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Abstract. In this paper we consider the appointment schedule of a physician’s day. We assume 
patient types defined by different time preferences and service time lengths. Patient requests for the 
day are handled directly during a booking horizon. We present a mixed integer linear programming 
model to determine a set of appointments to offer a patient requesting an appointment. The 
objective is to schedule the requesting patient while also taking future demand into account. We 
want to maximize the overall utilization assuring a certain fairness level. We further implement a 
simulation in order to test the mixed integer linear program and to compare it to simpler online 
heuristics. 
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Introduction 
 
To increase efficiency in outpatient clinics is one of the current issues in European health care 
systems. Due to the demographic development and the increase of chronic and psychological 
diseases outpatient clinics are facing an augmenting number of appointment requests that often 
goes beyond the clinics' capacities (Europäische Kommission 2014). One of the important 
adjusting screws to increase the efficiency of clinical processes in outpatient clinics is the design of 
their appointment scheduling system. A lot of publications develop appointment scheduling models 
for outpatient clinics. Apart from a few exceptions, the clear majority of these appointment 
scheduling models does not take patient time preferences into consideration. 
The studies of  (Gerard et al. 2008) and (Cheraghi-Sohi et al. 2008) surveying patients in British 
outpatient clinics underline the relevance of individual patient time preferences when arranging 
appointments. According to surveys of Rohleder and Klassen a quarter of the patients has concrete 
time preferences (Klassen and Rohleder 1996). Considering patient time preferences when 
arranging appointments has even positive effects for the outpatient clinics: Patients are highly 
satisfied, so that both the number of no-shows and the number of patient migrating to other clinics 
decrease (Feldman et al. 2014). The consideration of patient time preferences indicates a certain 
extent of appointment flexibility for the patients. This appointment flexibility can however result in 
a highly variable daily capacity utilization, so that outpatient clinics should carefully decide how 
much appointment flexibility they want to offer to their patients (Feldman et al. 2014). 
 
Literature Review 
 
The procedure of the presented appointment scheduling model for assigning appointment requests 
to free time slots is based on the dynamic optimization model of  (Hahn-Goldberg 2014). Her main 
idea is to improve the appointment scheduling of a chemotherapy outpatient clinic by a 
combination of proactive and online optimization. Firstly, a proactive template is generated based 
on the expected appointment requests for the following day. Afterwards, this template is used to 
assign free appointments to the current appointment requests. In situations in which the template 
does not contain a suitable appointment for the actual request the template is updated with regard to 



the already scheduled appointments and the actual request. (Rohleder 2000) integrate patient time 
preferences into their simulations. They compare different appointment scheduling rules 
concerning their effects on patients' waiting times, physicians' idle times and the returns of the 
clinic. In order to consider patient time preferences, they distinguish between normal and special 
appointment requests. Special requests are characterized by a probability distribution describing 
their time preferences. Rohleder and Klassen consider two different probability distributions: a 
uniform distribution and a so called end of period distribution characterizing patients who prefer 
appointments at the end of the period. Two performance criterions are added to the simulations in 
order to evaluate the different scheduling rules concerning the consideration of patient time 
preferences: the proportion of special request patients receiving the specific appointment requested 
and the proportion of special request patients not receiving any appointment. 
In the dynamic appointment scheduling model of (W.-Y. Wang and Gupta 2011) an appointment 
request is characterized by a set of preferred appointment times and a preferred physician. The 
clinic tries to assign an acceptable time-physician-combination to each appointment request while 
maximizing its returns. Since the clinic return function considers the probabilities of patients 
accepting their offered appointment, this model implicitly takes patient time preferences into 
consideration. Wang and Gupta solve this optimization problem with two different heuristics. 
(Feldman et al. 2014) start from the situation, where a certain set of appointment days is offered to 
each patient and then each patient chooses his preferred appointment day out of this set. The 
optimization model determines for each possible set of appointment days the optimal probability 
with which this set of days should be offered to the patients. In the present connection a probability 
distribution is called optimal if it maximizes the number of patients showing up for their 
appointments with regard to the clinic capacity. In this way patient time preferences are implicitly 
taken into consideration. Feldman et al. realize these ideas in a static model, which they solve 
exactly. In a further step the static model is extended to a dynamic one which additionally 
considers the current state of the scheduled appointments. This variation is solved by means of a 
heuristic. Feldman et al. only focus on the appointment days, they do not determine the concrete 
appointment times of the patients. 
Similar to the model of Wang and Gupta, (J. Wang and Fung 2015) characterize a patient 
appointment request by an set of preferred appointment times and a preferred physician. Here the 
appointment length is the same for all patients. In contrast to Wang and Gupta the clinic does not 
offer a concrete time-physician-combination, but it offers some time-physician-combinations to 
each patient. The offered combinations maximize the expected return of the clinic with regard to 
the patient preferences and the current state of the scheduled appointments. Finally, the patient 
either chooses one of the offered combinations or withdraws his appointment request. This process 
is modeled as a dynamic program. The model is solved via an approximate dynamic programming 
approach using an LP-formulation with an affine approximation of the value function. 
 
Model 
 
In our model we consider the appointment schedule of a physician’s day. We assume that there 
exists a booking horizon during which patients are able to call or to go online to book an 
appointment for that day. We further assume that patients can be divided into different patient 
types. Here, a type is defined by a service time length (time of treatment that is needed for a patient 
of that type) and by time preferences with respect to the possible appointment slots. For every 
patient type we assume that the request arrival process for appointments during the booking 
horizon is Poisson. We presume that the patient type of every incoming request is known and that 
the request has to be handled right away. The considered day is divided into � equal time intervals. 
Every possible service time length is a multiple of the interval length. To handle a request, a set of 
appointments matching the patient’s service time length has to be offered (overlapping is not 
allowed). The patient then chooses one of these appointments or rejects and leaves. The challenge 
is to offer patients a set of fitting appointments such that the probability that this patient accepts 



one of them is high. At the same time we want to take into account future demand. The overall goal 
hereby is to maximize the utilization of the schedule or equivalently to minimize the unused time 
intervals at the end of the booking horizon. Here, we suppose that patients who accepted an 
appointment will show up. In order to determine a set of appointments to offer to an incoming 
request we solve a mixed integer linear program. This model considers already assigned 
appointments. Further, it tries to schedule the incoming request and the expected future request by 
reserving appointments for every patient type. The objective function maximizes the expected 
utilization of the schedule assuming that every reserved appointment is offered to one patient of the 
corresponding type. The resulting reserved appointments for the requesting patient’s type are 
potential appointments to offer to him or her. In Table 1 the sets, parameters and variables are 
defined. Our model then results in: 
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Constraint (1)	ensures that the number of appointments reserved for patient type � plus a deviation 
is given by the number of already assigned appointments plus the expected demand of that type. In 
constraint (2) we assert that no appointment can last longer than the end of the day. Constraint (3) 
makes overlapping of appointments impossible. It is assumed fair to schedule a number of 
appointments of type � proportional to the number of expected requests of type �. Constraints (4) 
and (5) ensure that there can only be a certain deviation from this proportion through setting 

parameter $. This can be seen through rearranging the assertion �� − �� ≈	 0�
∑ 011∈2

⋅ ∑ (�# −#∈�
�#). Here, 

0�
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	is the share of expected demand of type � and (�� − ��)  is the number of 

reserved appointments for patients of type � (not including already assigned appointments).   
Constraint (6) fixes the already assigned appointments. Constraints (7) and (8)	are the domain 
constraints. In addition, to ensure the consideration of the current request of type �, we augment the 
expected demand from now until the end of the booking horizon of type �, which is ��, by 1.  

 

 

 



Sets Definition 
3 Set of types 
4 Set of time intervals of the day 
5 Set of tuples of already assigned appointments (�, �), � ∈ �, � ∈ � where � is the 

first time interval of the appointment 
Parameters  
678 Probability that a patient of type � accepts an appointment starting in time 

interval � if only this appointment is offered (Probability is set to one for already 
assigned appointments) 

97 Service length for a patient of type � 
:7 Expected demand of type � from now until the end of the booking horizon 
;7 Number of already assigned appointments of type � 
478 = {max?0, (� − �� + 1)@ ,… , �} 
B Fairness parameter 
Variables  
C78 Binary variable that equals 1 if time interval � is the starting time interval of an 

appointment reserved for a patient of type � 
D7 Demand of type � that is not considered (�� ≥ 0) or that is over considered 

(�� ≤ 0) 
     Table 1: Sets, parameters and decision variables of the model 

Numerical Experiments 
 
In order to test our model we implemented a simulation. Patient requests are generated according to 
a Poisson process. For every appointment request the mixed integer model is solved and the set of 
reserved appointments for the requesting patient’s type  is offered to the patient. We apply the logit 
decision model presented in (McFadden 1973) to model the patients choice. That means given a set 
F of decision alternatives, the probability of choosing alternative G ∈ F for a patient of type � is 

given by ��H = IJ�K
∑ IJ�11∈L

 , where M�H is the expected benefit of a type � patient for choice	G. In our 

case G either is given by an appointment (denoted by its starting time interval �) or by the choice not 
to accept any offered appointment. At the end of the booking horizon we count the number of 
unused time intervals. Besides, we measure fairness. For every patient type � we define fairness as 
the deviation of the proportion of assigned appointments for type � to the number of overall 
assigned appointments from the proportion of incoming requests of type � to the number of all 
incoming requests. The overall fairness is the sum of the absolute values of those deviations. In this 
sense a low fairness value is good. To validate our model, we compare the simulation results of our 
model to the results of two online scheduling heuristics. Online heuristic 1 offers all fitting 
appointments (with respect to service length).  Online heuristic 2 only offers the earliest 
appointment that fits (with respect to service length). Online heuristic 2 is similar to the 
appointment assignment procedure in many practices. In our numerical experiments we use 42 time 
intervals per day and 6 different patient types which result from combining two service time 
lengths (one and two time intervals) and three time preferences (morning, afternoon and all day). 
To be more precise, we suppose that M�� = 4.1 for time intervals � that correspond to the time 
preference of patients type �, otherwise we assume M�� = 0. The benefit of rejecting any offered 
appointment is set to M�O =0 for max�∈P M�� = 4.1 and to M�O =4.1 for max�∈P M�� = 0. These 
settings result in very high accepting probabilities of 0.98	for fitting time slots. Patient types 1, 2 
and 3 have a service time length of 1 whereas patient types 4, 5 and 6 have a service time length of 
2. We consider 6 scenarios with different overall demand levels and different demand proportions 
as can be seen in Table 2. 



 

Scenario Expected demand per type 
1 [3, 3, 3, 2, 2, 2] 
2 [6, 6, 3, 4, 4, 2] 
3 [6, 6, 6, 4, 4, 4] 
4 [9, 9, 9, 6, 6, 6] 
5 [12, 12, 12, 8, 8, 8] 
6 [12, 12, 6, 8, 8, 4] 
Table 2: Scenarios 

The first two scenarios correspond to an expected under-utilization whereas the last three scenarios 
correspond to an expected exceed of the daily time capacity. As a solver we use IBM ILOG 
CPLEX. As a programming environment for the simulation we use the IBM ILOG CPLEX 
Optimization Studio. Every considered scenario was simulated several times until the accuracy was 
acceptable. No scenario simulation took longer than 40 min. Further, it takes around 10 seconds to 
solve the mixed integer linear program once.  

First, we investigated the influence of the fairness parameter $. To this end only scenario 3 was 
considered for different values of $. The results can be seen in Table 3. 

Parameter a Number of unused time intervals Fairness 
1 5.06±1.1 0.06±0.02 
2 4.23±0.75 0.07±0.01 
3 3.5±0.86 0.08±0.02 
Table 3: Variation of the fairness parameter a 

It can be seen that the number of unused time intervals is lower for bigger $ but at the same time 
also the fairness value is going up as expected. For very small $ the integer linear program 
becomes infeasible. 

In the following, we compare the simulation results of our model with the simulation results of the 
online heuristics. Here, we set the fairness parameter to $ = 2 (such that the fairness values of the 
mixed integer linear program (MILP) are of a similar size as the fairness values of online heuristic 
1). In Table 4 you can see the average values of the number of unused time intervals (Un. time 
inter.) and of the measure fairness for the 6 scenarios.  

Scenarios MILP Online 1 Online 2  
Un. time 
inter. 

Fairness Un. Time 
inter. 

Fairness Un. time 
inter. 

Fairness 

1 22.00 ±1.6 0.00 22.33±1.5 0.02±0.01 28.53±0.9 0.74±0.06 
2 16.67±1.00 0.00 16.67±1.00 0.00 22.97±0.8 0.84±0.04 
3 4.23±0.75 0.07±0.01 5.4±0.66 0.01±0.01 15.57±0.96 0.55±0.04 
4 0.06±0.06 0.18±0.02 0.10±0.06 0.25±0.01 3.30±0.8 3.50±0.02 
5 0.03±0.03 0.22±0.01 0.07±0.05 0.24±0.02 0.30±0.22 0.39±0.02 
6 0.03±0.03 0.22±0.01 0.30±0.17 0.22±0.01 1.93±0.43 0.30±0.02 
Table 4: Results of the numerical experiments 

First of all, we can see in Table 4 that online heuristic 2 yields significantly worse results than the 
MILP and online heuristic 1. It tries to avoid gaps in the schedule through offering only the first 
fitting appointment. But as it doesn’t consider preferences, some patients reject the offer and in the 



end more time intervals are left unused. The results for the MILP and online heuristic 1 don’t differ 
significantly for scenarios 1 and 2 (expected under-utilization). The reason for this is probably that 
for expected under-utilization the consideration of upcoming demand is not as important because 
there are enough free time slots. Regarding scenario 3 the MILP has less unused time intervals and 
a little higher fairness value compared to online heuristic 1. In the cases of scenarios 4, 5 and 6 
(exceeded daily capacity) the MILP yields slightly better results than online heuristic 1. In these 
cases, considering future demand seems to be beneficial. 
 
Conclusion and Outlook 
 
In this paper we presented a mixed integer linear programming model determining a set of 
appointments to offer to a patient with certain time preferences and a service length in order to 
schedule this patient while also taking future demand into account to maximize the overall 
utilization while assuring a certain fairness level.  

Possible future work on the model includes more numerical experiments to determine scenarios 
where the MILP model yields an additional benefit compared to the online heuristics. Further, more 
sensitivity analyses considering the model parameters should be conducted. 

In addition, the presented model can be extended in several ways. The assumption that the type of a 
patient is known could be relaxed. In addition, data from outpatient clinics about time preferences 
and service time lengths should be collected and clustered in order to find realistic patient types. 
Further, it could be beneficial to generate more than one schedule for every patient request in order 
to find even more appointments to offer. One could consider several days at the same time testing 
the limits of the mixed integer programming model. For large problems constraint programming 
could be applied as it has been done in (Hahn-Goldberg et al. 2014).  
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