temperature Scanning Tunneling Microscope (J1-STM) and with a recently built Dilution-
STM (DT-STM) which were both constructed at the Physkalisches Institut in the group
of W. Wulfhekel. A Unisoku low-temperature STM was used for additional investi-
gations at Shanghai Jiao Tong University. This chapter presents the technical require-
ments and methods of STM as well as sample preparation techniques.

3.1 Scanning Tunneling Microscopy

The field of scanning probe microscopy techniques started when Gerd Binnig and
Heinrich Rohrer invented the scanning tunneling microscope (STM) in 1982 [9] for
which they received the Nobel price in 1986. In STM, an atomically sharp tip is ap-
proached to about 5 A to a conducting sample. By applying a voltage between the tip
and the sample a tunneling current occurs. Voltages in the range of several ;1 V up to
10V are typically used. If the tip-sample distance is changed by 1 A, the tunneling cur-
rent changes about one order of magnitude. Due to this fact, height variations on the
atomic scale are resolvable. For recording topographic images, usually the so-called
constant current mode is used in which a constant setpoint of the tunneling current is
maintained by continuously readjusting the tip position via a feedback-loop system
while scanning the tip over a sample surface.

The adjustment of this tiny tip-sample distance is realized by using a piezoelectric
motor. For coarse motion in vertical (z) and horizontal (x) direction, slip-stick piezo
motors are used. The purpose of a coarse motion in horizontal direction is to allocate
the tip correctly on top of the sample before starting the measurement. Especially for
small sample sizes (like one has to deal with in the case of single crystalline iron-based
superconductors), this is a crucial point. In order to speed up the approach process
and to finally achieve a tunneling contact, the z-coarse-motion is used. Once the tun-
neling regime is achieved, the fine motion of the tip in horizontal (x, y) and vertical
(z) directions is accomplished with the piezo scanner tube, to which the tip is attached
via a socket. All of the electronic signals that are necessary for the measurement are
provided by a Nanonis (in the case of the JT-STM and DT-STM) or an RHK (Unisoko
LT-STM) controller. Apart from the tunneling current, first and second derivatives of
the tunneling current can be measured. Furthermore, various physical properties can
be investigated such as the density of states and inelastic excitations such as phonons.

For the experiments in the present work, mainly tungsten tips were used. Atomically
sharp W-tips were manufactured by chemical etching of a tungsten wire. As a simpler
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alternative, also gold tips were used for which only a Au-wire needed to be cut and no
further etching process was required.

Spectroscopy Of course, the first and second derivative of the tunneling current can
be obtained by calculating the numerical derivatives of the tunneling current. How-
ever, the signal obtained this way is typically so noisy that it masks the signal to be
measured. In order to avoid this problem, a lock-in amplifier was used for the measure-
ment of the first and second derivative of the tunneling current detecting AC signals
down to the nanovolt scale. When using a lock-in amplifier, a small oscillating voltage
is added to the tunneling voltage (bias). Consequently, also the tunneling current oscil-
lates with the same frequency. By using a current-to-voltage converter (I/V-converter),
the small tunneling current (10 pA-100nA) can be converted into an amplified voltage
signal. The amplification depends on the adjusted gain (e.g. 10° V/A), whereas the
bandwidth (the I/V converter acts as a low-pass filter) depends on the amplification.
Therefore, the modulation voltage to the tunneling voltage should have a frequency
below the cut-off frequency of the I/V converterf| By means of the lock-in technique,
the signal is processed in the following way. The tunneling current which contains an
AC signal is multiplied by the phase-shifted modulation signal and passes a low-pass
tilter where the signal is averaged over several periods. Unwanted noise frequencies
are filtered out and only the changes in the signal to be measured are detected.

In general, there are different noise sources affecting the signal to be measured.
There are extrinsic noise signals, such as lighting fixtures, motors, cooling units or com-
puter screens, which are asynchronous and do not occur at the reference frequency of
the lock-in amplifier or its harmonics [68]. Nevertheless, the influence of most of the
external noise sources can be minimized by a proper experiment design, whereas the
so-called intrinsic noise sources (Johnson noise, shot noise, 1/f noise) often cannot. For
the measurement of the derivatives of the tunneling current, the most problematic part
is the 1/f noise which, however, can be suppressed by using a lock-in technique with
suitable modulation frequency.

Ultra-High Vacuum Typical operating pressures in preparation and STM chamber
are ~ 107" mbar. Pressures in this range can only be achieved by an appropriate
pumping system and a bakeout procedure after venting a chamber. The pumping
system is basically the same for all the three setups described within this thesis. It con-
sists of rotary pumps, which produce a rough vacuum, and is necessary to operate the
different turbomolecular pumps (for load locks, preparation and STM chambers). The
rotary pump is connected to a barrel which is connected to each of the turbomolecular
pumps so that they can be operated with only one rotary pump. A bakeout, followed
by a degassing procedure, is necessary especially after a chamber was vented in order
to desorb all of the gas molecules from the walls and parts of the chamber while the
chamber is pumped down in order to achieve a better final pressure. Using only tur-
bomolecular pumps, pressures around 10~% mbar can be achieved. In order to obtain

'For measuring the second derivative of the tunneling current this should be less the half the cut-off
frequency.
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3.1 Scanning Tunneling Microscopy

pressures in the 107! mbar range or even better, additional pumps are needed. The
usage of ion-getter pumps is essential, since they do not only improve the pressure,
but they are the only pumps running during measurements as well. Turbomolecular
pumps and rotary pumps have rotating parts and therefore, they induce unwanted
mechanical vibrations for the measurement. In an ion-getter pump, the residual gas
molecules are ionized and accelerated towards an electrode covered by titanium. Com-
pared to turbo pumps it is more efficient at pumping light gas molecules that moves
at a higher thermal speed. Additionally, a titanium sublimation pump is temporar-
ily used. It acts as an accelerator for the pumping speed, especially in the case of
OQ, N, NQ, CO, 002, H2 and H.

3.1.1 JT-STM

As already mentioned, most of the experiments were done with a home-built Joule-
Thomson low temperature STM (see Fig. [3.1), which was developed by L. Zhang and
W. Wulfhekel and co-workers [69, 70]. The whole setup consists of three different
chambers allowing in-situ growth and characterization of samples. A load lock cham-
ber is used to put samples and tips into the UHV-preparation chamber, where they
can be cleaned (by sputtering and annealing, see paragraph[3.2.T), coated with various
materials (by using molecular beam epitaxy (MBE), see paragraph and charac-
terized (by using Auger Electron Spectroscopy (AES), low-electron energy diffraction
(LEED) or reflection high-energy electron diffraction (RHEED), see paragraph [3.2.3).
After preparation, the samples can be directly transferred to a pre-cooling station in
the STM chamber and finally to the microscope itself.
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Figure 3.1: The JT-STM setup including prepara-
tion chamber is shown, cryostat and STM-chamber
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The STM body consists of a sample stage, the piezo tube holding the tip, and piezo-
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electric motors. It is surrounded by a split coil magnet which is able to produce an out-
of-plane magnetic field of 3T at the sample. It is thermally connected to the bottom of
the liquid helium (LHe) tank and it was home-built in the AG Wulfhekel. The cryostat
consists of two nested cryostats, an outer one for liquid nitrogen (LN;), and an inner
one is the mentioned LHe tank. Both of them are surrounded by a thermal shields.
The pre-cooling station is attached to the shield of the LN, tank. So, it is at 77 K. By
using a special parking mechanism, the STM body can be thermally connected to the
LHe cryostat. After inserting a sample to the STM body, this allows to cool down the
sample to 4.159 K within only three hours. The measurement itself is then performed
in the unparked state, where the STM body is freely hanging on three springs. For a
further reduction of mechanical vibrations, the whole setup is lifted via an air damping
system.

The special properties of this system are the achievable low temperatures of ~ 650 mK
and a liquid-helium standing time of around 10 days.

Low temperatures In order to achieve temperatures below the boiling temperature
of LHe, a Joule-Thomson refrigerator cycle is integrated. The cooling is based on the
fact that an expanding gas performs work against its internal forces under certain
conditions which are warranted, e.g. for a gas expanding through a small nozzle or
through a porous plug that is thermally insulated from its surroundings [71]. The
greatest advantage with respect to STM is that the expansion process requires no mov-
ing parts and subsequently causes no additional vibrations. In the case of the present
Joule-Thomson cycle, a *He/*He gas mixture is pumped by a rotary pump through
a closed circuit. At the inlet side, the gas mixture is introduced into the LHe cryo-
stat at a pressure of 1.2bar and passes several heat exchangers and filters before going
on through a very narrow capillary that separates the high-pressure from the low-
pressure side. At the end of this capillary, the gas mixture condenses in a small pot, the
JT pot. Since the pressure is now in the range of 10~ mbar on the low-pressure side,
the boiling temperature of the liquid is significantly reduced. In the case of pure *He,
a temperature of 450 mK could be achieved and about 1K in the case of pure *He [72].
Currently, a *He/*He gas mixture is used and temperatures of about 650 mK can be
achieved, while an additional turbomolecular pump in the cycle further reduces the
pressure in the JT pot. For a smooth operation of the cycle, a high purity of the gas
mixture and filters are indispensable in order to avoid frozen impurities blocking the
capillary. Directly at the JT pot, where the *He/*He gas mixture is condensed, the STM
body is thermally connected by thin gold wires. Hence, it reaches roughly the same
temperatures as the JT pot itself.

3.1.2 DT-STM

The dilution STM is a recently built machine in the group of W. Wulthekel (assembled
mainly by T. Balashov). The setup is again an in-house design except for a dilution
refrigerator (DR) unit, which was commercially acquired from the company Bluefors.
Analogous to the JT-STM, the whole setup consists of three chambers for in-situ prepa-
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ration and characterization of samples. Using a DR, even lower temperature down to
25mK can be achieved. Now, the heat of mixing two isotopes is used to obtain low
temperatures. The first refrigerator based on this principle was built by a group at
Leiden University and reached 0.22K [72, 73]. An improved design reaching 25 mK
was developed one year later by B. S. Neganov in Dubna and H. E. Hall in Manchester
[72,173]. Whereas until about the 1950s, demagnetization of a paramagnetic salt or he-
lium refrigerators based on the latent heat of evaporation were used for cooling [72],
today, the *He-*He refrigerators are the most important refrigeration technology for the
temperature range between 1K and 5 mK [72].

Dilution Refrigerator The working fluid of a Dilution Refrigerator (DR) is the iso-
topic liquid helium mixture. A phase diagram of liquid *He-*He mixtures at saturated
vapour pressure is shown in Fig. [3.2|[72]. There, the temperature T is plotted over the
3He concentration x [72].

mal *He/’He , .
(liquid) Figure 3.2: Sketch of the phase diagram

of liquid *He-*He mixtures at saturated
: vapour pressure. The lambda line in-
dicates the superfluid phase transition.
The phase separation line of the mix-
tures marks the tehmperatur T, below
which they separate into a “He-rich and
a *He-rich phase. T is the line of the
Fermi temperature of the *He compo-

] nent.. Adapted from [72, 74, [75].

Temperature T[K]

0 0.5 1
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As illustrated, pure “He becomes superfluid at 2.177 K. By diluting the pure Bose
“He-liquid with the Fermi liquid *He, the temperature of the superfluid phase transi-
tion is lowered. However, for *He concentrations above 67% the superfluidity of the
*He-*He mixture doest not exist. Instead, a normal *He-*He liquid mixture exists for
temperatures higher than 0.87 K and a two-phase region for temperatures below 0.87 K.
This two-phase region is displayed as the purple shaded region in Fig.[3.2|in which the
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two isotopes are not miscible. In this region, the mixture separates into two phases,
one rich in “He and the other rich in *He. The *He-rich liquid, due to its lower density,
flows on top of the *He-rich liquid [72]. Following the phase-separation line for high
*He concentrations, on approaching zero temperature, the *He-rich liquid becomes
pure *He. This is different for the *“He-rich liquid, where a small concentration of *He
remains in the mixture even at T=0K. In Fig. 3.2]it is shown that within the two-phase
region, the lower limit for the *He-concentration in the *He-rich liquid is 6.5% (at sat-
urated vapour pressure), even for T=0K [72]. Thus, in the two-phase region, the diluted
*He poor phase has a temperature dependent lower limit in the *He concentration.
This is the most important and crucial fact for operating a *He-*He DR as we will see
below.

Now, let us proceed with the technical realization concerning the DT-STM. In the
left panel of Fig. a drawing of the cryostat is displayed. The DR is situated in
the interior of thermal shields which are cooled by LN, and LHe. The LHe tank pre-
cools the incoming *He-*He gas mixture which is circulated in the DR. After the pre-
cooling procedure, the *He-*He gas mixture can be condensed. This is implemented by
using a compressor which raises the inlet pressure to about 2 bar. Using additional heat
exchangers, the pressurized mixture condenses because of the Joule-Thomson effect after
the main flow impedance (see also Fig. and finally fills up the mixing chamber, the
heat exchangers and part of the still [76]. So far, the cooling procedure is quite similar
to the one in the JT-STM. But now, by pumping the still, temperatures below 0.8 K occur
as a result of the evaporative cooling. By looking at Fig. 3.2 one recognizes, that now
the phase separation of the mixture sets in for certain *He-concentrations and it is this
region, where the actual DR is activated. Due to the large differences concerning the
vapour pressure of *He and “He, almost only *He is pumped from the *He-poor phase
in the still (see Fig. and subsequently distilled. This causes a disequilibrium in the
$He-poor phase. Furthermore, as mentioned above, there is a lower limit of the *He
concentration in the *He poor phase. This induces the transition of additional *He of
the *He-rich phase to the *He-poor phase. Since, the cooling power mainly depends on
the amount of *He atoms crossing the phase boundary, and therefore on the enthalpy
of mixing two quantum liquids [72, [76], this lower limit of the *He concentration in the
*He poor phase plays a crucial role.

As shown in the right panel of Fig. the heavier dilute phase accumulates at the
bottom of the mixing chamber, where a wider tube connects this part of the mixing
chamber with the heat exchangers and finally the dilute phase of the still. The di-
lute phase in the mixing chamber can reach the still by osmotic pressure. By passing
through the heat exchangers it additionally pre-cools the incoming *He which enters
the concentrated phase in the mixing chamber. Due to the pumping system, the circu-
lation of the *He is maintained. The cooling power mainly depends on the amount of
*He atoms crossing the phase boundary, and therefore on the enthalpy of mixing two
quantum liquids [72, [76].
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Figure 3.3: Left panel shows a drawing of the cryo including the LN, /LHe tank, as well as the
coil and the STM-body which is drwan in the parked state. The red box marks the dilution unit
which is sketched in more detail in the right panel. It consists out of a still, heat exchangers and
a mixing chamber (for explanation see text). Right panel was adapted from [72].

3.1.3 Unisoku LT-STM

For the preparation and investigation of FeSe monolayer on SrTiO; substrates, a com-
mercially available low temperature STM USM1300 was used in the group of Chunlei
Gao at Jiao-Tong University in Shanghai. Base temperatures of 300 mK can be achieved
by liquifying *He with an adsorption pump. Other possible measuring temperatures
are 42K and 77 K. A big advantage of this setup is a built-in triple-axis solenoid mag-
net. Vertically to the sample surface, magnetic field up to 7T can be achieved, while
along the two horizontal axis magnetic fields up to 2T are possible. Analogous to the
previous two described setup, a load lock chamber as well as a preparation chamber
are attached to the STM chamber. The preparation chamber is in this case especially
suited for molecular epitaxy (MBE) including RHEED (Reflection high-energy electron
diffraction).
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3.2 Facilities for Sample Preparation and
Characterization

One purpose of a preparation chamber is of course to clean samples, sample substrates
or tips. On the other, a preparation chamber is needed to grow samples and if necessary
to quickly check them. Furthermore, during a growth study for example, the samples
need to be grown and cleaned quite often. For this purpose it is convenient to have
a preparation chamber directly attached to the STM chamber in order to provide an
in-situ sample preparation what is useful for the fabrication of high-purity samples.

3.2.1 Sputtering and Annealing

Sputtering is predominantly used for cleaning substrates and tips. Typically, argon
ions are used which are accelerated to the sample/tip by applying high voltage of
around 3-4kV. The ions usually hit the sample/tip at an angle of 45°. Due to their
impact, the ions remove the upper most atomic layers of the sample/tip. The new
sample surface thus formed is rough and needs to be smoothed. This is done by a
subsequent annealing process. This can be done by resistive heating (like it the case
for the Unisoku setup) or by thermionic emission (like in the preparation chamber of
JT-STM and DT-STM setup). For the latter, a current flows through a tungsten filament
which is mounted on a plate directly above the sample to be annealed. By applying
high voltage between filament and sample, thermally emitted electrons are accelerated
to the sample and heat it by the caused electron bombardment. Using a pyrometer, the
sample temperature can be measured. Alternatively, the samples/tips can be flashed,
what simply means a short fast heating of the samples/tips.

3.2.2 MBE

For growing high-purity films on a substrate, molecular beam epitaxy (MBE) is a com-
mon technique. Thereby, a certain solid material is thermally evaporated from its solid
state. Usually, high-purity elements can be commercially acquired in shape of a rod or
as grains. The rod-shaped materials can be directly mounted on the high-voltage part
of an home-built electron-beam evaporator. Thereby, the (e.g. Fe-) rod is heated by elec-
tron bombardment. This is achieved by passing a current through a filament located
around the end of the rod and by applying a high-voltage between the filament and
the rod. Due to the applied high voltage, electrons are accelerated from the filament to
the rod. From to the power P = I, - U needed for evaporation, the temperature of the
evaporation source can be estimated. Here, Iy, is the emission current. Taking a look
at the corresponding vapour pressure diagram of the respective source material, the
right power range for evaporation can be assessed. By applying the Stefan-Boltzmann
rule:

P=c-A-T (3.1)

which states that the power of thermal radiation is proportional to a natural constant
2nlky

= (5.670367 & 0.000013) - 10~8 1"+, the area A of a black body (what corre-
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sponds to the area of the source material) and to the fourth power of the temperature T,
the temperature of the evaporation source can be estimated from the parameters used
for evaporation.

For materials which evaporate already at a quite low temperature, like Se (~150K),
the application of a high-voltage is not necessary and a purely resistive heating is
enough. The grain-shaped Se source material, which was used for the experiment
in this thesis, was commercially acquired from "Alfa Aesar". For the grain-shaped Se
source material, a self-constructed Knudsen cell was used for evaporation. Thereby,
the grains were inserted in a ceramic crucible which was resistively heated by a sur-
rounding filament.

3.2.3 RHEED

Reflection High Electron Energy Diffraction (RHEED) is used for monitoring the growth
of a film on a substrate. Especially, if an exact number of layers should be grown it is
quite useful. When doing RHEED, high-energy electrons with an energy in the range of
10-50keV are accelerated from a cathode and hit a sample surface at grazing incidence
(angle ~ 5°). Such an grazing incidence leads to a high surface-sensitivity with a small
penetration into the sample. Subsequently, the (mostly elastically) scattered electrons
meet a fluorescence screen where the diffraction pattern can be observed. The pattern
consists out of point-shaped spots located on an arc and occur due to constructive
interference of the diffracted beams. During the growth of a sample, the intensity of
several spots are measured over time. According to the growth mode, the evolution
of the intensity over the time behaves differently. For a layer-by-layer growth mode,
the intensity shows an oscillating behavior. One period corresponds to the growth of a
single layer.
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4 Theory of Scanning Tunneling
Microscopy and Spectroscopy

Following the rather general introduction of electron tunneling phenomena in Sec.[2.2
and the explanation of an STM setup from an experimental point of view in Sec.[3.1]
this chapter will focus on theoretical aspects of scanning tunneling microscopy and
spectroscopy. The aspects that are different from electron tunneling in planar junctions
will be described. Furthermore, a clear distinction between elastic and inelastic tun-
neling phenomena will be made. Tunneling into normal conductors as well as into
superconductors will be described. Possible simplifications in the case of normal con-
ductors will be elucidated.

4.1 Scanning Tunneling Microscopy

As already mentioned in Chap. 2}, in STM, one electrode is the atomically sharp tip. The
Bardeen model can also be applied to the STM geometry. The only difference is the fact
that the tunneling current and consequently the differential conductance are measured
locally at a specific position r — I°(U,r),0¢(U,r). This allows to spatially resolve the
DOS, moving the tip over the sample. Eq.[2.44] describes the elastic differential con-
ductance for planar tunneling junctions. There, an unknown parameter, that is, the
matrix element for elastic tunneling ¢., occurred. Theoretically, it can be calculated by
the wave functions of the left and right electrode (now, in the case of STM: tip and
sample electrode) which are, however, also unknown. In 1985, Tersoff and Hamann
finally found a way to solve the Bardeen model for an STM geometry [77]. Within the
Tersoff-Hamann model, the tip wave function is replaced by an s-wave function at the
position r. For zero temperature T — 0, the tunneling current is

eU
I(r,U) x I/t/ (¥, €p + €)de. 4.1)
0

As can be seen, in this case, the tunneling current directly proportional to the local
DOS (LDOS) of the sample v, at the position of the tip, integrated over the bias voltage.
Hence, when scanning the tip over the sample, a constant-current image shows areas
of equal DOS.
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4.2 Scanning Tunneling Spectroscopy

Scanning tunneling spectroscopy is used in order to probe the DOS, both for elastic or
inelastic tunneling processes. In general, if there are inelastic processes that contribute
to the tunneling current, they coexist with the elastic ones. As already mentioned in
Sec.2.2]and as illustrated in Fig.[2.15} a linear I(U) spectrum in the case of pure elastic
tunneling is alternated in the case of inelastic processes by occurrence of a kink in the
I(U) spectrum starting at an energy at which the inelastic mode occurs (see Fig.[2.15p)).
The kink occurs because of the opening of an additional tunneling channel, due to
the inelastic excitations. Often, theses kinks are hardly visible in the measured (U)
spectra. Therefore, the first or even second derivative of the tunneling current is mea-
sured in order to reveal inelastic contributions to the tunneling current. In the case of
tunneling between metallic electrodes in the normal state, the system is quite simple.
The elastic part of the tunneling current (linear part in Fig. 2.15p)) turns out to be a
constant in the first derivative of the tunneling current dI/dU, so it is zero when the
second derivative of the tunneling current d”//dU? is measured. As a result, in the
case of a normal metal state with a flat DOS around the Fermi energy, the d*I/dU?
spectrum directly gives the inelastic contribution to the tunneling current. This allows
the investigation of inelastic tunneling processes. For example, phonons are impor-
tant inelastic excitations in metal substrates. The following derivation of the tunneling
current is based on phonons as inelastic excitations. The theoretical description of the
contributions to the tunneling current was developed in collaboration with P. Hlobil
and J. Schmalian. They did the actual implementation of the theoretical formalism.
The content of the following sections is based on Ref. [10, 11} 34].

4.2.1 Derivation of the Tunneling Current

In order to specify the formulas for elastic and inelastic tunneling contributions, we
start with a general derivation of the tunneling current between a normally conducting
tip and a superconducting sample by doing a perturbative approach. Subsequently,
possible simplifications in the case of an MIM junction will be explained. It will become
obvious that @1 /dU? spectra are directly proportional to inelastic tunneling processes,
so they can be proportional to the Eliashberg function.

The tunneling current between a normall conducting tip and a superconducting
sample is given by the elementary charge times the change of the number of electrons
ns = 1o cliack’g in the superconductor:

1= —etelp(t)ns) /o)
= ie{ [ns(t), Hear(t)] ), (4.2)

where p(t) is the time-dependent density matrix [10]. H.s is the effective low-energy
transfer Hamiltonian of this system. In Sec.2.2} a transfer Hamiltonian has already
been introduced in the case of purely elastic tunneling planar tunnel junctions (see
Eq.2.42) were discussed. Nevertheless, as shown in Ref. [10], the inelastic contribu-
tions to the tunneling current can, in general, be of the same order of magnitude as
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4.2 Scanning Tunneling Spectroscopy

the elastic contributions. Furthermore, it is pointed out in Ref. [11] that "[...] the rela-
tive phase space for elastic and inelastic processes depends sensitively on the detailed
tunneling geometry, i.e. whether one considers planar or point-contact junctions or an
STM geometry". In the case of an STM geometry, there is poor momentum conser-
vation [78], resulting in large inelastic contributions. Therefore, the effective transfer
Hamiltonian Hes = Ho + H,. is introduced in Eq. and includes now elastic and
inelastic tunneling processes for tunneling between a normally conducting tip and a
superconducting sample| H, includes four terms [10]:

_ Tt S .t T
Ho = €pCpoCpo T E €k Cr o Ckio + E Wa G O
p.o k,o q,u
1 i
+\/7§ U1 1O o O o Pu— 1 » (4.3)
S i
kk

o,p

describing free electrons in the tip (1) and sample (.5), phonons and electron-phonon
interactions in the substrate [10]. Here, aq,,/ aZL ., are the phonon annihilation/creation
operators of momentum q and phonon branch y, with dispersion frequency wq , [10].
Ciol,p,o | Wa - cf(,k,,pﬁ are the electron annihilation/creation operators. The quasimo-
menta k, p denote the two subsystems of the tip (with dispersion ¢] and volume V7
and the superconducting sample (dispersion ¢ and volume Vs) [10]. We set ii = 1,
and ¢q, = aqu + aIL .. 18 proportional to the lattice displacement [10]. The last term in
Eq.[4.3|contains the electron-phonon coupling parameter ay_y,,. For the tip subsystem,
phonon contributions can be neglected since tips are usually made of tungsten with a
negligible phonon DOS around the Fermi energy.

The tunneling Hamiltonian #, is proportional to the tunneling matrix element 7,
[10, 64, 66]:

1
He = TiepCy . Cps +hoc,, (4.4)

o

which includes elastic and inelastic tunneling processes [10]:
1 .
Tk,P = Tlf,p + = Z Tli,p,q,uaqvuquu + O( ?I»M) . (4.5)
Vs @

The matrix elements for elastic/inelastic tunneling are denoted as T¢ ,/ Tf(’p. The sec-
ond term of Eq.4.5|describes electron transitions via the emission/absorption of phonons
(see Fig. and is proportional to the electron-phonon coupling parameter ag, [10,
66].

As far as the determination of the tunneling current is concerned, two assumptions
can now be made. The first one has already been mentioned and is related to the
Tersoff-Hamann model. The DOS of the tip is assumed to be constant vr(w) ~ 13,
which is valid in the case of W tips or Au tips, for example. Another assumption can

'Note that this effective low-energy transfer Hamiltonian can be derived from a purely elastic high-
energy tunneling model by integrating out high-energy degrees of freedom [11} [34].
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‘r’eal phonon STM tip
8 Figure 4.1: Illustration of an STM tunneling geom-
o4 u . . . . . .
[2a etry including elastic and inelastic tunneling pro-
cesses. Taken from Ref. [10].
[ superconductor

be made with regard to the tunneling matrix element. In contrast to planar junctions
which are restricted to the conservation of the in-plane momentum kj; when tunneling
through a barrier, in an STM geometry, electrons tunneling between different states
across the barrier do not have to have the same k| [78]. Hence, the tunneling ampli-
tudes can be considered to be independent of direction, phonon momenta and phonon
branches Ty , = ¢° and Ty pqp =t [10,78]. As a result, the conductance per channel is
larger compared to the case of planar tunneling junctions [78]. Especially the allowed
inelastic tunneling processes are enhanced in the case of an STM geometry [34].

If these assumptions are taken into account, the Keldysh Green’s function method
is a suitable formalism to calculate the current in Eq. [10] (we follow the notation
of Ref. [10} [79]). The detailed derivation can be read in the supplemental material
of Ref. [10]. For reason of simplicity, it is described in only a few sentences at this
point. The Keldysh formalism is a general framework of out-of-equilibrium many-
body systems (e.g. due to the presence of external fields) [80] and describes the time
dependence of a perturbed system towards an equilibrium state. For the present cal-
culation of the tunneling current, first the tunneling action S = Sy + S; (the Keldysh
action of the Hamiltonian corresponding to the Keldysh Green’s function method) is
formulated for the case without applied voltage. Then, the consideration of an ap-
plied finite voltage finally leads to a time dependence of the tunneling matrix elements
T¢ — TeeV! T — TVt in the tunneling part S; of the action [10]. By applying per-
turbation theory, the formalism can be expressed in terms of unperturbed expectation
values and the corresponding propagators Glif/p and Df, for electrons and phonons.
These propagators depend on the spectral weights Ay /,(w) and Ag/,(w) of the elec-
tronic and phononic system (see supplementary material of Ref. [10]).

4.2.2 Elastic Tunneling (ETS)

By applying the Keldysh Green’s function formalism to Eq. 4.2 the elastic part of the
total tunneling current is finally given by [10]

o 1 2
I°(U) = 4re / dw AT D oITE (4.6)
“o k5

[np(w) — np(w + eU)] Az (w) Ap(w + eU) .
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2
Here, Vg 7 is the normalization volume of the sample/tip, ‘Tgﬁ is the elastic tunneling

matrix element and ny(w) denotes the Fermi-Dirac distribution. Within the Landauer-
Biittinger transport theory, this is the common expression for the elastic current under
the assumption of perfect quasiparticles with a spectral weight Az (w) = d(w — egg)
[10]. For small voltages U <« Er and a constant DOS of the tip system, v’ (w) =

1/Vr 32, Ap(w) = 2, Eq. can be rewritten as [10]
I°(U) = 4mvde |te|2/ dw [np(w) — np(w + eU)]vs(w). 4.7)

Here, the DOS of the superconductor is vg(w) = 1/Vs Y, Ax(w). As a result, the differ-
ential conductance is given by [10]

dI¢ >
= —4m)e? |te|2/ dw nlp(w + eU)vg(w)
U N
= —0y / dwn'p(w + el)vg(w), (4.8)

with 7g(w) = v(w)/vY as the normalized DOS of the superconductor and

oo = 4mdrde? [te]? as the elastic conductance in the normal state. n/y(w + eU) is the
Fermi-Dirac broadening which results from the derivative of the Fermi function. For
sufficiently low temperatured?} n/s(e) ~ —é(€), and Eq. [4.8|is further simplified to [10]

a5,
dU

In this case, it is obvious that the differential conductance is proportional to the nor-
malized DOS 7g(w) of the superconductor. The corresponding elastic contribution to
the second derivative of the tunneling current in the case of an SIN-junction is then
given by [10]

= Amvde? |18 vg(—el) = agivg(—el) . 4.9)

d*Ie
dUu?
Note that for tunneling into metallic samples in the normal state (NIN-junctions), the
elastic differential conductance is energy-independent on low-energy scales. As a re-
sult, in that case the elastic part of the second derivative of the tunneling current van-

ishes.
A comparison of Eq.[4.8land Eq.[4.9|reveals that Eq.[4.8|can be written as a convolu-

tion of Eq.[4.9 with a thermal broadening function x(T'):
dre  dIs_,
du — dU

In the case of features in the first derivative of the elastic tunneling current, x is given

by [54, 81]

= ooiy(—el). (4.10)

« y(T). (4.11)

T T

X(E,T) =np(E) sech®(E /kgT). (4.12)

2T < Er in the normal conductor or 7' < A in the superconductor with an energy gap A.
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Figure 4.2: [llustration of the temperature ol
broadening function in the case of the first / \
derivative of the tunneling current (red) o4 / |
in comparison to a Gaussian distribution ook T 0 kT

(orange).

This results in a broadening that can be approximated by a Gaussian distribution with
a full width at half maximum (FWHM) of 3.2 k7" [81] (see Fig. . The thermal broad-
ening is a limiting factor of tunneling spectroscopyf| This is the reason for the usage
of low-temperature STM such as the JT-STM or DT-STM described in the last chapter.
As already mentioned in the previous chapter, a lock-in technique is used for the mea-
surement of derivatives of the tunneling current in order to enhance the signal-to-noise
ratio. However, the use of lock-in technique leads to an additional broadening of the
experimental data. Because, the original DC tunneling voltage signal is modulated by
an AC-voltage:

U ="Uy+ Ux - cos(w), (4.13)

where Ua denotes the amplitude. As a result, the tunneling current oscillates as well
and can be expanded to a Taylor series of the modulation voltage:

0*1
Un - cos(w) + W‘Uo |Ux - cos(w)]?> 4+ O(cos(wt)?). (4.14)

The prefactor of the second term corresponds to the differential conductance and oscil-
lates with the same frequency as the modulation voltage. Within the lock-in amplifier,
the reference signal of the internal oscillator is multiplied by the incoming signal and
passes a low-pass filter afterwards. Thus, all contributions at frequencies unequal to
the reference signal are averaged out and the desired signal can be obtained at a lower
noise level. In general, there is a phase shift between the original signal and the ref-
erence signal due to capacitive or inductive components. This phase shift has to be
adjusted in order to get the optimal and correct output signal. Similarly, the prefac-
tor of the third term in Eq. corresponds to the second derivative of the tunneling
current and oscillates with twice the frequency of the modulation voltage. The use
of a lock-in amplifier leads to an additional broadening term for features appearing
in the derivatives of the tunneling current. Therefore, the correct formulation of the
differential tunneling conductance including the experimental broadening is given by

dre  dIt_,
dU — dU

x X(T') % p(Un). (4.15)

*Note that in contrast to NIN and SIN tunnel junctions, for a SIS tunnel junction, the thermal broaden-
ing is almost negligible as long as the temperature is 7' < 0.5 T, [81].
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Figure 4.3: [llustration of the modulation
broadening function in case of the first 4
derivative of the tunneling current (blue). 0.0 s 5 U

In addition to Eq. a convolution with a second function, namely the broaden-
ing function ¢(Ua) which originates from the voltage modulation, is considered. For
features in the first derivative, the elastic tunneling current ¢ is given by [54, 81]

/TT2 2
p(Un) = %Re % (4.16)

The shape of this function is a semicircle with a width of 2eU, [81] and deviates sig-
nificantly from a Gaussian distribution (see Fig. |4.3)

4.2.3 Inelastic Tunneling (ITS)

In order to formulate the inelastic part of the total tunneling current, one has to start
again from Eq. now including the phonon fields and the corresponding propaga-
tors [10]. Then, the inelastic tunneling current is given by [10]
i 1 i
I' = —4rme / du}ldWQ% ];] Tk,p,q7NQQ7N

m

‘ 2

4.17)

g An) Al — 1+ e0) (s =1+ eUman) 1 = ()]
e (w) [+ npwn)] [1 = np(ws — w1 —I—eU)])

+ Agu(w1) Ax(w2) Ap(wa + w1 + eU) (nF(wQ + w1+ eU)[1 +np(w)][1 = np(ws)]—
np(w2)np(wi)[1 —np(ws + w1 + eU)})] .

Here, Vg1 is the normalization volume of the sample/tip, Tli(’p’ q 18 the momentum-
dependent inelastic tunneling matrix element, np p is the Fermi-Dirac/Bose-Einstein
distribution and « is the electron-phonon coupling parameter. Eq. considers all of
the possible inelastic tunneling processes for U < 0 and U > 0 via the emission (spon-

taneous and stimulated) or absorption of a boson in the sample. Ay p(w) describes the

*Sometimes, the total broadening is still approximated by Gaussian distribution with a combined
FWHM of both broadening functions, FWHM = /(3.2kT)2 + (2Ua )2, even though one has to ac-
cept a small error in this case.
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quasiparticle spectral function and Ag ,(w) corresponds to the phononic spectralfunc-
tion. The DOS of the superconductor/tip is then given by v/(w)s: = 1/Vi 32y , Akp(w)
[10]. An electron can either tunnel from the normally conducting tip to the supercon-
ducting sample via the absorption (first term in Eq. or spontaneous and stimu-
lated emission (third term in Eq. of a phonon. Of course, the electron can also
tunnel the other way from the sample to the normally conducting tip emitting (second
term in Eq. or absorbing (fourth term in Eq. a phonon in the sample, as il-
lustrated in Fig. Now, the same assumptions as in the case of inelastic tunneling

I E— HS — gy

superconductor tip superconductor tip
P Hr Hr
Hs ——.-—JJ S — g€ ffg V<0
»| q
superconductor tip superconductor tip

Figure 4.4: Illustration of the different tunneling options. Left panel: An electron tunnels from
the tip to a superconductor while absorbing (upper panel) or emitting (lower panel) a phonon.
Right panel: Electron tunnels from a superconductor to the tip while emitting (upper panel) or
absorbing (lower panel) a phonon. Taken from Ref. [10]

are made, and the emission/absorption of phonons in the tip are neglected (a tip with
a constant DOS around Ep is considered). Furthermore, in the case of very low tem-
peratures (kgT' < wp), processes in which a phonon is absorbed can be neglected since
the number of these low-energy phonons is insignificant [10]. As was mentioned at the
beginning of this chapter, the tunneling amplitudes can be considered to be indepen-
dent of momenta and phonon branches 7y , . = t' [10, [78]. Taking this assumption
into account, the weighted phonon DOS in a superconductor is now defined as [10]

1 2
042Ftun(w) = VS Z ’ozq,# Aq#(w)
q,u
1 2
=7 Z gl 0(w — wqu) (4.18)
q,p

where Ag ,(w) is the spectral weight of the phonons.

Inserting the definition of a®F},,(w) into Eq. and assuming a particle-hole sym-
metric electronic system, the first derivative of the inelastic tunneling current can be
written (for sufficiently low temperatures kg7 < wp) as

2
/dw ?FL (w+ e|U])is(w)np(w). (4.19)

d[i i

— =0y

daUu

te

Here, o’F”,

tun

w) results from the convolution of « —(w) with the thermal broaden-
Its f h luti f a?F1=0 ith the th 1 broad

tun
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Figure 4.5: Illustration of the temperature ol
broadening function for the case of the second / \
derivative of the tunneling current (magenta) o4 .
in comparison to a Gaussian distribution ookl T 0 kT s
(orange).

ing function x(7") = n’ [10]:

o FT (r) = — / 0y @ Fran () (y — 7). (4.20)

o0

with n/; as the derivative of the Fermi-Dirac distribution.

As already mentioned, features of inelastic tunneling processes are usually observed
in the second derivative of the tunneling current, which can be easily obtained from
Eq. and, in case of the U > 0, is given by

ti

te

d?I
au?

= €0y

/OO dw o> FL ' (eU + w)vs(w)np(w). (4.21)

—00

Besides the thermal broadening, which can be described by the broadening function
X (kgT") and which is displayed in Fig. the broadening due to the usage of lock-in
technique (see Fig. affects the measurement of the second derivative of the tunnel-
ing current. The total broadening function I' = x(kg1) * ®(Ua) affects the measurement
of d*I/dU? data and slightly deviates from the total broadening function which was
used for dI/dU data. In the next chapter, theoretical calculations of d/dU and d*I/dU?
spectra will be compared to the experimental ones. In this regard, it is important to
state an equation for d?I'/dU? that includes the total broadening function. It is given
by [10]

ti

te

d? Ii,exp
du?

= €0y

/ T AET(eU — B) (4.22)

[e.9]

/_OO dw o*FL (B 4 w)ig(w)np(w)

[e.9]

il2

= €0y

/dw P FEod (eU + w)vg(w)np(w).

te

Finally, Fy is the electron-phonon spectral function including thermal broadening

and broadening due to the modulation voltage:

PELY (1) = o Fun * X(T) * ¢(Una). (4.23)

tun
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Now, in the case of the second derivative of the tunneling current, the thermal broad-
ening function x(7') is different from the one given in Eq. It is [54]
Lex(x—2)ex+x+2
kT (e —1)3
This function is also approximately Gaussian-shaped with the FWHM of 5.4 kgT [54].

Besides, the modulation broadening function deviates from the one given in Eq.
In the case of the second derivative of the tunneling current, it is given by [54]

¢(E) = 3% (eU]:A)4

and it is zero in the case of | E| > eUx. The FWHM of this function is 1.22 U]

X(E) =

x = E/ksT. (4.24)

(U2 — E?)*%  for|E| < eUa (4.25)

NIN Now, let us move on to the case of tunneling with a normally conducting tip into
a normally conducting metal. In this respect, Eq. can be seen as a generalization
of the first derivative of the tunneling current in the normal state, with 7g(w) ~ 1 in
the normal state [10]. In the case of a normally conducting sample, Eq. can be
simplified to

LT e ex
TgE 0 | / dw o F' (eU + w)np(w)
t? )
= €00 |7 QP Fob(el), (4.26)

given in the low-temperature limit (7" < wp, EF, such that np(w) ~ (—w)). It is now
apparent that an experimental spectrum of the second derivative of the tunneling cur-

rent %, obtained in the normal state, is directly proportional to the experimentally
2 [exp

broadened bosonic (here phononic) spectral function a”Fy,, [10], which is per defini-
tion not equal to the Eliashberg function o F'(w) (see definition in Eq.[2.34). However,
there is a striking similarity between a?Fin(w) (Eq. 4.18) and o*F(w) (Eq. [2.34):

1

0P F(w) = s 3l 8o wrees)e)5(65) (427)
kK

0
Vg

SCompared to the case of a dI/dU spectrum, in the case of a d*I/dU? spectrum, the deviation from a
Gaussian-shaped total broadening function is smaller.
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Figure 4.7: o® F(w) and o Fiyn(w) are shown, calculated by P. Hlobil for a simple cubic crystal

by using Eq. and Eq. Picture taken from Ref. [34].

even though it is not obvious at the first glance. But it becomes obvious in Fig. 4.7
where both o?F(w) and a?Fy,n(w) are displayed next to each other. The calculation of
these two functions was performed by P. Hlobil [34] for a simple cubic crystal. Only
small differences are visible between the two functions in Fig. |4.7| which arise due to
a different momentum averaging in Eq. and Eq. [10]. Overall, both functions
are dominated by the phononic spectrum whereas the largest contribution comes from
the Van Hove singularities of the phonon dispersions.

In summary, the phononic spectral function defined above approximately equals the
real Eliashberg function [10]:

& Fp(w) = o?F(w). (4.28)

In addition to previous results on Pb/Cu(111) [67], where the conformance (propor-
tionality) between the dzgéxp spectrum and the Eliashberg function could be observed
empirically, now, this similarity has been understood theoretically. Of course, elec-
trons can, in principle, also couple to other collective excitations of the system (see
[64, 66], 82, 183]). Similarly to the case of electron-phonon coupling, the inelastic contri-
bution of the second derivative of the tunneling current would then be proportional to
the corresponding coupling parameter and spectral function.

At the end of this chapter, the various contributions to the tunneling current and its
derivatives are summarized (see Tab. 4.1] for the zero temperature limit). Finally, one
has to keep in mind that the tunneling current and its derivatives are always composed
of an elastic and an inelastic contribution and that this total quantity is measured by
tunneling spectroscopy. The importance of the distinction between elastic and inelas-
tic contributions, which has been elaborated within the previous two sections, will
become apparent in the following chapters. As we will see, the disentanglement of
elastic and inelastic contributions in a combined theoretical and experimental effort
will simplify the interpretation of tunneling spectroscopy data. This will be done both
for tunneling into a normally conducting and into a superconducting sample. Espe-
cially the latter will become important in the case of tunneling into unconventional
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2 i 2 X ~
% oovg(—el) | eoy f—e fdwonFtif'(eU+w)1/5(w)np(w)
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oY)
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—7
T con | £ 2 FS2 (1)

Table 4.1: Overview of the various elastic and inelastic contributions to the first and second
derivative of the tunneling current. For reason of clarity, the contributions to the tunneling
current are not displayed in this table, but can be found in the text.

superconductors.
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5 Coupling to Real and Virtual
Phonons in Tunneling Spectroscopy
of Superconductors

After the previous chapter, which showed how elastic and inelastic features can be
separated from a theoretical point of view, the present chapter focuses on experiments.
For two reasons, thin Pb films on a n-doped Si(111) substrate turned out be an ideal
system for the investigation of the influence of inelastic processes on the tunneling
spectrum of a superconductor. Firstly, Pb films with a thickness smaller than the Fermi
wavelength remain superconducting when they are grown on a Si(111) substrate. This
is in contrast to thin Pb films grown a Cu(111) substrate where superconductivity is
suppressed due to the proximity effect [67]. Secondly, thin Pb films exhibit type II su-
perconductivity [84,|85] with an upper critical field B, < 1T. This allows to study real
and virtual phonons in the superconducting state and in the normal state at the very
same position of the sample with the very same tip and at the very same tempera-
ture (and the same energy resolution), simply by switching on and off a magnetic tield
of around 1T. In combination with the theoretical assumptions of the previous chap-
ter, this chapter will provide instructive information on elastic/inelastic tunneling and
virtual/real coupling to phonons. The content of this chapter is based on Ref. [10].

5.1 Experimental Details of the System Pb/Si(111)

Silicon pieces of 0.5 x 0.5 cm were cut from a Si(111) wafer and fixed on a molybdenum
sample plate by spot welding two tantalum stripes. After being transferred to the UHV
preparation chamber, the samples were carefully degassed at 700 °C for several hours
and then flashed to 1150 °C for 30 s in order to remove the native oxide [10]. For the de-
position of Pb, the MBE technique was applied (see Sec.[3.2.2) at an operating pressure
of 4.4- 10~ mbar after cooling down the Si(111) substrate to room temperature. Pb
(wire of high purity: 99.9985 %, Alfa Aesar) was evaporated from a Knudsen cell with
a deposition rate of 1.9 monolayers/min and a nominal thickness of 19 monolayers
(ML). The parameters for operating the Knudsen cell were set to I = 2.5 A for the fil-
ament current and U = 284V for the high voltage U between cruciblel| and filament,
leading to an emission current of I, = 7.5 mA and a flux of 586 nA. The samples were
immediately transferred to the JT-STM (see section after the deposition process

ISince the appropriate vapour pressure for the evaporation of Pb is reached at a temperature that
is higher than the melting point of Pb, which is only 327°C [86], the lead wire is arranged in a
molybdenum crucible.
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Figure 5.1: 3D illustration of an STM to- " 0.0 nm
pography taken at U =1V, 1=100pA. 2,
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has been completed [10]. The measurements were done at a temperature of T = 0.8 K.
A chemically etched tungsten tip was used because it does not show significant inelas-
tic signals within an energy range of |[U| < 15mV. In Fig. a topography is shown,
giving an overview of the surface. The growth mode of the present system is a so-
called Stranski-Krastanov growth in agreement with previous studies [87-89]. Hence,
3D, flattop, wedgelike islands of diameters of more than 400 nm appear on the top of
a conducting wetting layer (WL). Since the minimal size of the Pb islands is 0.16 um?,
features coming from a Coulomb blockade effect can be excluded in the following. This
is reasonable since the corresponding charging energy E. = ¢?/2C ~10~? meV of an is-
land is much smaller than the corresponding thermal energyf} Besides, the energies at
which the relevant features appear in the differential conductance (see e.g. Fig. are
significantly higher than the charging energy. In Fig. a more detailed topography
is depicted, showing islands of a height of + ~ 30 ML. Similar to previous investiga-
tions [88, 90, 91]], these are single crystal islands with their (111) axis perpendicular to
the substrate [10]. The spectroscopic measurements were done on the island that is
marked by an arrow.

5.2 Tunneling to the Normal State

Prior to the presentation of the measurements on the superconducting Pb islands, the
results for tunneling into their normal state are discussed in order to tie in with previ-
ous experiments [67] in which thin Pb films (~ 10 ML) were grown on a Cu(111) sub-
strate and remained in the normal state due to the proximity effect. For the present case

In order to estimate the charging energy, the tunneling junction was modeled as a plate capacitor
C = ep% ~ 5 -107'° Fwith d ~ 3 A as the tip-sample distance.
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of thicker Pb islands (=~ 30 ML) on a Si(111) substrate, the normal state was achieved
by applying a magnetic field of 1T (perpendicular to the surface) [10]. The electrons
in these films have discrete quantized momenta £ that are perpendicular to the sur-
face normal, which results in the observed growth of islands. However, firs-principles
calculations [48] 92] show that the phonon DOS of the finite thickness films with di-
mensions that are comparable to those of the present experiment do not differ much
from that of bulk Pb [10]. Tab.[4.1]reveals that the simplest way to access the DOS of
phonons that couple to the electrons, i.e., @*Fy(w), is by measuring d*1/dU? spectra
in the normal state of the sample. In this case, the elastic part vanishes and does not
affect the d*1/dU? spectra. As a result, the quasiparticle DOS is not significantly renor-
malized and stays rather constant.

Second derivative of the tunneling current In Fig.5.3] the ¢>//dU? spectrum that
was measured in the normal state of the sample is shown. According to Tab.[4.T} it
is directly proportional to the experimental Eliashberg function o?Fy,, (w). The spec-

-7 77—
Jw=4.05meV
w|=8.3inev

Zo (we+w)= 12.5 meV |
3 ' |
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~
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Figure 5.3: Measurement of the second derivative d*I/dU? ~ a?Fin(w) of the sample in the
normal state (T = 0.8K, B = 1T), taken from Ref. [10]. The marked area under the curve serves
to estimate the inelastic tunneling amplitude (see text below).

trum was measured with a Femto lock-in amplifier and the modulation voltage was
set to Un = 621 V. Taking the thermal broadening at T = 0.8 K into account, this leads
(besides the intrinsic linewidth of the excitation) to an energy resolution of 832 peV.
Hence, the total broadening of the features in the d*I/dU? spectrum of Fig.|5.3|can be
explained by a convolution with a Gaussian distribution with a standard deviation of
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o = FWHM/+/8In2 = 353 pieV. This broadening will be used in the following when com-
paring experimental data to theoretical calculations, as all the spectra shown within
this chapter were taken with the same tunneling parameters (e.g., modulation volt-
age, current setpoint, temperature). In Fig. the curve from Fig. [5.3|is compared to
the results of a previous investigation of Pb/Cu(111) [67] (see also Fig.. Strong
similarities can be recognized. Two peaks are clearly visible at energies w;; corre-
sponding to Van Hove singularities of longitudinal and transversal phonons. On the
whole, the measurements done on Pb/Cu(111) [67] and on Pb/Si(111) [10] are basi-
cally similar and are directly proportional to a weighted phononic spectrum which is
approximately the Eliashberg function. For the present results of Pb/Si(111), which are
shown in Fig. the peaks are located at U = 4.05mV ~ w; and U =~ 8.3 mV ~ w; and
consequently coincide with the energies of the transversal and longitudinal Van Hove
singularities in the phonon DOS of lead quite well [10} 47, 48]. The values of FWHM
of the transversal and longitudinal modes are 7, = 1.076 meV and v, = 0.60meV and
were determined by fitting two Lorentzian functions to the measured data. They are in
good agreement with values known from literature [50)} By taking again a closer look
at Fig.|5.3} a third peak at U ~ 12.5mV can be seen which can be explained by tunneling
processes via two-phonon emission. Probably, the second peak already includes such
two-phonon processes [10]. Such possible multi-phonon processes are now included
for the theoretical calculation of the inelastic contributions to the tunneling curremﬂ
If multi-phonon processes are included, Eq.[4.26 can be generalized in the case of zero
temperature and modulation voltage to [10]

2

sign(U)a*" F}"

tun

tiv(n)
te

d2Ii’(n)
du?

P (e |U] - w) (5.2)

with

Q" (w) = / dwy . .. dw,_1 0 Fyn(w — w1) o Fuyn (w1 — ws) « .. 02 Frun (Wn—g — Wn_1)
0
(5.3)

as the convolution of the n-th order of o?F},,. In P. Hlobil’s PhD thesis [34], it was
shown that a theoretically calculated spectrum according to Eq.5.2]is able to approxi-
mately reproduce the experimental ones shown in Fig.

By taking a closer look at Fig. another feature can be seen very close to the Fermi
energy. This feature can be related to a zero bias anomaly and can be ignored in the
following interpretations.

So far, the tunneling electrons have been shown to excite real bulk phonons when
they are tunneling into a normally conducting Pb film, which is visible as inelastic ex-
citations in a d*I /dU? spectrum. Therefore, we could reproduce recent results that were

3By fitting Gaussian functions, the obtained values are only slightly higher.
*In this case, Eq.was generalized to

dQIi _ SlgD(U) . @ athun(e |V|) OL4F1‘,2un(e |V|) + OéGFgL"(E |V|) e (51)
du? e (ngfov)l (ngfyf?)2 (ngfor)l
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obtained by Schackert et al. on the Pb/Cu(111) system [67]. The new insight concern-
ing the present Pb/Si(111) system is the knowledge about the exact formulation of the
second derivative of the tunneling current (see Eq.[5.2 and Eq.[.26). Now, we use this
information to go a step further. By means of a complete calculation of the different
contributions to the tunneling current, we want to disentangle elastic and inelastic con-
tributions in the experiment, not only in the normal state, but in the superconducting
state as well. In Eq. and Eq. the equation for d?7™!/dU? contains a propor-
tionality constant |¢'/t¢|?. It describes the ratio of the elastic and inelastic tunneling
amplitudes. The question is how to determine this ratio in order to be able to perform
a complete calculation of Eq.[5.2land Eq. In the following, we will start with an
estimation of the amplitude of the inelastic tunneling contributions ¢ and show that it
can be expressed in terms of the elastic one ¢°.

Inelastic tunneling amplitude Before explaining how to determine the inelastic tun-
neling amplitude, it is useful to clarify the following: The tunneling Hamiltonian,
which was introduced at the beginning of the last chapter in Eq.[4.3] and Eq.4.4} is
a low-energy Hamiltonian and results from a corresponding purely elastic high-energy
Hamiltonian by integrating out the high-energy degrees of freedom (for details see
Ref. [11} 34]). The crucial factor when using this high-energy Hamiltonian is that in-
elastic tunneling processes occur naturally when an electron tunnels from an initial
state |i) in the tip to a high-energy off-shell state far away from the Fermi surface. An
off-shell state is a virtual state, so it is not a stationary state of the system [93] and does
not correspond to a well-defined energy value [93]. After occupying such a virtual
state for a short moment, the electron relaxes to a final state | f) while there is the pos-
sibility of exciting real particles, such as real phonons. The energy is not conserved for
the tunneling process to the virtual state, but as far as the total transition |7) — |f) is
concerned, the energy is conserved. Such a tunneling process is sketched in Fig.
Here, an electron in a state k” in the tip (white point) can either tunnel elastically di-
rectly to a state near the Fermi energy (arrow pointing directly to black point) or to an
off-shell state p (red point) with a probability ¢} , and it is then inelastically scattered to
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Figure 5.5: The tunneling processes appearing
when tunneling from a normally conducting
tip to a superconducting sample. The electron
from the tip (white circle) can either tunnel elas-
tically to a state near the Fermi surface (direct
arrow to black spot) or via an high-energy off-
shell state (red circle) to a state near the Fermi
surface while creating a phonon. Taken from
Ref. [11].

a state k close to the Fermi energy (other black point) via the emission/absorption of a
boson (green wiggly arrow) [11]. The probability amplitude of a particle propagating
from a position x to a position y can be explained by propagators. In Ref. [11] 34] it is
explained that the propagator that corresponds to the tunneling to this off-shell state
can be estimated by an inverse energy scale 1/D. Consequently, one can assume that
also the ratio ‘ti‘ / [t¢| = 1/D can be approximated by this inverse energy scale [10, 11]].
The determination of ¢* can be done experimentally if the measured first derivative
of the tunneling current in the normal state is taken into consideration. According to
Tab.[4.1), it consists of a constant elastic contribution in addition to an inelastic contri-
bution dI'*t/dU = dI°®/dU + dI™/dU. The experimental data is displayed in Fig.
At zero energy and at zero temperature, the differential conductance is purely given
by its elastic part since at this energy there are no inelastic excitations. In metals, the
elastic differential conductance is usually a constant. The spectrum shown in Fig.
is normalized to its conductance at zero energy oy = (0 meV) = dI°/dU(0meV). This
normalization shows that the differential conductance increases about 12 % within an
energy range of 0-10meV. This increase is due to inelastic contributions from the lon-
gitudinal and transversal bulk phonons in the system. Hence, the differential con-
ductance at 10meV is composed of an elastic and an inelastic part d//dU(10meV) =
o(10meV) = g + dI™/dU(10meV) = oy + 0.120¢. The difference of two different
values of a function is equal to the area under a curve displaying the corresponding
derivative of this function. Applying this to the spectrum shown in Fig. the differ-
ence of the differential conductance ¢(10 meV) — 0(0meV) is equal to the area under
the curve of the second derivative of the tunneling current which is depicted in Fig.
(within the energy range of 0 meV-10meV) and can be calculated by [10]
i|2 10 meV
o(10meV) — g(0meV) = —— / dwa?® Fyyn(w) = 0.120y. (5.4)
0

VR |7fe|2

Now, we can extract the following information from the experimental data: The in-
elastic contributions are 0.12 times the elastic ones, d2I'"! /dU? = 0.12 - d*I¢!/dU?. In
order to determine a real value of the prefactor ‘ti‘ / |t¢|, the experimentally established
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Figure 5.6: Differential conductance measured in the normal state. The spectrum was recorded
at the same time as the second derivative of the tunneling current shown in Fig. [5.3|and con-
sequently with the same tunneling parameters. Simultaneous recording is possible by using
two phase-locked lock-in amplifiers (one at the modulation frequency and one at twice the
frequency).

Eq. 5.4/is now combined with a theoretical consideration. Therefore, we assume that
o?Fyn ~ o*F and we use the Eliashberg function from Ref. [53] as well as the exper-
imental DOS of Pb [94]. If these two functions are inserted in Eq. te] / ‘ti‘ can be

calculated [10]:
10 meV
<l *F(w)
= 1 . .
|t1 0 12VF 313 meV (5.5)

It has an actual value of 313 meV [10] and is a measure of the energy scale of the off-
shell states.

The corresponding energy bandwidth can be estimated without taking into account
any experimental input [34]. It is necessary to take into consideration that D is bound
by an upper and a lower limit [34]. The lower limit is given by the low-energy cutoff
of the Eliashberg theory, w. ~ 10wp. In the case of P<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>