Revisiting kaon physics in general Z scenario

Motoi Endo a,b, Teppei Kitahara c,d,*, Satoshi Mishima a, Kei Yamamoto a

Article history:
Received 10 January 2017
Revised 8 May 2017
Accepted 8 May 2017
Available online 12 May 2017
Editor: J. Hisano

New physics contributions to the Z penguin are revisited in the light of the recently-reported discrepancy of the direct CP violation in $K \to \pi \pi$. Interference effects between the standard model and new physics contributions to $\Delta S = 2$ observables are taken into account. Although the effects are overlooked in the literature, they make experimental bounds significantly severer. It is shown that the new physics contributions must be tuned to enhance $B(K_L \to \pi^0 \nu \bar{\nu})$, if the discrepancy of the direct CP violation is explained with satisfying the experimental constraints. The branching ratio can be as large as 6×10^{-10} when the contributions are tuned at the 10% level.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A deviation of the standard model (SM) prediction from the experimental result is recently reported in the direct CP violation of the $K \to \pi \pi$ decays, which is called ϵ'. The latest lattice calculations of the hadron matrix elements significantly reduced the theoretical uncertainty [1–4] and yield [5,6]

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\text{SM}} = \begin{cases} (1.38 \pm 6.90) \times 10^{-4}, & \text{[RBC-UKQCD]} \\ (1.9 \pm 4.5) \times 10^{-4}, & \text{[Buras et al.]} \\ (1.06 \pm 5.07) \times 10^{-4}, & \text{[Kitahara et al.]} \end{cases} \quad (1.1)$$

They are lower than the experimental result [7–10],

$$\left(\frac{\epsilon'}{\epsilon}\right)_{\text{exp}} = (16.6 \pm 2.3) \times 10^{-4}. \quad (1.2)$$

The deviations correspond to the 2.8–2.9σ level.

Several new physics (NP) models have been explored to explain the discrepancy [11–21]. In the literature, electroweak penguin contributions to ϵ'/ϵ have been studied. In particular, the Z penguin contributions have been studied in detail [11,13,15,22]. The decay, $s \to d \bar{q}q$ ($q = u, d$), proceeds by intermediating the Z boson, and its flavor-changing (s-d) interaction is enhanced by NP. Then, the branching ratios of $K \to \pi \nu \bar{\nu}$ are likely to be deviated from the SM predictions once the ϵ'/ϵ discrepancy is explained. This is because the Z boson couples to the neutrinos as well as the up and down quarks. They could be a signal to test the scenario.

Such a signal is constrained by the indirect CP violation of the K mesons. The flavor-changing Z couplings affect the indirect CP violation via the so-called double penguin diagrams; the Z boson intermediates the transition, both of whose couplings are provided by the flavor-changing Z couplings. Such a contribution is enhanced when there are both the left- and right-handed couplings because of the chiral enhancement of the hadron matrix elements. This is stressed by Ref. [15] in the context of the Z′-exchange scenario. In the Z-boson case, since the left-handed coupling is installed by the SM, the right-handed coupling must be constrained even without NP contributions to the left-handed one. Such interference contributions between the NP and SM are overlooked in Refs. [11,13,15,22,23]. Therefore, the parameter regions allowed by the indirect CP violation will change significantly. In this letter, we revisit the Z-boson scenario. It will be shown that the NP contributions to the right-handed s-d coupling are tightly constrained due to the interference, and thus, the branching ratio of $K_L \to \pi^0 \nu \bar{\nu}$ is likely to be smaller than the SM predictions if the ϵ'/ϵ discrepancy is explained. We will discuss that NP parameters are necessarily tuned to enhance the ratio. A degree of

* Corresponding author.
E-mail address: teppei.kitahara@kit.edu (T. Kitahara).
1 QCD penguin contributions, e.g., through Kaluza-Klein gluons, have also been considered [11].

2 In this letter, we focus on the s-d transitions. The $\Delta F = 2$ transitions such as Δm_B generally involve the interference contributions.
the parameter tuning will be investigated to estimate how large $\mathcal{B}(k_L \to \pi^0 \nu \bar{\nu})$ and $\mathcal{B}(k^+ \to \pi^+ \nu \bar{\nu})$ can become.

2. Z-penguin observables

In this section, we briefly review the Z-penguin contributions to $\Delta S = 2$ and $\Delta S = 1$ processes in the general Z scenario. Above the electroweak symmetry breaking scale, NP particles generate Wilson coefficients of the (dimension-6) effective operators,

$$O_L = i (H^1 \overleftrightarrow{\partial_\mu} H) (\overline{Q}_L) \gamma^\mu Q_L^i, \quad (2.1)$$

$$O_R = i (H^1 \overleftrightarrow{\partial_\mu} H) (d_R^i \gamma^\mu d_R^i), \quad (2.2)$$

$$O_L^{(3)} = i (H^1 \sigma^\alpha \overleftrightarrow{\partial_\mu} H) (\overline{Q}_L) \gamma^\mu \sigma^\alpha Q_L^i. \quad (2.3)$$

They are gauge invariant under the SM gauge transformations. In this letter, we focus on the operators, O_L and O_R, to demonstrate the impact of the interference between the SM and NP contributions.\footnote{A similar discussion as follows is expected to hold for the effective operator $O_L^{(3)}$.}

After the electroweak symmetry breaking, they provide the flavor-changing $(s-d)$ Z interactions,

$$\mathcal{L} = \Delta L^{NP} \left[Z_{\mu \nu} + \frac{1}{m_Z} \partial_\mu G^0 - \frac{i g}{2 m_W m_Z} G^- \overleftrightarrow{\partial_\mu} G^+ - \frac{g}{m_Z} \left(W^- \gamma^\mu W^+ + W^+ \gamma^\mu W^- \right) + \ldots \right] (\overline{\nu}_i \gamma^\mu P_L d)$$

+ ($L \leftrightarrow R$) + H.c., \quad (2.4)

where the first term in the bracket is the Z-boson interaction, while the others are those of the Nambu–Goldstone boson, and we omitted the irrelevant terms for the interference effects. Here, the Wilson coefficients of O_L and O_R are normalized by the flavor-changing Z interactions. In the following, we omit the subscript “NP” in ΔL_{NP} and ΔL_R^{NP} for simplicity.

2.1. ϵ_K and Δm_K

In the $\Delta S = 2$ observables, there are the indirect CP violation ϵ_K and the mass difference Δm_K in the $K^0 - \overline{K^0}$ mixing. Since ϵ_K has been measured precisely, and the SM prediction is accurate, it provides a severe constraint. The SM and NP contributions are shown as

$$\epsilon_K = \epsilon^{SM}_K + \epsilon^{NP}_K, \quad (2.5)$$

where $\epsilon_K = (43.51 \pm 0.05)\%$. The NP contribution is given by the double penguin diagrams with the Z boson exchange (Fig. 1(a)),

$$\epsilon^{NP}_K = \sum_{i=1}^{\text{sub}} \left(\epsilon_K \right)^{Z}_i, \quad (2.6)$$

where the right-hand side is \cite{15}.

In these expressions, renormalization group corrections and long-distance contributions are included \cite{25}. In addition, one must take account of the interference terms between the SM and NP contributions (Figs. 1(b)–(e)),

$$\epsilon^{NP}_K = -4.62 \times 10^7 \text{Im} \Delta L_{\epsilon} \text{Re} \Delta K, \quad (2.7)$$

$$\epsilon^{NP}_K = -4.62 \times 10^7 \text{Im} \Delta L_{\epsilon} \text{Re} \Delta K, \quad (2.8)$$

Here, the SM contribution, ΔL_{ϵ}^{SM}, is generated by radiative corrections. At the one-loop level, it is calculated as

$$\Delta L_{\epsilon}^{SM} = g^3_{\epsilon} \frac{\alpha^2 C_W}{8 \pi^2} \left(\frac{m_{\epsilon}^2}{m_{\epsilon}} - \mu_{NP}^2 \right) \quad (2.9)$$

where $\epsilon = \cos^2 \theta_W$, $\alpha = \frac{e^2}{\hbar c}$, with the CKM matrix V_{ij}, and μ_{NP} corresponds to the NP scale.\footnote{In order to introduce how significant the interference contributions are, we ignore the renormalization group corrections to the dimension-6 operators above the electroweak scale except for a first leading logarithmic contribution $\ln(\mu_{NP}/m_W)$ which comes from Fig. 1(e). This approximation is valid when the NP scale is not so far from the electroweak scale.}

In the Feynman–’t Hooft gauge, the first term in the right-hand side corresponds to the Z-boson exchange diagram \cite{22} (Fig. 1(b)),

$$\frac{C(x, \mu_{NP}) = C(x) + \Delta C(x, \mu_{NP}). \quad (2.10)}{8}$$

while the second term is obtained from the Nambu–Goldstone boson loops (Figs. 1(c)–(e)),

$$\Delta C(x, \mu_{NP}) = -\frac{x}{16} \left[\frac{3x - 17}{2(x - 1)} - \frac{x(x - 8)}{(x - 1)^2} \ln x + \ln \left(\frac{\mu_{NP}^2}{m_{W}} \right) \right]. \quad (2.11)$$

The explicit form of $\Delta C(x)$ depends on the effective operators in the electroweak symmetry breaking scale. Here, they are supposed to be O_L and O_R. It is noted that the interference terms are gauge-independent.
The interference terms (2.8) have been overlooked in Refs. [11, 13,15,22]. They cannot be ignored, as we will see in the next section.

The latest estimation of the SM value is [27]

\[\epsilon_K^{\text{SM}} = (2.24 \pm 0.19) \times 10^{-3}. \]

(2.13)

On the other hand, the experimental result is [10]

\[|\epsilon_K^{\exp}| = (2.228 \pm 0.011) \times 10^{-3}. \]

(2.14)

They are well consistent with each other, and \(\epsilon_K^{\text{NP}} \) must satisfy

\[-0.39 \times 10^{-3} < \epsilon_K^{\text{NP}} < 0.37 \times 10^{-3}, \]

(2.15)

at the 2\(\sigma \) level.\(^6\)

The kaon mass difference \(\Delta m_K \) consists of the SM and NP contributions:

\[\Delta m_K = \Delta m_K^{\text{SM}} + \Delta m_K^{\text{NP}}. \]

(2.16)

If we parameterize the NP contribution as

\[\frac{\Delta m_K^{\text{NP}}}{\Delta m_K^{\text{SM}}} = \sum_{i=1}^{8} \epsilon_i^Z, \]

(2.17)

the right-hand side is estimated as [15]

\[R_1^Z = 6.43 \times 10^{-7} \left[(\text{Re} \Delta_L)^2 - (\text{Im} \Delta_L)^2 \right], \]

\[R_2^Z = 6.43 \times 10^{-7} \left[(\text{Re} \Delta_R)^2 - (\text{Im} \Delta_R)^2 \right], \]

\[R_3^Z = -6.21 \times 10^{-7} \text{Re} \Delta_L \text{Im} \Delta_R, \]

\[R_4^Z = 6.21 \times 10^{-9} \text{Im} \Delta_L \text{Im} \Delta_R. \]

(2.18)

Similarly to the case of \(\epsilon_K \), there are interference terms between the SM and NP contributions,

\[R_5^Z = 12.9 \times 10^{-7} \text{Re} \Delta_L^{\text{SM}} \text{Re} \Delta_L, \]

\[R_6^Z = -12.9 \times 10^{-7} \text{Im} \Delta_L^{\text{SM}} \text{Im} \Delta_L, \]

\[R_7^Z = -6.21 \times 10^{-9} \text{Re} \Delta_L^{\text{SM}} \text{Re} \Delta_R, \]

\[R_8^Z = 6.21 \times 10^{-9} \text{Im} \Delta_L^{\text{SM}} \text{Im} \Delta_R. \]

(2.19)

Here, \(\Delta_L^{\text{SM}} \) is given by Eq. (2.9), and the result is gauge-independent. These terms have been overlooked in the literature.

The experimental result is [10]

\[\Delta m_K^{\exp} = (3.484 \pm 0.006) \times 10^{-15} \text{GeV}. \]

(2.20)

Since the SM prediction involves sizable contributions of long-distance effects, the uncertainty is large.\(^7\) Hence, we simply require that the NP contribution does not exceed the experimental value (with the 2\(\sigma \) uncertainty):

\[|\Delta m_K^{\text{NP}}| < 3.496 \times 10^{-15} \text{GeV}. \]

(2.21)

This constraint will turn out to be much weaker than \(\epsilon_K^{\text{NP}} \).

2.2. \(\epsilon'/\epsilon \)

The flavor-changing \(Z \) interaction also contributes to \(\Delta S = 1 \) observables. The direct CP violation \(\epsilon'/\epsilon \) is shown as

\[\frac{\epsilon'}{\epsilon} = \left(\frac{\epsilon'}{\epsilon} \right)_{\text{SM}} + \left(\frac{\epsilon'}{\epsilon} \right)_{\text{NP}}. \]

(2.22)

The NP contribution is estimated as [15]

\[\left(\frac{\epsilon'}{\epsilon} \right)_{\text{NP}} = -2.64 \times 10^3 B_{g}^{(3/2)} \left(\text{Im} \Delta_L + \frac{c_{W}^2}{s_{W}^2} \text{Im} \Delta_R \right). \]

(2.23)

where \(B_{g}^{(3/2)} = 0.76 \pm 0.05 \) from the lattice calculation. Here, the terms which are not proportional to \(B_{g}^{(3/2)} \) are omitted; the approximation is valid at the 10% accuracy. A factor in the parenthesis gives \(c_{W}^2/s_{W}^2 \approx 3.33 \). Thus, the NP contribution can be enhanced easily by \(\Delta_R \).

As mentioned in Sec. 1, the SM prediction deviates from the experimental result at the 2.8–2.9\(\sigma \) level. In this letter, we require that the discrepancy of \(\epsilon'/\epsilon \) is explained at the 1\(\sigma \) level as

\[10.0 \times 10^{-4} < \left(\frac{\epsilon'}{\epsilon} \right)_{\text{NP}} < 21.1 \times 10^{-4}, \]

(2.24)

where Ref. [6] is used for the SM prediction.

2.3. \(K^+ \to \pi^+ \nu \bar{\nu} \) and \(KL \to \pi^0 \nu \bar{\nu} \)

The (ultra-)rare kaon decay channels, \(K^+ \to \pi^+ \nu \bar{\nu} \) and \(KL \to \pi^0 \nu \bar{\nu} \), are correlated with \(\epsilon'/\epsilon \) as well as \(\epsilon_K \) and \(\Delta m_K \) in the general \(Z \) scenario.\(^8\) They are represented as [15,22]

\[B(K^+ \to \pi^+ \nu \bar{\nu}) = \kappa_+ \left(\text{Im} X_{\text{eff}} \right)^2 \left(\frac{\text{Re} \lambda_\nu}{\lambda^3} \right)^2, \]

(2.25)

\[B(K_L \to \pi^0 \nu \bar{\nu}) = \kappa_\nu \left(\text{Im} X_{\text{eff}} \right)^2 \left(\frac{\text{Re} \lambda_\nu}{\lambda^3} \right)^2. \]

(2.26)

Here, \(X_{\text{eff}} \) is estimated as

\[X_{\text{eff}} = \lambda_\nu (1.48 \pm 0.01) + 2.51 \times 10^2 \left(\Delta_L + \Delta_R \right), \]

(2.27)

where the first term in the right-hand side is the SM contribution. Also, \(\lambda = |V_{uu}|, \kappa_+ = (5.157 \pm 0.025) \times 10^{-11} (\lambda/0.225)^8, \) and \(\kappa_\nu = (2.231 \pm 0.013) \times 10^{-10} (\lambda/0.225)^8 \). The charm-quark contribution is \(\text{Re} \lambda_\nu(X) = (9.39 \pm 0.31) \times 10^{-4}/\lambda^4 + (0.04 \pm 0.02) \), where the first term in the right-hand side comes from short-distance effects, while the second one takes account of long-distance effects. Using the CKMfitter result for the CKM elements, one obtains

\[\text{Re} X_{\text{eff}} = -4.83 \times 10^{-4} + 2.51 \times 10^2 \left(\Delta_L + \Delta_R \right), \]

(2.28)

\[\text{Im} X_{\text{eff}} = 2.12 \times 10^{-4} + 2.51 \times 10^2 \left(\Delta_L + \Delta_R \right). \]

(2.29)

The SM predictions become

\[B(K^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}} = (8.5 \pm 0.5) \times 10^{-11}, \]

(2.30)

\[B(K_L \to \pi^0 \nu \bar{\nu})_{\text{SM}} = (3.0 \pm 0.2) \times 10^{-11}. \]

(2.31)

\(^6\) The SM estimation \(\epsilon_K^{\text{SM}} \) is sensitive to the CKM elements. If one uses \(V_{ub} \) that is determined by the exclusive \(B \to \ell^+\ell^-\nu \) decays [28], \(\epsilon_K^{\text{SM}} = (1.73 \pm 0.18) \times 10^{-3} \) is obtained [29]. Then, \(\epsilon_K^{\text{SM}} = (0.50 \pm 0.18) \times 10^{-3} \) is required at the 1\(\sigma \) level.

\(^7\) The latest lattice simulation, which includes the long-distance contributions, provides \(\Delta L^{\text{SM}} = (1.19 \pm 1.04) \times 10^{-15} \text{GeV} \) [30]. However, it is performed on masses of unphysical pion, kaon and charmed quark.

\(^8\) The branching ratios of \(K \to \pi^+ \ell^- \nu (e, \mu) \) are also affected in the general \(Z \) scenario. However, \(K^+ \to \pi^+ \ell^- \nu \) and \(KS \to \pi^0 \ell^- \nu \) are dominated by a long-distance contribution through \(K \to \pi^+ \ell^- \nu \to \pi^+ \ell^- \nu \) [31]. On the other hand, such a contribution to \(K_L \to \pi^0 \ell^- \nu \) is forbidden by the CP symmetry, but is dominated by an indirect CP-violating contribution, \(KS \to KS \to \pi^0 \ell^- \nu \) [31]. Therefore, it is challenging to discuss short-distance NP contributions in these channels.
On the other hand, the experimental results are [33,34]

\[
B(K^+ \rightarrow \pi^+ \bar{\nu})_{\text{exp}} = (17.3^{+11.5}_{-10.5}) \times 10^{-11}, \quad (2.32)
\]

\[
B(K_L^0 \rightarrow \pi^0 \nu)_{\text{exp}} \leq 2.6 \times 10^{-8}, \quad [90\% \text{ C.L.}] \quad (2.33)
\]

Although the current constraints on the NP contributions are very weak, the experimental values will be improved significantly in the near future. The NA62 experiment at CERN, which already started the physics run at low beam intensity in 2015, has a potential to measure \(B(K^+ \rightarrow \pi^+ \nu \bar{\nu})\) at the 10% precision by 2018 [35]. The KOTO experiment at J-PARC is designed to improve the sensitivity for \(B(K_L^0 \rightarrow \pi^0 \nu)\), which enables us to measure it at the 10% level of the SM value [36,37]. As one can see from Eqs. (2.23) and (2.27), the NP contributions to \(B(K \rightarrow \pi \nu \bar{\nu})\) are correlated with those to \(\epsilon'/\epsilon\) in the general \(Z\) scenario. Thus, if the \(\epsilon'/\epsilon\) discrepancy is a signal of the scenario, these experiments would detect NP effects.

2.4. \(K_L \rightarrow \mu^+ \mu^-\)

The branching ratio of \(K_L \rightarrow \mu^+ \mu^-\) is also sensitive to the NP contributions to the flavor-changing \(Z\) couplings. Theoretically, only the short-distance (SD) contributions can be calculated reliably. They are shown as [15,39]

\[
B(K_L \rightarrow \mu^+ \mu^-)_{\text{SD}} = \kappa_\mu \left(\frac{\text{Re} \lambda_e}{\lambda} P_c(Y) + \frac{\text{Re} \text{Y}_{\text{eff}}}{\lambda^2} \right)^2, \quad (2.34)
\]

where \(\kappa_\mu = (2.01 \pm 0.02) \times 10^{-9} (\lambda/0.225)^8\). The charm-quark contribution is \(P_c(Y) = (0.115 \pm 0.018) \cdot (0.225/\lambda)^4\). Using the CKM-fitter result, one obtains

\[
\text{Re} Y_{\text{eff}} = -3.07 \times 10^{-4} + 2.51 \times 10^{-2} (\text{Re} \Delta_L - \text{Re} \Delta_R), \quad (2.35)
\]

where the first term in the right-hand side is the SM contribution, and the minus sign between \(\Delta_L\) and \(\Delta_R\) is due to the axial-vector current. The SM value is obtained as

\[
B(K_L \rightarrow \mu^+ \mu^-)_{\text{SD, SM}} = (0.83 \pm 0.10) \times 10^{-9}. \quad (2.36)
\]

On the other hand, it is challenging to extract a short-distance part in the experimental data \(B(K_L \rightarrow \mu^+ \mu^-)_{\text{exp}} = (6.84 \pm 0.11) \cdot 10^{-9} [10]\), because of huge long-distance contributions through \(K_L \rightarrow \gamma^* \gamma^* \rightarrow \mu^+ \mu^- [40]\). An upper bound on the short-distance contribution is [40]

\[
B(K_L \rightarrow \mu^+ \mu^-)_{\text{SD}} < 2.5 \times 10^{-9}. \quad (2.37)
\]

Since the constraint is much weaker than the SM uncertainties, we ignore them for simplicity and impose a bound on the \(Z\) couplings,

\[
-1.08 \times 10^{-6} < \text{Re} \Delta_L - \text{Re} \Delta_R < 4.05 \times 10^{-6}. \quad (2.38)
\]

The real parts of the NP contributions are constrained by \(B(K_L \rightarrow \mu^+ \mu^-)\).

3. Analysis

In this section, we examine the general \(Z\) scenario. Although the discrepancy of \(\epsilon'/\epsilon\) could be explained by the scenario, the parameter regions would be constrained by \(\epsilon_K\), \(\Delta m_K\) and \(K_L \rightarrow \mu^+ \mu^-\). In particular, the interference between the SM and NP contributions, Eq. (2.8), affects \(\epsilon_K\) significantly. In this section, we choose the NP scale, \(\mu_{NP} = 1\text{ TeV}\), as a reference. As we will see, wide parameter regions are excluded. Thus, the discrepancy of \(\epsilon'/\epsilon\) will be explained by tuning the model parameters. Let us introduce a quantity which parameterizes the tuning:\footnote{Our definition is almost the same as that in Ref. [45], where the authors discuss correlations between the tuning parameter and flavor observables.}

\[
\xi = \max(\xi_1, \xi_2, \ldots, \xi_8), \quad \text{with} \quad \xi_i = \left| \frac{2 \epsilon_K Y_{eff}}{\epsilon_{NP} Y_R} \right|^2. \quad (3.1)
\]

If \(\epsilon_{NP}\) is dominated by a single term, one obtains \(\xi \simeq 1\) and there is no tuning among the model parameters. If the maximal value of \(\epsilon(Y_{eff})^2\) is about ten times larger than \(\epsilon_{NP}\), \(\xi \simeq 10\) is obtained; the model parameters are tuned such that there is a cancellation among \(\epsilon(Y_{eff})^2\) at the 10% level.

3.1. Simplified scenarios

First, we consider the following simplified scenarios (cf., Ref. [41]),

- left-handed scenario (LHS): \(\Delta_R = 0\),
- right-handed scenario (RHS): \(\Delta_L = 0\),
- pure imaginary scenario \(\text{Im} / Z_S\): \(\Delta_L = \text{Re} \Delta_R = 0\),
- left–right symmetric scenario (LRS): \(\Delta_L = \Delta_R\).

As shown below, these scenarios do not require large parameter tuning in \(\epsilon_{NP}\). However, \(B(K \rightarrow \pi \nu \bar{\nu})\) will turn out to be small.

In Fig. 2, the \(Z\)-penguin observables are shown as functions of \(\Delta_{LR}\) for LHS and RHS. In the green (light green) region, the \(\epsilon'/\epsilon\) discrepancy is explained at 1 (2)\(\sigma\). They depend only on the imaginary component of \(\Delta_{LR}\). Obviously, \(\epsilon'/\epsilon\) is enhanced by the right-handed \(Z\) coupling, \(\Delta_R\), more than \(\Delta_L\).

The blue regions are excluded by the \(\epsilon_K\), and the orange regions are by the \(B(K_L \rightarrow \mu^+ \mu^-)\). The constraint from \(\epsilon_K\) is much severer in RHS than LHS due to the interference contributions, Eq. (2.8). There is no constraint from \(\Delta m_K\) in the parameter regions of the plots.

The red and black dashed contours represent \(B(K_L \rightarrow \pi^0 \nu \bar{\nu})/B(K_L \rightarrow \pi^0 \nu \bar{\nu})_{\text{SM}}\) and \(B(K^+ \rightarrow \pi^+ \nu \bar{\nu})/B(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{\text{SM}}\), respectively. Here and hereafter, \(B(K_L \rightarrow \pi^0 \nu \bar{\nu})_{\text{SM}}\) and \(B(K^+ \rightarrow \pi^+ \nu \bar{\nu})_{\text{SM}}\) denote the central values of the SM predictions, Eqs. (2.30) and (2.31). It is found that \(B(K_L \rightarrow \pi^0 \nu \bar{\nu})\) cannot be as large as the SM value as long as \(\epsilon'/\epsilon\) is explained in LHS or RHS. On the other hand, if the \(\epsilon'/\epsilon\) discrepancy is explained by LHS, the NP contribution to \(B(K^+ \rightarrow \pi^+ \nu \bar{\nu})\) is limited by \(B(K_L \rightarrow \mu^+ \mu^-)\). In contrast, \(\epsilon_K\) restricts RHS.

Next, we consider ImZS. Such a situation is often considered to amplify \(\epsilon'/\epsilon_{NP}\) but suppress \(\epsilon_{NP}\). In the left panel of Fig. 3, the \(Z\)-penguin observables are shown as functions of \(\text{Im} \Delta_{LR}\). The most severe constraint is from \(\epsilon_K\) due to the interference between the SM and NP. The other bounds are weak and absent in the plot. Since there are no real components of \(\Delta_{LR}\), \(B(K^+ \rightarrow \pi^+ \nu \bar{\nu})\) is correlated with \(B(K_L \rightarrow \pi^0 \nu \bar{\nu})\).

Finally, LRS is shown in the right panel of Fig. 3. Similarly to the cases of RHS and ImZS, most of the parameter regions are excluded by \(\epsilon_K\). The NP contributions to \(B(K_L \rightarrow \mu^+ \mu^-)\) vanish because the process is the axial-vector current.

In Fig. 4, contours of the tuning parameter \(\xi\) are shown for the simplified scenarios: LHS, RHS, ImZS, and LRS on the plane of the branching ratios of \(K \rightarrow \pi \nu \bar{\nu}\). We scanned the whole parameter space of \(\Delta_{LR}\) in each scenario and selected the parameters where \(\epsilon'/\epsilon\) is explained at the 1\(\sigma\) level, and the experimental bounds from \(\epsilon_K\), \(\Delta m_K\), and \(B(K_L \rightarrow \mu^+ \mu^-)\) are satisfied (see the previous

\footnotesize{10 This scenario is realized by chargino contributions to the \(Z\) penguin in the supersymmetric model [17,19,42–44].

11 Randall–Sundrum models with custodial protection [45,46] can generate large \(\Delta_R\). However, there are additional effects, e.g., from KK-gluon diagrams for \(\epsilon_{NP}\).

12 In axially-symmetric scenarios, \(\Delta_L = -\Delta_R\), there are no NP contributions to \(K \rightarrow \pi \nu \bar{\nu}\).}
Fig. 2. The Z-penguin observables are displayed in LHS (left panel) and RHS (right). In the green (light green) regions, the ϵ' / ϵ discrepancy is explained at 1 (2) σ. The blue and the orange shaded regions are excluded by ϵ_K and $B(L_K \to \mu^+ \mu^-)$, respectively. The ratios of $B(K_L \to \pi^0 \nu \bar{\nu}) / B(K_L \to \pi^0 \bar{\nu} \nu)_{\text{SM}}$ and $B(K^+ \to \pi^+ \nu \bar{\nu}) / B(K^+ \to \pi^+ \bar{\nu} \nu)_{\text{SM}}$ are shown by the red solid and black dashed contours, respectively. The NP scale is $\mu_{\text{NP}} = 1 \text{ TeV}$. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 3. The Z-penguin observables are displayed in ImZS (left panel) and LRS (right). Notations of the lines and shaded regions are the same as in Fig. 2.

In the figures, $B(K_L \to \pi^0 \nu \bar{\nu})$ is smaller than the SM value by more than 30%. Hence, the scenarios could be tested by the KOTO experiment. On the other hand, $B(K^+ \to \pi^+ \nu \bar{\nu})$ depends on the scenarios. In LHS, we obtain $0 < B(K^+ \to \pi^+ \nu \bar{\nu}) / B(K^+ \to \pi^+ \nu \bar{\nu})_{\text{SM}} < 1.8$. In RHS, $B(K^+ \to \pi^+ \nu \bar{\nu})$ is comparable to or larger than the SM value, but cannot be twice as large. In ImZS, the branching ratios are perfectly correlated and displayed by a line in Fig. 4. Then, $B(K^+ \to \pi^+ \nu \bar{\nu})$ is not deviated from the SM one. The right panel of Fig. 4 is a result of the tuning parameter ξ in LRS. It is found that $B(K_L \to \pi^0 \nu \bar{\nu})$ does not exceed about a half of the SM value. On the other hand, $B(K^+ \to \pi^+ \nu \bar{\nu})$ is comparable to or larger than the SM value, but cannot be twice as large, as is similar to RHS.

3.2. General scenario

Let us consider the full parameter space in the general Z scenario. Both ΔL and ΔR are turned on. Then, $B(K^+ \to \pi^+ \nu \bar{\nu})$ and/or $B(K_L \to \pi^0 \nu \bar{\nu})$ can be enhanced if the tuning for ϵ_K^{NP} is allowed.

In Fig. 5, the branching ratios of $K \to \pi \nu \bar{\nu}$ and the tuning parameter are shown for the case of $(\epsilon' / \epsilon)_{\text{NP}} = 15.5 \cdot 10^{-4}$ and $\epsilon_K^{\text{NP}} = 0.37 \cdot 10^{-3}$. The flavor-changing Z couplings, and namely the NP contributions to $K \to \pi \nu \bar{\nu}$, are limited by $B(K_L \to \mu^+ \mu^-)$ and the tuning parameter.

In Fig. 6, contours of the tuning parameter ξ are shown on the plane of the branching ratios of $K \to \pi \nu \bar{\nu}$. The whole parameter space of the general Z scenario is scanned. In the colored regions, ϵ' / ϵ is explained at the 1σ level, and the experimental bounds of ϵ_K, Δm_K, and $B(K_L \to \mu^+ \mu^-)$ are satisfied (see the previous section for the experimental constraints). Then, ξ was estimated at each point. Several parameter sets predict the same $B(K^+ \to \pi^+ \nu \bar{\nu})$ and $B(K_L \to \pi^0 \nu \bar{\nu})$. Among them, the smallest ξ is shown in Fig. 4 for each set of $B(K^+ \to \pi^+ \nu \bar{\nu})$ and $B(K_L \to \pi^0 \nu \bar{\nu})$. In most of the allowed parameter regions, $\xi = 0(1)$ is obtained. Thus, one does not require tight tunings in these scenarios.
Fig. 4. Contours of the tuning parameter ξ are shown in the simplified scenarios: LHS, RHS, and ImZS (left panel) and LRS (right). Here, “SM” in the axis labels denotes the central values of $B(K_L \to \pi^0\nu\bar{\nu})_{SM}$ and $B(K^+ \to \pi^+\nu\bar{\nu})_{SM}$, Eqs. (2.30) and (2.31). In the colored regions, ϵ'/ϵ is explained at 1σ, and the experimental bounds of ϵ_K, Δm_K, and $B(K_L \to \mu^+\mu^-)$ are satisfied. The right region of the blue dashed line is allowed by the measurement of $B(K^+ \to \pi^+\nu\bar{\nu})$ at 1σ. The Grossman–Nir bound [47] is shown by the blue solid line. The NP scale is set to be $\mu_{NP} = 1$ TeV. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. $B(K^+ \to \pi^+\nu\bar{\nu})/B(K^+ \to \pi^+\nu\bar{\nu})_{SM}$ (left panel) and $B(K_L \to \pi^0\nu\bar{\nu})/B(K_L \to \pi^0\nu\bar{\nu})_{SM}$ (right) are shown by the red contours. The blue contours represent the tuning parameter ξ. The orange and purple shaded regions are excluded by $B(K_L \to \mu^+\mu^-)$ and Δm_K, respectively. Here, $(\epsilon'/\epsilon)_{NP} = 15.5 \times 10^{-4}$ and $\epsilon_K^D = 0.37 \times 10^{-3}$ as a reference. The NP scale is set to be $\mu_{NP} = 1$ TeV. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

section for the experimental constraints). For each set of $B(K^+ \to \pi^+\nu\bar{\nu})$ and $B(K_L \to \pi^0\nu\bar{\nu})$, the smallest ξ is chosen among the parameter sets which predict the same branching ratios.

Compared to the simplified cases in Fig. 4, $B(K_L \to \pi^0\nu\bar{\nu})$ can be enhanced. The tuning parameter is not necessarily very large if only one of $B(K_L \to \pi^0\nu\bar{\nu})$ and $B(K_L \to \mu^+\mu^-)$ is enhanced. However, $\xi \geq 30$–40 is required to amplify both of them. If $\xi \lesssim 10$ (5) is allowed, $B(K_L \to \pi^0\nu\bar{\nu})$ can be as large as 6×10^{-10} (2×10^{-10}). In other words, $\mathcal{O}(10\%)$ tunings are required to enhance $B(K_L \to \pi^0\nu\bar{\nu})$ by an order of magnitude compared to the SM prediction. The KOTO experiment can probe such large branching ratios in the near future.

4. Conclusion and discussion

The recent discrepancy of ϵ'/ϵ may be a sign of the NP contribution to the flavor-changing Z coupling. In this letter, we revisited the scenario with paying attention to the interference effects between the SM and NP contributions to the $\Delta S = 2$ observables. They affect ϵ_K significantly once the right-handed coupling is turned on. Consequently, $B(K_L \to \pi^0\nu\bar{\nu})$ is smaller than the SM prediction in the simplified scenarios as long as ϵ'/ϵ is explained.

In the general Z scenario, $B(K_L \to \pi^0\nu\bar{\nu})$ can be large if parameter tunings are allowed. It was found that the branching ratio can be enhanced by an order of magnitudes compared to the SM prediction if the NP contributions to ϵ_K are tuned at the $\mathcal{O}(10\%)$ level. It can be as large as 6×10^{-10} (2×10^{-10}) for $\xi \lesssim 10$ (5), which implies that the NP contributions to ϵ_K are tuned at the 10% (20%) level. The KOTO experiment could probe such large branching ratios in the near future.

In the analysis, the NP scale was set to be 1 TeV. The NP contributions to ϵ_K as well as the tuning parameter depend on it through the interference terms of the SM and NP (see Eq. (2.12)). For $\mu_{NP} \gtrsim 1$ TeV, Δ^2_{LNP} is enhanced as the NP scale increases. Hence,
one naively expects that tighter tuning is required in ϵ_K. However, renormalization group corrections could be larger in such a case. Such contributions will be studied elsewhere (see also Ref. [48]).

5. Note added

While resubmitting the manuscript, Ref. [48] appeared on the arXiv. In comparison with our analysis, the differences are as follows:

- we considered O_L and O_R operators with the first leading logarithmic renormalization group contribution $\ln(\mu_{NP}/\mu_W)$ which comes from Fig. 1(e). Hence, the operator $O_E^{(1)}$ is not imposed here, while Ref. [48] has also adopted an aggressive bound [49];
- a conservative constraint from $B(K_L \to \mu^+ \mu^-)$ [40] is imposed here, while Ref. [48] corresponds at 1σ level.

The loop function $C(x, \mu_{NP})$ in Eq. (2.9), which comes from O_L and O_E, is in agreement with a result of Ref. [48], which comes from $O_{Hq}^{(1)}$ and O_{Hq}, at the first leading logarithmic approximation. Notice that μ_{NP} corresponds to μ_L.

Acknowledgements

We would like to thank Andrzej J. Buras for useful discussions. We are indebted to the referee for important comments. This work is supported by JSPS KAKENHI No. 16K17681 (M.E.) and 16H03991 (M.E.).

References

[41] A.J. Buras, L. Silvestrini, Upper bounds on \(K \rightarrow \pi \nu \bar{\nu}\) and \(K \rightarrow \pi^0 \nu \bar{\nu}\) from \(\epsilon'/\epsilon\) and \(K_1 \rightarrow \mu^+ \mu^-\), Nucl. Phys. B 546 (1999) 299, arXiv:hep-ph/9811471.

