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This paper proposes a novel recursive B-spline approximation (RBA) algorithm which approximates an
unbounded number of data points with a B-spline function and achieves lower computational effort com-
pared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF)
restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift
operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to
adapt the interval in which the B-spline function can approximate data points during run-time.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction B-spline function recursively meaning that the approximation is
A B-spline function is a piecewise defined polynomial function
with several beneficial properties such as numerical stability of
computations, local effects of coefficient changes and built-in
smoothness between neighboring polynomial pieces [2, chap. 1].
A common application of B-spline functions, curves and surfaces
is fitting of data points. Fitting can either be interpolation or
approximation. An interpolating B-spline function passes through
the data points, whereas an approximating B-spline function mini-
mizes the residuals between the function and the data but does not
pass through the data points in general. The representation using
B-splines is popular in computer-aided design, modeling and engi-
neering as well as computer graphics for the geometry of curves,
objects and surfaces [3]. It is also used for planning trajectories of
computer controlled industrial machines [4] and robots [5,6].

Fitting B-spline functions can be determined by the weighted
least squares (WLS) method. It is often used in offline applications,
where all data points are available at once.

The Kalman filter (KF) is an established method for estimating
the state of a dynamic system. Applications include tracking, nav-
igation, sensor data fusion and process control [7, pp. 4f.]. The KF
can be seen as a generalization of the recursive least squares
(RLS) method [8, p. 129]. RLS can compute an approximating
updated with each new data point. This is desired in online appli-
cations, in which data points are observed one after another.
1.1. Problem statement

The value of a B-spline function is given by the sum of basis
functions (B-splines) weighted with their corresponding coeffi-
cients. Each B-spline is only nonzero within a certain bounded
interval which causes that the definition range of a B-spline is
bounded as well. If the magnitude of the data points is not exactly
known or changes over time, data points can be outside the defini-
tion range. Such data points cannot be taken into account. Thereby
the problem arises that the approximation might not reflect the
data anymore.

Publications concerning the recursive data approximation with
a B-spline function have not addressed this issue but have assumed
a constant definition range. For example, the approaches based on
the KF in [9,10] require that the KF state vector contains all coeffi-
cients that are estimated during the whole approximation proce-
dure. Therefore the number of coefficients has to be bounded
and specified in advance. As a result, these algorithms can only
approximate data points that are within the bounded definition
range determined at the beginning.
1.2. Contribution

We propose a novel B-spline approximation (RBA) algorithm
that solves the approximation problem iteratively using a KF.
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RBA overcomes the current limitation of recursive algorithms
based on the KF concerning the fixed approximation interval. The
main contribution is to use the time update of the KF for a shift
of estimated B-spline coefficients in the KF state vector in combi-
nation with a shift in the B-spline knot vector. The shift operation
enables to shift the definition range such that it is always possible
to take into account the latest data point for the approximation.

In online and offline applications, the shift operation allows to
reduce the size of the state vector. As smaller state vector causes
less computational effort. Table 1 displays the relevant features
of different B-spline approximation methods.
1.3. Fitting algorithms for B-spline functions

Fitting B-spline functions can be computed by least squares (LS)
methods [2,11,12]. With the standard formula in batch form, all
data points have to be collected and then processed simultane-
ously. Therefore the number of data points n needs to be bounded.
The computation usually involves a Cholesky or QR factorization
and requires OðnÞ operations if one takes advantage of the banded
matrix structure [13, pp. 327–331]. Such algorithms are stated in
[13, pp. 117–121] and [14, pp. 152–160]. With the LS algorithm
each data point influences the result to the same extend. The
WLS algorithm allows to weight measurements relative to each
other [2, pp. 119–123].

In online applications an ever-growing amount of data is com-
mon. LS algorithms for online applications can be subdivided into
two groups: First, growing memory LS algorithms apply a weight-
ing that forgets old data exponentially. Second, sliding window LS
algorithms discard old data completely and require only finite stor-
age [15]. Sliding window LS and sliding window WLS algorithms
are proposed in [15–18], respectively. Re-computing the fitting
function from scratch with each new data point is costly. Rank
update and rank downdate methods allow to re-use an already
known factorization for an efficient update of a solution when
observations have been added or deleted [19–21].

With WLS the bounded definition range of B-spline functions
does not present a problem because the number and position of
B-splines can be changed if the fitting function is re-computed
from scratch. Moreover, rank modification methods support add-
ing or deleting matrix columns [20]. This allows to extend, shrink
or shift the definition range of the B-spline function.

Recursive algorithms such as RLS (see [8, pp. 84–88]) usually
require less computational power than batch algorithms because
they use smaller matrices and vectors whose sizes do not depend
on the number of data points. The recursive computation is also
referred to as progressive, iterative or sequential. In [22] fitting
B-spline curves and surfaces are iteratively constructed based on
the idea of profit and loss modification without solving a linear
system. The authors of [23] build on the progressive and iterative
approximation technique for B-spline curve and surface fitting
and prove that the proposed algorithm achieves a least squares
fit to the data points. A recursive algorithm for optimal smoothing
B-spline surfaces inspired by the RLS method is presented in [24].
Algorithms that involve a KF are stated in [9,10]. All recursive
approaches mentioned assume a constant definition range.
Table 1
Comparison of different B-spline approximation methods.

Feature WLS (single c

Number of processable data points n bounded
Time complexity OðnÞ
Approximation interval fixed
Determination of total number of coefficients being estimated at beginning
1.4. Structure of the data set

fðst ; ytÞgt¼1;2;...;n is a set of n data points. t denotes the time step
at which data point (st ; yt) has been measured or observed. st is the
value of the independent variable s at time step t. yt ¼
ðyt;1; yt;2; . . . ; yt;v ; . . . ; yt;Vt

Þ> is a vector of Vt measurements y that
refer to st and may come from different sensors. > denotes the
transpose operation. Vt 2 N is allowed to be different for each yt .
We assume that Vt � n8t. The vector of all measurements y is
composed as follows:

y> ¼ ðy1;1; . . . ; y1;V1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼:y>1

; . . . ; y>t ; . . . ; yn;1; . . . ; yn;Vn|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼:y>n

Þ ð1Þ
1.5. Outline

The remainder of this article is structured as follows: In Sec-
tion 2.1 we introduce a B-spline function definition in matrix form.
Section 2.2 describes the WLS approach followed by the KF algo-
rithm in Section 2.3. Section 2.4 presents the novel RBA algorithm.
Its effectiveness is demonstrated in comparison with theWLS solu-
tion by numerical examples in Section 3. We summarize the char-
acteristics of RBA and draw our conclusions in Section 4.

2. Methods

2.1. B-spline functions

A B-spline function is a piecewise defined function. Its value is
given by the weighted sum of J polynomial basis functions (B-
splines) of degree d. The knot vector is j ¼ ðj1;j2; . . . ;jJþdþ1Þ.
We assume strictly increasing knot values (jk < jkþ1;
k ¼ 1;2; . . . ; J þ d). j and d determine the number and shape of
B-splines. The j-th B-spline bjðsÞ; j ¼ 1;2; . . . ; J is positive only for
s 2 ðjj;jjþdþ1Þ and zero elsewhere [2, pp. 37–42].

The following definitions originate from [2, pp. 47–50 & 65–70]:
Let [jl;jlþ1) be a spline interval and let l denote the spline inter-
val index with dþ 1 6 l 6 J. For s 2 ½jl;jlþ1), the B-splines
bjðsÞ; j ¼ l� d; . . . ;l can be nonzero. Their values for a specific
s 2 ½jl;jlþ1) can be summarized in the B-spline vector

bl;dðsÞ ¼ ðbl�dðsÞ; bl�dþ1ðsÞ; . . . ; blðsÞÞ 2 R1�ðdþ1Þ which can be com-
puted according to (2):

bl;dðsÞ ¼ Bl;1ðsÞ|fflfflffl{zfflfflffl}
2R1�2

Bl;2ðsÞ|fflfflffl{zfflfflffl}
2R2�3

. . . Bl;dðsÞ|fflfflffl{zfflfflffl}
2Rd�ðdþ1Þ

. . . Bl;dðsÞ|fflfflffl{zfflfflffl}
2Rd�ðdþ1Þ

ð2Þ

The B-spline matrix Bl;dðsÞ 2 Rd�ðdþ1Þ is defined for each d 2 N

with d 6 d and given by

Bl;dðsÞ ¼

jlþ1�s
jl�1�jlþ1�d

s�jlþ1�d
jlþ1�klþ1�d 0 . . . 0

0 jlþ2�s
jl�2�jlþ2�d

s�jlþ2�d
jlþ2�jlþ2�d . . . 0

..

. ..
. . .

. . .
.

. . .

0 0 . . .
jlþd�s
jlþd�jl

s�jl
jlþd�jl

2
6666664

3
7777775:

ð3Þ
all) WLS (multiple calls) RLS/KF RBA

unbounded unbounded unbounded
OðnÞ OðnÞ OðnÞ
variable fixed variable
during run-time at beginning during run-time
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The B-spline function f : D ! R; s # f ðsÞ has the definition
range D ¼ ½jdþ1;jJþ1Þ. For s 2 ½jl;jlþ1Þ, the B-spline function is
given by

f ðsÞ ¼ bl;dðsÞxl;d ð4Þ
with coefficient vector

xl;d ¼ ðxl�d; xl�dþ1; . . . ; xlÞ>: ð5Þ
Fig. 1 illustrates the construction of a B-spline vector.

The B-spline function is d� 1 times continuously differentiable.
For r 2 N0, the r-th derivative @r

@sr f (s) of the B-spline function with
respect to s is given by

@r

@sr
f ðsÞ ¼ @r

@sr
bl;dðsÞxl;d ð6Þ

with B-spline vector

@r

@sr
bl;dðsÞ ¼

d!
ðd�rÞ!Bl;1ðsÞ . . .Bl;d�rðsÞB0l;d�rþ1 . . .B0l;d; if r 6 d

01�ðdþ1Þ; else

(

ð7Þ
01�ðdþ1Þ denotes a 1� ðdþ 1Þ zero matrix. The matrix B0l;d 2 Rd�ðdþ1Þ

is obtained by differentiating all entries in Bl;dðsÞ with respect to s:

B0l;d ¼

�1
jlþ1�jlþ1�d

1
jlþ1�jlþ1�d . . . 0

..

. . .
. . .

. ..
.

0 . . . �1
jlþd�jl

1
jlþd�jl

2
6664

3
7775 ð8Þ
2.2. Weighted least squares

The linear weighted least squares (WLS) method estimates the
constant state vector x 2 RL�1 of a linear system

y ¼ Cxþ t: ð9Þ
y 2 RN�1 is the vector of measurements and C denotes the mea-

surement matrix that relates x to y. The measurement noise
t 2 RN�1 is assumed to be an uncorrelated white noise process with
mean zero. This implies that the covariance matrix of measure-
ment noise R is a diagonal matrix and Ri;i; i ¼ 1; . . . ;N is the vari-
ance of measurement yi which can differ from the variances of
other measurements [8]. The assumptions for ftg can be general-
ized to a correlated noise process. This is termed generalized linear
model [25, p. 143]. Then R is a positive definite matrix [13, p. 374].
Furthermore, [13] states LS algorithms for nonlinear problems.

The linear WLS estimate x̂ minimizes the sum of squared errors
between themeasurements y and the vector Cxwhich are weighted
with the reciprocals of the variances of the measurements:
Fig. 1. Construction of a cubic (d = 3) B-spline function: Equidistant knots j1;j2; . . . ;j1

weighted with coefficients x1 ¼ 1:5; x4 ¼ 0:5; x2 ¼ x3 ¼ x5 ¼ x6 ¼ 1. The black line indicat
f ðsÞ ¼PJ

j¼1bjðsÞxj but only defined over [j4;j7) (solid part of the black line.)
x̂ ¼ argmin
x
ðy � CxÞ>R�1ðy � CxÞ ð10Þ

The solution to optimization problem (10) is given by the
closed-form estimator

x̂ ¼ ðC>R�1CÞ�1C>R�1y ½8�: ð11Þ
From (4) follows that the value of a B-spline function is a linear

combination of its coefficients. Therefore WLS can be used to
determine the coefficients such that the function approximates
the set of data points defined in Section 1.4. Then C is a
ðPn

t¼1VtÞ � J matrix because y comprises
Pn

t¼1 Vt scalar compo-
nents yt;v , t ¼ 1; . . . ; n;v ¼ 1; . . . ;Vt (c.f. (1)) and there are J

B-splines. yt;v is the ~v-th component of y (~v ¼Pt�1
~t¼1V~t þ v) and pro-

vides information about @r

@sr f ðstÞ with st 2 ½jl;jlþ1Þ and an r 2 N0.
The ~v-th row C is given by C~v ;1;...;J ¼ c with

c ¼ ð01�ðl�ðdþ1ÞÞ;
@r

@sr
bl;dðstÞ;01�ðJ�lÞÞ: ð12Þ
2.3. Kalman filter

The linear Kalman filter (KF) estimates the state vector xt 2 RL�1

of a linear time-discrete system

xt ¼ Atxt�1 þBtut þxt ðstate equationÞ ð13Þ
yt ¼ Ctxt þ tt ðmeasurement equationÞ ð14Þ

where t 2 N denotes the time step. At is the state transition matrix
that relates xt�1 to xt ;ut 2 RM�1 an input signal vector with known
influence on xt and Bt the input matrix that relates ut to xt . The vec-
tor of measurements is denoted by yt 2 RN�1 and Ct is the measure-
ment matrix that relates xt to yt �xt 2 RN�1 is the process noise
with covariance matrix Qt and tt 2 RN�1 is the measurement noise
with covariance matrix Rt: Both fxtg and fttg are uncorrelated
white noise processes with mean zero which implies that Qt and
Rt are diagonal matrices [8, p. 124].

The KF consists of a sequel of equations, which are computed
for each time step and summarized in Algorithm 1 in which I
denotes the identity matrix with appropriate dimensions. The KF
performs a time update followed by a measurement update. Dur-
ing the time update, the state estimate is updated based on the
knowledge about the system specified by (13). Both the a priori
estimate x̂�t and the covariance P�t of the a priori estimation error
are calculated. During the measurement update, the Kalman gain
Kt is computed and used together with the information provided
by measurement yt for the calculation of the corresponding a pos-
teriori quantities x̂þt and Pþt [8, pp. 124–129]. KF generalizations
0 (indicated by vertical straight lines) and J = 6 resulting B-splines bj; j ¼ 1;2; . . . ; J
es the sum of all weighted B-splines (

PJ
j¼1bjðsÞxj). The B-spline function is given by
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for correlated or colored noise processes are stated in [8, pp. 183 –
193].

If the state vector xt is constant, then At ¼ I; xt ¼ 0 and ut ¼ 0,
where 0 is the zero matrix with appropriate dimensions. In this
case, the time update is redundant and the KF simplifies to the
RLS algorithm [8, p. 129]. An application of RLS to the data approx-
imation problem with a polynomial is described in [8, pp. 92–93].

In the known recursive approaches to the data approximation
problem, the KF estimates a state vector xt that comprises all
required coefficients. Then xt is constant, only the estimation x̂t
may change and therefore RLS is sufficient for solving the problem.
In contrast, the novel algorithm proposed in Section 2.4 takes
advantage of the time update that only the KF provides.

Algorithm 1. Kalman Filter

Input: x̂þt�1, P
þ
t�1;ut ; yt ;At ;Bt;Ct;Qt;Rt

/* Time update */

1 x̂�t  At x̂þt�1 þBtut

2 P�t  AtP
þ
t�1A

>
t þQt

/* Measurement update */

3 Kt  P�t C
>
t ðCtP

�
t C
>
t þRtÞ�1

4 x̂þt  x̂�t þKtðyt � Ctx̂�t Þ
5 Pþt  ðI �KtCtÞP�t ðI �KtCtÞ> þKtRtK

>
t

Output: x̂þt ;P
þ
t

2.4. Recursive B-spline approximation

The novel recursive B-spline approximation (RBA) algorithm
computes an approximating B-spline function f (s) of degree d
for the set of data points from Section 1.4 iteratively using
the KF. Algorithm 2 summarizes the calculations. I 2 N

denotes the constant number of spline intervals of f (s). The

KF state estimate x̂t ¼ ðx̂t1 ; x̂t2 ; . . . x̂tJ Þ> comprises J ¼ dþ I compo-
nents which are the estimated coefficients of f (s). The knot vector
jt ¼ ðjt1 ;jt2 ; . . . ;jtK ) for time step t has to contain K ¼ J þ dþ 1
knots. Dt ¼ ½jtdþ1 ;jtJþ1 Þ is the definition range of f (s) at t.

2.4.1. Initialization
We initialize x̂t with x̂þ0 ¼ �x1J�1, where 1J�1 denotes a J � 1

matrix of ones and �x a scalar quantity of the magnitude of mea-
surements yt;v that refer to @r

@sr f (s) with r = 0.
The covariance matrix of a posteriori estimation error Pþ is ini-

tialized withPþ0 ¼ �pIJ�J , where IJ�J is a J � J identitymatrix. The sca-
lar �p should be chosen large (e.g. 104) because then x̂t will quickly
deviate from its initial value x̂þ0 in such away that f (s) approximates
the data points. If the elements inP�t are small, this signals to the KF
that the state estimate x̂�t is very certain and therefore it will hardly
be updated using the measurements. If the KF updates x̂þt as
intended, the elements in Pþt become smaller as t increases.

In the long-run, P�t is strongly influenced by the covariance
matrix of process noise Qt because of line 2 of Algorithm 1. If
the elements in Qt are large, the elements in P�t remain large
too. This can lead to volatile states estimates x̂t that do not con-
verge to a certain value. Then f (s) will not approximate the data
points well. For that reason we choose Qt ¼ �qIJ�J with a very small
positive value �q (e.g. �q = 10–12).

2.4.2. Time update with shift operation
RBA compares the knot vector jt�1 with st in order to determine

whether st 2 Dt�1. If necessary, a shift of Dt�1 is performed during
the time update of the KF such that st 2 Dt . The variable s indicates
the shift direction of Dt�1 and the number of positions by which
elements of jt�1 are shifted. r > 0 means a right shift of Dt�1,
r < 0 a left shift of Dt�1 and for r = 0 no shift is performed because
st 2 Dt�1. Algorithm 2 computes r from line 5 to line 18.

For example, assume d = 3, I = 3 and jt�1 ¼ ð1;2; . . . ;10Þ, then
Dt�1 ¼ ½4;7Þ . If st ¼ 8:5, we need two additional knots to be able
to perform a right shift by two elements (r ¼ 2). With 11 and 12
as additional knots we get jt ¼ ð3;4; . . . ;12Þ and hence st 2
Dt ¼ ½6;9Þ.

Algorithm 2 distinguishes between rP 0 and r < 0. It assumes
that the jrj additional knots are the r last components of the knot
vector �jt ¼ ð�jt1 ; �jt2 ; . . . ; �jtK Þ in case of r > 0 and that they are the -r
first components of �jt in case of r < 0.

Case 1: rP 0.
The new knot vector is

jt  ðjt�1rþ1 ;jt�1rþ2 ; . . . ;jt�1K ; �jtK�rþ1 ; �jtK�rþ2 ; . . . ; �jtK Þ: ð15Þ
The elements in x̂þt�1 are shifted by line 1 of Algorithm 1 using

the state transition matrix

At 2 RJ�J withAtg;h ¼
1; if h ¼ g þ r
0; otherwise:

�
ð16Þ

x̂�t  Atx̂þt�1 updates the old estimate x̂þt�1 to

x̂�t ¼ ðx̂t�1rþ1 ; x̂t�1rþ2 ; . . . ; x̂t�1J�r ;01�rÞT ð17Þ
With the second part of the instruction ðx̂�t  x̂�t þBtutÞ, input

matrix Bt ¼ IJ�J and input signal vector ut ¼ ð01�ðJ�rÞ; �x11�rÞ> we
can have arbitrary initial estimates �x in x̂�t :

x̂�t ¼ ðx̂t�1rþ1 ; x̂t�1rþ2 ; . . . ; x̂t�1J�r ; �x11�rÞ> ð18Þ
Pþt�1 is updated during the time update as well by line 2 of Algo-

rithm 1. The first part of the instruction (P�t  AtP
þ
t�1A

>
t ) leads to

Pþt1;...;J�r;1;...;J�r  P�t�1rþ1;...;J;rþ1;...J and all elements in the rows or col-

umns J � rþ 1; J � rþ 2; . . . ; J of P�t equal zero. Especially zeros
on the main diagonal prevent that x̂tJ�rþ1 ; x̂tJ�rþ2 ; . . . ; x̂tJ become dif-
ferent from the initial value �x. Large values in P�t can be achieved
by the second part of the instruction,P�t  P�t þQt . During a right
shift we overwrite the elementsQtJ�rþ1;J�rþ1 ;QtJ�rþ2;J�rþ2 ; . . . ;QtJ;J with
�p in line 24 of Algorithm 2 in order to get large entries
P�tJ�rþ1;J�rþ1 ;P

�
tJ�rþ2;J�rþ2 ; . . . ;P

�
tJ;J
. Fig. 2 depicts different states of Pþ

and P�, respectively.
Case 2: r < 0.
The new knot vector is

jt  ð�jt1 ; �jt2 ; . . . ; �jt�r ;jt�11 ;jt�12 ; . . . ;jt�1KþrÞ ð19Þ
We choose At as in (16), Bt ¼ IJ�J;ut ¼ ð�x11�ð�rÞ;01�ðJþrÞÞ> and

set the elements Qt1;1 ;Qt2;2 ; . . . ;Qt�r;�r to �p.
The shift operation is the distinguishing feature of RBA com-

pared to the algorithms in [9,10]. Due to the shift operation, the
total number of coefficients that will be estimated during the
application of RBA does neither have to be known in advance nor
to be bounded. Using jt and x̂þt we can evaluate the determined
B-spline function f (s) at any s 2 ½jtdþ1 ;jtdþIþ1 Þ.

By shifting the entries in jt�1, x̂þt�1 and Pþt�1, the required stor-
age is held constant. In Algorithm 2 we choose jrj just large enough
that the current data point can be taken into account during the
measurement update because the shift operation comes at the cost
that parts of an already computed approximation are forgotten
unless the values of x̂þt�1 and Pþt�1 are saved separately from Algo-
rithm 2 before they are removed from the vectors or matrix,
respectively.



Fig. 2. Changes of the elements in Pþ and P� , respectively: d = 3 and I = 3 leads to a 6 � 6 matrix Pþ . We initialize the diagonal values of Pþ0 with a large positive value
indicated by � as depicted in (a). All other elements of Pþ0 are initialized with zeros indicated by empty cells. After some data points in the second spline interval have been
processed, different comparatively small values denoted by 	 are in the submatrix Pþ2;...5;2;...;5. (b). After data points that fall into the third spline interval have been processed,
only the elements in the first row and column ofPþ have still their initialization values (c). If only the first part of the update instruction is executed during a right shift by one
element ðr ¼ 1Þ, the elements in the last row and column of P� become zero (d). With the second part of the instruction, these elements can be set to nonzero values. For
Q6;6 ¼ � and all other elements of Q equal zero, we obtain matrix (e).
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2.4.3. Measurement update
During the measurement update, the information provided by

(st ; yt) is used to update f (s). With the covariance matrix of mea-
surement noiseRt , different components of the measurement vec-
tor yt can be weighted relative to each other. Rt 2 RVt�Vt is a
diagonal matrix with positive elements on its diagonal. The smaller
an entry Rtv;v is, the greater is the effect of the v-th component of
the measurement error (yt � Ct x̂�t ) on x̂�t .

The measurement matrix Ct is a Vt � J matrix. yt;v is the m-th
component of yt and provides information about @r

@sr f ðstÞ with
st 2 ½jl;jlþ1Þ and an r 2 N0. The m-th row of Ct is given by

Ctm;1;...;J ¼ c ð20Þ
with c from (12).

According to Ct , (st ; yt) influences only the estimates
x̂tl�d ; x̂tl�dþ1 ; . . . ; x̂tl . However, other estimates can still be updated
by the KF using the information stored in P�t .
3. Numerical experiments

We demonstrate the effectiveness of Algorithm 2 in three exam-
ples and compare its results with the corresponding WLS solution.

3.1. General experimental setup

We choose fðst; ytÞgt¼1;2;...;n with n = 5000, where

st ¼ 0:01þ 0:02ðt � 1Þ; ð21Þ
yt;1 ¼
20; if 30 6 st < 70
10; otherwise

�
and ð22Þ
yt;2 ¼ yt;3 ¼ 0 8 t ð23Þ
By the term thinned out data set we refer to a second data set

that differs from the full data set defined above only by
st ¼ 0:5þ ðt � 1Þ and n = 100.

We approximate the data sets with a cubic (d = 3) B-spline func-
tion f (s) whereby we assume that the measurements yt;2 refer to
the slope @

@s f ðsÞ of the B-spline function and the measurements

yt;3 to the curvature @2

@s2 f ðsÞ. The reciprocals of the relative weights
between the different target criteria are specified by the diagonal
measurement covariance matrix R 2 R3�3 with
Rt1;1 ¼ 1;Rt2;2 ¼ 10�2 and Rt3;3 ¼ 10�3. The diagonal measurement

covariance matrix of WLS R 2 R3n�3n has analogous values:

Riþ1;iþ1 ¼ 1; Riþ2;iþ2 ¼ 10�2; Riþ3;iþ3 ¼ 10�3;
i ¼ 3ðr � 1Þ; r ¼ 1;2; . . . ;n

ð24Þ

The chosen weighting helps to prevent overshoots and oscilla-
tions of f ðsÞ and leads to a B-spline function that smooths the
jumps of yt;1 in the data sets. For all experiments we use
�q ¼ 10�12, �x ¼ 0 and �p ¼ 104.

3.2. Experiment 1: Setup

We require that the definition range of f comprises I = 5 spline
intervals and define K ¼ 12 knots. We initialize j with
j0 ¼ ð�10;�6:6;�3;�1;25;35;60;80;100;101;103:2;110Þ; hence
D0 ¼ ½�1;100Þ. As st 2 ½s1; sn� ¼ ½0:01;99:99� � D08t, no shift opera-
tion is needed.

3.3. Experiment 1: Results & discussion

Fig. 3 shows the results. The first 25% of the data points (st ; yt)
all belong to the first spline interval [�1, 25). Therefore they only
influence the first four of the J ¼ 8 coefficients. The remaining four
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coefficient are still at their initial values �x, hence f ðsÞ ! 0 for
increasing s.

With increasing amount of processed data points, the RBA solu-
tion converges to the WLS solution. This demonstrates how RBA
computes the coefficients for the approximating function itera-
tively like RLS and how it finds a solution close to the one deter-
mined by WLS. Although the data set is symmetrical to a vertical
straight line through s ¼ 50, both the WLS solution and the end
result obtained with RBA are not. This is caused by the asymmet-
rical knot vector.

All coefficient values of the RBA end result are lower than the
corresponding values of the WLS solution. The first coefficient
value differs the most with 4:2020� 10�6 for the full data set
and with 2:0742� 10�4 for the thinned out data set. For the
thinned out data set the deviation is larger because less time steps
are available to update each coefficient estimate. If coefficient val-
ues are initialized with �x > 0, the sign of the differences can
change.
3.4. Experiment 2: Setup

In this experiment we perform four runs of RBA with I = 1, 3, 7
and 20, respectively, in order to investigate the effect of the choice
of I. We set j0 ¼ ð�15;10;15;20Þ for I = 1, j0 ¼ ð�15;10; . . . ;30Þ
for I = 3, j0 ¼ ð�15;10; . . . ;50Þ for I = 7, and j0 ¼
ð�15;10; . . . ;115Þ for I = 20. For I = 20 the resulting D0 comprises
all st of the data set and therefore no shift operation is needed.
For I = 1, 3 and 7, RBA has to perform several right shifts by one ele-
ment in order to be able to process all data points. For each shift
operation, we have to define an additional knot �jtK in the vector
Fig. 3. Experiment 1: 40 of the 5000 data points ðst ; yt;1Þ (black dots) and all knots (vertic
and RBA with I = 5. For RBA the intermediate results are depicted for time steps at which

Fig. 4. Experiment 2: 40 of the 5000 data points ðst ; yt;1Þ (black dots) and knots 0,5,. . ., 10
by WLS and RBA with I = 1, I = 3, I = 7 and I = 20. The double-headed arrows visualize
processed.
�jt . We choose �jtk ¼ 25;30; . . . ;115 for I = 1, �jtK ¼ 35;40; . . . ;115
for I = 3 and �jtK ¼ 55;60; . . . ;115 for I = 7. For evaluation purposes
we save x̂t�11 and jt�11 separately RBA before a shift operation is
performed.

3.5. Experiment 2: Results & discussion

Fig. 4 displays the results. As both the data set and knot vector
are symmetrical to a vertical straight line through s ¼ 50, the WLS
solution is symmetrical as well. The RBA solution converges to the
WLS solution as I increases. For I ¼ 1 and I ¼ 3, the resulting B-
spline function is asymmetrical with respect to a straight vertical
line through s ¼ 50. For I ¼ 7, RBA provides almost the same result
as for I ¼ 20. Consequently, we can reduce I from 20 to 7 without
noticeably worsening the quality of the approximation. Lowering
I leads to less computational effort in the KF because P�t ;P

þ
t and

Qt are ðdþ IÞ � ðdþ IÞ matrices and therefore the asymptotic time

complexity of Algorithm 1 (one iteration) is Oððdþ IÞ3Þ if the stan-
dard method for matrix multiplication is used [26,27]. Under the
same conditions both RLS and the known methods based on the
KF need 20� 20 matrices because shift operations are not possible.
If the thinned out data set is used, the determined coefficients dif-
fer by about 10�3 from corresponding coefficients obtained using
the full data set.

3.6. Experiment 3: Setup

We test the influence of the shift operation on the result. We
use the same settings as in Experiment 2 but select j0 such that
the first data points lie in the rightmost spline interval. We initial-
al dashed lines) are shown as well as the B-spline function f (s) determined by WLS
25%, 50% and 75% of the data points have been processed as well as the end result.

0 (vertical dashed lines) are shown as well as the B-spline function f ðsÞ determined
the definition range of f ðsÞ while data points that lie in the interval [95, 100) are
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ize the last eight knots with j0K�7;...;K ¼ ð�15;�10; . . . ;20Þ. For
I ¼ 3; I ¼ 7 and I ¼ 20 additional preceding knots are needed.
These can have arbitrary values that fulfill the requirement of
strictly increasing knots in j0. In order to approximate all data
points, 20 shift operations have to be performed in each run. For
I ¼ 1, this has already been the case in Experiment 2 and therefore
we get an identical result. However, for I ¼ 3; I ¼ 7 and I ¼ 20, we
have increased the number of required shift operations by 3, 7 and
20, respectively. The additional knot values we specify during each
run are �jtk ¼ 25;30; . . . ;115.
3.7. Experiment 3: Results & discussion

We performed runs for I ¼ 3; I ¼ 7 and I ¼ 20 with both the full
and thinned out data set and evaluated the absolute values of the
differences of corresponding coefficient values between Experi-
ment 2 and Experiment 3. The maximum was 8:8818� 10�15,
which is close to the machine accuracy of 2:2204� 10�16.
4. Conclusions

We proposed a novel recursive B-spline approximation (RBA)
algorithm for the approximation of an unbounded set of data
points with a B-spline function. The coefficients of the B-spline
function are sequentially estimated using a Kalman filter (KF).
The total computational effort increases linearly with the number
of approximated data points. RBA enables to shift estimated B-
spline coefficients within the state vector of the KF during its time
update in combination with a shift of the components of the B-
spline knot vector. This shift operation allows to shift the definition
range of the B-spline function during run-time.

RBA is advantageous in online applications in which the magni-
tude of the data points is not exactly known or changes over time.
Then data points can be outside the definition range. In contrast to
previous algorithms based on the KF, RBA shifts the definition
range in order to approximate these data points.

RBA is also beneficial when a tradeoff between low computa-
tional effort and high approximation quality is needed because
the shift operation of RBA allows to reduce the size of the KF state
vector in online and offline applications.

Numerical experiments show that the RBA result converges to
the weighted least squares solution as the size of the state vector
is increased. Moreover, the experimental results reveal that few
spline intervals are sufficient for good approximation results.

The number of required shift operations can increase when the
size of the state vector is reduced to lower the computational
effort. The experiments indicate that effects of shift operations
on the resulting approximation function are negligible. Each shift
operations comes at the expense that a part of the approximation
result is forgotten in order to keep the sizes of matrices and vectors
constant. A growing approximation interval can be realized by
storing matrix and vector elements separately from RBA before
they are overwritten.
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