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Abstract

The determination of primary damage production efficiency in metals irra-
diated with fast neutrons is a complex problem. Typically, the majority of 
atoms are displaced from their lattice positions not by neutrons themselves, but 
by energetic primary recoils, that can produce both single Frenkel pairs and 
dense localized cascades. Though a number of codes are available for the 
calculation of displacement damage from fast ions, they commonly use binary 
collision (BC) approximation, which is unreliable for dense cascades and thus 
tend to overestimate the number of created displacements. In order to amend 
the radiation damage predictions, this work suggests a combined approach, 
where the BC approximation is used for counting single Frenkel pairs only, 
whereas the secondary recoils able to produce localized dense cascades are 
stored for later processing, but not followed explicitly. The displacement 
production in dense cascades is then determined independently from molecular 
dynamics (MD) simulations. Combining contributions from different calcu-
lations, one gets the total number of displacements created by particular 
neutron spectrum. The approach is applied here to the case of beryllium 
irradiation in a fusion reactor. Using a relevant calculated energy spectrum of 
primary knocked-on atoms (PKAs), it is demonstrated that more than a half of 
the primary point defects (∼150/PKA) is produced by low-energy recoils in 
the form of single Frenkel pairs. The contribution to the damage from the dense 
cascades as predicted using the mixed BC/MD scheme, i.e. ∼110/



PKA, is remarkably lower than the value deduced from uncorrected SRIM
calculations (∼145/PKA), so that in the studied case SRIM tends to over-
predict the total primary damage level.

Keywords: irradiation, neutrons, point defects, beryllium, Monte-Carlo
simulations, molecular dynamics simulations
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1. Introduction

The quantitative evaluation of the primary damage level in fast neutron irradiated materials is
not an easy task. Though neutrons are the primary cause of the damage, the cross-section of
neuron scattering on atoms of the majority of nuclear reactor structural and functional
materials is low (within several barns) and the share of atoms displaced in irradiated materials
by neutrons themselves is negligibly low. However, for the same reason of low scattering
cross-section, the successful collisions of neutrons with target atoms are nearly head-on ones
and thus the recoils get a noticeable share of the neutron kinetic energy (i.e. tens and hundreds
of keV, depending on the particular neutron energy spectrum). The collision cross-section of
charged energetic primary recoils (also called primary knock-on atoms (PKAs)) with the
target atoms is much higher than that of neutrons and the dominant part of atom displace-
ments in neutron-irradiated materials is normally produced by PKAs. The spectrum of initial
PKA kinetic energies, N Ed d ,PKA can be recalculated from the known neutron spectrum
Φn(En) over neutron energies En as [1]
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where En
max is the maximum neutron energy in the spectrum, E the energy transferred to

PKA, d∑/dEn the neuron scattering cross-section on target atoms, and we limit ourselves to
one-component targets in order to avoid cumbersome equations. Due to the kinematics of
neutron scattering, in realistic neutron irradiation environments neutron flux creates in
irradiated materials a wide energy spectrum of PKAs ranging from effectively zero up to
En

max reached in the head-on collisions. For the particular case of beryllium, which is used in
this paper as a relevant example, we use the calculated PKA energy spectrum in the beryllium
first wall of the future fusion reactor DEMO [2], where 14MeV neutrons from (D, T) fusion
reaction dominate in the neutron spectrum [3]. Figure 1 shows the normalized probability
density of PKA creation in the selected neutron spectrum, p ,PKA recalculated from the above-
mentioned PKA energy spectrum using the relation
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where f is the neutron flux and the numerical factor N0 = 2.14 × 10 20 recoils (n cm 2) 1 is
selected so as to provide the normalization condition,
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It can be seen that while most of the primary recoils have energy less than 2MeV with
the peak at 30 50 keV, the high-energy tail extends to more than 5MeV.



When the PKA energy spectrum is known, the number of atomic displacements (i.e. the
total number of Frenkel pairs, G) created in a target material by neutron irradiation can be
written down as [1]

G
N

E
E E

d

d
d , 3

E

E
PKA

d

max

ò n= ( ) ( )

where Ed is the minimum transferred energy required to irreversibly displace a target atom
from its lattice site, Emax the maximum energy that can be transferred to a target atom in the
relevant neutron spectrum, and ν(E) is the average number of stable Frenkel pairs produced
by a primary recoil ion with the initial kinetic energy E. For the case of beryllium target, the
first-principles based estimates give Ed ∼ 20 eV [4], while Emax depends on the neutron
spectrum (e.g. for a typical fusion spectrum with a large share of 14MeV neutrons,
Emax ≈ 5MeV, see figure 1).

As can be seen from equation (3), in order to estimate the average rate of Frenkel pair
production, one has to know two independent functions the PKA energy spectrum and the
function ν(E) for all relevant PKA energies. The calculations of PKA spectra can be done
quite reliably with the modern software (e.g. FISPACT-II code [5]) and nuclear data libraries
[1], so in the description below we deal primarily with the determination of the average
number of displacements from PKA with different initial kinetic energies E.

The most straightforward way to determine ν(E) is to use standard analytical expressions,
such as the Norgett Robinson Torrens (NRT) model [6], that relate the number of created
atomic displacements to the energy, Td, lost by the ion in the damage events. Unfortunately,
in addition to the creation of displacements, fast ions have alternative channels of energy loss
(electronic stopping, phonon excitation) and so Td can be considerably lower than E (e.g. a
500 keV iron ion propagating in iron loses only roughly 200 keV of its initial kinetic energy
for atom displacement [7]). Moreover, the relation between Td and E is quite non-trivial and
requires serious additional efforts for its calculation, making the use of standard analytical
formulae much less simple than it might seem.

Figure 1. The probability density pPKA to create primary recoils with certain energy for
neutron irradiation of beryllium with the neutron flux spectrum expected on the first
wall of DEMO reactor (based on the data from [2]). The insert shows the same curve in
the narrower energy range (with PKA energy at abscissa measured in keV).



In order to improve the estimates of the average number of displacements created by a
fast ion, it is currently common to use numerical methods solving the ion transport equation.
The evident advantage of the numerical approach is its ability to include in the calculation
various relevant factors that affect ion propagation in the matter, such as non-damaging
energy loss, sample geometry and composition, etc. The most widely used approach is based
on the Monte-Carlo algorithms, the most known example being the SRIM code [8]; a recent
example of the approach applying the convolution of SRIM-based estimates of ν(E) with the
PKA energy spectrum created by a particular neutron spectrum can be found in [9]. In these
algorithms the ion transport through the target is simulated in the framework of binary
collision (BC) approximation as a sequence of fast ion collisions with individual target atoms.
For each fast ion its trajectory is implemented as a stochastic realization of a Markov process.
That is, the distances between the consecutive collisions are selected at random (with the
average distance defined by the target density) and the ion moves straight between the
collisions. The energy transferred to the target atom and the kinematics of scattering are
determined according to a predefined scattering cross-section, assuming a random value of the
impact parameter. In each collision, the energy of the primary ion decreases and eventually
falls below 2Ed, so that no more target atoms can be displaced. Very often, not only the
primary ion trajectory is followed until it stops, but also the trajectories of the whole set of
secondary and higher order recoils. Simulating in this way trajectories of sufficiently large
number of primary ions with the same initial kinetic energy E, one can calculate not only the
average number of irreversible displacements of target atoms, but also other useful para-
meters, such as the average projected ion range, scattering, etc.

An illustrative example of a fast ion trajectory is shown in figure 2. ‘Fast’ means here that
the initial kinetic energy of the ion is high enough to irreversibly displace many recoiled
atoms from their lattice positions. The irreversibility implies that each such recoil gets energy
above a certain threshold to be able to move sufficiently far from its original location in order
to avoid spontaneous recombination with the remaining vacancy. That is, the transferred
energy should be at least not lower than Ed, but in more practical situations (corresponding
e.g. to typical reactor operation conditions) it must be even higher because at temperatures of

Figure 2. A sketch of a fast ion induced displacement cascade (black dot lines mark the
trajectories of the ion and energetic higher order recoils). The displaced atoms are
marked with red dots. Regions of Frenkel pair creation are encircled in light grey (cyan
in colour version), dense localized cascades in darker grey (green), and the branches
of secondary and higher order recoils in black (red).



practical interest too close Frenkel pairs can quickly recombine as a result of interstitial
mobility. Assuming for the lower threshold the value of some tens of eV, as typical for many
solids, by ‘fast’ ion we understand below ions with energies exceeding at least several keV.

As one can notice, three typical modes of damage creation can be separated depending on
the energy T transferred to secondary recoil. When the transferred energy is lower than a
certain threshold Elow, only separate single Frenkel pairs are produced. Such collision events
with low energy transfers to recoil atoms are most frequent at the early stages of fast ion
deceleration, when the ion velocity is still high and small-angle scattering events dominate.
Note that Elow can be noticeably higher that Ed. For example, molecular dynamics (MD)
based calculations for beryllium indicate Elow ≈ 500 eV, in agreement with SRIM calcula-
tions showing only separate Frenkel pairs on the primary ion trajectory for Be ions with
energies T � 500 eV [10]. The average number of such Frenkel pairs grows with E in this
energy range, but remains somewhat lower than one would expect from the NRT
equation [6].

When the energy transferred to secondary recoil exceeds Elow, the mode of damage
production changes. The recoil displaces already multiple neighbour atoms that, in turn,
displace their neighbours and thus a collective movement of many atoms within a localized
volume occurs. The maximum volume of such ‘dense cascade’ can reach as much as several
nanometers in diameter, but freezes down typically within a picosecond, leaving behind some
displaced atoms and the equal number of unoccupied lattice positions (vacancies). According
to several MD simulations, single dense cascades are created only if the ion energy does not
exceed a certain threshold, Ehigh, above which well-separated dense cascades can be identified
along the ion trajectory [11 13]. The numerical value of Ehigh is less certainly defined than
Elow and can vary, depending on the particular material, from several keV to tens of keV. For
example, the MD simulation results for beryllium indicate Ehigh < 3 keV [10], while for iron
it is rather ∼20 keV [14].

Finally, when the energy transmitted to secondary recoil exceeds Ehigh, such recoil can be
considered as another ‘fast’ ion that launches its own branch of the collision cascade and thus
can be treated on the same grounds as the PKA.

The main problem with the evaluation of the primary displacement damage with the help
of BC codes is the treatment of dense cascades created by recoils with the energy in the
intermediate range, Elow < T < Ehigh. Indeed, it is well known that in order for the BC
approximation used in MC approach to be fully applicable, the distance between the con-
secutive collisions must be much larger than the interatomic distance so that the collisions are
independent from each other. This condition is evidently violated for the secondary and
higher-order recoils that get kinetic energy in the range corresponding to the ‘dense cascade’
formation. As a result, the numbers of surviving Frenkel pairs predicted in this energy range
by BC codes tend to differ (typically in the direction of overestimation [7, 15]) from those
obtained at the same energies in MD calculations, where the collective movement of atoms is
fully accounted for [14]. Hence, it is generally preferable to use MD calculations when
dealing with recoil energies falling in the ‘dense cascade’ range.

In contrast, in the low-energy part of the transferred energy spectrum, the average
number of created point defects predicted by BC and more detailed MD simulations is very
similar, provided the Monte-Carlo BC code employs a displacement threshold energy relevant
for the particular interatomic potential applied in MD. Though sounding obvious, the latter
requirement is not so easy to fulfil because of both the basic problems in the identification of
the appropriate threshold displacement energy by numerical modelling [16] and the sensi-
tivity of MD predictions to the employed empirical interatomic potential. For example, MD
estimates of Ed in beryllium with two different interatomic potentials give the values of



∼17 eV [4] and ∼40 eV [17], while the first principles estimates indicate it to be rather
∼30 eV [4].

The main problem one meets when applying the MD approach to the estimation of
damage is its inability to treat ions with the energies well above Ehigh. In order to illustrate it,
it is instructive to look at cascades in iron, possibly the most thoroughly investigated metal by
now [7, 13, 18, 19]. In order to simulate the cascades with the initial iron recoil energy of
20 keV one needs simulation cells of ∼0.5 million atoms [7]. The accumulation of reasonable
damage statistics (at least 10 cascades with different initial recoil momentum orientations) for
such simulation cells is a tough, but practically achievable task on modern supercomputers.
On the other hand, to simulate a cascade created by 200 keV recoil, one needs already
∼10 20 million atom cells [7], where the accumulation of relevant statistics requires quite
serious efforts [7, 20]. One can find in the literature single examples of even more demanding
calculations (with simulation cells of up to 500 million atoms and primary recoil energies up
to 500 keV [21]), but these consume significant computer resources and present serious
difficulties in the intermediate data storage, processing and visualization. Having in mind the
electronic energy loss, which is quite strong at such ion energies (though only seldom directly
included in MD calculations, see e.g. [20, 22]), the 200 keV MD cascade energy in terms of
the created displacements should roughly correspond to PKA with the energy of ∼0.5MeV
[7], or the medium PKA energy for 14MeV neutron irradiation of iron-based targets in a
fusion facility. For the higher recoil energies needed to describe the PKA energy spectrum
part above the medium value, MD calculations are at present unrealistic. For metals
noticeably lighter than iron, with more extended cascades and higher maximum PKA ener-
gies, the problems of using MD for the direct calculation of damage from high energy recoils
become only more severe.

Having in mind that in the case of fast neutron irradiation the majority of PKAs have
energies higher than the above-mentioned typical values of Ehigh, the development of a
simulation strategy that combines the strong sides of both BC and MD approaches for the
calculation of the cascade function is definitely of immediate practical value. In this paper we
describe a possible implementation of such a strategy and its application to the evaluation of
the level of primary damage in beryllium first wall of a fusion reactor.

2. A combined BC/MD technique of primary damage evaluation

2.1. Monte-Carlo part

In order to improve the estimates of the primary damage level predicted in the framework of
the BC approximation, we follow the idea to combine BC Monte Carlo and MD calculations,
as suggested in [23]. In our approach, the average number ν(E) of Frenkel pairs generated by
primary recoil with the initial energy E is written down as a sum of three terms,
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hn are the numbers of Frenkel pairs created by secondary recoils with the

transferred energies in the ranges T < Elow, Elow < T < Ehigh and Ehigh < T, respectively.
The number of point defects from low-energy secondary recoils, ,1

ln is reasonably well
described in the BC approximation, as already discussed in section 1, and thus can be directly
evaluated applying a BC code. For the recoils that receive energy T in the intermediate range,
we calculate only the numbers of such secondary recoils and use for each T an average
number of defects νMD(T) calculated independently using MD. The formal relation for 1

mn can
be written down as
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where S E T T, d2 ( ) is the average number of secondary recoils in the energy range
T T T, d+( ) created by fast ions with energy E and W1 is the probability density that a
decelerating fast ion acquires the energy T after the collision that makes its kinetic energy fall
below Ehigh. The term with W1 in equation (5) takes into account that in the typical neutron
irradiation conditions the recoil range is much less than the size of irradiated sample and thus
one has to add to S2 also the contribution from the dense cascades created by the primary
recoils at the end of their ranges. Strictly speaking, when PKA energy falls below Ehigh, it
may at the same time fall below Elow as well. In this case it should be added rather to E ,1

ln ( )
but, as will be shown below, the contribution of such PKAs to the total number of defects is
negligible.

Finally, the number of Frenkel pairs created by the ‘fast’ secondary recoils can be written
down as
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where Tmax is the maximum energy that the primary recoil with energy E is able to transfer to
a target atom (in the case of one-component target, as considered here, Tmax = Е). When
writing equation (6), we have taken into account that high-energy secondary recoils in a one-
component target are of the same type as the primary recoil and thus the number of defects
created by them is described by the same function ν(T). In other words, equation (4) is
essentially an integral equation for ν.

Due to the specific nature of the cascade, the simplest way to solve this integral equation
is to use recursion. Indeed, for each high-energy secondary recoil the function ν is again
expressed in terms of equation (4) and then substituted into equation (6), giving
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where 2
ln is the total number of isolated Frenkel pairs directly created by the primary ion and

all ‘fast’ secondary recoils in low-energy-transfer collisions, that is
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the integral in the second term of equation (7) gives the total number of point defects created
by the second and the third generations of recoils that have got the energy in the intermediate
range, with the kernel
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and the third term in equation (7) describes the number of defects created by the high-energy
recoils of the third generation, with
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It is clear that the fraction of the third-order ‘fast’ recoils, as determined by function S ,3
h

for any primary recoil is notably less than the number of second-order ‘fast’ recoils and thus
the contribution to the total number of generated defects from the last term in equation (7) is
less than that from the last term in equation (4). Repeating the recursion procedure again and



again, one gets at the kth recursion level (k � 3) the equation
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where functions k
ln and Sk 1
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+ are determined recursively from
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The unknown last term in equation (11) is determined by the number of high-energy
recoils of consecutively higher generation order. In practice, each branching of cascade
sharply reduces the number of next-generation ‘fast’ recoils, so that the unknown term
quickly vanishes as k increases and the recursion sequence stops at a finite iteration stage K,
giving
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As can be seen, in order to estimate the total number of displacements one needs to know
only the functions k

ln and Sk 1
m
+ that can be determined using an appropriate BC code and the

function νMD obtained from MD calculations.
Strictly speaking, the recursive procedure for the determination of the total numbers of

defects created by low-energy recoils, as well as the numbers of secondary and higher-order
recoils with the initial energies in the intermediate range, can be very straightforwardly
implemented in any BC MC code. To do this, such a programme has to be supplemented with
a tool for on-the-fly analysis of the new recoils, where the recoils with T < Elow directly
contribute to the estimate of the primary damage, whereas the recoils with the energy in the
intermediate energy range add to the summary energy spectrum Sm and are not followed
further. The high-energy recoil branches are to be processed according to the same procedure
until they are expired. Finally, each high-energy recoil trajectory is traced only until the recoil
energy falls below Ehigh, rather than below 2Ed, while the recoil’s eventual contribution to
either the isolated defect number or to the medium-energy recoil spectrum is determined
depending on its final energy. Repeating this separation procedure for many primary ions with
the same initial energy E, it is easy to get the energy distributions for νl(E) and Sm(E, T)
averaged over many cascades.

Unfortunately, in order to implement this procedure, one has to modify the existing MC
codes, which implies the access to the source code. An alternative approach, followed in this
paper, is to post-process the information about all collisions saved in the output files of the
available MC codes. The strong disadvantage of this approach is the very large size of files
required for saving the output. At the primary recoil energies of hundreds of keV and quite a
modest statistics (say, only 100 attempts for the same initial recoil energy), the output file
sizes can reach many gigabytes. To overcome this problem, only the data for the limited
number of recoil generations can be saved. For example, the widely used SRIM code saves
the data for only the second- and (partly) third-generation recoils. However, this is rarely



sufficient for fast neutron irradiation that creates quite a number of very energetic PKAs and,
as a result, a lot of fast recoils remains in the recoil energy spectrum of even the third recoil
generation. Hence one additionally meets the need to estimate the contribution of these
remaining fast recoils to the overall damage.

In order to do it, we use an indirect recursion. That is, the spectra S E T,3
m ( ) are directly

evaluated for ions with energies E on some energy grid between Ehigh and Emax from the BC
code output data and are then used for the numerical integration of the recursion relations
(12) (14). The largest body of calculation here is required for the evaluation of all the
necessary spectra, especially when Emax is high and the ion kinetic energy grid used for MC
runs is sufficiently dense. On the other hand, the numerical evaluation of recursion equations
converges quickly. The reason is that the collisions with high energy transfers are very rare
and thus the maximum energies Tmax of secondary and higher order recoils generated by PKA
with the initial energy E are remarkably less than E, being the lower, the higher is the recoil
generation order. Correspondingly, the integration ranges in the last terms of equations (12)
and (13) quickly shrink after each iteration, eventually vanishing completely.

In practical calculations, where the PKA spectrum for a desirable neutron spectrum is
usually evaluated prior to the damage calculations, it is technically convenient to first average
the relevant values over the neutron spectrum,
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where pPKA is the normalized probability density of PKA creation in the selected neutron
spectrum, see equation (2).

Then it is possible to write down the recursion equations averaged over the neutron
spectrum, e.g.
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etc, and only then apply the numerical integration in order to avoid making it for each value
of E.

2.2. MD part

MD is the numerical technique usually considered as the most relevant one for the modelling
of dense cascades, where the primary damage is created as a result of strongly correlated
atomic motion [7]. The main reason for that is generally assumed to be the fact that the size
and evolution time scales of such cascades are compatible with the simulation cell sizes and
calculation times achievable for MD calculations on sufficiently powerful modern super-
computers. However, this claim should be faced with a certain caution. To better understand
it, let us briefly discuss the sequence of dense cascade collision stages.

In very general terms, four stages of the cascade-induced damage evolution, strongly
different in the involved time scales, can be identified [7, 19], including (i) ballistic damage
creation, (ii) correlated recombination, (iii) escape of mobile point defects to the bulk and (iv)
the evolution of remaining immobile defects (if any) as a result of interaction with freely-
migrating point defects.



The shortest stage (that lasts typically one picosecond) is the ballistic one, where the
energy of the initial recoil is redistributed between the nearby atoms in the simulation cell.
The number of moving atoms grows fast and then quickly decreases as the introduced energy
is scattered in the surrounding matrix by both thermal conductivity and elastic waves. Due to
the fast cooling down of the excited region, not all the atoms have time to return to the lattice
sites and some of them remain dissolved in interstitial positions and an equivalent number of
lattice sites remains unoccupied. Due to the very short duration of the ballistic stage, MD
simulations can often be undertaken for the impact energies well above Ehigh and hence MD
can be also used to evaluate the value of Ehigh as the highest initial ion energy for which the
collision cascades mostly remain to be dense and do not break into well separated sub-
cascades created by secondary recoils.

Crystal defects that remain in the cascade area after the ballistic stage termination are
very different in terms of their mobility. The most mobile defects are usually single self-
interstitials and, in some materials, small interstitial clusters that manifest relatively fast
diffusion at the temperatures of interest for relevant applications. On the contrary, vacancies
and small vacancy clusters are considerably slower, while the mobility of clusters with more
than three vacancies, even if non-zero, is seldom of practical relevance. As a result, at the
second stage of cascade evolution the dominant process is the diffusion of interstitial defects,
a part of which recombines with nearly immobile (at these time scales) vacancy defects and
another part escapes to the surrounding bulk material, becoming so called ‘freely migrating’
interstitials that further contribute to the secondary damage kinetics and are thus of the
primary practical interest. Because of the correlated spatial distribution of vacancies and
interstitials in the area occupied by the cascade and the relative immobility of vacancies, the
recombination loss of interstitials is determined by the defect spatial distribution geometry
rather than the temperature and can constitute a noticeable part of defects produced at the
ballistic stage. MD simulations at the post-ballistic stage are not frequently reported because
they require very long simulation runs (up to nanoseconds) even when the accelerated MD
techniques are applied (e.g. the increase of simulation temperature to accelerate the interstitial
diffusion). In particular, for beryllium such MD simulation was undertaken in [10], where less
than a half of interstitials created at the ballistic cascade stage was shown to survive correlated
recombination and escape into surrounding volume following numerical annealing at 600 K.

The third stage of cascade evolution, involving the dissolution of the non-recombined
vacancies in the bulk, can hardly be done with the help of MD but can be studied, if needed,
by alternative atomistic techniques, such as kinetic Monte-Carlo. Such simulations do not
change the total number of surviving vacancies, but allow estimating how many vacancies
eventually escape the cascade area to become freely migrating defects and which share of
vacancies becomes immobilized in vacancy clusters, which should be further treated as void
nuclei in the framework of more macroscopic treatment, such as the chemical rate the-
ory [24, 25].

A common trend of the MD simulations in various metals is the power law dependence
of the calculated number of defects v EMD( ) on the initial recoil energy E [7], that is

v E E , 19p
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where αMD and p are numerical factors. The value of p is typically not much different from
unity. Specifically for cascades in Be, p = 1 [10], though values less than one are more
common (e.g. p = 0.75 for iron in the dense cascade energy range of 1 20 keV [7]). The
prefactor values are αMD ≅ 18.6 keV 1 for the post-ballistic output and αMD = 8.3 keV 1

for the case, when the material temperature allows the correlated recombination [10],
assuming that E is expressed in the units of keV. When equation (19) reduces to the linear



dependence, the contribution of recoils in the dense cascade energy range to the overall
number of generated point defects, entering equation (10), acquires especially simple form,

v N E , 20m
MD

ma= ( )
where Nm is the total number of recoils falling in the ‘dense cascade’ energy window,
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and E is the neutron spectrum averaged energy transferred to all recoils belonging to the
medium energy range,
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To conclude this section, let us briefly discuss the reliability of MD predictions. It is well
known that the accuracy of MD simulations is sensitive to the reliability of the interatomic
potentials used. It is important that employed potentials are able to correctly describe the
effects crucial for the studied task.

When dealing with the simulation of dense collision cascades, the predictions for the
ballistic stage are usually only weakly sensitive to the form of the potential. The main mode
of atom interactions at this stage is the repulsion between quickly moving atoms coming close
together and it is a usual practice to include in the potentials applied for cascades simulations
a short-range term in the form of the universal ZBL potential [8], which dominates in close
collisions. On the contrary, at the second stage of the cascade annealing the most important
potential feature is its ability to correctly describe the shape and mobility of interstitials and
small interstitial clusters. For example, interstitials should move much faster than vacancies
and the interstitial clusters should not demonstrate unphysical features (e.g., there should be
no quick artificial one-dimensional cluster diffusion if it is not expected for the studied
material). For beryllium, this condition is satisfied e.g. by the potential suggested in [26],
which correctly describes vacancy interactions at short separations, the ground state inter-
stitial configuration and the diffusion modes of self-interstitials in beryllium, as predicted by
first principles calculations [27, 28].

2.3. Combined BC/MD algorithm

The combined BC/MD algorithm for the calculation of the primary radiation damage that
follows theoretical considerations described in two previous sections can thus be summarized
as follows.

(i) The calculation of the expected PKA energy spectrum for the particular neutron
irradiation environment. Even though this information is required mostly on stage (v)
below, one has to realize how large the maximum expected PKA energy is.

(ii) The estimation of the borders of the medium-energy window, Elow and Ehigh. The
estimates can be obtained either in BC approximation or from MD simulations. Even
better might be to make a quick estimate using a BC code and then to perform several
trial MD calculations to verify the BC estimates. Strictly speaking, the selection of both
Elow and Ehigh is to some degree uncertain because neither can be defined rigorously, but
it is important to select them so that only well-separated single Frenkel pairs were created
at PKA energies below Elow and that separation into dense subcascades was sufficiently
pronounced above Ehigh.



(iii) Calculation of fast ion propagation in the studied material using an appropriate BC code.
Calculations are performed for a reasonably dense discrete set of ion energies in the range
corresponding to ‘fast’ ions (that is, from Ehigh to Emax), executing sufficient number of
runs for each considered energy to achieve reasonable statistics. Strictly speaking,
damage from PKAs with energies below Ehigh can be calculated as well, directly
contributing to ln and the energy spectrum of medium-energy recoils, but for realistic
neutron spectra these contributions can be safely neglected.

(iv) Numerical processing of the second- and higher-order recoil data in order to extract the
trajectory averaged numbers of isolated Frenkel pairs and the energy spectra of second-
and higher-order recoils getting the initial energy in the medium-energy range. Ideally,
this processing should be done on-the-fly at stage (iii) in order to save computation time
and avoid data storage limitations. If this is impossible, the relevant data should be
extracted by post-processing of the ‘raw’ output files containing the data on the
deceleration and scattering of PKAs and the higher-order recoils they generate. Having in
mind the amount of information to be processed in this way, the post-processing requires
appropriate computer utilities to perform all necessary calculations.

(v) The calculation of the PKA energy spectrum averaged values for the Frenkel pair
numbers from the low-energy recoils and the histograms of energy distribution of recoils
falling in the medium-energy range.

(vi) MD based estimation of the dependence of the function νMD on the initial recoil energy
in the energy range leading to the formation of dense cascades. This is usually a
formidable task in itself, but can be done only once for each particular material and is
completely independent of BC calculations.

(vii) The final calculation of point defect production numbers using the energy spectra for
medium-energy recoils obtained in stage (v) and the efficiency of damage production for
medium-energy recoils calculated at stage (vi).

3. An example of primary damage calculation in beryllium for a particular PKA
energy spectrum

As an example of implementation of the algorithm described in section 2 for a practical case,
we have applied it to evaluate the damage level expected in beryllium first wall in the future
fusion reactor DEMO. The relevant PKA energy spectrum for this application was taken from
[2]; see equation (1) with the normalized PKA energy spectrum pPKA(E) shown in figure 1.
The spectrum peak lies at 30 50 keV, implying that in the case of beryllium irradiation in a
fusion reactor the absolute majority of PKAs can be considered as ‘fast’.

Having in mind already mentioned results of MD simulations of cascades in beryllium
[10], the borders of the medium-energy window were selected as Elow = 0.5 keV and
Ehigh = 3.5 keV.

The BC part of the programme was implemented using the code SRIM-2013, in spite of
its restrictions described above. The Be ion trajectories in beryllium were determined for ion
initial energies in the range of 4 keV 5.62MeV using a variable spacing energy grid. The
used energy grid step was 1 keV from 4 to 30 keV, then 5 keV from 30 to 100 keV, 10 keV
from 100 keV to 2.6 MeV, and 20 keV for the remaining energy range above 2.6 MeV. For
each energy group, the data for 100 different normal incidence trajectories were calculated in
the full cascade regime.

The post-processing of the data was performed using a homemade computer utility,
which implements stages (iv) and (v) of the algorithm described in section 2.3. The



programme reads the data from the files COLLISON.TXT produced by the SRIM code,
processes the data contained in these files (in batch processing mode), extracting for each
saved ion trajectory the numbers of isolated Frenkel pairs and the energy spectra of second-
and higher-order recoils, averages the obtained data over all trajectories saved in each input
file and eventually creates for each input file an output file with the summary information that
includes the energy-dependent histograms for the numbers of isolated defects in the low
energy-range and the numbers of recoils in the intermediate and fast energy ranges. The
histogram that covers ‘fast’ energy range is normally not empty after this processing because
SRIM does not save complete scattering data for the recoils other than the secondary ones.
The information for the sum total of isolated point defects collected in the low-energy range is
saved as well.

Based on these data, figure 3 compares the contributions from PKAs and the ‘fast’
secondary recoils to the direct generation of Frenkel pairs in collisions with the low energy
transfer. It can be easily noticed that though isolated Frenkel pairs are mostly produced by
PKAs themselves, the contribution of secondary recoils is non-negligible at all considered
energies. The contributions from the third- and higher-order recoils to the isolated Frenkel
pair production are not saved in SRIM output and thus cannot be analysed directly.

Quite a number of secondary recoils with the energy exceeding Ehigh are produced by
PKAs with high initial energies, especially in the MeV range, as can be seen in figure 4. Even
having in mind noticeable data scatter due to insufficient statistics, it can be noticed that
perceptible numbers of ‘fast’ secondary recoils per PKA are observed only for recoil energies
below 20 25 keV, even when the considered PKA energies reach 5MeV. The tail of single
events with higher transferred energies extends to ∼80 keV and only very rare recoils with
transferred energy above 80 keV were recorded in the processed MC output. In the ‘fast’
third-order recoil spectrum, the numbers of recoils per PKA reduce much stronger, but do not
vanish completely and occasional recoils with energies up to 80 keV are still created by PKAs
in the MeV range. Each such recoil can produce noticeable numbers of point defects, so it is
not a priori evident that the contribution of the remaining ‘fast’ third-order recoils can be
neglected.

Figure 3. The numbers of single Frenkel pairs generated by PKAs only (lower red
curve) and by PKAs and the secondary fast recoils together (upper blue curve) vesus
PKA energy.



In order to correctly evaluate the contribution of the ‘fast’ part of the recoil spectrum, all
the energy spectra were integrated over the PKA energies with the weights corresponding to
the selected PKA energy spectrum, shown in figure 1, and then the numerical procedure of
indirect recursion described at the end of section 2.1 was applied. The final neutron spectrum
averaged results for the BC part of calculations are shown in figure 5.

Figure 5(a) illustrates the sensitivity of the isolated Frenkel pair production to the recoil
energy for recoils of all generations that have obtained kinetic energies below Elow. As can be
noticed, the defect production efficiency strongly falls as the energy transferred to recoil
increases. Summing all the contributions, the spectrum averaged number of isolated Frenkel
pairs is evaluated to be ∼150 per PKA.

Figure 4. High energy spectrum part for the secondary recoils created by PKAs of
different energies (normalized per one PKA). The PKA energies for each curve are
explained in the legend. The vertical dashed line marks the lower border of the high
energy region (i.e. Ehigh).

Figure 5. The final histograms for the energy distribution of isolated Frenkel pairs in
the low energy range (a) and the recoil spectrum in the medium energy range (b). The
lighter (light blue in colour version) columns in panel (b) show the contribution to the
spectrum from decelerating PKAs.



Figure 5(b) shows the resulting energy spectrum of recoils of all generations, including
PKAs themselves, falling in the medium-energy window. The total number of recoils is
Nm = 8.3 per PKA. The relative share of recoils with certain energy decreases with the
increase of the energy transferred to recoils. The exception is, however, the region close to
Ehigh, where one notices an increase due to the slowing down PKAs that enter the medium
energy region from the higher-energy side. As can be noticed, the share of PKA with the final
energy Efin (shown with light blue columns in figure 5(b)) quickly decreases as Efin changes
from Ehigh down to Elow. The share of PKAs ending their propagation with Efin < Elow is very
low (∼1.3%) and their contribution to the Frenkel defect production (0.013 per PKA) is
absolutely negligible.

In order to estimate the contribution to the overall number of Frenkel pairs from dense
cascades, we use the results of MD modelling of cascades in beryllium, presented in [6].
Having in mind the linear dependence of the number of Frenkel pairs on the MD cascade
energy in the range of 0.5 3 keV, we can apply for the estimates equation (20), where the
average energy over the medium-energy range estimated from the data shown in figure 5(b) is
E = 1.57 keV. Using the estimated values of Nm and E and αMD = 8.3 keV 1 (as expected
for fusion reactor relevant temperatures [10]), one easily obtains the number of Frenkel pairs
produced in dense cascades to be ∼110 per PKA. That is, dense cascades produce in ber-
yllium noticeably less point defects as compared to the number of isolated Frenkel pairs. It
should be kept in mind, however, that the relative share of defects produced in dense cascades
is sensitive to the particular material and the statement above not necessarily holds true for
heavier materials because dense cascades in low and high mass metals demonstrate quite
different behaviour.

For comparison, the PKA energy spectrum averaged value of the Frenkel pair number
obtained by using the uncorrected vacancy/recoil numbers predicted by SRIM is ∼295 per
PKA. Having in mind that ∼150 Frenkel pairs per PKA are produced as isolated defects in
low-energy-transfer collision events, it can be concluded that roughly a half of displacements
is due to the secondary and higher-order recoils that launch dense cascades. According to the
combined BC/MD model, the contribution of dense cascades is noticeably more modest.
However, the overall difference in the predicted damage (295 displacements/PKA from
SRIM versus 260 displacements/PKA from BC/MD model) is only ∼15%, which is not
critical. Such relatively low difference seems to be related to very narrow energy range of
recoils leading to dense cascades (Ehigh− Elow < 3 keV [10]). As already mentioned above,
in heavier materials with much broader ‘dense cascade’ window such a relation not neces-
sarily holds true.

To conclude this section, we should mention that though here we are reporting our
findings for beryllium only, the approach seems to be equally applicable to other materials
(e.g. multicomponent and not necessary metallic) and opens a way of calculating the damage
from very energetic projectiles (including those creating damage in volumes beyond the
current capabilities of MD) and making calculations faster by restricting conventional MD
calculations only to those recoil energy ranges, where such calculations are practical and
statistically reliable. Moreover, the approach makes it possible to express the primary damage
not in terms of abstract ‘displacements’, but in terms of particular point defects and point
defect clusters. Finally, by taking into account the correlated recombination in the cascade
region, which can be studied by extended MD or kinetic MC, it is possible to extract from the
total numbers of produced defects only the shares of ‘freely-migrating’ ones, thus auto-
matically accounting for the ‘cascade efficiency’ factor in the damage calculations. Ideally,
this would provide extended input for large-scale object kinetic Monte Carlo and rate theory
models describing secondary microstructural changes in irradiated materials.



4. Conclusions

1. The paper applies a mixed BC/MD algorithm of evaluating the level of primary damage
production in fast neutron irradiated materials using the information about the target PKA
energy spectra in particular irradiation conditions. The approach provides a correction to
the predictions of the commonly used BC codes through the application of the results of
more appropriate MD calculations for defect production in dense collision cascades. In
this way, the implemented approach employs the advantages of both BC and MD
methods, compensating at the same time for their shortcomings. For example, it suggests
a way to avoid the damage calculations by MD for high-energy PKAs, which are
currently quite challenging or even impossible. It should be kept in mind, however, that
the approach still requires detailed validation and verification on different materials, in
order to justify its applicability as a generic methodology that works.

2. As a first step of such validation procedure, the algorithm was applied for the calculation
of rates of point defect production in a particular case of beryllium irradiated by neutrons
with the energy spectrum expected for the first wall of the future fusion reactor DEMO. It
is shown that the total number of created displacements can be tentatively divided in two
parts, namely the displacements created in low-energy-transfer collision events, which
can be reliably calculated using BC approximation, and those originated from medium-
energy recoils that launch dense cascades. This second contribution is demonstrated here
to be quite sensitive to the way it is estimated (directly in the BC code or using the
information inferred from MD). In a particular case of beryllium irradiated with the
DEMO first wall neutron spectrum, MD-based estimates predict nearly 40% less damage
production than expected from SRIM calculations. However, the difference in the total
defect production is noticeably weaker because dense cascades produce less than a half of
the total displacements.
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