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Abstract: Optical spectra of signals at the output of semiconductor optical amplifiers (SOA) 
provide useful insight into amplifier nonlinearities. In this work, we determine the parameters 
of an analytical SOA model with a pump-probe experiment by evaluating the measured 
spectra of the pump and probe pulses at the SOA output. The analytical lumped SOA model 
considers carrier depletion, carrier recovery, spectral hole burning, two-photon absorption, 
and we include an additional effect termed ‘two-photon induced free-carrier absorption’, that 
is responsible for creating an identifiable blue-shifted component in the spectra. We are able 
to relate the underlying physical nonlinear effects to the spectral peculiarities of the output 
pump and probe spectra, and give guidelines for the exploitation of these nonlinear effects for 
optical signal processing. In addition, with a much-simplified SOA model and by replacing 
the pump pulse with modulated data we show that the output spectrum is altered in a manner 
consistent with phase patterning effects. 
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1. Introduction
Semiconductor optical amplifiers (SOA) are key components for both, linear amplification in 
access networks, and nonlinear ultrafast all-optical signal processing such as wavelength 
conversion, or all-optical logic gating. Cross gain modulation (XGM) and cross phase 
modulation (XPM) are the techniques of choice for signals with intensity modulation; the 
recent deployment of advanced modulation formats such as quadrature phase shift keying 
(QPSK), 16-state quadrature amplitude modulation (16-QAM) and 64-QAM has motivated 
studies into using four-wave mixing (FWM) effects in SOAs to perform wavelength 
conversion [1–4]. The power penalty for employing FWM in SOAs can be well below 1 dB 
[5]. The information carrying capacity of intensity-modulated signals can be doubled by 
increasing the number of amplitude levels to four by using four-level pulse amplitude 
modulation (PAM-4), and XGM has been studied to perform wavelength conversion of PAM-
4 signals in SOAs [6]. Given the huge interest in all-optical signal processing using SOAs and 
the potential benefits arising thereof, a proper design of nonlinear SOAs requires models that 
allow to derive the slow and ultrafast gain and refractive index dynamics, where a multitude 
of nonlinear effects act on different timescales. 

There are several methods to characterize nonlinear effects in an SOA. Unfortunately, all 
of them are experimentally quite demanding: Pump-probe sampling techniques together with 
heterodyne detection allow phase and amplitude resolutions that are only limited by the full 
width at half maximum (FWHM) of the pump pulse [7,8]. Alternatively, indirect methods 
such as frequency-resolved electro-absorption gating (FREAG) [9] can be employed. The 
temporal resolution is limited by the rise time of the optical gate, and computationally 
expensive algorithms are required to resolve the gain and index dynamics. In addition, 
various other techniques, where devices are positioned in an interferometer and the amplitude 
and phase response are derived from the interferometer pattern, have been elaborated [10,11]. 

In this paper, we derive the temporal gain and phase dynamics of SOAs operated in the 
nonlinear regime from measured time-averaged optical spectra at the SOA output. We are 
including the following nonlinear effects in SOAs [12–15]: bandfilling that treats both carrier 
depletion and recovery, carrier heating, spectral hole burning, two-photon absorption, and we 
introduce an effect termed two-photon absorption induced free-carrier absorption (FCATPA) 
[16] that accounts for the large blue-shifted component especially in the probe spectrum. The
measured output spectra reflect the temporal dependence of the output pulse and continuous
wave (CW) probe that undergoes cross-gain (and cross-phase) modulation. By fitting a
closed-form model to the measured spectra, we can separate the gain and refractive index
dynamics of the SOA as well as extracting physically meaningful model parameters. We
explain how the nonlinear processes have their own unique spectral signatures; we pay
special attention to the blue-shifted components of the probe spectrum. We identify that a
distinctive feature in the blue-shifted sideband of the probe spectrum indicates the occurrence
of the FCATPA process. This blue-shifted component is recognizable by mere inspection of the
probe spectrum and is exploitable for ultrafast all-optical signal processing purposes. Only
modest measurement apparatus is required comprising of a picosecond pump laser source, a
CW probe laser, and an optical spectrum analyzer (OSA); this equipment is standard within
optics and photonics research laboratories. Neither high-speed electronic modulation, nor
detection, sampling, or all-optical probing with femtosecond pulses is required. Moreover, in
a wavelength conversion experiment with a data signal and a probe light, the probe spectrum
after the SOA provides information about phase patterning effects.
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The paper is organized as follows: In Section 2, we derive the nonlinear model of the gain 
and refractive index dynamics. These dynamics are formulated in terms of differential 
equations with boundary or initial conditions that are known to have unique solutions. In the 
following Section 3, we compare the model to the measured spectra and extract the model 
parameters, which describe the relevant nonlinear dynamic processes within the SOA. In 
Section 4, we use this knowledge to design filters for all-optical wavelength conversion 
(AOWC). Finally, in Section 5, we show that patterning effects in AOWC can be predicted 
from a signature analysis of the converted signal spectrum. 

2. Model of SOA gain and refractive index dynamics 
The SOA model in this work relates to a typical experimental condition. We evaluate the 
SOA gain and refractive index dynamics by the mutual influence of a strong 2.8 ps  wide 
input pump pulse and a weak continuous wave (CW) input probe light. Pump and probe 
wavelengths are closely neighbored within the gain bandwidth of the SOA. If the pump 
saturates the SOA gain, the local charge carrier density reduces, which in turn changes the 
temporal evolution of the pump signal, Fig. 1(a), and the probe light, Fig. 1(b), at the SOA’s 
output. Changes of the modal gain g  and of the refractive index n  with respect to the carrier 
density N are interrelated by the Kramers-Kronig relations, which can be approximated by the 
linewidth enhancement factor (Henry factor, α-factor) [12] 

 0
0 0 0Δ

2 ,Δ2 ,n Nk k
g c

k
gN
n ω

α ≈ −
∂ ∂

= − =
∂ ∂

 (1) 

where 0ω  stands for the closely neighbored pump signal (subscript S) and probe (subscript 
× ) angular frequencies 0Sω ω ω×≈ ≈ , and c  is the vacuum speed of light. The changes in 
refractive index and modal gain are denoted by Δn  and Δg , respectively. 

2.1. General description 

Before explaining the details of the model, we review the most relevant gain dynamics and 
gain-saturating processes in SOAs which occur on vastly different time scales [13]. Different 
α-factors can be attributed to these processes. For simplicity, carrier diffusion along the SOA 
is neglected. 

(i) Band filling (BF). BF relates to the total number of carriers within the energy bands of 
the SOA. The dynamics comprises carrier depletion (CD) followed by subsequent carrier 
recovery (CR). The first effect is fast, because stimulated recombination is virtually 
instantaneous on the timescale of the pulse duration. Carrier depletion increases the 
refractive index. The recovery, which implies refilling of electrons and holes back to the 
concentration of the small-signal gain, takes place on a timescale of about 100 ps , which 
is much longer than the pump pulse duration. The α-factor associated with BF is denoted 
by BFα . In some publications, the symbol Nα  is used instead. 

(ii) Spectral hole burning (SHB). The pump signal depletes the carriers virtually 
instantaneously at the pump photon energy so that a “hole” is burned into the gain 
spectrum. The empty states of the band are refilled through carrier-carrier scattering on a 
time scale of about 100 fs [14]. The change in gain due to SHB has a symmetric spectral 
profile around the center frequency Sω  of the pump and does not change the refractive 
index [15]. Because the probe frequency ω×  is close to Sω , the spectral symmetry 
applies also to the probe, and we therefore neglect the probe’s SHB contribution to the 
refractive index. Consequently, the associated SHBα  factor is assumed to be zero. 

(iii) Carrier heating (CH). If carrier equilibrium inside a band is destroyed by rapid 
processes, the instantaneous carrier occupation probability cannot be described anymore 
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with a Fermi function. However, after refilling the unoccupied states left by SHB, the 
carrier occupation probability follows again a Fermi distribution with an effective “hot” 
carrier temperature larger than the lattice temperature. The process is named carrier 
heating. By heating the carrier distribution, the gain decreases [14] and the refractive 
index increases. Subsequently, the hot carriers cool down (carrier cooling, CC), and the 
gain relaxes back on a timescale of up to a picosecond (carrier heating relaxation time) 
[14]. The gain changes lead to refractive index changes, and the associated α -factor is 
denoted by CHα . 

(iv) Two-photon absorption (TPA) and TPA-induced free-carrier absorption (FCATPA). 
Two photons with the same or with different energies can be absorbed simultaneously. 
This process is rather unlikely, and therefore large powers (large photon numbers) are 
needed for this effect to be significant. Electrons are lifted virtually instantaneously from 
the valence band (VB) to the conduction band (CB). The TPA process can occur with 
simultaneous absorption of two pump photons (degenerate TPA), or with the 
simultaneous absorption of a pump and of a probe light photon (nondegenerate TPA). 
For nondegenerate TPA, the polarizations of the optical fields play an important role, 
such that even for a weak probe light the corresponding TPA absorption coefficient can 
become twice as large as for degenerate TPA. Although a nondegenerate TPA-process 
may enhance the absorption coefficient for the probe light, the additional number of 
photoexcited electrons is too small for a significant change of the refractive index if the 
probe light is sufficiently weak. The associated increased optical loss with degenerate 
and nondegenerate TPA and the increased number of carriers lead to an instantaneous 
decrease of the refractive index [7]. The α -factor associated with the TPA process is 
thus negative and will be denoted by TPAα . Carriers generated via TPA can become 
available for free-carrier absorption (FCA), we denote this process FCATPA, and explain 
it as follows: For sufficiently strong pulses and semiconductors of suitably small 
bandgap, two-photon absorption generates an appreciable population of photoexcited 
electrons in the Γ -valley of the lowest conduction band (CB) [16]. If this Γ-valley is 
filled or if the sum energy of the two photons is large enough, lower unoccupied states in 
side-valleys [17], e.g., in the X-valley, can be filled. In this case, however, an additional 
phonon has to deliver the required difference in crystal momentum. This is also true if 
electrons in Γ -valley states are to be scattered into the same-energy X-valley states 
[17,18]. The transfer of the photoexcited electrons from the Γ -valley to the satellite X-
valley needs a finite amount of time 0τ  [18], usually termed intervalley scattering time. 
Since the bottom of the X-valley lies close [19] to the next higher CB, electrons which 
reached this side-valley can absorb one more photon (direct absorption) and make a 
momentum-conserving upwards transition to the next higher conduction band without the 
assistance of a phonon. This direct, TPA-induced free-carrier absorption (FCATPA) has 
been demonstrated [16] for the binary compounds GaAs and InP. Similar to TPA, TPA-
induced FCA increases the optical loss so that the refractive index decreases [20]. 
However, this refractive index change occurs delayed by the intervalley scattering time 

0τ . An instantaneous FCATPA-effect requires a simultaneous absorption of a photon to 
conserve both, energy and momentum, and can be neglected [16]. A pictorial explanation 
of both instantaneous and delayed FCATPA-processes is given in Appendix A. Intervalley 
scattering effect may well have other significance for SOAs. In previous work from our 
group [13] intervalley scattering would explain for the required higher-order correction 
term applied to the carrier density rate equation in [13], Eq. (13), whereby carrier leakage 
at high carrier energies was necessary to get a good fitting with experiments. 

 
The aforementioned effects can be identified when looking at the evolution of the input 

pump signal (subscript S ) and the input CW probe light (subscript × ) inside the SOA. We 
assume single-mode propagation and represent the waveguide mode by a plane wave with an 
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effective propagation constant 0 0k n  and an effective refractive index 0n . The fields depend 
on the coordinates z  (position) and t (time), and are represented by the square root of the 
respective powers. Denoting the powers by ( ), ,SP z tγ ×  and the phases by ( ), ,S z tγϕ ×  we write 
the normalized root-mean-squared (RMS) electric fields as 

 ( ) ( ) ( ) ( ), , , , 0 0, , exp j , exp j .S S S SE z t P z t z t t k n zγ γ γϕ ω ×× × ×   = −     (2) 

The SOA length is denoted by L . We attach the superscript in (out) to the functions of time 
at the SOA input (output) at position 0z =  ( z L= ). Then the input and output normalized 
RMS fields are given by 

 ( ) ( ) ( ) ( )in in in
, , , ,exp j exp jS S S SE t P t t tγ γ γϕ ω× × × × =    (3) 

and 

 ( ) ( ) ( ) ( )out out out
, , , , 0 0exp j exp j ,S S S SE t P t t t k n Lγ γ γϕ ω× × ××   = −     (4) 

respectively. We further assume that the probe light power is much smaller than the pump 
light power so that four-wave mixing between pump and probe remains insignificant. In this 
case coherent interaction is excluded so that the phase relation between pump and probe is 
unimportant, and the assignments ( )in

, 0S tγϕ × =  for both the pump and the probe are justified. 
Pump wave and probe wave (influenced by the pump) have complex valued envelopes with a 
typical width of 2.8 ps , 

 ( ) ( ) ( ), , ,, , exp j , .S S Sz t P z t z tγ γ γϕ× × × =    (5) 

When pump and probe propagate simultaneously through the amplifier, the response of the 
nonlinear medium depends on the powers ( ),SP z tγ  and ( ),P z tγ ×  of both co-propagating 
fields. This response can be described by a complex refractive index ( ), ,Sn z tγ × , which is split 
in a coordinate-independent part 0n , 0g  and a coordinate-dependent contribution 

( ), ,Sn z tγ ×∆ , ( ), ,Sg z tγ ×∆ . Real and imaginary parts define the refractive index ( ), ,Sn z tγ ×  
and the modal gain ( ), ,Sg z tγ × , respectively. As 0Sω ω ω×≈ ≈  holds, we write 

 
( ) ( ) ( ) ( )

( ) ( )

, , 0 , ,
0

, 0 ,

j, , , , ,
2

, , .

S S S S

S S

z t z t n n z t g z t
k

g z t g g z t

n nγ γ γ γ

γ γ

× × × ×

× ×

= − = ∆ +

= + ∆

∆
 (6) 

While the dominant coordinate-independent part is virtually the same for both signals, the 
coordinate-dependent contributions ( ),S tn zγ∆  and ( ), tn zγ ×∆  are in general different 
because the SOA nonlinearity couples the two optical fields through a nondegenerate TPA 
process. We also assume that both signals propagate with the same group velocity gv , have a 
negligible group-velocity dispersion [21], and the wavelengths of both pump and probe are 
close to the wavelength of the SOA gain peak so that SOA gain-dispersion can be ignored, 
i.e., , , 0S Sgγ ω× ×∂ ∂ = . For simplicity, throughout this paper we neglect the internal loss 
coefficient intα . In the slowly-varying envelope approximation [22], the complex-valued 
envelope function ( ), ,S z tγ ×  Eq. (5) is related to the complex refractive index ( ), ,Sn z tγ ×  by 
the propagation equation 

 ( ) ( ) ( ) ( ), , 0 , ,
1, , j , , .S S S S
g

z t z t k
z t

n z t z t
vγ γ γ γ× × × ×

∂ ∂
∂ ∂

+ = − ∆    (7) 
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It is convenient to formulate the propagation of the light signals in a retarded time frame 
gt z vτ = −  (functions ( ),F z tγ  transform in retarded functions ( ),F z τ ), 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , , ,

, , , ,

, , , ,
,

, ,
, ,, , .

S S S S

S S S S

z t z t
z

P z P g z g
z tn z nt z

γ γ

γ γ

τ τ
ϕ τ ϕ τ

× ×

× ×

× ×

× ×

= =
= ∆ = ∆

 (8) 

Since the retarded time τ  at the SOA input ( 0z = ) coincides with the natural time t , the 
input pump and CW probe power dependencies as well as the input phase shifts are 

 
( ) ( ) ( ) ( ) ( )
( ) ( )

in in
in

in
, ,

0, 0, const

0, .

, ,

0
S S

S S

P P P P P Pγ γ

γ

τ τ τ

τ

τ τ

ϕ τ ϕ
×

×

× ×

×

= ==

=

=

=

=
 (9) 

At the SOA output ( z L= ) we have the output pump and CW probe power dependencies as 
well as the output phase shifts 

 ( ) ( ) ( ) ( ) ( ) ( )out out out out
, , , , , ,, , .,S S S S S Sg gP L P P LL v L vγ γτ ϕτ τ ττ ϕ ϕ τ× × × ×× ×+ = + == = (10) 

We now perform the coordinate transformations ( ),z t  to ( ),z τ  in Eq. (7), separate modulus 

and argument of ,S × , observe , , ,
*

S S SP ×× ×=   , and obtain the propagation equations for the 
powers and the phase shifts, 

 ( ) ( ) ( ), , ,, , ,S S SP Pg z
z

z zτ τ τ× × ×=
∂
∂

 (11) 

and 

 ( ) ( ),0, , ,,S Sz n z
z

kτ τϕ × ×= − ∆
∂
∂

 (12) 

respectively. Integrating Eq. (11) over the SOA length leads to 

 ( ) ( ) ( ) ( ) ( ), , , , ,
0

, 0, exp , d .,
L

S S S S SgP L z zh hP τ τ ττ τ× × × × × ==   ∫  (13) 

The power gain coefficient ( ), ,Sg z τ×  in Eq. (11) is positive and takes care of the fact that the 
signal power is distributed over a cross-section so that the total power is larger by the field 
concentration factor [23]. The highest value 0g  represents the unsaturated small-signal gain, 
see Eq. (6). The dimensionless integrated gain coefficient ( ),Sh τ×  (logarithmic power gain) is 
also positive and determines the amplification of the respective optical signal 

 
( )
( ) ( ),

,
,

,
exp .

0,
S

S
S

L
h

P
P

τ
τ

τ×
×

×

 =    (14) 

The integrated unsaturated gain coefficient 0 0h g L=  corresponds to the largest amplification. 
It is convenient to subtract 0h  from ( ),Sh τ×  and introduce the integrated gain decrease 

 ( ) ( ) ( ), , 0 , 0
0

, d .
L

S S Sh h h g z g zτ τ τ× × × ∆ = − = − ∫  (15) 

From Eq. (12) we find the solution ( ),Sϕ τ×∆  for the spatially integrated phase change of the 
output light with respect to the input light, 
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 ( ) ( ) ( ) ( ) ( ) ( )0, , , , , ,
0

, 1 d0, , , .
L

S S S S S SL k L n z
L

n n zτ ϕ τ ϕϕ τ τ τ τ× × × × × ×= − = − ∆ ∆ ∆∆ = ∫ (16) 

The nonlinear output phase shift follows from Eqs. (9) and (16), 

 ( ) ( )ou
, ,

0
0

t ., d
L

S Sk n z zτϕ τ× ×= − ∆∫  (17) 

In Fig. 1 we display a schematic of the dependencies listed in Eqs. (9), (10) and (16). The 
pump pulse ( )in

SP τ  at the input has a symmetric shape, see red curve shown in Fig. 1(a). 
While propagating through the SOA, the leading edge of the pump pulse experiences a larger 
gain than the trailing edge, due to gain saturation. The pump pulse emerging at the SOA 
output, which is depicted in blue color in Fig. 1(a), has therefore an asymmetric shape with its 
peak power shifted to smaller τ , this has been documented in [22]. 

τ

(c)

0

CD+
TPA

FCATPA

CH

CC CR

( )n τ×∆

τ

(b)

0

CD+
TPA

SHB
CH

CC
CR

( ),P L τ×

0

out
(z=L)

in
(z=0)

(a)

τ

( ),SP z τ

 
Fig. 1. Schematic input and output pump power, probe output power, and refractive index 
change as a function of retarded time 

g
t z vτ = − (t: real time, z: propagation coordinate, vg: 

group velocity). The dominant process for each time segment is marked. (a) Input pump pulse 
power (red line, 0z = ) and output pump pulse power (blue line, z L= ). (b) Probe output 
light power at z L= . (c) Refractive index change  Δn×(τ) according to Eq. (16), averaged over 
the SOA length. (CD: Carrier depletion; CH: Carrier heating; TPA: Two-photon absorption; 
SHB: Spectral hole burning; FCATPA: Free-carrier absorption induced by TPA; CC: Carrier 
cooling; CR: Carrier recovery) 

The gain dynamics which results from the previously mentioned effects is probed with a 
weak CW input light having constant power P× , which becomes modulated by the 
instantaneous gain. The power dependency of the modulated probe light ( ) out, ( )P L Pτ τ× ×=  is 
shown in Fig. 1(b). The gain decrease as induced by the pump pulse causes the falling slope 
of out ( )P τ× . While CD occurs over the whole pump pulse duration, only the processes 
dominant in each temporal segment are explicitly marked. The probe power minimum is 
reached after the (input) pump pulse maximum at 0τ = , because CD, TPA and SHB are still 
in effect. Eventually, the SOA gain recovers, and subsequently the probe power increases 
towards its initial value. 

The time dependency of the change in the refractive index ( )n τ×∆  is shown in Fig. 1(c). 
The combined effects of CD (Section 2.1(i)) and TPA (Section 2.1(iv)) reduce the gain. 
However, the corresponding positive (CD) and negative changes (TPA) in the refractive 
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index tend to balance, resulting in a time-independent region (CD + TPA) in Fig. 1(c). The 
onset of SHB in Fig. 1(b) reduces the gain further, but has no effect on the refractive index 
change, Fig. 1(c) (Section 2.1(ii)). While all nonlinear effects in Fig. 1(b) are of first order 
and FCA can be neglected, the index change in Fig. 1(c) due to FCATPA decreases 
quadratically with the pump pulse power, so that TPA-induced free-carrier absorption 
(FCATPA) is responsible (Section 2.1(iv)) for the pronounced dip in the refractive index curve. 
During the ultrafast gain recovery (CH) the refilling of the spectral hole counteracts CD and 
increases the gain. Consequently, the SOA refractive index increases (Section 2.1(iii)). Once 
the pump signal leaves the SOA, the carrier distributions start resuming their intraband 
equilibrium states (CC). Finally, CR through the injection current begins and re-establishes 
the original carrier concentration. 

2.2. Description of the analytical model 

We now describe the gain and phase evolution by an analytical model in which the probe 
power can be considered negligible. The pump power ( ),SP z τ  influences the amplification 
and phase shift for both pump and probe light. According to the discussion of Section 2.1(iv), 
a weak probe light plays an important role only for TPA processes. 

As a consequence, we will treat the other processes (BF, SHB and CH) as if they had 
occurred in the absence of the probe, and therefore omit the subscript S  for all dynamical 
quantities except ( ),SP z τ . We emphasize that the model described below applies only to 
bulk SOAs. 

The local modal gain coefficient ( ),g z τ  comprises the small signal gain coefficient 0g  
and the coefficients of the gain changes ( )x ,g z τ∆  from the contributions of the processes 
labelled by “ x ”, i.e., { }[ ]x= BF, SHB, CH, TPA 0,1   . By integrating the gain coefficients over 
the SOA length and summing up over all processes x, we obtain the logarithmic power gain 
( )h τ , see Eqs. (13) and (15). We therefore write 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 x 0
x

x x x
x 0

, , , ,

, , d .
L

g z g g z h h h

h h h g z z

τ τ τ τ

τ τ τ τ

= + ∆ = + ∆

∆ = ∆ ∆ = ∆

∑

∑ ∫
 (18) 

In analogy to the general relation Eq. (1), the xα -factors associated with the above processes 
are denoted by 

 
( )
( ) { }x

x 0
x

,
2 , x= BF, SHB, CH, TPA .

,
n z

k
g z

τ
α

τ
∆

= −
∆

    (19) 

The xα -factors do not depend on time or space, because the functional dependencies of 
( )x ,n z τ∆  and ( )x ,g z τ∆  are assumed to be the same. For simplicity, we neglect the 

coefficient FCAg∆  associated with the two-photon induced free-carrier absorption in our 
analysis and the corresponding local change ( )FCA ,n z τ∆  of the refractive index is derived by 
applying the Drude model, see Eq. (51). The total change in the refractive index ( ),n z τ∆  is 
given by 

 ( ) ( ) ( ) ( ) ( )x
x FCA x x

x 0

, , , , , , .
2

n z n z n z n z g z
k
α

τ τ τ τ τ∆ = ∆ + ∆ ∆ = − ∆∑  (20) 

We substitute Eq. (20) in the right-hand side of Eq. (17) in order to determine the output 
phase shift of the pump field. We denote the contribution of the various processes by 
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 ( ) ( ) ( ) ( ) ( )x 0 x x x FCA 0 FCA
0 0 0

1, d , d , , d .
2

L L L

k n z z g z z k n z zϕ τ τ α τ ϕ τ τ∆ = − ∆ = ∆ ∆ = − ∆∫ ∫ ∫ (21) 

Further, taking into account that ( ) ( )x x x1 2 hϕ τ α τ∆ = ∆  holds, we eventually obtain 

 ( ) ( ) ( )out
x x FCA

x

1 .
2

hϕ τ α τ ϕ τ= ∆ + ∆∑  (22) 

We now start with the analytical description for band filling as developed by Agrawal and 
Olsson [22], and then we then include the ultrafast gain saturation as well as the TPA effect in 
a phenomenological fashion [21,24]. In the following, we calculate the individual gain 
changes ( )x ,g z τ∆  and the integrated coefficients ( )xh τ∆  of Eq. (18) as well as the 
quantities ( )FCA ,n z τ∆  and ( )FCAϕ τ∆  related by Eq. (21). 

Spatial integration techniques to account for nonlinear effects were previously described 
in [25] for gain recovery in SOAs, and in [26] for analyzing active and passive silicon 
waveguides. Such techniques are very different from the traditional discretization approach 
used in the context of distributed feedback semiconductor lasers [27]. 

2.3. Logarithmic gain 

The description of the carrier dynamics in the active medium is based on rate equations 
[28,29]. 

Band filling 

We assume a linear dependence of the band filling gain coefficient ( )0 BF ,g g z τ+ ∆  on the 

carrier concentration ( ),N z τ  and write 

 ( ) ( )BF st, , ,g z a N z Nτ τ∆ = Γ −    (23) 

where Γ denotes the field confinement factor, a  is the differential gain and stN  represents 
the unsaturated value of the carrier density [24]. In this paper we include Γ, a  and stN  in the 
unsaturated (small-signal) gain 0g , the saturation power [24] satP , and in the spontaneous 
carrier lifetime sτ . We now put down a differential equation that describes the temporal 
evolution of band filling during a pump-probe experiment with a negligible probe light 
power. From the differential equation for the charge carrier concentration we find the 
differential equation [28] for BFg∆  as 

 ( ) ( ) ( ) ( ) ( )BF
BF TPA

sat

CD CR

, ,1, , , .
2

S

s s

P z g z
g z g z g z

P
τ τ

τ τ τ
τ τ τ

∆∂  ∆ = − − ∆ − ∂  


 (24) 

Band filling effects comprise carrier depletion and carrier recovery. As the unsaturated gain 
coefficient is always larger than the band filling gain coefficient, ( )BF , 0g z τ∆ < . The first 
term on the right-hand side of Eq. (24) is negative and therefore stands for the power gain 
decrease which is due to induced carrier depletion (CD). The first term also includes TPA 
gain. According to [28], the TPA contribution to the carrier density increase has a weight 
factor 1 2 , therefore we have to subtract ( )TPA1 2 ,g z τ∆  from the total gain ( ),g z τ  in Eq. 
(18). The second term is responsible for an increase of the gain and therefore for carrier 
recovery (CR) on a timescale of sτ . For picosecond pulses, CD and CR operate on two vastly 
different timescales (see Section 2.1(i)) and both effects can be treated separately. Over the 
duration of the pump pulse, CD is instantaneous and dominates over a timescale much shorter 
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than sτ , therefore CR is negligible allowing for the CR term in Eq. (24) to be set to zero. 
After the pump pulse has vanished, there is no more carrier depletion and now CR dominates, 
the first term in Eq. (24) can be neglected. We now solve Eq. (24) analytically for both cases 
separately. When CD dominates we use the notation BF CDg g∆ = ∆ , and we use the notation 

BF CRg g∆ = ∆  when CR dominates. The integrated gain coefficient, ( )BFh τ∆ , will be 
accordingly denoted by BF CDh h∆ = ∆  and BF CRh h∆ = ∆ . 

Carrier depletion 

For the case of weak to moderate pump energies, i.e., when the effects of CH, SHB and TPA 
on pump-induced changes in carrier density are neglected and the conditions 

( ) ( )x CD 0 CD, ,g z g g zτ τ≠∆ << + ∆  hold, the local gain coefficient ( ),g z τ  describes only the 
CD contribution ( )0 CD ,g g z τ+ ∆  of the BF effect, 

 ( ) ( )0 CD, , .g z g g zτ τ≈ + ∆  (25) 

As a consequence, in determining ( )CD ,g z τ∆  we can approximate ( ),SP z τ  by the solution 
( )CD ,P z τ  of the propagation equation 

 ( ) ( ) ( )CD 0 CD CD, , , .P z g g z P z
z

τ τ τ∂
= + ∆  ∂

 (26) 

Writing ( ) ( )CD, ,SP z P zτ τ≈  the right-hand side of Eq. (24) simplifies to 

 ( ) ( ) ( )CD
CD 0 CD

sat

,
, , .

s

P z
g z g g z

P
τ

τ τ
τ τ
∂
∆ = − + ∆  ∂

 (27) 

We integrate both sides of Eq. (27) over the whole SOA length, substitute 
( )[ ] ( )0 CD CD, ,g g z P zτ τ+ ∆  from Eq. (26), employ Eq. (13) with ( )CD in0, ( )P Pτ τ= , and find 

a differential equation for the integrated BF gain coefficient CDh∆ , 

 ( )
( )

( )0 CD
CD in

sat

exp 1d .
d s

h h
h P

P
τ

τ τ
τ τ

+ ∆ −  ∆ = −  (28) 

With the integrated unsaturated small-signal gain as an initial condition, ( )CD 0h∆ −∞ = , Eq. 
(28) can be integrated ([22], see also Appendix B) resulting in 

 ( ) ( ) ( ) ( ) ( )CD 0 0 in satln exp exp 1 exp d .sh h h P P
τ

τ τ τ τ
−∞

   ′ ′∆ = − − − −    
   

∫  (29) 

For the case of Gaussian input pulses, the integral in Eq. (29) has a closed-form expression in 
terms of the error-function [22]. 

After ( )0 BFh h τ+ ∆  has attained its minimum, it recovers back to the unsaturated value 
0h . As the model is based on a sharp separation of CD and CR, the temporal threshold Rτ τ=  

needs to be introduced. A suitable time Rτ−  can be identified as the moment when the gain 
saturation begins. The gain reduction (in dB) up to this moment can be written as 

( ){ }CD R10log exp h qτ ∆ − =  . Equation (29) allows for the determination of the time 
Rτ τ= −  when the gain amplification starts modifying 

 ( ) ( )
( )

R
0

in sat s 10
0

exp 1
d ln .

exp 10q

h
P P

h

τ

τ τ τ
−

−∞

 −
=  

−  
∫  (30) 
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The energy content of the part up to Rτ−  in the leading edge represents thus the largest 
energy for which the saturation can be neglected in the CD process. We can assume that the 
amplification ceases when the energy content of the final part in the trailing edge attains the 
amount considered negligible. For symmetric pulses, i.e., for ( ) ( )in inP Pτ τ− = , this happens 
at Rτ τ= + , due to the obvious identity ( ) ( )R

R
in ind dP Pτ

τ
τ τ τ τ∞ −

−∞
=∫ ∫ . Given a certain gain 

reduction q  at the beginning of the saturation (at time Rτ τ= − ), one can solve the resulting 
Eq. (30) for Rτ . This procedure is particularly useful for a Gaussian power pulse of full-width 
half-maximum pτ , where the ratio R pτ τ  can be expressed in closed-form through the 
complementary error-function involving q  (and other independent parameters). A practicable 
criterion for determining Rτ  will be presented at the end of Section 3. 

Carrier recovery 

The differential equation for the gain recovery coefficient ( )CR ,g z τ∆  is found by setting the 
first term on the right-hand side of Eq. (24) to zero, 

 ( ) ( )CR
CR

,
, .

s

g z
g z

τ
τ

τ τ
∆∂

∆ = −
∂

 (31) 

The CR gain dynamics for ( )BFh τ∆  is obtained by integrating both sides of Eq. (31) over 
the SOA length and by solving the resulting differential equation for ( )CRh τ∆  with the initial 
condition 

 ( ) ( )CR R CD R .h hτ τ∆ = ∆  (32) 

The value of ( )CD Rh τ∆  on the right-hand side has to be found from Eq. (29). 

Overall band filling 
The complete gain contribution to BF is then given by 

 ( )
( )

( )

CD R

BF R
CD R Rexp .

s

h
h

h

τ τ τ

τ τ τ
τ τ τ

τ

∆ ≤


∆ =   −
∆ − > 

 

 (33) 

Our approximations lead to an analytical result, however, the time derivative of ( )BFh τ∆  is 
no more continuous at Rτ τ= . 

Spectral hole burning and carrier heating 
The equations describing the intraband dynamics are stated in [29]. If intraband relaxation 
times are much smaller than the pulse width, the time derivative in these equations can be 
adiabatically eliminated, i.e., set to zero, and the local gain changes ( )SHB,CH ,g z τ∆  can be 
immediately written as [24] 

 ( ) ( ) ( ) ( )SHB,CH SHB,CH TPA, , , , ,Sg z g z g z P zτ ε τ τ τ∆ = − − ∆    (34) 

with 1
SHB.CHε −  being the saturation power for the respective process. Accordingly, it is the ratio 

of ultrafast gain compression SHB,CHg∆  to the local material gain, TPAg g− ∆ , that is 
proportional to the pulse power inside the SOA. The material gain itself comprises 0 BFg g+ ∆  
and the local ultrafast gain contribution SHB CHg g∆ + ∆  which can be calculated from Eq. (34). 
Denoting the total ultrafast compression coefficient by SHB CHε ε ε= + , one can relate 
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TPAg g− ∆  to 0 BFg g+ ∆ , see the first Eq. (18). By making use of this relation in Eq. (34), one 
obtains 

 ( )
( ) ( )
( )

0 BF
SHB,CH SHB,CH

, ,
, .

1 ,
S

S

g g z P z
g z

P z
τ τ

τ ε
ε τ

+ ∆  ∆ = −
+

 (35) 

Equation (35) describes the ultrafast gain reduction due only to the stimulated emission that 
removes the “cool” carriers from the distribution. We do not consider here the carrier heating 
via TPA and FCA. The ultrafast processes occur simultaneously with CD, however we 
calculate their contributions by only considering CD, see Eq. (25). For strong pulses the 
amount of CD would also be affected by the strength of the ultrafast gain compression, but 
for moderate levels of gain compression it is sufficient to replace in Eq. (35) BFg∆  by CDg∆  
and ( ),SP z τ  by ( )CD ,P z τ  as defined in Eq. (26). As a consequence, ( )SHB,CH ,g z τ∆  can be 
written as 

 ( ) ( ){ }SHB,CH
SHB,CH CD, ln 1 , .g z P z

z
ε

τ ε τ
ε

∂
∆ = − +  ∂

 (36) 

The ultrafast compressions are obtained by integrating both sides of Eq. (36) over z  from 
0z =  to z L= , and by taking into account the boundary conditions 

 ( ) ( ) ( ) ( ) ( )CD in CD in 0 CD0, and , expP P P L P h hτ τ τ τ τ= = + ∆       (37) 

with the result 

 ( )
( ) ( )

( )
in 0 CDSHB,CH

SHB,CH
in

1 exp
ln .

1
P h h

h
P

ε τ τε
τ

ε ε τ

 + + ∆   ∆ = −  
+  

 (38) 

The above results remain valid in the presence of a weak probe light. By contrast, as will be 
shown below, the probe light can sensibly influence the TPA-process, even when its power 
P×  is small. 

Two-photon absorption 
We describe the local gain reduction due to a degenerate TPA-process (simultaneous 
absorption of two identical photons) by an absorption coefficient ( )TPA ,g z τ∆  which is 
proportional to the power of the propagating light SP  and to the inverse of an effective TPA 
cross-section TPAA  [23,28], with a proportionality factor ( )2 Sβ ω  called the TPA coefficient 
at the pump frequency Sω : 

 ( ) ( ) ( )2
TPA

TPA

, , (degenerate case).S
Sg z P z

A
β ω

τ τ∆ = −   (39) 

The area TPAA  is larger than the cross-section A  of the active region [23], because it always 
includes some adjacent layers within the cladding region. 

In a non-degenerate TPA-process a VB electron can reach the CB by absorbing one 
photon from the pump and another photon from the probe. The pump having power SP  and 
angular frequency Sω  is assumed to be dominantly linear polarized in the direction of the unit 
vector Se , which lies in the cross-section area of the SOA waveguide. The probe light with 
power P×  and angular frequency ω×  is assumed to be linearly polarized in the same plane, 
but along a different direction e×

 , and its contribution has to be weighted by a factor 
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( ) ( )2, , ,S S S Se eβ ω ω β ω× ×
   [30,31]. The local TPA absorption coefficient ( )TPA, ,Sg z τ∆  

experienced by the pump in the presence of the probe light is 

 ( ) ( ) ( ) ( )
( ) ( )2

TPA,
TPA 2

, , ,
, , , .S S S

S
S

S
S

e e
g z P z P z

A
β ω β ω ω

τ τ τ
β ω ×

× × 
∆ = − + 

  

 

 (40) 

In analogy, we define the local TPA absorption coefficient ( )TPA, ,g z τ×∆  experienced by the 
probe light in the presence of the pump light as 

 ( ) ( ) ( )
( ) ( ) ( )2

2
TPA,

TPA

, , ,
, , , .S S

S

e e
g z P z P z

A
β ω β ω ω

τ τ τ
β ω

×
× ×

×

× × × 
∆ = − + 

  

 

 (41) 

The functions ( ), , , ,SS S e eβ ω ω× × ×
  depend on the relative polarization angle, ( )1cos Se e−

×⋅
  , are 

related to each other, and become equal for Sω ω×=  [31]. In general, a TPA in pump-probe 
experiments consists of three kinds of absorption processes occurring at the same time: 
absorption processes of identical photon pairs from the pump and probe light, and of different 
photon pairs from the pump-probe coupling. For neighboring angular frequencies 

0Sω ω ω×≈ ≈  we introduce a new parameter TPAr  by the ratio 

 
( )

( )
, 0

PA
2 0

0
T

, , ,
,SS e e

r
β ω ω

β ω
× ×=

 

 (42) 

write 2β  for ( )2 0β ω  and simplify Eqs. (40) and (41) to 

 ( ) ( ) ( )2
TPA, TPA

TPA

, , ,S Sg z P z r P z
A
β

τ τ τ×∆ = − +    (43) 

and 

 ( ) ( ) ( )2
TPA, TPA

TPA

, , , .Sg z r P z P z
A
β

τ τ τ× ×∆ = − +    (44) 

The ratio TPAr , hereafter called the TPA non-degeneracy factor, is positive and depends on 
the relative polarization angle. For semiconductors with zinc blende crystal structure TPA 2r =  
for parallel polarizations and takes a value 2-3 times smaller for orthogonal polarizations, 
depending on the probe frequency [31,32]. Moreover, for a weak probe light only the first 
term on the right-hand side of Eqs. (43) and (44) contributes, and we are left with 

 ( ) ( ) ( ) ( )TPA, TPA TPA, TPA TPA, , , , , .Sg z g z g z r g zτ τ τ τ×∆ = ∆ ∆ = ∆  (45) 

Under the assumptions stated above, the local absorption coefficient from the pump in the 
presence of the (weak) probe light coincides with the degenerate case, Eq. (39), while the 
local absorption coefficient from the (weak) probe light differs from the latter by the TPA 
non-degeneracy factor TPAr  due to the pump-probe coupling. Proceeding in analogy to the 
fourth formula in Eq. (18) and substituting the subscript x  by TPA,S  and TPA,× , the 
integrated absorption coefficients TPA,Sh∆  for the degenerate case and TPA,h ×∆  for the non-
degenerate case can be written with the help of Eq. (45) as 

 ( ) ( ) ( ) ( )TPA, TPA TPA, TPA TPA .Sh h h r hτ τ τ τ×∆ = ∆ ∆ = ∆,      (46) 
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Similarly, proceeding in analogy to Eq. (21), we find the TPA-induced phase change 
contributions TPA,Sϕ∆  for the degenerate case and TPA,ϕ ×∆  for the non-degenerate case: 

 ( ) ( ) ( ) ( )TPA, TPA TPA TPA, TPA TPA TPA
1 1, .
2 2S h r hϕ τ α τ ϕ τ α τ×∆ = ∆ ∆ = ∆  (47) 

The dynamical quantities in Eqs. (46) and (47), associated to the TPA-process are all 
expressed in terms of the contribution ( )TPAh τ∆ . For the calculation of this contribution 
according to Eqs. (18) and (39), it is necessary to integrate ( ),SP z τ  over the SOA length. 
Since in Eq. (25) we assumed that ultrafast processes including TPA are negligible in 
comparison with CD, we replaced ( ),SP z τ  by the solution ( )CD ,P z τ  of Eq. (26). The 
integration of arbitrary positive powers of ( )CD ,P z τ  is carried out in the Appendix B, 
yielding the coefficients ( )nC τ , see Eq. (91). An explicit form of ( )CD ,P z τ  is shown in Eqs. 
(87) and (89). By introducing the compression coefficient 

 2
TPA

TPA 0

L
A h
β

ε =  (48) 

and by using the result, see Eq. (98), 

 ( )
( )
( )

CD
1

CD

,
exp 1

h
C

h

τ
τ

τ

∆
=

 ∆ − 
 (49) 

one finds the following TPA contribution ( )TPAh τ∆ : 

 ( ) ( ) ( ) ( )TPA TPA 0 1 inexp 1 .h h C Pτ ε τ τ∆ = − −    (50) 

We prove in Appendix B that all coefficients ( ) , 1, 2,...nC nτ =  are positive and decrease 
with time. 

2.4. FCATPA induced refractive index 

In order to include the FCATPA process (as described in [16]), we assume that many of the 
photoexcited electrons reach the X-valley of the lowest CB by absorbing optical phonons of 
suitable wave vectors. Owing to the low amount of energy carried by the phonon [17], the 
energy of the electron remains nearly constant, while its momentum increases accordingly. 
Also the transit time to the X-valley expressed by the intervalley scattering time 0τ  is of order 
of the electron-phonon scattering time. Once arrived in the new X-valley state, the electrons 
can be further excited into the next higher CB by absorption of a photon. The contribution of 
this free-carrier absorption to the index change can be estimated on the basis of the classical 
oscillator model of Drude and Lorentz. By assuming the electrons moving freely in the 
optical field according to Newton’s second law, one finds the decrease of the refractive index 
as given by the Drude formula [33] (elementary charge e , vacuum permittivity 0ε ) 

 ( ) ( )
2

FCA FCA2
0 0 0 FCA

, , ,
2

en z N z
n m

τ τ
ε ω

∆ = −  (51) 

where FCAN  denotes the intraband density of FCA-excited electrons with effective mass 

FCAm . Since in general ( )FCA ,N z τ  represents only a fraction K  of the density ( )ex ,N z τ  of 
photoexcited electrons, one can write 

 ( ) ( )FCA ex 0, , , 0 1.N z K N z Kτ τ τ= − < <  (52) 
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An instantaneous FCATPA process in the Γ -valley where photoexcited electrons are produced 
needs phonon assistance and is unlikely. 

In the following we consider photoexcited electrons with average lifetime exτ  arising in 
the active region of cross-section A  by TPA from the pump (power SP , angular frequency 

Sω ) and probe light (power P× , angular frequency ω× ). We describe the dynamics of these 
carriers by the following rate equation (   is the reduced Planck constant): 

 ( ) ( ) ( ) ( ) ( ) ( )TPA, TPA, ex
ex

ex

, , , , ,1, .
2

S S

S

g z P z g z P z N z
N z

A
τ τ τ τ τ

τ
τ ω ω τ

× ×

×

∆ ∆ ∂
= − + − ∂   

(53) 

The first term on the right-hand side is positive and apart from the factor 1 2  whose origin 
has been already explained (see Eq. (24)), represents the local density of photons absorbed 
per second from both, pump and probe light. The second term is negative and accounts for the 
loss of photoexcited electrons. By setting 0SP P×= =  one can verify that exτ  is the 
photoexcited carrier lifetime. The double heterostructure confines all carriers in the active 
region, i.e., the carriers are distributed over the cross-section A . In the stationary regime 

ex 0N τ∂ ∂ =  holds, and the concentration of photoexcited electrons can be calculated from 

 ( ) ( ) ( ) ( ) ( )TPA, TPA,ex
ex

, , , ,
, .

2
S S

S

g z P z g z P z
N z

A
τ τ τ ττ

τ
ω ω

× ×

×

∆ ∆ 
= − + 

  

 (54) 

For closely neighbored frequencies 0Sω ω ω×≈ ≈  one can substitute Eqs. (43) and (44) in Eq. 
(54). The contributions proportional to ( )2 ,SP z τ , ( )2 ,P z τ×  and ( ) ( )TPA2 , ,Sr P z P zτ τ×  enter 
with the same weight and represent the three kinds of aforementioned TPA-processes, two 
degenerate and one non-degenerate TPA processes. For a sufficiently weak probe light, one 
can neglect the terms containing ( ),P z τ×  such that ( )ex ,N z τ  becomes independent of the 
TPA non-degeneracy factor TPAr , 

 ( ) ( ) ( )
ex ex TPA

0

,
, , .

2
SP z

N z g z
A
τ

τ τ τ
ω

= − ∆


 (55) 

By substituting Eqs. (52), (55) and (39) into the right-hand side of the Drude formula (Eq. 
(51)), one gets 

 ( ) ( )
2

2 ex
FCA 0 FCA TPA 0 FCA 2

0 0 FCA 0 0

, , ,
4S

Kecn z g P z
cm n A

τ
τ η ε τ τ η

ω ε ω
∆ = − − =



     (56) 

The dependency of FCAn∆  on the power squared, qualifies the FCATPA process as a fifth-order 
nonlinear optical effect. According to the assumption in Section 2.2 that TPA-induced free-
carrier absorption has a negligible gain coefficient FCAg∆ , the nonlinear susceptibility ( )5χ  
[30] is real and is proportional to the product FCA TPAη ε . Although both factors in this product 
are measured in 1 W , FCAη  cannot represent a compression coefficient and will be simply 
termed as nonlinear (optical) coefficient. The FCATPA phase contribution, Eq. (21), can be 
found by integration over the SOA length. As before we use the approximation from Eq. (25) 
to replace ( ),SP z τ  by ( )CD ,P z τ , perform the integral with the methods developed in 
Appendix B, and obtain 

 ( ) ( ) ( ) ( )2 2
FCA FCA TPA 0 2 0 in 0exp 1 .h C Pϕ τ η ε τ τ τ τ∆ = − − −    (57) 

The function ( )2C τ  is related to the function ( )1C τ  given in Eq. (49) by the expression 
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 ( )
( ) ( ) ( ){ }

( )

1
1 0 0 CD

2
CD

exp 1 exp 1
.

exp 1

C h h h
C

h

τ τ
τ

τ

−
− − + ∆ −      =

 ∆ − 
 (58) 

As the FCATPA effect is significant, most of the electrons produced by TPA in the 
conduction band will have an average lifetime close to 0τ , i.e., one also expects ex 0τ τ . On 
the other hand, the validity of the steady-state solution, Eq. (55), requires exτ  to be shorter 
than the pulse width. The large value of FCAη  (see Table 1) leads to a strong decrease of the 
refractive index. Notice that the corresponding phase shift contribution starts changing later, 
with a time delay 0τ  after the input pulse peak. 

2.5. Summary 

By definition the power amplification of a light signal is the ratio of the output to the input 
signal power. For a graphical representation of ( ) ( )in0,SP Pτ τ=  and ( ) ( )out,S SP L Pτ τ= , see 
Fig. 1(a). Inserting Eqs. (33), (38) and (50), into the third formula in Eq. (18), one obtains 

 ( ) ( ) ( ) ( ) ( ) ( )BF SHB CH TPA .Sh h h h h hτ τ τ τ τ τ∆ = ∆ = ∆ + ∆ + ∆ + ∆  (59) 

In the pump-probe experiments the overall SOA power gain 

 ( ) ( ) ( )0exp expG h h hτ τ τ× ×= = + ∆        (60) 

is always given by the probe light amplification. It is represented in Fig. 1(b) for a CW probe 
light. The logarithmic integrated gain ( )h τ×∆  differs from ( )Sh τ∆  by replacing ( )TPA,Sh τ∆  

with ( )TPA,h τ×∆  (see Eq. (46)), 

 ( ) ( ) ( ) ( ) ( )BF SHB CH TPA TPA .h h h h r hτ τ τ τ τ×∆ = ∆ + ∆ + ∆ + ∆  (61) 

According to the discussion in Section 2.1(ii), we will assume that SHB does not contribute to 
the phase shifts ( )out

Sϕ τ , and set the corresponding α -factor SHB 0α = . By substituting Eqs. 
(33), (38), (50) and (57) in Eq. (22) we find 

 ( ) ( ) ( ) ( ) ( ) ( )out out
BF BF ´CH CH ´TPA TPA FCA

1 .
2S h h hϕ τ ϕ τ α τ α τ α τ ϕ τ= = ∆ + ∆ + ∆ + ∆   (62) 

The phase shift ( )ϕ τ×∆  of the probe light is related to the change in the refractive index, 

( )n τ×∆ , see Eq. (16), and is schematically depicted in Fig. 1(c). The quantity ( )outϕ τ×  is 

obtained in a similar way as ( )out
Sϕ τ  by taking into account Eq. (47), 

 ( ) ( ) ( ) ( ) ( )out
BF BF ´CH CH TPA ´TPA TPA FCA

1 .
2

h h r hϕ τ α τ α τ α τ ϕ τ× = ∆ + ∆ + ∆ + ∆    (63) 

As an example, we calculate the gain dynamics of an SOA, driven with a Gaussian input 
pump pulse having 3.8 mW  peak power and a full width at half maximum (FWHM) of 
2.8 ps , i.e., with a pump input energy of 11.3 fJ . The parameters given in Table 1 are typical 
for an SOA being operated at a wavelength of 1.55 µm  corresponding to a frequency of about 

( )0 0 2 193.4 THzf ω π= = . According to [21], the carrier lifetime sτ  lies in the range 
100 ps 1 ns . By taking 100 pssτ =  and by choosing sat 50 mWP = , one obtains a 
saturation energy sat sat 5 pJsW P τ= =  in agreement with the typical range of 5 10 pJ  
reported in [22]. The α -factors are taken from [13]. 
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We postpone the discussion of the other parameters to the end of Section 3 and first 
calculate the optical spectra, which we then compare to measured data. 

Table 1. List of parameters used to calculate SOA gain and phase shift dynamics. 
* indicates typical value for the intraband process relaxation time, though not resolved in 

this work. 

Process BF CH SHB TPA FCATPA 
Unsaturated 
device gain  h0 = 6     

Sat. power & 
nonlinearity 
coefficient 

Psat = 50 mW εCH = 0.5 W-1
 εSHB = 0.3 W-1

 εTPA = 0.25 W-1
 ηFCA = 15 W-1

 

TPA non-
degeneracy factor rTPA = 1     

α-parameter αBF = 3.8 αCH = 0.7 αSHB = 0 αTPA = –3  

Carrier lifetime & 
intervalley 
scattering time 

τs = 100 ps τCH = 600 fs *  τSHB = 100 fs *  τ0 = 1 ps 

Gain reduction at 
saturation onset q = 0.017 dB     

 
The results of the calculated gain and phase shift dynamics are plotted in Fig. 2. They are 

in agreement with the measured gain and phase dynamics from pump-probe experiments 
[13,34,35]. Starting with the basic BF contribution, we successively add the contributions of 
the other processes, and are able to see how each process contributes individually to the 
overall gain. An important feature of the plots is the delay between the gain minimum and the 
refractive index maximum. This was shown experimentally and theoretically by others 
[13,34,35] and is also confirmed by our model. 

Since the FCATPA process starts 0 1 psτ =  later than the TPA itself, the refractive index is 
stationary during this delay, see Fig. 2(c). Notice that due to the fast and ultrafast saturation 
effects the refractive index minimum is reached somewhat earlier than 1 ps. Neglecting 

FCAg∆  can only be compatible with moderately high TPA effects in bulk SOAs. In such cases 
there are fewer free-carriers arising during the FCATPA process than removed by carrier 
depletion. However, the absorption cross-sections calculated in [16] are in the order of the BF 
differential gain. This fact can satisfactorily explain the dramatic FCATPA phase-shift shown 
in Fig. 2(c) by simultaneously keeping the negligible free-carrier absorption stipulated in Fig. 
2(b). The topic is thoroughly discussed in Appendix A. 
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Fig. 2. Calculated time dependence of SOA gain G = exp(h×). The origin τ = 0 of the retarded 
time coincides with the maximum of the pump pulse Ps(0,τ), see Fig. 1. With our model we 
calculate ln (G) = h× and the phase shift 0 nk Lϕ× ×∆ = − ∆ . (a) Gain and phase shift as a 
function of retarded time. The inset shows a blow-up. (b) Gain and (c) phase contributions of 
the various effects. (BF: Band filling; TPA: Two photon absorption; FCATPA: TPA-induced 
free-carrier absorption delayed by the intervalley scattering time 0 1psτ = ; SHB: Spectral 
hole burning; CH: Carrier heating). 

The advantage of using this approach is the ability to analytically model the temporal gain 
dynamics with the few parameters of Table 1. Most of these parameters can be derived by 
fitting the calculated spectrum to the measured one. The model does not require details on the 
geometry and on the other SOA parameters which typically are inaccessible. 

3. Pump and probe light spectra at SOA output: comparison of model and 
measurements with experiment 
The closed form expressions for the gain and phase dynamics, in which only a few constant 
parameters are chosen independently, allows us to derive the spectral shapes and to compare 
them with the experiment. Moreover, one can determine the remaining constant parameters 
by fitting the spectral traces and hence get a better understanding of the dynamic behavior of 
an SOA at the respective operation point. The model parameters discussed at the end of this 
section are found to be within a 10%±  spread of their absolute extracted values. 

In the following we assume that the condition in0P P×>  is met, and in0P  denotes the peak 
power of the pump pulse ( )inP τ , i.e., ( )in0 inmaxP P τ=     and P×  is the CW probe light power. 
We also assume – as before – that the pump and CW frequencies are not too far apart. 
According to Eqs. (61) and (63), one needs an additional parameter, the TPA non-degeneracy 
factor TPAr , for describing the amplification and the phase shift of the probe light. Only if 
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TPA 1r ≈  holds, the propagation of a weak probe light does not influence the active medium. 
Since the SOA material is assumed to have a negligible dispersion, we can use the same 
values of the constant parameters other than TPAr , for both signals. 

For a comparison with the experiment, we calculate the one-sided power spectra ,S ×Θ  for 
the real optical pump (subscript S) and probe (subscript × ) fields at the SOA output. Starting 
with the output normalized RMS electric fields ( )out

,SE tγ ×  as given by Eq. (4), we perform the 
Fourier transform of the real part ( ){ }out

,SE tγ ×ℜ . We then shift it from the carrier angular 
frequencies ,Sω ×  to the baseband, observe a factor of 1 2  for the one-sided transform, take 
the modulus square and express the resulting power spectrum versus the frequency shift 

( ) ( ), 2Sf ω ω π×= − , 

 ( ) ( ) ( ) ( )
2

out out
, , , 0 0

1 exp j exp j 2 d .
2S S Sf P t t k n L f t tγ γϕ π×

∞
×

∞

×
−

 Θ = − +   ∫  (64) 

The powers and phase shifts of the output signals are obtained in terms of ( ),Sh τ×∆ , see Eqs. 

(59) and (61), and ( )out
,Sϕ τ× , see Eqs. (62) and (63). Writing 

 ( ) ( ) ( ) ( ) ( )out out
0 in 0exp exp ,SP h h P P h h Pτ τ τ τ τ× × ×= + ∆ = + ∆        and   (65) 

the retarded time dependencies from Eqs. (9) and (10) allow to express the optical spectra as 

 ( ) ( ) ( ) ( )
2

out out
, , ,

1 exp j exp j2 d .
2S S Sf P fτ ϕ τ π τ τ

∞

× ×
−∞

×  Θ = − ∫  (66) 

The calculated and measured spectra of the pulse and probe light at the SOA output are 
shown in Fig. 3(a) and Fig. 3(b). Mode-locked pulses with a 2.8 ps  FWHM are generated at 
the repetition rate of 10 GHz  in order to allow the complete CR between two successive 
pulses. Pump and probe light are injected in co-propagating direction into the SOA, utilizing a 
3 dB coupler. The spectra were recorded by an optical spectrum analyzer with a resolution 
bandwidth of 0.1 nm , and correspond to the envelope of the oscillatory structure related to 
the pulse repetition rate. 

Pulse spectra help investigating the dynamics of the gain and refractive index. Due to the 
short pulse duration of a few picoseconds, only nonlinear effects that occur while the pump is 
present show up in the output spectrum of the pump. Whereas, the probe senses both the 
ultrafast effects that occur when the pump is present and also the slower effects like CR that 
do not influence the pump. Hence, the temporal limitation of the injected optical power acts 
as a gating mechanism which allows to get insight of the dynamics at the beginning, while 
suppressing later effects. The full dynamics of the SOA gain and refractive index can be 
concluded from the probe light spectra. Although possibly significant effects such as spectral 
artifacts [21] and amplified spontaneous emission (ASE) were not included in the analytical 
model, the calculated spectra (solid black lines) resemble the measured ones (light grey lines). 
For instance, one observes the pronounced side lobes in the blue-shifted spectral domain of 
calculated and measured pump and probe spectra. The origin of this spectral region can be 
traced back to the FCATPA nonlinear effect – as described by the parameters FCAη  and 0τ , see 
Fig. 3(c) and Fig. 3(d). 

Both measured and simulated probe light spectra have broad and pronounced red-shifted 
spectral components extending beyond 200 GHz−  with respect to the center frequency, see 
Fig. 3(b). They mainly originate from CD and CH effects. Towards higher frequencies with 
respect to the center frequency one can notice two blue-shifted spectral regions. First, there is 
a blue-shifted spectral range starting closely to the carrier frequency. This can be attributed to 
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the slow carrier recovery process. We attribute the small blue-shifted shoulder with a peak 
around 100 GHz  to the presence of both TPA and FCATPA nonlinear effects, Fig. 3(d). 
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Fig. 3. Calculated spectra (log scale) using the parameters from Table 1 and comparison with 
measured ones. (a) Measured (light gray lines) and calculated (solid black lines) spectra after 
the SOA of the pump pulse and (b) measured (light gray lines) and calculated (solid black 
lines) spectra after the SOA of the probe light. The decomposition of the spectra is shown in 
(c) for the pump pulse and in (d) for the CW pulse light. (BF: Band filling; TPA: Two photon 
absorption; FCATPA: Free-carrier absorption induced by TPA; SHB: Spectral hole burning; 
CH: Carrier heating). 

Other researchers have found similar spectral characteristics, particularly when 
experiments have been performed with short pulses of 1 ps  [36] and 2 ps  [37]. The 
discussion here has shown that the presence or absence of spectral components gives an 
indication for the occurrence and strength of a particular nonlinear effect. Specifically, one 
expects a distinct blue-shifted side-lobe far off from the center frequency in the presence of 
TPA and FCATPA, and a red-shifted spectral component due to CD and CH as well as a blue-
shifted spectral component nearby the center frequency due to CR. 

In Fig. 4 we present pump and probe spectra for different pulse input powers which allow 
to verify the differences in order of nonlinearity. Note the characteristic behavior of the blue 
sideband intensity associated with FCATPA. For in 7 dBmP = , dip due to SHB can be seen at 
the input peak frequency. 
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Fig. 4. Optical spectrum for Pin = 0, 3, 7 dBm; Pcw = 2 dBm; I = 400 mA of the (a) pump light 
and (b) probe light behind the SOA. The frequency origin corresponds to the input pump peak 
and to the probe light frequency, respectively. 

The method outlined here allows to easily recognize when TPA and FCATPA play a role 
by just looking at the spectrum and by observing that the ultrafast decrease of the refractive 
index occurs during the trailing edge of the pump pulse. In addition, the method allows for an 
estimation of the nonlinear coefficients in a particular SOA at a certain operating point (see, 
e.g., Table 1). For instance, in our experiment we have employed an SOA with the structural 
parameters from [13]: 2.6 mmL = , 20.225 µmA = , field confinement factor 0.351Γ =  and 

78.4 10 m sgv ×= . Following [21], we take the TPA effective cross-section to be of the same 
size as the modal cross-section, TPAA A= Γ . By using Eq. (48), we estimate the nonlinear 
TPA coefficient 2β  from TPAε  which is given in Table 1, and find a value of 37cm GW  
which is close to the value of 35 cm GW reported in [21] for InGaAsP-SOAs. We also 
express the ultrafast compression coefficients in 3m  facilitating the comparison with the 
values given in literature: 24 3

CH 3.5 10 mε −= ×  and 24 3
SHB 2.1 10 mε −= × . 

We now look for the parameters q , FCAη , 0τ  and TPAr , which do not change the 
calculated optical spectra. A reduction of the gain by 0.01 dBq =  compared to the 
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unsaturated gain marks the beginning of saturation and corresponds to a time R 3.3 psτ =  for 
a transition from CD to CR and to a ratio -114.5 15.5 W−  of the output pulse power at Rτ , 

( )out
RSP τ , to the peak output power, out,peak

SP , 

 ( )out out,peak
R R 4%.S SX P Pτ= =  (67) 

We could not see any spectral change for 0.03 dBq <  or, equivalently, for R 9.5%X < , i.e., 
for transition times from CD to CR larger then 2.9 ps . The value 0.017 dBq =  reported in 
Table 1 corresponds to R 3.1 psτ =  and a ratio R 6%X = . 

In order to assign values to the remaining fit-parameters, a sensitivity analysis has been 
performed. For this purpose, we consider the relative error 

 ( )
( ) ( )

( )
measured calculated

measu

,

re

,

d
,

,

,S S
S

S

f f
F f

f
× ×

×
×

Θ −Θ
=

Θ
 (68) 

and denote its averaged value over the whole measured spectrum with ,SF × . We determine 
by calculation the changes of a single parameter leading, or corresponding to a minimum of 

,SF × . We then look for physical or model dependent reasons impeding the realization of 
this minimum. As a plausibility check, the parameter q is a useful indicator for the onset of 
carrier saturation. It also stands for a time τR, which has to be longer than the pulse duration 
(FWHM of the pump pulse). Approximate values for 0τ  and TPAr  result from their physical 
meanings and can be used as a first guess in the optimization algorithm. The value 

1
FCA 15 Wη −=  in Table 1 can be subsequently determined from the agreement of the 

calculated and measured spectra. The relative error averaged over the whole measured probe 
light spectrum F×  has a minimum for 0.017 dBq = . By keeping this value for q constant, 
a sensitivity analysis has been performed for the parameters FCAη , 0τ  and TPAr . The 
following ranges have been established in this way: -114.5 15.5 W  for FCAη , 0.9 1.1 ps  
for the XΓ →  intervalley scattering time 0τ  and 0.9 1.1  for the TPA non-degeneracy 
factor TPAr . Recalling that TPA 1r =  describes the TPA-process for the pump alone, we 
conclude that in our measurements, the probe light has no measurable effect on the active 
medium. 

4. Selecting spectral regions to perform optical filter based wavelength 
conversion 
The previous section has shown that nonlinear effects in an SOA lead to unique spectral 
traces. With our model, we can estimate their qualitative and quantitative relevance. This 
information is useful to judge if a particular effect is present at all, and if it is sufficiently 
large to be exploited in a nonlinear experiment. 

There are three distinct spectral ranges which feature strong nonlinear effects. We now 
discuss the SOA with respect to its capability to perform all-optical signal processing by 
exploiting the nonlinear cross-gain modulation (XGM) and cross-phase modulation (XPM) 
effect. 

The basic features within the phase dynamics and the spectral components as seen by a 
probe light are schematically depicted in Fig. 5. Both figures are derived from the plots in 
Fig. 2(c) and Fig. 3(b). The colors indicate three temporal regions associated with three 
distinct nonlinear effects as discussed in Fig. 1(c). In the previous section we have shown that 
the dominant nonlinear effects in the three different temporal regions yield clear spectral 
traces in different spectral regions. So, for instance, the blue-shifted (BS) shoulder away from 
the central frequency (shown in dark blue) is due to the ultrafast sharp decrease of the 
refractive index due to TPA and FCATPA in the first time segment. Next, the strong red-
shifted (RS) spectral component (shown in red color) is mainly induced by the carrier 
depletion in the SOA. Finally, the spectral component close to the CW (in light blue color) 
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results from the carrier recovery in the active medium. Note that a fast CR process causes a 
broad component. 

Thus, SOA nonlinear effects create new spectral components, first in the far blue, then in 
the red and again in the near blue spectral domain [38]. By combining an SOA with properly 
adjusted optical filters one can build simple and efficient all-optical wavelength converters. 

A wavelength converter generating non-inverted signals is schematically depicted in Fig. 
6. Using suitable red-shifted optical filters (RSOF) after an SOA, a wavelength converter can 
be realized. In [39], a 10 Gbit/s  and a 40 Gbit/s  all-optical regeneration experiment has 

fCW

(b)

f

log(P)(a)

τ

−∆ϕ(τ)

 
Fig. 5. Probe light phase shift and optical spectrum. (a) Phase shift dynamics and (b) 
corresponding induced spectral components in a measured probe light spectrum 

been performed with a red-shifted optical filter offset by about 50 GHz from the center 
frequency. In another demonstration, the blue spectral range close to the CW carrier has been 
exploited for performing all-optical wavelength conversion, using blue-shifted (BSOF) 
optical filtering. In [40], a BSOF experiment where the filter is offset by approximately 
60 GHz  has been demonstrated at 40 Gbit/s . 

Finally, the ultra-fast nonlinear TPA and FCATPA effects can be used. While the power in 
the spectral component is lowest, this spectral component is created by the fastest nonlinear 
effect. Since this effect does not depend on the carrier density, there is no contribution from 
the carrier dynamics that suffer from patterning effects. The spectral contribution due to 
FCATPA is very distinctive in the output probe spectrum and its presence in the spectrum is 
clearly recognizable. One would immediately know of the presence of the ultrafast FCATPA 
effects in their SOA and be able to optimize the experimental conditions in order to maximize 
this FCATPA contribution for their optical signal processing needs. Indeed, successful 
patterning free all-optical wavelength conversion at 320 Gbit/s  has been demonstrated [41]. 
In that experiment, the filter was offset by more than 150 GHz from the center frequency, 
where we previously identified the dominant nonlinear TPA and FCATPA spectral component. 
By combining both filter types, RSOF and BSOF, a pulse reformatting optical filter (PROF) 
has been realized and tested with signals up to 40 Gbit / s  [42,43]. 

The PROF works as follows: The signal after the SOA is split into two copies. One signal 
copy is routed through an RSOF, delayed and attenuated with respect to the second copy 
which passes a BSOF. The introduced delay compensates for the group delay difference 
between RS and BS components. Both modified signal copies, which contain only parts of the 
BS and RS components, are superimposed after being equalized in power and group delay 
such that a return-to-zero (RZ) signal at the novel wavelength will result. All-optical 
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wavelength conversion supported by RSOF, BSOF or PROF leads to a signal consisting of 
Fourier transform limited pulses. 

 
SOA

λCW

λD

 
Fig. 6. Scheme of an optical filter based all-optical wavelength conversion system. 

By properly offsetting the filter, each of the three spectral regions in Fig. 5(b) can be used 
to induce a progressive phase shift between subsequent pulses. This way RZ, vestigial-
sideband (VSB) and carrier-suppressed return-to-zero (CSRZ) signals can be generated [44–
46]. 

In this paper we have concentrated on the characterization and interpretation of the 
nonlinear responses of the active medium to Gaussian pulses. 

5. Evidence of phase patterning effects in the spectrum 
We now consider all-optical wavelength converted data signals rather than wavelength 
converted clock pulse-trains. The spectrum now changes, see Fig. 7. The spectrum of a 33% 
RZ signal at 40 Gbit/s, see Fig. 7(a), shows a central tone at the carrier frequency and two 
sidebands that contain the information data with tones located at multiples of the data rate. 
The lateral tones are accompanied by inverted spikes that are blue shifted with respect to each 
tone. These characteristics remain even after passing the signal through a filter for reshaping 
and pattern effect mitigation, e.g., a PROF as in Fig. 7(b) as well as in [45,46]. 

  

 
Fig. 7. Measured spectra of a 40 Gb/s wavelength converted signal. Optical spectrum (a) 
directly after the SOA and (b) after the PROF. 

At high modulation frequencies, e.g., 40 GHz, the CR between consecutive signal pulses 
becomes incomplete leading thus to variations in the pulse amplitude and phase, i.e., to a 
patterning effect. For simplicity, we consider below only the incomplete phase restoration 
from bit-to-bit. 

Table 2. Total signal phase change for a bit sequence of a 110100 sequence with a filter 
set to generate a RZ Signal and a filter offset to generate a progressive phase shifted PPS. 

Sequence 1 1 0 1 0 0 
Total induced phase 
change 1φ−  12φ−  1 22φ φ− +  1 23φ φ− +  1 23 2φ φ− +  1 23 3φ φ− +  

Total signal phase 
with linear phase 
shift PPS 1

PPS
φ−

 
1

2 PPS
2φ
⋅

−
  

1 2

3 PPS
2φ φ
⋅

− +
 

1 2

4 PPS
3φ φ
⋅

− +
    

1 2

5 PPS 
3 2φ φ
⋅

− +
    

1 2

6 PPS
3 3φ φ
⋅

− +
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Fig. 8. Schematic description of a signal evolution. Amplitude (green line) and phase (red line) 
evolution of (a) an RZ signal PPS 0( )=  and (b) a CSRZ signal PPS( )π= −  after a filter 

supported wavelength conversion. A mark bit decreases the phase by 1φ  and a space bit 

increases the phase by 2φ . 

To demonstrate that this phase patterning leads to inverted spikes and contiguous S-
shaped shoulders we propose the following model: Every mark bit entering the SOA induces 
a decrease of the carrier density and thus an increase of the refractive index. As a 
consequence, the phase of each mark bit changes by a certain value 1φ , while a space bit 
allows for a weak phase recovery 2 1φ φ< . So each pulse entering the SOA experiences a phase 
accumulated from prior pulses. For simplicity, we assume constant phase shifts 1φ  and 2φ . 
They might indeed be realized for weak signals where patterning effect might add up linearly 
[47]. The analysis can be extended to format and wavelength converted signals. In this case a 
progressive phase shift PPS is added to the total phase [46]. To see the implications of phase 
patterning on the optical spectrum, we calculate the spectrum of an RZ and a CSRZ signal 
consisting of Gaussian shaped pulses with data encoded as pseudo-random bit sequence 
(PRBS) of 112 1− . To each bit of the signal we then assign an accumulated phase. 

Table 2 shows the signal phase assignment for an exemplary bit sequence 110100. The 
time evolution of the amplitude and phase shift for the bit sequence is shown in Fig. 8 for (a) 
RZ and (b) a signal where the filter is offset such that a CSRZ signal is generated [46]. Figure 
9 shows the calculated spectra of the RZ and the CSRZ signals for 1 2 0φ φ= =  and for 

1 1.875φ π= + , 2 1 / 8φ φ= . 

                                                                                            Vol. 25, No. 24 | 27 Nov 2017 | OPTICS EXPRESS 29551 



PPS=0 (RZ), φ1=φ2=0(a) PPS=-π (CSRZ), φ1=φ2=0(b)
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Fig. 9. Spectral traces of a phase-patterning effect. Calculated spectra for standard (a) RZ and 
(b) CSRZ signals and for phase patterning affect (c) RZ and (d) CSRZ signals after wavelength 
conversion, respectively wavelength and format conversion. 

The position of the tones does not change with 1φ , 2φ  but the spectral region in-between 
tones shows the characteristic structure similar to the one observed in the experiment. The 
presence of phase patterning effect thus leaves traces in the signal spectrum. 

Higher order pseudo-random bit sequences (e.g. 312 1− ) will show a slightly different 
output spectrum due to saturation and recovery effects. Nevertheless, since longer mark-and-
space sequences contribute only to the spectral components at rather low frequencies, it will 
be difficult to observe the difference in the output spectrum. 

6. Conclusion 
We present an analytical model for the optical response of an SOA to short input pulses. By 
suitably adjusting the few parameters of the model we have successfully identified the 
nonlinear effects in the SOA from spectral traces. In particular, by comparing the calculated 
and measured output pump spectra, we clarified the dynamics of the refractive index during 
the pulse-SOA interaction. The gating mechanism of the pulse allows for the experiential to 
give information to conclude that the significant initial decrease of the refractive index is 
mainly due to an FCATPA process, which occurs as a result of an intervalley scattering. By 
fitting the calculated spectra for both pump pulse and CW, we determined the magnitude of 
the time delay and identified it with the XΓ →  intervalley scattering time in the SOA. 

More generally, we know the full dynamics of the SOA gain and refractive index. On this 
basis, we relate the different spectral components of the modulated probe light to the 
respective physical processes in SOAs. We analyze the spectrum of a converted signal and 
estimate the importance of three dominant effects. 

When converting signals with data rates of 40 Gbit/s, the carrier density cannot recover 
completely within a single bit slot. The incomplete carrier recovery between subsequent 
marks induces a progressive increase of the refractive index inside the SOA, and a 
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corresponding decrease of the probe light phase, thereby leading to characteristic features in 
the optical spectra of a signal. This way, the spectral methods indicate the presence of 
patterning effects in SOA. The characteristic features observed in the spectra of the PRBS 
signals at high data powers are explained by assuming the constant progressive increase of the 
refractive index after each mark bit, and a smaller constant progressive decrease for each 
space bit. The regions between consecutive tones in the spectra of PRBS signals carry the 
information on the incomplete carrier recovery in the SOA allowing thus to see the patterning 
effect in the signal spectrum. 

Appendix A. 
The generation of TPA-induced free-carrier can occur either instantaneously (instantaneous 
FCATPA) by the absorption of a photon and a phonon, or via a two-stage process (delayed 
FCATPA), which we now describe. In the first stage, electrons are excited to the Γ -valley of 
the lowest conduction band (CB1) at energies above the X-valley minima by the absorption of 
two photons. These photoexcited electrons are then scattered to the X-valley by short 
wavelength lattice phonons. The transfer to the X-valley (intervalley scattering XΓ → ) is 
favored by the large density of states in the X-valley as compared to the Γ -valley [16]. 

Both steps of this two-stage process do not occur simultaneously as there is a short delay 
of a few picoseconds between these two processes. Due to the specific band structure of the 
semiconductor material, once in the X-valley, those electrons can absorb a photon, without a 
phonon, to reach the next higher conduction band (CB2). 

Previous work from our group may have encountered an FCATPA process delayed by the 
intervalley scattering XΓ → , because the carrier density rate equation in [13], Eq. (13), 
needed a correction term for carrier leakage at high carrier energies. Let XW  be the energy 
separation between the X-valley of CB1 and the top of the valence band for the quaternary 
compound InGaAsP (see Fig. 10), and X,clW  be the energy separation between the 
aforementioned X-valley and the top of the valence band for the cladding. Then X X,clW W<  
holds. If by absorbing a photon of energy 0ω , the condition X 0 X,clW Wω+ ≥  is fulfilled, 
FCA-excited electrons can drift into the cladding, accounting thus for the carrier leakage. 
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Fig. 10. Schematic of energy band diagram with TPA, intervalley scattering, FCA induced by 
TPA and FCA by holes. Two photons promote an electron from the light or heavy hole 
(LH/HH) valence band to the Γ - valley of the lowest conduction band (CB1) at an energy 
above the X-valley minimum. The photoexcited electron can either remain in the Γ- valley by 
simultaneous absorption of one photon and one short wave vector phonon, or it can be first 
scattered by a long wave vector optical phonon into the X-valley and then be lifted to the next 
higher conduction band (CB2) by absorbing a photon. In the process FCA by holes, an electron 
from spin orbit (SO) valence band absorbs a photon (without phonon assistance) and occupies 
a free-hole in the LH/HH valence bands. The one- and two-photon absorptions are shown by 
red vertical arrows, the phonon absorption by a green arrow and the intervalley scattering by a 
green dashed arrow. 

We have tried to describe the change in the refractive index due to FCATPA by employing 
a minimum number of parameters, so we have neglected the FCA-coefficient ( )FCA ,g z τ∆  
compared to the change ( )BF ,g z τ∆  in the BF gain, 

 ( ) ( )FCA BF, , .g z g zτ τ∆ << ∆  (69) 

By introducing the FCA cross-section FCAσ , one can express the proportionality of 

( )FCA ,g z τ∆  to the concentration ( )FCA ,N z τ  of FCA-excited electrons as 

 ( ) ( )FCA FCA FCA, , .g z N zτ σ τ∆ = −  (70) 

A similar proportionality in terms of the concentration of depleted carriers ( ) st,N z Nτ −  is 
found for the change in the BF gain coefficient, see Eq. (23). Here ( ),N z τ  is the total carrier 
density and stN  its unsaturated value. By substituting Eqs. (23) and (70) in the inequality Eq. 
(69), one can obtain an upper bound for the ratio FCAN  to stN N−  (Γ  is the confinement 
factor and a  the BF differential gain), 

                                                                                            Vol. 25, No. 24 | 27 Nov 2017 | OPTICS EXPRESS 29554 



 ( )
( )

FCA

FCAst

,
.

,
N z a

N z N
τ

στ
Γ

<<
−

 (71) 

When the FCA cross-section and the BF differential gain are of the same order of magnitude, 
20 210 m− , the right-hand side of Eq. (71) is of order one and the number of free-carriers 

produced by TPA cannot by far exceed the number of carriers removed by CD. As an 
example, let us assume for FCAσ  the value 20 210 m−  calculated in [16], Fig. 8, for GaAs at 

0 1.55 µmλ = . The product aΓ  can be determined from the structural parameters of the 
employed SOA as well as from the data in Table 1, with help of the formula 

( )sat 02a cA Wπ λΓ =  . Substituting the numerical values for the area of the active region 
20.225 µmA = , saturation energy sat sat 5 pJsW P τ= =  and 20 2

FCA 10 mσ −=  on the right-hand 
side of Eq. (71), one finds 

 
( )

( )
FCA

st

,
0.58.

,
N z

N z N
τ

τ
<<

−
 (72) 

Our SOA model is based upon the unique spectral component observed in the pump 
spectra and attributed to the FCATPA effect. This implies that during the pulse-SOA 
interaction the phase shift ( )FCAϕ τ∆  associated to FCATPA becomes much stronger than the 

BF phase shift ( )BFϕ τ∆ . We will clarify now how such a large effect can come about with a 
relatively small number of FCATPA-excited carriers, see e.g., Eq. (72). We introduce the α -
factors FCAα  and BFα  associated to FCATPA and BF, respectively, and write the 
corresponding index-change, FCAn∆  and BFn∆ , as 

 ( ) ( ) ( ) ( )FCA BF
FCA FCA BF BF

0 0

, , ; , , .
2 2

n z g z n z g z
k k

α α
τ τ τ τ∆ = − ∆ ∆ = − ∆  (73) 

By making use of the requirement Eq. (69) in Eq. (73), one can derive the inequality 

 ( ) ( )FCA
FCA BF

BF

, , .n z n z
α

τ τ
α

∆ << ∆  (74) 

We take into account that FCA 0n∆ <  and BF 0n∆ >  hold, multiply both sides of Eq. (74) with 

( )0k− , integrate over the SOA length, use the definitions of the partial phase shifts, Eq. (21), 
and obtain 

 ( ) ( )FCA
FCA BF

BF

.
α

ϕ τ ϕ τ
α

∆ << ∆  (75) 

Both phase shifts ( )FCAϕ τ∆  and ( )BFϕ τ∆  are known in our model, and we can thus establish 

the retarded time dipτ τ=  at which the ratio ( ) ( )FCA BFϕ τ ϕ τ∆ ∆  reaches its highest value. 
The large effect in the FCA phase shift illustrated in Fig. 2(c) requires the following upper 
bound for the (negative) α -factor associated to FCATPA, 

 
( )
( )

FCA dip
FCA BF

BF dip

.
ϕ τ

α α
ϕ τ

∆
<< −

∆
 (76) 

                                                                                            Vol. 25, No. 24 | 27 Nov 2017 | OPTICS EXPRESS 29555 



Substituting ( ) ( )FCA dip BF dip 2ϕ τ ϕ τ∆ ∆ =  from Fig. 2(c) and BF 3.8α =  from Table 1 in Eq. 

(76), one finds FCA 7.6α >> . 
We close this appendix with the following remark: When the change in gain due to 

FCATPA compared with the change in the BF gain coefficient can be neglected, less than 50% 
free-carriers are produced by TPA than removed by BF (see Eq. (72)), while the FCA phase 
shift can become twice as large as the BF phase shift. 

Appendix B. 
In this appendix, we follow [22] to review the integration of the propagation equation for the 
pulse power ( )CD ,P z τ  when CR and all ultrafast processes (including TPA) are neglected. 

Subsequently, we develop a method for integrating arbitrary positive powers of ( )CD ,P z τ  
over z . 

We assume a given input pulse shape ( )inP τ . Then the differential equation 

 ( ) ( ) ( )CD CD CD, , ,P z g z P z
z

τ τ τ∂
=

∂
 (77) 

together with the initial condition 

 ( ) ( )CD in0,P Pτ τ=  (78) 

is equivalent to the integral equation 

 ( ) ( ) ( )CD in CD
0

, exp g , d .
z

P z P z zτ τ τ
 

′ ′=  
 
∫  (79) 

The decrease of the local gain coefficient ( )CD ,g z τ  from its small-signal value 0g , being 
due to CD, is described by the rate equation (the product sat sP τ  denotes the saturation energy, 
see [22]) 

 ( ) ( ) ( )CD
CD CD

sat

,
, , ,

s

P z
g z g z

P
τ

τ τ
τ τ
∂

= −
∂

 (80) 

with the initial condition 

 ( )CD 0, .g z g−∞ =  (81) 

In view of Eq. (79) we integrate both sides of Eqs. (80) and (81) over z , consider instead 
( )CD ,g z τ  the dimensionless integral 

 ( ) ( )CD CD
0

, g , d
z

h z z zτ τ′ ′= ∫  (82) 

and derive the differential equation 

 ( )
( ) ( ){ }in CD

CD
sat

exp , 1
, ,

s

P h z
h z

P

τ τ
τ

τ τ

− ∂  = −
∂

 (83) 

with the initial condition 

 ( )CD 0, .h z g z−∞ =  (84) 
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One can integrate the differential equation Eq. (83) by separating the variables and by noting 
that 

 
( )

( ) ( ){ }CD CD
CD

1 , ln 1 exp , .
exp , 1

h z h z
h z

τ τ
τ ττ
∂ ∂

= − −  ∂ ∂−  
 (85) 

By taking into account Eq. (84), the solution can be read off from 

 
( )

( ) ( )CD
in

0 sat

1 exp , 1ln .
1 exp s

h z
P d

g z P

ττ
τ τ

τ −∞

 − −    ′ ′= − 
− −  

∫  (86) 

Equation (86) makes apparent a gain compression depending on the energy of the pulse 
integrated over a time interval that is much longer than the pulse width. Introducing the 
abbreviation 

 ( ) ( )in
sat

1exp d ,
s

P
P

τ

τ τ τ
τ −∞

 
′ ′= − 

 
∫P  (87) 

one can write the solution of Eq. (83) as 

 ( ) ( ) ( ){ }CD 0, ln 1 1 exp .h z g zτ τ= − − − −  P  (88) 

If one sets z L=  in Eq. (88) and one denotes 0 0h g L= , one can recover Eq. (29). 
By substituting Eq. (88) in the right-hand side of Eq. (79), one obtains the following 

explicit solution of the propagation equation Eq. (77): 

 ( ) ( )
( ) ( )
in

CD
0

, .
1 1 exp

P
P z

g z
τ

τ
τ

=
− − −  P

 (89) 

In order to compute integrals of arbitrary positive power of CDP , we introduce the time 
dependent, dimensionless coefficients 

 ( )
( )

( )
( )

CD0

in00

,
d ,

exp 1

nL

n n

P zg
C z

Ph

τ
τ

τ
 

=  
 −    
∫  (90) 

for 1, 2,3...n = . For further convenience we set ( )0 0expG h= , ( ) ( )0 CD CD ,h h h Lτ τ+ ∆ = , and 
( ) ( )CD CDG exp ,h Lτ τ=    . Then with help of Eq. (89) the coefficient ( )nC τ  takes the form 

 ( )
( ) ( ) ( ){ }

0

00 0

d .
1 1 1 exp

L

n n n

g zC
G g z

τ
τ

=
− − − −  

∫
P

 (91) 

We provisorily suppress the time dependency and change the integration variable in Eq. (91) 
according to 

 ( )01 1 exp .u g z= − − −  P  (92) 

We note that 
0

1
z

u
=
=  and 

 ( ) 1
0 CD1 1 exp ,

z L
u h G−

=
= − − − =  P  (93) 

where the last equality in Eq. (93) immediately follows from Eq. (88) with z L= . Using 
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and getting back the time dependency, one finds 

 ( ) ( )
( )( )1

CD

1

0
d1 .
1

n
n n

G

uC G
u uτ

τ
τ−

−= −
− +  

∫ P
 (95) 

Such integrals can be calculated by partial fraction expansion. For 1n =  the integral in Eq. 
(95) gives 

 
( ) ( )1d 1 1 1 1d ln 1u u bu

u u b b u b u b
− = − = − − − ∫ ∫  (96) 

with 1b = −P . By using the integration limits 1u =  and 1
CDu G−=  in Eq. (96), the equality on 

the right-hand side of Eq. (93) and the identity 

 ( ) 0
0

CD

1 1,
G

b G
G

− = −  (97) 

one obtains ( )1C τ in the form announced by Eq. (49) 

 ( ) ( ) ( )

1

0 0
1

CD CD

1 ln .
G G
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G G

τ
τ τ

−
   
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 (98) 

For higher n  one can derive a recurrence relation by noting the identity 
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One finds that the coefficients ( )1nC τ+  and ( )nC τ  are related by 

 ( ) ( ) ( ) ( )
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CD0
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1
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Equation (100) shows that all ( )nC τ  can be expressed in terms of the gain contribution 
( )CDh τ∆  given by Eq. (29). In particular, for 2n = , one finds Eq. (58) 
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 (101) 

Some properties of the functions ( )nC τ  are useful for recognizing their role in the gain and 

phase shift dynamics. From the definition Eq. (90) it follows immediately that all ( )nC τ  are 
positive 

 ( ) 0.nC τ >  (102) 
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By differentiating both sides of Eq. (91) with respect to τ  and by taking into account the 
definition of ( )τP , Eq. (87), one obtains 
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Obviously, the right-hand side of Eq. (103) is negative implying that ( )nC τ  is a decreasing 
monotonic function of time with its largest value reached at τ = −∞ . Substituting ( ) 1−∞ =P  
and ( )CD 0G G−∞ =  into Eq. (95), one can readily perform the integral over u  with the result 
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0

1
.

1

n

n n

G
C

n G
−

−∞ =
−

 (104) 

In particular, ( )1 1C −∞ =  and ( ) ( ) ( )2 0 01 2 1C G G−∞ = + −   . For an unsaturated SOA gain 

0 20 dBG > , the right-hand side of Eq. (104) can be approximated by 1 n . 
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