

 Karlsruhe Reports in Informatics 2017,10
Edited by Karlsruhe Institute of Technology,
Faculty of Informatics

 ISSN 2190-4782

VerifyThis 2017

A Program Verification Competition

Marieke Huisman, Rosemary Monahan, Peter Müller, Wojciech Mostowski, Mattias Ulbrich

 2017

KIT – University of the State of Baden-Wuerttemberg and National
Research Center of the Helmholtz Association

Please note:
This Report has been published on the Internet under the following
Creative Commons License:
http://creativecommons.org/licenses/by-nc-nd/4.0/

VerifyThis 2017
A Program Verification Competition

Marieke Huisman1, Rosemary Monahan2, Peter Müller3, Wojciech Mostowski4, Mattias Ulbrich5

1 University of Twente, The Netherlands, e-mail: m.huisman@utwente.nl
2 Maynooth University, Ireland, e-mail: Rosemary.Monahan@nuim.ie
3 ETH Zurich, Switzerland, e-mail: peter.mueller@inf.ethz.ch
4 Halmstad University, Sweden e-mail: Wojciech.Mostowski@hh.se
5 Karlsruhe Institute of Technology, Germany e-mail: ulbrich@kit.edu

Abstract. VerifyThis 2017 was a two-day program ver-
ification competition which took place from April 22-
23rd, 2017 in Uppsala, Sweden as part of the Euro-
pean Joint Conferences on Theory and Practice of Soft-
ware (ETAPS 2017). It was the sixth instalment in the
VerifyThis competition series. This article provides an
overview of the VerifyThis 2017 event, the challenges
that were posed during the competition, and a high-level
overview of the solutions to these challenges. It concludes
with the results of the competition.

1 Introduction

VerifyThis 2017 took place from April 22-23rd, 2017 in
Uppsala, Sweden, as a two-day verification competition
in the European Joint Conferences on Theory and Prac-
tice of Software (ETAPS 2017). It was the sixth edi-
tion in the VerifyThis series after the competitions held
at FoVeOOS 2011, FM2012, Dagstuhl (Seminar 14171,
April 2014), ETAPS 2015 (April 2015), and ETAPS 2016
(April 2016).

The aims of the competition were:

– to bring together those interested in formal verifica-
tion, and to provide an engaging, hands-on, and fun
opportunity for discussion

– to evaluate the usability of logic-based program ver-
ification tools in a controlled experiment that could
be easily repeated by others.

Typical challenges in the VerifyThis competitions are
small but intricate algorithms given in pseudo-code with
an informal specification in natural language. Partici-
pants have to formalise the requirements, implement a
solution, and formally verify the implementation for ad-
herence to the specification. There are no restrictions

on the programming language and verification technol-
ogy used. The time frame to solve each challenge is
quite short (90 minutes) so that anyone can easily repeat
the experiment. The verification challenges are available
from the VerifyThis website http://www.pm.inf.ethz.
ch/research/verifythis.html.

The correctness properties which the challenges
present are typically expressive and focus on the input-
output behaviour of programs. To tackle them to the
full extent, some human guidance within a verification
tool is usually required. At the same time, considering
partial properties or simplified problems, if this suits the
pragmatics of the tool, is encouraged. The competition
welcomes participation of automatic tools as combining
complementary strengths of different kinds of tools is a
development that VerifyThis would like to advance.

Submissions are judged for correctness, complete-
ness, and elegance. The focus includes the usability of
the tools, their facilities for formalizing the properties
and providing helpful output.

1.1 VerifyThis 2017

VerifyThis 2017 consisted of three verification chal-
lenges. Before the competition, an open call for chal-
lenge submissions was made. The two submitted were
used as inspiration for the competition. The challenges
(presented later) provided reference implementations at
different levels of abstraction.

Ten teams participated (Table 1) in this edition of the
competition. Teams of up to two people were allowed and
physical presence on site was required. We particularly
encouraged participation of:

– student teams (including PhD students)
– non-developer teams using a tool someone else devel-

oped
– several teams using the same tool

http://www.pm.inf.ethz.ch/research/verifythis.html
http://www.pm.inf.ethz.ch/research/verifythis.html

2 Marieke Huisman et al.: VerifyThis 2017

Teams using different tools for different challenges (or
even for the same challenge) were also welcome.

We started the competition day with an invited tu-
torial by Jean-Christophe Filliâtre on the Why3 soft-
ware verification tool [6]. This tutorial was open to all
ETAPS participants and included a small verification
challenge, where participants developed a verified solu-
tion to Kadanes Algorithm [2]. The tools used where
those available from http://why3.lri.fr/try/. Why3
has been one of the most popular tools during previous
(and also the present) verification competitions so the
topic was of interest to all participants.

As in the previous competitions, the day after the
competition a post-mortem session was held, where par-
ticipants explained their solutions and answered ques-
tions of the judges. In parallel, the participants used this
session to discuss details of the problems and solutions
among each other.

The website of the 2017 instalment of VerifyThis can
be found at http://www.pm.inf.ethz.ch/research/
verifythis/Archive/2017.html. More background in-
formation on the competition format and the rationale
behind it can be found in [9]. Reports from previous
competitions of similar nature can be found in [14,4,7,
11,12] and in the special issue of the International Jour-
nal on Software Tools for Technology Transfer (STTT)
on the VerifyThis competition 2012 (see [10] for the in-
troduction).

1.2 Post-mortem Sessions

Two concurrent post-mortem sessions were held the day
after the competition. During one session, the judges
asked the teams questions in order to better understand
and appraise their solutions. These sessions provided an
excellent opportunity to explore the strengths and weak-
nesses of the solutions presented by each team, while
acquiring more detailed knowledge of the verification
tools used. Concurrently, all other participants presented
their solutions, leading to lively discussion and exchange
about tool developments. These presentations were also
attended by some non-participants.

1.3 Judging Criteria

Limiting the duration of each challenge assists the judg-
ing and comparison of each solution. However, this task
is still quite subjective and hence, difficult. Discussion of
the solution with the judges typically results in a ranking
of solutions for each challenge.

Criteria that were used for judging were:

– Correctness: is the formalisation of the properties ad-
equate and fully supported by proofs? Where any
bugs found in the code?

– Completeness: are all tasks solved, and are all re-
quired aspects covered? Are any assumptions made?
Is termination verified?

– Readability: can the submission be understood easily,
possibly even without a demo?

– Effort and time distribution: what is the relation be-
tween time expended on implementing the program
vs. specifying properties vs. proving?

– Automation: how much manual interaction is re-
quired, and for what aspects? Does the solution make
use of information from libraries?

– Novelty: does a submission apply novel techniques?
What special features of the tool are used in the so-
lution?

2 Challenge 1: Pair Insertion Sort

Although it is an algorithm with O(n2) complexity, the
pair insertion sorting algorithm is used in modern li-
brary implementations. When dealing with smaller num-
bers of elements, insertion sorts performs better than,
e.g., quicksort due to a lower overhead. It can be im-
plemented more efficiently if the array traversal (and re-
arrangement) is not repeated for every element individ-
ually. A Pair Insertion Sort in which two elements are
handled at a time is used by Oracle’s implementation of
the Java Development Kit (JDK) for sorting primitive
values in java.util.Arrays.sort(int[]) 1. In the following
code snippet, a is the array to be sorted, and the integer
variables left and right are valid indices into a that set
the range to be sorted.
forforfor (intintint k = left; ++left <= right; k = ++left) {

intintint a1 = a[k], a2 = a[left];
ififif (a1 < a2) {

a2 = a1; a1 = a[left];
}
whilewhilewhile (a1 < a[--k]) {

a[k + 2] = a[k];
}
a[++k + 1] = a1;
whilewhilewhile (a2 < a[--k]) {

a[k + 1] = a[k];
}
a[k + 1] = a2;

}
intintint last = a[right];
whilewhilewhile (last < a[--right]) {

a[right + 1] = a[right];
}
a[right + 1] = last;

This implementation is an optimised algorithm which
uses the borders a[left] and a[right] as sentinels.

While the problem was proposed as a Java imple-
mentation, the challenge does not use specific language
features and can easily be formulated in other languages.
A simplified variant of the algorithm in pseudo code,

1 in http://grepcode.com/file/repository.grepcode.
com/java/root/jdk/openjdk/8-b132/java/util/
DualPivotQuicksort.java

http://why3.lri.fr/try/
http://www.pm.inf.ethz.ch/research/verifythis/Archive/2017.html
http://www.pm.inf.ethz.ch/research/verifythis/Archive/2017.html
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/DualPivotQuicksort.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/DualPivotQuicksort.java
http://grepcode.com/file/repository.grepcode.com/java/root/jdk/openjdk/8-b132/java/util/DualPivotQuicksort.java

Marieke Huisman et al.: VerifyThis 2017 3

Table 1. Teams participating in VerifyThis 2017 (alphabetically by tool).

Team members Tool Team attributes

1 Stephen Siegel CIVL [16] developer
2 Jon Mediero Iturrioz Dafny [15] student,non-developer
3 Lionel Blatter, Jean-Christophe Léchenet Frama-C [13] student,non-developer
4 Mihai Herda KeY [1] student
5 Michael Kirsten, Jonas Schiffl KeY [1] student
6 Stefan Bodenmüller, Jörg Pfähler KIV [5] student
7 Marieke Huisman, Wytse Oortwijn VerCors [3] developer
8 Jean-Christophe Filliâtre Why3 [6] developer
9 Léon Gondelman, Marc Schoolderman Why3 [6] student
10 Mário Pereira, Raphael Rieu-Helft Why3 [6] student

for sorting an array A whose indices range from 0 to
length(A)− 1, is the following:
i = 0 //i is the running index
whilewhilewhile i < length(A)-1

x = A[i] //x,y hold the next 2 elements
y = A[i+1]
ififif x < y thenthenthen

swap x andandand y
j = i - 1 //j finds the insertion point
whilewhilewhile j >= 0 andandand A[j] > x

//find the insertion point forforfor x
A[j+2] = A[j] //shift existing content by 2
j = j - 1

endendend whilewhilewhile
A[j+2] = x //store x at its insertion place

//A[j+1] is an available space
whilewhilewhile j >= 0 andandand A[j] > y

//find the insertion point forforfor y
A[j+1] = A[j] //shift existing content by 1
j = j - 1

endendend whilewhilewhile
A[j+1] = y //store y at its insertion place
i = i+2

endendend whilewhilewhile

ififif i = length(A)-1 //ififif length(A) is odd, an extra
y = A[i] //single insertion is needed
j = i - 1 //forforfor the last element
whilewhilewhile j >= 0 andandand A[j] > y

A[j+1] = A[j]
j = j - 1

endendend whilewhilewhile
A[j+1] = y

endendend ififif

2.1 Verification Tasks

1. Specify and verify that the result of the pair insertion
sort algorithm is a sorted array.

2. Specify and verify that the result of the pair insertion
sort algorithm is a permutation of the input array.

Getting Started. To make the exercise more accessible,
feel free to start with stripped down versions of the prob-
lem. A few possibilities for simplifications are:

– Absence of unexpected runtime exceptions.
– Verify a single-step insertion sort algorithm in which

every element is handled individually.
– For permutations proofs, it may be simpler to not

remember the values in temporary variables (x and
y in the pseudocode), but to swap repeatedly.

Challenge. Try to get as close as possible to Oracle’s
implementation (outlined above) from the beginning.

Verification Bounds. In reality, pair insertion sort is
used only for small problem instances: in JDK’s case,
if the array has less than 47 elements. If it helps your
efforts, you may assume a suitable length restriction for
the array.

2.2 Comments on Solutions

– All teams submitted a (not necessarily complete) so-
lution to the challenge.

– Six teams considered the total problem (taking ter-
mination into account), three looked at the partial
problem, and one team (CIVL) considered it using
bounded verification.

– All teams tried to tackle the sortedness problem first
before dealing with the permutation question.

– Every team that considered the permutation prop-
erty also verified sortedness.

– The discussion revealed that modelling the permuta-
tion property using multilists (bags) is more promis-
ing than using an explicit notion of permutation.
The conjecture is that the abstraction into a mul-
tiset captures the necessary information (same ele-
ments) whereas modelling the permutation explicitly
also carries information about the elements’ positions
which is not requried for the property.

– The additional algorithmic complexity imposed by
the real-world implementation made it harder to ver-
ify. No team verified the optimised Java version on

4 Marieke Huisman et al.: VerifyThis 2017

site. A proof using KeY was finished in the weeks
following the event.

– The algorithm has been verified using bounded veri-
fication with CIVL up to bound N = 5.

– One team found a full solution during the challenge
time using Why3. Existing verification libraries (in
particular bags) was used and the proof was guided
using additional autoactively annotated assertions.

– Notable tool features which assisted in the solutions
were graphical representation of proof trees in KIV,
access to multiple provers and use of logical cuts (to
help debugging) in Why3 and symbolic execution in
CIVL.

– Although no team used SPARK in the competi-
tion, this challenge was completed off-site to illus-
trate how one can reach different levels of soft-
ware assurance with SPARK. Details can be found
at http://www.spark-2014.org/entries/detail/
verifythis-challenge-in-spark

3 Challenge 2: Maximum-sum subarray

3.1 Verification Task

The maximum-sum subarray problem was first surveyed
by Bentley in his Programming Pearls column of CACM
in 1984. The solution returns the sum of a contiguous
subarray within a one- dimensional array of numbers
which has the largest sum. In the two-dimensional case,
the task is to find a submatrix such that the sum of its
elements is maximized. This problem is widely used in
applications such as pattern recognition, image process-
ing, biological sequence analysis and data mining.

3.2 One-dimensional Case:

In the array [-2, -3, 4, -1, -2, 1, 5, -3] the maximum-sum
subarray is [4,-1,-2, 1, 5] with a sum of 7 (4 + (-1) + (-2)
+ 1 + 5 = 7). A brute force solution checks all subarrays
(which are quadratically many), but the problem is solv-
able in linear-time using Kadane’s algorithm. Kadane’s
Algorithm for a one-dimensional array is given below as
an implementation in C:
intintint maxSubArraySum(intintint a[], intintint size)
{

intintint max_so_far = 0, max_ending_here = 0;
forforfor (intintint i = 0; i < size; i++)
{

max_ending_here = max_ending_here + a[i];
ififif (max_ending_here < 0)

max_ending_here = 0;
elseelseelse ififif (max_so_far < max_ending_here)

max_so_far = max_ending_here;
}
returnreturnreturn max_so_far;

}

The One-dimensional Verification Task:

1. Verify that Kadane’s Algorithm returns a value
which is the sum of a contiguous subarray within
array a, and

2. Verify that the sum of every contiguous subarray
within a is not greater than the returned value.

3.3 Two-dimensional Case:

For the given two-dimensional array∣∣∣∣∣∣∣∣∣
0 −2 −7 0
9 2 −6 2
−4 1 −4 1
−1 8 0 −2

∣∣∣∣∣∣∣∣∣
the maximum-sum submatrix is∣∣∣∣∣∣∣

9 2
−4 1
−1 8

∣∣∣∣∣∣∣
To get an O(N3) algorithm, we create O(N2) one-

dimensional subproblems by iterating over all possible
contiguous sequences of row indices. We then apply
Kadane’s algorithm to each 1D subproblem, with the
maximum-sum subarray amongst these returning the so-
lution to the 2D problem. The subproblems are arrays
which contain accumulated sums of contiguous rows. Dy-
namic programming can be used to obtain these effi-
ciently. In the example above the contiguous sequences
of row indices from which sums are formed are: [0], [0,1],
[0,1,2], [0,1,2, 3], [1], [1,2], [1,2,3], [2], [2,3], [3].

The arrays holding the accumulated sums are:
[0] 0 -2 -7 0
[0, 1] 9 0 -13 2
[0, 1, 2] 5 1 -17 3
[0, 1, 2, 3] 4 9 -17 1
[1] 9 2 -6 2
[1, 2] 5 3 -10 3
[1, 2, 3] 4 11 -10 1
[2] -4 1 -4 1
[2, 3] -5 9 -4 -1
[3] -1 8 0 -2

We apply Kadane’s algorithm to each of these arrays,
keeping the maximum sum found across all arrays. For
example, above, the maximum sum of 15 is found in row
sequence [1,2,3]. The maximum-sum submatrix column
bounds (0 and 1 here) are obtained from the bounds
of the maximum-sum subarray. The row bounds are ob-
tained from the row sequence yielding the maximum sum
(1-3 in the example).

http://www.spark-2014.org/entries/detail/verifythis-challenge-in-spark
http://www.spark-2014.org/entries/detail/verifythis-challenge-in-spark

Marieke Huisman et al.: VerifyThis 2017 5

The Two-dimensional Verification Task: Implement
and verify a function that solves the maximum-sum sub-
matrix problem. You should verify that

1. the function returns a value which is the sum of a
submatrix within the input matrix, and that

2. the sum of every submatrix within the input matrix
is not greater than the returned value.

3.4 Comments on Solutions

Since this challenge has been issued as a supplementary
followup challenge in response to the example of the
Why3 tutorial (1-dimensional Kadane), the submitted
solutions were not assessed after the competition.

4 Challenge 3: Odd-even Transposition Sort

This sorting algorithm, developed originally for use on
parallel processors, compares all odd- indexed list ele-
ments with their immediate successors in the list and, if
a pair is in the wrong order (the first is larger than the
second) swaps the elements. The next step repeats this
for even-indexed list elements (and their successors). The
algorithms iterates between these two steps until the list
is sorted.

4.1 Single Processor Solution

The single-processor algorithm is simple, but not very
efficient O(n2). It can be considered a variation of the
bubble sort algorithm. Here a zero-based index is as-
sumed:

function oddEvenSort(list) {
function swap(list, i, j) {

var temp = list[i];
list[i] = list[j];
list[j] = temp;

}
var sorted = false;
whilewhilewhile(!sorted) {

sorted = true;
forforfor(var i = 1; i < list.length-1; i += 2) {

ififif(list[i] > list[i+1]) {
swap(list, i, i+1);
sorted = false;

}
}
forforfor(var i = 0; i < list.length-1; i += 2) {

ififif(list[i] > list[i+1]) {
swap(list, i, i+1);
sorted = false;

}
}

}
}

4.2 Multi Processor Solution

On parallel processors, with one value per processor and
only local left–right neighbour connections, the proces-
sors all concurrently do a compare–exchange operation
with their neighbours, alternating between odd–even
and even–odd pairings in each step. The algorithm has
linear runtime as comparisons can be performed in par-
allel. A pseudocode implementation that uses message
passing for synchronisation is presented in the following.
The driver code spawns n processes, one for each array
element and collects the results after termination.
process ODD-EVEN-PAR(n, id, myvalue)

//n ... the length ofofof the arrayarrayarray to sort
//id ... processors label (0 .. n-1)
//myvalue ... the value ininin this process

beginbeginbegin
forforfor i := 0 to n-1 dododo
beginbeginbegin
//alternate between left andandand right partner
ififif i+id isisis even thenthenthen

ififif id has a right neighbour
sendToRight(myvalue);
othervalue = receiveFromRight();
myvalue = min(myvalue, othervalue);

elseelseelse
ififif id has a left neighbour

sendToLeft(myvalue);
othervalue = receiveFromLeft();
myvalue = max(myvalue, othervalue);

endendend forforfor
endendend ODD-EVEN-PAR

forforfor i := 0 to arrayarrayarray.length-1
process[i] := newnewnew ODD-EVEN-PAR(n, i, arrayarrayarray[i])

endendend forforfor

start processes andandand wait forforfor them to finish

forforfor i := 0 to arrayarrayarray.length-1
arrayarrayarray[i] := process[i].myvalue

endendend forforfor

4.3 Verification Tasks

1. Specify and verify that the result of the even-odd sort
algorithm is a sorted list.

2. Specify and verify that the result of the even-odd sort
algorithm is a permutation of the input list.

3. Prove that the code terminates.

Concurrency: This algorithm was developed origi-
nally for parallel use. You should aim to have a parallel
solution if your tool allows.

Synchronisation: We have proposed a synchroni-
sation scheme using messages between neighbouring
processes. You are free to use a different scheme
(semaphores, locks, ...) if you wish.

Caution: The implementations shown above are for
demonstration purposes only, they have not been thor-
oughly tested, let alone formally verified. That’s your
job!

6 Marieke Huisman et al.: VerifyThis 2017

4.4 Comments on Solutions

– Two teams/tools tackled the multi-processor problem
(VerCors and CIVL)

– VerCors has used their distinguished feature: veri-
fying kernel programs on GPUs. The challenge has
been reformulated as a kernel function and and veri-
fication has been attempted. The remaining unsolved
challenge was specifying the global invariant coupling
the thread states together.

– CIVL was able to use their distinguished feature:
bounded verification of concurrent programs. They
implemented the distributed algorithm as a runnable
C program using an MPI framework. The bound up
to which it was successfully verified is N = 5 (number
of nodes).

– No full deductive verification of the sequential chal-
lenge could be achieved during the challenge time
slot.

– Due to the formulation of the challenge, showing sort-
edness after termination of the sequential program
was rather simple (while(!sorted)). The challenging
question in this task was proving termination (that
the array is sorted eventually).

– Some teams independently came up with a suit-
able termination variant for the sequential problem:
the number of comparisons within the array which
are out of order (number of inversions, #{(i, j) |
i < j and a[i] > a[j]}).

5 Challenge 4: Tree Buffer

This challenge was prepared by Radu Grigore, Univer-
sity of Kent.

The task is to verify a data structure called tree
buffer. We start with a simple version, and then we will
introduce more requirements related to efficiency.

Consider the OCaml interface
typetypetype ’a buf
valvalval empty : int -> ’a buf
valvalval add : ’a -> ’a buf -> ’a buf
valvalval get : ’a buf -> ’a list

with the following implementation
typetypetype ’a buf = { h : int; xs : ’a list }

letletlet recrecrec take n xs = match n, xs withwithwith
| 0, _ | _, [] -> []
| n, x :: xs -> x :: take (n-1) xs

letletlet empty h = { h; xs = [] }
letletlet add x { h; xs } = { h; xs = x :: xs }
letletlet get { h; xs } = take h xs

When we create a tree buffer, we fix a parameter h,
and all invocations to get will return the last h elements
added in the tree buffer. Incidentally, this is a tree in the
sense that one can write code like the following:

letletlet e = empty 3;; (∗ e is a root ∗)
letletlet t1 = add 1 e;; (∗ t1 has parent e ∗)
letletlet t2 = add 2 t1;; (∗ t2 has parent t1 ∗)
letletlet t3 = add 3 t1;; (∗ t3 has parent t1 ∗)

One problem with our current implementation is that
it wastes memory. A possible solution is the following
caterpillar implementation:
typetypetype ’a buf = { h : int; xs : ’a list;

xs_len : int; ys : ’a list }
letletlet empty h = { h; xs = []; xs_len = 0; ys = [] }
letletlet add x { h; xs; xs_len; ys } =

ififif xs_len = h - 1
thenthenthen { h; xs = []; xs_len = 0; ys = x :: xs }
elseelseelse { h; xs = x :: xs; xs_len = xs_len + 1; ys }

letletlet get { h; xs; xs_len; ys } = take h (xs @ ys)

The length of xs is always less that h because, whenever
it would become h, its content is moved into ys, and the
old content of ys is thrown away.

5.1 Verification Tasks

1. Verify that the naive and the caterpillar implementa-
tions are functionally equivalent. You are encouraged
to translate
(a) the naive implementation into your favorite spec-

ification language, and
(b) the caterpillar implementation into your favorite

imperative language. Your caterpillar implemen-
tation must use only constant time for add, ignor-
ing time possibly spent in the garbage collector.

2. In this task we want to move to a real-time setting.
This means, in particular, that we can no longer ig-
nore the time spent in the garbage collector. But, we
still want
(a) a constant time add operation, and
(b) memory use that is within a constant factor of

the caterpillar’s live-heap size.

The idea is to add reference counters to the caterpillar. In
addition, we need to control the rate at which objects are
deleted by the reference counting scheme. We control the
rate by holding some references in the queue to_delete.
// g++−std=c++14

###includeincludeinclude <memory>
###includeincludeinclude <queue>

structstructstruct List { virtualvirtualvirtual ~List() {} };
typedeftypedeftypedef std::shared_ptr<List> PL;

structstructstruct Nil : List {};
structstructstruct Cons : List {
intintint head; PL tail;
Cons(intintint head, PL tail) : head(head), tail(tail) {}
virtualvirtualvirtual ~Cons();
};

std::queue<PL> to_delete;

// IMPORTANT: delay the deletion ,
// so that time per operation is constant

Marieke Huisman et al.: VerifyThis 2017 7

Cons::~Cons() { to_delete.push(tail); }

structstructstruct Buf {
intintint h; PL xs; intintint xs_len; PL ys;
Buf(intintint h, PL xs, intintint xs_len, PL ys) : h(h), xs(xs),

xs_len(xs_len), ys(ys) {}
virtualvirtualvirtual ~Buf(); // manual GC is triggered
PL get(); // unimplemented here ; would use xs and ys

privateprivateprivate:
};

voidvoidvoid process_queue() {
ififif (!to_delete.empty()) to_delete.pop();
ififif (!to_delete.empty()) to_delete.pop();

}

// NOTE: This is called automatically by C++.
// In the C implementation, there is a deactivate
// function that plays the role of this destructor .
Buf::~Buf() { process_queue(); }

Buf empty(intintint h) {
returnreturnreturn Buf(h, PL(newnewnew Nil()), 0, PL(newnewnew Nil()));

}
Buf add(intintint x, Buf t) {

process_queue();
ififif (t.xs_len + 1 == t.h) {

returnreturnreturn
Buf(t.h, PL(newnewnew Nil()), 0, PL(newnewnew Cons(x, t.xs)));

} elseelseelse {
returnreturnreturn

Buf(t.h, PL(newnewnew Cons(x, t.xs)), 1+t.xs_len, t.ys);
}

}

intintint main() {
Buf e = empty(3);
Buf t1 = add(1, e);
Buf t2 = add(2, t1);
Buf t3 = add(3, t1);

}

Verification Tasks.
1. Show that the real-time implementation is function-

ally equivalent to the naive implementation.
2. Prove bounds on the resources used, such as time

spent in add, total memory used, and so on.
Warning: The C++ implementation above has

not been tested, so it probably has bugs. A C im-
plementation, which has been tested but has the
drawback of verbosity, can be found on GitHub at
https://github.com/rgrig/treebuffers/blob/
master/treebuffer.c. There is also a (inefficient
but pretty) javascript implementation in the presen-
tation on Tree Buffers from the 27th International
Conference on Computer Aided Verification (CAV)
2015 at http://rgrig.appspot.com/static/talks/
treebuffers/index.html.

You are free to verify whichever implementation you
choose: the important part is to satisfy the same, real-
time performance characteristics. That does mean that
you cannot use a language with garbage collection, un-
less you can control the garbage collector, and you can
verify resource bounds for the system including your pro-
gram and the garbage collector.

5.2 Comments on Solutions

– This challenge was less accessible than the previous
ones. To some participants, the purpose of the data
structure became clear only towards the end of the
session.

– CIVL was able to use a distinguished feature of the
tool: functional equivalence verification. The caterpi-
lar verification was verified to have the same result as
a straight forward C implementation. The bounded
verification was scaled up to N = 8.

– KIV was able to use a distinguished feature of the
tool: Abstract State Machine (ASM) refinement.
With the tool, two formal refinement steps were con-
ducted, connecting first the abstract naive functional
algorithm to the functional caterpillar implementa-
tion, which in turn was refined into an imperative
implementation operating on linked lists on an ex-
plicit heap. The provided solution was very close to
the challenge statement (apart from the last imple-
mentation not being in C).

– The KeY teams used the functional implemenation
as declarative specification of a Java implementation
of the caterpillar version.

– One Why3 team used an explicit predicate "valid"
that encodes observational equivalence of a naive and
an optimsed data structure. It is used in pre- and
postconditions to check the coupling invariant.

6 Results and Closing Remarks

6.1 Awarded Prizes

Prizes were awarded in the following categories:

– Best team: Jean-Christophe Filliâtre (Why3)
– Best student team—awarded to two teams:

– Stefan Bodenmüller, Jörg Pfähler (KIV)
– Mário Pereira, Raphael Rieu-Helft (Why3)

– Distinguished user-assistance tool feature: Stephen
Siegel (CIVL) for CIVL Compare which compares
two programs for functional equivalence

– Best challenge submission: Radu Grigore, (Chal-
lenge 4: Tree Buffer)

The best student teams each received a 300 Euro
cash prize donated by our sponsors while the best over-
all team received 100 Euros. Smaller prizes were also
awarded for the best problem submission and the distin-
guished user-assistance tool feature.

6.2 Final Remarks

Some final observations from the post-mortem sessions
follow below. With-respect-to the challenge solutions:

https://github.com/rgrig/treebuffers/blob/master/treebuffer.c
https://github.com/rgrig/treebuffers/blob/master/treebuffer.c
http://rgrig.appspot.com/static/talks/treebuffers/index.html
http://rgrig.appspot.com/static/talks/treebuffers/index.html

8 Marieke Huisman et al.: VerifyThis 2017

– How you phrase your specification can often make a
big difference in how easy it is to verify your pro-
grams. Example: sortedness predicate can be formu-
lated in many ways. One best team award winner
recommended not to use the inductive formulation
∀k.(inRange(k) → A[k] ≤ A[k + 1]), as that is diffi-
cult for the first-order provers.

– Built-in support for mathematical structures is es-
sential. Most tools provide support for sequences in
one way or the other and that was really useful. This
competition showed that many tools don’t support
bags, which would have been useful when describing
the contents of a sequence or array.

– Proof debugging features are essential to quickly
identify why something cannot be verified (interme-
diate assertions, the ‘by’ and ‘so’ reasoning, as used
by Why3 teams). The more systematic this kind of
support is, the easier it is to finish verifications.

– Ghost variables are really useful in practical program
verification. From a theoretical point of view, they
are not necessary, but they allow the implicit steps in
the program to be captured in an explicit way [8]. For
example in solutions to challenge 4, they were useful
for reasoning about the list of deleted elements in
the treeBuffer, instead of reasoning explicitly about
prefixes.

– Libraries are often the bottleneck, or the winner.
Having collections of properties that are already
there, that do not have to be proven over and over
again, can really speed up the verification process.

– Tool output is often not trimmed to be judged out-
side the tool. Annotation-based autoactive verifica-
tion systems have a few advantages in that respect.

With-respect-to the competition organisation we
note that:

– The competition challenges would benefit from more
general phrasing to accommodate different verifica-
tion technologies. Or, stated differently, alternative
verification tasks w.r.t. different technologies could
be stated explicitly.

– When judging we discussed preparing an online form
for the participants to fill in upon challenge com-
pletion to “pre-grade” the solution based on self-
evaluation. Such a form, however, should only be
available at the end of each challenge, so that it does
not guide the teams’ work.

– Having different teams using the same tool on site
was considered a benefit by some participants. Thus,
different specification and verification styles for the
same tool can be compared.

A new edition of the VerifyThis competition will be
held as part of ETAPS 2018.

Acknowledgments

The organisers would like to thank Radu Grigore, Rus-
tan Leino and Alex Summers for their feedback and sup-
port prior to and during the competition. The organ-
isers also thank the competition’s sponsors: The Auto-
mated Reasoning Group, Amazon Web Services and Ga-
lois, Inc. Their contributions helped us to support par-
ticipants with travel grants, and to finance the various
prizes.

References

1. W. Ahrendt, B. Beckert, R. Bubel, R. Hähnle, P. H.
Schmitt, and M. Ulbrich, editors. Deductive Software
Verification - The KeY Book: From Theory to Practice,
volume 10001 of Lecture Notes in Computer Science.
Springer, Dec. 2016.

2. J. Bentley. Programming pearls: Algorithm design tech-
niques. Commun. ACM, 27(9):865–873, Sept. 1984.

3. S. Blom and M. Huisman. The VerCors tool for verifi-
cation of concurrent programs. In C. B. Jones, P. Pih-
lajasaari, and J. Sun, editors, 19th International Sym-
posium on Formal Methods (FM 2014), volume 8442 of
LNCS, pages 127–131. Springer, 2014.

4. T. Bormer, M. Brockschmidt, D. Distefano, G. Ernst,
J.-C. Filliâtre, R. Grigore, M. Huisman, V. Klebanov,
C. Marché, R. Monahan, W. Mostowski, N. Polikarpova,
C. Scheben, G. Schellhorn, B. Tofan, J. Tschannen, and
M. Ulbrich. The COST IC0701 verification competition
2011. In B. Beckert, F. Damiani, and D. Gurov, edi-
tors, International Conference on Formal Verification of
Object-Oriented Systems (FoVeOOS 2011), volume 7421
of LNCS, pages 3–21. Springer, 2011.

5. G. Ernst, J. Pfähler, G. Schellhorn, D. Haneberg, and
W. Reif. KIV: overview and VerifyThis competition.
International Journal on Software Tools for Technology
Transfer, pages 1–18, 2014.

6. J. Filliâtre and A. Paskevich. Why3 - where programs
meet provers. In M. Felleisen and P. Gardner, edi-
tors, 22nd European Symposium on Programming (ESOP
2013), volume 7792 of LNCS, pages 125–128. Springer,
2013.

7. J.-C. Filliâtre, A. Paskevich, and A. Stump. The 2nd Ver-
ified Software Competition: Experience report. In V. Kle-
banov, A. Biere, B. Beckert, and G. Sutcliffe, editors,
1st International Workshop on Comparative Empirical
Evaluation of Reasoning Systems (COMPARE 2012),
volume 873 of CEUR Workshop Proceedings. CEUR-
WS.org, 2012.

8. M. Hofmann and M. Pavlova. Elimination of Ghost Vari-
ables in Program Logics. Springer Berlin Heidelberg,
2008.

9. M. Huisman, V. Klebanov, and R. Monahan. On the
organisation of program verification competitions. In
V. Klebanov, B. Beckert, A. Biere, and G. Sutcliffe, ed-
itors, 1st International Workshop on Comparative Em-
pirical Evaluation of Reasoning Systems (COMPARE
2012), volume 873 of CEUR Workshop Proceedings.
CEUR-WS.org, 2012.

Marieke Huisman et al.: VerifyThis 2017 9

10. M. Huisman, V. Klebanov, and R. Monahan. VerifyThis
2012. Int. J. Softw. Tools Technol. Transf., 17(6):647–
657, Nov. 2015.

11. M. Huisman, V. Klebanov, R. Monahan, and
M. Tautschnig. VerifyThis 2015. A program veri-
fication competition. Int. J. Softw. Tools Technol.
Transf., 2016.

12. M. Huisman, R. Monahan, P. Müller, and E. Poll. Veri-
fyThis 2016. A program verification competition. CTIT
Technical Report Series, 2016.

13. F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and
B. Yakobowski. Frama-C: A software analysis perspec-
tive. Formal Asp. Comput., 27(3):573–609, 2015.

14. V. Klebanov, P. Müller, N. Shankar, G. T. Leav-
ens, V. Wüstholz, E. Alkassar, R. Arthan, D. Bro-
nish, R. Chapman, E. Cohen, M. Hillebrand, B. Jacobs,
K. R. M. Leino, R. Monahan, F. Piessens, N. Polikar-
pova, T. Ridge, J. Smans, S. Tobies, T. Tuerk, M. Ul-
brich, and B. Weiß. The 1st Verified Software Competi-
tion: Experience report. In M. Butler and W. Schulte,
editors, 17th International Symposium on Formal Meth-
ods (FM 2011), volume 6664 of LNCS, pages 154–168.
Springer, 2011.

15. K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In E. M. Clarke and A. Voronkov,
editors, 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR
2010), volume 6355 of LNCS, pages 348–370. Springer,
2010.

16. S. F. Siegel, M. B. Dwyer, G. Gopalakrishnan, Z. Luo,
Z. Rakamaric, R. Thakur, M. Zheng, and T. K. Zirkel.
CIVL: The concurrency intermediate verification lan-
guage. Technical Report UD-CIS-2014/001, Department
of Computer and Information Sciences, University of
Delaware, 2014.

	2017,10Titelblatt
	sttt-summary
	Introduction
	Challenge 1: Pair Insertion Sort
	Challenge 2: Maximum-sum subarray
	Challenge 3: Odd-even Transposition Sort
	Challenge 4: Tree Buffer
	Results and Closing Remarks

