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1 Introduction
In the course of the ongoing climate change and the resulting need for an energy rev-
olution, superconductivity is one of the key technologies. Especially high-temperature
superconductors have great potential for application in efficient technologies. They are
of strong interest because of their ability of a loss-free transmission of electrical en-
ergy at temperatures above the boiling temperature of liquid nitrogen. To date, several
technical applications of superconductors have already been realized. Some examples
of these are high-power magnets for medical purposes and scientific research, mag-
netic levitation trains (e.g. Maglev in Shanghai) and high-temperature superconductor
(HTS) cables with a high power transmission capacity. "Ampacity," which means that
an HTS cable operates in conjunction with an electric power transformer substation,
is one example of an HTS cable installed in Germany. Of course, the economic effi-
ciency of high-temperature superconductors would be higher if these materials were
less fragile and did not require such a high cooling power. The discovery of a solid
room-temperature superconductor would help to drastically reduce the losses in elec-
tric power transmission. Its discovery is still a dream. This goal encourages funda-
mental research and is the motivation of this thesis.

Superconductivity is not only interesting with respect to applications, but it is one
of the most fascinating phenomena in condensed matter physics. The discovery of
superconductivity in mercury by H. Kamerlingh Onnes in 1908 [1] had challenged the-
oretical physicists for decades until the microscopic Bardeen Cooper Schrieffer (BCS)
theory explained this phenomenon by the formation of Cooper pairs due to electron-
phonon coupling [2]. In this model, the exchange of a virtual phonon leads to an
effective attractive interaction between two electrons with opposite momentum and
spin. The repeated scattering between such electron pairs finally leads to an instability
of the electronic band structure with a superconducting energy gap ∆ opening at the
Fermi surface. This superconducting gap is the new order parameter of the supercon-
ducting phase. Almost all superconductors that had been discovered up to that time
could be explained by electron-phonon coupling, and for a while, superconductivity
was thought to be understood. That is the reason why nowadays, these supercon-
ductors are called conventional. Nevertheless, for some conventional superconductors,
the BCS theory turned out to be insufficient. We call them strong-coupling supercon-
ductors. Even though the mechanism of superconductivity is still based on electron-
phonon coupling, in these materials, retardation effects become important due to a
stronger electron-phonon coupling. In this context, the Eliashberg theory, which can
be regarded as an extension of the BCS theory, was developed by G.M. Eliashberg in
1960 [3]. It includes retardation effects and could explain experimental deviations from
a BCS-type behavior [4] with the help of renormalization effects of the electronic band
structure.
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1 Introduction

The first material that could not be understood as a conventional phonon-mediated
superconductor was superfluid 3He [5, 6]. Superfluid 3He is characterized by spin-
triplet p-wave pairing symmetry. Therefore, electrons with parallel spin alignment
form Cooper pairs, and the superconducting order parameter changes its sign and size
for different directions in reciprocal space. This is in contrast to the pairing symmetries
of all conventional superconductors which are of spin-singlet s-wave type. In this case,
the gap size and the phase are constant for all directions.

A new era of superconductivity started with the discovery of cuprates in 1986 [7].
Compounds of this new material class showed critical temperatures of up to 140 K.
So they are above the boiling point of liquid nitrogen. Among several other classes,
the recently discovered iron-based superconductors [8] attracted much attention. The
interesting aspect of these compounds is the inclusion of Fe, which is a magnetic el-
ement. In conventional superconductors, a concentration of magnetic impurities of
less than 1 % destroys superconductivity, while it is robust against non-magnetic im-
purities. Therefore, iron-based superconductors are prime examples of unconventional
superconductors. The pairing mechanism and the exact pairing symmetry of these
unconventional superconductors have not yet been fully understood.

In this thesis, experiments on three different systems belonging to the class of iron-
based superconductors will be presented.

The thesis will start with a chapter on superconductivity in general. The focus will
be on electron-phonon coupling and on the appearance of related elastic and inelastic
features in tunneling experiments.

The second chapter will illustrate the experimental setups used for the measure-
ments done within the framework of this thesis. All measurements were carried out
by scanning tunneling microscopy (STM), a technique that was invented by G. Binnig
and H. Rohrer in 1982 [9]. An STM is an ideal tool for the investigation of supercon-
ductivity, since it can directly measure the superconducting energy gap. Additionally,
in can spatially resolve the density of states (DOS) as well as inelastic excitations. By
applying Fourier transformation on the acquired data, information in the reciprocal
space can be extracted as well (FT-STM).

The third chapter will explain the theoretical basics of STM. Furthermore, it con-
tains the exact formulas for elastic and inelastic contributions to the first and second
derivative of the tunneling current in the superconducting and in the normal state.
Related calculations were performed by our collaborators J. Schmalian and P. Hlobil.
This chapter refers to results of the first system studied in the framework of this thesis,
namely Pb films on a Si(111) substrate [10].

The details of the experiment on Pb/Si(111) will be explained in chapter four. This
chapter is based on Ref. [10]. Lead, a conventional strong-coupling superconductor,
was used in order to find out how elastic and inelastic features appear in tunneling
spectroscopy data and how they are connected to the superconducting pairing glue.
Investigations of the next compounds described in this thesis, which belong to the
iron-based superconductors, are based on the experimental findings of this chapter.

General properties of the iron-based superconductors are introduced in chapter five.
The focus will be on band structure, phase diagram, pairing symmetry and a possi-
ble pairing mechanism, the spin-fluctuation mechanism. In the framework of spin-
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fluctuation-mediated superconductivity, again P. Hlobil and J. Schmalian performed
the calculation concerning the occurrence of related features in tunneling spectroscopy
[11].

Experiments on the compound SrFe2(As1−xPx)2 will be presented in the sixth chap-
ter. In this rarely studied compound, a nodal superconducting energy gap could be
measured. Furthermore, the coherence length was found to be of only a few nanome-
ters. The intrinsic doping inhomogeneities are, however, a drawback of this system.
The superconducting properties are locally affected by these doping inhomogeneities
in combination with a short coherence length, which makes detailed investigations
difficult.

This was the reason why we moved on to the stoichiometric superconductor FeSe,
the simplest compound among the iron-based superconductors. It is a building block
of every iron-based superconductor. Results of highly resolved tunneling spectra of
this compound in the superconducting state will be presented in chapter seven. It
will be shown that this system exhibits nodeless superconductivity. Furthermore, the
complicated multiband nature of this system will be illustrated. Features occurring in
the measured tunneling spectra are discussed in the framework of the spin-fluctuation
mechanism.

In the last chapter, experiments on a monolayer FeSe on a SrTiO3 substrate will be
presented. In this case, the critical temperature of FeSe is increased from 8 K (in the
case of bulk FeSe) up to 100 K [12, 13]. Chapter eight will focus on the fabrication of
these FeSe monolayers and on results of a quasiparticle interference (QPI) measure-
ment. We succeeded in extracting the electron-band dispersion. Furthermore, these
results show evidence of a spin wave dispersion. In combination with a spin-polarized
electron energy loss (SPEELS) experiment, this would pave the way for understanding
the underlying pairing mechanism of this system.
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2 Superconductivity

Superconductivity is one of the most interesting phenomena in condensed matter physics.
As a result, superconductivity was studied intensively from various points of views.
More than 100 years after the discovery of superconductivity, many (important) ques-
tions are still open, even though conventional superconductivity could be explained
by the Bardeen Cooper Schrieffer (BCS) theory. In this chapter, the main features of
phonon-mediated electron-electron coupling, BCS theory and its extensions will be ex-
plained. Furthermore, relevant tunneling experiments will be elucidated in order to
grasp the starting point of this thesis.

2.1 Conventional Superconductivity

The liquefaction of 4He in 1908 in the laboratory of H. Kamerlingh Onnes in Leiden [14]
marked the beginning of the field of low-temperature physics [6]. Shortly after that,
Kamerlingh Onnes discovered the sudden resistance drop in mercury to an unmeasur-
able small value [1], and hence, he discovered superconductivity. In 1933, the second
characteristic of superconductivity was discovered by Meissner and Ochsenfeld [15].
They showed that a superconductor expels the magnetic flux from its interior, which is
an important feature for applied research considering magnetic levitation. Two years
later, this effect could be explained by using the Maxwell equations within the frame-
work of the macroscopic London theory [16, 17]. After these two milestones, it took
a bit longer until a way to formulate a microscopic theory of superconductivity was
found. In the pursuit of this objective, one has to mention two important develop-
ments in 1950. One of them is the phenomenological Ginzburg-Landau theory: The su-
perconducting state was treated as a macroscopic quantum state with a complex order
parameter Ψ [18] based on Landau’s general theory of phase transitions. Within this
theory, the formation of Cooper pairs in a superconductor is described, which exhibit a
phase coherence over macroscopic distances, characterized by the coherence length ξ0.
For a clean, conventional and elementary superconductor, ξ0 is in the range of 100 nm
to 1000 nm. The other important occurence in 1950 was the discovery of the isotope ef-
fect in superconductors by Meissner [19], Reynold, Serin and Wright [20]. It turned out
later that the discovery of this effect provided an important input since it was used as
one of the fundamental ideas for the formulation of the BCS theory six years later [2].
The isotope effect describes the dependence of the critical temperature Tc on the mass
of the isotope1. Hence, at this point, it became evident that the mechanism produc-
ing superconductivity is likely to be based on phonons. The BCS theory, formulated

1Tc ∼M−α, where α ≈ 1/2 for many materials
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2 Superconductivity

by Bardeen, Cooper and Schrieffer in 1957, thus assumes an attractive interaction be-
tween electrons that is due to phonons. The key idea of this theory is the formation of
electron pairs, so-called Cooper pairs.

2.1.1 From the Normal State to the Fröhlich Model

Quasiparticles: To be precise, the idea of an effective attraction between two elec-
trons near the Fermi surface was first formulated by Fröhlich in 1950 [6, 21]. Super-
conductivity can be understood to occur as a result of an instability of the electron
gas which is usually accompanied by a divergence of a susceptibility χ0(q, ω) that is a
function of momentum q and frequency ω. For reason of completeness, it should be
mentioned that the retarded susceptibility χR0 (q, ω) can be expressed within the ana-
lytic continuation χR0 (q, ω) = χ0(q, iqn → ω+ iη). In general, χ(q, ω) can be understood
as a charge-charge correlation function, that is, a polarization function. In an electron
gas, the polarizable particles are electrons and ions. The time-dependent polarization
function of such bare particles is given by [22]

χ0(q, τ) = − 1

V
〈Tτ (ρ(q, τ), ρ(−q))〉0. (2.1)

Here, V is the normalization volume, τ is the imaginary time variable, Tτ is the time
ordering operator and ρ is the density operator. If for example an electron is added
to the system, its additional charge is compensated by either the redistribution of the
electrons or by a displacement of the surrounding nuclei, which produces a polariza-
tion cloud. During a redistribution of the electrons, they move for a short time from a
position 1 to a position 2, leaving a hole at position 1 [22]. Due to the Coulomb inter-
action, the electrons interact with each other. It turns out that Eq. 2.1 can be written as
a two-particle function assuming two-particle scattering events where two electrons in
an initial state |k, σ; k′, σ′〉 are scattered to a final state |k + q, σ; k′ − q, σ′〉 [22]:

χ0(q, τ) = − 1

V

∑
k,k’,σ,σ′

〈Tτ (c†k,σ(τ)ck+q,σ(τ)c†k’,σ′(τ)ck’-q,σ′(τ))〉0. (2.2)

The involved distortions of the ions around an electron can be regarded as a polar-
ization of the electron due to virtual phonons. A quasiparticle is now considered to
consist of a bare electron plus its lattice distortion in its surroundings. With respect
to superconductivity, it is useful not to consider the bare electrons themselves, which
would repulse each other due to the Coulomb interaction, but quasiparticles instead.
The quasiparticle picture is especially useful when dealing with correlated electrons
where exchange interactions play a crucial role [6]. The idea of a quasiparticle was first
introduced by Landau as an idea of a polarization cloud due to ions surrounding an
electron [23, 24]. This interaction then renormalizes, among other things, the proper-
ties of the electron [24]. The whole quasiparticle still moves like an electron, but now
has a higher mass m → meff since the motion of bare electrons also drags the lattice
in their close environment. The change to the effective mass leads to a change in the
dispersion relation as well. Due to the occurring polarization, the effective potential of
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2.1 Conventional Superconductivity

the system is a sum of the external potential Φext, induced by the additional electron,
plus an induced internal potential Φind [22]:

Φtot(q, iqn) = Φext(q, iqn) + Φind(q, iqn). (2.3)

If nothing but static screening is taken into account, Φind(q) can be expressed in terms
of Φtot [22]:

Φind(q) = −W (q)ρind(q)/e, (2.4)

where 4πe2/q2 is the Fourier transformation of the unscreened Coulomb potentialW (q)
with e as the elementary charge and q = k−k′. ρind is the charge density induced by the
external potential. In the present case of static screening, ρind = Φtot · ν(εF )

e
with ν(εF ) as

the density of states at the Fermi energy εF . A combination of Eq. 2.3 and Eq. 2.4 yields
the screened Coulomb potential, and hence, the renormalized effective potential is [22]

WRPA = Φtot =
Φext(q)

1−W (q)χR0 (q, 0)
. (2.5)

The equation is valid in the sense of the random phase approximation (RPA), which is
valid for high electron densities. As a result, the long-range Coulomb potential turns
into a short-range Yukawa potential [22].

In order to describe the dynamics of this system, the prevailing interactions between
quasiparticles, i.e., Coulomb interactions, have to be taken into account2. In general,
the dynamical dielectricity function ε(q, ω) is defined as [22]

ε(q, ω) = 1− 4πe2

q2
χ(q, ω) (2.6)

and can be interpreted as the renormalization function of the potential [22]

WRPA(q, ω) =
Vext(q, ω)

ε(q, ω)
. (2.7)

The retarded dielectric susceptibility χR(q, ω), which is also called Lindhard function, is
given by [22]

χR(q, ω) =
1

Ω

∑
k,σ

nF (ξk)− nF (ξk+q)

ξk − ξk+q + ω + iη
, (2.8)

where nF is the Fermi-Dirac distribution function, ξk = εk − µ (dispersion relation
minus chemical potential), σ is the spin index and η an infinitesimal value within the
analytic continuation. The inclusion of Coulomb interactions can lead to a decay of
a quasiparticle into a many-body state and as a result to the creation of an additional
electron-hole pair in the system. The lifetime of this state can be calculated by using
Fermi’s golden rule for time-dependent perturbation theory and corresponds to the
imaginary part of the susceptibility Im (χR(q, ω)) which contains information about

2The response of the electron gas to an external perturbation potential Vext can be calculated by pertur-
bation theory in this case.
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2 Superconductivity

dissipation in the system. Within many-body condensed matter physics, Green’s func-
tions are an ideal tool to describe the behaviour of fermions or bosons and the interac-
tion between them. A Green’s function can be considered as a propagator, describing
how a particle can propagate from a position x1 at time t1 to a position x2 at time t2.
Furthermore, Feynman diagrams illustrate the propagation and interactions between
particles in a nice way.

 =
χ RPA 

   → Σσ
RPA=

1 -

 χ0  =  

WRPA =
=

= +
G G0 G0 GΣRPA

Figure 2.1: The figure illustrates that due
to the occurrence of χ0, some physical
quantities like the Coulomb potential and
χ0 itself are renormalized. The renormal-
ization of fermionic propagation can be
expressed within the self-energy ΣRPA.

As just explained, the occurrence of an induced charge density renormalizes the total
potential of the system. The propagation of the bare particles is renormalized as well.
The renormalization can be expressed within the so-called self-energy Σ (see Fig. 2.1).
The change of the propagation of a free electron G0 to the dressed one G can be ex-
pressed in terms of the self-energy and is illustrated in Fig. 2.1. The analytic structure
of the retarded Green’s function GR(ω) can be interpreted as representing these quasi-
particles [25]. Hence, these new particles are assumed to be weakly interacting and to
determine the low-energy excitation spectrum of the many-body system. The real part
of the pole gives the energy of the quasiparticle, whereas the inverse of the imaginary
part corresponds to its lifetime3.

For the occurrence of superconductivity, it is also important to consider real phonons
as another type of quasiparticles. They are called collective modes. Phonons now corre-
spond to the dynamical part of the ions. If an electron moves through a crystal, it can
scatter off ionic displacements while emitting or absorbing a phonon [22] (see Fig. 2.2).

Additionally, it is necessary to consider how the phonon propagator is renormalized
by the electron density. Therefore, the coupling of the electronic quasiparticles to the
phonons will be discussed now.

Electron-phonon interactions The interaction potential between electrons and phonons
consists of a static and a dynamic part: Vel−ion = Vel−lat + Vel−ph. Vel−lat has already
been considered in the sense of the quasiparticle picture (Born-Oppenheimer approx-
imation). So the focus is on the dynamic part. In general, the ionic response in an

3The lifetime is further renormalized by the quasiparticle weight Z.
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2.1 Conventional Superconductivity

Figure 2.2: The upper panel illustrates the scat-
tering of an electron off an ion displacement.
Adapted from Ref. [22]. The lower panel shows
two Feynman diagrams. The left one describes
the scattering of an electron in an initial state
k to a final state k+q while a phonon is emit-
ted. The right one describes an electron that is
scattered while a phonon is absorbed. Adapted
from Ref. [22].

|k,σ

- +

|k',σ

|k+q+G,σ  el

|q,λ  ph

|k,σ  el

gq,G,λ

gq,G,λ

|-q,λ  ph

|k+q+G,σ  el

|k,σ  el

electron gas takes place on a much slower time-scale (∼ 1/ωD) compared to the elec-
trons (∼ 1/EF ) due to their quite different masses (meff/Mion ∼ 10−4) . As a result, it
can be said that the electrons first couple to the phonons, then vice versa. Due to this
coupling, however, the effective potential Vph−ph between ions interacting with each
other is further screened by the electrons. Hence, also the phonon propagator D0 → D
is renormalized via a bosonic self-energy. This leads to a total effective potential which
is compared to WRPA, given in the last paragraph, now further renormalized due to a
combination of the Coulomb and the electron-phonon interaction (Veff = Vph +WRPA).
It can be written as [22]

−V RPA
eff (q, iqn) = −WRPA(q)− 1

V

∣∣∣gRPAq

∣∣∣2DRPA(q, iqn)

= −WRPA(q)
(iqn)2

(iqn)2 − ωq
. (2.9)

In this case, gRPAq is the q = k− k′ dependent renormalized electron-phonon coupling
constant in the random phase approximation, and DRPA(q, iqn) is the renormalized
phonon propagator in Matsubara frequencies [22]. V is the normalization volume and
ωq is the renormalized phonon frequency [22]. The analytic continuation iqn → ω + iη
to the complex ω plane using the so-called bosonic Matsubara frequency iqn is typically
used for real-time analysis.

On the real frequency plane, the potential can be written as

Veff(q, ω) = |gqλ|2
2ωq,λ

ω2 − ω2
qλ
. (2.10)

The crucial point of Eq. 2.9, 2.10 is that the potential is attractive for frequencies in
a range of ω < ωq, which leads to an effective attractive electron-electron interaction
within this region (see Fig. 2.3b). Such an interaction can be depicted by Feynman
diagrams and is shown in the lower part of Fig. 2.3a. Here, two vertices are combined
and illustrate the following: In a scattering process, an electron with momentum k
emits a phonon that propagates for a while and is then absorbed by another electron

11



2 Superconductivity

with momentum k’. Hence, a net momentum of q is exchanged between these two
electrons via a virtual phonon that leads to an effective interaction between them [6].
The interaction is retarded, since the lattice distortions, caused by moving an electron,
relax much slower than the electron and therefore can attract a second electron after
the first electron has already moved on (see Fig. 2.3c).

|k+q+G,σ  el

|q,λ  ph

|k,σ  el

gq,G,λ

gq,G,λ

|-q,λ  ph

|k+q+G,σ  el

|k,σ  el

gqλ

q

k-q

k k'

k'+q

g-qλ

Re (Veff
RPA (q, ω))

WRPA (q)

ωq ω

-

-

-

-

+ +

++

e-

-

-

-

-

+ +

++

e-

e-

e-

time

a) b)

c)

Figure 2.3: a) Illustration of the effective electron-electron attraction (lower panel) due to
electron-phonon coupling (upper panel) by means of Feynman diagrams. Within the Fröhlich
model, the interaction potential is a function of momentum and frequency-dependent. In the
lower panel, the Migdal theorem is taken into account. Adapted from Ref. [22]. b) Sketch of
the effective potential becoming attractive for ω < ωq. Adapted from Ref. [22]. c) Illustration
of the retarded nature of the interaction and the exchange of a virtual phonon. Adapted from
Ref. [24, 26].

Thus, the total momentum of this two-electron system is conserved.
Eq. 2.9 shows the renormalized electron-phonon coupling in the RPA approach which
neglects vertex corrections. Since the ratio of the effective mass of the electron-like
quasiparticles at the Fermi surface and the ion mass

√
m/M is of the order 10−4, Migdal

proved that the movement of the electrons and ions can be regarded as decoupled. Cor-
rections to this decoupling can be made by using the Born-Oppenheimer approxima-
tion4 with a power series in

√
m/M . By using the Born-Oppenheimer approximation,

Migdal finally showed that renormalizations of electron-phonon vertex gqλ are sup-

4detailed explanation in [27]
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2.1 Conventional Superconductivity

pressed by a factor ∼
√
m/M [28] and can be neglected (see Fig. 2.4), which is known

as the Migdal Theorem and justifies the Feynman diagram in the lower panel of Fig. 2.3a.

k

k+q

q

k

k+q

q

= +
k

k+q

q

+ ...

q

k

k+q

(1+√m/M)=

Figure 2.4: Illustration of the Migdal the-
orem. Renormalizations of the electron-
phonon vertex gqλ are suppressed by a
factor ∼

√
m/M [28] and can be ne-

glected. Adapted from [29].

By applying perturbation theory to the occurring potential resulting from the electron-
ion interaction, the Fröhlich Hamiltonian for the electron-phonon interaction can be
established [27]:

H =
∑
kσ

ε(k)c†kσckσ︸ ︷︷ ︸
H01

+
∑
kqσ

[
gqλc

†
k+qσckσbq + g-qλc

†
k’−qσckσb

†
q

]
︸ ︷︷ ︸

H1

+
∑

q

~ωqb
†
qbq︸ ︷︷ ︸

H02

. (2.11)

Here, H01 and H02 denote the unperturbed electron and phonon Hamilton opera-
tors with ckσ, c

†
kσ/bkσ, b

†
kσ as the creation and annihilation operators for electrons and

phonons, respectively. H1 represents the electron-phonon interaction with gqλ as the
electron-phonon vertex and is therefore the perturbation term. This Hamiltonian has
the form of H = H0 + H1 and can be rewritten by using a canonical transformation of
the form HT = e−iSHeiS with an Hermitian operator S which results in the following
Hamiltonian [27]:

H1T =
∑

kk’σσ′

∑
q

Veff (q, ω)c†k+qσckσc
†
k’− qσ′ck’σ′ . (2.12)

Here, it becomes apparent that the phonon-induced electron-electron interaction
now occurs directly within the Fröhlich model as mentioned at the beginning of this
section.

2.1.2 BCS Theory

For the formulation of the BCS theory, the derived effective interaction is further sim-
plified. In this case, it is instantaneous and independent of the phonon wave vector q,
branch and frequency. The interaction is approximated by averaging over all q vectors.

13



2 Superconductivity

This leads to a constant effective interaction vertex gqλ → geff , and the Debye frequency
ωD is introduced as an energy scale of the phonon frequencies ωq,λ. As a result, the
constant interaction potential is given by [6]

Veff(q, ω) = |geff |2
2ωD

ω2 − ω2
D

, (2.13)

which is attractive in case of ω < ωD and repulsive in case of ω > ωD. Since those
electrons that are responsible for superconductivity have an energy in the range of
±kBT and since ~ωD � kBT in the case of conventional superconductors, the repulsive
part can be neglected [6]. So Eq. 2.10 can be simplified to [24]

Veff(q, ω) = Vkk’ = −2
|geff |2

ωD
Θ(ωD − |(εk − µ)|)Θ(ωD − |(εk’ − µ)|). (2.14)

Here, ω was replaced by εk/k’ − µ5. At this point, we introduce the electron-phonon
coupling parameter λ:

λ =
2 |geff |2

ωD
ν(εF ). (2.15)

We can finally write down the BCS Hamiltonian for the effective electron-electron in-
teraction, where only electrons with opposite momenta are considered.

H =
∑
kσ

(εk − µ)c†kσckσ − |geff |2
∑

kk’σσ′

c†k↑c
†
−k↓c−k’↓ck’↑. (2.16)

In Eq. 2.16, the nomenclature was now sightly changed since the attractive interaction
between electrons (quasiparticles) near the Fermi surface cause the formation of elec-
tron pairs, so-called Cooper pairs [k ↑,−k ↓], where the two electrons involved have
opposite momentum k1 = −k2 and spin σ1 = −σ2 [30].

k

-k' k'

-k

geff

Figure 2.5: Scattering events in the case
of constant interaction potential applied
within BCS theory. The time axis is
supposed to be horizontal, whereas the
space axis is aligned vertically.

The repeated scattering between electrons occupying such time-reversed states of the
form |k, ↑〉 and | − k, ↓〉 leads to a divergence of the scattering amplitude. It can be
expressed by the pair susceptibility χpair [22]

χpair =
χ0(q, ω)

1− |geff |2 χ0(q, ω)
, (2.17)

5Note that already in Eq. 2.12 only electrons that lie within the range of ±~ωD are involved.
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2.1 Conventional Superconductivity

which leads to an instability of the Fermi gas below a certain critical temperature Tc

[22]. An energy gap ∆ opens and is the new order parameter of the emerging su-
perconducting phase. By applying a mean-field approximation to the Hamiltonian in
Eq. 2.16, the determination of the BCS gap parameter ∆ is possible. In doing so, a trial
BCS wave function and the variational parameters uk and vk are used in order to mini-
mize the total energy E = 〈ΨBCS|Ĥ|ΨBCS〉 [6]. In this case, the BCS gap parameter ∆ at
zero temperature is given by

∆ = |geff |2
∑

k

ukv∗k = |geff |2
∑

k

〈c−k↓c−k↑〉. (2.18)

With the coherence factors |uk|2 and |vk|2, it is possible to specify the probability that
the excitation of a superconductor is a hole [6],

|uk|2 =
1

2

(
1 +

εk − µ
Ek

)
, (2.19)

or an electron (see left panel in Fig. 2.6) [6],

|vk|2 =
1

2

(
1− εk − µ

Ek

)
, (2.20)

with the superconducting energy dispersion (see right panel in Fig. 2.6) [6]

Ek =
√

(εk − µ)2 + |∆|2. (2.21)

Figure 2.6: Left: Coherence factors (blue and green) and the pairing amplitude gk (red) are
shown. Right: Quasiparticle excitation energy of a superconductor (cyan) in comparison to the
excitation energy of electrons and holes in a normal metal (dashed black line).

By inserting Eq. 2.19, 2.20 and 2.21 into Eq. 2.18 and by using the Fermi-Dirac dis-
tribution for the temperature T and the quasiparticle energy Ek, Bardeen, Cooper and
Schrieffer obtained the BCS equation of the gap parameter [2]

∆ = |geff |2
∑

k

∆

2Ek
tanh

(
E

2kBT

)
. (2.22)

15



2 Superconductivity

Within the BCS theory, the amplitude of the gap simplifies for zero temperature to

|∆| = 2~ωDe−1/λ. (2.23)

In order to derive the transition temperature Tc, one sets ∆ → 0. This yields the con-
verted BCS gap equation [2]

1 = λ

∫ ~ωD

0

dε
1

E
tanh

(
E

2kBT

)
(2.24)

from Eq. 2.22, and thus [2]
kBTc = 1.136~ωDe−1/λ, (2.25)

with the dimensionless electron-phonon coupling constant λ as defined in Eq. 2.15.
Equation 2.23 is valid for the weak coupling regime in which |geff |2g(εF ) � 1. The com-
bination of Eq. 2.23 and Eq. 2.25 results in the universal ratio of the gap value for weak
coupling superconductors [2]

2∆(0)

kBTc
≈ 3.53. (2.26)

Tc0
0

D0

T

DHTL

Figure 2.7: Left: Normalized superconducting quasiparticle DOS (cyan) and normal conduct-
ing background (dashed blue line). Right: superconducting gap width as a function of
temperature.

The zero temperature gap parameter in Eq. 2.23 describes the energy gain due to the
formation of Cooper pairs, i.e., due to the breakdown of the Fermi surface and the
resulting splitting of the density of states (DOS) at the transition to the superconducting
state. This splitting of the DOS becomes obvious when looking at the excitations of the
superconducting state. An excitation would mean the breaking of a Cooper pair in two
independent electrons, which would cost an energy of 2∆, i.e., 1∆ for each electron.
Thus, the single-electron dispersion in the superconducting state displays a gap of 1∆
as illustrated in Fig. 2.6. In the superconducting state, a gap occurs without any single
particle states in an energy range ±∆ around the Fermi energy. The quasiparticle DOS
resulting from BCS theory for energies |ε− µ| ≥ ∆ is given by

νBCS(ε) = νn(µ) · |ε− µ|√
(ε− µ)2 −∆2

, (2.27)
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2.1 Conventional Superconductivity

with νn as the DOS of the normal conductor, which is shown in Fig. 2.7 as dashed line.
The quasiparticle coherence peaks above and below the gap are clearly visible.

Soon after the formulation of the BCS theory, it turned out that the simplifications
done by the assumptions of the BCS theory are too crude to be valid for every super-
conductor. Especially for the so-called strong-coupling superconductors, an extension of
the theory is required, which was presented by Eliashberg in 1960 [3].

2.1.3 Eliashberg Theory

In the case of a strong-coupling superconductor, the electron-phonon coupling con-
stant is of order unity or larger. This leads to a stronger renormalization of the elec-
tronic properties around the Fermi energy EF . As a result, the self-energy of the elec-
trons and the associated band structure change more significantly. The calculated devi-
ation from the simple free electron results in a parameter, the dimensionless coupling
constant:

λ = 2

∫ ∞
0

dν
α2F (ν)

ν
(2.28)

by which the electron mass is enhanced due to the self-energy of the electron and
phonon in the normal state [24]

meff = m(1 + λ). (2.29)

In sec. 2.1.1, meff was introduced as the mass of the considered quasiparticle. A further
consequence of the stronger electron-phonon coupling is the larger ratio between the
gap value and the critical temperature (≥ 3.53) compared to Eq. 2.26. A nice example
of a strong-coupling superconductor is lead for which this ratio is enhanced to 4.3 [31].
For this reason and because of the relatively high Tc, Pb was studied intensively in the
past. Besides, deviations from the BCS-type behavior in the quasiparticle DOS were
observed in Pb for the first time. The related experiment was done by Giaever et al. in
1962 with an improved planar tunneling junction setup. He observed fine structures in
the quasiparticle DOS outside the superconducting gap range [4]. These fine structures
could not be explained by the BCS theory, but by the Eliashberg theory [3], which can
be seen as an extension to the BCS theory. Here, the effective electron-electron interac-
tion is averaged over reciprocal space. While the interaction potential is assumed to be
constant in energy in the BCS theory, the interaction is frequency-dependent and influ-
enced by the phonon DOS in the Eliashberg theory. Thus, it is assumed to be local in
space, but retarded in time. As will become clear in the following sections, the Eliash-
berg function α2F (ω) is a central quantity within this theory. According to this theory,
the effective electron-phonon spectral function consists of the squared electron-phonon
coupling parameter and the phonon DOS. In contrast to the BCS theory, the supercon-
ducting order parameter in the Eliashberg formalism is not constant anymore, but a
frequency-dependent complex function ∆(ω).

Some other people apart from himself contributed significantly to the Eliashberg the-
ory [32]. For example, Migdal derived the mass renormalization at the Fermi surface
in 1958 for the normal state [28] as has already been discussed already in the case of the
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2 Superconductivity

k-q

k k'

k+q

α(ω) α(ω)
ћω

F(ω)

Figure 2.8: Feynman diagram of the
electron-phonon coupling within the
Eliashberg model. Like in the previous
diagrams, the time axis is horizontal.

Fröhlich model. Eliashberg applied the self-energy calculation to the superconducting
state and showed that, based on the Migdal theorem, the phonon-mediated pairing
problem can be formulated exactly by using the Green’s function technique [3, 24, 33].
The electron-phonon problem can be summarized with the help of the Dyson equation
as a function of momentum and the imaginary frequency [24]:

G(k, iωm) = [G◦(k, iωm)−1 − Σ(k, iωm)]−1 (2.30)

in case of electrons with a dressed/free one-electron Green’s function
G(k, iωm)/G◦(k, iωm), and

D(q, iνn) = [D◦(q, iνn)−1 − Φ(q, iνn)]−1 (2.31)

in case of phonons with a dressed/free phonon propagator D(q, iνn)/D◦(q, iνn). Here,
Σ and Φ are the electron and phonon self energies (without vortex corrections).

In order to derive the Eliashberg equation on the imaginary axis, the Gorkov-Nambu
Green’s function method is used [24, 34]. In doing so, the Gorkov-Nambu spinors [35]

Ψ̂k =

(
Ψk,↑
Ψk,↓

)
(2.32)

are used to formulate the matrix Green function Ĝk = −〈Tτ Ψ̂kΨ̂†k〉.
The Eliashberg equations on the imaginary axis are given by [34, 36]

Z(iωn) = 1 +
T

ωn

∑
ωm

∫ ∞
0

dω
2ω · α2F (ω)

(ωn − ωm)2 + ω2

∫
dεk’

Z(iωm)ωm
[Z(iωm) · ωm]2 + ε2k’ + Φ(iωm)2

,

(2.33a)

Φ(iωn) = T
∑
ωm

[ ∫ ∞
0

dω
2ω · α2F (ω)

(ωn − ωm)2 + ω2
− µ∗

] ∫
dεk’

Φ(iωm)

[Z(iωm) · ωm]2 + ε2k’ + Φ(iωm)2
,

(2.33b)
where Z(iωn) is the renormalization factor occurring in the self-energy for the electrons
and µ∗ is the renormalized Coulomb pseudopotential [37] which inhibits superconduc-
tivity. Further, α2F (ω) is the Eliashberg function [34]

α2F (ω) =
1

V 2νF

∑
k,k’,λ

δ(εk)δ(εk’)|αλk−k′|2
−ImDR

k−k’,λ(ω)Θ(ω)

π
, (2.34)
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2.1 Conventional Superconductivity

which is proportional to the squared (because two electrons with momenta k,k′ are in-
volved when a phonon is exchanged) electron-phonon coupling parameter α times the
phonon density of states F (ω). Furthermore, νF is the Fermi velocity, V states the nor-
malization volume, Θ denotes the Heaviside function and ImDR

k−k’,λ(ω) is the imagi-
nary part of the retarded phonon propagator. The summation runs over the scattering
wave vector q = k − k′ and the polarization λ. The latter states how many vibra-
tional excitations there are for a certain frequency. These equations can be reduced to
the much simpler BCS form by using a square well model of the phonon distribution
[36] and by assuming weak coupling and mean-field-like behavior. With an analyti-
cal continuation iωn → ω + iη, it is possible to derive the Eliashberg equations on the
real-frequency axis.

The Eliashberg equations on the real axis are then given by [36]

ZR(ω) = 1− 1

ω

∫ Λ

0

dω1Re
[

ω1√
(ω1 − [∆R(ω1)]2

][
K+(ω, ω1) +K+(ω,−ω1)

]
, (2.35a)

ΦR(ω) = ZR(ω)∆R(ω) (2.35b)

=

∫ Λ

0

dω1Re
[

∆R(ω1)√
(ω1 − [∆R(ω1)]2

][
K−(ω, ω1)−K−(ω,−ω1)− µ∗[1− 2nF (ω1)]

]
.

Here, µ∗ is the screened Coulomb potential and the integral kernel K is given by
[34, 36]

K±(ω, ω1) =

∫ Λ

0

dω2α
2F (ω2)[nB(ω2)+nF (−ω1)]

(
1

ω + ω1 + ω2 + iη
± 1

ω − ω1 − ω2 + iη

)
,

(2.36)
with nB,F as the Bose-Einstein and Fermi-Dirac distribution. The frequency-dependent
order parameter is now given by [34, 36]

∆R(ω) = ∆(ω + iη) =
Φ(ω + iη)

Z(ω + iη)
, (2.37)

which allows to express the superconducting DOS via [34, 36]

ν(ε) = Re

[
νF |ε|√

ε2 − [∆R(ε)]2

]
. (2.38)

The reduction to the BCS gap-equation is also possible for the equations on the real
axis even though a few more approximations are required [36]. The two presented
formulations of the Eliashberg equations can be related to each other, and hence, they
are equivalent except for a small deviation in the Coulomb pseudopotential at some
cut-off frequencies ωc [36]. Usually, the cut-off frequencies are chosen to be ωc ≈ 10ωD,
with ωD as the Debye frequency for the phonons. In general, the BCS theory as well
as the Eliashberg theory are valid for all kinds of electron-boson interactions. Only
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2 Superconductivity

choosing the cut-off frequency to be of the order of the Debye frequency of the phonons
leads to a restriction to phonons.

After this theoretical introduction of BCS theory and the Eliashberg theory, the fol-
lowing sections will concentrate on related experimental work done in the past. Most
of them are related to tunneling phenomena. In these sections, part of the experiments
performed within this thesis will be motivated.

2.2 History of Tunneling Phenomena in View of
Superconductivity

Electron tunneling experiments have greatly contributed to unveil the electronic struc-
ture of materials in condensed matter physics. Furthermore, they are an ideal tech-
nique to directly measure the quasiparticle DOS as well as the size of the supercon-
ducting energy gap ∆. A tunnel junction experiment made the direct measurement
of the BCS DOS possible for the first time [38]. Electron tunneling spectroscopy was
refined over the years and is still used with a multitude of variations. Although the
experiments within this thesis were conducted with a Scanning Tunneling Microscope
(STM), this section will focus on the history of electron tunneling experiments in gen-
eral and will emphasize their importance in view of superconductivity.

2.2.1 Quantum Mechanics of Tunneling

The basic principle of electron tunneling experiments is the quantum mechanical tun-
neling effect. In case of one dimension, it describes the phenomenon of a particle in a
state with energy E and a wave function Ψ(z) passing through an insulating barrier of
a width d with energy Φ > E. Classically, this process would be forbidden. Only in
quantum mechanics, this process is allowed and is called tunneling. In this case, |Ψ(z)|2
denotes the probability density of the particle. Ψ(z) can be determined by solving the
Schrödinger equation within the different areas in front of, inside and behind the bar-
rier. Behind and in front of the barrier, solutions for the wave function are plane waves

Eparticle

0 d z

Evac

solid solid

vacuum

Ф

Figure 2.9: Sketch of an electron tunnel-
ing experiment. Two normally conduct-
ing electrodes are separated by an insu-
lating barrier of a width d. The wave
function of the tunneling electron with
energy E is shown in blue.

with momentum k =
√

2mE/~, whereas inside the barrier, an exponentially decaying
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2.2 History of Tunneling Phenomena in View of Superconductivity

wave function Ψ(z) = Ψ(0)e−κz occurs with κ =
√

2m(Φ− E)/~. Considering the con-
tinuity conditions at the transitions between the different areas, the transmission of an
electron through the barrier is given by [39]

T = |Ψ(d)|2 ≈ |Ψ(0)|2e−2κd. (2.39)

Hence, a tunneling current can flow between two conducting materials, separated by
an insulating layer as depicted in Fig. 2.10.

Eparticle

0 z=d νnc

Evac

solid solid

vacuum

Ф

Eparticle

0

Evac

solid

vacuum

Ф

eU

eU

normal 
conducting

normal 
conducting

normal 
conducting

superconducting

solid

μsc

νnc

z=dνnc νsc

a) b)

c) d)

μnc

Figure 2.10: a) Sketch of elastic electron tunneling between two normally conducting electrodes
(NIN kunction) and c) between a normally conducting electrode and a superconducting elec-
trode (SIN junction), b)/d) differential conductance corresponding to a)/c). The differential
conductance in d) corresponds to the normalized BCS DOS. A slight thermal broadening is
included in this illustration.

Tunneling across an insulator was first described by Frenkel in 1930 [40, 41]. The
first metal-insulator-metal (MIM) tunnel junctions were presented by J. C. Fisher and
I. Giaever in 1959 [42]. In the following years, these planar tunnel junctions turned
out to be a capable tool to study the quasiparticle DOS. Giaever used SIN junctions
instead of regular NIN junctions by replacing one of the normal conducing electrodes
by superconducting material like Al or Pb. He could show that the derivative of his
measured current-voltage spectra coincide with BCS DOS [38, 43]. Since this proved

21



2 Superconductivity

to be a milestone in the history of tunneling experiments, Giaever shared the Nobel
Prize with Esaki and Josephson in 1973. Before we continue with the experimental
overview of electron tunneling experiments on superconductors, the next paragraph
shortly presents an important theoretical model established by Bardeen for calculating
the tunneling current through a MIM junction.

2.2.2 Bardeen Model

Bardeen provided a model of the tunneling current flowing through a MIM junction
[44]. He calculated the transition probability between two unperturbed states of a left
and a right electrode. In the beginning, the two electrodes are assumed to be decou-
pled from each other. As a starting point, the Hamiltonian can be written as a sum of
Hamiltonians of the three regions: H = Hl + Hr + HB (left/right electrode and bar-
rier). Only due to a perturbation, a transition of the electron from one electrode to the
other can be induced. Such a perturbation occurs because an electron that occupies a
state of one of the electrodes is influenced by the presence of the other electrode due to
the overlap of the wave functions inside the barrier. By using first-order perturbation
theory, the transition probability can be calculated by using Fermi’s golden rule:

wmn =
2π

~
|temn|2δ(εr − εl), (2.40)

where temn is the matrix element for elastic tunneling from the left to the right electrode,
|Ψl

n〉 → |Ψr
m〉. Bardeen showed that it can be calculated with the help of a surface

boundary integral [44]

tem,n = 〈Ψr
m|H|Ψl

n〉 = − ~2

2m

∫
boundary

(
Ψ∗rm ~∇Ψl

n −Ψl
n
~∇Ψ∗rm

)
dS. (2.41)

The total Hamiltonian H can be written in terms of the transfer Hamiltonian He
t . In

leading order of temn, H can be written in second quantization as [34]

H = H̃ l + H̃r +He
t (2.42)

≈
∑
n

εlnl̂
†
nl̂n +

∑
m

εrmr̂
†
mr̂m +

∑
n,m

[tem,nr̂
†
ml̂n + h.c.] ,

with H̃ l,r = Hl,r+HB as the perturbated Hamiltonians of the left/right electrode. r̂†m/r̂†m
is the electron creation operator of the left/right electrode and l̂n/r̂n denotes the annihi-
lation operator of the left/right electrode. The tunneling current through the junction
can be calculated by using Eq. 2.40 and by summing over all possible initial and final
states, which yields [45]:

Ie(U) = 4π|te|2e
∫
dενl(ε)νr(ε− eU)

(
nF (ε)− nF (ε− eU)

)
, (2.43)

with νl,r as the DOS of the left/right electrode and U as the applied voltage across the
junction. In order to show that by using planar tunnel junctions, one can directly probe

22



2.2 History of Tunneling Phenomena in View of Superconductivity

the superconducting DOS, we now assume one electrode (e.g. the right one) to be
superconducting and the other one as normally conducting with a flat DOS νl(ε) = ν0

l

(see Fig. 2.10). In this case, according to Eq. 2.43, the differential conductance σ(U) =
dI/dU can be written as

σe(U) = −4πν0
l |te|2e2

∫
dενr(ε)n

′
F (ε− eU)

T=0︷︸︸︷
= 4πν0

l |te|2e2νr(eU). (2.44)

Hence, by measuring the first derivative of the elastic tunneling current, there is direct
access to the superconducting DOS (here DOS of left electrode νl).

After this explanation of how to measure the superconducting DOS by using a pla-
nar SIN tunnel junction, the following section will focus on the proof of the Eliashberg
theory by electron tunneling experiments.

2.2.3 Experimental Proof of the Eliashberg Theory by using
Electron Tunneling Spectroscopy

As already mentioned, Giaever succeded in measuring the BCS DOS in 1960 for the
first time [38, 43]. One year later, with an improved setup, he observed some addi-
tional features next to the quasiparticle peaks in the superconducting DOS of lead at
temperatures of 1 K [4]. The measured data are displayed in Fig. 2.11a. The relevant
fine structures are located in the area which is marked with a box. Rowell and Ander-
son [46] investigated these fine structures in more detail (see green curve in Fig. 2.11b)
and showed that the downward steps can be seen exactly at the energies of Van Hove
singularities (in the DOS of Pb) [47, 48] which occur (in the superconducting DOS)
shifted by the energy of the superconducting gap ∆. In Fig. 2.11b, the experimental
data of Rowell and Anderson [46] (green) and a theoretical calculation of Schrieffer
and Scalapino [49] (purple) are compared to a BCS spectrum (cyan). Deviations from
BCS theory are visible around 5 and 9 meV.

Soon after this measurement, Scalapino and Schrieffer could show that these fea-
tures can be explained by the Eliashberg theory [51]. Hence, Pb turned out to be a
prime example of a strong-coupling superconductor because the renormalization of
the electronic DOS in the superconducting state becomes directly visible due the strong
electron-phonon coupling. In order to point this out more clearly, a model calculation
for a single-phonon mode done by Scalapino et al. [51] will now be presented.
For his model calculation Scalapino et al. used a Lorentzian profile of the phonon DOS
of a single phonon mode at ω0 (see Fig. 2.12a). Assuming a constant α(ω) and neglect-
ing the Coulomb pseudopotential, they solved the Eliashberg equations in order to
calculate the real and imaginary part of the energy-dependent order parameter ∆R(ω)
which are shown in Fig. 2.12b. The imaginary part ∆Im (ω) has a rather simple form
and only shows a peak at energies slightly above ω0 + ∆0. The feature of the real part
∆Re (ω) is slightly more complicated. Coming from low energies it is constant up to an
energy of roughly ω0 + ∆0 at which it has a peak. Going to higher energies, ∆Re (ω) de-
creases with a maximum slope at ω0+∆0 and has a dip at slightly higher energies before
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Figure 2.11: a) Deviations from the BCS-type behavior of the differential conductance outside
the superconducting energy gap range. Reprinted with permission from Ref. [4]. Copyright
(1962) by APS. The black box marks the measurement area of another detailed investigation
[46, 49] which is shown in b): The BCS spectrum (dashed cyan line) is compared to the exper-
imental spectrum of Rowell and Anderson [46] (green) and to a calculated one of Schrieffer
and Scalapino [49]. Reprinted with permission from Ref. [49]. Copyright (1963) by APS. c)
The Eliashberg function that has been derived from the measured spectrum in a) by using the
McMillan inversion algorithm [50]. Data taken from Ref. [50].
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Figure 2.12: Eliashberg calculation for a single-phonon model. a) Lorentzian shaped phonon
spectral function. b) Real and imaginary part of the frequency dependent order parameter
blue/green. c) Calculated quasiparticle DOS resulting from the inclusion of ∆R(ω) (orange)
compared to the BCS DOS (blue). Reprinted with permission from [51]. Copyright (1966) by
APS.
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Figure 2.13: Illustration of the inversion algorithm of McMillan and Rowell [50]. Starting point
is a guessed Eliashberg function 1) from which the superconducting DOS is calculated 2) and
compared to the measured one 3) [4]. In the case of deviation, an adapted Eliashberg function 1)
is used in the next cycle until the calculated 2) and measured superconducting DOS 4) coincide
resulting in a final Eliashberg function 5) [50].

it increases again and approaches zero. The importance of this model calculation be-
comes obvious when calculating the corresponding DOS by using Eq. 2.38. The latter is
shown in Fig. 2.12c and was calculated by Scalapino et al. in the strong-coupling limit.
In comparison to the fine structures in the data of Giaever et al. shown in Fig. 2.11,
great similarities can be observed. Thus, the step-like features shown in Fig. 2.11 could
be explained by the Eliashberg theory by means of the model of Scalapino et al. This
proves that the features in Fig. 2.11a which arise at energies of the phonon modes of
Pb, shifted by the energy of the superconducting gap ∆, are due to the renormalization
of the electronic DOS caused by a strong electron-phonon coupling. Hence, these are
elastic features due to the coupling to virtual phonons and not inelastic excitations. This
fact will become crucial for the results presented in Chapter 4.

After these fine structures in the electronic DOS had been detected experimentally
with electron tunneling spectroscopy in planar junctions [4, 42, 46, 49, 52, 53], McMillan
and Rowell soon succeeded in another pioneering study [50]. They used the concept of
reconstructing the Eliashberg function from the superconducting DOS by an inversion
algorithm. Here, the starting point is the measured superconducting DOS, the width
of the superconducting energy gap ∆0 and an initial guess for α2F (ω) (e.g. from neu-
tron scattering) which they used for calculating the gap function ∆(ω) and the final
Eliashberg function as well as the Coulomb pseudopotential. Subsequently, they made
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Figure 2.14: In the left panel, the measured superconducting dI/dU spectrum (B) and its
derivative (A) are shown as well as the corresponding Eliashberg function calculated by the
McMillan inversion algorithm. Reprinted with permission from Ref. [50]. Copyright (1965)
by APS. The right panel shows the Pb phonon DOS. For the red line, spin-orbit coupling was
included [48], which was not done for the black line [47]. Reprinted with permission from
Ref. [48]. Copyright (2010) by APS.

a guess for the Eliashberg function α2F (ω), calculated ∆(ω) and finally the supercon-
ducting DOS out of it and compared to the experimental one. In the case of deviation,
the Coulomb pseudopotential was adjusted and the whole process repeated using a
corrected Eliashberg function until the resulting superconducting DOS converged to
the measured one. By Using the measured superconducting DOS of Pb, which is
shown in the left pannel of Fig. 2.11, Rowell and McMillan extracted the Eliashberg
function (see Fig. 2.13). When comparing the calculated Eliashberg function with the
phonon DOS extracted from Neutron scattering experiments [47, 48] one finds that
their shapes are quite similar (cf. Fig. 2.14). Small deviations arise due to the fact that
within Neutron scattering experiments, all phonons contribute to the measured signal,
whereas in the case of the Eliashberg function, only those bulk phonons are considered
that can be excited by electrons that scatter at the Fermi surface. Furthermore, neutrons
couple to phonons with a different matrix element than the bulk electrons do.

The McMillan inversion algorithm has been used to identify fingerprints of the phononic
pairing glue in the electronic spectrum and thus to determine the pairing mechanism
leading to superconductivity [36, 51]. It is considered as a hallmark of condensed mat-
ter physics and is illustrated in Fig. 2.13.

Note that the plots shown in Fig. 2.11 and Fig. 2.14a were measured by using a Pb-
oxide-Pb, which is a SIS tunnel junction. The advantage of using an SIS instead of an
SIN tunnel junction is the enhanced energy resolution. Nevertheless, due to the oxide
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layers, inelastic processes can occur where electrons interact with collective excitations
of the insulating layer and which have been neglected so far.

2.2.4 Beyond Eliashberg Theory and McMillan-Rowell Inversion
Algorithm

Despite its usefulness, there are some drawbacks of the McMillan-Rowell inversion
algorithm. First of all, it is not unique. Starting with different superconducting DOSs,
one ends up in highly similar Eliashberg functions. And as we will see in chapter 5,
depending on how large the inelastic contributions are, wrong conclusion about the
pairing glue in the superconducting state might be drawn. Furthermore, there are
alternative, more direct ways to determine the Eliashberg function. For example, the
Eliashberg function can be, at least for phonons, directly measured when performing
inelastic tunneling experiments in the normal state using MIM junctions [54–61].

When performing tunneling experiments, the measured tunneling current usually
consists of an elastic and an inelastic part. This is illustrated in Fig. 2.15. An elec-
tron can tunnel through a barrier either elastically or, if its energy is high enough, it
can tunnel inelastically while exciting a phonon. The latter leads to the opening of an
additional tunneling current at a certain voltage (related to the phonon mode), which
is visible as a kink in the otherwise linear current-voltage I(U) spectrum. In the first
derivative of the tunneling current (dI/dU ), this kink leads to a step-like feature and
turns out to be a dip-peak feature for negative/positive voltages in the second deriva-
tive of the tunneling current. Note that the elastic contribution to the dI/dU spectrum
is a constant in the case of a normal metal, and hence, d2I/dU2 vanishes. As a result,
d2I/dU2 consists only of the inelastic part and is directly proportional to the spectrum
of the collective excitations. Hence, one can directly measure the phonon DOS which
were created by the inelastic scattering of the tunneling electrons, in the normal state.

This is possible because the electron-phonon coupling is not only restricted to the
superconducting state. The idea to measure the Eliashberg function by performing in-
elastic tunneling experiments in the normally conducting state already came up in the
1960s i.e., at the same time as the McMillan inversion algorithm. Nevertheless, the au-
thors had to struggle with some problems, which might be the reason why McMillan’s
method received more attention. Firstly, since the used MIM junctions which usually
consist of a metal-oxide-metal structure, they had to deal with impurities in the oxide
barrier interacting with the tunneling electrons and with related complex calculations
[59, 62–66]. Secondly, compared to SIS-junctions, MIM junctions have lower energy
resolution at the same temperature. Hence, the results were not as beautiful as those
that were measured in the superconducting state. Thirdly, for a few years, there was
no consistent interpretation of the measured signals reported in the given citations.
Finally, Taylor came up with new model in 1992 [66] and showed that for a normal
conductor, the second derivative of the tunneling current I with respect to the bias
voltage U is, under general assumptions, directly proportional to α2F (ω). Further-
more, it is quite obvious that the increased complexity due to an oxide barrier can be
circumvented by using a vacuum barrier. Therefore, a scanning tunneling microscope
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Figure 2.15: Left panel: Sketch of NIN junction, where an electron can tunnel elastically (or-
ange arrow) or inelastically (red arrow) while exciting a real phonon. The resulting spectra
are shown in the right panel. For a normal metal, the current-voltage I(U) curve has a lin-
ear behavior, whereas a kink occurs at a voltage ω0/e corresponding to a phonon mode which
produces an additional tunneling channel. Such a kink appears in the first derivative (dI/dU )
as a step and in the second derivative (d2I/dU2) as a peak. Note that in the normal state, the
d2I/dU2 spectrum consists of only an inelastic part.
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is an appropriate tool for these experiments because its atomically sharp tip can be ap-
proached to about 5 Å to a conducting sample6. After the investigations of the Eliash-
berg function, experiments on inelastic tunneling were not considered promising for
some years due to the above-mentioned complications. Recently, this topic has been
reconsidered and STM has been applied to obtain local information on the Eliashberg
function of Pb on a Cu(111) substrate by Schackert et al. [67]. The fact that

d2I

dU2
∝ α2F (ω) (2.45)

becomes evident in this work when the measured d2I/dU2-signal of normally conduct-
ing Pb is compared with the Eliashberg function extracted from McMillan and Rowell
(see Fig. 2.16).

Figure 2.16: Antisymmetrized inelastic tunnel-
ing spectrum taken on normally conducting Pb
films at 800 mK (green dots) [67] in comparison
with previous results of αF (ω) [50] (black line).
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Despite this nice result, one has to keep in mind that the direct proportionality of
Eq. 2.45 is only valid in the case of normally conducting materials with a rather flat
DOS around the Fermi energy. Only in this case, features that are due to the elas-
tic part of the tunneling current disappear in the second derivative of the tunneling
current and Eq. 2.45 can be applied, which is not true for the superconducting state.
Nevertheless, also in the superconducting state, the tunneling current has to consist of
an elastic and an inelastic tunneling current. Thus, it is probably possible to measure
inelastic features (e.g. features that are due to real phonons) in a superconductor as
well. One only has to keep in mind that in the superconducting state, these inelas-
tic features should appear as peaks at ω0 + ∆ since the respective mode energies are
shifted by the energy of the superconducting gap ∆. Nevertheless, they are not visible
in the upper curve in the left panel of Fig. 2.14. Instead of peaks, there are dips at the
corresponding energies resulting from the derivative of the renormalization features
in the superconducting DOS. Another point that should be mentioned is that, so far,
there has been no unified theoretical model that is able to describe elastic and inelastic
tunneling processes in the normal state as well as in the superconducting state.

This is now the starting point of this thesis. Especially in chapter 4 and 5 it will be
discussed how to extract inelastic features from the superconducting state and what

6For more details see next two chapters.
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conclusions can be drawn if unconventional superconductivity is also taken into ac-
count.
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3 Experimental Setup and Methods

The experiments of this work were performed with three different Scanning Tunnel-
ing Microscopes. Most of the measurements where done with a Joule-Thomson low-
temperature Scanning Tunneling Microscope (JT-STM) and with a recently built Dilution-
STM (DT-STM) which were both constructed at the Physkalisches Institut in the group
of W. Wulfhekel. A Unisoku low-temperature STM was used for additional investi-
gations at Shanghai Jiao Tong University. This chapter presents the technical require-
ments and methods of STM as well as sample preparation techniques.

3.1 Scanning Tunneling Microscopy

The field of scanning probe microscopy techniques started when Gerd Binnig and
Heinrich Rohrer invented the scanning tunneling microscope (STM) in 1982 [9] for
which they received the Nobel price in 1986. In STM, an atomically sharp tip is ap-
proached to about 5 Å to a conducting sample. By applying a voltage between the tip
and the sample a tunneling current occurs. Voltages in the range of several µV up to
10 V are typically used. If the tip-sample distance is changed by 1 Å, the tunneling cur-
rent changes about one order of magnitude. Due to this fact, height variations on the
atomic scale are resolvable. For recording topographic images, usually the so-called
constant current mode is used in which a constant setpoint of the tunneling current is
maintained by continuously readjusting the tip position via a feedback-loop system
while scanning the tip over a sample surface.

The adjustment of this tiny tip-sample distance is realized by using a piezoelectric
motor. For coarse motion in vertical (z) and horizontal (x) direction, slip-stick piezo
motors are used. The purpose of a coarse motion in horizontal direction is to allocate
the tip correctly on top of the sample before starting the measurement. Especially for
small sample sizes (like one has to deal with in the case of single crystalline iron-based
superconductors), this is a crucial point. In order to speed up the approach process
and to finally achieve a tunneling contact, the z-coarse-motion is used. Once the tun-
neling regime is achieved, the fine motion of the tip in horizontal (x, y) and vertical
(z) directions is accomplished with the piezo scanner tube, to which the tip is attached
via a socket. All of the electronic signals that are necessary for the measurement are
provided by a Nanonis (in the case of the JT-STM and DT-STM) or an RHK (Unisoko
LT-STM) controller. Apart from the tunneling current, first and second derivatives of
the tunneling current can be measured. Furthermore, various physical properties can
be investigated such as the density of states and inelastic excitations such as phonons.

For the experiments in the present work, mainly tungsten tips were used. Atomically
sharp W-tips were manufactured by chemical etching of a tungsten wire. As a simpler
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alternative, also gold tips were used for which only a Au-wire needed to be cut and no
further etching process was required.

Spectroscopy Of course, the first and second derivative of the tunneling current can
be obtained by calculating the numerical derivatives of the tunneling current. How-
ever, the signal obtained this way is typically so noisy that it masks the signal to be
measured. In order to avoid this problem, a lock-in amplifier was used for the measure-
ment of the first and second derivative of the tunneling current detecting AC signals
down to the nanovolt scale. When using a lock-in amplifier, a small oscillating voltage
is added to the tunneling voltage (bias). Consequently, also the tunneling current oscil-
lates with the same frequency. By using a current-to-voltage converter (I/V-converter),
the small tunneling current (10 pA-100 nA) can be converted into an amplified voltage
signal. The amplification depends on the adjusted gain (e.g. 109 V/A), whereas the
bandwidth (the I/V converter acts as a low-pass filter) depends on the amplification.
Therefore, the modulation voltage to the tunneling voltage should have a frequency
below the cut-off frequency of the I/V converter1. By means of the lock-in technique,
the signal is processed in the following way. The tunneling current which contains an
AC signal is multiplied by the phase-shifted modulation signal and passes a low-pass
filter where the signal is averaged over several periods. Unwanted noise frequencies
are filtered out and only the changes in the signal to be measured are detected.

In general, there are different noise sources affecting the signal to be measured.
There are extrinsic noise signals, such as lighting fixtures, motors, cooling units or com-
puter screens, which are asynchronous and do not occur at the reference frequency of
the lock-in amplifier or its harmonics [68]. Nevertheless, the influence of most of the
external noise sources can be minimized by a proper experiment design, whereas the
so-called intrinsic noise sources (Johnson noise, shot noise, 1/f noise) often cannot. For
the measurement of the derivatives of the tunneling current, the most problematic part
is the 1/f noise which, however, can be suppressed by using a lock-in technique with
suitable modulation frequency.

Ultra-High Vacuum Typical operating pressures in preparation and STM chamber
are ≈ 10−10 mbar. Pressures in this range can only be achieved by an appropriate
pumping system and a bakeout procedure after venting a chamber. The pumping
system is basically the same for all the three setups described within this thesis. It con-
sists of rotary pumps, which produce a rough vacuum, and is necessary to operate the
different turbomolecular pumps (for load locks, preparation and STM chambers). The
rotary pump is connected to a barrel which is connected to each of the turbomolecular
pumps so that they can be operated with only one rotary pump. A bakeout, followed
by a degassing procedure, is necessary especially after a chamber was vented in order
to desorb all of the gas molecules from the walls and parts of the chamber while the
chamber is pumped down in order to achieve a better final pressure. Using only tur-
bomolecular pumps, pressures around 10−9 mbar can be achieved. In order to obtain

1For measuring the second derivative of the tunneling current this should be less the half the cut-off
frequency.
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pressures in the 10−10 mbar range or even better, additional pumps are needed. The
usage of ion-getter pumps is essential, since they do not only improve the pressure,
but they are the only pumps running during measurements as well. Turbomolecular
pumps and rotary pumps have rotating parts and therefore, they induce unwanted
mechanical vibrations for the measurement. In an ion-getter pump, the residual gas
molecules are ionized and accelerated towards an electrode covered by titanium. Com-
pared to turbo pumps it is more efficient at pumping light gas molecules that moves
at a higher thermal speed. Additionally, a titanium sublimation pump is temporar-
ily used. It acts as an accelerator for the pumping speed, especially in the case of
O2, N,N2, Co, Co2, H2 and H .

3.1.1 JT-STM

As already mentioned, most of the experiments were done with a home-built Joule-
Thomson low temperature STM (see Fig. 3.1), which was developed by L. Zhang and
W. Wulfhekel and co-workers [69, 70]. The whole setup consists of three different
chambers allowing in-situ growth and characterization of samples. A load lock cham-
ber is used to put samples and tips into the UHV-preparation chamber, where they
can be cleaned (by sputtering and annealing, see paragraph 3.2.1), coated with various
materials (by using molecular beam epitaxy (MBE), see paragraph 3.2.2) and charac-
terized (by using Auger Electron Spectroscopy (AES), low-electron energy diffraction
(LEED) or reflection high-energy electron diffraction (RHEED), see paragraph 3.2.3).
After preparation, the samples can be directly transferred to a pre-cooling station in
the STM chamber and finally to the microscope itself.

Figure 3.1: The JT-STM setup including prepara-
tion chamber is shown, cryostat and STM-chamber
[70].

The STM body consists of a sample stage, the piezo tube holding the tip, and piezo-
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electric motors. It is surrounded by a split coil magnet which is able to produce an out-
of-plane magnetic field of 3 T at the sample. It is thermally connected to the bottom of
the liquid helium (LHe) tank and it was home-built in the AG Wulfhekel. The cryostat
consists of two nested cryostats, an outer one for liquid nitrogen (LN2), and an inner
one is the mentioned LHe tank. Both of them are surrounded by a thermal shields.
The pre-cooling station is attached to the shield of the LN2 tank. So, it is at 77 K. By
using a special parking mechanism, the STM body can be thermally connected to the
LHe cryostat. After inserting a sample to the STM body, this allows to cool down the
sample to 4.159 K within only three hours. The measurement itself is then performed
in the unparked state, where the STM body is freely hanging on three springs. For a
further reduction of mechanical vibrations, the whole setup is lifted via an air damping
system.

The special properties of this system are the achievable low temperatures of≈ 650 mK
and a liquid-helium standing time of around 10 days.

Low temperatures In order to achieve temperatures below the boiling temperature
of LHe, a Joule-Thomson refrigerator cycle is integrated. The cooling is based on the
fact that an expanding gas performs work against its internal forces under certain
conditions which are warranted, e.g. for a gas expanding through a small nozzle or
through a porous plug that is thermally insulated from its surroundings [71]. The
greatest advantage with respect to STM is that the expansion process requires no mov-
ing parts and subsequently causes no additional vibrations. In the case of the present
Joule-Thomson cycle, a 3He/4He gas mixture is pumped by a rotary pump through
a closed circuit. At the inlet side, the gas mixture is introduced into the LHe cryo-
stat at a pressure of 1.2 bar and passes several heat exchangers and filters before going
on through a very narrow capillary that separates the high-pressure from the low-
pressure side. At the end of this capillary, the gas mixture condenses in a small pot, the
JT pot. Since the pressure is now in the range of 10−1 mbar on the low-pressure side,
the boiling temperature of the liquid is significantly reduced. In the case of pure 3He,
a temperature of 450 mK could be achieved and about 1 K in the case of pure 4He [72].
Currently, a 3He/4He gas mixture is used and temperatures of about 650 mK can be
achieved, while an additional turbomolecular pump in the cycle further reduces the
pressure in the JT pot. For a smooth operation of the cycle, a high purity of the gas
mixture and filters are indispensable in order to avoid frozen impurities blocking the
capillary. Directly at the JT pot, where the 3He/4He gas mixture is condensed, the STM
body is thermally connected by thin gold wires. Hence, it reaches roughly the same
temperatures as the JT pot itself.

3.1.2 DT-STM

The dilution STM is a recently built machine in the group of W. Wulfhekel (assembled
mainly by T. Balashov). The setup is again an in-house design except for a dilution
refrigerator (DR) unit, which was commercially acquired from the company Bluefors.
Analogous to the JT-STM, the whole setup consists of three chambers for in-situ prepa-
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ration and characterization of samples. Using a DR, even lower temperature down to
25 mK can be achieved. Now, the heat of mixing two isotopes is used to obtain low
temperatures. The first refrigerator based on this principle was built by a group at
Leiden University and reached 0.22 K [72, 73]. An improved design reaching 25 mK
was developed one year later by B. S. Neganov in Dubna and H. E. Hall in Manchester
[72, 73]. Whereas until about the 1950s, demagnetization of a paramagnetic salt or he-
lium refrigerators based on the latent heat of evaporation were used for cooling [72],
today, the 3He-4He refrigerators are the most important refrigeration technology for the
temperature range between 1 K and 5 mK [72].

Dilution Refrigerator The working fluid of a Dilution Refrigerator (DR) is the iso-
topic liquid helium mixture. A phase diagram of liquid 3He-4He mixtures at saturated
vapour pressure is shown in Fig. 3.2 [72]. There, the temperature T is plotted over the
3He concentration x [72].
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Figure 3.2: Sketch of the phase diagram
of liquid 3He-4He mixtures at saturated
vapour pressure. The lambda line in-
dicates the superfluid phase transition.
The phase separation line of the mix-
tures marks the tehmperatur T, below
which they separate into a 4He-rich and
a 3He-rich phase. TF is the line of the
Fermi temperature of the 3He compo-
nent.. Adapted from [72, 74, 75].

As illustrated, pure 4He becomes superfluid at 2.177 K. By diluting the pure Bose
4He-liquid with the Fermi liquid 3He, the temperature of the superfluid phase transi-
tion is lowered. However, for 3He concentrations above 67% the superfluidity of the
3He-4He mixture doest not exist. Instead, a normal 3He-4He liquid mixture exists for
temperatures higher than 0.87 K and a two-phase region for temperatures below 0.87 K.
This two-phase region is displayed as the purple shaded region in Fig. 3.2 in which the
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two isotopes are not miscible. In this region, the mixture separates into two phases,
one rich in 4He and the other rich in 3He. The 3He-rich liquid, due to its lower density,
flows on top of the 4He-rich liquid [72]. Following the phase-separation line for high
3He concentrations, on approaching zero temperature, the 3He-rich liquid becomes
pure 3He. This is different for the 4He-rich liquid, where a small concentration of 3He
remains in the mixture even at T=0 K. In Fig. 3.2 it is shown that within the two-phase
region, the lower limit for the 3He-concentration in the 4He-rich liquid is 6.5% (at sat-
urated vapour pressure), even for T=0 K [72]. Thus, in the two-phase region, the diluted
3He poor phase has a temperature dependent lower limit in the 3He concentration.
This is the most important and crucial fact for operating a 3He-4He DR as we will see
below.

Now, let us proceed with the technical realization concerning the DT-STM. In the
left panel of Fig. 3.3 a drawing of the cryostat is displayed. The DR is situated in
the interior of thermal shields which are cooled by LN2 and LHe. The LHe tank pre-
cools the incoming 3He-4He gas mixture which is circulated in the DR. After the pre-
cooling procedure, the 3He-4He gas mixture can be condensed. This is implemented by
using a compressor which raises the inlet pressure to about 2 bar. Using additional heat
exchangers, the pressurized mixture condenses because of the Joule-Thomson effect after
the main flow impedance (see also Fig. 3.3) and finally fills up the mixing chamber, the
heat exchangers and part of the still [76]. So far, the cooling procedure is quite similar
to the one in the JT-STM. But now, by pumping the still, temperatures below 0.8 K occur
as a result of the evaporative cooling. By looking at Fig. 3.2 one recognizes, that now
the phase separation of the mixture sets in for certain 3He-concentrations and it is this
region, where the actual DR is activated. Due to the large differences concerning the
vapour pressure of 3He and 4He, almost only 3He is pumped from the 3He-poor phase
in the still (see Fig. 3.3) and subsequently distilled. This causes a disequilibrium in the
3He-poor phase. Furthermore, as mentioned above, there is a lower limit of the 3He
concentration in the 3He poor phase. This induces the transition of additional 3He of
the 3He-rich phase to the 3He-poor phase. Since, the cooling power mainly depends on
the amount of 3He atoms crossing the phase boundary, and therefore on the enthalpy
of mixing two quantum liquids [72, 76], this lower limit of the 3He concentration in the
3He poor phase plays a crucial role.

As shown in the right panel of Fig. 3.3, the heavier dilute phase accumulates at the
bottom of the mixing chamber, where a wider tube connects this part of the mixing
chamber with the heat exchangers and finally the dilute phase of the still. The di-
lute phase in the mixing chamber can reach the still by osmotic pressure. By passing
through the heat exchangers it additionally pre-cools the incoming 3He which enters
the concentrated phase in the mixing chamber. Due to the pumping system, the circu-
lation of the 3He is maintained. The cooling power mainly depends on the amount of
3He atoms crossing the phase boundary, and therefore on the enthalpy of mixing two
quantum liquids [72, 76].
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Figure 3.3: Left panel shows a drawing of the cryo including the LN2/LHe tank, as well as the
coil and the STM-body which is drwan in the parked state. The red box marks the dilution unit
which is sketched in more detail in the right panel. It consists out of a still, heat exchangers and
a mixing chamber (for explanation see text). Right panel was adapted from [72].

3.1.3 Unisoku LT-STM

For the preparation and investigation of FeSe monolayer on SrTiO3 substrates, a com-
mercially available low temperature STM USM1300 was used in the group of Chunlei
Gao at Jiao-Tong University in Shanghai. Base temperatures of 300 mK can be achieved
by liquifying 3He with an adsorption pump. Other possible measuring temperatures
are 4.2 K and 77 K. A big advantage of this setup is a built-in triple-axis solenoid mag-
net. Vertically to the sample surface, magnetic field up to 7 T can be achieved, while
along the two horizontal axis magnetic fields up to 2 T are possible. Analogous to the
previous two described setup, a load lock chamber as well as a preparation chamber
are attached to the STM chamber. The preparation chamber is in this case especially
suited for molecular epitaxy (MBE) including RHEED (Reflection high-energy electron
diffraction).
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3 Experimental Setup and Methods

3.2 Facilities for Sample Preparation and
Characterization

One purpose of a preparation chamber is of course to clean samples, sample substrates
or tips. On the other, a preparation chamber is needed to grow samples and if necessary
to quickly check them. Furthermore, during a growth study for example, the samples
need to be grown and cleaned quite often. For this purpose it is convenient to have
a preparation chamber directly attached to the STM chamber in order to provide an
in-situ sample preparation what is useful for the fabrication of high-purity samples.

3.2.1 Sputtering and Annealing

Sputtering is predominantly used for cleaning substrates and tips. Typically, argon
ions are used which are accelerated to the sample/tip by applying high voltage of
around 3-4 kV. The ions usually hit the sample/tip at an angle of 45◦. Due to their
impact, the ions remove the upper most atomic layers of the sample/tip. The new
sample surface thus formed is rough and needs to be smoothed. This is done by a
subsequent annealing process. This can be done by resistive heating (like it the case
for the Unisoku setup) or by thermionic emission (like in the preparation chamber of
JT-STM and DT-STM setup). For the latter, a current flows through a tungsten filament
which is mounted on a plate directly above the sample to be annealed. By applying
high voltage between filament and sample, thermally emitted electrons are accelerated
to the sample and heat it by the caused electron bombardment. Using a pyrometer, the
sample temperature can be measured. Alternatively, the samples/tips can be flashed,
what simply means a short fast heating of the samples/tips.

3.2.2 MBE

For growing high-purity films on a substrate, molecular beam epitaxy (MBE) is a com-
mon technique. Thereby, a certain solid material is thermally evaporated from its solid
state. Usually, high-purity elements can be commercially acquired in shape of a rod or
as grains. The rod-shaped materials can be directly mounted on the high-voltage part
of an home-built electron-beam evaporator. Thereby, the (e.g. Fe-) rod is heated by elec-
tron bombardment. This is achieved by passing a current through a filament located
around the end of the rod and by applying a high-voltage between the filament and
the rod. Due to the applied high voltage, electrons are accelerated from the filament to
the rod. From to the power P ≈ Iem ·U needed for evaporation, the temperature of the
evaporation source can be estimated. Here, Iem is the emission current. Taking a look
at the corresponding vapour pressure diagram of the respective source material, the
right power range for evaporation can be assessed. By applying the Stefan-Boltzmann
rule:

P = σ · A · T 4, (3.1)

which states that the power of thermal radiation is proportional to a natural constant
σ =

2π2k4B
15h3c2

= (5.670367 ± 0.000013) · 10−8 W
m2K4 , the area A of a black body (what corre-
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sponds to the area of the source material) and to the fourth power of the temperature T,
the temperature of the evaporation source can be estimated from the parameters used
for evaporation.

For materials which evaporate already at a quite low temperature, like Se (∼150 K),
the application of a high-voltage is not necessary and a purely resistive heating is
enough. The grain-shaped Se source material, which was used for the experiment
in this thesis, was commercially acquired from "Alfa Aesar". For the grain-shaped Se
source material, a self-constructed Knudsen cell was used for evaporation. Thereby,
the grains were inserted in a ceramic crucible which was resistively heated by a sur-
rounding filament.

3.2.3 RHEED

Reflection High Electron Energy Diffraction (RHEED) is used for monitoring the growth
of a film on a substrate. Especially, if an exact number of layers should be grown it is
quite useful. When doing RHEED, high-energy electrons with an energy in the range of
10-50 keV are accelerated from a cathode and hit a sample surface at grazing incidence
(angle ∼ 5◦). Such an grazing incidence leads to a high surface-sensitivity with a small
penetration into the sample. Subsequently, the (mostly elastically) scattered electrons
meet a fluorescence screen where the diffraction pattern can be observed. The pattern
consists out of point-shaped spots located on an arc and occur due to constructive
interference of the diffracted beams. During the growth of a sample, the intensity of
several spots are measured over time. According to the growth mode, the evolution
of the intensity over the time behaves differently. For a layer-by-layer growth mode,
the intensity shows an oscillating behavior. One period corresponds to the growth of a
single layer.
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4 Theory of Scanning Tunneling
Microscopy and Spectroscopy

Following the rather general introduction of electron tunneling phenomena in Sec. 2.2
and the explanation of an STM setup from an experimental point of view in Sec. 3.1,
this chapter will focus on theoretical aspects of scanning tunneling microscopy and
spectroscopy. The aspects that are different from electron tunneling in planar junctions
will be described. Furthermore, a clear distinction between elastic and inelastic tun-
neling phenomena will be made. Tunneling into normal conductors as well as into
superconductors will be described. Possible simplifications in the case of normal con-
ductors will be elucidated.

4.1 Scanning Tunneling Microscopy

As already mentioned in Chap. 2, in STM, one electrode is the atomically sharp tip. The
Bardeen model can also be applied to the STM geometry. The only difference is the fact
that the tunneling current and consequently the differential conductance are measured
locally at a specific position r → Ie(U, r), σe(U, r). This allows to spatially resolve the
DOS, moving the tip over the sample. Eq. 2.44 describes the elastic differential con-
ductance for planar tunneling junctions. There, an unknown parameter, that is, the
matrix element for elastic tunneling te, occurred. Theoretically, it can be calculated by
the wave functions of the left and right electrode (now, in the case of STM: tip and
sample electrode) which are, however, also unknown. In 1985, Tersoff and Hamann
finally found a way to solve the Bardeen model for an STM geometry [77]. Within the
Tersoff-Hamann model, the tip wave function is replaced by an s-wave function at the
position r. For zero temperature T → 0, the tunneling current is

I(r, U) ∝ νt

∫ eU

0

νs(r, εF + ε)dε. (4.1)

As can be seen, in this case, the tunneling current directly proportional to the local
DOS (LDOS) of the sample νs at the position of the tip, integrated over the bias voltage.
Hence, when scanning the tip over the sample, a constant-current image shows areas
of equal DOS.

43
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4.2 Scanning Tunneling Spectroscopy

Scanning tunneling spectroscopy is used in order to probe the DOS, both for elastic or
inelastic tunneling processes. In general, if there are inelastic processes that contribute
to the tunneling current, they coexist with the elastic ones. As already mentioned in
Sec. 2.2 and as illustrated in Fig. 2.15, a linear I(U) spectrum in the case of pure elastic
tunneling is alternated in the case of inelastic processes by occurrence of a kink in the
I(U) spectrum starting at an energy at which the inelastic mode occurs (see Fig. 2.15b)).
The kink occurs because of the opening of an additional tunneling channel, due to
the inelastic excitations. Often, theses kinks are hardly visible in the measured I(U)
spectra. Therefore, the first or even second derivative of the tunneling current is mea-
sured in order to reveal inelastic contributions to the tunneling current. In the case of
tunneling between metallic electrodes in the normal state, the system is quite simple.
The elastic part of the tunneling current (linear part in Fig. 2.15b)) turns out to be a
constant in the first derivative of the tunneling current dI/dU , so it is zero when the
second derivative of the tunneling current d2I/dU2 is measured. As a result, in the
case of a normal metal state with a flat DOS around the Fermi energy, the d2I/dU2

spectrum directly gives the inelastic contribution to the tunneling current. This allows
the investigation of inelastic tunneling processes. For example, phonons are impor-
tant inelastic excitations in metal substrates. The following derivation of the tunneling
current is based on phonons as inelastic excitations. The theoretical description of the
contributions to the tunneling current was developed in collaboration with P. Hlobil
and J. Schmalian. They did the actual implementation of the theoretical formalism.
The content of the following sections is based on Ref. [10, 11, 34].

4.2.1 Derivation of the Tunneling Current

In order to specify the formulas for elastic and inelastic tunneling contributions, we
start with a general derivation of the tunneling current between a normally conducting
tip and a superconducting sample by doing a perturbative approach. Subsequently,
possible simplifications in the case of an MIM junction will be explained. It will become
obvious that d2I/dU2 spectra are directly proportional to inelastic tunneling processes,
so they can be proportional to the Eliashberg function.

The tunneling current between a normall conducting tip and a superconducting
sample is given by the elementary charge times the change of the number of electrons
nS =

∑
k,σ c

†
k,σck,σ in the superconductor:

I = −e d
dt

tr
[
ρ(t)nS

]
/tr[ρ(t)]

= ie〈
[
nS(t),Heff(t)

]
〉, (4.2)

where ρ(t) is the time-dependent density matrix [10]. Heff is the effective low-energy
transfer Hamiltonian of this system. In Sec. 2.2, a transfer Hamiltonian has already
been introduced in the case of purely elastic tunneling planar tunnel junctions (see
Eq. 2.42) were discussed. Nevertheless, as shown in Ref. [10], the inelastic contribu-
tions to the tunneling current can, in general, be of the same order of magnitude as
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4.2 Scanning Tunneling Spectroscopy

the elastic contributions. Furthermore, it is pointed out in Ref. [11] that "[...] the rela-
tive phase space for elastic and inelastic processes depends sensitively on the detailed
tunneling geometry, i.e. whether one considers planar or point-contact junctions or an
STM geometry". In the case of an STM geometry, there is poor momentum conser-
vation [78], resulting in large inelastic contributions. Therefore, the effective transfer
Hamiltonian Heff = H0 + Ht is introduced in Eq. 4.2 and includes now elastic and
inelastic tunneling processes for tunneling between a normally conducting tip and a
superconducting sample1. H0 includes four terms [10]:

H0 =
∑
p,σ

εTp c
†
p,σcp,σ +

∑
k,σ

εSkc
†
k,σck,σ +

∑
q,µ

ωq,µa
†
q,µaq,µ

+
1√
VS

∑
k,k′
σ,µ

αk−k′,µc
†
k,σck′,σφk−k′,µ , (4.3)

describing free electrons in the tip (T ) and sample (S), phonons and electron-phonon
interactions in the substrate [10]. Here, aq,µ/a

†
q,µ are the phonon annihilation/creation

operators of momentum q and phonon branch µ, with dispersion frequency ωq,µ [10].
ck,k’,p,σ/ωq,µ. c†k,k’,p,σ are the electron annihilation/creation operators. The quasimo-
menta k, p denote the two subsystems of the tip (with dispersion εTp and volume VT )
and the superconducting sample (dispersion εSk and volume VS) [10]. We set ~ = 1,
and φq,µ = aq,µ + a†q,µ is proportional to the lattice displacement [10]. The last term in
Eq. 4.3 contains the electron-phonon coupling parameter ak−k’,µ. For the tip subsystem,
phonon contributions can be neglected since tips are usually made of tungsten with a
negligible phonon DOS around the Fermi energy.

The tunneling Hamiltonian Ht is proportional to the tunneling matrix element Tk,p

[10, 64, 66]:

Ht =
1√
VTVS

∑
k,p
σ

Tk,pc
†
k,σcp,σ + h.c., (4.4)

which includes elastic and inelastic tunneling processes [10]:

Tk,p = T e
k,p +

1√
VS

∑
q,µ

T i
k,p,q,µαq,µφq,µ +O(φ2

q,µ) . (4.5)

The matrix elements for elastic/inelastic tunneling are denoted as T e
k,p/T

i
k,p. The sec-

ond term of Eq. 4.5 describes electron transitions via the emission/absorption of phonons
(see Fig. 4.1) and is proportional to the electron-phonon coupling parameter αq,µ [10,
66].

As far as the determination of the tunneling current is concerned, two assumptions
can now be made. The first one has already been mentioned and is related to the
Tersoff-Hamann model. The DOS of the tip is assumed to be constant νT (ω) ≈ ν0

T ,
which is valid in the case of W tips or Au tips, for example. Another assumption can

1Note that this effective low-energy transfer Hamiltonian can be derived from a purely elastic high-
energy tunneling model by integrating out high-energy degrees of freedom [11, 34].
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superconductor

STM tipreal phonon

Figure 4.1: Illustration of an STM tunneling geom-
etry including elastic and inelastic tunneling pro-
cesses. Taken from Ref. [10].

be made with regard to the tunneling matrix element. In contrast to planar junctions
which are restricted to the conservation of the in-plane momentum k|| when tunneling
through a barrier, in an STM geometry, electrons tunneling between different states
across the barrier do not have to have the same k|| [78]. Hence, the tunneling ampli-
tudes can be considered to be independent of direction, phonon momenta and phonon
branches T e

k,p = te and T i
k,p,q,µ = ti [10, 78]. As a result, the conductance per channel is

larger compared to the case of planar tunneling junctions [78]. Especially the allowed
inelastic tunneling processes are enhanced in the case of an STM geometry [34].

If these assumptions are taken into account, the Keldysh Green’s function method
is a suitable formalism to calculate the current in Eq. 4.2 [10] (we follow the notation
of Ref. [10, 79]). The detailed derivation can be read in the supplemental material
of Ref. [10]. For reason of simplicity, it is described in only a few sentences at this
point. The Keldysh formalism is a general framework of out-of-equilibrium many-
body systems (e.g. due to the presence of external fields) [80] and describes the time
dependence of a perturbed system towards an equilibrium state. For the present cal-
culation of the tunneling current, first the tunneling action S = S0 + St (the Keldysh
action of the Hamiltonian corresponding to the Keldysh Green’s function method) is
formulated for the case without applied voltage. Then, the consideration of an ap-
plied finite voltage finally leads to a time dependence of the tunneling matrix elements
T e → T eeieUt, T i → T ieieUt in the tunneling part St of the action [10]. By applying per-
turbation theory, the formalism can be expressed in terms of unperturbed expectation
values and the corresponding propagators GK

k/p and DK
q,µ for electrons and phonons.

These propagators depend on the spectral weights Ak/p(ω) and Aq/µ(ω) of the elec-
tronic and phononic system (see supplementary material of Ref. [10]).

4.2.2 Elastic Tunneling (ETS)

By applying the Keldysh Green’s function formalism to Eq. 4.2 the elastic part of the
total tunneling current is finally given by [10]

Ie(U) = 4πe

∞∫
−∞

dω
1

VSVT

∑
~k,~p

∣∣∣T e
~k,~p

∣∣∣2 (4.6)

[
nF (ω)− nF (ω + eU)

]
A~k(ω)A~p(ω + eU) .
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Here, VS,T is the normalization volume of the sample/tip,
∣∣∣T e
~k,~p

∣∣∣2 is the elastic tunneling
matrix element and nF (ω) denotes the Fermi-Dirac distribution. Within the Landauer-
Büttinger transport theory, this is the common expression for the elastic current under
the assumption of perfect quasiparticles with a spectral weight A~k/~p(ω) = δ(ω − εS/T~k/~p

)

[10]. For small voltages U � EF and a constant DOS of the tip system, νT (ω) =
1/VT

∑
p Ap(ω) ≈ ν0

T , Eq. 4.6 can be rewritten as [10]

Ie(U) = 4πν0
T e |te|

2

∫ ∞
−∞

dω
[
nF (ω)− nF (ω + eU)

]
νS(ω) . (4.7)

Here, the DOS of the superconductor is νS(ω) = 1/VS
∑

k Ak(ω). As a result, the differ-
ential conductance is given by [10]

dIe

dU
= −4πν0

T e
2 |te|2

∫ ∞
−∞

dω n′F (ω + eU)νS(ω)

= −σ0

∫ ∞
−∞

dω n′F (ω + eU)ν̃S(ω) , (4.8)

with ν̃S(ω) = ν(ω)/ν0
S as the normalized DOS of the superconductor and

σ0 = 4πν0
Tν

0
Se

2 |te|2 as the elastic conductance in the normal state. n′F (ω + eU) is the
Fermi-Dirac broadening which results from the derivative of the Fermi function. For
sufficiently low temperatures2, n′F (ε) ≈ −δ(ε), and Eq. 4.8 is further simplified to [10]

dIe
T=0

dU
= 4πν0

T e
2 |te|2 νS(−eU) = σ0ν̃S(−eU) . (4.9)

In this case, it is obvious that the differential conductance is proportional to the nor-
malized DOS ν̃S(ω) of the superconductor. The corresponding elastic contribution to
the second derivative of the tunneling current in the case of an SIN-junction is then
given by [10]

d2Ie

dU2
= σ0ν̃

′
S(−eU). (4.10)

Note that for tunneling into metallic samples in the normal state (NIN-junctions), the
elastic differential conductance is energy-independent on low-energy scales. As a re-
sult, in that case the elastic part of the second derivative of the tunneling current van-
ishes.

A comparison of Eq. 4.8 and Eq. 4.9 reveals that Eq. 4.8 can be written as a convolu-
tion of Eq. 4.9 with a thermal broadening function χ(T ):

dIe

dU
=
dIe

T=0

dU
∗ χ(T ). (4.11)

In the case of features in the first derivative of the elastic tunneling current, χ is given
by [54, 81]

χ(E, T ) = nF (E)′ =
−1

2kBT
sech2(E/kBT ). (4.12)

2T � EF in the normal conductor or T � ∆ in the superconductor with an energy gap ∆.
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Figure 4.2: Illustration of the temperature
broadening function in the case of the first
derivative of the tunneling current (red)
in comparison to a Gaussian distribution
(orange).
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This results in a broadening that can be approximated by a Gaussian distribution with
a full width at half maximum (FWHM) of 3.2 kBT [81] (see Fig. 4.2). The thermal broad-
ening is a limiting factor of tunneling spectroscopy3. This is the reason for the usage
of low-temperature STM such as the JT-STM or DT-STM described in the last chapter.
As already mentioned in the previous chapter, a lock-in technique is used for the mea-
surement of derivatives of the tunneling current in order to enhance the signal-to-noise
ratio. However, the use of lock-in technique leads to an additional broadening of the
experimental data. Because, the original DC tunneling voltage signal is modulated by
an AC-voltage:

U = U0 + U∆ · cos(ω), (4.13)

where U∆ denotes the amplitude. As a result, the tunneling current oscillates as well
and can be expanded to a Taylor series of the modulation voltage:

I(U) = I0 +
∂I

∂U

∣∣
U0
U∆ · cos(ω) +

∂2I

∂U2

∣∣
U0
|U∆ · cos(ω)|2 +O(cos(ωt)3). (4.14)

The prefactor of the second term corresponds to the differential conductance and oscil-
lates with the same frequency as the modulation voltage. Within the lock-in amplifier,
the reference signal of the internal oscillator is multiplied by the incoming signal and
passes a low-pass filter afterwards. Thus, all contributions at frequencies unequal to
the reference signal are averaged out and the desired signal can be obtained at a lower
noise level. In general, there is a phase shift between the original signal and the ref-
erence signal due to capacitive or inductive components. This phase shift has to be
adjusted in order to get the optimal and correct output signal. Similarly, the prefac-
tor of the third term in Eq. 4.14 corresponds to the second derivative of the tunneling
current and oscillates with twice the frequency of the modulation voltage. The use
of a lock-in amplifier leads to an additional broadening term for features appearing
in the derivatives of the tunneling current. Therefore, the correct formulation of the
differential tunneling conductance including the experimental broadening is given by

dIe

dU
=
dIe

T=0

dU
∗ χ(T ) ∗ φ(U∆). (4.15)

3Note that in contrast to NIN and SIN tunnel junctions, for a SIS tunnel junction, the thermal broaden-
ing is almost negligible as long as the temperature is T ≤ 0.5 Tc [81].

48



4.2 Scanning Tunneling Spectroscopy

Figure 4.3: Illustration of the modulation
broadening function in case of the first
derivative of the tunneling current (blue).
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In addition to Eq. 4.11, a convolution with a second function, namely the broaden-
ing function φ(U∆) which originates from the voltage modulation, is considered. For
features in the first derivative, the elastic tunneling current φ is given by [54, 81]

φ(U∆) =
2

π
Re

√
U2

∆ − E2

U2
∆

. (4.16)

The shape of this function is a semicircle with a width of 2 eU∆ [81] and deviates sig-
nificantly from a Gaussian distribution (see Fig. 4.3)4.

4.2.3 Inelastic Tunneling (ITS)
In order to formulate the inelastic part of the total tunneling current, one has to start
again from Eq. 4.2, now including the phonon fields and the corresponding propaga-
tors [10]. Then, the inelastic tunneling current is given by [10]

I i = −4πe

∫
dω1dω2

1

V 2
S VT

∑
k,p,q
µ

∣∣∣T i
k,p,q,µαq,µ

∣∣∣2 (4.17)

[
Aq,µ(ω1)Ak(ω2)Ap(ω2 − ω1 + eU)

(
nF (ω2 − ω1 + eU)nB(ω1)

[
1− nF (ω2)

]
− nF (ω2)

[
1 + nB(ω1)

][
1− nF (ω2 − ω1 + eU)

])
+Aq,µ(ω1)Ak(ω2)Ap(ω2 + ω1 + eU)

(
nF (ω2 + ω1 + eU)

[
1 + nB(ω1)

][
1− nF (ω2)

]
−

nF (ω2)nB(ω1)
[
1− nF (ω2 + ω1 + eU)

])]
.

Here, VS,T is the normalization volume of the sample/tip, T i
k,p,q,µ is the momentum-

dependent inelastic tunneling matrix element, nF,B is the Fermi-Dirac/Bose-Einstein
distribution and α is the electron-phonon coupling parameter. Eq. 4.17 considers all of
the possible inelastic tunneling processes for U < 0 and U > 0 via the emission (spon-
taneous and stimulated) or absorption of a boson in the sample. Ak/p(ω) describes the

4Sometimes, the total broadening is still approximated by Gaussian distribution with a combined
FWHM of both broadening functions, FWHM =

√
(3.2kBT )2 + (2U∆)2, even though one has to ac-

cept a small error in this case.
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quasiparticle spectral function and Aq,µ(ω) corresponds to the phononic spectralfunc-
tion. The DOS of the superconductor/tip is then given by ν(ω)s,t = 1/Vs,t

∑
k,p Ak,p(ω)

[10]. An electron can either tunnel from the normally conducting tip to the supercon-
ducting sample via the absorption (first term in Eq. 4.17) or spontaneous and stimu-
lated emission (third term in Eq. 4.17) of a phonon. Of course, the electron can also
tunnel the other way from the sample to the normally conducting tip emitting (second
term in Eq. 4.17) or absorbing (fourth term in Eq. 4.17) a phonon in the sample, as il-
lustrated in Fig. 4.4. Now, the same assumptions as in the case of inelastic tunneling

superconductor tip superconductor tip

superconductor tip superconductor tip

V>0

V<0

Figure 4.4: Illustration of the different tunneling options. Left panel: An electron tunnels from
the tip to a superconductor while absorbing (upper panel) or emitting (lower panel) a phonon.
Right panel: Electron tunnels from a superconductor to the tip while emitting (upper panel) or
absorbing (lower panel) a phonon. Taken from Ref. [10]

are made, and the emission/absorption of phonons in the tip are neglected (a tip with
a constant DOS around EF is considered). Furthermore, in the case of very low tem-
peratures (kBT � ωD), processes in which a phonon is absorbed can be neglected since
the number of these low-energy phonons is insignificant [10]. As was mentioned at the
beginning of this chapter, the tunneling amplitudes can be considered to be indepen-
dent of momenta and phonon branches T i

k,p,q,µ = ti [10, 78]. Taking this assumption
into account, the weighted phonon DOS in a superconductor is now defined as [10]

α2Ftun(ω) =
1

VS

∑
q,µ

∣∣αq,µ
∣∣2Aq,µ(ω)

=
1

VS

∑
q,µ

∣∣αq,µ
∣∣2 δ(ω − ωq,µ) , (4.18)

where Aq,µ(ω) is the spectral weight of the phonons.
Inserting the definition of α2Ftun(ω) into Eq. 4.17 and assuming a particle-hole sym-

metric electronic system, the first derivative of the inelastic tunneling current can be
written (for sufficiently low temperatures kBT � ωD) as

dI i

dU
= σ0

∣∣∣∣ tite
∣∣∣∣2 ∫ dω α2F Ttun(ω + e |U |)ν̃S(ω)nF (ω). (4.19)

Here, α2F T
tun(ω) results from the convolution of α2F T=0

tun (ω) with the thermal broaden-
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4.2 Scanning Tunneling Spectroscopy

Figure 4.5: Illustration of the temperature
broadening function for the case of the second
derivative of the tunneling current (magenta)
in comparison to a Gaussian distribution
(orange).
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ing function χ(T ) = n′F [10]:

α2F T
tun(x) = −

∫ ∞
−∞

dy α2Ftun(y)n′F (y − x), (4.20)

with n′F as the derivative of the Fermi-Dirac distribution.
As already mentioned, features of inelastic tunneling processes are usually observed

in the second derivative of the tunneling current, which can be easily obtained from
Eq. 4.19 and, in case of the U > 0, is given by

d2I i

dU2
= eσ0

∣∣∣∣ tite
∣∣∣∣2 ∫ ∞

−∞
dω α2F T

tun
′(eU + ω)ν̃S(ω)nF (ω). (4.21)

Besides the thermal broadening, which can be described by the broadening function
χ(kBT ) and which is displayed in Fig. 4.5, the broadening due to the usage of lock-in
technique (see Fig. 4.6) affects the measurement of the second derivative of the tunnel-
ing current. The total broadening function Γ = χ(kBT )∗Φ(U∆) affects the measurement
of d2I/dU2 data and slightly deviates from the total broadening function which was
used for dI/dU data. In the next chapter, theoretical calculations of dI/dU and d2I/dU2

spectra will be compared to the experimental ones. In this regard, it is important to
state an equation for d2I i/dU2 that includes the total broadening function. It is given
by [10]

d2I i,exp

dU2
= eσ0

∣∣∣∣ tite
∣∣∣∣2 ∫ ∞

−∞
dE Γ(eU − E) (4.22)∫ ∞

−∞
dω α2F T

tun
′(E + ω)ν̃S(ω)nF (ω)

= eσ0

∣∣∣∣ tite
∣∣∣∣2 ∫ dω α2F

exp
tun
′(eU + ω)ν̃S(ω)nF (ω).

Finally, F exp
tun is the electron-phonon spectral function including thermal broadening

and broadening due to the modulation voltage:

α2F
exp
tun (x) = α2Ftun ∗ χ(T ) ∗ φ(U∆). (4.23)
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4 Theory of Scanning Tunneling Microscopy and Spectroscopy

Figure 4.6: Illustration of the modulation
broadening function in case of the second
derivative of the tunneling current (purple).
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Now, in the case of the second derivative of the tunneling current, the thermal broad-
ening function χ(T ) is different from the one given in Eq. 4.12. It is [54]

χ(E) =
1

kT
ex

(x− 2)ex + x+ 2

(ex − 1)3
x = E/kBT. (4.24)

This function is also approximately Gaussian-shaped with the FWHM of 5.4 kBT [54].
Besides, the modulation broadening function deviates from the one given in Eq. 4.16.
In the case of the second derivative of the tunneling current, it is given by [54]

φ(E) =
8

3π

1

(eU∆)4
(e2U2

∆ − E2)3/2 for |E| < eU∆ (4.25)

and it is zero in the case of |E| > eU∆. The FWHM of this function is 1.22 U∆
5.

NIN Now, let us move on to the case of tunneling with a normally conducting tip into
a normally conducting metal. In this respect, Eq. 4.19 can be seen as a generalization
of the first derivative of the tunneling current in the normal state, with ν̃S(ω) ≈ 1 in
the normal state [10]. In the case of a normally conducting sample, Eq. 4.22 can be
simplified to

d2I
i,exp
nc

dU2
≈ eσ0

∣∣∣∣ tite
∣∣∣∣2 ∫ ∞

−∞
dω α2F

exp
tun
′(eU + ω)nF (ω)

= eσ0

∣∣∣∣ tite
∣∣∣∣2 α2F

exp
tun (eU), (4.26)

given in the low-temperature limit (T � ωD, EF , such that nF (ω) ≈ θ(−ω)). It is now
apparent that an experimental spectrum of the second derivative of the tunneling cur-
rent d2I

i,exp
nc

dU2 , obtained in the normal state, is directly proportional to the experimentally
broadened bosonic (here phononic) spectral function α2F

exp
tun [10], which is per defini-

tion not equal to the Eliashberg function α2F (ω) (see definition in Eq. 2.34). However,
there is a striking similarity between α2Ftun(ω) (Eq. 4.18) and α2F (ω) (Eq. 2.34):

α2F (ω) =
1

ν0
SVS

∑
k,k’,µ

|αk-k’,µ|2 δ(ω − ωk-k’,µ)δ(εSk)δ(εSk’) (4.27)

5Compared to the case of a dI/dU spectrum, in the case of a d2I/dU2 spectrum, the deviation from a
Gaussian-shaped total broadening function is smaller.
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Figure 4.7: α2F (ω) and α2Ftun(ω) are shown, calculated by P. Hlobil for a simple cubic crystal
by using Eq. 4.18 and Eq. 4.27. Picture taken from Ref. [34].

even though it is not obvious at the first glance. But it becomes obvious in Fig. 4.7
where both α2F (ω) and α2Ftun(ω) are displayed next to each other. The calculation of
these two functions was performed by P. Hlobil [34] for a simple cubic crystal. Only
small differences are visible between the two functions in Fig. 4.7 which arise due to
a different momentum averaging in Eq. 4.18 and Eq. 4.27 [10]. Overall, both functions
are dominated by the phononic spectrum whereas the largest contribution comes from
the Van Hove singularities of the phonon dispersions.

In summary, the phononic spectral function defined above approximately equals the
real Eliashberg function [10]:

α2Ftun(ω) ≈ α2F (ω). (4.28)

In addition to previous results on Pb/Cu(111) [67], where the conformance (propor-
tionality) between the d2I

i,exp
nc

dU2 spectrum and the Eliashberg function could be observed
empirically, now, this similarity has been understood theoretically. Of course, elec-
trons can, in principle, also couple to other collective excitations of the system (see
[64, 66, 82, 83]). Similarly to the case of electron-phonon coupling, the inelastic contri-
bution of the second derivative of the tunneling current would then be proportional to
the corresponding coupling parameter and spectral function.

At the end of this chapter, the various contributions to the tunneling current and its
derivatives are summarized (see Tab. 4.1 for the zero temperature limit). Finally, one
has to keep in mind that the tunneling current and its derivatives are always composed
of an elastic and an inelastic contribution and that this total quantity is measured by
tunneling spectroscopy. The importance of the distinction between elastic and inelas-
tic contributions, which has been elaborated within the previous two sections, will
become apparent in the following chapters. As we will see, the disentanglement of
elastic and inelastic contributions in a combined theoretical and experimental effort
will simplify the interpretation of tunneling spectroscopy data. This will be done both
for tunneling into a normally conducting and into a superconducting sample. Espe-
cially the latter will become important in the case of tunneling into unconventional
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SIN T=0
U∆=0 el inel

dI
dU

σ0ν̃S(−eU) σ0

∣∣∣ tite ∣∣∣2 ∫ dω α2F T
tun(ω + e |U |)ν̃S(ω)nF (ω)

d2I
dU2 σ0ν̃

′
S(−eU) eσ0

∣∣∣ tite ∣∣∣2 ∫ dω α2F
exp
tun
′(eU + ω)ν̃S(ω)nF (ω)

NIN T=0
U∆=0 el inel

dI
dU

σ0 σ0

∣∣∣ tite ∣∣∣2 ∫ dω α2F T
tun(ω + e |U |)nF (ω)

d2I
dU2 0 eσ0

∣∣∣ tite ∣∣∣2 α2F
exp
tun (eU)

Table 4.1: Overview of the various elastic and inelastic contributions to the first and second
derivative of the tunneling current. For reason of clarity, the contributions to the tunneling
current are not displayed in this table, but can be found in the text.

superconductors.
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5 Coupling to Real and Virtual
Phonons in Tunneling Spectroscopy
of Superconductors

After the previous chapter, which showed how elastic and inelastic features can be
separated from a theoretical point of view, the present chapter focuses on experiments.
For two reasons, thin Pb films on a n-doped Si(111) substrate turned out be an ideal
system for the investigation of the influence of inelastic processes on the tunneling
spectrum of a superconductor. Firstly, Pb films with a thickness smaller than the Fermi
wavelength remain superconducting when they are grown on a Si(111) substrate. This
is in contrast to thin Pb films grown a Cu(111) substrate where superconductivity is
suppressed due to the proximity effect [67]. Secondly, thin Pb films exhibit type II su-
perconductivity [84, 85] with an upper critical field Bc2 < 1 T. This allows to study real
and virtual phonons in the superconducting state and in the normal state at the very
same position of the sample with the very same tip and at the very same tempera-
ture (and the same energy resolution), simply by switching on and off a magnetic field
of around 1 T. In combination with the theoretical assumptions of the previous chap-
ter, this chapter will provide instructive information on elastic/inelastic tunneling and
virtual/real coupling to phonons. The content of this chapter is based on Ref. [10].

5.1 Experimental Details of the System Pb/Si(111)

Silicon pieces of 0.5 x 0.5 cm were cut from a Si(111) wafer and fixed on a molybdenum
sample plate by spot welding two tantalum stripes. After being transferred to the UHV
preparation chamber, the samples were carefully degassed at 700 ◦C for several hours
and then flashed to 1150 ◦C for 30 s in order to remove the native oxide [10]. For the de-
position of Pb, the MBE technique was applied (see Sec. 3.2.2) at an operating pressure
of 4.4· 10−10 mbar after cooling down the Si(111) substrate to room temperature. Pb
(wire of high purity: 99.9985 %, Alfa Aesar) was evaporated from a Knudsen cell with
a deposition rate of 1.9 monolayers/min and a nominal thickness of 19 monolayers
(ML). The parameters for operating the Knudsen cell were set to Ifil = 2.5 A for the fil-
ament current and U = 284 V for the high voltage U between crucible1 and filament,
leading to an emission current of Iem = 7.5 mA and a flux of 586 nA. The samples were
immediately transferred to the JT-STM (see section 3.1) after the deposition process

1Since the appropriate vapour pressure for the evaporation of Pb is reached at a temperature that
is higher than the melting point of Pb, which is only 327 ◦C [86], the lead wire is arranged in a
molybdenum crucible.
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5 Coupling to Real and Virtual Phonons in Tunneling Spectroscopy of Superconductors

Figure 5.1: 3D illustration of an STM to-
pography taken at U = 1 V, I = 100 pA.

has been completed [10]. The measurements were done at a temperature of T = 0.8 K.
A chemically etched tungsten tip was used because it does not show significant inelas-
tic signals within an energy range of |U | < 15 mV. In Fig. 5.1, a topography is shown,
giving an overview of the surface. The growth mode of the present system is a so-
called Stranski-Krastanov growth in agreement with previous studies [87–89]. Hence,
3D, flattop, wedgelike islands of diameters of more than 400 nm appear on the top of
a conducting wetting layer (WL). Since the minimal size of the Pb islands is 0.16µm2,
features coming from a Coulomb blockade effect can be excluded in the following. This
is reasonable since the corresponding charging energy Ec = e2/2C ≈10−2 meV of an is-
land is much smaller than the corresponding thermal energy2. Besides, the energies at
which the relevant features appear in the differential conductance (see e.g. Fig. 5.3) are
significantly higher than the charging energy. In Fig. 5.2, a more detailed topography
is depicted, showing islands of a height of x ≈ 30 ML. Similar to previous investiga-
tions [88, 90, 91], these are single crystal islands with their 〈111〉 axis perpendicular to
the substrate [10]. The spectroscopic measurements were done on the island that is
marked by an arrow.

5.2 Tunneling to the Normal State

Prior to the presentation of the measurements on the superconducting Pb islands, the
results for tunneling into their normal state are discussed in order to tie in with previ-
ous experiments [67] in which thin Pb films (≈ 10 ML) were grown on a Cu(111) sub-
strate and remained in the normal state due to the proximity effect. For the present case

2In order to estimate the charging energy, the tunneling junction was modeled as a plate capacitor
C = ε0

A
d ≈ 5· 10−15 F with d ≈ 3 Å as the tip-sample distance.

56



5.2 Tunneling to the Normal State

Figure 5.2: STM topography of
Pb/Si(111): The image was recorded
during constant-current mode with a
current of I = 1 nA and a bias of 1 V.
Flat islands with a thickness of x ≈
30 monolayers appear on the top of a
wetting layer. Taken from [10].

of thicker Pb islands (≈ 30 ML) on a Si(111) substrate, the normal state was achieved
by applying a magnetic field of 1 T (perpendicular to the surface) [10]. The electrons
in these films have discrete quantized momenta kZ that are perpendicular to the sur-
face normal, which results in the observed growth of islands. However, firs-principles
calculations [48, 92] show that the phonon DOS of the finite thickness films with di-
mensions that are comparable to those of the present experiment do not differ much
from that of bulk Pb [10]. Tab. 4.1 reveals that the simplest way to access the DOS of
phonons that couple to the electrons, i.e., α2Ftun(ω), is by measuring d2I/dU2 spectra
in the normal state of the sample. In this case, the elastic part vanishes and does not
affect the d2I/dU2 spectra. As a result, the quasiparticle DOS is not significantly renor-
malized and stays rather constant.

Second derivative of the tunneling current In Fig. 5.3, the d2I/dU2 spectrum that
was measured in the normal state of the sample is shown. According to Tab. 4.1, it
is directly proportional to the experimental Eliashberg function α2F

exp
tun (ω). The spec-
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Figure 5.3: Measurement of the second derivative d2I/dU2 ∼ α2Ftun(ω) of the sample in the
normal state (T = 0.8 K, B = 1 T), taken from Ref. [10]. The marked area under the curve serves
to estimate the inelastic tunneling amplitude (see text below).

trum was measured with a Femto lock-in amplifier and the modulation voltage was
set to U∆ = 621µV. Taking the thermal broadening at T = 0.8 K into account, this leads
(besides the intrinsic linewidth of the excitation) to an energy resolution of 832µeV.
Hence, the total broadening of the features in the d2I/dU2 spectrum of Fig. 5.3 can be
explained by a convolution with a Gaussian distribution with a standard deviation of
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5 Coupling to Real and Virtual Phonons in Tunneling Spectroscopy of Superconductors

σ = FWHM/
√

8ln2 = 353µeV. This broadening will be used in the following when com-
paring experimental data to theoretical calculations, as all the spectra shown within
this chapter were taken with the same tunneling parameters (e.g., modulation volt-
age, current setpoint, temperature). In Fig. 5.4, the curve from Fig. 5.3 is compared to
the results of a previous investigation of Pb/Cu(111) [67] (see also Fig. 2.16). Strong
similarities can be recognized. Two peaks are clearly visible at energies ωl,t corre-
sponding to Van Hove singularities of longitudinal and transversal phonons. On the
whole, the measurements done on Pb/Cu(111) [67] and on Pb/Si(111) [10] are basi-
cally similar and are directly proportional to a weighted phononic spectrum which is
approximately the Eliashberg function. For the present results of Pb/Si(111), which are
shown in Fig. 5.3, the peaks are located at U = 4.05 mV ≈ ωt and U ≈ 8.3 mV ≈ ωl and
consequently coincide with the energies of the transversal and longitudinal Van Hove
singularities in the phonon DOS of lead quite well [10, 47, 48]. The values of FWHM
of the transversal and longitudinal modes are γt = 1.076 meV and γl = 0.60 meV and
were determined by fitting two Lorentzian functions to the measured data. They are in
good agreement with values known from literature [50]3. By taking again a closer look
at Fig. 5.3, a third peak at U≈ 12.5 mV can be seen which can be explained by tunneling
processes via two-phonon emission. Probably, the second peak already includes such
two-phonon processes [10]. Such possible multi-phonon processes are now included
for the theoretical calculation of the inelastic contributions to the tunneling current4.
If multi-phonon processes are included, Eq. 4.26 can be generalized in the case of zero
temperature and modulation voltage to [10]

d2I i,(n)

dU2
= σ0

∣∣∣∣ti,(n)

te

∣∣∣∣2 sign(U)α2nF n
tun(e |U | − ω) (5.2)

with

α2nF n
tun(ω) =

∫ ∞
0

dω1 . . . dωn−1 α
2Ftun(ω − ω1)α2Ftun(ω1 − ω2) . . . α2Ftun(ωn−2 − ωn−1)

(5.3)

as the convolution of the n-th order of α2Ftun. In P. Hlobil’s PhD thesis [34], it was
shown that a theoretically calculated spectrum according to Eq. 5.2 is able to approxi-
mately reproduce the experimental ones shown in Fig. 5.4.

By taking a closer look at Fig. 5.3, another feature can be seen very close to the Fermi
energy. This feature can be related to a zero bias anomaly and can be ignored in the
following interpretations.

So far, the tunneling electrons have been shown to excite real bulk phonons when
they are tunneling into a normally conducting Pb film, which is visible as inelastic ex-
citations in a d2I/dU2 spectrum. Therefore, we could reproduce recent results that were

3By fitting Gaussian functions, the obtained values are only slightly higher.
4In this case, Eq. 4.26 was generalized to

d2I i

dU2
= sign(U) · σ0

e

[
α2Ftun(e |V |)

(E2
offν

s
F )1

+
α4F 2

tun(e |V |)
(E2

offν
s
F )2

+
α6F 3

tun(e |V |)
(E3

offν
s
F )1

+ ...

]
. (5.1)
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Figure 5.4: Comparison of the d2I/dU2

spectra measured in the normal state
in the case of Pb/Cu(111) [67] and a
Pb/Si(111) [10] system.

obtained by Schackert et al. on the Pb/Cu(111) system [67]. The new insight concern-
ing the present Pb/Si(111) system is the knowledge about the exact formulation of the
second derivative of the tunneling current (see Eq. 5.2 and Eq. 4.26). Now, we use this
information to go a step further. By means of a complete calculation of the different
contributions to the tunneling current, we want to disentangle elastic and inelastic con-
tributions in the experiment, not only in the normal state, but in the superconducting
state as well. In Eq. 5.2 and Eq. 4.26, the equation for d2I inel/dU2 contains a propor-
tionality constant |ti/te|2. It describes the ratio of the elastic and inelastic tunneling
amplitudes. The question is how to determine this ratio in order to be able to perform
a complete calculation of Eq. 5.2 and Eq. 4.26. In the following, we will start with an
estimation of the amplitude of the inelastic tunneling contributions ti and show that it
can be expressed in terms of the elastic one te.

Inelastic tunneling amplitude Before explaining how to determine the inelastic tun-
neling amplitude, it is useful to clarify the following: The tunneling Hamiltonian,
which was introduced at the beginning of the last chapter in Eq. 4.3 and Eq. 4.4, is
a low-energy Hamiltonian and results from a corresponding purely elastic high-energy
Hamiltonian by integrating out the high-energy degrees of freedom (for details see
Ref. [11, 34]). The crucial factor when using this high-energy Hamiltonian is that in-
elastic tunneling processes occur naturally when an electron tunnels from an initial
state |i〉 in the tip to a high-energy off-shell state far away from the Fermi surface. An
off-shell state is a virtual state, so it is not a stationary state of the system [93] and does
not correspond to a well-defined energy value [93]. After occupying such a virtual
state for a short moment, the electron relaxes to a final state |f〉 while there is the pos-
sibility of exciting real particles, such as real phonons. The energy is not conserved for
the tunneling process to the virtual state, but as far as the total transition |i〉 → |f〉 is
concerned, the energy is conserved. Such a tunneling process is sketched in Fig. 5.5.
Here, an electron in a state k’ in the tip (white point) can either tunnel elastically di-
rectly to a state near the Fermi energy (arrow pointing directly to black point) or to an
off-shell state p (red point) with a probability tek,p and it is then inelastically scattered to
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Figure 5.5: The tunneling processes appearing
when tunneling from a normally conducting
tip to a superconducting sample. The electron
from the tip (white circle) can either tunnel elas-
tically to a state near the Fermi surface (direct
arrow to black spot) or via an high-energy off-
shell state (red circle) to a state near the Fermi
surface while creating a phonon. Taken from
Ref. [11].

a state k close to the Fermi energy (other black point) via the emission/absorption of a
boson (green wiggly arrow) [11]. The probability amplitude of a particle propagating
from a position x to a position y can be explained by propagators. In Ref. [11, 34] it is
explained that the propagator that corresponds to the tunneling to this off-shell state
can be estimated by an inverse energy scale 1/D. Consequently, one can assume that
also the ratio

∣∣ti∣∣ / |te| ≈ 1/D can be approximated by this inverse energy scale [10, 11].
The determination of ti can be done experimentally if the measured first derivative

of the tunneling current in the normal state is taken into consideration. According to
Tab. 4.1), it consists of a constant elastic contribution in addition to an inelastic contri-
bution dI tot/dU = dIel/dU + dI inel/dU . The experimental data is displayed in Fig. 5.6.

At zero energy and at zero temperature, the differential conductance is purely given
by its elastic part since at this energy there are no inelastic excitations. In metals, the
elastic differential conductance is usually a constant. The spectrum shown in Fig. 5.6
is normalized to its conductance at zero energy σ0 = σ(0 meV) = dIel/dU(0 meV). This
normalization shows that the differential conductance increases about 12 % within an
energy range of 0-10 meV. This increase is due to inelastic contributions from the lon-
gitudinal and transversal bulk phonons in the system. Hence, the differential con-
ductance at 10 meV is composed of an elastic and an inelastic part dI/dU(10 meV) =
σ(10 meV) = σ0 + dI inel/dU(10 meV) = σ0 + 0.12σ0. The difference of two different
values of a function is equal to the area under a curve displaying the corresponding
derivative of this function. Applying this to the spectrum shown in Fig. 5.6, the differ-
ence of the differential conductance σ(10 meV) − σ(0 meV) is equal to the area under
the curve of the second derivative of the tunneling current which is depicted in Fig. 5.3
(within the energy range of 0 meV-10 meV) and can be calculated by [10]

σ(10 meV)− σ(0 meV) =
σ0

νF

∣∣ti∣∣2
|te|2

∫ 10 meV

0

dωα2Ftun(ω) ≈ 0.12σ0. (5.4)

Now, we can extract the following information from the experimental data: The in-
elastic contributions are 0.12 times the elastic ones, d2I inel/dU2 = 0.12 · d2Iel/dU2. In
order to determine a real value of the prefactor

∣∣ti∣∣ / |te|, the experimentally established
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Figure 5.6: Differential conductance measured in the normal state. The spectrum was recorded
at the same time as the second derivative of the tunneling current shown in Fig. 5.3 and con-
sequently with the same tunneling parameters. Simultaneous recording is possible by using
two phase-locked lock-in amplifiers (one at the modulation frequency and one at twice the
frequency).

Eq. 5.4 is now combined with a theoretical consideration. Therefore, we assume that
α2Ftun ≈ α2F and we use the Eliashberg function from Ref. [53] as well as the exper-
imental DOS of Pb [94]. If these two functions are inserted in Eq. 5.4, |te| /

∣∣ti∣∣ can be
calculated [10]:

D ≈ |t
e|
|ti|
≈

√∫ 10 meV

0
dωα2F (ω)

0.12νF
= 313 meV. (5.5)

It has an actual value of 313 meV [10] and is a measure of the energy scale of the off-
shell states.

The corresponding energy bandwidth can be estimated without taking into account
any experimental input [34]. It is necessary to take into consideration that D is bound
by an upper and a lower limit [34]. The lower limit is given by the low-energy cutoff
of the Eliashberg theory, ωc ≈ 10ωD. In the case of Pb, ~ωD = 9.05 meV [95] and EF =
9.37 eV [95]. The upper limit of the bandwidth for the off-shell states is given by EF . A
value of D can be estimated by averaging over the off-shell energies [34]. In case of Pb,
this is

1

D
≈ 1

EF − ωc

∫ EF=9.37 eV

ωc=90.5 eV

dε

ε
=

1

496 meV
. (5.6)

This value is of the same order of magnitude as the one that was extracted by using the
experimental data.

In summary, in a combined experimental and theoretical approach, the prefactor∣∣ti∣∣2 / |te|2 could be determined which allows to calculate the elastic and inelastic con-
tributions of the tunneling current completely, not only in the normal state, but, as we
will see in the next section, also in the superconducting state. Furthermore, we learned
that the inelastic contributions are 12 % of the elastic ones. In the following we will see
that the ratio between elastic and inelastic contributions to the tunneling current can
even be of the same magnitude.
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5.3 Tunneling to the Superconducting State

Using the same tunneling parameters, the same tip and the same island, measurements
were performed in a way similar to the previous section but now at B=0 T in the super-
conducting state of the Pb islands.
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Figure 5.7: First derivative of the tunneling current measured in the superconducting state
(red), taken from Ref. [10]. For the blue curve, the calculated inelastic contribution to the tun-
neling current was subtracted. The black dashed line corresponds to a Dynes function with
Γ = 0.616 and ∆ = 1.051. The marked green area illustrates the inelastic contribution to the
differential conductance. The right panel clarifies that the contribution marked in blue origi-
nate due to the coupling to virtual phonons, while the green ones are due to a coupling to real
phonons.

In Fig. 5.7 the measured first derivative of the tunneling current is shown in red.
The superconducting gap is not fully developed. The reason for this is an intrinsic
one. It comes from the island thickness [84, 87, 88, 96–99], which is 30 ML ≈ 10 nm for
the present measurement. It is significantly smaller compared to the bulk coherence
length of lead (83 nm [100]). As a result, the spectral weight of the coherence peak is
suppressed [10]. The measured red spectrum in Fig 5.7 is again, according to Tab. 4.1,
composed of an elastic and an inelastic part. Besides the Bogoliubov features, fine
structures can be observed in the spectrum located around U = ωt + ∆ ≈ 5.3 mV and
U = ωl + ∆ ≈ 9.4 mV. These fine structures correspond to strong-coupling features
(c.f. Fig. 2.11) and occur at energies where Van Hove singularities are present in the
phonon DOS F (ω). Since the spectrum is measured in the superconducting state, the
features are now shifted by the superconducting gap size ∆ ≈ 1.2 meV to higher ener-
gies compared to the positions in the normal state (see Fig. 5.3). A further peculiarity
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5.3 Tunneling to the Superconducting State

at energies larger than 5 meV is the deviation of the usual BCS-type curve progression
of ω/

√
ω2 −∆2. This becomes visible by comparing the experimental data (red) with a

Dynes-Fit (black) of the form

ν = Re
[

ω + iΓ

(ω + Γ)2 −∆2

]
, (5.7)

where Γ = 0.616 and ∆ = 1.051 and which is shown in Fig. 5.7 as a black dotted
line. The deviation is due to the emergence of inelastic contributions. The latter are
illustrated within the light green area in Fig. 5.7 and can be calculated according to
Eq. 4.19. Subtracting this calculated inelastic contribution from the measured total
differential conductance, we end up with the blue spectrum in Fig. 5.7 where the curve
progression coincides quite well with the purely elastic, BCS-type one. This proves that
the light green shaded area indeed arises due to inelastic tunneling processes which
are the consequence of the coupling to real phonons. However, compared to the BCS-
type function of the quasiparticle DOS, the blue spectrum contains the strong-coupling
features which arise in the superconducting state due to the renormalization of the
quasiparticle DOS due to virtual phonons (Eliashberg theory). Compared to the total
differential conductance shown in red, the features are more pronounced in the elastic
contributions. The presence of these inelastic contributions partially overshadows the
quasiparticle DOS in the red spectrum and explains the weaker pronounced strong-
coupling features in this case.

In Fig. 5.9c and d, the results from Fig. 5.7 are compared to the data from planar
tunneling junctions measured by McMillan and Rowell [50]. In contrast to the the
measured dI/dU spectrum (red curve in Fig. 5.9c), the calculated elastic contribution
(blue spectrum in Fig. 5.7 and Fig. 5.9c) shows a better agreement with the results of
McMillan and Rowell [50]. This leads us to the assumption that inelastic contributions
play a minor role in planar tunneling junctions. Indeed, as seen for the normally con-
ducting case of the present experiment (see the previous sections), the inelastic amount
to about 12 % of the elastic ones in STM, so they are considerably larger than in pre-
vious measurements on planar tunnel junctions [4, 42, 46, 49, 52, 53]. The reason for
this deviation of about one order of magnitude [56] is the more restrictive momentum
conservation in the case of planar tunnel junctions. As a result, we draw the conclusion
that in STM, there are significant inelastic contributions to the tunneling current in the
normally as well as in the superconducting state that cannot be neglected.

In the case of the measurement of the second derivative of the tunneling current, this
behavior becomes even more pronounced. In Fig. 5.8, the corresponding total second
derivative of the tunneling current is shown, again in red. The fine structures at ωt+∆ =
5.3 meV and at ωt+∆ = 9.4 meV can now be seen more clearly. In the second derivative
of the tunneling current, they appear as peaks at slightly lower energies than ωt,l + ∆
and as dips at slightly higher energies than ωt,l + ∆ [10].

This differs considerably from the planar junction measurement done by McMillan
and Rowell [50] which is depicted in the left panel of Fig. 5.9b. There, mainly dips
at energies that are slightly higher than eU = ωt/l + ∆ are visible. In contrast to the
d2I/dU2 spectrum measured in the present case (red curve in Fig. 5.8), hardly any peaks
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Figure 5.8: Shown are the experimental second derivative of the tunneling current (red), the cal-
culated inelastic (green) and elastic (blue) contribution as well as the calculated total d2I/dU2

spectrum (black). Taken from Ref. [10].

are visible at energies around ∆ + ωt/l − γt/l in Fig. 5.9b. In total, one observes a much
better agreement of the curve in Fig. 5.9b and the calculated elastic contribution to the
second derivative of the tunneling current (see Fig. 5.9a). This illustrates the presence
of significant inelastic contributions to the experimental (red) curve in Fig. 5.8.

The derivation of the different contributions to the second derivative of the tunnel-
ing current were performed by P. Hlobil and J. Schmalian. The elastic contribution was
calculated in the following way [10]: In order to obtain the Pb DOS νS(ω) as a first step,
a parametrization of the Eliashberg function α2F (ω) and a value of the Coulomb pseu-
dopotential µ∗ from McMillan and Rowell was used [50, 101] for solving the Eliashberg
equations numerically [102]. Using Eq. 4.10 and Eq. 4.15, the elastic part of the second
derivative of the tunneling current can be calculated and is finally shown in Fig. 5.8
as blue dotted line. For the calculation of the inelastic contributions to a d2I/dU2-
spectrum, we follow Eq. 4.22. Therefore, the experimental data shown in Fig. 5.3 are
used and convoluted with the just explained quasiparticle DOS νS(ω) for the supercon-
ducting state. The experimental data in Fig. 5.3 intrinsically include the correct ampli-
tude of the inelastic tunneling current as well as for two-phonon processes is included
intrinsically5. The resulting d2I i/dU2 curve is shown in green in Fig. 5.8. There are fluc-
tuations on top of this curve which can be explained by instabilities of the sample-tip
system. As the calculation is based on experimental data (shown in Fig. 5.3), which is
always noisy due to residual mechanical vibrations. These vibrations are of the order
of 300 fm (which is a typical value of an STM setup) and are selectively enhanced by
the convolution with the calculated DOS νs and the broadening function. The calcu-
lated total second derivative of the tunneling current (black curve in Fig. 5.8) is simply
the summation of the calculated elastic and inelastic contributions.

It clearly resembles the experimentally measured d2I/dU2 spectrum (plotted in red
in Fig. 5.8). In the experimental (red) and calculated total (black) d2I/dU2 spectrum,
clear peaks are visible atE = ωt,l+∆−γt,l and clear dips are visible atE = ωt,l+∆+γt,l.

5Note that the measured second derivative of the tunneling current of the normal state corresponds
to the purely inelastic part (as long as the DOS of the metal is approximately flat around the Fermi
energy).
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Figure 5.9: a) The blue/light green line shows the purely elastic/inelastic d2I/dU2 spectrum in
the superconducting state which was calculated by subtracting the inelastic/elastic contribu-
tions from the measured total d2I/dU2 spectrum (see red curve in Fig. 5.8). The light green line
is compared to the measured d2I/dU2 spectrum in the normal state (dark green line). b) The
d2I/dU2 spectrum, which was measured by McMillan and Rowell by using a planar tunneling
junction. Data taken from Ref. [50]. c) This figure has already been shown in Fig. 5.7. The
measured dI/dU spectrum (red) and a Dynes function (dashed black line) are shown. Both are
compared to the elastic dI/dU spectrum (blue), which was obtained by subtracting the calcu-
lated inelastic contributions from the measured spectrum (red). Taken from Ref. [10]. d) The
measured dI/dU spectrum of McMillan and Rowell is compared to a BCS spectrum. The data
for the former curve was taken from Ref. [50].
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It is interesting to note that in each spectrum (red and black), the absolute values of the
amplitudes of the peaks/dips around E = ωt,l + ∆− γt,l/E = ωt,l + ∆ + γt,l are almost
equal. In contrast, the calculated elastic contribution (blue) clearly differs from the
experimental data (red). Only dips are visible for E = ωt,l + ∆ + γt,l in this case.

The same holds for the spectrum, which is shown in Fig. 5.9b. This spectrum was
measured by McMillan and Rowell by using planar tunneling junction [50]. It has al-
ready been mentioned in Sec. 2.2 (see spectrum "A" in Fig. 2.14) when illustrating the
history of relevant tunneling experiments. It is similar to the blue curve in Fig. 5.9a.
The blue curve in Fig. 5.9a shows the purely elastic d2I/dU2 spectrum which was ob-
tained by subtracting the calculated inelastic contribution6 from the measured total
d2I/dU2 spectrum. The latter was shown in Fig. 5.8 (red curve). The measured dI/dU
spectrum of McMillan and Rowell that corresponds to Fig. 5.9a is shown in Fig. 5.9d
(red solid line) [50]. It is compared to a Dynes function. Furthermore, it is in agree-
ment to the elastic contribution of our measured dI/dU spectrum which is displayed
in Fig. 5.9c (blue). The two blue curves that are shown in Fig. 5.9c and d, exhibit
fine structures around the energies at which Van Hove singularities are present in the
phonon DOS. Furthermore, the behavior of both spectra resemble a BCS-type spectrum
(Dynes function).

The light green curve in Fig. 5.9a represents the purely inelastic d2I/dU2 spectrum
in the superconducting state. It was obtained by subtracting the calculated elastic con-
tributions from the measured total d2I/dU2 spectrum (see red curve in Fig. 5.8). It
strongly resembles the measured d2I/dU2 spectrum in the normal state (dark green
line in Fig. 5.9a), which naturally consists of only inelastic contributions. This illus-
trates once again that only the sum of the calculated inelastic and elastic part (black
line in Fig. 5.8) can explain the measured data (red line in Fig. 5.8).

Additionally, the comparison between the inelastic d2I/dU2 spectra in the normal
state (dark green curve in Fig. 5.9a) and in the superconducting state (light green
curve in Fig. 5.9a) illustrates remarkable similarities. This is a strong indication that
the phononic spectral function is not strongly renormalized when entering the super-
conducting state. Furthermore, it becomes obvious that these inelastic contributions
play a crucial role in the superconducting as well as in the normal state when doing
STM.

In order to rule out the possibility that strong-coupling features, which are only
due to the renormalization of the band structure and not due to the excitation of real
phonons, can create peaks in d2I/dU2-spectra which are of the same amplitude as their
dip-counterpart, a toy model, which was calculated by P. Hlobil and can be found in
the supplementary material of Ref. [10], is now shortly discussed. It goes beyond the
single-phonon model calculated by Scalapino et al. [51] which has already been dis-
cussed in Sec. 2.2.3. The model of Scalapino et al. could prove that the observed fine
structure in the DOS of Pb [4] has its origin in the renormalization of the band struc-
ture, so it is explainable within the Eliashberg theory. Therefore, these fine structures
are initially elastic features. The model that is presented in the following explicitly sep-
arates the elastic and the inelastic contributions and explains their shape in the second

6The related calculations were performed by P. Hlobil and J. Schmalian [34].
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derivative of the tunneling spectrum. For this toy model, a single Lorentzian-shaped
phonon mode located at ω0 = 5 meV and with a weighted phonon DOS of

α2Ftun(ω) ' α2F (ω) = A0f(ω)
γ0

(ω − ω0)2 + γ2
0

(5.8)

is taken into account, where γ0 is the half width at half maximum and f(ω) = ω2

ω2+(1 meV)2

[10]. In the description of superconductivity in the first chapter, the electron-phonon
coupling parameter λ was introduced (see Eq. 2.28). In case of lead, λ can be approx-
imated to be ≈ 1.5 [10, 53]. With the help of this value, the amplitude A0 can be es-
timated. The Coulomb pseudopotential is assumed to be µ∗ = 0.1, resulting in a gap
value of ∆ '1 meV from the Eliashberg equations [10]. In Fig. 5.10 the different con-
tributions to the corresponding second derivative of the tunneling current are shown
for two different widths for the phonon peaks. The same ratio of elastic and inelastic
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second derivative of the tunneling current for
two different peak widths γ0 are shown. The total
d2I/dU2 spectrum (black) shows an arising peak
at a slightly lower energy than ∆ + ω0 with the
same amplitude as the following dip at a slightly
higher energy than ∆ + ω0. It occurs due to the
presence of the inelastic part (green) showing a
peak at ∆ + ω0 which occurs in addition to the
elastic part (blue). The resulting peak in the elas-
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following dip, even in the case of a very sharp
mode. Taken from Ref. [10].

tunneling contributions
∣∣ti/te∣∣2 ≈ 0.12

∫ 12 meV

0
dωα2F (ω) as in the above-described ex-

periment was used. Fig. 5.10 shows that the peak in the inelastic part is located at a
slightly lower energy than the phonon mode at ∆ + ω0. Furthermore, it can be seen
that even for a sharp phonon mode with a width of γ0 = 0.25 meV, this peak has a con-
siderably smaller amplitude than the one in the inelastic contributions and than the
following dip at ∆ + ω0. Generally, it turns out that this peak in the elastic part of the
second derivative of the tunneling current will never reach the same absolute values
of the amplitude as its dip counterpart.

Summarizing this chapter, we can say that our measured d2I/dU2-spectrum in the
superconducting state, which is shown in Fig. 5.7 and Fig. 5.8, is composed of an elastic
and an inelastic part which is due to the presence of virtual and real phonons in the
system. Here, the inelastic part cannot be neglected in the interpretation of the data.
This is in contrast to planar junction measurements, in which the inelastic part has
not been observed, possibly due to the different tunneling geometry. Nevertheless,
at this point, there is a risk of a misinterpretation regarding the Eliashberg function.
Of course, by using the McMillan inversion algorithm [50, 101], STM spectra can be
analyzed in the same way as planar junction data. Nevertheless, in the case of STM
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5 Coupling to Real and Virtual Phonons in Tunneling Spectroscopy of Superconductors

data, the inelastic contributions have to be subtracted from the experimental data in
order to avoid wrong conclusions related to the pairing glue [10].

The following chapters of this thesis will deal with unconventional superconductiv-
ity. We will apply the same method of disentangling elastic and inelastic contributions
to the tunneling current and its derivatives in the case of unconventional supercon-
ductors. Hence, the findings of the present chapter are not only important in view of
conventional superconductors, but can be applied to unconventional superconductors
in a next step as well [10, 11]. This will become clear in the following chapters.

The application to unconventional superconductors is a bit more complicated. In
contrast to the phononic pairing in the case of conventional superconductors, an elec-
tronic pairing might be the reason for superconductivity in unconventional super-
conductors. In the case of an electronic pairing, for example the coupling of spin-
fluctuations to electrons, can cause a change in the spin dynamics. In the case of tem-
peratures lower than Tc, new features such as spin resonance mode occur [103–108],
which makes things more complicated. We will see that even in the case of unconven-
tional superconductors, tunneling spectra can be interpreted on the basis of a coupling
between electron-like quasiparticles and a collective mode.

The next chapter will give an introduction to some features of unconventional super-
conductors (especially iron-based superconductors) that will allow for an explanation
of the following experimental results.
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6 Iron-Based Superconductors

All systems in which the attractive interaction between the electrons is caused by the
interaction between electrons and lattice vibrations belong to the class of conventional
superconductors. In this case, superconductivity is mediated by phonons. For sim-
ple metals, the electron-phonon coupling can overcome the Coulomb repulsion due
to screening and large retardation effects. Here, the electrons move independently of
the atoms since they act on different time scales (c.f. Born-Oppenheimer approxima-
tion and Migdal theorem). In the case of conventional superconductors, Tc is robust
against a small amount of non-magnetic impurities (Anderson theorem). Less than 1%
of magnetic impurities destroy superconductivity [109]: A magnetic atom brings about
an additional localized and non-shielded spin [109]. An electron passing this magnetic
impurity is forced to align its spin according to the localized spin [109]. However, a
spin-flip destroys the Cooper pair. The destruction of too many Cooper pairs results in
a breakdown of superconductivity. Before the discovery of the first class of supercon-
ductors which can be ascribed to unconventional superconductivity, Berndt Matthias
formulated six empirically acquired rules for a successful search for new superconduc-
tors [110].

• Transition metals are better than simple metals.

• There are favorable electron/atom ratios. (High electron DOS is good.)

• High symmetry is good; cubic symmetry is best.

• Stay away from oxygen.

• Stay away from magnetism.

• Stay away from insulating phases.

Against this background, it was surprising that the cuprates, discovered in 1986, and
the Fe-based superconductors, discovered in 2006 in the group of Hosono [8, 111], do
not follow the last four rules and show critical temperatures up to 130 K [112]. This
challenges our understanding of superconductivity massively. The once complete BCS
theory has to be drastically modified. So far, there is no theory describing this classes
of superconductors in general.

Measurements within this thesis were mostly done on iron-based superconductors.
For this reason, this chapter will highlight various properties of the unconventional
iron-based superconductors.
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6 Iron-Based Superconductors

6.1 Physical Properties

The era of iron-based superconductors started in 2006 with the discovery of the com-
pound LaOFeP by Kamihara et al. [8]. Investigations within this area developed
explosively with now around 46 200 publications (according to Google Scholar). Af-
ter the discovery of LaOFeP, many other compounds containing either iron-pnictide or
iron-chalcogenide layers were discovered . In general, iron-based superconductors can
be classified according to their crystal structure and composition into seven different
families, the 11, 111, 112, 122, 245, 1111, 42622 [113]. They are displayed in Fig. 6.1.

Figure 6.1: Taken from [114].

Iron-based superconductors turned out to be very interesting in many respects. Be-
sides higher expectations of the stability of technical applications, iron-based super-
conductors are in particular an interesting object of comparison to cuprates due to
their differences and similarities. Similarities are for example the dome-shaped phase
diagrams with antiferromagnetic parent compounds and a structural phase transition
which is often accompanied by a magnetic phase [115]. Furthermore, superconductiv-
ity takes place in the rather two-dimensional CuO2, respectively, Fe-pnictides/chalcogenide
layers.
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Multiband character A significant difference from cuprates is the multiband charac-
ter of the iron-based superconductors in which all of the five Fe 3d orbitals contribute
to the low-energy electronic structure near the Fermi energy [116–119], whereas only
the dx2−y2 band is of importance in cuprates. For iron-based superconductors, multiple
bands crossing the Fermi energy result in disconnected Fermi surfaces with hole-like
Fermi surfaces around the Γ point and electron-like surfaces around the M point (see
Fig. 6.2). This favors exotic Cooper pairing symmetries as we will see later. Neverthe-
less, the nature of the pairing symmetry as well as the Cooper pairing mechanism is,
in spite of many investigations, not fully understood.

6.1.1 Phase diagram

Most of the iron-based superconductors share a common phase diagram which is
sketched in Fig. 6.3. Depending on the doping concentration, which can be due to
a hole/electron or isovalent doping, the system can be in a paramagnetic, magnetic
or superconducting phase. Additionally, a structural transition occurs from a high-
temperature tetragonal phase to a low-temperature orthorhombic phase. For some
materials, a so-called nematic phase is observed in between.

Normal State In Chap. 2, it was mentioned that conventional superconductivity
arises as a result of an instability of the electron gas. In the case of iron-based super-
conductors, the normal state is a bit more complex than the simple electron gas picture
where the electrons can move freely. In the case of iron-based superconductors, the
Coulomb energy U (energy needed for putting two electrons at the same lattice site) is
sufficiently strong, which lead to electron correlations in the system. This means the
electrons cannot move independently. The Coulomb energy can be described within
the Hubbard model. In systems in which the number of electrons corresponds to a sin-
gle occupation of every lattice site, U =∞. The Coulomb energy is minimized if every
electron stays on its lattice site. This is almost the case for cuprates, where U is large,
but not infinite. In this case, an electron can virtually move to its nearest neighbor
position in the case of an antiferromagnetic ordering. However, it cannot move on to
its next nearest neighbor position (parallel spin alignment). Therefore, the system is an
antiferromagnetic insulator, which is called a Mott insulator. If U becomes smaller than
the electronic bandwidth W , a metallic behavior occurs. The metal insulator transition
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Figure 6.2: A typical Fermi surface of an iron-based
superconductor. Hole-like Fermi surfaces are lo-
cated around the Γ point (0,0) is sketched whereas
electron-like pockets are centered around the zone
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occurs at W ≈ U . The metallic behavior can be described within a hopping integral
in tight-binding models. Iron-based superconductors are semimetals, so U is not very
large, but on the other hand, is not negligible. Therefore, the normal state can usually
be described via a Hubbard model including a tight-binding term which allows the
hopping of electrons and accounts for the (semi)metal behavior [120, 121].

The superconducting phase, the SDW-phase as well as the nematic phase (even
though more complicated and not fully understood) occur as a result of an instability
leading to a phase transition at a certain critical temperature Tc. At a phase transition,
a new order parameter emerges. The Landau theory exploits the smallness of the order
parameter around the phase transition to explain phase transitions in general within
a mean field theory. In this respect, several physical quantities show a specific power
dependency at the phase transition tha is independent of the underlying system. The
Landau theory is a mean field theory, and therefore, it ignores correlations and fluc-
tuations [122]. However, near a phase transition, they become important, whereas the
correlation length ξ even diverges at the phase transition (at Tc). A correlation function
determines the correlation between two particles as a function of the distance between
them. A diverging correlation length means long-range correlations and leads to long-
range magnetic order.

In Fig. 6.2, dashed arrows indicate a so-called nesting for the ordering vector Q=(π,π).
Nesting means a mutual mapping of different parts of the Fermi surface. The corre-
sponding nesting conditions are more likely fulfilled in case of lower dimensions due
to fewer degrees of freedom. Perfect nesting means a one-to-one mapping of different
parts of the Fermi surface with εk = −εk+Q. This leads to a nesting instability below
a certain temperature. Even though the nesting conditions are not as perfect as for
the half-filled cuprates, the ideal case shows the following behavior: Similar to a free
electron system, the non-interacting susceptibility χ0

q diverges at Q even though this
singularity is reduced for higher dimensions (nesting conditions) [122]. Depending on
the size of the Coulomb repulsion, an antiferromagnetic or spin-density wave instabil-
ity occurs [121].

Spin-density wave ground state During a spin-density wave transition, a finite itin-
erant magnetic moment spontaneously forms [123]. A spin-density wave (SDW) is a
magnetic ground state of an itinerant system. In an itinerant system, the electrons with
a magnetic moment are rather delocalized and can move freely between the lattice
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sites. For this reason, the magnetic moment can vanish in the normal state, due to a
spin compensation of the ionic shells and the itinerant-electron spin density [123]. This
is in contrast to Heisenberg antiferromagnetism, where electrons and their momenta
are localized at specific lattice sites due to strong Coulomb repulsion [124]. In this
case, significantly larger magnetic moments are already present in the normal state. In
an SDW ground state, the spin density of the conduction electrons is spatially modu-
lated whereas the total charge density remains constant. In general, the modulation of
the spin density is incommensurate, since the occurrence of a spin-density wave is a
many-body phenomenon which is decoupled from the lattice.

A. W. Overhauser predicted the existence of this type of ground state in the 1960s
[125, 126]. Nevertheless, this ground state was experimentally verified much later, after
metallic materials with a linear chain structure has been discovered and investigated
[127]. An example for such a material is the (TMTSF)2PF6 (tetramethyltetraselenaful-
valene phosphorus hexafluoride) molecule which belongs to the so-called Bechgaard
salts [128]. Another famous example of an SDW material is chromium [129]. For a
uniform magnetization, the static susceptibility is given by [127]

χ(q = 0) =
2µ2

Bn(εF )

1− Un(εF )
, (6.1)

with χ0
q=0 = 2µ2

Bn(εF ). The susceptibility peaks at χ0
q=Q and is strongly temperature-

dependent. The phase transition finally occurs at a temperature TMF
SDW defined by [127]

Uχ0
q=2kF ,T

2µ2
B

= Un(ε)ln
1.14ε0
kBT

= 1, (6.2)

which gives [127]
kBT

MF
SDW = 1.14ε0e

−1/λe , (6.3)
with the electron-electron coupling constant λe = Un(εF ). Note the similarities be-
tween Eq. 6.3 and Eq. 2.25. Below TMF

SDW, a spatially varying magnetization develops.
In the case of a one-dimensional system, the spin density can be expressed by [130]

S = S0cos(2kF · x+ Φ), (6.4)

where kF is the Fermi wave vector, x the atomic chain distance, and Φ denotes the
phase. In principle, an SDW can be considered as two charge density-waves (CDW),
one for the spin-up band and one for the spin-down band. In the simplest case, the
two density modulations have opposite sign and consequently same phase Φ. Never-
theless, if the phases of the density modulations are different, complex SDW structures
like spiral SDW can evolve [127].

Like in the case of superconductivity, a gap opens below the phase transition to the
SDW state. In the quasiparticle dispersion relation, this gap opens at ±kF . By analogy
with the weak coupling BCS relation in Eq. 2.26, one can formulate the following gap
equation [130]:

2∆ = 3.52kBT
MF
SDW. (6.5)

As we will see later in this chapter, spin excitations in the SDW phase can be described
within the dynamical spin susceptibility. Now, we will describe another type of phase
occurring in iron-based superconductors.

73



6 Iron-Based Superconductors

Nematicity In the case of some materials, a nematic phase besides magnetism and
superconductivity exist. The phase transition occurs at a temperature Tnem at which
the symmetry between the x and y directions in the Fe plane is spontaneously broken
which leads to a structural transition from a tetragonal to an orthorhombic lattice and
reducing the rotational point group symmetry of the lattice [131]. The time-reversal
symmetry remains preserved [131]. The phase transition can be of first order if the
magnetic and structural transition occur at the same temperature, like it is the case in
e.g. hole-doped (Ba1−xKx)Fe2As2 [131, 132]. On the other hand, it can be of second
order if the structural transition occurs at a higher temperature than the magnetic one
(e.g. for electron-doped Ba(Fe1−xCox)2As2) [131, 133–135]. Also for isovalently-doped
BaFe2(As1−xPx)2, a nematic phase could be observed, which also occurs in the electron-
doped case [136, 137].

It is difficult to denominate the leading order parameter that drives the nematic
phase, since according to experimental investigations, three order parameters are non-
zero at the same time [131, 133, 136, 138]. Furthermore, the underlying mechanisms
of the different order parameters influence each other turning the whole situation into
a causality dilemma. The three involved order parameters include a (phonon-driven)
structural transition, a charge/orbital order due to different occupations of the dxz,dyz
orbitals and a spin order with a different static susceptibility along the qx,qy directions
in the Brillouin zone [131]. The latter is usually related to divergent quadrupole mag-
netic fluctuations [131]. One idea is that the nematic state originates from an electronic
instability Ref. [131]. In Ref. [131], it is even proposed that this could be due to mag-
netic fluctuations. This means that in principle, the same electrons are responsible for
the nematic, SDW as well as the superconductivity instability, and it was supposed
that this leads to a strong competition between these phases [139–141].

The next section will focus on the superconducting phase even though superconduc-
tivity has been already explained in the first chapter of this thesis. The focus will be on
properties of unconventional superconductors in close proximity to a magnetic phase.
Subsequently, it will be shown from a theoretical point of view how unconventional
superconductivity becomes noticeable in tunneling spectroscopy.

6.2 Unconventional Superconductivity

Unconventional superconductors are material classes in which superconductivity is
not mediated by pure electron-phonon interactions. Besides the iron-based supercon-
ductors and cuprates, other material classes belong to unconventional superconduc-
tors, e.g., heavy fermion systems, discovered by F. Steglich in 1979 [142], and organic
superconductors [143]. For all of them, a competing magnetic phase close to the su-
perconducting phase exists [144]. Another characteristic of unconventional supercon-
ductivity is the breaking of an additional symmetry besides gauge symmetry at the
transition from the normal to the superconducting state, e.g., the breaking of time-
reversal, spin-rotation or translation symmetry [6, 145]. In all of the mentioned classes
of unconventional superconductors, electron correlations play an important role. Espe-
cially the cuprates and heavy fermion systems belong to strongly correlated electron
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6.2 Unconventional Superconductivity

systems in which electrons are almost localized at the atom positions. As a result,
the kinetic energy is quite small and the Coulomb repulsion is more effective, which
makes the retardation effect and the electron-phonon interaction difficult [146]. Nev-
ertheless, Cooper pairs can be formed. Even though there is no experimentally and
theoretically uniform proof of how the formation of Cooper pairs evolves for uncon-
ventional superconductors. There are various theories and experimental evidence how
it could happen. Of course, the detailed mechanism depends on the system under in-
vestigation. One crucial thought in order to resolve the conflict of Coulomb repulsion
was the consideration of Cooper pairs with non-zero angular momentum [6], probably
in accordance with the theoretical description of superfluid 3He which was discov-
ered by Osheroff, Richardson and Lee in 1972 [5] and identified as the "spin-triplet
p-wave generalization of BCS Cooper pairs" [6]. As described in 2.1, within BCS the-
ory, the electrons in a Cooper pair have opposite momentum and spin (see Eq. 2.16),
so they obey s-wave symmetry. The superconducting gap function was introduced in
Eq. 2.18. In general, this superconducting gap function can be classified after spin
s1, s2 and momentum l of the contributing Cooper pairs ∆l

s1,s2
and is also identified

as the order parameter. It is proportional to the amplitude of the wavefunction of the
Cooper pair Ψl

s1,s2
(K) = 〈ck,s1c−k,s2〉, where k is the quasiparticle momentum and c the

electron annihilation operator [147]. In the case of BCS theory, it was assumed to be
a k-independent, isotropic s-wave symmetry with total spin S and angular momen-
tum L which equals zero1. In general, the symmetry of the superconducting order
parameter adapt the symmetry of the underlying crystal and can be anisotropic as
well [148, 149]. Various possible symmetries of superconducting order parameters are
shown in Fig. 6.4 including symmetries beyond (an)isotropic s-wave. Spin-triplet su-
perconductivity, for example, cannot be described within the BCS theory within the
electron-phonon coupling picture [6]. In general, superconductors with a different
symmetry than the BCS ground state and especially with a lower symmetry than the
underlying crystal structure are classified as unconventional superconductors [148].

6.2.1 Symmetry of the Order Parameter

It is possible to classify the superconducting state by its symmetry [150]. For that pur-
pose, the BCS theory has to be extended. If we go back to Chap. 2 and take a look at
the equation for the superconducting order parameter (Eq. 2.18) in the case of the BCS
theory,

∆ = |geff |2
∑

k

〈c−k↓ck↑〉, (6.6)

|geff |2 is the pairing interaction and 〈ck,s1c−k,s2〉 is the pair wave function. The latter
can be rewritten as a product of an orbital φ(k) and spin-dependent part χs1s2 [6, 150]:

Fs1s2(k) = 〈c−ks1cks2〉 = Φ(k)χs1s2 . (6.7)

The parity of the pairing state determines the spin configuration. The wave func-
tion has to be antisymmetric under exchange of particles (Pauli principle): Fs1s2(k) =

1L and S are good quantum numbers in the case of neglecting spin-orbit coupling [147].
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6 Iron-Based Superconductors

−Fs1s2(−k). As a result, the gap parameter obeys the same symmetry ∆s1s2(k) =
−∆s2s1(k), which, in turn, can be rewritten in a more useful way in terms of a scalar
∆k and a vector d(k), and the components of the latter can be expanded in terms of
spherical Harmonic functions [6]:

dν(k) =
∑

ηνlmYlm(θk,Φk). (6.8)

Under parity operation k → -k, the scalar component remains even, while the vector
component turns out to be odd. Since solutions of the gap equation can either be even
or odd, but not a mixture, only spin-singlet or spin-triplet pairing exists. The latter oc-
curs in the case of odd values of the angular momentum l [6]. The reason for the differ-
ent pairing symmetries are due to the different particle-particle interactions. In the case
of 3He, for example, they are strongly repulsive at a short range. By choosing l = 1, the
probability for the two fermions to be at the same position in real space is small (due to
the parallel spin alignment), and hence, the Coulomb repulsion is not that important,
which finally leads to the effective attractive interaction2. For the effective attractive
interaction in 3He, the effective interactions including direct and indirect interaction
between quasiparticles are important. Near the Fermi energy, they are spin-dependent
because of the strong Stoner-enhanced ferromagnetic spin susceptibility. In this case,
the closeness to a ferromagnetic instability favors the spin triplet Cooper pairs [6]. This
scenario can not only be used to describe superfluid 3He but, other superconductors
with l 6= 0 as well. Escpecially systems in which the normal state Landau Fermi liquid
is close to a ferromagnetic (FM) or an antiferromagnetic (AFM) instability can obey at-
tractive quasiparticle-quasiparticle interactions despite predominant strong Coulomb
repulsion [6].
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Figure 6.4: Sketch of various symmetries for a superconducting order parameter. Adapted
from [149, 152].

2Kohn and Luttinger showed that Cooper pairing is in principle possible in the presence of repulsive
electron-electron interaction due to Friedel oscillations [151].
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6.2 Unconventional Superconductivity

There are several classes of theories considering possible non-phonon pairing mech-
anisms [153]. One possibility is to replace phonons by other collective bosonic exci-
tations. As mentioned, this scenario in which the mediating bosons are failed ferro-
magnetic spin fluctuations (ferromagnetic paramagnons) can be used to explain the
physics of superfluid 3He [153, 154], and has been proposed for the explanation of
several organic and heavy fermion superconductors [153, 155]. By analogy with fer-
romagnetic spin fluctuations, collective bosonic excitations due to antiferromagnetic
spin fluctuations can occur, which is proposed as an explanation of superconductivity
in many iron-based superconductor compounds. In these compounds, an antiferro-
magnetically ordered state is in close proximity to a superconducting phase.

A prominent theory for electronic pairing based on spin fluctuations is the spin
fermion model which will be discussed in Sec. 6.3. Before, spin fluctuations are dis-
cussed in more detail.

6.2.2 Spin Fluctuations

Spin fluctuations can be pictured as a random switching of spins. The spins are de-
flected by a mean value 〈q〉 from their equilibrium position q → δq = q − 〈q〉 [156].
Their quantum unities are collective boson-like magnetic excitations. In Chap. 2, the
dielectric susceptibility was introduced as a charge-charge correlation function. Simi-
larly, the spin susceptibility can be obtained from a spin-correlation function [156]:

C(r− r′) = 〈δq∗(r)δq∗(r′)〉. (6.9)

By using suitable spin-operators and by making use of the fluctuation-dissipation the-
orem, the spin-correlation function Sq(ω) can be written in frequency and momentum
space as [103]

Sq(ω) =
1

π

1

1− e−~ω/kBT
Im (χq(ω)). (6.10)

Here, Im (χq(ω)) describes the dissipation. By analogy with Chap. 2, in the case of the
Lindhard function, Im (χq(ω)) describes the lifetime of a spin-fluctuation excitation
before it decays into a many-body state (particle-hole continuum). The fluctuation-
dissipation theorem states a universal relationship between fluctuations and response
of a system to an external perturbation [103, 156]. The involved functions are linked
to possible collective modes [103]. The Fourier transformation of a causality-related
function such as χ(q, ω) is defined as [156]

χ(q, ω) = Reχ(q, ω) + iImχ(q, ω). (6.11)

Real and imaginary part are related to each other via the Kramers-Kronig relation

Reχ(q, ω) =
1

π

∫ ∞
−∞

dω′
Imχ(q, ω′)

ω′ − ω
(6.12)

Imχ(q, ω) =
1

π

∫ ∞
−∞

dω′
Reχ(q, ω′)

ω′ − ω
.
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Furthermore, it should be noted that the spin-correlation function Sq is experimen-
tally accessible and can be measured by inelastic neutron scattering (INS) experiments
[103]. A resonance mode was first measured in the cuprates in the superconducting
state by INS [103–105, 157–160]. Thereby, this resonance mode peaks around the an-
tiferromagnetic ordering vector (AFV) Q = (π, π) (see Fig. 6.5). Subsequently, such
a resonance mode could be measured in more and more compounds of the cuprate
superconductors. Finally, a resonance mode could be detected in some iron-based su-
peronductors as well, e.g., in BaFe1.85Co0.15As2 [107]. As shown in the right panel of
Fig. 6.5, the resonance mode appears below Tc, whereas it vanishes above Tc and turns
into an overdamped particle-hole continuum (see also Fig. 6.6). Above Tc, the reso-
nance mode couples to ungapped quasiparticles, and Landau-damping occurs. Within
the Ornstein-Zernike theory, the (retarded) overdamped spin susceptibility above Tc

can be written as [11, 161, 162]

χq(ω) ∼ 1

ξ2 + (q−Q)2 − ΠQ(ω)
. (6.13)

Here, Q is the AFV, ξ is the overdamped correlation length of the spin fluctuations, and
ΠQ(ω) = iγω is the self-energy which describes the spin dynamics by γ = g2/ν0

s [11].
g denotes the coupling constant between the spin fluctuations and the quasiparticles
and ν0

s is the DOS of the sample at the Fermi energy. We define ωsf = γ−1ξ−2 as the
characteristic energy scale of the boson [11].

Figure 6.5: Left: A resonance mode is appearing at the AFM ordering vector Q. Reprinted with
permission from Ref. [103]. Copyright (1991) by Elsevier. Right: Resonance mode appearing
in the superconducting state in BaFe1.85Co0.15As2. Reprinted with permission from Ref. [107].
Copyright (2010) by NPG.
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6.2 Unconventional Superconductivity

Figure 6.6: Spin Spectrum ImχQ(ω) calculated
by P. Holbil and J. Schmalian for the normal
state (blue) and the superconducting state (red).
In the normal state, a broad particle-hole con-
tinuum is visible, whereas in the superconduct-
ing state a spin-resonance mode occurs at ωres
inside the superconducting gap. An energy of
eU > 2∆ is needed to break up Cooper pairs.
Picture taken from Ref. [11].
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Below Tc, three effects are visible in the Imχ(q, ω) spectrum [11, 160, 161] (see Fig. 6.6):
(i) the opening of a spin gap in the low-energy range ω < 2∆ (∆ is the superconducting
gap size) where spectral weight is considerably suppressed; (ii) a sharp peak at ωres,
which appears at the AFV Q; and (iii) a particle-hole continuum for ω > 2∆. Therefore,
one can express Imχ(q, ω) at zero temperature and at the AFV Q in the following way
[161]:

ImχQ(ω) = Zresδ(ω − ωres) + ImχincQ (ω). (6.14)

Zres is the spectral weight of the resonance mode, and the incoherent part vanishes in
the case of |ω| < 2∆.

In literature, there are several suggestions of how to interpret such an experimentally
observed resonance mode [160, 163–174].

The interpretation of the resonance as a particle-hole bound state (spin exciton)
turned out to be a promising canditate [160]3. Once again, several techniques exist
for the theoretical description of this bound state [153, 160, 163, 164, 176–195]. We will
now focus on the so-called spin-fermion model [153, 193–195] which is successful in or-
der to describe the experimental data of the spin-excitation spectrum. This is apparent
in Fig. 6.6, where P. Hlobil and J. Schmalian applied the spin-fermion model approach
in order to calculate the ImχQ(ω) spectrum of the superconducting and the normal
state representing the experimental data shown in Fig. 6.5.

By analogy with the Cooper-pairing induced by electron-phonon coupling, we can
now try to explain a possible formation of Cooper pairs due to the coupling between
spin fluctuations and the remaining electronic system. In the electron-phonon cou-
pling picture, the environment of an electron is understood to be polarized by virtual
phonons. In the picture of the spin-fluctuation mechanism, a polarization occurs due
to a rearrangement of spins. Therefore, we consider a paramagnetic material in which
the spins are pointing in any random direction. An itinerant electron with spin σ mov-
ing through a crystal polarizes the spins in its surroundings and creates short-term and
local magnetic ordering. Due to exchange coupling, a local magnetic field occurs caus-
ing a local moment precession of the spins nearby. Subsequently, the neighbor spins

3Note that even magnons can be treated similarly to excitons [175].
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are affected and this local moment precession can propagate as a spin-wave (param-
agnon or magnon) through the crystal (see Fig. 6.7). As a result, the spin of a second
electron nearby is affected and starts to polarize the spins in its environment. In total,
the two electrons are finally attracted by each other exchanging a (para)magnon. This
is called the spin-fluctuation mechanism.

Figure 6.7: Illustration of a formation of a
Cooper-pair due to the exchange of a magnon.
The itinerant electrons produce a local-moment
precession of spins, which finally can prop-
agate e through the crystal as a spin-wave.
Adapted from [196].

6.3 Spin-Fermion Model

Within the spin-fermion model, spin fluctuations are considered to be responsible
for Cooper pairing. It describes the interaction between the corresponding collective
bosonic excitations and the remaining electronic system [145]. As in the case of the
electron-phonon coupling, the interaction potential consists of a static (spin screening)
and a dynamic (propagating spin-wave) part. However, since spin fluctuations are of
electronic origin, neither the Born-Oppenheimer approximation nor the Migdal theo-
rem can be applied, and vortex corrections have to be considered self-consistently in
order to describe the coupling between electrons and spin fluctuations correctly. In
Fig. 6.8, the coupling between electrons and spin fluctuations is illustrated in a Feyn-
man diagram.

An electron with momentum k is scattered to a state k+q while emitting a param-
agnon. The latter is absorbed by a second electron k’ which, in turn, is scattered to
a state k’-q. In general, this interaction depends on the momentum q as well as on
the frequency ω. However, as it was described in the previous section, the spin sus-

k+q

k k'

k'-q

Iσ
χ(q,ω)

Iσ

Figure 6.8: Illustration of coupling between spin
fluctuations and electronic quasiparticles. k/k’ de-
note different electron momenta, Iσ is the interac-
tion strength and χ(q, ω) is the exchanged param-
agnon. Adapted from [120].
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6.3 Spin-Fermion Model

ceptibility is peaked around the AFV Q. Therefore, the spin-fermion model confines
to that particular Q-vector, for which vortex corrections can be neglected [153, 197],
since in this case, spin fluctuations appear to be rather slow modes. As a result, an
Eliashberg-type approach is fully justified, at least for dimension d≥ 2 [153].

By analogy with Eq. 4.3 (see Chap. 4), an effective low-energy transfer Hamiltonian
can be used for the formulation of an extension of the Eliashberg theory within the
spin-fermion model [108]:

H =
∑
k,α

vF (k− kF )c†k,αck,α +
∑
q

χ−1
0 (q)SqS-q + g

∑
q,k,α,β

c†k+q,ασα,βck,β · S−q. (6.15)

Here, c†k,α is the fermion creation operator, for an electron with momentum k and
spin α [108]. S−q is a spin-1 boson field, σi are the Pauli matrices and g is the cou-
pling constant for the interaction between electrons and spin fluctuations [108]. S−q

is given by the bare spin susceptibility χ0(q) = χ0ξ/(1 + (q − Q)2ξ2)2 with the mag-
netic correlation length ξ4. By analogy with the Eliashberg-theory, the spin-fermion
model can be solved self-consistently by calculating the corresponding coupled inte-
gral equations [108, 153, 198]. They consist of three equations: 1) the fermionic self-
energy Σ(ω), 2) an anomalous vertex function Φ(ω) which can be seen as an spin-
fluctuation self-energy and which changes sign between different states of the Fermi
energy Φk(ω) = −Φk+Q(ω)5 and 3) a spin-polarization operator ΠQ(ω) , which is related
to the fully renormalized spin susceptibility χ(q, ω) [108]. As a result, the supercon-
ducting gap-function ∆(ω) = Φ(ω)/Z(ω) [161], where Z(ω) = 1−Σ(ω) is the renormal-
ization function, as well as the renormalized electron Gk(ω) and spin-fluctuation Fk(ω)
propagators can be determined [11, 108]. The full equations are not displayed here for
the reasons of convenience, but they are explained, for example, in Ref. [108]. A crucial
fact is that the superconducting DOS can be calculated in a manner similar to the one
derived within the Eliashberg theory (Eq. 2.38):

νs(ω) = Re

[
|ω|√

ω2 −∆2(ω)

]
. (6.16)

The same is true for the inelastic contribution to the differential conductance. How-
ever, within the spin-fermion model, the pivotal function is not the Eliashberg function
anymore, but the integrated spin spectrum times the squared electron-spin-fluctuation
coupling constant χtun g

2. The integrated spin spectrum can be calculated by integrat-
ing over the imaginary part of the spin susceptibility [11]:

χtun = −3ν0
S

∫
ddqImχq(ω)/π. (6.17)

4As mentioned in Chap. 4, a low-energy transfer Hamiltonian as is stated in Eq. 6.15 can be obtained
from a purely elastic high-energy tunneling model by integrating out high-energy degrees of free-
dom [11, 108].

5This requires a sign-changing order parameter.
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By analogy with Eq. 4.9 and Eq. 4.19, the elastic and inelastic contributions to the tun-
neling conductance in the superconducting state are given by [11]

σe(U) = −σ0

∫ ∞
−∞

dωn′F (ω + eU)ν̃S(ω) , (6.18)

σi(U) = − σ0

D2ν0
S

∫ ∞
−∞

dω1dω2g
2χ′′(ω1)ν̃S(ω2)

[
n′F (ω2 − ω1 + eU)nB(ω1)

[
1− nF (ω2)

]
+ nF (ω2)

[
1 + nB(ω1)

]
n′F (ω2 − ω1 + eU)

+ n′F (ω2 + ω1 + eU)
[
1 + nB(ω1)

][
1− nF (ω2)

]
+ nF (ω2)nB(ω1)n′F (ω2 + ω1 + eU)

]
,

(6.19)

where σ0 = 4πe2 |t|2 ν0
Tν

0
S and ν0

S/T is the normal DOS of the superconductor/tip at the
Fermi energy. U is the applied voltage andD is an upper limit of the bosonic excitation
spectrum ( Imχtun), similar to the D which was defined in Chap. 5.

For tunneling into a normally conducting sample, Eq. 6.19 simplifies in case of suffi-
ciently low temperature and a constant DOS to [11]

σi(U) ∝ g2

∫ eU

0

dωχtun(ω). (6.20)

In the normal state, the spin susceptibility χq shows an overdamped behavior and in
the case of d=2 6, the integrated spin spectrum turns out to be χtun = 3

2π
ν0
Sarctan( ω

ωsf
)

[11]. This leads to [11]

σi ∝ g2

ωsf
U2 for (eU � ωsf),

σi ∝ g2π |U | for (eU � ωsf). (6.21)

This explains the V-shaped differential tunneling conductance observed for many cuprates
in the normal state [82, 199], which turns out to be of a U-shape at low voltages. This
V-shape behavior can also be observed in the normally conducting part of a supercon-
ducting spectrum [34] as was observed for many cuprates [200–211] and iron-based
superconductors [212–218]. Eq. 6.20 shows that the second derivative of the tunnel-
ing current is directly proportional to the integrated spin spectrum times the squared
coupling constant:

d2I inel

dU2
∝ g2χtun(ω). (6.22)

Note the apparent resemblance to the inelastic contribution due to a coupling to real
phonons:

d2I inel

dU2
∝ α2Ftun(ω)↔ d2I inel

dU2
∝ g2χtun(ω). (6.23)

6Cuprates as well as iron-based superconductors are quasi-2-dimensional systems.
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Figure 6.9: a) Calculated electronic DOS for the spin-fermion model in the normal (blue) and
superconducting state (red). b) Calculated elastic contribution to the differential conductance
σe using Eq. 6.18. Pictures taken from Ref. [11].

P. Hlobil and J. Schmalian were able to calculate the electronic DOS νS as well as the
integrated spin spectrum g2χ(ω) within the spin-fermion approach. The corresponding
spectra of νS and σe in the normal (blue) as well as for the superconducting state (red)
are shown in Fig. 6.9a and Fig. 6.10a. In the case of the normal state, a flat DOS is
assumed, whereas for the superconducting state, a feature at ∆ + ωres appears besides
the superconducting gap ∆. This feature arises due to a discontinuity in the imaginary
part of the spin susceptibility (see Fig. 6.6), which occurs at an energy of ωres ≈ 1.3∆.
The electronic quasiparticle DOS is renormalized due to the coupling to this collective
mode arising from spin fluctuations. By using Eq. 6.18, it is possible to calculate the
elastic contribution to the differential conductance, which is shown in Fig. 6.9b. The
normally conducting spectrum (blue) stays flat, whereas step-like features are visible
at ∆ +ωres. The feature at ∆ +ωres in Fig. 6.10a can be understood as a renormalization
feature, similar to the strong-coupling features within the Eliashberg theory shown in
Fig. 2.11.

The calculated integrated spin spectrum g2χ(ω) in Fig. 6.10a corresponds to the in-
elastic contribution to the second derivative of the tunneling current d2I/dU2. The
normally conducting spectrum shows a broad particle-hole continuum. In the super-
conducting state, a spin gap opens in the case of an energy ε < ∆ + ωres, followed by
a peak-like feature around an energy ε ≈ ∆ + ωres. In the case of larger energies, the
spectrum approaches the normally conducting one and turns into to a overdamped
particle-hole continuum. The opening of a spin gap illustrates the strong renormal-
ization of the bosonic degrees of freedom when entering in the superconducting state.
This is different with phonons. We saw that the phonon DOS is hardly renormalized
when entering the superconducting state (see Fig. 5.9a).

By using Eq. 6.19, it is possible to calculate the inelastic contribution to the differen-
tial conductance. It is shown in Fig. 6.10 b). A U-/V-shape behavior can be recognized
for the normally conducting spectra. In the superconducting state, the inelastic contri-
butions are suppressed in an energy range of ε < ±(∆ +ωres) due to the opening of the
spin gap in g2χ(ω).
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Figure 6.10: a) Calculated integrated spin spectrum g2χ(ω) which is proportinal to d2I inel/dU2.
b) Calculated inelastic contribution to the differential condtuctance σi using Eq. 6.19. Pictures
taken form Ref. [11].

In the previous chapters, we learned that the measured differential conductance is
a sum of the elastic and inelastic contributions σtot = σe + σi. Depending on the am-
plitude of the inelastic contributions, the step-like features from σe are more or less
visible. In the case of significantly large inelastic contributions, it is even overshad-
owed by the opening of the spin gap. Therefore, a dip occurs in the total differential
conductance at almost the same energy instead of a peak. This is illustrated in Fig. 6.11
[11].

6.4 Remark on the Pairing Symmetry of Iron-Based
Superconductors

In Sec. 6.2, it was mentioned that the superconducting order parameter adopts the
symmetry of the underlying crystal. Since Fe-Se(As) trilayers are the crucial build-
ing block of every iron-based superconductor, we now investigate the symmetry of a
single Fe-Se(As) trilayer. A top-view thereof is illustrated in real space in Fig. 6.12 a.
Sketched are the 1-Fe unit cell (red square) and the 2-Fe unit cells (cyan, green and pur-
ple square). The symmetry is analyzed within the green unit cell, where the coordinate
origin (thin black cross) sits at an iron atom. Due to the lattice structure, the iron lat-
tice splits into two sublattices (A,B) [219, 220]. The symmetry operations in Fig. 6.12a
are given in the Seitz notation {g|τ} [220]. Point group operations are labeled with g,
and τ stands for a translation vector and τ0 = (1/2 , 1/2 , 0) [220]. The point group
with respect to an iron site is D2d [219, 220]. It includes an rotation about the z-axis
and a mirror reflection about the yz-plane (labeled as {σx|0 , 0} in Fig. 6.12a), as well
as mirror reflections about the xz-/YZ-/XZ-plane. As illustrated for the green unit cell
in Fig. 6.12a, there are symmetry operations that are not defined with respect to the
unit cell center [219, 220]. An example is the combined operation {σX |1/2 , 1/2} (see
Fig. 6.12). The mirror reflection about the YZ-plane is followed by a n-glide operation.
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6.4 Remark on the Pairing Symmetry of Iron-Based Superconductors

Figure 6.11: Total differential conduc-
tance in units of σ0. The normally
conducting spectra are shown in blue.
The yellow superconducting spec-
trum illustrates weak inelastic contri-
bution. The red one indicates strong
inelastic contributions. Taken from
Ref. [11].
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6 Iron-Based Superconductors

The n-glide plane is a combination of a translation by τ0 and the ab-plane mirror [220].
For the cyan an purple unit cell similar relationships can be found. For the purple unit
cell, an inversion center is marked by a purple dot, which is located at the middle of
each Fe-Fe link [219]. The corresponding point group is C4v [219]. Since for both point
groups (C4v,D2d), there are symmetry operations which are not defined with respect
to the inversion center [219], the corresponding symmetry operations are called non-
symmorphic. For the Fe-Se(As) trilayer, the related non-symmorphic space-group is
P4/nmm [219, 221].
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Figure 6.12: a) Sketch of symmetry operations adapted from Ref. [219, 220]. The colored
squares mark different unit cells. The shown 2-Fe unit cells have the following origins: at
an Se atom (cyan), at the middle of each Fe-Fe link (orange) and at an Fe-atom (green). For the
latter, the symmetry operations are illustrated. {σx|0 , 0} denotes a mirror operation around
the yz-plane, {σX |1/2 , 1/2} is an combined operation (mirror operation plus τ0 translation op-
eration). An n-glide mirror {σz|1/2 , 1/2} is the third generator of the symmetry group. The
letter "R" illustrates the mirror operations and the hollow "R" is located below the plane. b)
Sketch of the Fermi surface for the 1-Fe (left) and 2-Fe (right) unit cell. Hole pockets are marked
with orange and purple circles, electron pockets are marked with cyan, light/dark green lines.
Different colors for the Fermi pockets indicate different orbital contributions. For the 2-Fe unit
cell, the dashed orange circles indicated the back-folding to Γ.

The one-dimensional representations of this tetragonal space group, which are rele-
vant for the considered pairing symmetries in iron-based superconductors, areA1g, B1g.
The pairing interaction geff(k,p) can be decomposed to these components [124]. For an
s-wave symmetry, the A1g component of the interaction potential is relevant [124]. The
corresponding basis functions Ψs

m(k) obey the same symmetry operations as k2
x+k2

y.
Therefore, a rotation of 90◦ has even parity. The interaction potential can be formu-
lated according to these basis functions [124]. Here, it is important whether or not the
symmetry of the hole pockets, located around the Γ point (k=0), or the symmetry of
the electron pockets, located around at the M point (k6=0) are taken into account. In
the end, an isotropic gap equation ∆

(s)
h along the hole-like Fermi surface and an angle-
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6.4 Remark on the Pairing Symmetry of Iron-Based Superconductors

dependent gap equation around the electron-like Fermi surfaces ∆
(s)
e (k) result [124]:

∆
(s)
h (k) = ∆h

∆(s)
e (k) = ∆e ± ∆̄ecos2φk. (6.24)

The plus-minus sign in the gap equation for the electron-like Fermi surface arises due
to the presence of two different electron Fermi surfaces.

In Fig. 6.12b, the reciprocal space is shown according to the real-space lattice in
Fig. 6.12a. The left panel of Fig. 6.12b illustrates the hole pockets α1,2 and electron
pockets β1,2 in the case of a 1-Fe unit cell, and the right panel illustrates the case of a
2-Fe unit cell. For the latter, two different electron Fermi surfaces are folded on top of
each other. Additionally, the different hole and electron pockets have different orbital
contributions. It depends on the band structure of the system.

Depending on the values of ∆e and ∆̄e, the pairing symmetry can be nodal or node-
less. If ∆̄e is weak, the gap-equation is only slightly anisotropic. With increasing ∆̄e,
∆

(s)
e (k) becomes more and more anisotropic and finally, accidental nodes occur. This

isotropic s±-symmetry turns into a nodal s±-symmetry (see left panel of Fig. 6.13).
In general, it is assumed that the sign between the hole-like and electron-like Fermi

surfaces is opposite. That is the reason why this pairing symmetry is called a s±-
symmetry. However, under certain conditions, these nodes can be overcompensated
and the gap averaged over an electron Fermi surface can have the same sign as the
averaged hole Fermi surface leading to a so-called s++-symmetry [124]. Furthermore,
hybridisation between the two different electron pockets as well as interpocket pair-
ing and interpocket hopping can shift the nodes on the Fermi surface [222]. Finally,
they can even merge and disappear (see right panel of Fig. 6.13). A good overview
concerning this phenomenon is given in Ref. [222].

The s± and s++-symmetries belong to the same A1g representation [124]. However,
as we learned from the spin-fermion model, the spin-fluctuation picture is only valid
for a sign-changing order parameter, so it would exclude an s++-symmetry. The latter
is said to be due to orbital fluctuations and to have no resonance mode, but rather
a redistribution of spectral weight within a similar energy range [124]. Since most
of researchers follow the s±-pairing-symmetry picture, we will not focus on an s++-
symmetry in the following.

A d-wave symmetry is another sign-changing pairing symmetry. In the case of d-
wave pairing symmetry, the B1g-representations apply which transform according to
a k2

x-k2
y. In this case, a rotation of 90◦ leads to a sign change. The solutions of the gap

equations for hole and electron pockets are in this case [124]

∆
(d)
h (k) = ∆̃hcos2φk,

∆(d)
e (k) = ±∆̃e + ¯̃∆ecos2φk. (6.25)

Therefore, a conventional d-wave gap is located at the hole-like Fermi surface and has
four nodes along the diagonals. At the electron-like Fermi surfaces, the situation is
similar to the s-wave case. For ¯̃∆e � ∆̃e, the two electron gaps are simply "plus"
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Figure 6.13: Left panel: various possible pairing symmetries for an Fe-Se(As) trilayer. Adapted
from Ref. [149, 152]. Right panel: a) Illustration of electron-like Fermi surface folding. The
nodes lie either on an inner or an outer Fermi surface, depending on their original positions.
b) Black dots mark the nodal points. Solid and dashed lines have opposite sign of the gap
function. c) Illustration of the reconstruction of the Fermi surface in the case of interpocket
hopping. d) Illustration of how the nodes can vanish depending on the strength of interpocket
hopping and interpocket interaction. Adapted from [222].

and "minus" [124]. For ¯̃∆e > ∆̃e, accidental nodes occur along different directions
on the two electron Fermi surfaces [124]. We see that under certain conditions, the s-
wave symmetry can have nodes, whereas a d-wave symmetry can be nodeless. This is
exactly the opposite of what is usually associated with an s- or d-wave symmetry. This
is the reason why under such conditions, these s- and d-wave symmetries are called
exotic.

In Ref. [223], it is shown that the spin susceptibility is peaked around (kx, ky) =
(π, π). This corresponds to the nesting wave vectors connecting electron- and hole-
like Fermi surfaces. In the frame of the spin-fluctuation mechanism, this leads to the
s±-symmetry model. Within another investigation, it was shown that the spin suscep-
tibility can additionally be peaked around positions that correspond to nesting vectors
between electron pockets [224, 225]. This would require a sign change between nearest-
neighbor electron-pockets. Therefore, this scenario would favor a dx2−y2-wave pairing
[225]. However, it was argued that a pure s-wave and a pure d-wave pairing cannot
satisfy both types of nesting vectors [225]. As a result, a mixed (s+id)-pairing symme-
try could occur as a compromise [225]. This model is also called "extended s±-model"
or "s+(s+d)"-symmetry. The latter expression results from the fact that at the electron
pockets, the symmetry has an s-wave and an d-wave component. The gap equation of
an electron pocket in the s+(s+d)-model can be parametrized as [226]

∆s+(s+d)
e = α∆0

e +
√

1− α2∆0
e

√
2cos(2θ). (6.26)

Here, α is a parameter and ∆0
e is a reciprocal-space averaged gap value. Nodes occur

if α ≤
√

2/3 [226].
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7 SrFe2(As1−xPx)2
The isovalently doped system SrFe2(As1−xPx)2 was the first iron-based superconduc-
tor compound under investigation in the framework of this thesis. The motivation
for studying this system is based on three arguments. Firstly, high-purity single crys-
tals of this compound were available for STM investigations. Since the preparation
of bulk iron-based superconductor single crystals is rather complex and requires spe-
cial skills and setup, we depend in this case on crystals growers providing us with
such high-quality crystals. Thanks to Prof. Shigemasa Suga, we could start a collab-
oration with Prof. Setsuko Tajima from Osaka University who sent us high-quality
SrFe2(As1−xPx)2 crystals. Secondly, up to this date, SrFe2(As1−xPx)2 has not been inves-
tigated by STM with a special focus on the doped superconducting compounds suffer-
ing from a possible doping inhomogeneity. Hence, we were motivated to study this
rarely investigated compound. Thirdly, according to previous investigations done by
phosphorus-31 nuclear magnetic resonance (31P-NMR), specific heat and London pen-
etration measurements [227–229], evidence suggested nodal superconductivity. This is
in contrast to other iron-based superconductors like Ba1−xKxFe2As2, Ba2Fe2−xCoxAs2,
LiFeAs, NaFe1−xCoxAs2 and FeTe1−xSex that obey a nodeless gap distribution [123,
230–235]. There are various other compounds of iron-based superconductors that
show signatures of a nodal superconducting gap like LaOFeP [236], LiFeP [237], un-
derdoped Ba1−xKxFe2As2 [238, 239], BaFe2−xRuxAs2 [240], KFe2As2 [241], FeSe [242],
BaFe2(As1−xPx)2 [123, 238, 240, 243–247]. This illustrates a rather diversified super-
conducting gap distribution among iron-based superconductors. Within this chapter,
our STM/STS measurements on isovalently doped SrFe2(As1−xPx)2 are presented. The
system was investigated for four different doping concentrations: for the optimally
doped case (x=0.35), the overdoped case (x=0.46), the SDW case (x=0.2) and the parent
compound (x=0). The content is based on Ref. [248].

7.1 Properties

SrFe2(As1−xPx)2 belongs to the so-called 122 family of the iron-based superconduc-
tors and crystallizes in the ThCr2Si2 structure. The structural composition is shown in
Fig. 7.1 as well as the bond lengths extracted from Ref. [249]. Like all of the other iron
pnictides, the parent compound SrFe2As2 consists of single FeAs layers separated by
Sr-layers. The iron and arsenic atoms are strongly coupled via covalent bonds [250],
whereas the Sr layers have an insulating character and the coupling between the Sr
layers and FeAs layers is rather weak (van-der-Waals type). As a result, the physical
properties of the FeAs layers are quasi two-dimensional. This is important, especially
with respect to instabilities and fluctuations which are enhanced in lower dimensions
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[127].
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Figure 7.1: Left: Structural composition of SrFe2As2. Taken from Ref. [114]. Right: Data for
corresponding bonding length, exctracted from Ref. [249].

Depending on the doping concentration, SrFe2(As1−xPx)2 is either in the paramag-
netic and tetragonal phase, in the antiferromagnetic and orthorombic spin-density
wave phase, or in the superconducting phase. The corresponding phase diagram is
shown in Fig. 7.2. The undoped parent compound SrFe2As2 is a semimetal. When
doping isovalently with phosphorus, a specific percentage x of As atoms is replaced
by phosphorus atoms with the same number of valence electrons. Hence, no addi-
tional charge carrier are incorporated. Only the atomic radius of phosphorus is a bit
smaller compared to arsenic and influences the chemical bonding. Variations within
the bonding angle α, β and γ of the FeAs tetrahedron strongly affect the electronic
properties [251]. The highest critical temperature is achieved for a regular tetrahedron
with α = β = 109◦ [252, 253].

Figure 7.2: Phase diagram for an as-grown
(black) and an annealed (red) single crys-
tal SrFe2(As1−xPx)2. TS,N is the tempera-
ture at which the phase transition to the
AFO state occurs. In the inset, the com-
parison to the P-Ba122 system is shown.
Taken from Ref. [254]

Changes in the crystal structure influence the band structure around the Fermi en-
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7.2 Sample Preparation

ergy as well. Depending on the phosphorus concentration, different bands cross the
Fermi energy [255, 256] and influence the strength or even the wavevector of the spin-
fluctuations and thus the spin-fluctuation-mediated electron-electron pairing [257, 258].
The pnictogen height zAs can also change the electronic properties [259]. As a result,
either a paramagnetic, antiferromagnetic or superconducting ground state can occur,
as is shown in Fig. 7.2. Like other iron-based superconductors, SrFe2(As1−xPx)2 is a
multiband superconductor. In Fig. 7.3 the Fermi surface is sketched for the optimally
doped compound [256]. As can be seen, hole-like bands of dxz/dyz character cross the

Figure 7.3: Sketch of the Fermi surface of
SrFe2(As0.65P0.35)2 for two different kz-
planes. Different colors mark the differ-
ent orbital contributions. Solid lines show
quasiparticle scattering vectors for anti-
ferromagnetic spin-fluctuations between
electron (around zone corner) and hole
Fermi surface (around (0,0)) of the same
orbital. The dotted line represents a scat-
tering channel that cannot contribute to
the pairing. Wavy lines between different
orbitals illustrate nesting between Fermi
surfaces. Reprinted with permission form
Ref. [256]. Copyright (2014) by APS.

Fermi energy at the Γ point (according to LDA calculations, the dxy band crosses it as
well [256]), whereas dxz/dyz and dxy bands cross the Fermi energy at the zone corner
[256]. In principle, for every band crossing the Fermi energy, a superconducting gap
can appear.

7.2 Sample Preparation

High quality SrFe2(As1−xPx)2 single crystals were grown in the group of Prof. Setsuko
Tajima by using a self-flux method [260]. The crystals were between 2 × 2 × ≈0.5 mm
and 1 × 1 × ≈0.5 mm large, making tip positioning quite challenging. In order to get
flat surfaces as clean as possible, all of the investigated crystals were cleaved in UHV at
the precooling station of the JT-STM (77 K). Afterwards, the sample was directly trans-
ferred to the STM that was held at 4.2 K. For the cleavage, the sample was prepared in
air in the following way: The crystal was glued on a copper plate by a conductive two-
component epoxy glue (EPO-TEK, H20E 10Z), whereas the copper plate was mounted
on a standard molybdenum sample plate as shown in the right picture of Fig. 7.4. A
magnetic top post was glued on top of the crystal by using a triple-axis manipulator1

before transferring the whole sample plate to UHV.
The cleavage itself was done by knocking the top-post off via a wobble-stick. Thus,

the crystal is either cleaved between an arsenic and a strontium layer or within a stron-

13D micrometer-drive lift from VIC International, Tokyo
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7 SrFe2(As1−xPx)2

Figure 7.4: Left: sketch of a
glued top post on top of
a crystal. Right: illustra-
tion of the size of a typical
SrFe2(As1−xPx)2 crystal.

top post

single crystal

copper plate

conductive 
glue

ca. 2 mm

tium layer, whereas the FeAs layer itself remains intact due to covalent bonds between
Fe and As. In the first case, a complete arsenic layer remains on the surface, leading to
possible surface reconstructions. Then the surface is charged by Sr2+ vacancies tends to
attract impurities like water from the environment [261]. In the second case, Sr2+ atoms
are equally distributed on both halves of the cleaved crystal. Usually, half a layer of Sr
atoms on a crystal surface either form a (

√
2×
√

2) or a (2× 1) reconstruction [115, 261].
Since the atomic distance is the same between arsenic atoms and strontium atoms (cf.
Fig. 7.1), it is not possible to distinguish between them by only measuring the atomic
distance, which can be done by taking a topographic STM image. Nevertheless, in case
of doping with phosphorus, variations between the atoms should be visible in case of
an arsenic layer remaining on the surface. For the investigation presented within this
thesis, a (2 × 1) reconstruction was present for all samples. More defects and impu-
rities were observed for the samples with a higher phosphorus concentration (x=0.35,
x=0.46).

7.3 Superconducting optimally doped (x = 0.35) and
overdoped (x = 0.46) compounds

Within the superconducting compounds, the highest critical temperature of 30 K [260]
was found for optimally doped SrFe2(As0.65P0.35)2 with a phosphorus concentration of
x=0.35. Given this high critical temperature, it is unlikely that phonons are the only
particles responsible for the Cooper pairing [65, 262]. This hints towards other ex-
citations acting as pairing glue. In the case of a phosphorus concentration of x=0.46,
superconductivity is a bit suppressed compared to the optimally doped case. How-
ever, measurements were done on both compounds since their comparison might give
information on how the physical properties depend on the doping. Again, due to its
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7.3 Superconducting optimally doped (x = 0.35) and overdoped (x = 0.46) compounds

ability to spatially resolve the DOS, STM is a proper tool to investigate such doped
compounds. Furthermore, it allows for the determination of the coherence length, as
will become apparent in the following.

7.3.1 Topography

In Fig. 7.5, representative topographies of the optimally doped compound and for the
overdoped compound are shown. A stripe-like reconstruction, most likely arising due
to a (2 × 1) reconstruction of Sr atoms, is visible for both samples. Nevertheless, a
higher impurity concentration in case of the overdoped surface compared to the opti-
mally doped surface can be noticed. The impurities consist of various adsorbates or
Sr-atoms left over after the cleavage. The latter tend to show spectroscopic features that
are similar to those of the stripe position, whereas the former rather show no super-
conducting behaviour. By analyzing the Fourier-transformed images, a stripe distance
of 7.33 Å/7.1 Å could be measured for the optimally/overdoped sample. These values
are slightly smaller than the expected value of 7.8 Å [249] (cf. table of Fig. 7.1).

0 pm

203

20nm

x=0.35

0 pm

203

10nm

x=0.46

Figure 7.5: Left: 50 nm×50 nm topographic image of SrFe2(As0.65P0.35)2 measured at U=1 V,
I=100 pA. Right: 30 nm×30 nm topographic image of SrFe2(As0.54P0.46)2 measured at U=7 mV,
I=1 nA. Adapted from Ref. [248] .

Since the stripes seem to be homogeneous without any differences between the
atoms, it can be assumed that they consist of atoms of the same type. Furthermore,
a charged surface (the case of a surface facing an As layer) would appear quite rough
in an STM topography. This justifies the assumption that the stripes are formed by a
(2× 1) reconstruction of Sr atoms.

7.3.2 Spectroscopy

Due to intrinsic doping inhomogeneities, spectra should be spatially averaged. In
Fig. 7.6a such a spatially averaged gap is shown for the optimally doped compound
as well as for the overdoped compound. By extracting the position of the quasiparticle
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Figure 7.6: a) In blue/green is shown the the spatially averaged superconducting gap for the
optimally/overdoped compound measured at T = 0.8 K with Iset = 2.15 nA, Umod = 1 mV.
The shaded area will be called the superconducting gap area in the following. b) blue: numerical
derivative of the blue spectrum shown in a) in comparison to a single spectrum on a local spec-
trum shown as gray dotted line. c) Evolution of the superconducting gap with temperature for
the optimally doped compound. d) Evolution of the superconducting gap for the overdoped
compound. Taken from Ref. [248].

peak, the superconducting gap size 2∆ could be determined. It is ∆ = ±4.7 mV in case
of the optimally doped compound and ∆ = ±2.6 mV for the overdoped compound
(see Fig. 7.6a. In Fig. 7.6b, the numerical derivative of the optimally doped spectrum
from Fig. 7.6 (blue line) is compared to a single spectrum at a local position. A double-
gap feature is visible reflecting the multiband nature of this system. In Fig. 7.6 the
dips and peaks marked by arrows correspond to the local maximum of the slope of
the superconducting gap DOS of Fig. 7.6a. Since this double-gap feature can even be
seen in individual local spectra as shown in Fig. 7.6, a site-dependent superconducting
gap or doping inhomogeneities can be excluded as the origin of the observed double-
gap feature. Such an appearance of a double-gap feature is not unusual for iron-based
superconductors. ARPES studies on Ba122-K40 [263] as well as STM experiments on
Ba122-Co5 [115, 264] give hints for multiple gap structures as well.

By looking at Fig. 7.6 a, one recognizes a V-shaped superconducting gap with a non-
zero conductance at zero bias, even though the measurements were done at 0.8 K. For
the overdoped compound the gap is even less pronounced. Nevertheless, the appear-
ance of these gaps due to superconductivity can be proven by looking at the tempera-
ture evolution of the superconducting gap shown in Fig. 7.6c/d. The superconducting
gap of the overdoped compound vanishes above 17K. In case of the optimally doped
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Figure 7.7: Blue dots represent the experimen-
tal data of the optimally doped compound
shown in Fig. 7.6a. Cyan line is the model func-
tion and is described in the text. -20 -10 0 10 20

0.2

0.4

0.6

0.8

1.0

1.2

UHmVL

d
I�d

U

compound, the gap vanishes around 30 K in agreement with literature [260]. Espe-
cially the observation of a flux lattice in the Shubnikov phase of the respective system,
which will be shown in the following (see Fig. 7.9), is a clear proof of the prevailing
superconductivity.

Such a V-shaped gap like shown in Fig. 7.6 can be associated with a nodal pair-
ing symmetry. In a report on a combined specific heat and nuclear magnetic resonance
(31P-NMR) study, it was speculated that in case of the optimally doped SrFe2(As0.65P0.35)2,
a multigap exists [227]. The proposed model consists of a small nodal gap with resid-
ual DOS plus additional full gaps [227]. For the present STM data shown in Fig. 7.7,
we found a better agreement for a gap-equation that is closely related to the one stated
in Ref. [227]. The model function, which is shown in Fig. 7.7, was created within the
s + (s + d)-model, which was introduced in the previous chapter, using the following
equation:

∆s+(s+d)
e = α∆0

e +
√

1− α2∆0
e

√
2cos(2θ). (7.1)

In this case, ∆0
e is a mean gap value which is averaged over the reciprocal space and

which was set to 2.193 meV. The parameter αwas set to 0.3 and therefore leads to nodes
in the gap according to Ref. [226]. As can be seen in Fig. 7.7, the shape of the experimen-
tally obtained superconducting gap is reproduced quite well. Only the quasiparticle
coherence peaks are slightly smaller in the experimental data. Since the experimen-
tal spectrum is an averaged spectrum, the reason for the suppressed coherence peaks
could be the intrinsic impurities on the sample.

For most of the iron-based superconductors, technically, it is almost impossible to
suppress superconductivity by applying a magnetic field due to their large upper criti-
cal field. For SrFe2(As1−xPx)2, the upper critical field Hc2 is about 60 T [229]. Neverthe-
less, the Shubnikov phase can be reached by applying a few hundred mT.

7.4 Determination of the Coherence Length

The coherence length was determined for both the optimally doped and the over-
doped compound by using two different methods. The power spectral density func-
tion (PSDF) was applied on a superconducting gap map and the coherence length
could be extracted by analyzing vortices in the Shubnikov phase. The following two
paragraphs discuss the PSDF method and the vortex method.
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7.4.1 PSDF Method

SrFe2(As1−xPx)2 samples have intrinsic doping inhomogeneities due the random phos-
phorus concentration. This leads to spatial variations of the superconducting order
parameter on the minimal length scale set by the coherence length [248]. As described
at the beginning of this thesis, the superconducting ground state is determined by a
large number of Cooper pairs where the electrons are paired over a distance of sev-
eral hundred nm in the case of conventional superconductors. In this state, their wave
functions overlap and the phase of each Cooper pair wave function is the same as for
the superconducting ground state. The size of a single Cooper pair can be related to the
coherence length ξ in the sense of BCS theory [6]. We assume now that there are spatial
variations of the Cooper pairing in the sample induced by the doping inhomogeneities
and that these variations are convoluted with the wave function of the Cooper pairs.
The probability distribution of a Cooper pair can be used in order to estimate the size
of a single Cooper pair [248, 265]. For this purpose we use the Gaussian distribution
[248]

g(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (7.2)

with the coherence length as the full width at half-maximum (FWHM) [248]

ξ = FWHM = 2σ
√

2ln(2). (7.3)

In order to create our so-called superconducting gap maps, we performed spatially
resolved STS measurements over an area of 30 nm×30 nm. Within this area, dI/dU -
spectra where taken at each of the 256×256 points. The gap size (= order parameter)
was evaluated for each spectrum. However, the gap size is not sufficient to describe
the superconducting properties. Especially in the present case of a V-shaped supercon-
ducting gap, the depth of the gap must be considered as well. Thus, for each spectrum,
the superconducting gap area, which is sketched in Fig. 7.6a, was calculated by doing a
numerical integration using the trapezoidal rule. The resulting map is shown for the
optimally/overdoped sample in Fig. 7.8a/c.

As can be seen, there are variations in the intensity of these two images. Bright
areas correspond to pronounced superconductivity with a larger value for the super-
conducting gap area. On these superconducting gap maps, the radially resolved PSDF
method was applied. The PSDF can be considered as the square of the absolute value
of the Fourier transformation of a function (PSDF = |F(f(x, y))|2) [266, 267]. Assuming
that the image consists of randomly distributed superconducting areas that are convo-
luted with a Gaussian distribution g(x,y) representing the Cooper pairs including their
coherence length [248]

|F(image)|2 = |F(random)|2︸ ︷︷ ︸
const

∗|F(g(x, y))|2, (7.4)

the coherence length can be extracted from |F(g(x, y))|2 by using the relationship 7.3.
The result is shown in Fig. 7.8b and d. In order to state the final result for the in-
plane superconducting coherence length, several measurements for the optimally as
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Figure 7.8: a Superconducting gap map for the optimally doped compound (x=0.35, area: 30×
30 nm2, 256 × 256 pixel). b) Blue dots correspond to the calculated radially resolved PSDF of
the map shown in a. The solid line shows the applied fit. c) Superconducting gap map for the
overdoped compound (x=0.46, area: 35 × 35 nm2, 256 × 256 pixel) d) Blue dots correspond to
the calculated radially resolved PSDF of the map shown in c). The solid line shows the applied
fit. Taken from Ref. [248].
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well as for the overdoped compound were averaged by applying the above-mentioned
method on different regions of the surface. For the optimally doped compound, the
coherence length has a value of ξx=0.35 = 4.1 ± 1.1 nm and ξx=0.35 = 2.3 ± 0.8 nm for the
overdoped compound.

In the following paragraph, a second method for the determination of the coherence
length will be presented in order verify the results just mentioned. This method will
be referred to as vortex method.

7.4.2 Vortex Method

In order to apply this method, the sample has to be driven in the Shubnikov phase.
Therefore, a magnetic field of 1 T was applied. By taking dI/dU or d2I/dU2 maps, the
vortex lattice can be resolved. Since the contrast is better in the case of d2I/dU2 maps,
the latter will be presented. In order to measure d2I/dU2 maps, the bias voltage was
set to 2/1.2 mV for the optimally/overdoped compound because peaks are visible at
this energy in the second derivative of the tunneling current. These peaks correspond
the local maximum of the slope of the superconducting gap in the first derivative of
the tunneling current. By means of the vortex lattice, superconducting and normally
conducting areas can be distinguished. In Fig. 7.9a and c, such a vortex lattice is shown
for the optimally and the overdoped compound.

In these images, the dark almost circular areas correspond to the normally conduct-
ing areas, where the superconducting order parameter (superconducting gap) is sup-
pressed, and hence, there is no peak at 2/1.2 mV. The superconducting order parame-
ter can be described by Ψ(r) = |Ψ(r)|eiθ. For an isolated vortex, the Ginzburg-Landau
equation is solved by Ψ(r) = Ψ∞tanh( r√

2ξ
). The distance from the vortex core is labeled

with r and the value of the superconducting order parameter in absence of a magnetic
field with Ψ∞ [6, 268]. In Fig. 7.9a and c, one vortex is marked with a green rectangle.
Along a line across such a vortex, dI/dU spectra were measured in order to determine
the variation of the superconducting energy gap, i.e., |Ψ(r)SC| = |Ψ∞tanh( r√

2ξ
)| Thus,

the coherence peak separation can be measured, which reflects the width of the super-
conducting energy gap. The corresponding values, normalized to the value in absence
of a magnetic field |Ψ(r)SC|/|Ψ∞|, are shown as dots in Fig. 7.9b and (d). The coherence
length can now be extracted by fitting these data with a function f(r) = a · tanh( r√

2ξ
).

For the optimally/overdoped compound, this method gives a value of the coherence
length of ξ = 5.0 ± 1.0 nm /ξ = 2.9 ± 0.6 nm. This agreement with the values ob-
tained by the PSDF method is rather good for both compounds. Nevertheless, when
the PSDF method and the vortex method are compared, it becomes obvious that the
former is more accurate since a higher number of local spectra is taken into account.
Furthermore, when taking dI/dU spectra along a line through a vortex as in the vortex
method, the vortex should not move during the measurement. However, the vortices
were not well pinned in the case of the optimally doped compound. As can be seen in
Fig. 7.9a, they turned out to be mobile even during scanning, which made an accurate
linegrid measurement through a vortex quite challenging. Of course, the position of
the vortex was checked before and after taking the linegrid by taking a scan. But it is
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Figure 7.9: a) d2I/dU2 map measured at U=2 mV for the optimally doped compound. b) Dots
represent the normalized width of the superconducting energy gap. Each dot corresponds to a
value obtained from an individual tunneling spectrum recorded along a line through a vortex.
The corresponding vortex is marked with a green rectangle in a). c) d2I/dU2 map measured at
U=1.2 mV for the overdoped compound. d) Dots represent the normalized width of the super-
conducting energy gap. Each dot corresponds to a value obtained from an individual tunneling
spectrum recorded along a line through a vortex. The corresponding vortex is marked with a
green rectangle in c). Taken from Ref. [248].
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still difficult to determine the exact position of the vortex.
Besides the two methods of determining the coherence length that have just been

presented, a theoretical estimation was made by using the relationship for the upper
critical field Hc2 = ∆0

2πξ2
[31]. As already mentioned, Hc2 is about 60 T for the optimally

doped compound [229]. As a result, the theoretical coherence length would be ξtheo ≈
2.34 nm. This is in good agreement with the previous results. Additionally, the com-
parison of coherence lengths of similar systems gives results within the same order of
magnitude [269].

7.5 Inelastic Tunneling Spectroscopy

We now tie in with Chap. 5, in which the disentanglement of elastic and inelastic con-
tributions to the tunneling current was explained in order to obtain some information
on the pairing glue. Therefore, results for measured d2I/dU2 spectra will be discussed
for both the superconducting state and the normal state.

In Fig. 7.10a, d2I/dU2 spectra are shown for the optimally doped compound [248].
The spectrum taken in the normal state is shown in red. A peak-dip pair is visible at
±11.7 mV. As explained in Chap. 5, a measured d2I/dU2 spectrum in the normal state
is proportional to the bulk bosonic spectrum. Furthermore, amongst others, a Raman
scattering investigation of SrFe2As2 could detect a signal at 13.76 mV arising from the
atomic displacement of As and Fe atoms [269, 270]. This value is quite close to the
present one and therefore lead us to the assumption that the measured dip and the
peak in the red spectrum of Fig. 7.10a are due to this optical phonon. In the supercon-
ducting state, this peak is shifted by about 4.9 mV to higher voltages, as shown in the
blue curve in Fig. 7.10a. This shift is due to the opening of the superconducting gap
(with a size of ∆=4.9 mV as determined in Sec. 7.3). The dip/peak appearing at lower
energies is a feature of superconducting gap itself, where the dip/peak corresponds to
the largest slope of the superconducting gap in a dI/dU spectrum.

Similar measurements were conducted for the overdoped compound and are shown
in Fig. 7.10b. Again, the spectrum of the normally conducting state is shown in red.
This time, there are two dips/peaks are visible, one around ±16.3 mV and another one
around ±60 mV. The signal around ±16.3 mV can either be related to the same phonon
as in the case of the optimally doped compound or to an optical phonon arising from
the atomic displacement of the Sr atoms. The latter could also be observed at 16.74 mV
in the mentioned Raman scattering experiment on SrFe2As2 [270]. The other feature
visible in the red spectrum of Fig. 7.10b around 60 mV cannot be related to a phonon,
since in the phonon dispersion relation, Van Hove singularities only occur within an
energy range of 13-40 meV, at least for the parent compound [270, 271]. Instead, this
peak could be assigned to a magnon. An excitation at 68 mV was already measured in
the parent compound by using optical techniques [272] and referred to a magnon. The
deviation of about 8 mV to the present measurement can be explained by means of en-
ergy resolution, which is 9 meV in the case of the spectrum of the normally conducting
state. Additionally, the excitation at 68 mV was measured for the parent compound.
The phosphorus concentration in the present sample could slightly shift the excita-
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Figure 7.10: a) d2I/dU2 spectrum measured in
the normally conducting (red) and in the su-
perconducting state (blue) for the optimally
doped compound. Possible excitations are
marked with arrows. (Um=4.3 mV, Iset=21 nA)
b) d2I/dU2 spectrum measured in the normally
conducting (red) (Um=1.95 mV, Iset=14 nA) and
in the superconducting state (blue) (Um=5 mV,
Iset=4.7 nA) for the overdoped compound. Pos-
sible excitations are marked by arrows. Taken
from Ref. [248].
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tion energy as well. For the spectrum in the superconducting state, which is shown
as the blue line in Fig. 7.10b, the peaks are shifted by 2.3 mV to larger voltages, whih
is in agreement with the superconducting energy gap size ∆=2.6 mV as measured in
Sec. 7.3.

7.5.1 Non-superconducting Compounds

In this subsection, we finally focus on the magnetic compounds with a phosphorus
concentration of x=0.2 and x=0 (parent compound). According to the phase diagram
in Fig. 7.2, these compounds should have a spin-density wave character. In Fig. 7.11,
topographies for the underdoped compound (x=0.2) are shown. Like in Fig. 7.5, a
stripe-like (2×1)-reconstruction is clearly visible. For Fig. 7.11a however a mazelike
reconstruction coexists with the stripe-like reconstructions and is displayed in more
detail in Fig. 7.11c. In both cases, the stripes consist of dimer chains which are shown
in Fig. 7.11d. Along a chain, the atoms are spaced by 3.4 Å. This value is smaller than
the distance between two Sr atoms (cf. Fig. 7.1). Within a dimer, the distance between
the atoms is even slightly smaller (3.2 Å). Furthermore, the dimers are rotated by 67◦

against the stripe direction. The distance between the stripes is roughly twice the Sr-Sr
distance like in the case of the superconducting samples which are shown in Fig. 7.5.

A typical topography of the parent compound is shown in Fig. 7.12. The above-
mentioned stripes as well as some defects are visible on the surface. Note that com-
pared to the topography of the overdoped compound shown in Fig. 7.5, there are al-
most no impurities in the case of the parent compound. This reinforces the assumption
that the impurities result from the doping with phosphorus.
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Figure 7.11: a) 35 nm × 35 nm large topographic image of SrFe2(As0.80P0.20)2 measured at
U=80 mV, I=1 nA [248], b) Zoom-In of the stripe-like features. c) Highly resolved stripes show-
ing dimer-like chains. d) Zoom-In of maze-like pattern, e) dI/dU map of c) at U=6.4 mV.

Figure 7.12: 50 nm × 23 nm large topo-
graphic image of SrFe2As2 measured
at U=600 mV, I=1 nA. Adapted from
Ref. [248].
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Now, the spectroscopic results that are shown in Fig. 7.13 will be discussed. The
dI/dU spectra for the parent compound and underdoped compound are shown in
Fig. 7.13a and b. For the parent compound (Fig. 7.13a, a V-shaped gap is visible in
the range of 2∆ ≈ 34 meV around the Fermi energy. The gap is rather broad. Nev-
ertheless, weak shoulders appear at ∆ ≈ ±17 mV in the normalized spectrum. The
same gap is significantly stronger in the underdoped compound (see Fig. 7.13b). In
Sec. 6.1, it was explained that when entering the SDW phase, a gap of 2∆ = 3.42kBT

MF
SDW

opens at ±kF . For the parent compound, the transition temperature is TMF
SDW ≈ 195 K

[255, 260, 273]. This corresponds to a SDW gap of 2∆ ≈57 meV. In the case of the un-
derdoped compound, TMF

SDW is slightly lower [260]. TMF
SDW ≈ 145 K for the underdoped

compound would lead to 2∆ ≈ 42 meV. These values do not deviate too much from
those obtained from the measurements presented in Fig. 7.13a and b. This leads us to
the assumption that this gap is a spin gap. As explained in Chap. 6, a spin-density
wave state can occur as a result of band nesting. The thereby initiated phase instability
leads to the opening of a spin gap. Theoretically, an SDW gap is fully gapped in case of
perfect Fermi surface nesting. The V-shape observed in the spectra shown in Fig. 7.13a
and b can be explained by an imperfect Fermi surface nesting. Imperfect nesting occurs
if some bands crossing the Fermi energy do not show a nesting behavior [255]. As a
result, an energy gap only exists only for specific areas on the Fermi surface. Especially
for iron-based superconductors, the nesting is usually not perfect [120]2. Another ex-
planation for the V-shaped gap could be a nodal SDW gap with nodes along specific
k-directions [120, 274]. It results from a nontrivial band topology [274]. In this case,
energy states at infinitely low energies would exist leading to a non-zero conductance,
as can be seen in Fig. 7.13a and b. In Fig. 7.13c and d, the d2I/dU2 spectra correspond-
ing to Fig. 7.13a and b are shown. A dip/peak at ±7.5 mV is visible and corresponds
to the largest slope of the spin gap shown in Fig. 7.13a and b. The formation of a SDW
gap in SrFe2As2 was already investigated by Wang and Hu et al. with optical spec-
troscopy [275–277]. They could measure two different energy gaps. A smaller one was
localized at an energy which fits the above-mentioned relationship of 2∆ = 3.42kBT

MF
SDW

[276, 277]. It could explains our observations. A second one was identified at a signif-
icantly larger energy (≈190 meV) and fulfills the relation 2∆/(kBT

MF
SDW) ≈ 9 [276, 277].

This energy is outside the energy range of our present investigation. Thus, no state-
ment can be made about this feature. Furthermore, an INS experiment revealed a spin
gap in the parent compound at 7 meV around the AFV [278]. In this paper, it was
proposed that antiferromagnetic order occurs in an first-order phase transition and the
electronic properties can neither be understood within the fully itinerant picture nor
within the localized picture, but within an intermediated model.

Apart from that, another feature can be seen at ±14 mV in Fig. 7.13c and d. The
value of this excitation is very similar to the one observed for the superconducting
compounds, where these features were assigned to phonons [270, 279]. For the parent
compound, an additional feature appears at ± 60 mV, exactly the same energy, where
broad a excitation was observed for the overdoped compound (see Fig. 7.10b) and

2According to Kuroki, rather the enhanced spin susceptibility due to electron-hole interactions than a
one-to-one mapping of the Fermi surfaces is referred to a nesting vector [120].

103



7 SrFe2(As1−xPx)2

which is related to a possible magnon. To sum up, some excitations are visible in the
superconducting sample as well as in the magnetic ones linking the two phases.

In this chapter, it was shown that optimally doped SrFe2(As1−xPx)2 shows a dou-
ble superconducting gap that has a V-shape and is therefore related to a nodal pairing
symmetry. Furthermore, it was shown that the coherence length is of the order of only
a few nanometers, like it is usually the case for iron-based superconductors. This is in
contrast to conventional superconductors which have coherence lengths of hundreds
of nanometers. However, if the coherence length is only of the order of a few nanome-
ters, this means that the local stoichiometry can affect the superconducting properties.
Besides, the surface of the doped compounds of SrFe2(As1−xPx)2 is quite rough (re-
member the impurities in the case of the overdoped compound). All together, this
complicates further investigations like quasiparticle interference measurements (QPI),
as well as detailed and reliable measurements for the determination of the pairing
symmetry or resonance modes. This is the reason why we moved on to a stoichio-
metric superconductor, namely FeSe. Bulk FeSe as well as a single monolayer will be
discussed in the next two chapters.
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Figure 7.13: a) A dI/dU spectrum of the parent compound is shown. The spectrum was av-
eraged over 100 spectra within an area of 20 × 20 nm2 at T=0.8 K (Um=2.9 mV ), b) A dI/dU
spectrum of the underdoped compound (x=0.2) is shown. The spectrum was averaged over 90
spectra within an area of 1.6 × 1.6 nm2 at T=0.8 K (Um=761µV ). c) The d2I/dU2spectrum cor-
responding a) is displayed. d) The d2I/dU2-spectrum corresponding to b) is displayed. Taken
from Ref. [248].
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The system FeSe was chosen for several reasons. Firstly, it has the simplest crystalline
structure among iron-based superconductors. Secondly, it is a building block of every
iron-chalcogenide based superconductor, so it is of general interest. Furthermore, it has
a peculiar behavior of its critical temperature. Bulk FeSe becomes superconducting at
a critical temperature of only 8 K. It can be enhanced to 36.7 K under a pressure of
8.9 GPa (lattice compression) [280], so it is pressure-sensitive. When a monolayer of
FeSe is grown on a SrTiO3 substrate, Tc can be enhanced up to 100 K [12]. The reason
for the high Tc is not yet clarified. Within this chapter, results on bulk FeSe will be
presented. The focus will lie on the superconducting DOS.

8.1 Physical Properties of FeSe

FeSe can exist in a hexagonal α-phase or in a tetragonal β-phase. Only for the β-phase,
superconductivity occurs below a certain critical temperature Tc ≈9 K [281]. FeSe be-
longs to the 11-family and its β-phase has an anti-PbO-type crystalline structure which
is shown in Fig. 8.1. It is visible that a single Fe atom is surrounded by four Se atoms
which together form an FeSe4 tetrahedron [282]. The tetrahedrons located around
the Fe atoms are stringed together and form two-dimensional Fe2Se2-layers. A single
Fe2Se2 layer is actually a trilayer, with an Fe layer sandwiched between two Se layers.
The high-temperature tetragonal phase (a=b 6=c) as shown in Fig. 8.1) has a P4/nmm-
space group [282]. A structural phase transition to a low-temperature orthorhombic
(nematic) phase (space group: Cmma) occurs at a temperature Ts = 90 K [283]. In the
orthorhombic state, the lattice is stretched along one direction, which leads to two dif-
ferent bond angles in the a-b plane. However, the orthorhombic distortion is hardly
visible in STM.

In contrast to most other iron-based superconductors, this structural phase transition
is not accompanied by a magnetic phase transition and no long-range antiferromag-
netic order was detected so far (without applied pressure). The fact that no long-range
magnetic order was observed even when going to very low temperatures T → 0 led
to the conclusion that the nematic phase transition is not magnetically/spin-driven
[283]. Therefore, the spin-driven nematic scenario was questioned for a while. In this
respect, FeSe became more and more interesting. For the investigation of the origin of
nematicity, one might exclude the spin order as a driving force (see 6.1) [283]. Rather a
"[...] spontaneous orbital order has been invoked to explain the nematic state in FeSe
[284, 285]" [286]. However, in the latter reference currently, it was mentioned that,
there is no microscopic theory that could explain a spontaneous orbital ordering with-
out any magnetism being involved [286]. In the same reference, it was argued that the
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Figure 8.1: The crystal structure of FeSex. In
the tetragonal phase, a = b = 3.7734(1) Å, c =
5.5258(1) Å [281, 282].

a

b

c

absence of a long-range magnetic order in FeSe can be rather understood within an
extended spin-nematic scenario [286], which is based on the fact that the Fermi energy
in FeSe is small. The latter information is based on an angle-resolved photoemission
(ARPES) study and a quantum oscillation experiment [287, 288]. In this framework, it
was concluded that a nematic order can occur even far from magnetism without ex-
cluding spin fluctuations to play a crucial role [286]. Indeed, soon thereafter, substan-
tial stripe spin-fluctuations were found at temperatures below Ts [289]. Furthermore, a
resonance mode was recently measured at an energy of 4 meV with neutron scattering
(see Fig. 8.2) [289]. This is a proof of spin fluctuations playing an important role in this
system. As stated in Ref. [289], these findings support the picture of a spin-fluctuation-
mediated superconductivity and nematic phase transition [107, 131].

Around the same energy at which the resonance mode was observed with neutron
scattering (shifted by the superconducting energy gap ∆), a dip-like feature has al-
ready been observed one year earlier in a differential conductance spectrum, measured
by STM [290], and was assigned to a possible "bosonic mode". However, at this point,
it should be noted that a resonance mode should occur as a peak-like feature in a dif-
ferential conductance measurement (see Sec. 6.3). Dip-like features around the same
energy arise only in the case of significant inelastic contributions. For this reason, we
advise caution in order not to mix up resonance features with inelastic contributions.

8.1.1 Band Structure

The Fermi surface of FeSe theoretically consists of three hole pockets (α, β, γ) at the
Γ point and two electron-like pockets (δ, ε) at the M point [287]. This is illustrated in
Fig. 8.3a for the tetragonal phase. The inset shows a band separation at the dxz − dxy
crossing point which occurs due to spin-orbit coupling [291]. In the tetragonal phase,
the energy states of dxz/dyz orbitals are degenerate as sketched in Fig. 8.3c (left).

During the passing of the structural phase transition, a distortion along a certain
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Figure 8.2: Measured dynamic spin correlation
function S(Q,ω) by Wang et al. at the AFQ
Q for the superconducting (black), orthorhom-
bic (blue) and normal state (red). The in-
set shows the corresponding calculated spectra
of the imaginary part of the spin susceptibil-
ity. Reprinted with permission from Ref. [289].
Copyright (2015) by NPG.

direction occurs (along ky in Fig. 8.3b). As a result, the dxz/dyz are not degenerate any-
more and the occupation of the two orbitals becomes different. This measure can be
related to the nematic order parameter. The orbital rearrangement can subsequently
induce magnetism. So far, the δ-band (dxy-contribution) could not be measured exper-
imentally [292]. The splitting of the dxz/dyz bands around the Γ and M point could be
measured with ARPES [123, 287, 291, 293–296]. Furthermore, it was mentioned that
the splitting of the dxz/dyz bands of about 50 meV is much larger than expected of an
orthorhombic lattice distortion alone [296]. For this reason, electronic nematicity in-
cluding orbital ordering was taken into consideration [295, 296]. The occurrence of a
splitting of the dxz/dyz-bands around the Γ/M point is without objection, whereas there
is no consensus on a detailed electronic band structure including orbital contributions
and renormalization effects [297, 298]. From a theoretical point of view, tight-binding
models have been used in order to parametrize the three bands (around EF ) involved
in the nematic phase of FeSe [119, 298]. Within these two references, the supercon-
ducting DOS was calculated as well, followed by an indication of how the different
d-orbitals contribute to the total superconducting DOS [119, 298].

Before discussing our experimental results of the superconducting DOS, some gen-
eral comments on the investigated crystals have to be made.

8.2 FeSe Bulk Single Crystals

At this point, a great thanks goes to T. Wolf and his co-workers for providing us with
high-quality single crystals. They are able to grow β-FeSe single crystals by using a
vapor-growth method [299]. Fe and Se powders are mixed in an atomic ratio of 1.1:1
and sealed in an evacuated SiO2 ampule with an eutectic mixture of KCl and AlCl3
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Figure 8.3: Illustration of the electronic band structure of FeSe. a) The Fermi surface in the
tetragonal phase with different orbital contributions around Γ and M points in the 2-Fe unit
cell is sketched. b) Fermi surface in the orthorhombic (nematic) phase with a distortion along
the ky direction. Contributions from the dxy orbital have a thinner line, due to the lack of
corresponding experimental data. c) When cooling down to temperatures below the structural
transition temperature Ts, a band splitting between the dxz/dyz bands occurs (at the M point).
Adapted from Ref. [287].
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Figure 8.4: a) An ultra-clean surface is shown. Topography was taken at U=8 mV, I=20 nA.
The inset marked in red is shown in b), where the atomic resolution of the upper Se layer is
displayed (U=25 mV, I=132 pA). c) The topography was taken at U=20 mV, I=10 nA and shows
two twin boundaries.

afterwards [299].

For our STM-investigations, the samples were prepared and cleaved in the same way
as explained in the case of the SrFe2(As1−xPx)2-system. Due to the lack of intercalation
layers between the FeSe layers and doping atoms, the cleaved surfaces of the FeSe
single crystals are in general very flat and clean. Topography results are shown in
Fig. 8.4. In Fig. 8.4a, an ultra-clean surface is visible. The marked inset in red is shown
in b) and illustrates the underlying atomic resolution. The visible atoms belong to the
upper Se layer. When cooling down through the nematic phase transition, so-called
twin boundaries can form by spontaneous phase separation. All of our measurements
were performed below 20 K, so in the orthorhombic (nematic) phase. A twin boundary
is the mirror plane of two adjacent domains. In Fig. 8.4c, two parallel twin-boundaries
can be recognized. Furthermore, sometimes, some Se adatoms remain on the surface
after cleavage as can be seen in Fig. 8.4c.
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Figure 8.5: a) Reprinted with permission from [242]. Copyright by AAAS. b) The measurement
was performed at 3 K. Reprinted with permission from [290]. Copyright by APS. c) Taken from
[300], d) Taken from [297], e) Taken from [292].

8.3 Summary of Superconducting Properties Reported
in Literature

Among momentum-resolved methods like ARPES or Fourier-transformed STM (FT-
STM), a detailed investigation of the superconducting gap structure can be instructive
for the determination of the underlying pairing symmetry. The occurrence of a gap
in the superconducting DOS of single-crystalline FeSe has already been reported by
several authors [242, 290, 297, 300]. An overview is illustrated in Fig. 8.5. Variations of
the gap structures are clearly visible.

By looking at Fig. 8.5a and b, a V-shaped gap can be recognized. Therefore, nodal
superconductivity was proposed in these publications with line nodes occurring in-
trinsically in the gap function [242]. An extrinsic origin of the V-shaped gap was as-
sumed to be unlikely. A proposed pairing symmetry was the extended s± model. In
Fig. 8.5c, a higher resolved tunneling conductance measurement is shown [300]. Be-
sides the main gap with a size of ±2.5 mV, three other gaps are slightly visible. One
around ±3.3 mV, another one around ±1.8 mV and a last one at around ±0.5 mV. Note
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that already in Fig. 8.5a, a small feature is visible in a small energy range, even though
in none of the reports, these gap-like features around ∆ = 0.5/1.8 mV are explained. In
general, the various superconducting gaps are a clear manifestation of the multiband
nature of the system complicating the determination of the underlying pairing sym-
metry. In Ref. [300], the same pairing symmetry (nodal s±-symmetry) as in Ref. [242]
is supported. However, in Ref. [300], it is noted that the line nodes are accidental and
not symmetry-protected and that the nodes are absent in samples with a low residual
resistivity ratio (RRR) [300, 301]. In a recent report of Jiao et al., it is finally argued
that the pairing symmetry in FeSe is a nodeless one [297]. They report two differ-
ent gaps as well (see Fig. 8.5d). Within a combined STM/specific heat analysis, a su-
perposition of a small isotropic s-wave gap with a larger anisotropic s-wave gap is
proposed. The smaller gap is given by ∆s(0) = 0.25(3) meV and the anisotropic one
by ∆(θ) = ∆0

es(1 + αcos(4θ)) with ∆0
es = 1.67(3) meV (STM) and ∆0

es =1.38(1) meV
(specific heat) with α=0.34(1) meV for both [297]. A large difference in the gap mag-
nitudes between the smaller and the larger gap are mentioned. Finally, there is even
another recent paper following such a two-band model and stating nodeless supercon-
ductivity [292]. However, the authors of the latter reference mention that both gaps are
extremely anisotropic. In this respect, this two-band model is based on two different
Fermi surfaces, one around the Γ and one around the M point. These are the bands
that have already been observed experimentally with ARPES and quantum oscillation
measurements [287, 288, 294]. However, theoretically, two electron pockets and three
hole pockets can cross the Fermi energy, whereas experimentally, so far, there are only
indications of more than one electron pocket crossing the Fermi energy [287]. If more
bands were indeed crossing the Fermi energy, this would lead to an even more com-
plicated and exotic pairing mechanism. For example, a so-called "odd parity pairing
and nodeless s±" [302] symmetry is proposed. The nodal line of the order parame-
ter is not just located somewhere between the electron and hole pockets, but a sign
change of the order parameter occurs already between different electron pockets and
between hole pockets. For the occurrence of this pairing symmetry, the trilayer Se-Fe-
Se is assumed to "split in a bonding and an antibonding combination" [303]. Thereby,
the hybridization between the dxz/dyz and px/py orbitals becomes important [219, 304].
For the parity odd spin singlet pairing, the iron lattice is divided in two sublattices,
whereas a combination of an intersublattice and a sign-changing intrasublattice pair-
ing is considered [302]. Depending on the position in real space, the pairing term can
behave as an s-wave or as an d-wave [219, 302, 304].

Taking into account another thermal conductivity [305] specific heat [306] and critical
field [307] investigation, a nodeless extended s± pairing symmetry seems to be the
most presumable explanation of FeSe. Currently, most of the reports on bulk FeSe
state one rather isotropic gap and a second more anisotropic gap. Unfortunately, this
is in contrast to a recent calculation performed in the framework of a spin-fluctuation
based pairing mechanism [119, 298]. Within these calculations, there are nodes on one
of the Fermi surface pockets [119, 298].
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8.4 Spectroscopic Results

In order to get more insight into the structure and shape of the multiple superconduct-
ing gap structure of FeSe, we performed measurements using the DT-STM reaching
temperatures down to 25 mK. As we will see in the following, the DT-STM assures a
very high energy resolution of the superconducting gap features which had not yet
been measured so far on single crystalline FeSe.

8.4.1 The Superconducting Energy Gap

In Fig. 8.6, the differential conductance is shown for the superconducting state (blue)
which was measured at 42 mK. It is compared to the normally conducting differen-
tial conductance (green), which was measured above Tc at 17.6 mK. In the case of the
normally conducting spectrum, a slight U/V-shape is visible. Within the spin-fermion
approach (cf. Sec 6.3), such a behavior of the differential tunneling conductance was
assigned to inelastic contributions, which enter with a quadratic voltage dependence
(σi ∝ U2) for energies smaller than a spin-fluctuation mode energy (eU � ωsf ) and
linear for larger ones (eU � ωsf ). In this respect, there is evidence for some inelastic
contribution within the energy range of Fig. 8.6. The superconducting spectrum shows
a lot of fine-structures. A multiple gap plus additional features outside the gap energy
range are visible. These features are marked in Fig. 8.7a and are analyzed in detail in
the following sections.

Figure 8.6: Measured differential conduc-
tance in the superconducting state (blue)
compared to the normally conducting one
(green) (I=530 pA). Note that a lock-in
amplifier was used for the measurement,
with a modulation voltage of U∆=200µV
causing a total broadening of around
400µV. A triple Dynes fit (see text) was
used in order to extract the different gap
values (cyan).
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In Fig. 8.7a, it is indicated that the superconducting gap consists of three different
gaps which are labeled with ∆1,∆2,∆3. The features are even more apparent in the
second derivative of the tunneling current, shown in Fig. 8.7b. As can be seen from
Fig. 8.7a, the largest contribution comes from the coherence peaks located around ∆2 ≈
1.3 mV. The energy positions of ∆2/∆3 are in agreement with the ones from literature
(see Fig. 8.5). Nevertheless, the intensities of the coherence peaks of the individual gaps
reported in literature differ from our measurement (cf. peak located around 2.2 mV).
This can be understood in terms of the tunneling matrix element t = |〈ΨT |H|ΨS〉|2,
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which consists of the wave function of the tip/sample ΨT/S and the tunneling Hamil-
tonian HT . As explained within the Bardeen model in the first chapter, the differen-
tial conductance is proportional to this matrix element. For the wave function of the
sample, we have to consider the orbital arrangement of the underlying lattice. Further-
more, the wave function of the tip might not be a perfect s-wave type one as expected
within the Tersoff-Hamann model. If there is an admixture of other orbitals, the tun-
neling matrix element will change compared to a purely s-wave tip. Contributions
from a certain orbital at a distinct sample position will be enhanced compared to oth-
ers. As a result, the spatial variation of the differential conductance can behave very
differently, depending on the tip condition and shape. If we assume that the multi-
ple gaps measured in tunneling spectra are due to different orbital contributions (like
in Ref. [119, 298]), discrepancies in the intensities of the various peaks among several
investigations on FeSe might be explained by different tunneling matrix elements. Dif-
ferent tip conditions among experiments could explain the enhancement of different
orbital contributions leading to different relations of the quasiparticle intensities in a
measured tunneling spectrum. As will be shown later on in this chapter (see Fig. 8.10),
we could succeed in measuring gaps with intensities quite similar to that in Fig. 8.5c
and d for which a different tip (Au-tip) was used than for the measurement of the spec-
tra in Fig. 8.6. We will show as well that both gap shapes could be based on the same
multiple gap equation.

As shown within the cyan line in Fig. 8.6, we tried to fit the data by using a triple
Dynes fit:

DDynes,ges(E,Γ) = d1

(
E − iΓ1√

(E − iΓ1)2 −∆2
1

)
(8.1)

+ d2

(
E − iΓ2√

(E − iΓ2)2 −∆2
2

)
+ d3

(
E − iΓ3√

(E − iΓ3)2 −∆2
3

)
,

where the fitting parameters are d1,2,3 (weighting factors for the different contributions
of the different superconducting gaps), ∆1,2,3 (different gap-sizes) and iΓ1,2,3 (broaden-
ing parameter), often called the lifetime of excited quasiparticles). The superconduct-
ing DOS is then proportional to the real part of the Dynes function Re (DDynes,ges(E,Γ)).
In order to consider the V-shaped background, the Dynes fit was combined with a
quadratic function. Therefore, the total fit function is given by

f(E,Γ) = a · Re (DDynes,ges(E − E0,Γ)) + b · (E − E0) + c(̇E − E0)2. (8.2)

However, the result of this Dynes fit is given without warranty, since Γ includes the
total broadening (intrinsic linewidth plus the experimental broadening). Therefore,
the Dynes fit is not the ideal fit function especially for unconventional superconduc-
tors like FeSe. A deviation from the BCS-type shape of the superconducting gap (espe-
cially nodes) can be mistaken either for a temperature broadening or for a meaningless
small gap size. For the present case, different starting values for the fitting proce-
dure lead to different gap sizes. Furthermore, the clearly visible gap around 2.45 mV
could not be fitted even by using a quadruple Dynes fit. Therefore, the triple Dynes

115



8 FeSe

fit of Eq. 8.1 could serve only for determination of the position of the inner gaps ∆1 =
0.626 meV, ∆2 = 1.25 meV and ∆3 = 1.74 meV in a first step. For a more meaningful
fitting function, we had to move on to more appropriate fitting functions according to
the underlying system. This will be described later on within this chapter.

no
rm

. d
I/

d
U

 (a
rb

. u
ni

ts
)

0

0,5

1

1,5

2

2,5

U (mV)
−10 −5 0 5 10

±Δ1

±Δ2

+Δ3
-Δ3

6.5mV

-5.64mV

-4.2mV

ωres,INS+Δ3

ωres,avg(2,3)+Δavg(Δ2,Δ3)

Δ3+ωres,3

s
y

m
. 
d

I/
d

U
 (

a
rb

. 
u

n
it

s
)

0

0,5

1

1,5

U (mV)
−10 −5 0 5 10

a
n

ti
s
y

m
. 
d

²I
/d

I²
 (

a
rb

. 
u

n
it

s
)

0

U (mV)
−10 −5 0 5 100 5 10-10 -5

U (mV)

d)
0

0.5

1

1.5

s
y
m

. 
d

I/
d

U
 (

 a
rb

. 
u

n
it

s
)

c)

d
²I

/d
U

² 
(μ

A
/V

²)

−200

−100

0

100

200

U (mV)
−10 −5 0 5 10

 d
²I

/d
U

² 
( 

a
rb

. 
u

n
it

s
)

0 5 10-10 -5
U (mV)

b)

0

-0.1

d
²I

/d
U

² 
( 

a
rb

. 
u

n
it

s
)

a)

0.5

1

1.5

0

2

n
o
rm

. 
d

I/
d

U
 (

 a
rb

. 
u

n
it

s
)

0

-100

100

2Δ3 3Δ3

Figure 8.7: a) The measured superconducting dI/dUspectrum that was normalized to the nor-
mally conducting spectrum (see text) is shown. ∆1,2,3 mark the positions of the three different
gaps. The dashed black line labels the position of a possible resonance feature coming from
the average value of ∆2 and ∆3. In orange, the position of a resonance mode belonging to ∆3

is shown. The green dashed line marks the position where the resonance mode should occur
according the recent INS data [289]. b) dI/dUspectrum of a). Colours indicate the same quan-
tities as in a). c) Symmetrized spectrum from a different set of measurement at roughly the
same temperature (T=40 mK), but different tunneling parameters (U=15 mV, I=21.5 nA). Again,
colours indicate the same quantities as in a)/b). The red line marks an extra feature, which is
clearly visible especially in the corresponding dI/dUspectrum as shown in d).

8.4.2 Resonance Mode

Now, we will first focus on the features that are visible outside the superconducting
gap range. In Fig. 8.7a, the superconducting spectrum of Fig. 8.6 is shown as a normal-
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ized spectrum. The normalization was performed according to the measured normally
conducting spectrum (shown as green line in Fig. 8.6) by

dI/dUnorm(U) =
dI/dUsc(U)

dI/dUnc(
√
U2 −∆2/e2

. (8.3)

A peak is visible around ±4.46 mV (black line) and a hump at ±6.5 mV (green line).
Sec. 6.3 showed what the differential conductance of an unconventional superconduc-
tor looks like in the case of the spin-fermion approach (see Fig. 6.11). In Fig. 8.8, the
theoretically calculated dI/dU and dI/dUspectra are compared to each other in the
cases of weak and strong inelastic contributions. This calculation was done by P. Hlo-
bil and J. Schmalian. In the case of negligible small inelastic contributions, a peak-like
feature arising from a resonance mode would be visible at an energy ∆ + ωres. The
energy of the resonance mode is coupled to the superconducting gap size and is usu-
ally in the range of ωres ≈ 1.3∆. Since we have at least three different superconducting
energy gaps in our experimental data, the situation becomes complicated. One might
think that we should see a separate resonance mode for every different superconduct-
ing gap. However, according to discussions with J. Schmalian, P. Hlobil and M. Klug,
the most striking one should be the one coming from the gap with the largest spec-
tral weight. This would be ∆2 in our case. The position of 1.3 · ∆2 + ∆2 = 2.76 mV
would almost coincide with the position of ∆3 ≈ 2.45 mV. We do not question the peak
around 2.45 mV to be a superconducting gap feature, since it turned out to be of largest
intensity among the other gaps in previous measurements (see. Fig. 8.5). Therefore, a
possible resonance feature at this position would be overshadowed by the quasiparti-
cle coherence peak of ∆3 and no statement can be made about this resonance mode.
Another possibility for the occurrence of a resonance mode could be a weighed reso-
nance mode, which occurs around an energy that corresponds, e.g., to the mean value
of the two clearest gaps (∆2,∆3). The position would be given by

∆avg(2,3) ≈ 1.3 · ∆2 + ∆3

2
+

∆2 + ∆3

2
≈ 4.2 mV. (8.4)

In Fig. 8.7a/b, a feature around this energy can be seen and it is marked by the black
dashed line. Since it appears as a peak-like feature in the first derivative of the tun-
neling current (Fig. 8.7a), it would indicate rather weak inelastic contributions to this
system, even though this does not fit to the observed V-shaped tunneling conductance
in the normal state. As a third possibility, we consider only the largest superconducting
energy gap ∆3 and its resonance mode ωres,3. In the superconducting dI/dUspectrum,
the corresponding feature would occur at

ωres,3 + ∆3 = 1.3 ·∆3 + ∆3 = 5.64 mV. (8.5)

This position is marked by an orange dashed line in Fig. 8.7a/b. At this energy, a
downward-pointing step-like feature is visible. In the case of slightly larger energies,
the normalized differential conductance falls below unity and therefore below the cor-
responding normally conducting differential conductance. This can be observed in
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Fig. 8.6 as well. The occurrence of the humpl-like features would imply significant in-
elastic contributions in the system (cf. Fig. 8.8) and would fit to the observed V-shaped
background in the normally conducting differential conductance (see green spectrum
in Fig 8.6). Furthermore, the resonance mode observed by neutron scattering was lo-
cated at an energy of 4 meV [289]. This resonance mode would appear at an energy
shifted by the superconducting energy gap in a tunneling spectrum. The energy of
4 meV is closest to the energy of the resonance mode at ωres,3 ≈ 3.2 mV. The latter cor-
responds to the resonance mode of our largest superconducting gap ∆3 and would
therefore fit. The energy position of the resonance mode located around 4 meV, shifted
by ∆3, is marked by a green dashed line in Fig. 8.7a/b. It is still in the region of the
hump-like feature just explained.

Figure 8.8: The upper panel shows the calcu-
lated supeconducting differential conductance
σ which was normalized according to Eq. 8.3.
The calculation was performed by P. Hlobil and
J. Schmalian for inelastic contributions varying
in size. The resonance feature occurs between
2∆ and 3∆ and appears as a shoulder in the
case of weak inelastic contributions and as a
dip in the case of strong inelastic contributions.
The lower panel shows the corresponding cal-
culated derivative (=̂d2I/dU2). At the posi-
tive energy range, strong inelastic contributions
lead to a peak reaching a positive intensity at
∆ + ωres. Taken from Ref. [11].
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In Fig. 8.7c, the symmetrized superconducting dI/dUspectrum is shown, which was
obtained from another measurement on a different FeSe sample and with a differ-
ent W-tip. The temperature during the measurements shown in Fig. 8.7a and c are
comparable, whereas the tunneling current was significantly larger in the case of the
spectrum shown in Fig. 8.7c (I=21.8 nA). The dashed lines mark the same position as
in Fig. 8.7a and b. Again, a hump-like feature is visible around ±4.2 mV followed
by a step pointing downwards at around 5.6 mV. In Fig. 8.7d, the to c corresponding
antisymmetrized dI/dUspectrum corresponding to c is shown. The red dashed line
marks another feature which is clearly visible around ±8 mV. It appears as a dip at
−8 mV and as a peak at +8 mV. According to the experimental data, the largest gap
∆3 is at ≈ 2.45 mV. The values for the energy positions of two and three times of this
gap size are marked in Fig. 8.7c. In this energy range, the resonance feature of ∆3
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is expected1. The observed feature is located at a slightly larger energy than 3 · ∆3.
Assuming an electronic temperature of 100 mK and taking into account a modula-
tion voltage of U∆ = 200µV, the energy resolution of the spectra in Fig. 8.7b and d
is
√

(1.22U∆)2 + (5.4kBT )2 ≈250µeV. This high energy resolution can probably not ex-
plain an energy deviation of more than 500µeV to the position of 3∆3. On the other
hand, one could argue that the energy range for the existence of the resonance might
not end abruptly. In this case, we might be still be allowed to talk about a resonance
feature that would be strongly overshadowed by inelastic contributions in the present
case. On the other hand, the deviation to the position of the resonance feature accord-
ing to the recent INS data [289] (ωres,INS +∆3 ≈ 6.45 mV assuming an energy shift of ∆3)
is off about 1 meV and therefore not negligible small. However, the energy resolution
of the INS setup is 1 meV [289]. Therefore, it could be indeed possible that the feature
around 8 meV yet corresponds to the resonance mode measured by Wang et al. [289].
Nevertheless, only one resonance mode can occur from the opening of ∆3 in the su-
perconducting state. Therefore, one has to decide whether the feature around 5.6 mV
(orange line in Fig. 8.7) or the one around 8 meV corresponds to the resonance mode of
∆3. According to a neutron scattering measurement [308] and an 57Fe nuclear inelastic
scattering experiment [309], a transversal acoustic phonon exists at 5.6 meV [309]. In a
corresponding superconducting tunneling spectrum, this phonon mode would appear
at an energy shifted by the superconducting gap energy ∆. Adding ∆3 to the energy of
this phonon mode, we would end up at an energy of 8 mV for the position of the mode
in a superconduting tunneling spectrum. The phonon, being an inelastic excitation,
would appear as a dip for the negative energy range and as a peak for the positive
voltage range. This appearance can be observed for our mode at ±8 mV. Therefore, a
possible final conclusion could be the following: The feature around 5.64 mV (orange
line in Fig. 8.7) corresponds to the resonance mode of ∆3 which is overshadowed by
inelastic contributions. The feature around 8 mV corresponds to a Van Hove singular-
ity of a transversal acoustic mode. The clearer occurrence of this feature in the case
of Fig. 8.7d is most likely due to the larger tunneling current used in this case and
therefore a larger probability of the creation of inelastic excitations.

8.4.3 Larger Energy Range

In Fig. 8.9, first and second derivative of the tunneling current are shown for a larger
energy range than in the measurement previously shown. In the left panel of Fig. 8.9,
the black line shows a measured dI/dUspectrum in the superconducting state. The
behaviour of the spectra at energies much larger than the superconducting gap range
(normally conducting area) is clearly not a constant. Again, this indicates the presence
of significant inelastic contributions to the differential tunneling conductance in this
system. At voltages in a range of 4 mV |U | < 88 mV, the spectrum has a rather parabolic
behavior. This is indicated by a square-fit (orange line) to this area. At larger voltages,
a linear voltage dependence can be observed, indicated by a linear fit to this energy

1The resonance feature is not exactly pinned down to the position of 2.3∆ in the superconducting
tunneling spectrum.
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Figure 8.9: Left panel shows the measured dI/dUspectrum in black. The green line marks the
linear behavior for voltages higher than |U | > 88 mV. The orange line marks a parabolic fit for
4 mV |U | < 88 mV. The right panel shows the corresponding d2I/dU2 spectrum in black. The
smoothed one (moving average, 5pts) is shown in blue.

range (green line). In the corresponding dI/dU spectrum in the right panel of Fig. 8.9,
a dip/peak can be observed at±88 mV. This means that the feature at±88 mV is an in-
elastic excitation. The broadened shape of the dip/peak indicates that the inelastic ex-
citation is of a rather collective nature. It resembles a particle-hole continuum feature.
Indeed, it was proposed that the bandwidth of the paramagnon excitation spectrum
can reach up to 200 mV [119]. The total local susceptibility calculated by Kreisel et al.
[119] shows a maximum around 90 mV which is in good agreement with the position
of the excitation visible in the right panel of Fig. 8.9. According to Ref. [119], this mode
is not affected much when going through the structural phase transition. Furthermore,
the calculations of Kreisel at al. could well represent the INS data measured by Wang
et al. (resonance mode in a smaller energy range) [119, 289]. In another ab initio study
of paramagnons in FeSe, it was pointed out that "the strength of the effective electron-
electron interaction mediated by paramagnons is estimated to be of the same order of
magnitude as the screened Coulomb interaction" [259]. This would fit into the picture
of a paramagnon-driven superconductivity [259].

In the dI/dUspectrum shown in Fig. 8.9, two other excitation features are slightly
visible. One is located around ±18 mV and the other one is located around ±33 mV.
According to Ref. [308–310] these modes could be related to phonons. The authors of
a 57Fe-NIS experiment at 10 K [309] relate a peak at 15 meV in their measured phonon
DOS to a longitudinal acoustic phonon mode [309]. If the energy shift in our mea-
sured superconducting tunneling spectrum, which is due to the opening of the su-
perconducting gap of ≈ 2.45 mV, is taken into account, the phonon mode at 15 mV
corresponds well to our measured one at 18 mV. In Ref. [309], another pronounced
peak could be measured at an energy of 31.5 meV. The authors refer this peak to a Fe-
E

(2)
g Raman mode. Again this position corresponds well to the discussed measured

dI/dUspectrum (rigth panel of Fig. 8.9).
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8.4.4 Highly Resolved Multiband Gap Structure

The results of the measured differential conductance in the superconducting state that
have been shown so far (see Fig. 8.6, Fig. 8.7a, c) reveal a rather V-shaped supercon-
ducting gap indicating a nodal pairing symmetry. However, one has to keep in mind
that the results were measured using a lock-in amplifier. Chap. 4 explained that the
use of a lock-in amplifier causes an additional energy broadening. Furthermore, the
spectrum shown in Fig. 8.7c was recorded with a high tunneling current of 21 nA. At a
measurement temperature of only 30-40 mK, such a high current causes heating lead-
ing to an additional energy broadening.

In order to exclude broadening due to a lock-in, the spectrum shown in Fig. 8.7a,
which was recorded at a small tunneling current (550 pA), was deconvoluted by the
corresponding lock-in broadening function (see Eq. 4.16). The result strongly indicated
a fully gapped spectrum. For this reason, the experiment was repeated while omitting
the use of a lock-in amplifier. Indeed, full gapped superconducting spectra could be
measured in this case. Various spectra are shown in the left panel of Fig. 8.10 for com-
parison. The gray spectra are the ones shown in Fig. 8.10a and c. The blue/green
spectra and the red/orange spectra correspond to spectra that where measured within
the same experiment. Up to seven different peaks can be distinguished. Whereas the
intensity of the peaks varies when the spectra of different sample positions are com-
pared, the respective positions of the various gaps stay the same. This impressively
reveals the complicated multiband nature of this system. The right panel of Fig. 8.10
is a zoomed-in picture of the left panel, comparing the spectrum shown in Fig. 8.7a
and the red spectrum of the left panel of Fig. 8.10. One can clearly see fully gapped
quasiparticle DOS in case of the red spectrum, which was measured without using a
lock-in amplifier. The spectrum was obtained by a numerical derivative of the mea-
sured tunneling current. For aesthetical reasons, some of the spectra shown in the left
panel of Fig. 8.10 where slightly smoothed (by using a moving-average filter over sev-
eral neighbored points). Note that the signal-to-noise ratio is lower for spectra that
where measured without lock-in amplifier.

The fully gapped spectra with a clear zero-conductance within an energy range
of ±200µeV confirm the previous assumption of nodeless superconductivity in bulk
FeSe.

In a next step, we tried to construct a model function in order to fit the various mea-
sured spectra of Fig. 8.10 and in order to get an impression of the underlying pairing
symmetry. This turned out to be highly non-trivial. Even though this is still work in
progress, first conclusions will be explained in the following sections:

In order to construct a physically meaningful model function, on has to consider sev-
eral points. On the one hand, it is necessary to think about a possible paring symmetry
in this system. As described in Sec. 6.4, it depends on the underlying crystal symmetry.
If the gap function ∆(θ), which is usually angle-dependent, is known, the quasiparticle
DOS can be calculated by

νsc(ω) = Re

(∫ 2π

0

dθ
|ω|√

ω2 −∆2(θ)

)
. (8.6)
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Figure 8.10: In the left panel, various spectra measured within several experiments are com-
pared to each other. Gray lines show spectra from Fig. 8.7a/c. The blue/green spectra and
the red/orange spectra are each from the same experiments. The right panel is a zoomed-in
picture. It displays the spectrum of Fig. 8.7a in comparison to the red spectrum in the left panel.

Some information on the band structure around the Fermi energy is needed in order
to take the right number of equations (different gaps are located on different Fermi
surfaces). At the beginning of this chapter, it was explained that according to sev-
eral investigations, mainly the dxz, dyz, dxy orbitals contribute to the Fermi surfaces.
Furthermore, it was mentioned that theoretically, three hole-like Fermi pockets can in-
tersect the Fermi energy around the Γ point and two electron-like pockets around the
M point 2. Thus, five different gap functions could exist. However, some informa-
tion on the shape and symmetry of the respective Fermi surfaces is necessary in order
to construct a reliable model function. From an experimental (see reported ARPES
measurements in Ref. [287, 291, 296]) and theoretical point of view (see calculation of
Ref. [298]), the shape of the electron pocket was proposed to be elliptic. However,
the relation to the exact corresponding orbital contribution as well as the agreement
between theory and experiment has not yet been settled. Furthermore, spin-orbit cou-
pling, hybridization behavior and electron hopping can complicate the band structure.
The picture in Fig. 8.3 is therefore highly simplified. Furthermore, A. Ernst, a collab-
orator of ours, mentioned that on bulk FeSe, the performance of a DFT calculation is
very difficult because of the high sensitivity of the electronic band structure on the Se
position zSe (chalcogenide height) [259]. The determination of the exact band struc-
ture of FeSe is still a controversy issue. These circumstances make it difficult for us
to construct a suitable model function in order to describe our experimental data. On
top of that, the pairing symmetry can be lower than the underlying crystal structure
[148]. Especially for anisotropic Fermi surfaces, the superconducting order parameter
can have different weights for different k-directions [292]. However, such a weighting

2Note that all of our measurements were performed in the orthorhombic (nematic) state where the
energy levels of the dxz, dyz are split.
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will be neglected for the construction of our model function.
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Figure 8.11: DOS maps at various energies are shown in gray scale. The respective positions of
the upper Se atoms are marked by a filled cyan circle. The positions of the lower Se atoms are
marked by an open cyan circle and the Fe positions by orange dots. The corresponding orbitals
are labeled on the right. The rainbow-colorscale image shows the corresponding topography
at 5.5 mV. At the bottom, the five different gap-functions contributing to the assumed model
function are shown in different colors. The colored boxes above each DOS-map indicated the
presence of the respective gap.

Even though there is still a lack of a complete description of the band structure of
FeSe, which would be important for the correct assignment of the various peaks in
our experimental data, we yet try to construct a model function based on the reported
informations. We assume that there is at least one gap with a stronger anisotropy
which could form around an elliptically (electron-like) Fermi surface pocket of mainly
xz/yz-character. Another gap is assumed to be almost isotropy. It could occur around a
small hole-like Fermi surface pocket with mostly xy-character (see also Fig. 8.3). These
assumption are based on several investigations reported in literature, where one strong
anisotropic gap at an electron band [292, 297, 305, 306] and one possibly very small
(isotropic) gap [297, 305], which could come from the hole band [297] was proposed. In
this respect, different gap magnitudes of up to one order of magnitude are mentioned
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[297, 305].
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Figure 8.12: Shown are various measured gap on different positions (red different sample and
tip). The model function is shown in black. The weighting parameters are the following: a)
a=3.5, b=3, c=3, d=4, e=5, f=3, b) a=19, b=1, c=16, d=7, e=12, f=5, c) a=14, b=3, c=12, d=7, e=10,
f=20, d) a=1, b=3, c=5, d=1, e=1, f=1, e) a=5, b=4.5, c=4, d=4, e=5, f=1.

A very interesting STM investigation was recently done by Sprau et al. [292]. They
could extract the Fermi surfaces and energy gaps from Bogoliubov quasiparticle inter-
ference (BQPI) measurements [292]3. Two strongly anisotropic gaps were assigned to
a α-band (manly xz,xy-character) around the Γ point and to a ε-band around the M
points (yz,xy-character). Their measured quasiparticle spectrum is shown in Fig. 8.5e.
In Ref. [292], the gap marked by the black arrow (≈2.3 mV) is referred to the α-band
and the red arrows mark the gap possibly due to the ε-band [292]. However, origins of
the small kinks around ±0.5 mV and around ±3 mV are not explained.

Unfortunately, there is no more information, which we could use for the construction
of our model function so far. We constructed one as explained in the following.

In order to find out, which of the seven coherence peak-like features, visible in
Fig. 8.10, could be linked together, measurements of the quasiparticle DOS where per-
formed over an area of several nanometers. As a result, dI/dU maps, backfolded to

3QPI measurements will be discussed in detail in case of a monolayer FeSe on SrTiO3.
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one unit-cell, could be created for various energies. These dI/dU maps are shown in
Fig. 8.11 as gray-scale pictures. High intensity corresponds to bright areas. For differ-
ent energies, various patterns are clearly visible. On the right side of Fig. 8.11, the corre-
sponding topography image is shown in a rainbow colors scale. The red dots mark the
positions of the upper Se atoms. These positions are marked in the gray-scale images
with filled cyan circles. The empty cyan circles correspond to positions of the lower Se
atoms. The Fe positions are marked in orange together with their d-orbitals (see leg-
end on upper right side of Fig. 8.11). In the lower right part of Fig. 8.11, five different
gap-functions are shown in different colors. The colored boxes above the gray-scale
dI/dUmaps indicated the contributions of the respective gaps for a certain energy. As
a result, these dI/dU maps served to extract patterns of bright features, which are visi-
ble only for a certain energy range. Usually, bright features in a dI/dUmap correspond
to peak positions in the corresponding dI/dU spectrum. All in all, the various maxima
in the patterns for a certain energy are related to the various gaps. As an example, for
the dI/dU map at 0.63 mV, a feature emerges just on the left hand side of the upper
Se positions (blue gap). It becomes brighter when going to the map of 0.93 mV and
again weaker when moving on to 1.03 mV. Finally, at 1.23 mV a new feature appears
just next to the lower Se position (orange gap). Furthermore, the exact occurrence of
the patterns could help to identify the orbital contributions.

For the finally constructed total model function, five different gaps contribute:

νges(ω) = a · Re

(∫ 2π

0

dθ
|ω|√

ω2 −∆2
1(θ)

)
+ b · Re

(∫ 2π

0

dθ
|ω|√

ω2 −∆2
2(θ)

)
(8.7)

+ c · Re

(∫ 2π

0

dθ
|ω|√

ω2 −∆2
3(θ)

)
+ d · Re

(∫ 2π

0

dθ
|ω|√

ω2 −∆2
4(θ)

)

+ e · Re

(∫ 2π

0

dθ
|ω|√

ω2 −∆2
5(θ)

)
,

with

∆1(θ) = (0.271 + 0.050 · cos(2θ)) meV (8.8)
∆2(θ) = (0.600 + 0.012 · cos(2θ)) meV

∆3(θ) = (0.906 + 0.300 · cos(2θ)) meV

∆4(θ) = (1.287 + 0.259 · cos(2θ)) meV

∆5(θ) = (2.000 + 0.380 · cos(2θ)) meV .

In order to compare this model function to the experimental data, a slight thermal
broadening was considered. Therefore, the model function Eq. 8.8 was convoluted
with the corresponding thermal broadening function (derivative of the Fermi function)
assuming an electronic temperature of 100 mK 4. In Fig. 8.13, the thermal broadened

4The electronic temperature was determined by T. Balashov to be 92 mK. This was done within an
experiment on an aluminium crystal. Thereby the electronic temperature could be extracted from a
numerical fit of the superconducting energy gap.
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total model function is shown in black. The five different gaps contributing to this
function are shown in color. In the right panel, angle-dependent behavior of the gap-
size is illustrated. The respective colors indicated the various gaps shown in the left
panel.
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Figure 8.13: In the left panel, the total thermal broadened model function is shown in black.
The five contributing gaps are shown in color. In the right panel, the angle-resolved shape of
each contributing gap is illustrated. The colors of left and right panel correspond to each other.
The radii indicated the gap sizes. For the red curve, two areas are marked in magenta. The
corresponding gap-sizes were considered with an extra weighting factor for constructing the
model function.

Minima and Maxima of the five contributing gaps are stated in in Tab. 8.1.
In Fig. 8.12, the thermal broadened total model function is shown in black and com-

pared to various spectra, measured on different sample positions. The spectrum in
red (Fig. 8.12d), was even measured on a different sample and with a different tip
compared to the other spectra shown in this figure. For the model function, which is
shown in Fig. 8.12a-e, the weighting parameters a, b, c, d (see Eq. 8.7) where adjusted
separately for every measured spectra. As already explained, it is not surprising that
the intensities of the different gaps change with position in real space. The reason lies
in the tunneling matrix element t. For each spectrum shown in Fig. 8.12a-e, the values
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∆ ∆min (meV) ∆max (meV)
∆1(θ) 0.221 0.275
∆2(θ) 0.588 0.612
∆3(θ) 0.606 1.206
∆4(θ) 1.028 1.546
∆5(θ) 1.620 2.380

Table 8.1:

of the corresponding weighting parameters for the different gap intensities are given
in the figure caption. It is impressive, how well this model function fits to the vari-
ous measured spectra, especially for the ones shown in Fig. 8.12a, c, e. Furthermore,
the size and shape of the smallest (∆1) and largest (∆3) gap is in good agreement to
the values of a two-band model in Ref. [297]. Additionally, we observe a difference
between the magnitude of the smallest and largest gap to be of more the one order of
magnitude, as stated by several authors.

It should be noted, however, that above stated model function is probably not unique.
Furthermore, a possible weighting of the superconducting gap function for different
momentum directions was neglected in our model. Such weighting factors could
play an important role especially for strongly anisotropic bands. Since this would
again complicate the quest of finding a proper model function considerably, we stop
at this point and leave this problem for further investigations in the future. For the
present model function, we empirically found that a step-wise weighting of the quite
anisotropic equation of ∆5(θ) leads to a resulting model function which is in very good
agreement to the measured ones. This step-wise weighting was done within a range
of 0.9π < θ < 1.1π. It is marked in magenta in the right panel of Fig. 8.13. In the figure
caption of Fig. 8.12, its contribution is labeled with a parameter f .

All in all, so far, we could determine a model function which consist of five different
gaps. The respective gap-equations all fit into the picture of an s+(s+d) model. How-
ever, we cannot make any statement about the phases and signs of the gap functions.
A final conclusion about the exact pairing symmetry is therefore not possible from the
data.

The assignment of the different gaps in our measured data to specific orbital con-
tributions remains still illusive. The pattern shown in the dI/dU maps of Fig. 8.11
alone are not sufficient in order to make a statement about the orbital nature of the
various gaps. Hybridization among the Fe d-orbitals, as well as between the Se p and
Fe d-orbitals are highly probable. In combination with a non-perfect s-wave type tip,
further interpretations would become very difficult.

However, it would be interesting to continue investigations in this direction. In this
respect, a calculation of the orbital resolved electronic band-structure in the nematic
state and its corresponding Fourier transformations to real space would give instruc-
tive informations. Such a calculation, which could show how a underlying band struc-
ture would look in real space, would help to interpret our experimental data or STM-
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data in general. Finally, an assignment of the different observed gaps to various orbital
contributions could be possible. A calculation of the real space DOS is currently under
way.

Of course, the calculation of reliable multiple gap fit-function would be helpful. Be-
sides informations about the underlying band structure, this would demand the im-
plication of renormalizations features as well. Thus it should be done within an spin-
fermion approach. One calculation going in this direction was already done in Ref
[119, 298]. However, the results are not in agreement with our measurement showing
nodeless superconductivity.

Figure 8.14: a) Displayed is topography
of a twin-boundary (orange). b) The
dI/dU intensity is shown for different voltages
across the twin-boundary. Yellow corresponds
to high intensity.
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Measurement across a twin-boundary Now, at the end of this chapter, we shortly
discuss a measurement across a twin-boundary. As we will see, it indicates the possi-
bility of the largest gap to have significant dxz/dyz-contributions.

This measurement was performed with the JT-STM at T=800 mK including the us-
age of a lock-in. Therefore, the energy resolution of the data is considerably lower. In
Fig. 8.14a a topography is shown, including a twin-boundary (orange). The atomic
lattice is slightly visible underneath. In Fig. 8.14b, the dI/dU intensity is shown for dif-
ferent voltages across the twin-boundary (yellow= high intensity). The yellow stripes
mark the progression of the coherence peaks. The coherence peak which corresponds
to the largest gap at around 3.6 mV shrinks significantly when approaching the twin-
boundary down to ≈2 meV 5. This behavior might lead to the assumption that the
largest gap is mainly of dxz or dyz contribution rather then dxy and may be explained
as follows: At the twin-boundary, where two mirrowed domains touch, the nematicity
should be lifted, whereas at the left/right hand side of the twin-boundary it is not. In
the nematic state, the orbital re-arrangement mostly affects the dxz/dyz bands, which
also split. Therefore, for a measurement across a twin-boundary, the largest variation
is expected to occur for the coherence peaks which corresponds to gaps arising from
manly dxz/dyz orbital contributions.

Recently, an STM investigation on twin-boundaries attracted attention as a possible
phase-sensitive tool [311]. It was proposed that there is a sign-reversal of the order

5The differences in the size of the gaps in comparison to the previously shown data might be explain-
able within the lower energy resolution.
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parameter across a twin boundary [311]. For the comparison to our experimental data,
another observation within the investigation of Watashige et al. [311] is however more
important. In Ref. [311], the tunneling conductance spectra measured across a twin-
boundary show a very similar behavior compared to the behaviour of the largest gap
in Fig. 8.14b. The largest gap feature around ≈ 3 mV shrinks when approaching the
twin-boundary. An assignment of the largest gap to dxz, dyz orbital contributions is
therefore highly probable.

Within this chapter, highly resolved tunneling spectroscopy spectra of bulk FeSe
were shown which reveal the complicated multiband band nature of the system. It was
explained that the use of a lock-in amplifier or high tunneling currents can reduce the
energy resolution considerably. Within the measured dI/dU spectra, seven different
peaks could be distinguished. Finally, it was possible to relate them to five different
gap functions. The underlying pairing symmetry is most likely a combination of s- and
d-wave contributions. Nevertheless, the exact pairing symmetry as well as the orbital
contributions of the various gaps could not be determined. This paves the way for
further interesting investigations in the future for both experimentalists and theorists.
In combination with a real space-resolved band-structure calculation, a repetition of
the measurement across a twin-boundary with a higher energy resolution (using the
DT-STM) could be fruitful.
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9 FeSe monolayer on SrTiO3

Recently, a single unit cell of FeSe grown on SrTiO3 (STO) has attracted much attention
[13]. The FeSe monolayer on STO is a superconductor with a critical temperature in the
range of 65-100 K [12, 312–315]. Differences across FeSe monolayers grown on various
substrates at the critical temperature are striking [13, 316]. For example, when a single
layer of FeSe is grown on a graphene substrate, superconductivity occurs only below
2.2 K [316] and Tc continously adopts the bulk (Tc=8 K) value when the film thickness
[316] is increased. The reason for the high critical temperatures of a single layer of
FeSe on STO has not been clarified so far. Due to this fact, this system is of special
interest. Currently, extensive investigations are performed on this topic by means of
different techniques. Several mechanisms causing such high a Tc in a single layer of
FeSe are proposed. It has been shown that a phonon mode could be responsible for the
boosting of Tc [317, 318]. Alternatively, the large lattice mismatch of 2.5 % at the FeSe-
STO interface, which is absent in case of FeSe/graphene, automatically leads to the
assumption that strain plays a crucial role in boosting Tc [312]. However, after com-
paring FeSe monolayers grown on various substrates, it turned out that strain alone
most likely cannot explain a high Tc of 65 K in a single layer of FeSe/STO [319, 320].
Furthermore, the surface quality of STO is proposed to be crucial for superconductivity
in FeSe monolayers [319].

Within this chapter, we explain how to grow a superconducting single layer of FeSe
on an STO substrate. Superconductivity in this system will be explained within the
framework of spin-fluctuation-mediated pairing. Furthermore, quasiparticle interfer-
ence measurements will be presented. Thereby, the determination of the electronic
band dispersion will be illustrated. Additionally, another observed dispersing mode
will be discussed which could be assigned to a spin-wave.

9.1 Physical Properties of a Single Layer FeSe/STO

Many physical properties of FeSe have already been highlighted in the last chapter.
The electronic structure of the FeSe monolayer, which is in fact a trilayer (Se-Fe-Se,
often abbreviated by ’1-UC’ for single unit cell), is slightly different [321]. Especially
at, for energies closer to EF , there are some peculiarities when dealing with a single
layer of FeSe on STO. No hole-pockets exist around the Γ̄ point at the Fermi energy
[313, 322, 323]. According to ARPES experiments, the observed hole-like band is below
the Fermi energy by about 80 meV [312, 313]. With an increasing number of FeSe layers,
the band gradually shifts upwards towards the Fermi energy [312] and finally crosses
the Fermi energy in the case very thick films [312]. Furthermore, indications for a
decreasing energy-splitting of the dxz and dyz bands with increasing film thickness,
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Figure 9.1: In the left panel, a monolayer of
FeSe (wich is a trilayer: Se-FeSe) is sketched on
top of an STO crystal. Adapted from Ref. [321].
The right panel illustrates the Fermi surface of
1-UC FeSe on STO without hole pockets around
the Γ̄ point.
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below the structural transition temperature, were reported [312, 324].
While the thickness of the FeSe film is changed from one to two FeSe layers, super-

conductivity disappears [13]. This is in contrast to the case of 2-UC FeSe grown on
SiC(0001). This system is superconducting below Tc = 2.2 K [316] and the supercon-
ducting transition temperature changes gradually for thicker films [315, 316]. In the
FeSe/STO system, superconductivity only returns in the case of films that are thicker
than 20-UC [325]. For these thicknesses, the lattice of the FeSe film is almost relaxed
to its bulk value [312]. In contrast to the 1-UC FeSe on STO, there is no tensile strain
and Tc is around 8 K [312]. With increasing lattice compression, a dome-shaped super-
conducting phase occurs [312] and Tc increases monotonically to a maximum value of
36.7 K [280, 312].

A single layer of FeSe on STO turns out to be an extraordinary system with regard
to the different behavior of various numbers of FeSe layers on top of STO. For this
reason, it is classified as a special case within a general phase diagram of FeSe [312].
The system of 1-UC FeSe/STO shares this special role in the phase diagram with some
other superconductors showing a similar electronic structure (no hole pockets around
the Γ̄ point) [312]. As discussed in the previous chapter, bulk FeSe has no long-range
magnetic order. Constructing a phase diagram by analogy with other iron-based su-
perconductors with a magnetic phase in close proximity to a superconducting phase
is therefore not possible. Nevertheless, it is yet possible to construct such a phase
diagram with an SDW-phase bordering to a superconducting phase when plotting the
temperature over the lattice constant including the consideration of bulk and thin films
of FeSe/STO [312].

Superconductivity appears in the β-phase of FeSe-films. FeSe-films on STO in the
(hexagonal) α-phase are discussed to be in a noncollinear antiferromagnetic state [326].
However, the magnetic ground state of FeSe in general is still a controversial issue
[327]. Furthermore, the electronic properties of an FeSe monolayer are not completely
settled as well. In this respect, e.g., a superconducting-insulator transition in the case of
β-phase of an FeSe monolayer is up for debate, depending on the carrier concentration
in the film [328].

Note that the appearance of superconductivity in a monolayer FeSe/STO is a clear
manifestation of two-dimensional superconductivity. However, according to the
Mermin-Wagner theorem, no long-range order (and therefore no superconductivity)
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can exist in a two-dimensional system. Therefore, there is most likely a Berezinskii-
Kosterlitz-Thouless transition occurring in the FeSe system [329]. A Berezinskii-Kosterlitz-
Thouless transition is a special phase transition of indefinite high order yet which leads
to a long-range order even in the case of a two-dimensional system1.

9.2 The SrTiO3 Substrate

The SrTiO3 (STO) substrate is a ferroelectric perovskite [330, 331] with a dielectric con-
stant of ε = 320ε0 [332] at room temperature. The dielectric constant is even further
enhanced at low temperatures (ε = 22500ε0 at T = 4 K [332]). There is a structural phase
transition from a cubic to a tetragonal state at 105 K [333]. Furthermore, STO is an
insulator with a band gap of ∆ = 3.25 eV [334]. However, for STM investigations, con-
ductive samples are indispensable. Upon doping with niobium, Nb-STO undergoes
a metal-insulator transition [331]. At specific carrier concentrations, STO as well as
Nb-STO become superconducting at low temperatures [335–337]. Superconductivity
occurs in SrTi1−xNbxO3 at a Nb concentration x in the range of 0.0005 ≤ x ≤ 0.02 with
Tc in the range of 0.3 K [334, 335] (maximum at 1.2 K) [334, 338]. For the experiments
done within this thesis, Nb-doped STO substrates with Nb-concentration of 0.7 % were
used. An important point of STO is its lattice constant, which is 2.5 % larger than that
of FeSe [315]. As a result, tensile strain occurs within the FeSe-layer, which tries to
adopt the lattice constant of STO. Besides the polaronic effect, this is most likely one of
the crucial facts leading to such a high critical temperature in a 1-UC FeSe film on STO.

9.3 Growth Mechanism and Surface Properties of a
Single Layer of FeSe on Nb-Doped STO

For the growth of a single layer FeSe on Nb-STO, molecular beam epitaxy (MBE) was
applied. Within 1-UC FeSe films, superconductivity can only be achieved under cer-
tain preparation conditions. In order to learn how to grow a superconducting single
layer FeSe on STO, I had the opportunity to visit the group of Prof. Chunlei Gao at
Jiao Tong University in Shanghai, funded by the Karlsruher House of Young Scientists
(KHYS). Critical temperatures of single FeSe layers of up to 100 K were reported at the
same institute [12]. In the group of Prof. Chunlei Gao, it was possible to grow the
layers within an MBE chamber attached to a commercial LT-Unisoku STM. The latter
was used in order to check the quality of the samples after growth and to perform
first measurements, before the samples were covered with a protection layer (thick
Se-layer). The coverage was necessary for the transportation of the samples back to
Karlsruhe for further investigations.

1Note that all iron-based superconductors and cuprates are rather two-dimensional systems with su-
perconductivity appearing in the FeSe(As)/CuO2-layers
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9.3.1 Sample Preparation

For the successful growth of superconducting single layer FeSe on Nb-STO, a clean
Nb-STO surface has to be ensured. Thus, the Nb-STO substrates were carefully de-
gassed under UHV up to temperatures of about 1100 ◦C. The purpose is to flatten the
samples and to eliminate some contaminations. Special care must be taken at temper-
atures between 600 ◦C and 900 ◦C. Within this temperature range, the STO substrates
can be easily cracked due to thermal expansion. Once the temperature of 1100 ◦C was
reached, the sample was etched via a selenium flux for about 20 min. This should ac-
celerate the desorption of carbon and oxygen contaminations from the STO surface.
Subsequently, the sample was annealed at the same temperature for another half an
hour before it was slowly cooled down to 480 ◦C. In general, different surface recon-
struction can form at the STO surface, e.g., (1×1), (2×1), (2×2), c(4×2), (

√
5×
√

5R26.6◦)
[339]. Thereby, the reconstructions are usually formed by oxygen vacancies of the TiO2-
terminated STO surface [340]. No significant differences in surface conditions could
be observed between pure STO and Nb-doped STO [340]. Furthermore, at annealing
temperatures of around 800 ◦C, (1×1)-patterns were predominant, whereas at higher
annealing temperatures (T>1250 ◦C) [340], (

√
5 ×
√

5R26.6◦)-reconstructions were ex-
pected [340]. In Fig. 9.2a, a RHEED diffraction pattern, of one of our prepared Nb-
doped STO-substrates, is displayed, showing a (1×1)-pattern.

Figure 9.2: a) The RHEED diffraction
pattern of a clean Nb-doped STO sub-
strate is shown. The pattern be-
longs to a (1×1)-pattern of the TiO2-
terminated substrate. b) The sharp
diffraction spots become elongated
due to the increasing amount of FeSe
on top.

a)

b)

In literature, it is reported that in the case of a single layer of FeSe, superconductivity
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occurs at a growth temperature in the range of 400 ◦C-500 ◦C [325]. For temperatures
below 400 ◦C, results show a rather semiconducting behavior [325]. For this reason,
the growth temperature was set to 480 ◦C in our studies. Once the substrate temper-
ature was stabilized, Fe and Se were evaporated simultaneously from conventional
MBE sources with a growth rate of 0.059 ML/min. In order to estimate the grown
amount of layers, RHEED (see Sec. 3.2.3) was applied. The intensity of certain spots
of the diffraction pattern was measured over time while growing. For a layer-by-layer
growth mode, the intensity of the (0,0) spot shows oscillations over time. Once the
first period is displayed, the growth of the first layer is finished. At the beginning
of the growth process, sharp spots originating from the crystalline order of the sub-
strate were visible (see Fig. 9.2a). With deposition of additional material, where the
impinging electrons are scattered off, the spots became smeared out (see Fig. 9.2b).
Once a flat layer was completed, the roughness of the surface was again reduced to
a minimum and sharp reflection spots appeared again. The measurement of the spot
intensity helps to determine the time needed for the completion of a complete layer
FeSe on STO. Thus, this method serves as a growth control.

While growing, the Se-flux was usually considerably higher than that of Fe (≈ 1:10
turned out to be a good ratio [315]). In order to assure a Se-flux that is high enough, the
Se-source was calibrated in UHV by using a Nb-STO-substrate at room-temperature,
before starting the actual growth process. The flux was adjusted in the following
way: The intensity of the (0,0) spot of the diffraction pattern of Nb-STO was mea-
sured over time. At a certain time, the Se-flux was added by opening the shutter of the
Se-evaporator. The amount of the flux was assumed to be suitable if the intensity of the
measured lattice spot dropped to 1/3 of its original value within 15 s. The Se-covered
STO can easily be cleaned by heating the substrate to about 300 ◦C for a few minutes.

Once a complete layer of FeSe had been grown on STO, the sample was post-annealed
at 500 ◦C. The sample quality and superconducting properties improved with time.
Thus, the samples were usually post-annealed for several hours.

9.3.2 Surface Topography

Topographic results for an FeSe monolayer are shown in Fig. 9.3. The measurements
were carried out with the commercial Unisoku STM. Fig. 9.3a is an overview picture
showing STO terraces with an almost complete FeSe monolayer on top of it. The height
of a single layer of FeSe corresponds well to the value of 0.55 nm reported in literature
[13]. The dark areas within one terrace correspond to an uncovered STO surface. By
looking at the areas in Fig. 9.3a, covered by FeSe, it can be recognized that the contrast
is not completely constant within an FeSe-layer of the same Nb-STO terrace and slight
streaks are visible. The magnified part of Fig. 9.3a is presented in Fig. 9.3c, showing
more details. These streaks have a corrugation of ≈ 60 pm. In Ref. [325], it is argued
that such stripes have a considerably larger corrugation compared to twin boundaries
(≈ 10 pm) [325, 341]. Furthermore, these stripes trace tortuous ways compared to twin
boundaries which usually appear as rather straight lines. In contrast to a twin bound-
ary, which is the mirror plane of two adjacent lattices, the angle of the crystalline lat-
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tice changes only by a few degrees across these stripes. They most likely occur due to
strain-induced effects within the layer while growing [325]. Fig. 9.3b shows the surface
of an FeSe monolayer within a smaller area of 33 nm×33 nm. Some intrinsic adatoms
remained on the surface after the growth. According to Ref. [242, 315], these are Se
adatoms. One of the impurities is shown in detail in Fig. 9.3e. The atomically resolved
Se-lattice is visible underneath both in Fig. 9.3e and Fig. 9.3b. For reasons of clarity it
is shown separately in Fig. 9.3d.
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Figure 9.3: a) Overview scan showing STO terraces covered by an almost complete single layer
of FeSe. At some places (darker areas), pure STO is still visible. (I=180 pA, U=1 V). b) Topog-
raphy taken in a smaller area (33 nm×33 nm). Intrinsic impurities are visible. They are most
likely Se adatoms. One is shown in more detail in e). Furthermore, an atomically resolved
lattice is visible in b). The lattice shows the Se-atoms of the upper Se-layer within an Se-Fe-Se
trilayer. It is illustrated in d) in for more detail. In some areas of an FeSe-layer, stripe-like fea-
tures are visible as shown in c). These stripes have a corrugation of 60 pm and are most likely
induced by strain within the film.

Results of quasiparticle interference (QPI) measurement that could be achieved on
the in-situ grown FeSe monolayer shown in Fig. 9.3, will be discussed in Sec. 9.5. Before
that, results obtained with the JT-STM will be discussed first, for a better understand-
ing of the QPI results. For the investigations of the FeSe monolayers with our home
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Figure 9.4: Topography
measured on the ex-situ
grown samples by using the
JT-STM (U=1 V,I=250 pA).
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built JT-STM, the protection layer2 had to be desorbed after the transfer to the UHV
system. Therefore, the samples were annealed at 460 ◦ for half an hour. A representa-
tive surface is shown in Fig. 9.4.

Compared to Fig. 9.3a, some muck hills appear at various positions of the surface.
It was not possible to get rid of them, even after further annealing of the samples for
several hours. Note that the annealing temperature has to stay below 550 ◦C. This is
the decomposition temperature of FeSe. If the sample temperature was higher than
550 ◦C, the sample would evaporate.

Note that on the clean parts of the layer, the superconducting properties where not
affected by the impurities.

9.4 Seeking the Pairing Glue by Tunneling
Spectroscopy

The measurements that are presented within this section were performed with the JT-
STM. The samples were the ex-situ ones from Shanghai as described above. Thereby,
tunneling spectroscopy was performed on clean areas of the sample.

Figure 9.5: The dI/dU spectrum measured in
the superconducting state (T=800 mK is shown
in blue (R=50 mΩ, U rms

mod =461µV). The green
spectrum was measured at T=62 K and thus in
the normal state (R=97.2 mΩ, U rms

mod =6.6 mV).
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2Note that for the transportation from Shanghai to Karlsruhe, the grown FeSe monolayers were cov-
ered with a thick Se layer.
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In Fig. 9.5, two representative dI/dU spectra are shown. The blue curve displays a
spectrum, which was measured in the superconducting state at T=800 mK. The green
one was measured in the normal state at T=62 K. Similar to the measurement on bulk
FeSe, a V-/U-shape background conductance is clearly visible indicating the presence
of significant inelastic tunneling contributions. In the spectrum measured in the su-
perconducting state, the superconducting gap appears in the range of U=±11.5 mV.
Another hump is weakly visible at±7.5 mV. It becomes more apparent in Fig. 9.6b and
Fig. 9.7b. It could be related to a second gap originating from a second electron band
crossing the Fermi energy around the M̄ point. Alternatively, it could originate from
an anisotropic gap function, for which a minimum and a maximum gap would exist.
Around U=26.45 mV, a redistribution of spectral weight within the superconducting
spectrum is clearly visible. At voltages slightly lower than U=26.45 mV, the dI/dU sig-
nal drops below the one measured in the normal state. For voltages slightly larger than
U=26.45 mV, the opposite is observed, i.e, a peak appears at 28 meV.

A slight asymmetry is visible in both spectra measured in the normal and super-
conducting state. The spectrum measured in the normal state has a rather skewed
U-shape and in the spectrum recorded in the superconducting state, the redistribution
of the spectral weight is stronger for the positive voltage side. Similar observations are
reported for several other superconductors, e.g., LiFeAs [216]. In Ref. [34], it is argued
that such an asymmetric behavior could either originate from a non-constant (linear)
normal state DOS or from a asymmetry in the inelastic tunneling matrix element. How-
ever, we will not address this point within the present thesis. In the following, the focus
will be on the origin of the feature at around U=26.45 mV.

With the superconducting gap being ∆=11.5 mV, a resonance mode is expected to
occur at ωres = 1.3 · ∆ + ∆ =26.45 mV. This voltage is marked with a black line in
Fig. 9.6a/b and Fig. 9.7a/b. Within the same figures, ∆ is marked with a dashed line.
A comparison between our experimental results in Fig. 9.6a/b with the calculations
of P. Hlobil and J. Schmalian is shown in Fig. 9.6c/d, indicating similarities. As dis-
cussed in Sec. 6.3, calculations were performed in the framework of an extension of the
Eliashberg theory within the spin-fermion approach [11]. The theoretical calculations
as well as the experimental results shown in Fig. 9.6 represent normalized spectra. The
superconducting spectrum shown in Fig. 9.6a was normalized according to Eq. 8.3 by
using the normally conducting spectrum which is shown in Fig. 9.5 (green spectrum).
The d2I/dU2 spectrum shown in Fig. 9.6b was normalized to the measured d2I/dU2

spectrum which is shown in Fig. 9.7b. It was measured simultaneously to the dI/dU
spectrum shown in Fig. 9.5 (green line) by using a second synchronized analog lock-in
amplifier. As can be seen in Fig. 9.6c, strong inelastic contributions lead to a suppres-
sion of the differential conductance. In Sec. 6.3, this suppression was explained by the
opening of a spin gap in the picture of spin-fluctuation-mediated superconductivity.
The corresponding spectrum is shown again in Fig. 9.7d. In the experimental data in
Fig. 9.6a, a drop below unity can be observed as well. It occurs in a small voltage
range slightly below the position of ∆ + ωres just like it is illustrated in Fig. 9.6c. A
small difference between the experimental and theoretical data is only visible for volt-
ages slightly larger than ∆+ωres. At these voltages, a peak appears in the experimental
spectrum (Fig. 9.6a, which is more pronounced compared to the theoretical expectation
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Figure 9.6: a) Normalized and symmetrized version of the superconducting spectrum dis-
played in Fig. 9.5 (blue line). Dashed and solid line mark the position of the gap and the corre-
sponding resonance mode, respectively. The corresponding d2I/dU2-spectrum is shown in b).
The normalization of this spectrum was done by using the two spectra shown in Fig. 9.7b. The
theoretical calculations of σ=̂dI/dU and dσ=̂d2I/dU2 performed by P. Hlobil and J. Schmalian
are shown in c) and d) and are taken from Ref. [11].
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(see Fig. 9.6c).
Exactly the same can be observed for the corresponding experimental and theoretical

d2I/dU2 spectra shown in Fig. 9.6b and Fig. 9.6d.
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Figure 9.7: a) The symmetrized spectrum of Fig. 9.5 is shown in the superconducting state
marked by the dark blue line. A modeled Dynes fit is depicted in black. Both spectra are
compared to the normalized spectrum which is shown in Fig. 9.6a. The green line marks unity.
b) The antisymmetrized d2I/dU2 spectrum is shown in dark blue for the superconducting state
and in green for the normal state. c) The deconvoluted intergrated spin spectrum is shown.
It was calculated by P. Hlobil [34] using the experimental data shown in a). In d), the spin-
fermion approach calculated within the integrated spin spectrum (done by P. Hlobil) is again
displayed in the normal as well as in the superconducting state [11].

The presence of inelastic contributions to our experimental data becomes even more
apparent in Fig. 9.7a. The symmetrized experimental dI/dU spectrum of Fig. 9.5 is
shown in dark blue. A Dynes fit is shown in black and represents the purely elastic
part to the differential tunneling conductance (without renormalization)3. This Dynes
fit, as well as the symmetrized spectrum, are compared to the spectrum in cyan, which
illustrates the normalized spectrum of Fig. 9.6a. For the latter, the energy dependence
of the differential tunneling conductance is in good agreement with the Dynes fit at

3The same Dynes fit was already used in the PhD thesis of P. Hlobil [34] in order to deconvolute the
integrated spin spectrum that is shown in Fig. 9.7c.
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voltages outside the gap range. In the case of a constant normally conducting DOS
(which means a constant dIel/dU ) of FeSe, a conclusion similar to that of the exper-
iment on Pb/Si(111) could be drawn: The light-gray-shaded area between the dark
blue line and cyan line represents the inelastic contributions to the dI/dU spectrum.
However, in the case of FeSe as well as many other iron-based superconductors, the
normally conducting DOS is possibly not a constant. Therefore, conclusions about
elastic and inelastic contributions cannot be drawn easily.

Chap. 4 and Chap. 5 explained that, in the case of the strong-coupling superconduc-
tor lead, a d2I/dU2 spectrum measured in the normal state is proportional to a function
that approximately equals to the Eliashberg function 4.

In Sec. 6.3, it was mentioned that the same principle holds for the spin-fermion ap-
proach (in the case of a constant normally conducting DOS). In the case of the latter,
the inelastic part of the second derivative of the tunneling current is proportional to the
integrated spin spectrum χ times the squared coupling constant g (between electron-
like quasiparticles and spin fluctuations) d2I inel/dU2 ∝ g2χtun(ω). For the normal state,
this can easily be proved by comparing the d2I/dU2 ≈ d2I inel/dU2 spectrum measured
in the normal state (green line of Fig. 9.7b) to the calculated g2χ(ω) spectrum in the
normal state (blue curve in Fig. 9.7d). Both spectra show a broad overdamped particle-
hole continuum. Nevertheless, due to the high measurement temperature in the case
of the normally conducting spectrum, the energy resolution is rather low. The spec-
tra shown in Fig. 9.5 and in Fig. 9.7b have an energy resolution of only 21.6 meV and
29.86 meV, respectively. Compared to the superconducting spectra having an energy
resolution that is higher than 1 meV, a lot of details are lost. However, heating the sam-
ples up to temperatures above Tc is the only way to enter the normal state. In contrast
to the system of thin Pb film on a Si(111) substrate (cf. Chap. 5), where the normal
state could be accessed by applying a magnetic field of 1 T, in the case of FeSe as well
as most of the iron-based superconductors, the magnetic field needed in order to sup-
press superconductivity is in the range of 30 T, so it is not applicable in typical STM
setups5. Therefore, the sample has to be heated above the critical temperature in order
to enter the normal state. For our monolayer FeSe/STO samples Tc, was about 55 K.
This is the reason why our normally conducting spectra were measured at 62 K.

As mentioned in Sec. 6.3, the spin spectrum is strongly renormalized when enter-
ing the superconducting state [11], as can be seen in Fig. 9.7d. This is in contrast to
the phonon DOS in conventional phonon-mediated superconductors. Furthermore, in
contrast to the normal state, the comparison between theory and experiment for g2χ(ω)
in the superconducting state is much more difficult. In order to gain information on
the pairing glue (which should be somehow related to g2χ(ω)) in the superconducting
state of our experimental tunneling data, the integrated spin spectrum was deconvo-
luted by P. Hlobil [34]. The result is shown in Fig. 9.7c. The deconvolution process

4This proportionality followed from the fact of a constant normally conducting DOS of Pb leading to a
vanishing d2Iel/dU2 contribution in the normal state and therefore d2I/dU2 ≈ d2I inel/dU2.

5In principle, normally conducting areas can be accessed by measuring at a vortex core in the Shub-
nikov phase. In the case of entering the Shubnikov phase, much smaller magnetic field are needed.
However, when measuring inside a vortex, tunneling spectroscopy data can be influenced by bound
states likely to occur therein.
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was based on the relationship of the inelastic part of the differential conductance σi

and g2χ(ω) according to Eq. 6.19. σi was obtained by subtracting the modeled Dynes
fit shown in Fig. 9.7a from the measured data (dark blue line in Fig. 9.7a). By using
an iterative process [34], g2χ(ω) could finally be extracted. The shape of the obtained
g2χ(ω)-function in the superconducting state (orange line in Fig. 9.7c), strongly resem-
bles the (within the spin-fermion approach) calculated g2χ(ω), which is shown in red
in Fig. 9.7d. In both spectra, a spin gap opens below ωres. Compared to the inelastic
contribution to the tunneling spectra in the normal state (blue line in Fig. 9.7d) these
contributions are completely suppressed within the energy range. At energies around
ωres, a peak appears which dissipates to a broad particle-hole continuum at larger en-
ergies. This behavior is visible both in Fig. 9.7c and Fig. 9.7d.

On the whole, there is strong evidence for the feature at 26.45 mV in our experimen-
tal data of the superconducting state to originate from a strong coupling of electrons
to spin fluctuations. This feature appears at an energy, at which a spin-fluctuation res-
onance mode is expected. The resonance mode was explained to occur as an elastic
strong-coupling feature which results from the renormalization of the band structure
due to the strong coupling between spin fluctuations and the electronic quasiparti-
cles. The hump in the superconducting state of our experimental data develops due to
significant inelastic contributions. The (inelastic) spin spectrum is strongly renormal-
ized when entering the superconducting state. It overshadows the resonance mode for
larger contributions and creates the observed hump.

Nevertheless, we have to admit that a spectrum as it was shown in Fig. 9.5, could
not be measured at any place of the surface, but only on distinct sample positions.
In fact, the surface of our single layer FeSe on STO was electronically rather inhomo-
geneous. The appearance of the gap varies a lot. Within a literature research, clear
differences in the appearance of the the superconducting gap could be found as well
(cf. Ref. [13, 302, 325, 342]). Gap sizes of ∆=10 meV, ∆=15 meV or even a double gap
with ∆1=10 meV and ∆2=20 meV are reported. The reason for the different reported
gap sizes is most likely the difference in growth and interface conditions. It would be
interesting to clarify this point within further investigations. In the case of our sam-
ple, the superconductivity turned out to be more homogeneous after further annealing
cycles. Such annealing cycles were carried out for several hours. However, the above-
mentioned muck hills did not vanish. Furthermore, the coverage slightly decreased
after a long-term annealing process. A reason could be the annealing temperature
which is close to the decomposition temperature. As a result, clean and rather homo-
geneously superconducting FeSe areas with a size of ≈30×30 nm2 could not be found.
This is a big drawback of our ex-situ grown samples, since such areas are needed in
order to perform quasiparticle interference (QPI) measurements, as we will see in the
following section. This was the reason why successful QPI measurements could only
be performed on the in-situ grown samples at Shanghai Jiao-Tong University.
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9.5 Determination of Band Dispersions by QPI
Measurements

This section presents the results of an QPI measurement obtained with a commercial
(low temperature) Unisoku STM (see Chap. 3) on an in-situ grown sample performed
at Shanghai Jiao Tong University. The experiments were performed at 5 K.

9.5.1 Requirements for a successful QPI measurement

In general, STM cannot directly measure physical quantities related to the reziprocal
space like e.g the band structure [115]. The underlying physics are well explained in
Ref. [115] and will be discussed briefly in the following. From a theoretical point of
view, the relationship between local DOS (LDOS) and the k-space eigenstates Ψk(r) is
given by [115]

LDOS(E, r) ∝
∑
k

|Ψk(r)|2 δ(E − ε(k)). (9.1)

In a normal metal, the wave functions Ψk1,k2,...(r) for different wave vectors k1, k2, ...
don not show any spatial modulation [115]. Thus, the same holds for the LDOS at a
wave vector k. As a result, no interference pattern can occur in case of clean metal
surfaces. Therefore, an area as it was displayed in Fig. 9.3d, is not suited for a QPI
measurement. Some impurities on the surface are needed to serve as scattering centers
[115]. Electrons with the same energy ε(k) coming from the tip are elastically scattered
from these impurities and mix eigenstates of different k. As a result, the quasiparticle
wave function oscillates in space and is given by [115]

Ψk(r) = cos
(

k1 − k2

2
· r
)
/Ψk(r) = sin

(
k1 − k2

2
· r
)

(9.2)

This leads to spatially varying LDOS6, since LDOS(E, r) ∝ |Ψk(r)|2 and |Ψk(r)|2 is given
by [115]

|Ψk(r)|2 =
1

2
± 1

2
cos(q · r), (9.3)

with the scattering wave vector q = (k1 − k2)/2. The topography in Fig. 9.3b shows
an area which is perfectly suited for such a quasiparticle interference measurement. It
intrinsically contains Se-impurities, at which the electrons can scatter off. The resulting
scattering vectors interfere with each other forming standing waves as can be observed
in the LDOS-map in Fig. 9.8a .

LDOS-maps can be experimentally obtained by measuring a dI/dU map at a certain
voltage. In order to determine the dispersing q-vectors, we however need this kind
of maps for many different voltages. Therefore the measurement was performed in
the following way: For the area displayed in Fig. 9.3b, dI/dU spectra were taken for
each pixel. Here, we focused on an energy range of±30 meV. A single dI/dU spectrum

6For a superconductor, the Bogoliubov quasiparticles have to be taken into consideration as well. This
is explained well in Ref. [115]
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recorded within this energy range contained 40 measuring points (every 1.5 meV). As a
result, 40 different dI/dU maps could be created at the end. The result for a dI/dU -map
at an energy of −24 meV is shown in the upper panel of Fig. 9.8. The standing waves
around the impurities are clearly visible. In order to resolve the desired QPI-pattern
in the related Fourier transformed images, the ratio of image size to the resolution
is important [343]. The larger the image in real space, the better is the resolution in
reziprocal space. Furthermore, the higher resolution in real space, the larger the image
in Fourier space. For the measurement which is presented within this section, the
image size was 33.8×33.8 nm2 in real space including 512×512 pixel. In the lower panel
of Fig. 9.8, a Fourier transformation of an extracted dI/dU map is shown at an energy
of 24 mV.

The QPI pattern In Fig. 9.8b, QPI-patterns are clearly visible. Ring-like features ap-
pear around the Γ̄ points. The sharp spots at the Γ̄ points correspond to the Bragg
peaks of the upper Se-atoms within the single Se-Fe-Se trilayer. The edges of the black
dashed rectangle in Fig. 9.8b mark the position of the first order Se-spots. In the real-
space image shown in Fig. 9.8a, the atomic lattice of the upper Se atoms is visible
beneath the standing wave features. The white dashed rectangle in Fig. 9.8b marks the
first Brillouin zone with the M̄ points at the zone corner.

The ring-like interference patterns around the Γ̄ points originate from intraband scat-
tering within an electron band. They result from a constructive interference of different
scattering wave vectors with the same energy. By taking a closer look at these ring-like
feature, it becomes visible that these are rather open circles. For some q-directions, the
scattering intensity almost vanishes. A explanation for the reason why the scattering
processes are suppressed for some k-directions would demand a detailed considera-
tion of the involved scattering potentials and is kept for future investigations.

Note that, for a single layer FeSe on STO, the hole-like bands are shifted to -80 mV
below the Fermi surface and should not influence our measured data which were taken
within an energy range of ±30 meV. Nevertheless, there are yet some features visible
around the M̄ points. Before we discuss these features, the interference pattern around
the Γ̄ point will be analyzed in more detail in the next subsection.

9.5.2 Determining the Electronic Band Structure

For the determination of the electron band dispersion, the radius of the ring-like inter-
ference pattern around the Γ̄ points was extracted under guidance of a master student
(J. Dressner) for different energies. For the determination of the radius, the four ring-
like patterns centered around the edges of the black dashed rectangle in Fig. 9.8b were
averaged. The q-radius as a function of energy is displayed in Fig. 9.9.

The radius is larger for positive energies. Furthermore, a dispersive feature is clearly
visible in red. The shape already resembles a parabolic band dispersion as it is known
for the electron bands. For a more detailed analysis, the values of maximum intensity
were extracted from the dispersive band shown in Fig. 9.9. These values are displayed
as black dots in Fig. 9.10. A parabolic function of the form f(q) = a · q2 + b was fitted
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Figure 9.8: a) An extracted dI/dU map is shown for E=-24 meV. The image is 33.8×33.8 nm2

large and consists out of 512×512 pixel measurement points. b) shows a Fourier-transformed
dI/dU map for E=24 meV. The interference pattern around the Γ̄ point is marked by the large
black dashed circles. The pattern around the M point is marked by a smaller black dashed
circle. The respective positions of the Γ̄/M̄ points are labeled as well.

145
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Figure 9.9: The ring-like
pattern displayed in the
inset is an averaged pattern.
Therefore, the features
around the first order Se
Bragg-spots (shown in
Fig. 9.8b) were averaged.
The right panel shows the
energy versus the averaged
radius Q. High intensity
corresponds to red color.
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to the experimental data. This fit is shown as a green line in Fig. 9.10. The fitted
parameters a and b are shown in the figure caption. The fit function was chosen on
the basis of an simple quadratic quasiparticle dispersion E(k) = ~2k2/2meff. Here, meff

describes the effective mass of the quasiparticles meff = c · me. Taking into account
that q=2k, the fit function f(q) can be equated with E(k). With ~=6.582×10−16 eVs and
me=0.519 MeV/c2, the effective mass can be extracted from

meff =
~2c2

8 · a
. (9.4)

In this way, we obtain for the experimental data shown in Fig. 9.10 an effective mass of

meff = (2.17± 0.11± 0.22) ·me. (9.5)

The statistical error σc = ±0.11 was determined within a Gaussian error propaga-
tion. A source of error for the determination of the systematic error of meff is a wrong
calibration of the piezo-motor. It affects the accuracy of the space-resolved differ-
ential conductance. For the systematic error, an incertitude of 10 % was assumed,
which leads to δc = 0.22. A report of a very similar measurement, performed by
Huang et al., appeared in literature [342] when we measured the presented data. In
Ref. [342], the effective mass could be determined over an energy range of ±70 meV to
be meff = (2.0± 0.1) ·me in good agreement with our result.

9.5.3 Observation of a Possible Spin Wave

In contrast to the data presented in Ref. [342], we focused on an energy range of ±
30 meV and we observe features which are clearly visible around the M̄ points as can
be seen in Fig. 9.8b, which is a striking result. Even though interband scattering be-
tween hole and electron pockets would lead to QPI-patterns around these positions,
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Figure 9.10: The intensity max-
ima of the dispersing band
shown in Fig. 9.9 are displayed
by the black dots. The corre-
sponding parabolic fit function
f(q) = a · q2 + b is depicted
in green. Thereby the value of
a and b could be determined
to be a = 4.32 · 10−21 and
b = −0.0873 eV.

we exclude this scenario. According to many theoretical and experimental investiga-
tions [312–314, 320, 322, 323, 344], the hole pockets should be absent in the energy
range of our measurement of ±30 meV. The well pronounced interference patterns in
our measurement (see Fig. 9.8b), which arise due to the intraband scattering of elec-
trons between the electron-pockets [342], exclude a significant hole-doping. A study
of the evolution of the band structure with increasing electron doping of a 3-UC FeSe
film on STO by Miyata et al. [344], came to a similar conclusion.

For a detailed analysis of these disputable features around the zone corners, they
were evaluated in the same way as the QPI-patterns around the Γ̄ point. The results
are shown in Fig. 9.11.

Figure 9.11: The averaged
radius of the interference
pattern around the M̄
points (see Fig. 9.8b) is plot-
ted against the energy. The
averaged spot is illustrated
in the inset.
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Starting from around ±20 meV, two dispersing features are clearly visible. So far,
such a feature has never been observed within FT-STM studies [342, 345]. Furthermore,
it cannot be explained by means of a reconstruction as illustrated in Fig. 9.12. A corre-
sponding topography image (see Fig. 9.12b shows a (2×1)-reconstruction of the upper
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9 FeSe monolayer on SrTiO3

Se-atoms. This reconstruction is clearly visible in the Fourier transformation shown in
Fig. 9.12c. In Sec. 9.3.1 it was mentioned that for higher annealing temperatures of the
STO-substrate, a (

√
5×
√

5)R26.6◦-reconstruction is possible. Thus, a (
√

5×
√

5)R26.6◦-
reconstruction of the Se-atoms could be possible in our case. However, as can be seen
from Fig. 9.12c, we do not see this type of reconstruction. Furthermore, it cannot ex-
plain the features around the M̄ point (cf. Fig. 9.12 and Fig. 9.12c). Additionally, a
reconstruction in real space should form sharp spots in Fourier space. This is differ-
ent for the feature observed at the M̄ point which appears as a rather weak and broad
pattern.

The symmetric appearance around the Fermi energy of the two dispersing branches
at ±20 mV already indicated another reason for the occurrence of these features. Fur-
thermore, our dispersion of Fig. 9.11 is similar to a spin-wave dispersion measured on
YBa2Cu3O6.85 [160, 346]. For YBa2Cu3O6.85, an incommensurate spin-wave excitation
could be measured around 41 meV [160, 346]. YBa2Cu3O6.85 belongs to the Cuprates
for which in general a d-wave pairing symmetry of the superconducting order param-
eter is proposed and spin-fluctuation-mediated superconductivity is suggested. The
measurement of the spin-excitation around 41 meV in YBa2Cu3O6.85 was performed
by INS [346]. In this case, two symmetric dispersing band are located around 41 meV
[346]. For our STM investigation in the superconducting state, we have to consider the
superconducting gap which occurs in the energy range of ±12 mV. It would explain
the two dispersing branches starting at ±20 mV in our case.

Remember the strong evidence for a resonance mode which was discussed in the
previous section (see Fig. 9.6 and Fig. 9.7) and which was overshadowed by inelas-
tic contributions. A hump-like feature was observed in the differential conductance
around±26.45 meV and could be explained by a strong coupling between electron-like
quasiparticles and spin fluctuation. The deconvoluted integrated spin spectrum shown
in Fig. 9.7c was peaked at 20 mV. These findings fit very well to the observed dispersing
branches in Fig. 9.11. To conclude, we propose that the two dispersing branches visible
in Fig. 9.11 arise from a spin wave. It would imply spin-fluctuation-mediated super-
conductivity within this system. Even if this is the case, there is still one fact which
yet complicates the situation. Since there are no hole bands crossing the Fermi energy
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shown in Fig. 9.8a is dis-
played. It was recorded at
U=1V. The related Fourier
transformation is shown in
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around the Γ̄ point, a sign-change of the superconducting order parameter between
the hole and electron pockets is not warranted. A simple s±-symmetry is therefore not
possible. However, as mentioned in the previous chapters, a sign-changing order pa-
rameter is required for spin-fluctuation-mediated superconductivity. Thus, one would
have to think about another possible pairing symmetry. A possible mechanism could
be a nodeless odd parity symmetry [219, 302, 303] as it was shortly mentioned in the
last chapter. For this type of symmetry, the sign change of the order parameter can
occur between the electron pockets [302]. This mechanism is schematically sketched in
Fig. 9.13.

Figure 9.13: Illustration of the odd parity sym-
metry. The sign change of the order parameter
occurs between different electron pockets at the
zone corner. Adapted from Ref. [303].

-+

On the whole, these results are promising. However, a final conclusion is not yet pos-
sible. The reasons for this are phonons, which theoretically exist in the same energy
range (E=10-20 meV) as the feature observed in our measurements [347, 348]. There-
fore, the unambiguous allocation this feature (around 26.45 meV in the tunneling spec-
trum and at ±20 meV in the FT-STM measurment) to a spin wave is not possible.

In this respect, a spin-polarized electron energy loss spectroscopy (SPEELS) mea-
suremet would be insightful. In the SPEELS-experiments it is, in principle, possible
to distinguish between magnons and phonons. Luckily, a SPEELS-setup was recently
established by K. Zakeri Lori at our institute. So, further investigations with this tech-
nique could answer the remaining questions.

Since our ex-situ samples suffered from some impurities and furthermore degrade
with time, we had to think about how to grow our samples in-situ7. Therefore, a new
MBE chamber was built during the last months, together with Tobias Engelhardt, a
master student. Within the last section of this thesis the setup will be shortly described.

9.6 Setup of a new MBE Chamber

The source material selenium that is needed for the growth of single FeSe layers, is a
very poisonous material. Furthermore, the material evaporated from a Knudsen cell,

7As will become apparent in the next section, the growth will not be in-situ in a strict sense. In fact, the
main purpose is to keep the grown samples in UHV and thus skip the coverage process. We think
the latter causes larger impurities as was seen in Fig. 9.4
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9 FeSe monolayer on SrTiO3

appears as a very fine dust in the UHV chamber and leads to a contamination in the
long term. Therefore, we decided to built an extra chamber for growing these mono-
layers instead of using the already existing preparation chambers attached to the re-
spective STM-chambers. The construction was performed under guidance of a master
student (T. Engelhardt). The setup of the MBE chamber is shown in Fig. 9.14. Some
old parts of previous setups were recycled and included in the construction. The main
chamber (labeled as c in Fig. 9.14), as well as the pumps (a,b, g1/g2 in Fig. 9.14) could
be re-used. The required RHEED for the growth control was replaced by a combination
of a LEED-screen (labeled as e in Fig. 9.14) and an electron beam of an original Auger-
equipment (labeled as d in Fig. 9.14). The electron beam of the Auger-equipment en-
ables us to apply a high-voltage of 5 kV. Therefore, we perform medium electron en-
ergy diffraction (MEED). In order to assure a gracing incidence of the beam on the
sample surface, the manipulator (labeled as f in Fig. 9.14) was reconstructed such that
it could be rotated around one axis besides the already implemented positioning for
x,y and z directions. The additional rotation around one axis enabled us to create the
desired diffraction patterns on the fluorescence screen8. The spot intensity could be
recorded over time by the use of a camera and a corresponding computer program
which was written by T. Balashov. However, for the growth control, one currently has
to deal with a bad contrast of the diffraction spots. This complicates the growth control
at the moment. For the future, one has to think about a solution for this problem.

Figure 9.14: Illustration of the MBE chamber. a:
ion getter pump, b: cryogenic pump, c: MBE
chamber, d: Auger, e: LEED, f: manipulator,
g1/g2: turbomolecular pump for MBE/load
lock chamber, h: wobble-stick, i: Fe-evaporator,
j: load lock chamber, k: transfer rod.

a

b

c

d

e
f

g1

h

j

kl

g2

The part for the load lock chamber (labeled as j in Fig. 9.14) was commercially ac-
quired. For the transfer rod (labeled as k in Fig. 9.14) only the sample holder plate

8Only the fluorescence screen of the LEED equipment was used for the growth mechanism
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9.6 Setup of a new MBE Chamber

was adapted for the present construction. The Se-evaporator, which is attached on the
lower backside of the chamber c, and thus not visible in Fig. 9.14, was constructed from
scratch. Further details about the constructed Se-evaporator can be found in the Mas-
ter thesis of Tobias Engelhardt. It basically consist of a ceramic crucible including the
Se-grains which is resistively heated for the thermal evaporation of Se.

9.6.1 Vacuum Suitcase

In order to enable an in-situ9 investigation of the samples with various techniques
(SPEELS and different STM setups), a vacuum suitcase was constructed. It is shown
in Fig. 9.15. It is a compact design and can be carried easily by hand. Currently, a
pressure of about 10−8 mbar is achievable. The pressure within this vacuum suitcase is
maintained only by the getter pump (a). It consists of a winded band which is made
of a special pump material10. The long transfer rod (b) holds the sample and is needed
for the transfer of the grown samples to any other chamber via the valve (c).

a
b

c

d

Figure 9.15: The constructed vacuum suitcase is il-
lustrated. Attached is a getter pump (a), a transfer
rod (b), as well as a valve (c) and a possibility to
attach a pressure gauge (d).

9.6.2 First Grown Sample

As a proof of principle of the described chamber and vacuum suitcase, we shortly
mention the successful growth of the first sample. Two representative topographies
are shown in Fig. 9.16a/b. In Fig. 9.16b the areas covered by a FeSe monolayer are
shown in yellow. The layer is not complete. Areas of the bare Nb-doped STO substrate
are still visible in blue. A representative spectrum that was measured at a random
position on the monolayer FeSe in Fig. 9.16b is shown in Fig. 9.16c. A superconducting
energy gap is visible with a size of about ∆ ≈15 meV.

9In a sense of keeping the grown samples in UHV.
10ST707 pump band of the SAES company

151



9 FeSe monolayer on SrTiO3

d
I/d

U
 (

ar
b

. u
n

it
s)

0

1

2

U (mV)
−40 −20 0 20 40

a)

b)

c)

Figure 9.16: Topography overview a) and a smaller scale image b). A corresponding dI/dU
spectrum, measured on the sample surface shown in b), is shown in c).
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10 Conclusion and Outlook
The present thesis has tried to contribute to the ongoing research on the pairing mech-
anism in unconventional superconductors and their manifestations in scanning tun-
neling spectroscopy. It was found that in contrast to planar tunneling junctions, where
elastic processes dominate, inelastic contributions to the tunneling current cannot be
neglected in the case of scanning tunneling spectroscopy on conventional [10] as well
as on unconventional [11] superconductors.

The starting point was the empirical observation that the Eliashberg function α2F (ω)
can be directly measured within the second derivative of the tunneling current in the
normal state of a conventional strong-coupling superconductor [67].

The thesis started with the investigations of the strong-coupling superconductor
lead on a Si(111) substrate. This well-understood conventional phonon-mediated su-
perconductor was chosen in order to clarify quantitatively how the pairing glue can
be traced in tunneling spectroscopy in the superconducting as well as in the nor-
mal state. In the case of conventional strong-coupling superconductors, the electron-
phonon spectral function α2F (ω) (squared electron-phonon coupling constant times
phonon DOS) was a central quantity and gave insight to the pairing glue. As shown
in Chapter 4 and 5, it is important to distinguish between the coupling of electron-like
quasiparticles to real and to virtual phonons. The former were related to the creation
of inelastic excitations during the tunneling of an electron through a barrier. In a tun-
neling spectrum, the creation of real phonons appeared as peaks in d2I/dU2 in the case
of positive voltages. The coupling of electron-like quasiparticles to these real phonons
renormalizes the total interaction potential in such a way that an attractive electron-
electron interaction results [22]. The strong-coupling between electron-like quasipar-
ticles and virtual phonons renormalizes the electronic band structure, as has already
been shown by Scalapino et al. [51] and turned out to be a purely elastic process within
a tunneling experiment. The exchange of a virtual phonon between two electrons fi-
nally causes the retarded Cooper pairing [6]. Chapter 5 showed that the phonon DOS
is not strongly renormalized when entering the superconducting state. Due to their
different masses, electrons and phonons act on different time and energy scales. The
strong inelastic contributions in the case of scanning tunneling spectroscopy [10] were
attributed to the tunneling geometry that differs from planar tunneling junctions. Even
though elastic and inelastic tunneling processes occur simultaneously when perform-
ing a tunneling experiment, Chapter 4 and 5 explained how to disentangle the elastic
and inelastic contributions using a combined experimental and theoretical approach.

Having found out how elastic and inelastic contributions can be disentangled in tun-
neling spectroscopy data and how they can be related to the phononic pairing glue in
the case of the well understood conventional superconductor Pb, the same concept was
applied to iron-based superconductors which have not yet been fully understood. With
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the help of our collaborators Patrik Hlobil and Jörg Schmalian, again a combined theo-
retical and experimental approach was attempted. In Chapter 6, the main ideas of the
spin-fluctuation driven superconductivity and related calculations of P. Hlobil and J.
Schmalian were presented. In this case, the function g2χ(ω) (squared coupling constant
between spin-fluctuations and remaining electron-like quasiparticles times the spin-
spectrum) takes the role of the Eliashberg function α2F (ω). In contrast to the phonon
DOS in the case of the phonon-mediated conventional superconductors, the spin spec-
trum in the case of spin-fluctuation-mediated superconductors is strongly renormal-
ized when entering the superconducting state. One reason might be the different mass
ratios of phonons and (para)magnons (dynamic excitation of spin-fluctuations).

Starting from Chapter 7, experimental results of iron-based superconductors were
presented.

SrFe2(As1−xPx)2 was studied for four different doping concentrations and was pre-
sented in Chapter 7. Several physical quantities, could be determined experimentally.
Besides a double superconducting energy gap in the case of the optimally doped com-
pound, a nodal superconducting pairing symmetry could be identified for both the
optimally and overdoped compound. Additionally, the coherence length could be de-
termined for the two superconducting compounds by two different methods. The
results showed that the superconducting coherence length is of only a few nanome-
ters. Furthermore, the parent compound as well as the magnetic compound (with a
phosphorus concentration of 20 %) were investigated. For the latter compounds, ev-
idence suggested a spin-density gap as well as the presence of several excitations of
phononic and non-phononic origin. However, it was shown that SrFe2(As1−xPx)2 suf-
fers from intrinsic doping inhomogeneity. In combination with the small coherence
length, this led to the conclusion that the doping would need to be homogeneous at
the small length-scale of the coherence length in order to not affect the superconduct-
ing properties. Since this seemed to be impossible for such a doped compound such
as SrFe2(As1−xPx)2, the stoichiometric superconductor FeSe was investigated in a next
step.

Results on bulk FeSe were presented in Chapter 8. The focus lay on the supercon-
ducting DOS. The complicated band structure of FeSe was revealed. Up to seven dif-
ferent peaks could be identified in the quasiparticle DOS. This points to a multiple gap
consisting of at least three different superconducting energy gaps. Additionally, highly
resolved dI/dU spectra could be measured by using the DT-STM. It could provide in-
formation about the pairing symmetry. Even though the exact pairing symmetry re-
mains still unclear, it could be shown that bulk FeSe has a fully gapped superconduct-
ing DOS pointing to nodeless superconductivity. The observation of a resonance mode,
which was overshadowed by inelastic contributions, would suggest a spin-fluctuation-
mediated superconductivity in this system.

Chapter 9 dealt with an FeSe monolayer on Nb-STO. The related growth mecha-
nism was explained. In the course of the construction of a new growth chamber, this
growth mechanism could be established in the working group. Furthermore, inter-
esting physical measuring results could be achieved. The electron band dispersion
could be extracted from a QPI measurement and is in very good agreement to a pre-
vious investigation of Huang et al. [342]. Results of our QPI measurement showed
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another yet unclarified interference pattern. Its dispersion relation showed two dis-
persing branches starting at around ±20 meV indicating a spin-wave dispersion. This
occurrence of a possible spin wave was corroborated by single measured tunneling
spectra that showed a clear signature of a strong-coupling mode around the same en-
ergies. Nevertheless, a final conclusion about this mode is not possible at present.
Theoretically, phonons exist at roughly the same energy [325, 348]. The differentiation
between a phononic and a spin-wave origin of this mode remains an open question
and is kept for future experiments.

Especially the last two chapters about bulk FeSe and an FeSe monolayer revealed
some interesting physical properties that show lines along which further inquiry of
this system could be developed in the future. For bulk FeSe, the calculation of the
orbital-resolved electronic band-structure in the nematic state and its corresponding
Fourier transformation to real space would give instructive information on the orbital
composition of the multiple gap. In the case of the FeSe monolayer, investigations
by spin-polarized electron energy loss spectroscopy (SPEELS) or Raman Spectroscopy
would help to distinguish between phonons and magnons and finally for the deter-
mination of the underlying pairing mechanism. The newly built MBE chamber could
provide the required samples.
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Acronyms
AC Alternating Current

ARPES Angle-Resolved Photoemission Spectroscopy

BCS Bardeen - Cooper - Schrieffer

DC Direct Current

DT Dilution

DOS Density of States

FWHM Full Width at Half Maximum

JT Joule-Thomson

LDOS Local Density of States

LT Low-Temperature

LEED Low Electron Energy Diffraction

MBE Molecular Beam Epitaxie

MEED Medium Electron Energy Diffraction

MIM Metal - Insulator - Metal

NIN Normal Conductor - Insulator - Normal Conductor

QPI Quasiparicle Interference

RHEED Reflection High Electron Energy Diffraction

RPA Random-Phase Approximation

SDW Spin-Density Wave
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Acronyms

SEM-EDX Scanning Electron Microscopy - Energy Dispersive X-Ray Spectroscopy

SIN Superconductor - Insulator - Normal Conductor

SIS Superconductor - Insulator - Superconductor

SPEELS Spin-Polarized Electron Energy Loss Spectroscopy

STM Scanning Tunneling Microscopy

STO SrTiO3

UC Unit Cell

UHV Ultra High Vacuum

WL Wetting Layer
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List of Samples

SrFe(As1−xPx)2

The experiments, which were described in Chap. 7, have been performed on SrFe(As1−xPx)2

single crystals which were grown by S. Tajima and her co-workers [254]. The corre-
sponding batch numbers are listed in the table below. According to Tajima et al., these
are post-annealed crystals and their composition were confirmed by SEM-EDX mea-
surements.

phosphorus concentration batch
46 % Pd1

Pd2
Pd4

35 % Pd1
Pd2
Pd3

20 % 13105
0 % Pd1

FeSe

The experiments, which were described in Chap. 8, have been performed on FeSe sin-
gle crystals which were grown by T. Wolf and his co-workers [299].

Crystals from the following batches were investigated:

TWOX 1384, TWOX 1555, TWOX 1371, TWOX 1376
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Notation

• In this thesis, ~ was set to 1 unless stated otherwise.

List of physical constants

• Electron charge e

• Boltzmann constant kB

• Reduced Planck constant ~

• Vacuum speed of light c

• Vacuum permittivity ε0

• Electron rest mass me

• Bohr magneton µB
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band renormalization in the simplest iron-based superconductor FeSe1−x,” Phys.
Rev. B, 89, 220506 (2014).

[295] T. Shimojima, Y. Suzuki, T. Sonobe, A. Nakamura, M. Sakano, J. Omachi, K. Yosh-
ioka, M. Kuwata-Gonokami, K. Ono, H. Kumigashira, A. E. Böhmer, F. Hardy,
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