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Abstract

We consider four-dimensional chiral gauge theories defined over a spacetime manifold with topology 
R

3 × S1 and periodic boundary conditions over the compact dimension. The effective gauge-field action is 
calculated for Abelian U(1) gauge fields Aμ(x) which depend on all four spacetime coordinates (includ-
ing the coordinate x4 ∈ S1 of the compact dimension) and have vanishing components A4(x) (implying 
trivial holonomies in the 4-direction). Our calculation shows that the effective gauge-field action contains a 
local Chern–Simons-like term which violates Lorentz and CPT invariance. This result is established pertur-
batively with a generalized Pauli–Villars regularization and nonperturbatively with a lattice regularization 
based on Ginsparg–Wilson fermions.
© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It has been shown [1] that chiral gauge theories over a manifold with an appropriate nontrivial 
topology necessarily have an anomalous violation of Lorentz and CPT invariance. Two direct 
follow-up papers on this CPT anomaly have appeared in Refs. [2,3] and a review has been pre-
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sented in Ref. [4] which also contains a brief discussion of the well-known CPT theorem and 
ways how this theorem can be circumvented.

The existence of the CPT anomaly for four-dimensional gauge chiral theories over the space-
time manifold M = R

3 × S1 was established in Refs. [1,3] for a special class of background 
gauge fields, namely gauge-field configurations which are independent of the compact coordi-
nate x4 ∈ S1 and have a vanishing component A4. The question arises how the anomaly manifests 
itself for more general gauge-field configurations which have a nontrivial dependence on the 
compact x4 coordinate.

It will be shown, in the present article, that the anomaly manifests itself by a local Chern–
Simons-like term in the effective gauge-field action and this term is known to violate Lorentz 
and CPT invariance [5–7]. Our result will be established with two regularization methods, an 
extended version of the generalized Pauli–Villars regularization [8] for a perturbative calculation 
and the lattice regularization based on Ginsparg–Wilson fermions [9–13] for a nonperturbative 
calculation.

The outline of this article is as follows. In Sec. 2, we describe the theoretical setup of the 
problem and establish our notation. As said, the calculation will be done both perturbatively and 
nonperturbatively, with appropriate regularization methods.

In Sec. 3, we establish Lorentz and CPT violation with a perturbative approach. In Sec. 3.1, we 
start from the effective gauge-field action for a left-handed chiral fermion. This effective action 
is then perturbatively expanded and rendered finite with an extended version of the generalized 
Pauli–Villars regularization. In Sec. 3.2, we perform, for an Abelian U(1) gauge group, the 
one-loop calculation of the effective gauge-field action to quadratic order and obtain a local 
Chern–Simons-like term. In Sec. 3.3, we show explicitly that the calculated Chern–Simons-like 
term violates Lorentz and CPT invariance in four spacetime dimensions.

In Sec. 4, we establish the existence of Lorentz and CPT violation with a nonperturbative 
approach. In Sec. 4.1, we recall the lattice setup and introduce some further notation. In Sec. 4.2, 
we review chiral U(1) gauge theory on the lattice. The fermion action on a regular hypercubic 
lattice is written down and the integration measure is defined. The action of the discrete transfor-
mations on the link variable is also given. In Sec. 4.3, we discuss the effective gauge-field action 
on the lattice and its behavior under a CPT transformation. In Sec. 4.4, we show that the effective 
action is not invariant under CPT transformation, considering both relevant cases (an odd or even 
integer N ≡ L/a, with L the length of the x4 circle and a the lattice spacing). In Sec. 4.5, we 
calculate the expression for the CPT-anomaly in the continuum limit (a → 0).

In Sec. 5, we highlight some important points of our calculations. In Sec. 6, finally, we offer 
some concluding remarks.

The present article is, by necessity, rather technical. A first impression can be obtained from 
Secs. 2, 3.3, and 6.

2. Setup of the problem

The chiral gauge theory to be considered is defined over the following four-dimensional space-
time manifold:

M =R
3 × S1 , (2.1a)

with noncompact coordinates

x1, x2, x3 ∈R , (2.1b)
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and compact coordinate

x4 ∈ [0,L] . (2.1c)

Initially, the spacetime metric is taken to be the Euclidean flat metric,

gμν(x) = [diag(1, 1, 1, 1)]μν . (2.2)

At the end of the calculation, we shall make the Wick rotation from Euclidean metric signature 
to Lorentzian metric signature, with x1 or x2 or x3 (but not x4) taken to correspond to the time 
coordinate t .

We are considering chiral gauge theories that are free of gauge anomalies. Specifically, we 
take the chiral gauge theory with the following non-Abelian gauge group and representation of 
left-handed fermions:

G = SO(10) , (2.3a)

RL = 3 × [16] , (2.3b)

which contains the SU(3) × SU(2) × U(1) Standard Model with 3 families of fermions (and 
three singlet left-handed antineutrinos).

Most of our calculations are, however, performed for a chiral U(1) gauge theory consisting of 
a single gauge boson A and 48 left-handed fermions with U(1) charges qf , for f = 1, . . . , 48. 
Specifically, the Abelian gauge group and the left-handed fermion representation (i.e., the set of 
left-handed charges qf in units of e, the absolute value of the electron charge) are given by:

G = U(1) , (2.4a)

RL = 3 ×
[

6 ×
(

1

3

)
+ 3 ×

(
−4

3

)
+ 3 ×

(
2

3

)

+ 2 × (−1) + 1 × (2) + 1 × (0)

]
. (2.4b)

This particular chiral U(1) gauge theory can be embedded in the SU(2) × U(1) electroweak 
theory of the Standard Model with U(1) hypercharge Y ≡ 2 Q − 2 T3 (the electron has charge 
Q = −e and the positron has Q = +e). The further embedding in the “safe” SO(10) group with 
left-handed representation (2.3b) explains why the perturbative gauge anomalies cancel out in 
the chiral U(1) gauge theory considered,

48∑
f =1

(qf )3 = 0 , (2.5)

for the charges qf as given by (2.4b). For later use, we also give another sum:

48∑
f =1

(qf )2 = F e2 , (2.6a)

F = 3 ×
[

40

3

]
= 40 . (2.6b)

Other chiral U(1) gauge theories give, in general, a different value for the numerical factor F .
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The gauge and fermion fields are assumed to be periodic in the x4 coordinate,

Aμ(�x, x4 + L) = Aμ(�x, x4) , (2.7a)

ψ(�x, x4 + L) = ψ(�x, x4) , (2.7b)

ψ(�x, x4 + L) = ψ(�x, x4) , (2.7c)

with

�x ≡ (x1, x2, x3) . (2.8)

Another assumption about the gauge fields is as follows:

Ai(x) = Ai(�x, x4) , for i = 1, 2, 3 , (2.9a)

A4(x) = 0 . (2.9b)

Such gauge fields can be obtained by a gauge transformation if the original gauge fields with 
A4 �= 0 have trivial holonomies,

h4(�x) ≡ exp

⎡⎣ L∫
0

dx4 A4(�x, x4)

⎤⎦= 1 . (2.10)

This Abelian holonomy h4(�x) is a gauge-invariant quantity (see the last paragraph of Sec. 3.2).
The background gauge fields Ai are considered to have local support in R3. Specifically, take 

a ball B3 ∈ R
3 with a large fixed radius R. The gauge fields Ai(x), for i = 1, 2, 3, are assumed 

to vanish on the boundary of the ball and outside of it,

Ai(�x, x4) = 0 , for |�x|2 ≡ (x1)2 + (x2)2 + (x3)2 ≥ R2 . (2.11)

In general, Latin spacetime indices i, j, k, l, etc. run over the coordinate labels 1, 2, 3, and Greek 
spacetime indices μ, ν, ρ, etc. over the labels 1, 2, 3, 4. Repeated coordinate (and internal) in-
dices are summed over. Throughout, natural units are used with h̄ = c = 1.

The problem, now, is to investigate, for the setup considered, the invariance of the effective 
gauge-field action �[A] under Lorentz and CPT transformations. In Secs. 3 and 4, the effective 
action �[A] is calculated by integrating out the fermions using, respectively, a perturbative and a 
nonperturbative method. The CPT anomaly is then established if we can show that this effective 
action changes under a CPT transformation of the background gauge field, �[ACPT] �= �[A].

The actual calculation of Sec. 3 is performed first for a single left-handed fermion ψ with 
unit U(1) charge, q = e. Only the final result (3.48) is extended to all chiral fermions of the 
theory (2.4). The same procedure is followed in Sec. 4.

3. Perturbative approach

3.1. Theory and regularization

Let us start with the action of a left-handed chiral fermion,

S
[
ψ, ψ, A

]=
∫
M

d4x L
[
ψL,ψL,A

]
=
∫

d4x i ψL γ μ(∂μ + eAμ) ψL , (3.1)
M
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where Aμ is the anti-Hermitian U(1) gauge field, e the dimensionless electric charge of the 
fermion ψ , and ψL ≡ 1

2 (1 +γ5) ψ the left-handed projection of the four-component Dirac spinor 
ψ . The γ μ are the 4 × 4 Dirac matrices and ψ ≡ ψ† γ 4. The Hermitian chirality matrix γ5 has 
{γ5, γ μ} = 0 and (γ5)

2 = 1 4.
In this article, we set out to calculate the effective action of the gauge fields for the setup as 

described in Sec. 2. In the vacuum, there are virtual fermion–antifermion pairs which interact 
with the classical background gauge field. The effective action �[A] is a functional which takes 
these interactions into account. Incidentally, the functional �[A] considered here is not the com-
plete effective action as there are also contributions from the photonic sector such as the classical 
Maxwell term, but our focus is solely on the contributions of the virtual fermions.

In Feynman’s Euclidean path integral formalism, the functional �[A] is obtained by integrat-
ing out the fermionic degrees of freedom,

exp(−�[A]) =
∫

DψL(x)DψL(x) exp

⎛⎝−
∫
M

d4x L
[
ψL,ψL,A

]⎞⎠ , (3.2)

which, loosely speaking, equals the root of the determinant of the operator γ μ(∂μ + eAμ). This 
operator has, however, an unbounded spectrum, so that the determinant is infinite. The expression 
(3.2) thus needs to be regularized.

Finding a manifestly gauge-invariant regularization is not straightforward. One possibility is 
given by the generalized Pauli–Villars regularization as discussed by Frolov and Slavnov [8], 
which involves an infinite set of bosonic and fermionic Pauli–Villars-type fields �s , for s ∈
Z/{0}, with standard (Lorentz-invariant) Dirac-type mass terms ms �s �s . We will, however, 
extend this regularization, in order to be sensitive to anomalous Lorentz violation. In fact, we 
will introduce another infinite set of bosonic and fermionic Pauli–Villars-type fields ψr , for r ∈
Z/{0}, with Lorentz-violating mass terms Mr ψ

†
r ψr .

Specifically, the regularized Lagrange density for the chiral U(1) gauge theory including both 
infinite sets of Pauli–Villars-type fields reads as follows:

Lfull reg. th. = Lchiral +LLI-gen-PV +LLV-gen-PV

= i ψ0(x) γ μ
(
∂μ + eAμ

)
ψ0(x)

+
∑
s �=0

[
i �s(x) γ μ

(
∂μ + eAμ

)
�s(x) − ms �s(x)�s(x)

]
+
∑
r �=0

[
i ψr(x) γ μ

(
∂μ + eAμ

)
ψr(x) − Mr ψ†

r (x)ψr(x)
]

, (3.3)

with regulator masses,

ms = m |s| , (3.4a)

Mr = M r2 , (3.4b)

M 	 m. (3.4c)

The ultraheavy regulator masses Mr violate Lorentz invariance, but can have effects on the low-
energy physics in the case of an anomaly. The reason for demanding a quadratic r-dependence 
in (3.4b), compared to the linear s-dependence in (3.4a), will be explained in Sec. 3.2. Strictly 
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speaking, we do not need the inequality (3.4c) for the present calculation, but it has been in-
cluded, in order to make sure that possible Lorentz-violating quantum effects are subdominant 
compared to Lorentz-invariant quantum effects.

The regulator fields �s in (3.3) are unrestricted four-component Dirac fields, whereas the 
regulator fields ψr , including the original massless field ψ0 ≡ ψL, are chiral four-component 
Dirac fields, obeying the condition

ψr ≡ 1

2
(1 + γ5)ψr , for r ∈ Z . (3.5)

The fields have, moreover, the following Grassmann parities:

ε(�s) = (−1)s+1 , for s ∈ Z/{0} , (3.6a)

ε(ψr) = (−1)r+1 , for r ∈ Z . (3.6b)

For the purpose of searching for anomalous Lorentz violation, we only need to consider the chiral 
fields ψr , as will be explained in Sec. 3.2.

We now take the Weyl representation of the 4 × 4 Dirac gamma matrices,

γ μ =
(

0 σ̃ μ

σ̃ μ† 0

)
, γ5 ≡ γ 1γ 2γ 3γ 4 =

(
1 2 0

0 −1 2

)
, (3.7)

with ̃σμ ≡ (σm, i 1 2) in terms of the 2 × 2 Pauli spin matrices σm and the 2 × 2 identity matrix 
1 2. As said before, ψ0 with M0 = 0 in (3.3) corresponds to the original four-component chiral 
field ψL and, for the Weyl representation (3.7) with diagonal γ5, can be written as

ψ0 =
(

ξ0
0

)
, (3.8)

where ξ0 is an anticommuting two-component spinor field. The r �= 0 fields ψr in (3.3) constitute 
an infinite set of Pauli–Villars fields with Grassmann parities (3.6b) and regulator masses (3.4b). 
Each chiral regulator field ψr (r �= 0) can also be written as

ψr =
(

ξr

0

)
, (3.9)

with a two-component field ξr having the Grassmann parity (i.e., loop-factor in Feynman dia-
grams)

ε(ξr ) = (−1)r+1 , for r ∈ Z . (3.10)

With the above definitions, the truncated regularized theory is given by

Ltrunc. reg. th. = Lchiral +LLV-gen-PV

=
∞∑

r=−∞

[
i ξ†

r (x) σμ
(
∂μ + eAμ

)
ξr(x) − Mr ξ†

r (x) ξr (x)
]
, (3.11)

with σμ ≡ (iσm, 1 2) and Mr from (3.4b).
In order to prepare for the calculation of the next subsection, we define

γ̃ 1 ≡ i σ 1 =
(

0 i

i 0

)
, γ̃ 2 ≡ i σ 2 =

(
0 1

−1 0

)
, (3.12a)

γ̃ 3 ≡ i σ 3 =
(

i 0
0 −i

)
, γ̃ 4 ≡ 1 2 =

(
1 0
0 1

)
, (3.12b)
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and rewrite the standard Weyl action from (3.11) as

I0 =
∫

d4x Lchiral =
∫

d4x i ξ
†
0 (x) γ̃ μ(∂μ + eAμ) ξ0 , (3.13)

where ξ0 is the two-component spinor field. A similar action holds for the chiral regulator fields 
ξr (r �= 0),

Ireg =
∫

d4x LLV-gen-PV

=
∫

d4x
∑
r �=0

[
i ξ†

r (x) γ̃ μ(∂μ + eAμ) ξr − Mr ξ†
r ξr

]
. (3.14)

The 2 × 2 matrices γ̃ μ in (3.13) and (3.14) obey the following relation:

γ̃ i γ̃ j = g̃ij 1 − εijk γ̃k , (3.15)

with the three-dimensional Euclidean flat metric g̃ij = [diag(−1, −1, −1)]ij and the totally an-
tisymmetric Levi–Civita symbol εijk , normalized by ε123 = 1. From (3.15), we have that the 
anti-commutator of the γ̃ i matrices has precisely the same structure as the one of Dirac matrices 
in R3, namely, {γ̃ i , γ̃ j } = 2 g̃ij 1. This is, in fact, the reason for using these matrices γ̃ μ, as will 
become clear in Sec. 3.2. Note, however, that the matrices γ̃ μ do not satisfy the properties of 
Dirac gamma matrices in four-dimensional spacetime, because γ̃ 4 does not anti-commute with 
the other γ̃ i matrices. In our calculations, we shall only use relation (3.15).

For standard Minkowski spacetime without compactification of the x4 coordinate, we expand 
the gauge field Aμ in Fourier modes as follows:

Aμ(x) =
∫

d4p

(2π)4 eip·x Aμ(p), (3.16)

and write down the vacuum-polarization kernel

πij (p) =
∫

d4k

(2π)4 tr
[
γ̃ i S(k) γ̃ j S(k + p)

]
. (3.17)

In our case, where the x4 coordinate is compactified, we make the following replacements:

∫
d4x →

L∫
0

dx4
∫
R3

d3x (3.18a)

and ∫
d4p

(2π)4 → 1

L

∞∑
n=−∞

∫
d3p

(2π)3 . (3.18b)

The Fourier expansion of the gauge field Aμ is now given by

Aμ(x) = 1

L

∞∑
n=−∞

∫
d3p

(2π)3 e2πinx4/L ei �p·�x Aμ(pn), (3.19)

with the following definitions:
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pn ≡ ( �p, ρn) , (3.20a)

ρn ≡ 2πn/L, (3.20b)

p2
n ≡ | �p|2 + (ρn)

2 . (3.20c)

3.2. Calculation

The expression for the perturbatively-expanded effective gauge-field action in three spacetime 
dimensions with one compactified coordinate has been given in Ref. [14]; see, in particular, 
Eqs. (22)–(26) of that article. For the action (3.13) with the replacement (3.18a), we have four 
spacetime dimensions with one compactified coordinate. Adopting a similar procedure as the 
one of Ref. [14], we write down the physically relevant factor in the perturbatively-expanded 
effective gauge-field action,

�[A] = −i
e2

2

1

L

∞∑
n=−∞

∫
d3p

(2π)3 Ai(−pn)πij (pn)Aj (pn) + O(e3), (3.21)

with the unregularized vacuum-polarization kernel

πij (pn)

∣∣∣(unreg.) = 1

L

∞∑
m=−∞

∫
d3k

(2π)3 tr
[
γ̃ i S(km) γ̃ j S(km + pn)

]
. (3.22)

The propagator S(km) is defined as:

S(km) ≡ 1

γ̃ iki + γ̃ 4k4m

= γ̃ i ki − γ̃ 4 k4m

(γ̃ iki)2 − k4
2
m

= − γ̃ i ki − γ̃ 4 k4m

(ki)2 + k4
2
m

. (3.23)

The ultraviolet divergences of the anomalous terms in (3.22) are regularized by the infinite set of 
Pauli–Villars-type fields ξr(x), for r �= 0, from (3.14). The infrared divergences are regularized 
by imposing antiperiodic boundary conditions for the ξr(x) fields (r ∈ Z) on the surface of a 
large ball B3, where the gauge fields Ai(x) vanish according to (2.11).

For a particular Fourier mode n of the background gauge field, the regularized two-point 
function is proportional to the following expression:

πij (pn)

∣∣∣(reg.)

=
∞∑

r=−∞
(−1)r

1

L

∞∑
m=−∞

∫
d3k

(2π)3

tr
[
γ̃ i (/k + Mr)γ̃

j (/k + /p + Mr)
]

(
k2
m + M2

r

)(
(km + pn)2 + M2

r

) , (3.24)

with the short-hand notation /p ≡ γ̃ i pi − γ̃ 4 p4n for the matrices (3.12), which are Dirac 
gamma matrices in three spacetime dimensions but not in four. The factor (−1)r in (3.24)
comes from the Grassmann parity (3.10) of the fields and Mr is given by (3.4b). From now 
on, we drop the superscript ‘reg.’ as the regularization is manifest from having the sum 
over r .

Introducing the Feynman parameter x and changing the momentum variable kμ to lμ, with 
li ≡ ki + x pi and l4 ≡ k4, we rewrite the expression for the vacuum-polarization kernel (3.24) as
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πij (pn) =
∞∑

r=−∞
(−1)r

1∫
0

dx
1

L

∞∑
m=−∞

∫
d3l

(2π)3

× tr
[
γ̃ i
(
γ̃ k lk − x γ̃ k pk − ωm + Mr

)
γ̃ j

·
(
γ̃ k lk + (1 − x) γ̃ k pk − ωm − ρn + Mr

)](
|�l|2 + �

)−2
, (3.25)

with pn, ρn, and ρ2
n from (3.20) and the further definitions

lm ≡ (�l, ωm) , (3.26a)

ωm ≡ 2πm/L, (3.26b)

� ≡ (ωm + xρn)
2 + x(1 − x)p2

n + M2
r . (3.26c)

The odd powers of the li in the numerator of (3.25) vanish by symmetry reasons. The term in 
(3.25) with an odd number of pn momenta in the numerator of the integrand is written as

T̃ ij (pn) =
∞∑

r=−∞
(−1)r

1

L

∞∑
m=−∞

(−ωm + Mr)

∫
d3l

(2π)3

1∫
0

dx

× tr[γ̃ i γ̃ j γ̃ k]pk − tr[γ̃ i γ̃ j γ̃ 4] ρn

(|�l|2 + �)2
. (3.27)

Part of the above equation still gives rise to a finite L-independent term with an even number of 
pn momenta,

1

L

∞∑
m=−∞

(−ωm)

∫
d3l

(2π)3

1∫
0

dx

∞∑
r=−∞

(−1)r
tr[γ̃ i γ̃ j γ̃ k]pk − tr[γ̃ i γ̃ j γ̃ 4] ρn

(|�l|2 + �)2

∝
(

tr[γ̃ i γ̃ j γ̃ k]ρn pk − tr[γ̃ i γ̃ j γ̃ 4]ρnρn

)
, (3.28)

and we are left with the following term with an odd number of pn momenta:

T ij (pn) = 1

L

∞∑
m=−∞

∫
d3l

(2π)3

1∫
0

dx

∞∑
r=−∞

(−1)r Mr

tr[γ̃ i γ̃ j γ̃ k]pk − tr[γ̃ i γ̃ j ] ρn

(|�l|2 + �)2
,

(3.29)

where we have taken care to move the r sum inwards as it must be performed first.
The ρn term in the numerator of the integrand of (3.29) ultimately gives rise to a term ∫ L

0 dx4
∫

d3x δij Ai (∂4Aj) in the effective gauge-field action, which is a total-derivative term 
and vanishes due to the periodic boundary conditions (2.7). So, we are left with the following 
potentially CPT-violating term:

T
ij

anom(pn) = 1

L

∞∑
m=−∞

∫
d3l

(2π)3

1∫
dx

∞∑
r=−∞

(−1)r Mr

tr[γ̃ i γ̃ j γ̃ k]pk

(|�l|2 + �)2
. (3.30)
0
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At this moment, we can mention that the other regulator fields �s from (3.3) do not contribute 
to this potentially anomalous term with an odd number of pn momenta, because the trace of an 
odd number of Dirac matrices γ μ vanishes. This is not the case for the trace of γ̃ i γ̃ j γ̃ k , as 
follows from relation (3.15).

We divide the sum over m in (3.30) into two parts, namely, the sum over nonzero m and the 
single term m = 0 [this term is distinguished by having an infrared-divergent momentum integral 
for the r = 0 contribution, which is regularized by antiperiodic boundary conditions as discussed 
a few lines below (3.23)]. The expression then reads

T
ij
anom(pn) = T

ij

0 (pn) + T
ij
rest(pn) , (3.31)

with

T
ij

0 (pn) = 1

L

∫
d3l

(2π)3

1∫
0

dx

∞∑
r=−∞

(−1)r Mr

tr[γ̃ i γ̃ j γ̃ k]pk

(|�l|2 + �0)2
, (3.32a)

�0 ≡ xρ2
n + x(1 − x)p2

n + M2
r , (3.32b)

and

T
ij
rest(pn) = 2

L

∞∑
m=1

∫
d3l

(2π)3

1∫
0

dx

∞∑
r=−∞

(−1)r Mr

tr[γ̃ i γ̃ j γ̃ k]pk

(|�l|2 + �)2
. (3.33)

First, consider the m = 0 contribution (3.32). In order to compute the sum over r , we use the 
following representation (defining l ≡ |�l|):

S0 =
∞∑

r=−∞

(−1)rMr(
|�l|2 + (xρn)2 + x(1 − x)p2

n + M2
r

)2

= − 1

2 l

∂

∂l

∞∑
r=−∞

(−1)rMr(
l2 + (xρn)2 + x(1 − x)p2

n + M2
r

)
= − 1

2 l

M

M2

∂

∂l

∞∑
r=−∞

(−1)r r2(
τ 2 + r4

) , (3.34a)

with

τ 2 ≡
[
l2 + (xρn)

2 + x (1 − x)p2
n

]
/M2 ≡ l2/M2 + κ , (3.34b)

and the following result (for τ �= 0):

∞∑
r=−∞

(−1)r r2

τ 2 + r4 = f (τ) , (3.35a)

f (τ) ≡ π

2
√

τ

(
exp(iπ/4)

sinh
[

exp(−iπ/4)π
√

τ
] + c.c.

)
. (3.35b)

Remark that the first sum in (3.34a) contains an extra factor Mr in the numerator compared to 
Eq. (11) of Ref. [8] and this is the reason for demanding the r2 behavior in the regulator masses 
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Mr in (3.4b). We then find the same type of 1/sinh behavior in (3.35b) as in Eq. (14) of Ref. [8], 
which, in both cases, provides an exponential cutoff of the momentum integrals.

With result (3.35), expression (3.32) reduces to

T
ij

0 (pn) = − 1

4π2L

M

M2

1∫
0

dx

∞∫
0

ldl
∂

∂l

[
f (τ)

]
tr[γ̃ i γ̃ j γ̃ k]pk

= − 1

4π2L

M

|M|
1∫

0

dx

∞∫
0

d η η
∂

∂η

[
f (τ)

]
tr[γ̃ i γ̃ j γ̃ k]pk , (3.36)

in terms of the dimensionless variable η ≡ l/|M|. In the following, we assume positive M (the 
related ambiguity in the anomalous term, here by a factor M/|M|, is discussed further in the first 
paragraph of Sec. 6).

In the regularization procedure, we consider the regulator mass scale M to be much larger 
than a typical momentum component of the gauge field, M2 	 p2

n, so that we can take κ ≡[
(xρn)

2 + x (1 − x)p2
n

]
/M2 → 0+ in the rest of the calculation and the x integral in (3.36)

becomes trivial. Using

tr[γ̃ i γ̃ j γ̃ k] = 2 εijk , (3.37)

we then rewrite (3.36) for positive M as

T
ij

0 (pn) = − 1

2π2L

⎛⎝ ∞∫
0

d η η
∂

∂η

[
f (η)

]⎞⎠ εijk pk . (3.38)

The η integral in (3.38) gives a factor π/2 and the final result for the m = 0 sector reads

T
ij

0 (pn) = − 1

4πL
εijk pk . (3.39)

Now turn to the m �= 0 sum (3.33),

T
ij

rest(pn) = 1

L

∑
m �=0

∫
d3η

(2π)3

1∫
0

dx

∞∑
r=−∞

(−1)r r2 tr[γ̃ i γ̃ j γ̃ k]pk(
|�η|2 + �M

)2 , (3.40a)

with

|�η|2 ≡ |�l|2/M2 , (3.40b)

and

�M ≡
[
(ωm + xρn)

2 + x(1 − x)p2
n

]
/M2 + r4 ∼ ω2

m/M2 + r4 , (3.40c)

for p2
n/M

2 → 0. With large M , we can treat ωm/M ≡ l4 as a continuous variable and rewrite 
(3.40a) as follows:

T
ij

rest(pn) = M

2π

∫
dl4

∫
d3η

(2π)3

1∫
dx

∞∑
r=−∞

(−1)r r2 tr[γ̃ i γ̃ j γ̃ k]pk

(λ2 + r4)2
0
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= M

∫
d4λ

(2π)4

1∫
0

dx

∞∑
r=−∞

(−1)r r2 tr[γ̃ i γ̃ j γ̃ k]pk

(λ2 + r4)2 , (3.41)

in terms of the dimensionless variable λ2 ≡ |�η|2 + (l4)
2.

In order to compute the sum over r in (3.41), we again use the following representation:

∞∑
r=−∞

(−1)r r2

(λ2 + r4)2 = − 1

2λ

∂

∂λ

∞∑
r=−∞

(−1)r r2

(λ2 + r4)
, (3.42)

where the last sum has the same form as (3.35a) and equals f (λ) in terms of the function f
defined by (3.35b). As mentioned above, the x integral in expression (3.41) is trivial and the 
expression reduces to

T
ij
rest(pn) = − M

16π2

⎛⎝ ∞∫
0

dλ λ2 ∂

∂λ

[
f (λ)

]⎞⎠ tr[γ̃ i γ̃ j γ̃ k]pk

= − M

8π2

⎛⎝ ∞∫
0

dλ λ2 ∂

∂λ

[
f (λ)

]⎞⎠ εijk pk , (3.43)

where the last step uses (3.37). The λ integral in (3.43) gives the following factor:

ξ = 14 ζ(3)/π2 ≈ 1.70511 , (3.44)

and the final expression reads

T
ij
rest(pn) = −ξ M

1

8π2 εijk pk . (3.45)

Combining (3.39) and (3.45) gives the end result for the anomalous vacuum-polarization ker-
nel (3.31),

T
ij
anom(pn) = − 1

4πL
εijk pk − ξ M

1

8π2 εijk pk , (3.46)

with the constant ξ given by (3.44) and the regulator mass scale M entering the Pauli–Villars-
type masses (3.4b). The first term in (3.46) is L-dependent and finite, whereas the second term 
is L-independent and divergent as the regulator mass scale M is taken to infinity. As regards the 
M-dependence of this second term, note that, for four-dimensional quantum electrodynamics, 
the vacuum polarization from the standard Pauli–Villars regularization also has an M-dependent 
contribution; cf. Eq. (A.6) in Ref. [8]. A suitable renormalization procedure is to subtract the 
same result at a reference value Lref and to take Lref → ∞ corresponding to Minkowski space-
time (cf. Sec. 4.2 of Ref. [15]). This renormalization procedure then eliminates the second term 
in (3.46) and we are left with the first term only,

T
ij
anom(pn)

∣∣∣(renorm.) = − 1

4πL
εijk pk . (3.47)

Now replace the single left-handed fermion ψL by the 48 left-handed fermions of the chiral 
U(1) gauge theory (2.4), with the same regularization for each of these 48 fermions. Using 
(3.47), we then obtain the following local expression for the effective gauge-field action (3.21)
to order e2:
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T (renorm.)
anom = i F e2 1

8πL

L∫
0

dx4
∫
R3

d3x εijk Ai(x) ∂j Ak(x) , (3.48)

with an overall numerical factor F from (2.6b) due to the contributions of all chiral fermions of 
the theory (2.4). The result (3.48) gets a further factor i for spacetime metrics with Lorentzian 
signature and a spatial coordinate x4 ∈ S1 (see also the discussion of the last paragraph in Sec. 6). 
The local effective-action term (3.48) is the main result of the perturbative calculation.

For gauge fields Aμ(x) of local support, the term (3.48) is invariant under local Abelian gauge 
transformations,

Aμ(x) → Aμ(x) + i ∂μ ζ(x) , (3.49)

with arbitrary real gauge parameters ζ(x) that are x4-periodic, ζ(�x, 0) = ζ(�x, L). As mentioned 
in Sec. 2, the Abelian holonomy (2.10) is gauge-invariant under these periodic transformations. 
The perturbative calculation of this subsection can, in principle, be extended to the non-Abelian 
theory (2.3) and we expect a further cubic term in addition to the quadratic term of (3.48), in 
order to maintain invariance under “small” gauge transformations (see Sec. 4 in Ref. [1] for 
further discussion).

3.3. Lorentz and CPT violation

For arbitrary gauge fields Aμ(x) with trivial holonomies (2.10) in the chiral U(1) gauge theory 
(2.4) with a Lorentzian metric signature, our result (3.48) gives the following term in the effective 
gauge-field action at the one-loop level:

�anom[A] = −2π F e2 �CS-like[A] , (3.50a)

�CS-like[A] ≡ 1

L

L∫
0

dx4
∫
R3

d3x ωCS[A(�x, x4)] , (3.50b)

in terms of the Chern–Simons density [16]

ωCS[A(�x, x4)] ≡ 1

16π2 εijk Ai(�x, x4) ∂j Ak(�x, x4) . (3.51)

The numerical factor F in (3.50a) is given by (2.6b).
A topological Chern–Simons term �CS = ∫ ωCS is defined only for an odd number of space-

time dimensions [16]. The action term (3.50) holds, however, in four spacetime dimensions. 
Hence, the qualification “Chern–Simons-like” (abbreviated as “CS-like”) used in (3.50b) and 
elsewhere. The action term (3.50) is nontopological in the sense that it has a nontrivial depen-
dence on the spacetime metric or vierbein (see Sec. 6.6 of Ref. [4] for further discussion and 
references).

Observe that the integrand of (3.50b) is proportional to ε μνρ4 Aμ(x) ∂ν Aρ(x), which has the 
spacetime index ‘4’ singled-out. This term is, therefore, Lorentz noninvariant. Next, recall that 
the CPT transformation of an anti-Hermitian gauge field is given by [1]

Aμ(x) → Aμ(−x) . (3.52)

The term (3.50b) changes sign under a CPT transformation (3.52). The Lorentz-violating term 
(3.50b) is, therefore, also CPT-odd [the Lorentz-invariant Maxwell term (∂μAν −∂νAμ) (∂μAν −
∂νAμ) is CPT-even].



348 K.J.B. Ghosh, F.R. Klinkhamer / Nuclear Physics B 926 (2018) 335–369
4. Nonperturbative approach

4.1. Lattice setup

In our calculation, we consider a chiral gauge theory which is defined over a four-dimensional 
spacetime manifold M = R

3 × S1, with noncompact coordinates x1, x2, x3 ∈ R and com-
pact coordinate x4 ∈ [0, L]. Initially, the metric is taken to be the Euclidean flat metric gμν =
[diag(1, 1, 1, 1)]μν . The vierbeins (tetrads) are trivial and given by

ea
μ(x) = δa

μ , (4.1)

with the Lorentz index a = 1, 2, 3, 4 and the Einstein index μ = 1, 2, 3, 4.
We consider, in particular, chiral gauge theories that are free of gauge anomalies. As men-

tioned in Sec. 2, we can take the SO(10) chiral gauge theory (2.3). But, in order to be sure of 
having a well-defined lattice gauge theory [13], we restrict ourselves to the Abelian U(1) the-
ory (2.4). The actual calculation in the rest of this section is performed for a single left-handed 
fermion ψL with unit U(1) charge, q = e. Only the final result (4.111) is extended to all chiral 
fermions of the theory (2.4).

To regularize the ultraviolet divergences of this gauge theory, a rectangular hypercubic lattice 
with lattice spacing a is introduced,

(x1, x2, x3, x4) ≡ (�x, x4) = (�na,n4 a), (4.2a)

with integers

n1, n2, n3 ∈ [0, N ′] , n4 ∈ [0, N ] . (4.2b)

The fermion fields and link variables are periodic with respect to the x4 coordinate,

ψ(x1, x2, x3, L) = ψ(x1, x2, x3, 0) , (4.3a)

ψ(x1, x2, x3, L) = ψ(x1, x2, x3, 0) , (4.3b)

Uμ(x1, x2, x3, L) = Uμ(x1, x2, x3, 0) , (4.3c)

with L ≡ N a. For the other coordinates, the link variables are again periodic but the fermion 
fields are taken to be antiperiodic, for example,

ψ(L′, x2, x3, x4) = −ψ(0, x2, x3, x4) , (4.4a)

ψ(L′, x2, x3, x4) = −ψ(0, x2, x3, x4) , (4.4b)

Uμ(L′, x2, x3, x4) = Uμ(0, x2, x3, x4) , (4.4c)

and similarly for the other coordinates x2 and x3.
The assumptions (2.9) for the continuum gauge fields translate into the following conditions 

on the link variables of the lattice:

Ui(x) = Ui(x
1, x2, x3, x4) , for i = 1, 2, 3 , (4.5a)

U4(x) = 1 . (4.5b)

As mentioned before, such link variables can be obtained by a gauge transformation only if there 
are trivial holonomies,

H4(x
1, x2, x3) ≡

∏
U4(x

1, x2, x3, x4) = 1 , (4.6)

links
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where the product runs over all U4 links in the 4-direction at a fixed value of �x (for non-Abelian 
gauge groups, these non-commuting matrices U4 are ordered along the path).

The anti-Hermitian Abelian gauge field Aμ of the continuum and the U(1) link variable Uμ

of the lattice are related as follows [17]:

Uμ(x) = exp

⎡⎣e

x+a μ̂∫
x

dy Aμ(y)

⎤⎦≈ exp
[
e a Aμ(x + a μ̂/2)

]
, (4.7)

where the integration variable y in the second expression runs over a straight line between the 
spacetime points x and x + a μ̂, with unit vector μ̂ in the μ direction. In (4.7), e is the dimen-
sionless electric charge of the fermion.

Recall from Sec. 2 that Latin spacetime indices i, j, k, l, etc. run over the coordinate labels 
1, 2, 3, and Greek spacetime indices μ, ν, ρ, etc. over the labels 1, 2, 3, 4, and that we use 
natural units with h̄ = c = 1.

4.2. Chiral fermions on the lattice

4.2.1. Ginsparg–Wilson relation
In order to avoid the fermion-doubling problem, Wilson introduced an operator, now known 

as the Wilson–Dirac operator [17], which includes a term of second order in the difference oper-
ators,

DW = 1

2

4∑
μ=1

[
γμ(∇μ + ∇∗

μ) + s a∇μ∇∗
μ

]
, (4.8)

with 4 × 4 Dirac matrices γμ and a parameter s to be described below. Here, the gauge-covariant 
derivatives of the continuum are replaced by gauge-covariant forward and backward difference 
operators on the lattice,

∇μψ(x) ≡ 1

a

(
R[Uμ(x)]ψ(x + a μ̂) − ψ(x)

)
, (4.9a)

∇∗
μψ(x) ≡ 1

a

(
ψ(x) − R[Uμ(x − a μ̂)]−1ψ(x − a μ̂)

)
, (4.9b)

where R is a unitary representation of the gauge group.
The Wilson parameter s in (4.8) takes the values s = ±1. For definiteness, we choose

s = −1. (4.10)

The s term in (4.8) breaks, however, the chiral invariance of the theory. In order to restore the 
chiral symmetry, Ginsparg and Wilson suggested to implement the following relation [9]:

D γ5 + γ5 D = a D γ5 D , (4.11)

which is known as the Ginsparg–Wilson relation.
Sixteen years after Ginsparg and Wilson proposed relation (4.11), Neuberger explicitly con-

structed a corresponding operator [10,11],

D[U ] = 1(
1 − V [U ]

)
, (4.12)
a
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in terms of an appropriate unitary operator V . Apart from satisfying the Ginsparg–Wilson rela-
tion (4.11), the operator V should also be γ5-Hermitian,

V † = γ5 V γ5 . (4.13)

In terms of the Wilson–Dirac operator DW from (4.8), this operator V reads

V = X (X†X)−1/2 =
∞∫

−∞

dt

π

(
t2 + X†X

)−1
, (4.14a)

X ≡ 1 − a DW . (4.14b)

4.2.2. Lattice fermion action
The lattice fermion action with a Ginsparg–Wilson operator D[U ] defined by (4.12) and 

(4.14),

SF [ψ,ψ,U ] = a4
∑
x

ψ(x)D[U ]ψ(x)] , (4.15)

is invariant under the following infinitesimal transformations [12]:

ψ(x) → ψ(x) + δψ(x) , (4.16a)

ψ(x) → ψ(x) + δψ(x) , (4.16b)

with

δψ(x) = iε γ5V ψ(x) ≡ iε γ̂5 ψ(x) , (4.17a)

δψ(x) = iε ψ(x)γ5 , (4.17b)

where ε is an infinitesimal parameter. The operator γ̂5, as defined in (4.17a), is a Hermitian 
unitary operator with eigenvalues ±1.

A chiral gauge theory for left-handed fermions on the lattice can be constructed by imposing 
the following constraints [13]:

ψ(x) = P̂− ψ(x) , (4.18a)

ψ(x) = ψ(x)P+ , (4.18b)

with the projection operators

P̂± ≡ 1

2
(1 ± γ̂5) , (4.19a)

P± ≡ 1

2
(1 ± γ5) , (4.19b)

where γ̂5 has been defined in (4.17a).

4.2.3. Discrete transformations
On the hypercubic spacetime lattice, there are certain symmetry transformations. Specifically, 

these lattice symmetries are

(i) the translations by an integer multiple of the lattice spacing a in the direction of one of the 
four coordinate axes,



K.J.B. Ghosh, F.R. Klinkhamer / Nuclear Physics B 926 (2018) 335–369 351
(ii) the rotations by an integer multiple of the angle π/2 in hyperplanes spanned by two axes,
(iii) the parity transformation,
(iv) the time-reversal transformation,
(v) the charge-conjugation transformation.

We now give the parity, time-reversal, and charge-conjugation transformations for the link 
variable, considering the x1 coordinate to be the time coordinate for the Lorentzian metric signa-
ture and using the notation x = (x1, x2, x3, x4) ≡ (x1, ̃x). The parity-transformed link variable 
is

Uμ
P (x1, x̃) =

{
U†

μ(x1, −x̃ − a μ̂) , for μ = 2, 3, 4 ,

Uμ(x1, −x̃) , for μ = 1 ,
(4.20a)

the time-reflected link variable is

Uμ
T (x1, x̃) =

{
U∗

μ(−x1, x̃) , for μ = 2, 3, 4 ,

U t
μ(−x1 − a, x̃) , for μ = 1 ,

(4.20b)

and the charge-conjugated link variable is

Uμ
C(x1, x̃) = U∗

μ(x1, x̃). (4.20c)

Hence, the combined CPT transformation on a link variable is given by

Uμ
θ(x) = U†

μ(−x − a μ̂). (4.21)

4.2.4. Integration measure
The fermionic integration measure is the product of all integration measures at the sites of the 

hypercubic lattice,

Dψ(x) =
∏
x,α

dψα(x) , Dψ(x) =
∏
x,α

dψα(x) , (4.22)

with a multi-index α containing the spinor, gauge, and flavor indices.
The fermionic fields can be expanded as follows:

ψ(x) =
∑
j

vj (x) cj , ψ(x) =
∑

k

c̄k v̄k(x) , (4.23)

where the cj and c̄k are Grassmann-valued coefficients and the vj (x) and v̄k(x) are two or-
thonormal bases of complex-valued spinorial functions. The integration measure is then given 
by

Dψ(x) =
∏
j

dcj , Dψ(x) =
∏
k

dc̄k . (4.24)

But this integration measure is not unique. Let U be a unitary operator which diagonalizes the 
operator γ̂5,

U† γ̂5 U = γ5 , (4.25)

where γ5 on the right-hand side is diagonal in the Weyl representation of the Dirac gamma 
matrices. Then, the basis spinors vj are
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vj (x) = U χj (x) , (4.26)

where the χj form a complete canonical spinor basis and satisfy the chirality constraint

P̂− χj (x) = χj (x) . (4.27)

Now, U ′ = UQ is also a diagonalization operator if Q has the following form:

Q =
(

Q1 0

0 Q2

)
, Q

†
1 Q1 = 1, Q

†
2 Q2 = 1 , (4.28)

where Q1 and Q2 are 2 × 2 block matrices in spinor space. If the basis vectors change as

v′
j (x) =

∑
i

vi(x)Qij , (4.29a)

with

Qij ≡ a4
∑

χ
†
i (x)Qχj (x) , (4.29b)

then the measure (4.24) changes by a factor detQ, which is a phase factor since Q is unitary.

4.3. Effective action and CPT transformation

4.3.1. Effective action
As in Sec. 3, we calculate the effective gauge-field action by integrating out the chiral 

fermions, while maintaining gauge invariance. In lattice gauge theory, the Euclidean path in-
tegral is given by:

exp(−�[U ]) = 1

Z

∫ ∏
x

Dψ(x)
∏
x

Dψ(x) exp
(−SF [ψ,ψ,U ]) , (4.30)

where SF is defined by (4.15). The normalization constant Z ensures that �[1] = 0 for the 
constant-link-variable configuration Uμ(x) = 1.

We Fourier expand the chiral fermionic fields as follows:

ψ(x) = 1

L

∑
n

ψn(x
1, x2, x3) e2πinx4/L , (4.31a)

ψ(x) = 1

L

∑
n

ψn(x
1, x2, x3) e−2πinx4/L , (4.31b)

where the integer n takes the values

−(N − 1)/2 ≤ n ≤ (N − 1)/2 , for odd N ≥ 1 , (4.32a)

and

−(N/2) + 1 ≤ n ≤ N/2 , for even N ≥ 2 , (4.32b)

with N = L/a the number of links in the compact 4-direction. The momentum component in the 
4-direction is given by

p4 = 2πn4/L. (4.33)
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Using the Fourier expansion (4.31) of the fermionic field ψ(x), we expand the operator X(x), 
defined by (4.14b) in terms of DW from (4.8), in the following way:

X(x)ψ(x) = X
1

L

∑
n

ψn(x
1, x2, x3) e2πinx4/L

= 1

L

∑
n

e2πinx4/L X(n)(x)ψn(x
1, x2, x3) , (4.34)

with

X(n) ≡ cos(2πn/N) − aDW − iγ4 sin(2πn/N) , (4.35)

and

DW ≡ 1

2

3∑
i=1

[
γi(∇i + ∇∗

i ) + sa∇i∇∗
i

]
. (4.36)

This operator DW still contains the standard 4 × 4 Dirac matrices γi .
For the gauge-field configurations (4.5), the operator V , defined by (4.14a), acts on the 

fermionic field in the following way:

V ψ(x) = V
1

L

∑
n

ψn(x
1, x2, x3) e2πinx4/L

= 1

L

∑
n

e2πinx4/L

∞∫
−∞

dt

π
X(n)

(
t2 + X(n)†

X(n)
)−1

ψn(x
1, x2, x3)

≡ 1

L

∑
n

e2πinx4/L V (n)(x)ψn(x
1, x2, x3). (4.37)

We now write the fermionic action SF in terms of the Fourier modes from (4.31),

SF [ψ,ψ,U ] = a4
∑
x

ψ(x)D[U(x)]ψ(x),

= 1

L2

∑
m,n

a4
∑
x

ψm(x1, x2, x3) e−2πimx4/L D[U(x)]ψn(x
1, x2, x3) e2πinx4/L,

= 1

L2

∑
m,n

a4
∑
x

ψm(x1, x2, x3) e2πi(n−m)x4/L D(n)[U(x)]ψn(x
1, x2, x3) , (4.38)

with the modes of the Ginsparg–Wilson operator D(n) defined by

D(n) ≡ 1

a

(
1 − V (n)

)
, (4.39)

where V (n) follows from (4.35) and (4.37). In the last expression of (4.38), the quantity e2πinx4/L

is a complex number which commutes with D(n)[U(x)], so that we can rewrite the above equa-
tion as follows:

SF [ψ,ψ,U ] = 1

L2

∑
n,m

a4
∑
x

×
(
ψm(x1, x2, x3) e−2πimx4/L

)
D(n)[U(x)]

(
ψn(x

1, x2, x3) e2πinx4/L
)

. (4.40)
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For each value of m and n, we then redefine the fermionic fields as follows:

ψm(x1, x2, x3) e−2πimx4/L ≡ φ̄′
m(x) , (4.41a)

ψn(x
1, x2, x3) e2πinx4/L ≡ φ′

n(x) , (4.41b)

and rewrite the lattice fermion action as

SF [φ̄′, φ′,U ] = 1

L2

∑
n,m

a4
∑
x

φ̄′
m(x)D(n)[U(x)]φ′

n(x) , (4.42)

with the operators D(n) from (4.39).
Redefining the fermionic fields again,

ψ ′
n(x) ≡ 1

L
φ′

n(x), ψ
′
m(x) ≡ 1

L
φ̄′

m(x) , (4.43)

the final action reads

SF [ψ ′
,ψ ′,U ] =

∑
m,n

a4
∑
x

ψ̄ ′
m(x)D(n)[U(x)]ψ ′

n(x)]

≡
∑
m,n

S
(m,n)
F [ψ ′

m,ψ ′
n,U ]. (4.44)

The modes ψ
′
m and ψ ′

n have to satisfy the following constraints:

ψ ′
n(x) = P̂

(n)
− ψ ′

n(x) , (4.45a)

ψ
′
m(x) = ψ

′
m(x)P+ , (4.45b)

with the usual projection operator P+ and the modes of the projection operator P̂− given by

P̂
(n)

− = 1

2

(
1 − γ5 V (n)

)
≡ 1

2

(
1 − γ̂

(n)
5

)
. (4.46)

The operators γ̂ (n)
5 are Hermitian unitary operators. For each n, the operator V (n) is unitary and 

satisfies

V (n)† = γ5V
(n)γ5. (4.47)

We now expand the Fourier modes of the fermionic fields into the following series:

ψ ′
n(x) =

∑
j

v
(n)
j (x) c

(n)
j , (4.48a)

ψ
′
m(x) =

∑
k

c̄
(m)
k v̄

(m)
k (x) . (4.48b)

Here, the c(n) are Grassmann-valued coefficients and the spinor functions v(n)
j (x) and v̄(m)

k (x)

form a complete orthogonal basis of complex-valued, (x1, x2, x3)-antiperiodic, (x4)-periodic 
spinors, with the following inner products:(

v
(m)
i , v

(n)
j

)
≡ a4

∑
x

v
(m)†
i (x) v

(n)
j (x) = δij δmn , (4.49a)(

v̄
(m)
k , v̄

(n)
l

)
≡ a4

∑
v̄

(n)
k (x) v̄

(m)†
l (x) = δkl δmn . (4.49b)
x
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The spinor functions v
(n)
j (x) and v̄

(m)
k (x) have an x4-dependence given by, respectively, 

e2πinx4/L and e−2πimx4/L, which traces back to the definitions (4.41). With these expressions, 
the effective action for the gauge field can be factorized as follows:

exp (−�[U ])

=
∏
m,n

1

Z′′
m,n

[∫ ∏
k

dc̄
(m)
k

∏
j

dc
(n)
j exp

⎛⎝−
∑
j,k

c̄
(m)
k M

(m,n)
kj c

(n)
j

⎞⎠] , (4.50)

in terms of the matrices

M
(m,n)
kj [U ] = a4

∑
x

v̄
(m)
k (x)D(n)[U(x)]v(n)

j (x;U) . (4.51)

The constants Z′′
m,n in (4.50) normalize the integrals, so that �[1] = 0.

After the Grassmann integrations in (4.50), we get the following expression for the effective 
action:

�[U ] = −
∑
m,n

ln

(
1

Z′′
m,n

detM(m,n)
kj [U ]

)
. (4.52)

4.3.2. Change of the effective action under CPT
Unlike the chiral gauge theory of the continuum, the chiral projector (4.19a) for the left-

handed fermion in lattice chiral gauge theory depends on the link variables, as follows from 
the definition γ̂5[U ] ≡ γ5 V [U ]. If the gauge field is CPT transformed, the basis of the chiral 
fermions vj changes. This transformation affects the integration measure and the effective action 
is CPT noninvariant. The details are as follows.

For the link configurations as considered in (4.5), the CPT-transformed link variables are given 
by

Uθ
4 = 1 , Uθ

i = U
†
i (x − a î ) , (4.53)

for i = 1, 2, 3 and with the unit vector ̂i in the i-direction. Let R be the coordinate-reflection 
operator of the three coordinates �x ≡ (x1, x2, x3),

R : �x → −�x , (4.54)

and let R4 be the coordinate-reflection operator in the fourth direction,

R4 : (�x, x4) → (�x, −x4). (4.55)

The operator DW , defined by (4.36), has then the following behavior under a CPT transforma-
tion:

RR4γ5 DW [Uθ ]γ5R4R=DW [U ]. (4.56)

The Ginsparg–Wilson-operator modes D(m) from (4.38) transform as follows:

RR4γ5 D(n)[Uθ ]γ5R4R= D(−n)[U ]. (4.57)

The matrices M(m,n)
k,j [U ], defined by (4.51), now change as follows under the CPT transfor-

mation U → Uθ :
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M
(m,n)
k,j [Uθ ] = a4

∑
x

v̄
(m)
k (x)D(n)[Uθ(x)]v(n)

j (x;Uθ)

= a4
∑
x

v̄
(m)
k (x)RR4γ5D

(−n)[U(x)]γ5R4Rv
(n)
j (x;Uθ)

=
∑
l,i

(Q̄(−m)
θ )kl

(
a4
∑
x

v̄
(−m)
l (x)D(−n)[U(x)]v(−n)

i (x;U)

)
(Q(−n)

θ )ij

=
∑
l,i

(Q̄(−m)
θ )kl M

(−m,−n)
li [U ] (Q(−n)

θ )ij . (4.58)

Here, the unitary matrices

(Q(−n)
θ )ij = a4

∑
x

v
(−n)
j

†
(�x;U)γ5R4Rv

(n)
j (x;Uθ) , (4.59a)

(Q̄(−m)
θ )kl = a4

∑
x

v̄
(m)
k (x)RR4γ5 v̄

(−m)
l (x) , (4.59b)

are obtained by introducing the projection operator P+ and making use of the fact that

γ5 D(n) = D(n) γ̂
(n)

5 . (4.60)

With the completeness of the bases v(n)
j and v̄(m)

k , the summation kernels of the projection oper-

ators P̂ (n)
− and P+ are

P̂
(n)

− (x, y) =
∑

i

v
(n)
i (x;U)v

(n)
i

†
(y;U) (4.61a)

and

P+
1

a4 δxy =
∑

l

v̄
(m)†
l (x) v̄

(m)
l (y). (4.61b)

The transformation (4.58) can be absorbed by a redefinition of the fermionic variables in the 
multiple integral (4.50), but the integration measure picks up a Jacobian factor. Under a CPT 
transformation, the effective gauge-field action changes to

�[Uθ ] = �[U ] −
∑
n,m′

ln det

(∑
l

(
Q(−n)

θ [U ]
)

kl

(
Q̄(−m′)

θ

)
lm

)
. (4.62)

The determinants of the transformation matrices Q(−n)
θ depend on the link variable Ui(x), which 

opens up the possibility that the effective action is CPT noninvariant.

4.4. CPT anomaly

In this subsection, we discuss the change of the effective gauge-field action under a CPT 
transformation. But, in order to calculate the explicit expression for the CPT-violating term, we 
need to know the explicit form of the bases v(n) and v̄(m).
j j
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4.4.1. Basis spinors
The basis spinors for the antifermions are given by

v̄
(m)
j (x) = (ξ̄ (m)

k (x),0
)
, (4.63)

where ξ̄ (m)
k (x) form an orthonormal basis of two-spinors in four spacetime dimensions with the 

explicit x4-dependence e−2πimx4/L.
The basis vectors v(n)

j (x; U) are more difficult to obtain. We have to find unitary operators 

U (n) with the property

U (n)† γ̂
(n)
5 U (n) = γ5, (4.64)

for

γ̂
(n)
5 ≡ H(n)

(
H(n)2

)−1/2
. (4.65)

Here, the Hermitian operators H(n) are given by

H(n) ≡ γ5

(
�
n −aDW − iγ4 n̊

)
=
⎛⎝ �

n + 1
2

∑3
i=1 wi[U ] n̊ − 1

2

∑3
i=1 σi ti[U ]

n̊ + 1
2

∑3
i=1 σi ti[U ] −(

�
n + 1

2

∑3
i=1 wi[U ])

⎞⎠ , (4.66a)

with

n̊ ≡ sin(2πn/N),
�
n≡ cos(2πn/N) (4.66b)

ti[U ] ≡ a (∇i + ∇∗
i ), wi[U ] ≡ a2 ∇i∇∗

i , (4.66c)

The four-component basis spinors are then constructed as

v
(n)
j (x) = U (n)[U ]χ(n)

j (x), (4.67a)

with

χj (x) =
(

0

ξ
(n)
j (x)

)
, (4.67b)

where ξ (n)
j (x) form an orthonormal basis of two-spinors in four spacetime dimensions with the 

explicit x4-dependence e2πinx4/L.
For the case of an odd number N of links in the x4 direction (assuming odd N ≥ 3), we divide 

the domain of calculation into three subsets: n < 0, n > 0, and n = 0. A particular property of 
γ̂

(n)
5 ,

γ̂
(n)

5 �̃4 = −�̃4 γ̂
(−n)

5 , (4.68)

with the definition

�̃4 ≡ iγ4γ5 , (4.69)

suggests to impose the following condition:

U (−n)[U ] = �̃4 U (n)[U ] �̃4 , (4.70)

where the link variable U on both sides of this last equation refers to the same configuration.
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4.4.2. Fixing the phases
We now obtain the required diagonalization operators for (4.64), first for nonzero n and then 

for n = 0.
In the n �= 0 sector, the diagonalization operator U (n) is of the form

U (n) = 1

2

(
1 + W(n) 1 − W(n)

1 − W(n) 1 + W(n)

)
1

2

(
1 + Y (n) i(1 − Y (n)†)

i(1 − Y (n)) 1 + Y (n)†

)

·
(

Q
(n)
1 0

0 Q
(−n)
1

)
, (4.71)

with the unitary operators

W(n) ≡
(

�
n −a D3D

W

) [(
�
n −a D3D

W

)† (�
n −a D3D

W

)]−1/2

, (4.72a)

Y (n) ≡
[(

�
n −a D3D

W

)†
W(n) + in̊

] [(
�
n −a D3D

W

)† (�
n −a D3D

W

)
+ n̊2

]−1/2

, (4.72b)

and

D3D
W ≡ 1

2

3∑
i=1

(
σi(∇i + ∇∗

i ) + sa∇∗
i ∇i

)
. (4.73)

One possible choice for Q(n)
1 is

Q
(n)
1 [U ] =

{
1 , for n > 0 ,

W(n)[U ]† , for n < 0 .
(4.74)

A change of n to −n gives

W(−n) = W(n), Y (−n) = Y (n)† . (4.75)

In the n = 0 sector, the diagonalization operator U (n) is of the form

U (0) = 1

2

(
1 + W(0)†

1 − W(0)

−1 + W(0)†
1 + W(0)

)
, (4.76)

with W(0) defined by (4.72a) for n = 0. As discussed in App. B of Ref. [3], other possible choices 
for U (0) are characterized by an integer k(0) ∈ Z and give an additional factor (2 k(0) + 1) in the 
final result (4.111).

4.4.3. CPT anomaly for odd N ≥ 3
The diagonalization operators U (n)[U ] are given by (4.71) and (4.76) and the CPT-violating 

factor can be calculated as follows.
The operator D3D

W from (4.73) transforms under CPT as

D3D
W [Uθ ] =RR4 D3D

W [U ]† R4R. (4.77)

The operators W(n) and Y (n) transform under CPT as follows:
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W(n)[Uθ ] =RR4 W(n)†[U ] R4R , (4.78a)

Y (n)[Uθ ] =RR4 W(n)[U ]Y (n)[U ]W(n)† [U ] R4R . (4.78b)

With the help of (4.78a) and (4.78b), we calculate the changes of the diagonalization operators 
U (n) under a CPT transformation for n < 0, n > 0, and n = 0. The results are for n < 0:

RR4γ5 U (n)[Uθ ] γ5R4R = �̃4 U (n)[U ] �̃4

(
Y (n) 0

0 W(n)Y (n)†
W(n)†

)
, (4.79a)

for n > 0:

RR4γ5 U (n)[Uθ ] γ5R4R = �̃4 U (n)[U ] �̃4

(
W(n)Y (n)W(n)†

0

0 Y (n)†

)
, (4.79b)

and for n = 0:

RR4γ5 U (0)[Uθ ] γ5R4R= �̃4U (0)[U ]̃�4. (4.79c)

The changed transformation matrices are for n = 0:(
Q(0)

θ [U ]
)

ij
= a4

∑
x

χ
(0)†
i (x)U (0)[U ]†RR4γ5 U (0)[Uθ ] χ

(0)
j (x)

= a4
∑
x

χ
(0)†
i (x)U (0)[U ]†U (0)[Uθ ] R4Rγ5 χ

(0)
j (x) , (4.80a)

for n > 0:(
Q(n)

θ [U ]
)

ij

= a4
∑
x

(
0, ξ

(n)†
i (x)

)(W(n)Y (n)W(n)†
0

0 Y (n)†

)
RR4γ5

(
0

ξ
(n)
j (x)

)
, (4.80b)

and for n < 0:(
Q(n)

θ [U ]
)

ij

= a4
∑
x

(
0, ξ

(n)†
i (x)

)(Y (n) 0

0 W(n)Y (n)†
W(n)†

)
RR4γ5

(
0

ξ
(n)
j (x)

)
. (4.80c)

We shall later see that the transformation matrices for the n < 0 modes and the n > 0 modes do 
not contribute to the final expression of the anomalous term.

The changed transformation matrices Q̄(m′)
θ [U ] are the same for all values of the Fourier index 

m′: (
Q̄(m′)

θ [U ]
)

kl
=
(
ξ̄

(m′)
k (x),0

)
RR4γ5

(
ξ̄

(m′)†

l (x)

0

)
. (4.81)

The required combinations of transformation matrices give for n = 0:(
Q(0)

θ [U ]
)

kl

(
Q̄(m′)

θ [U ]
)

lm
= −a4

∑
ξ

(0)†
k (x)W(0)[U ]†ξ (0)

m (x) δm′0 , (4.82a)

x



360 K.J.B. Ghosh, F.R. Klinkhamer / Nuclear Physics B 926 (2018) 335–369
for n > 0:∑
l

(
Q(n)

θ [U ]
)

kl

(
Q̄(m′)

θ [U ]
)

lm

= −a4
∑
x

ξ
(n)†
k (x)

(
W(n)[U ]Y (n)[U ]W(n)[U ]†

)
ξ (n)
m (x) δm′n , (4.82b)

and for n < 0:∑
l

(
Q(n)

θ [U ]
)

kl

(
Q̄(m′)

θ [U ]
)

lm
= −a4

∑
x

ξ
(n)†
k (x)Y (n)[U ]†ξ (n)

m (x) δm′n . (4.82c)

For the derivation of (4.82), we have used

ξ̄
(m′)
k = ξ

(m′)†
k (x) (4.83a)

and the completeness relation of the two-spinor basis ξ (n)
k (x),∑

k

ξ
(m′)†
k (x)ξ

(n)
k (y) = a−4 1 δxy δm′n. (4.83b)

Because W(n) and Y (n) are unitary, the determinant of (4.82b) for n > 0 is the inverse of the 
determinant of (4.82c) for n < 0, where we have used the relations (4.75). This gives∏

n>0

∏
m′

det

(∑
l

(
Q(n)

θ [U ]
)

kl

(
Q̄(m′)

θ [U ]
)

lm

)

× det

(∑
l

(
Q(−n)

θ [U ]
)

kl

(
Q̄(m′)

θ [U ]
)

lm

)
= 1. (4.84)

We see from (4.84) that the anomalous terms arising from positive frequencies (n > 0) are can-
celed by the terms arising from negative frequencies (n < 0), so that only the n = 0 term survives. 
This n = 0 term is given by (4.82a), which effectively sets m′ = 0.

To summarize, the change in the effective gauge-field action under a CPT transformation is, 
for odd N ≥ 3, given by

��[U ] ≡ �[Uθ ] − �[U ] = − ln det

(
a4
∑
x

ξ
(0)†
k (x)W(0)[U ]†ξ (0)

m (x)

)
, (4.85)

with the unitary operator

W(0)[U ] =
(
1 − aD3D

W [U ]
)[(

1 − aD3D
W [U ]

)† (
1 − aD3D

W [U ]
)]−1/2

. (4.86)

4.4.4. CPT anomaly for even N ≥ 4
For even N (equal to or larger than 4), we divide the Fourier modes n into four subsets: 

−N/2 < n < 0, n = 0, 0 < n < N/2, and n = N/2. The case N = 2, for x4-independent gauge 
fields, has already been discussed in Ref. [3].

Equation (4.68) is also valid for even N , as long as n �= N/2. For n = N/2, we have

γ̂
(N/2)

�̃4 = −�̃4 γ̂
(N/2)

. (4.87)
5 5
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Hence, the results from Sec. 4.4.3 can be used for n �= N/2. But the n = N/2 diagonalization 
operator needs to be investigated separately.

For n = N/2, we have

U (N/2) = 1

2

(
1 + W(N/2)†

1 − W(N/2)

−1 + W(N/2)†
1 + W(N/2)

)
, (4.88)

where the unitary operator W(N/2)[U ] is defined as

W(N/2)[U ] ≡ −
(
1 + aD3D

W [U ]
)[(

1 + aD3D
W [U ]

)† (
1 + aD3D

W [U ]
)]−1/2

. (4.89)

The total change in effective gauge-field action under a CPT transformation is, for even N ≥ 4, 
determined by

det

(∑
l

(
Q(0)

θ [U ]
)

kl

(
Q̄(0)

θ [U ]
)

lm

)

× det

(∑
l

(
Q(N/2)

θ [U ]
)

kl

(
Q̄(N/2)

θ [U ]
)

lm

)

= det

(
a4
∑
x

ξ
(0)†
k (x)W(0)[U ]†ξ (0)

m (x)

)

× det

(
a4
∑
x

ξ
(N/2)†
k (x)W(N/2)[U ]†ξ

(N/2)
m (x)

)
, (4.90)

with the unitary operators W(0) and W(N/2) given by, respectively, (4.86) and (4.89).
The expressions (4.85) for odd N ≥ 3 and (4.90) for even N ≥ 4 give the change of the 

effective gauge-field action under a CPT transformation according to (4.62) and are the main 
results of the nonperturbative lattice calculation. In order to better understand the meaning of 
these expressions, we consider the continuum limit of them in the next subsection.

4.5. CPT anomaly in the continuum limit

As mentioned in Sec. 4.1, we first consider an Abelian U(1) gauge field coupled to a single 
unit-charge chiral fermion. The change in the effective gauge-field action under a CPT transfor-
mation for an odd number N of links in the 4-direction depends only on W(0)[U ], see (4.85). For 
an even number N of links in the 4-direction, the corresponding change is given by (4.90).

Consider an even number N of links in the 4-direction and introduce the following short-hand 
notations:

W(−)† ≡ W(0)†
, W(+)† ≡ W(N/2)†, (4.91)

with

W(±)† = ∓(1 ± aD3D
W

)† [(1 ± aD3D
W

) (
1 ± aD3D

W

)†]−1/2

= −(D3D ± 1/a
)† [(

D3D ± 1/a
) (

D3D ± 1/a
)†]−1/2 (4.92)
W W W
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for D3D
W from (4.73). The change in the effective gauge-field action is calculated from (4.90) as

��[U ] = i
(

Im{ln det(D3D
W − 1/a)} + Im{ln det(D3D

W + 1/a)}
)

(4.93a)

≡ i (Im{ln det(D − m+)} + Im{ln det(D − m−)}) , (4.93b)

where, in (4.93b), we have introduced further short-hand notations,

D ≡ D3D
W , m+ ≡ 1/a , m− ≡ −(1/a) . (4.94)

The first operator in (4.93a) is a Wilson–Dirac operator with positive mass 1/a and the sec-
ond operator is a Wilson–Dirac operator with negative mass −1/a. Because of the antiperiodic 
boundary conditions in the x1, x2, x3 directions, the masses for these operators are effectively 
increased by a contribution of order a/(L′)2. The values of the positive and negative effective 
masses are now

m
(eff)
+ = +1/a + c+ a/(L′)2 , (4.95a)

m
(eff)
− = −1/a + c− a/(L′)2 , (4.95b)

with positive constants c±.
The vacuum-polarization kernel of the effective gauge-field action in three dimensions has 

been calculated in Ref. [18] to second order in the bare coupling constant e. We adopt a similar 
approach, in order to calculate the change in the effective action under a CPT transformation.

For this purpose, we consider an auxiliary theory of a nonchiral four-component Dirac fermion 
field �(x) with the following action over the four-dimensional lattice (4.2a):

SF = −a4
∑
x

�(x) [D − m]�(x) , (4.96)

where D is the operator from (4.94) and m an arbitrary mass. The corresponding effective gauge-
field action �[A] is given by

�[A] = ln det[D − m] . (4.97)

The fermion propagator S(x, y)αβ from (4.96) is defined by

[(−D + m)S(x, y)]αβ = 1

a4 δαβ δxy . (4.98)

In momentum space, we have

S(x, y) = 1

L

∑
n

π/a∫
−π/a

d3p

2π3 eip(�x−�y) e2πin(x4−y4)/L Sn( �p)

= 1

L

∑
n

π/a∫
−π/a

d3p

2π3 ei �p·(�x−�y) e2πin(x4−y4)/L S(pn) , (4.99)

with, as before,

pn ≡ ( �p, ρn) , ρn ≡ 2πn/L. (4.100)

A comment on the Fourier transforms of (4.99) is in order. The momentum steps in the fourth 
direction and those in the other three directions are, respectively, of order 1/L and 1/L′, with 
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L′ 	 L. Hence, we have kept in (4.99) the summation for the momentum in the fourth direction 
but used an integral for the momenta in the three other directions.

Next, define a quantity Q(pn) in such a way that

S(pn) = Q(pn)
−1. (4.101)

This quantity Q(pn) is a function of p̂nμ and p̃nμ , which are defined as follows:

p̂nμ ≡ 2

a
sin

(
1

2
a pnμ

)
, p̃nμ ≡ 1

a
sin(a pnμ). (4.102)

We expand the Dirac operator D in powers of the coupling constant e,

D =
∞∑
k

ekDk , (4.103)

where, for k ≥ 1, we have

Dk �(x) = (ia)k

2ak!
3∑

i=1

×[Ai(x)k(s + γi)�(x + a î ) + (−1)kAi(x − a î )k(s − γi)�(x − a î )]. (4.104)

For the effective gauge-field action, there is the following expansion in powers of the fermion 
charge:

�[A] =
∞∑
k

ek �k[A]. (4.105)

With the Fourier transform of the gauge field Aμ, we write the two-point function as

�2[A] = −i
1

2

1

L

∑
n

π/a∫
−π/a

d3q

2π3 Ai(−qn) π̂ij (qn)Aj (qn) , (4.106)

where we have included the same prefactor −i/2 as in (3.21) and where the vacuum polarization 
tensor π̂ij (qn) is now given by

π̂ij (qn) = 1

2

1

L

∑
m

π/a∫
−π/a

d3p

2π3

[
1 − T0(qn)

]
× tr

{
[Q(pm + qn/2)]−1∂iQ(pm) [Q(pm − qn/2)]−1∂jQ(pm)

}
. (4.107)

The symbol [1 −T0(qn)] in the above equation stands for a Taylor subtraction at zero momentum. 
Just as for the perturbative calculation of Sec. 3.2, the anomalous term originates from the m = 0
sector of (4.107). We now focus on this m = 0 sector [denoted by the superscript ‘(0)’] and will 
mention later the contribution of the m �= 0 terms.

In the continuum limit, we can use the three-dimensional result from Ref. [18],
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π̂
(0) (cont.)
ij (qn) = lim

a→0
π̂

(0)
ij (qn)

= 1

L
A(q2

n) εijk qn
k + 1

L
B(q2

n) (q2
n δij − qni qnj ) , (4.108a)

with amplitudes A(qn
2) and B(qn

2) given by

A(qn
2) = 1

2
a0 + 1

8π

1∫
0

dt
{

1 − m [m2 + t (1 − t) qn
2]−1/2

}
, (4.108b)

B(qn
2) = 1

4π

1∫
0

dt
{

1 − m [m2 + t (1 − t) qn
2]−1/2

}
, (4.108c)

where ‘m’ is the mass defined by (4.96) and not a Fourier component (for the moment, we have 
Fourier component m = 0). Henceforth, we drop the superscript ‘(cont.)’ of (4.108a) and focus 
on the part with an odd number of momenta, containing the Levi-Civita symbol and the A(qn

2)

amplitude. With the Wilson parameter s = −1, we have the constant a0 = −1/(2π). In the large 
negative m limit for a fixed value of qn

2, the odd-momentum part of the polarization tensor 
π̂

(0)
ij (q) vanishes, whereas, in the large positive m limit for fixed qn

2, the odd-momentum part of 
the polarization tensor becomes

lim
m→∞ π̂

(0) (odd-mom)
ij (q) = 1

L

a0

2
εijk qk = − 1

4π

1

L
εijk qk . (4.109)

As mentioned above, the anomalous contribution (4.109) originates from the m = 0 Fourier 
sector of (4.107). The m �= 0 Fourier terms of (4.107) contribute a further term ∝ (1/a) εijk qk , 
which is L-independent and divergent in the continuum limit a → ∞. Just as discussed in 
Sec. 3.2, this extra term can be removed by a suitable renormalization procedure.

With the results (4.108) and (4.109) obtained from the auxiliary theory (4.96), we now return 
to the original chiral gauge theory. The first term in (4.93) has a positive mass m = 1/a and 
the second term has a negative mass m = −1/a, so that the second term does not contribute to 
the anomalous change in the effective gauge-field action. The anomalous change in the effective 
action follows solely from the first term in (4.93) and is determined by (4.109). Up till now, we 
have considered an even number N of links in the 4-direction. For an odd number N of links, the 
second term in (4.93) does not appear and the result is the same as for even N .

Changing from momentum space to position space, the first term in (4.93) gives, using 
(4.109), the following result up to order e2 in the effective gauge-field action (4.106):

e2 �
(odd-mom.)
2 [A] = 2πi e2 1

L

∑
n4

a

∫
R3

d3x ωCS[A(�x,n4 a)], (4.110)

where the Chern–Simons density ωCS has been defined in (3.51). The continuum limit has a → 0
and N → ∞, with constant product Na = L.

Next, change from a Euclidean metric signature to a Lorentzian metric signature and include 
all fermions of the chiral gauge theory (2.4), with all of these fermions treated equally on the 
lattice. The expression (4.110) then becomes

e2 �
(odd-mom.)
2 [A] = −F e2 2π

L

L∫
dx4

∫
3

d3x ωCS[A(�x, x4)] , (4.111)
0 R
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with an extra factor i for the Lorentzian metric signature and an overall numerical factor F from 
(2.6b) due to the contribution of all chiral fermions of the theory (2.4).

5. Discussion

In this section, we present six general remarks in order to clarify the calculations performed 
in Secs. 3 and 4.

First, we must explain how an apparently CPT-invariant theory has produced CPT violation. 
With an extended version of the generalized Pauli–Villars regularization for the perturbative cal-
culation, the regulator masses Mr in (3.3) are the source of the Lorentz and CPT violation (these 
Lorentz-violating terms in the regularized action appear to be necessary in order to maintain 
the gauge invariance of the second-quantized theory, as discussed in Sec. 6 of Ref. [1]). With 
the lattice regularization for the nonperturbative calculation, the crucial observation is that the 
gauge-covariant diagonalization operators (4.71) and (4.76) are not CPT invariant, as shown 
by (4.79).

Let us expand on the CPT noninvariance of the lattice calculation. For an odd number N of 
links in the 4-direction, we have explicitly shown that the changes of the nonperturbative effective 
gauge-field action under a CPT transformation for positive n are canceled by the corresponding 
changes for negative n. But the n = 0 contribution has no counterpart to cancel its change under 
a CPT transformation. Specifically, the change of the n = 0 diagonalization operator is given by

RR4γ5 U (0)[Uθ ] γ5R4R= U (0)[U ]
(

W(0)†
0

0 W(0)

)
, (5.1)

where W(0)†
acts on left-handed fermions and W(0) acts on right-handed fermions. The CPT 

transformation leads to another theory with different basis spinors [3]. This different theory can 
be transformed back to the original one by a redefinition of the spinors. But, then, the integration 
measure picks up a Jacobian factor and the effective gauge-field action �[U ] changes,

��[U ] ≡ �[Uθ ] − �[U ] = − ln det

(
a4
∑
x

ξ
(0)†
k (x)

(
W(0)[U ]

)
ξ (0)
m (x)

)
. (5.2)

For an even number N of links in the 4-direction, we can give the same argument as for an 
odd number of links. The changes in the measure for 0 < n < N/2 are again canceled by the 
corresponding changes for negative n. The remaining factors are those for n = 0 and n = N/2. 
But the additional factor for n = N/2 is a lattice artefact and vanishes in the continuum limit.

Note also that the CPT anomaly vanishes for Dirac fermions with both left- and right-handed 
components,

ln detW(0)† + ln detW(0) = 0. (5.3)

Second, let us discuss the conditions on the background gauge field. If the gauge fields depend 
upon the compactified coordinate x4, they should not oscillate too fast with respect to the x4

coordinate.
In the perturbative approach, we Fourier expand the gauge field Aμ in the following way:

Aμ(x) = 1

L

∞∑ ∫
d3p

(2π)3 e2πinx4/L ei �p·�x Aμ(pn) . (5.4)

n=−∞
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The frequency of oscillation of Aμ with respect to x4 is n/L. The discrete momentum corre-
sponding to the coordinate x4 is given by

ρn = 2πn/L. (5.5)

For the generalized Pauli–Villars regularization used, the regulator mass scale M must be very 
much larger than the momentum component ρn = 2πn/L, as discussed on the lines above (3.37). 
Hence, the condition on the gauge fields is given by

n � M L, (5.6)

where n controls the dimensionless oscillation frequency of the gauge field Aμ with respect to 
x4 and L is the range of the compactified coordinate x4.

In the nonperturbative approach, the 4-direction momentum ρn of the external gauge fields 
must be very small compared to the regulator scale 1/a, in order to be able to apply the continuum 
expressions of Sec. 4.5. There is, then, the following condition (using ρn ∼ n/L):

n

L
= n

Na
� 1

a
< m+ , (5.7)

where m+ is the effective mass (4.95a) for the Wilson–Dirac operator (this effective mass m+ is 
similar to the Pauli–Villars regulator mass scale M of the perturbative approach). As ‘n’ is the 
frequency of oscillation of Aμ with respect to x4, condition (5.7) is similar to condition (5.6) for 
the perturbative case.

Third, let us remark on the main improvements of our present calculations compared with 
the earlier calculations for x4-independent background gauge fields. Recall that the perturbative 
calculation here used a generalized Pauli–Villars regularization method with an extra infinite set 
of Pauli–Villars-type fields ψr (with regulator masses Mr = M r2) and maintains gauge invari-
ance, unlike the calculation of Ref. [1] which used the standard Pauli–Villars regularization with 
a single set of regulator fields and a single regulator mass. In the lattice calculation here, we have 
explicitly obtained the diagonalization operators U (n) and have not used an ad-hoc phase fixing, 
unlike the calculation of Ref. [3].

Fourth, let us try to understand heuristically why our new result for x4-dependent background 
gauge fields is similar to the previous result for x4-independent background gauge fields. We 
see, from the result (4.84), that the anomalous terms arising from the positive frequency (n > 0) 
are canceled by the terms arising from the negative frequency (n < 0), so that only the term 
corresponding to n = 0 contributes to the CPT violation, which also has m′ = 0 according to 
(4.82a) [recall (4.62) for the definition of the Fourier modes n and m′ entering the change of 
the effective action under CPT]. This explains why, for the case of x4-dependent background 
gauge fields, we have obtained a result similar to the one for the case of x4-independent gauge 
fields [1,3]. Indeed, compare (4.85) from the present paper, with a unitary operator depending 
on x4-dependent gauge fields and a sum over (x1, x2, x3, x4) in the determinant, to (5.35) from 
Ref. [3], with essentially the same unitary operator depending on x4-independent gauge fields 
and only a sum over (x1, x2, x3) in the determinant.

Fifth, let us continue the heuristic discussion and comment on the absence of ∂4 Ai terms in 
our result. We have calculated, in the perturbative approach, the effective gauge-field action up to 
two-point functions (second-order in the gauge field Aμ). In this approach, the CPT-anomalous 
terms are independent of the momentum in the fourth direction. See, in particular, the discussion 
above (3.30), where the ρn term corresponds to the position-space partial derivative ∂4. If we 
consider the non-Abelian gauge theory, the CPT-anomalous terms will involve three-point func-
tions (third-order in the gauge field Aμ). There is then the possibility that the CPT-anomalous 
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terms involving ∂4 will not vanish by symmetry reasons. For the continuum limit of the lattice 
calculation, we have also considered only Abelian gauge fields and have expanded only up to the 
two-point function �2[A] (second-order in the coupling constant e). For the non-Abelian case, 
we expect to have higher-order contributions (notably �3[A]), which may, in principle, give rise 
to terms involving the partial derivative ∂4 acting on the background gauge field.

Sixth, recall that finite-temperature field theory can be described by a quantum field theory 
defined over a Euclidean spacetime with a compactified coordinate [17]. This Euclidean-path-
integral formulation of finite-temperature field theory has the same manifold as our theory 
(R3 × S1), with S1 coordinate x4 ∈ [0, L]. The range of the compactified coordinate is de-
termined by L = β , where β is the inverse of the temperature T (in units with kB = 1). The 
discrete momentum components of the fermion fields (Matsubara frequencies) are given by 
p4 = (n + 1/2) 2π/β , with integers n = 0, ±1, ±2 . . . .

In several recent articles (see, e.g., Refs. [19,20] and references therein), calculations have 
been reported of a radiatively-induced Chern–Simons-like term in four-dimensional finite-
temperature field theory. This temperature-dependent induced Chern–Simons-like term violates 
the Lorentz and CPT symmetries.

But compared to our calculation there are significant differences. Most importantly, the 
fermions of the finite-temperature calculations have anti-periodic boundary conditions (com-
ing from the trace in the partition function of the finite-temperature system and having anti-
commuting fields), whereas we assume a periodic spin structure over the compact dimension. In 
our calculation, the anomalous Chern–Simons-like term results from the zero-momentum part of 
the fermions, which would be absent for anti-periodic boundary conditions.

In addition, the finite-temperature calculations have an explicit Lorentz-violating term in the 
fermion sector with a constant bμ (the induced Chern–Simons-like term is proportional to this 
constant bμ), whereas the Lorentz violation in our calculation comes from the regulator fields. 
Moreover, the fermions of the finite-temperature calculations can have a mass m, whereas the 
original chiral fermions of our calculation are strictly massless.

As a final comment, we emphasize the importance of maintaining microcausality, also for the 
finite-temperature effective theory in the T → 0 limit (cf. Refs. [19,21]).

6. Conclusion

For the appropriate setup of the physical system (Sec. 2), we have established perturbatively 
(Sec. 3) the existence of a CPT anomaly for a background gauge field Aμ which depends on the 
compactified x4 coordinate and has a vanishing component A4. We have also performed a non-
perturbative calculation with a lattice regularization (Sec. 4) and have discussed the continuum 
limit of the lattice result. The nonperturbative result (4.111) agrees with the earlier result (3.50)
obtained via the perturbative approach. (In principle, these results could have differed by an odd-
integer prefactor, because, as noted in Refs. [1,3] and Sec. 4.4.2 here, there is an ambiguity in the 
anomalous term due to the freedom in defining the regularized theory.)

The fact that the perturbative and nonperturbative results for the CPT anomaly essentially 
agree is reminiscent of the Adler–Bardeen result for the triangle anomaly [22]. In this respect, 
note that the CPT anomaly of the perturbative calculation originates in the m = 0 sector of the 
vacuum-polarization kernel (3.22) with a linearly-diverging one-loop Feynman diagram. Still, it 
needs to be verified that there arise no further terms in the nonperturbative lattice calculation.

Having a possible anomalous origin of the local Chern–Simons-like term (3.50b) in the effec-
tive gauge-field action provides additional incentive to study the phenomenology of the so-called 
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Maxwell–Chern–Simons (MCS) theory [6]. This MCS theory contains, in the photonic sector, 
the standard Maxwell term and the local Chern–Simons-like term. The MCS theory can also be 
augmented by the addition of the standard gauge-invariant kinetic term of a Dirac spinor field 
(the electron–positron field).

This MCS theory appears in two varieties: one variety is parity-violating and time-reversal-
invariant (corresponding to a timelike x4 coordinate in our calculation) and the other variety is 
parity-conserving and time-reversal-noninvariant (corresponding to a spacelike x4 coordinate in 
our calculation). Now, it is clear that our calculation for a timelike x4 coordinate would start from 
a theory with closed timelike loops and such a theory is, most likely, inconsistent [23]. It has, 
indeed, been shown that the parity-violating (and time-reversal-invariant) variety of MCS theory 
is noncausal and nonunitary [24]. The parity-conserving (and time-reversal-noninvariant) vari-
ety of MCS theory appears to be well-behaved [24] and displays some interesting nonstandard 
effects such as photon triple-splitting [25,26] and vacuum Cherenkov radiation [26,27].
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