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Abstract This paper presents a comprehensive concept for the development of an 

auto-adaptive optimization model seeking to determine optimal operating strategies 

of micro combined heat and power (CHP) units in domestic households with special 

respect to the energy-economic framework conditions in Germany. The methods 

proposed to be applied are an adaptive network based fuzzy inference sys-tem 

(ANFIS [1]) coupled with mixed-integer-linear programming (MIP).  
Nowadays, most of micro-CHP units are driven heat led, due to their limited tech-

nical ability of following the electric load profile (especially in case of fuel cell micro-

CHP). However, the consumption-rate of locally self-generated electricity is crucial 

for the economics of micro-CHP systems. Therefore, the aim of this paper is to 

provide an economically optimized operating strategy which requires information 

about the household’s future load situation and therefore an appropriate individual 

short term load forecast (STLF). Furthermore, the concept described considers 

battery and hybrid electric vehicles as additional consumers of electric energy 

which enforces the necessity of optimized operation. Keywords: ANFIS, STLF, MIP. 

 

 

1 Introduction 
 

The ongoing and intense research, development and funding activities 

regard-ing micro combined heat and power units (CHP-units) is likely to 
further intensify their distribution in small and middle sized German 
households. Especially in case of fuel cell based micro-CHP units, the 

coupled generation of electricity and heat provides for a more efficient use 
of primary energy [7] as well as minimized transportation losses compared 

with the still common decoupled generation. However, these key facts 
regarding micro-CHP are only valid if two important aspects are fulfilled: 

 
1. Electricity is only generated if the co-product thermal energy is used in 

the local building,  
2. the electricity generated on-site is used locally to the largest possible 

extent (which is also economically reasonable). 
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The legal framework in Germany takes account of these two key requirements 

through funding the whole electricity generated with micro-CHP units while 

obligating the local use of the co-produced thermal energy [2]. Due to the 

generated savings, it is reasonable to maximize the consumption-rate of self 

generated electricity. However, most of micro-CHP units in Germany are driven 

heat led because there is a lack of intelligent control algorithms which provide 

for an optimized operation with respect to the time dependent local demand of 

electric energy
1
. This is why this paper presents a concept for the development 

of a generic auto-adaptive optimization approach which takes each household’s 

individual customs into account. Hence, the methodological approach 

described, supplements standard methods of optimizing the operation of CHP-

units based on deterministic and perfect-foresight optimization models (cf. e.g. 

[6,8,9]). These standard methods usually neglect the lack of perfect information 

in reality, and therefore are not suited for the online optimization of the operating 

strategy. However, supplemented with an adaptive method of load forecasting 

as prior stage, the standard optimization methods can be also used online.  
As described in the following sections a mixed integer linear program 

(MIP)2 in combination with an adaptive network based fuzzy inference (AN-

FIS) model seems to be suitable to address the challenges mentioned. 
While a lack of data formerly prevented corresponding approaches, recent 
developments in smart metering and the resulting improved data situation 
in households nowadays allow for the development of new household 
individ-ual forecasting methods.  

This paper is divided into six sections. Section 2 addresses the 
optimization of micro-CHP operation with a MIP before section 3 describes 
the ANFIS model and its problem specific implementation as a possibility 
for data driven adaptive short term load forecasting (STLF). Sections 4 and 
5 give some exemplary results of application before the paper sums up with 
conclusions and an outlook. 

 

2 Optimized operation of micro-CHP units 
 

The framework described in section 1 leads to the following composition of 

the household-revenues re for electricity generated through the operation of 
a micro-CHP unit. It is assumed, that a battery storage is lacking while a 
thermal energy storage is available.  

 

 
1 If a sufficiently large local battery storage for electric energy is available, the 

maximization of self-consumption becomes trivial. However, due to still high 
battery investments, the approach selected is intended to minimze the necessary 
storage capacity or to completely avoid its necessity.  

2 The MIP approach is selected due to the consideration of several distinct points 
of operation. 

 
 
 
 
 
 
 
 
 
 
 
 
  



 

3 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Today, the total revenue for CHP-electricity fed into the grid in Germany is 

approximately 0.11 €/kW h while the own consumption is funded with 0.051 

€/kW h, and, depending on the customer’s tariff , causes savings of about 0.25 

€/kW h. Therefore, equation 1 shows that, out of the opera-tor’s point of view 

and with the assumption of inflexible electricity prices, the revenue-maximizing 

strategy is to maximize the own consumption of locally generated electricity. 

Despite of the common presence of a thermal (hot water) storage, which partly 

decouples thermal demand from generation, this goal is not easily achievable 

because especially fuel cell micro-CHP units are not flexible enough to follow 

the household’s load curve in real time. This leads to the necessity of a cost-

minimizing optimization model for the determination of an economically 

optimized operating strategy for the micro-CHP unit. The availability of a battery 

electric vehicle reinforces this necessity due to the significant increase of 

electricity consumption (typically by 30-50 % of the yearly household electricity 

consumption) [10].  
The optimal operating strategy is defined as the one with minimal costs C in 

the considered time horizon T which is expressed in the objective function: 
 
   

 
 
 
 
 
 

 
 
 
 
 
 
 

 
whereby xng,t and png,t refer to the consumption and price of natural gas in 

time step t, while xe,g,t and pe,g,t are the amount and price of electricity 
obtained from the electric grid.  

Of course, there are several constraints to be respected. The main 

purpose of covering the local thermal demand Dth,t of the building with the 
CHP-unit has to be fulfilled at every time: 

 

xth,t ≥ Dth,t   ∀t ∈ T (3) 
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The power demand Del,t of the building has to be covered either through 
the micro-CHP unit or the power grid: 

 

𝑥𝑒,𝑔,𝑡 + 𝑥𝑒,𝑙,𝑡 =  𝐷𝑒𝑙,𝑡 ∀𝑡 ∈ 𝑇
 

(4) 
 
It is to be noted, that the amount of thermal energy xth,t is assumed to 

be provided exclusively through the thermal storage, which itself is filled by 
the CHP-unit at any time of operation, expressed by xchp,th,t. However, 

there are maximum Smax and minimum Smin storage level constraints for 

the thermal storage. The actual storage level is referred to as St and thermal 

losses are summarized with the storage efficiency factor ηS . 
 

𝑆𝑡−1 ∗ 𝜂𝑆 +  𝑥𝑐ℎ𝑝,𝑡ℎ,𝑡 − 𝑥𝑡ℎ,𝑡 ≤  𝑆𝑚𝑎𝑥  (5) 

𝑆𝑡−1 ∗ 𝜂𝑆 +  𝑥𝑐ℎ𝑝,𝑡ℎ,𝑡 − 𝑥𝑡ℎ,𝑡 ≥  𝑆𝑚𝑎𝑥  (6) 
 

The complete optimization model includes more constraints which are 
mostly technical ones. However, for the purpose of this paper the reduced 
mathematical description is sufficient for the traceability of the problem. 

 
 
 

3 Short term load forecasting based on ANFIS 

 

The necessity of household individual short term load forecasting (STLF) is due 

to the non-generalizability of household load profiles. While literature reveals a 

wide variety of models for short term (electrical) load forecasting on an 

aggregated level (cf. e.g. [3,4]), the situation is diff erent for approaches on load 

forecasting for distinct domestic households. Although, on an aggregated level, 

standard load profiles exist (e.g. in Germany the household load profile H0), 

individual households strongly diff er due to diff erent daily routines and habits. 

As described in chapter 2 the individual load forecast is one input of a model for 

the determination of optimal CHP-operating strategies. 

 

3.1 Short term load forecasting modeling concept 
 

The STLF modeling concept is based on an auto-adaptive approach utilizing a 

problem specific implementation of an adaptive network based fuzzy inference 

system (ANFIS [1]). This method provides for both the advantages of fuzzy 

inference and neural networks (especially the ability of learning) and is therefore 

appropriate to meet the requirements of individual STLF. Because of the rising 

accuracy of STLF, the smaller the considered time horizon and the nearer-term 

the learning data is, one iteration
3
 per day seems to be suit-able. Hence, due to 

consistency reasons, in real applications the forecast data  
 

3 One iteration: Learning based on recent load profile and forecast of future load 
profile. 
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Figure1. Structure of ANFIS (based on [1]). 

 
Table1. Forward- and backward-pass of the hybrid learning rule [1] 

 
 Forward Backward 
   

Premise Parameters Fixed Gradient-descent 

Consequent Parameters LSE Fixed 

Signals Node values Error rates 
   

 
should be supplemented with standard or historic load profile data for time 
slots further in the future for the subsequent optimization.  

Figure 1 shows the structure of ANFIS as a composition of a fuzzy infer-

ence (FI) system and a neural network (NN). The structure of the underlying FI 

system is split over five layers. All parameters of the adaptive nodes are part of 

the FI system and modifiable during the learning procedure (cf. table  
1) which is why this design provides for a learning FI system. The five 
layers and their individual characteristics are described in the following.  

Layer 1: The adaptive nodes of this layer contain the membership func-tions 

as defined in the underlying FI system. The node function O1,i of each node i in 
layer 1 is a membership function of the form µ : X → [0, 1]. Its  
function is to fuzzify the crisp input value of each input variable. The node 

function for the input value x to node i and the linguistic label Ai is: 
 

𝑂1,𝑖 =  𝜇𝐴,𝑖(𝑥) =  
1

1+[(
𝑥−𝑐𝑖

𝑎𝑖
)

2
]

𝑏𝑖
 

  

 

(7) 

where the membership function in this example is assumed to be bell-shaped 

according to its parameters (ai, bi, ci). All parameters of the node functions in 

layer 1 are referred to as premise parameters which are adapted during the 
application of the so called hybrid learning rule (cf. table 1) [1].  

Layer 2: The non-adaptive nodes of layer 2 represent the if-part of the 

FI system. The node-value is called firing strength wi: 
 

O2,i = wi = µAI µBI (8) 
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Layer 3: Here, also non-adaptive nodes serve to normalize the node 

values of layer 2. This leads to a unified weight of all rules applied. The node 
values are referred to as normalized firing strengths.  

 

(9) 

 
Layer 4: All nodes of this layer are adaptive nodes which represent the 

then-part of the FI system’s rules. In the Sugeno-type FI system all 
membership functions regarding the output values are linear functions. The 

parameters (pi, qi, ri) of this layer are also called consequent parameters 

which are modified during the forward-pass of the hybrid learning algorithm 
(cf. table 1). 

 

 
(10) 

 
Layer 5: The single node of layer 5 is a non-adaptive node which serves to 

determine the overall output as the weighted sum of all incoming signals. 
 

 
 
 
 
 

3.2 Problem specific implementation of ANFIS 
 

Inputs: Due to security and availability reasons all input data needs to be 

accessible from the location of the micro-CHP unit. Furthermore, the input 

data has to have significant eff ect on the power demand of the building. In 
our first step, the selected parameters are the ones listed below. Each 

parameter’s input space is partitioned with an individual number of bell-

shaped membership functions (given in brackets). Due to the selection of a 

multi-model approach (cf. following section Design), no indicator for the day 

of the week is needed although it is a highly influencing parameter. The 

selected parameters are: 
 

• time (hour) (7),  
• corresponding load of the week before (3),  
• corresponding load of the day before (3),  
• indicator of presence resp. longer absence of occupants (2). 

 
The parameter selection is due to the lack of availability of broader test 

data. Further developments may include more parameters if available which 
is likely to improve forecast quality.  

The inputs for the learning algorithm are recorded load profiles connected 

with the corresponding input parameters. Therefore, the system needs a few 

weeks for good adaption on a household after the very beginning of operation. 
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In this first approach, the temporal resolution is set to one hour. This, on the 
one hand, partly neglects the highly fluctuating character of household loads 
(cf. e.g. [6]) but on the other hand is sufficient for the study’s purpose at this 
early stage. 

 

 

Design: As load profiles strongly diff er on diff erent type of days, the week is 

split up into four groups. The first group includes the weekdays from Monday 
to Thursday. Each of the other three groups covers one day of the week: 
Friday, Saturday and Sunday. Based on this pre-processing, an interative 
multi model approach is selected [5]. This means that for each type of day, 
a distinct instance of the ANFIS-model is used which is iteratively trained 
based on historical data of the corresponding group.  

According to the model description in chapter 3, the input data is fuzzy-fied 

through bell-shaped membership functions. The initial setting for these functions 

is based on expert’s knowledge, diff ers for the four type of days and covers the 

whole parameter’s input space. The determining parameters of each function 

as defined in equation 7 are adapted within the learning procedure which 

provides for an adaption to each household’s individual requirements. The rules, 

which are responsible for the input-output mapping are also based on expert’s 

knowledge and intensive experimental studies. Owing to the ANFIS structure, 

each rule incorporates one linear output member-ship function. The parameters 

of these linear functions (cf. equation 10) are adapted within the forward-pass 

of the hybrid learning procedure. 
 

Furthermore, the ANFIS structure (cf. figure 1) also illustrates a great 
advantage of the modeling concept, which is its expandability, e.g. with new 
or actualized expert’s knowledge as well as with new load determining 
parameters. It is easy to add more rules and input or output membership 
functions due to the flexible structure. 

 
 

4 Exemplary application 

 

4.1 Standard Load Profile as Reference Model 

 

The most intuitive way of ”predicting” household load curves in Germany is 

to use the standard load profile for households (profile H0) which can be 

easily scaled up with the historical yearly consumption of electric energy. 

However, the application as forecast shows comparatively high error values. 

This is due to the non-generalizability of individual household load curves in 
contrast to the aggregated profile of numerous households. Therefore, the 

H0 profile serves as a good reference for the forecasting model in the 

following for being able to asses the advantages generated through the 

proposed forecasting method. 
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4.2 Error measure 
 

Standard error measures in forecasting like the mean average percentage error 

or the root mean sqaured error do not completely reflect the purpose of this 

special approach which is to meet the principal characteristic of the household’s 

load profile. Therefore, a problem specific error measure is used, which 

expresses the yearly deficient cover of energy (YDCE, eq. 12). It represents the 

amount of energy, which is not covered by the forecast at the correct time. 

Together with the comparison of the actual (AYED) and the forecasted (FYED) 

yearly energy demand, this error measure is sufficient to evaluate the quality of 

this special forecast. For being able to better classify the individual results, the 

YDCE is also stated as a percentage of AYED (cf. section 4.3). This improves 

the comparability of several results. 

 

 
4.3 Results of ANFIS application 
 
The results of an exemplary application of the ANFIS based STLF are given 

in table 2 for three diff erent households4. The underlying load profiles cover 
one year and therefore many diff erent load situations. Moreover, it can be 
assumed, that the individual consumer behaviour is fully represented with a 
one year load profile.  

In comparison with the reference model H0, the proposed ANFIS model 

shows remarkable advantages. The yearly deficient cover of energy could 

be reduced by approx. 50 % while the forecasted yearly energy demand 

meets the actual value pretty good. However, the results also clearly show 

the complexity of forecasting household individual loads. While forecasts on 

a higher aggregated level reach deviations of smaller than 1 % (cf. e.g. [3], 

[4], [11]) the model proposed only reaches 10 % at the minimum (cf. table 

2). Nevertheless, taking the available data and the preliminary state of the 

work into account, the results show, that the approach is promising and 

delivers significant better input data for the optimization than the standard 

load profile does. Furthermore, the quality is hard to be rated due to the lack 

of comparable approaches.   
4 Another 30 load profiles were examined with similar results. 
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Table2. Selected Results of Exemplary Application  
       

Profile  ANFIS H0 Actual  
 

FYED 
 

YDCE YDCE YED 
 

   
      

01 5,420 kWh 546 kWh (10 %) 1,023 kWh (19 %) 5,412 kWh  

02 4,454 kWh 596 kWh (14 %) 1,037 kWh (24 %) 4,385 kWh  

03 6,154 kWh 719 kWh (12 %) 1,314 kWh (22 %) 6,048 kWh  
       

 

 

5 Improved operation of micro-CHP unit 

 

This section gives preliminary and exemplary results regarding the achiev-
able improvement due to forecast-optimized micro-CHP operation in com-

parison with the heat-led operating strategy5. The household considered in 

the following has 4 inhabitants, a yearly electricity consumption of 6,664 
kWh (2,496 due to an electric vehicle) and a yearly thermal energy demand 
of 12,448 kWh.  

In case of the heat-led strategy, the only trigger which initiates the op-eration 

of the micro-CHP unit is the case of a thermal energy storage level below the 

defined minimum level. Due to the electrical load profile, which is not explicitly 

taken into account in the heat-led strategy, the produced elec-tricity is only used 

locally to the extent which is demanded just at the time of operation. Therefore, 

in total, a larger part of the electricity produced is fed into the grid. On the other 

hand, the optimized-strategy is based on the individual forecast and therefore 

takes all available data into account. The optimization tries to shift the times of 

operation to the times in which the local electricity demand is expected to be 

high. Simultaneously, technical constraints ensure the coverage of the thermal 

energy demand at any time.  
The comparison of both strategies shows, that the optimized strategy in-

creases the own consumption by 15 % which results in additional anual saving 
of approx. 102 E. Although this seems to be a small eff ect, the projection to the 
whole economic lifetime, which is assumed to be 20 years, shows an over-all 

improvement of the investment’s net present value
6
 of approx. 1,300 E. This 

economic advantage is almost equivalent to the current governmental 

investment funding for micro-CHP units with 1 kWel [12]. 

 

6 Conclusions and Outlook 

 

The application of the approach developed already shows advantages in com-
parison to a heat led operation of micro-CHP units. However, the forecasting  

 
5 The unit assumed has a maximum electrical power of 1.2 kW and a corresponding 

thermal power of 2.4 kW. Furthermore, three diff erent points of operation are 
assumed: 0 %, 50 % and 100 % of maximum power.  

6 Assumed discount rate is 5 %. 
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quality still needs to be improved to justify the application in practice and to 
generate a reliable input for the optimization. Nevertheless, the appli-cation 
of intelligent and adaptive techniques for household individual load 
forecasting could be proved as a promising concept for the improvement of 
micro-CHP operation. This was demonstrated in an exemplary application 
for a real household with a time horizon of one year.  

Future research will be concentrated on the identification of further in-

fluencing parameters to be used as input data and hence to improve 

forecast quality. Moreover, the selection and the initial settings of the 

membership functions needs to be further investigated. Another research 
question which will be dealt with, is the comparison of the model with other 

forecasting methods such as regression approaches or various kinds of 

neural networks. Regarding the overall concept, a subsequent simulation 

will be developed, which will give full information about the eff ects of 

forecasting errors on the stability of optimized operating strategies. 
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