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Abstract. In this paper we consider the appointment scheafudephysician’s day. We assume
patient types defined by different time prefererened service time lengths. Patient requests for the
day are handled directly during a booking horiAdte present a mixed integer linear programming
model to determine a set of appointments to offeaitéent requesting an appointment. The
objective is to schedule the requesting patientenddso taking future demand into account. We
want to maximize the overall utilization assuringegtain fairness level. We further implement a
simulation in order to test the mixed integer linpeogram and to compare it to simpler online
heuristics.
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Introduction

To increase efficiency in outpatient clinics is oofethe current issues in European health care
systems. Due to the demographic development andntitease of chronic and psychological
diseases outpatient clinics are facing an augngntimmber of appointment requests that often
goes beyond the clinics' capacities (Europaischenidizsion 2014) One of the important
adjusting screws to increase the efficiency oficlihprocesses in outpatient clinics is the design
their appointment scheduling system. A lot of pedions develop appointment scheduling models
for outpatient clinics. Apart from a few exceptipribe clear majority of these appointment
scheduling models does not take patient time peafers into consideration.

The studies of (Gerard et al. 2008) and (Cher&ghii- et al. 2008) surveying patients in British
outpatient clinics underline the relevance of iidiilal patient time preferences when arranging
appointments. According to surveys of Rohleder ladsen a quarter of the patients has concrete
time preferences (Klassen and Rohleder 1996). @erisg patient time preferences when
arranging appointments has even positive effeatstHe outpatient clinics: Patients are highly
satisfied, so that both the number of no-showsthadchumber of patient migrating to other clinics
decrease (Feldman et al. 2014). The considerafigratient time preferences indicates a certain
extent of appointment flexibility for the patientchis appointment flexibility can however result in
a highly variable daily capacity utilization, scathoutpatient clinics should carefully decide how
much appointment flexibility they want to offerttoeir patients (Feldman et al. 2014)

Literature Review

The procedure of the presented appointment scimgdmbdel for assigning appointment requests
to free time slots is based on the dynamic optitiiramodel of (Hahn-Goldberg 2014). Her main
idea is to improve the appointment scheduling ofthemotherapy outpatient clinic by a
combination of proactive and online optimizatiotirsiy, a proactive template is generated based
on the expected appointment requests for the fallgwlay. Afterwards, this template is used to
assign free appointments to the current appointmeqiests. In situations in which the template
does not contain a suitable appointment for theshcequest the template is updated with regard to



the already scheduled appointments and the aagakst. (Rohleder 2000) integrate patient time
preferences into their simulations. They comparfferdint appointment scheduling rules
concerning their effects on patients' waiting timplsysicians' idle times and the returns of the
clinic. In order to consider patient time preferesicthey distinguish between normal and special
appointment requests. Special requests are charackey a probability distribution describing
their time preferences. Rohleder and Klassen cendido different probability distributions: a
uniform distribution and a so called end of perdistribution characterizing patients who prefer
appointments at the end of the period. Two perfoaacriterions are added to the simulations in
order to evaluate the different scheduling rulesceoning the consideration of patient time
preferences: the proportion of special requeseptireceiving the specific appointment requested
and the proportion of special request patientgexiving any appointment.

In the dynamic appointment scheduling model of fWWang and Gupta 2011) an appointment
request is characterized by a set of preferrediappent times and a preferred physician. The
clinic tries to assign an acceptable time-physicambination to each appointment request while
maximizing its returns. Since the clinic return dtion considers the probabilities of patients
accepting their offered appointment, this model lioiy takes patient time preferences into
consideration. Wang and Gupta solve this optimiratproblem with two different heuristics.
(Feldman et al. 2014) start from the situation, nehe certain set of appointment days is offered to
each patient and then each patient chooses hisrggéfappointment day out of this set. The
optimization model determines for each possibleo$etppointment days the optimal probability
with which this set of days should be offered te gatients. In the present connection a probability
distribution is called optimal if it maximizes theumber of patients showing up for their
appointments with regard to the clinic capacitytHis way patient time preferences are implicitly
taken into consideration. Feldman et al. realizs¢hideas in a static model, which they solve
exactly. In a further step the static model is edezl to a dynamic one which additionally
considers the current state of the scheduled appeits. This variation is solved by means of a
heuristic. Feldman et al. only focus on the appoérit days, they do not determine the concrete
appointment times of the patients.

Similar to the model of Wang and Gupta, (J. Wang &ung 2015) characterize a patient
appointment request by an set of preferred appeintriimes and a preferred physician. Here the
appointment length is the same for all patientscdntrast to Wang and Gupta the clinic does not
offer a concrete time-physician-combination, bubfiters some time-physician-combinations to
each patient. The offered combinations maximizeetkgected return of the clinic with regard to
the patient preferences and the current state eoftheduled appointments. Finally, the patient
either chooses one of the offered combinationsitirdnaws his appointment request. This process
is modeled as a dynamic program. The model is dokiee an approximate dynamic programming
approach using an LP-formulation with an affineragpmation of the value function.

Model

In our model we consider the appointment schedfil@ physician’s day. We assume that there
exists a booking horizon during which patients alde to call or to go online to book an
appointment for that day. We further assume thaieps can be divided into different patient
types. Here, a type is defined by a service timgtle (time of treatment that is needed for a patien
of that type) and by time preferences with respgecthe possible appointment slots. For every
patient type we assume that the request arrivategs for appointments during the booking
horizon is Poisson. We presume that the patiem bfpevery incoming request is known and that
the request has to be handled right away. The deresd day is divided intB equal time intervals.
Every possible service time length is a multipleéhaf interval length. To handle a request, a set of
appointments matching the patient's service timegtle has to be offered (overlapping is not
allowed). The patient then chooses one of theseiappents or rejects and leaves. The challenge
is to offer patients a set of fitting appointmeatgh that the probability that this patient accepts



one of them is high. At the same time we want ke iato account future demand. The overall goal
hereby is to maximize the utilization of the scHedwr equivalently to minimize the unused time
intervals at the end of the booking horizon. Hexe, suppose that patients who accepted an
appointment will show up. In order to determineed af appointments to offer to an incoming
request we solve a mixed integer linear programis Tihodel considers already assigned
appointments. Further, it tries to schedule therimiag request and the expected future request by
reserving appointments for every patient type. Dhgective function maximizes the expected
utilization of the schedule assuming that evergmesd appointment is offered to one patient of the
corresponding type. The resulting reserved appa@ntm for the requesting patient’'s type are
potential appointments to offer to him or her. lable 1 the sets, parameters and variables are
defined. Our model then results in:

max
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Constraint(1) ensures that the number of appointments reservguhfeent typek plus a deviation

is given by the number of already assigned app@ntsplus the expected demand of that type. In
constraint(2) we assert that no appointment can last longerttheaend of the day. Constraii)
makes overlapping of appointments impossible. Itassumed fair to schedule a number of
appointments of typ& proportional to the number of expected requestyp k. Constraintg4)

and (5) ensure that there can only be a certain devidtiom this proportion through setting

parametera. This can be seen through rearranging the assewjo- d; =~ L-2‘,1-6,((Nl- —

Yiex Ni
d;). Here,ZN" is the share of expected demand of typend (N, — d;) is the number of
iekK Vi
reserved appointments for patients of type(not including already assigned appointments).
Constraint(6) fixes the already assigned appointments. Congr@) and (8) are the domain

constraints. In addition, to ensure the considenatif the current request of typewe augment the
expected demand from now until the end of the bagkiorizon of typék, which isN,, by 1.




Sets Definition

K Set of type

T Set of time intervals of the d

E Set of tuples of already assigned appointmé@nts), k € K,t € T wheret is the
first time interval of the appointment

Parameter s

Py, Probability that a patient of typk accepts an appointment starting in time
intervalt if only this appointment is offered (Probabilit/set to one for already
assigned appointments)

Dy, Service length for a patient of tyge

Ny, Expected demand of tygefrom now until the end of the booking horizon

Ay Number of already assignhed appointments of fype

Tt = {max(0,(t — Dy + 1)), ..., t}

a Fairness parame

Variables

Xt Binary variable that equalkif time intervalt is the starting time interval of gn
appointment reserved for a patient of type

d; Demand of typek that is not consideredi{ > 0) or that is over considergd
(dp=0)

Table 1: Sets, parameters and decision variables of the model

Numerical Experiments

In order to test our model we implemented a sinutatPatient requests are generated according to
a Poisson process. For every appointment requeshiked integer model is solved and the set of
reserved appointments for the requesting pati¢yps is offered to the patient. We apply the logit
decision model presented in (McFadden 1973) to htbdegoatients choice. That means given a set
J of decision alternatives, the probability of chiogsalternativej € J for a patient of typé is

Vas
—Zi:]:{/ki , WhereV; is the expected benefit of a typepatient for choicg. In our
casej either is given by an appointment (denoted bgtiisting time intervat) or by the choice not
to accept any offered appointment. At the end ef bboking horizon we count the number of
unused time intervals. Besides, we measure fairfr@ssevery patient typke we define fairness as
the deviation of the proportion of assigned appoerits for typek to the number of overall
assigned appointments from the proportion of incgmiequests of typ& to the number of all
incoming requests. The overall fairness is the sfithe absolute values of those deviations. In this
sense a low fairness value is good. To validatentagtel, we compare the simulation results of our
model to the results of two online scheduling h&tigs. Online heuristic 1 offers all fitting
appointments (with respect to service length). i@nlheuristic 2 only offers the earliest
appointment that fits (with respect to service tbhg Online heuristic 2 is similar to the
appointment assignment procedure in many practicasir numerical experiments we use 42 time
intervals per day and 6 different patient types olthiesult from combining two service time
lengths (one and two time intervals) and three tomeferences (morning, afternoon and all day).
To be more precise, we suppose thgt= 4.1 for time intervalst that correspond to the time
preference of patients type otherwise we assunig, = 0. The benefit of rejecting any offered
appointment is set t&, =0 for max,¢; Vi, = 4.1 and toV, =4.1 for max,c; V. = 0. These
settings result in very high accepting probabditaf 0.98 for fitting time slots. Patient types 1, 2
and 3 have a service time length of 1 whereasmidiipes 4, 5 and 6 have a service time length of
2. We consider 6 scenarios with different overalindnd levels and different demand proportions
as can be seen in Table 2.

given byPy; =



Scenario Expected demand per type

[3,3,3,2,2,2]

[6,6,3,4,4,2]

[6,6,6,4,4,4]

[9,9,9,6,6,6]

[12,12,12.8, 8, 8]

OO WIN|EF

[12,12.6, 8, 8, 4]

Table 2: Scenarios

The first two scenarios correspond to an expecbeiutilization whereas the last three scenarios
correspond to an expected exceed of the daily ¢epacity. As a solver we use IBM ILOG

CPLEX. As a programming environment for the sinmolaive use the IBM ILOG CPLEX
Optimization Studio. Every considered scenario siamilated several times until the accuracy was
acceptable. No scenario simulation took longer #@min. Further, it takes around 10 seconds to
solve the mixed integer linear program once.

First, we investigated the influence of the faisyparametes. To this end only scenario 3 was
considered for different values of The results can be seen in Table 3.

Parameter a | Number of unused timeintervals Fairness
1 5.0€+1.1 0.0€+0.0z
2 4,22+0.7¢ 0.07+0.01
3 3.5+0.8¢ 0.0€+0.0z

Table 3: Variation of the fairness parameter a

It can be seen that the number of unused timevialteis lower for biggea but at the same time
also the fairness value is going up as expectadvéry smalla the integer linear program
becomes infeasible.

In the following, we compare the simulation resolft®ur model with the simulation results of the
online heuristics. Here, we set the fairness pat@ntea = 2 (such that the fairness values of the
mixed integer linear program (MILP) are of a sim#ize as the fairness values of online heuristic
1). In Table 4 you can see the average valuesdfitmber of unused time intervals (Un. time
inter.) and of the measure fairness for the 6 stana

Scenarios | MILP Online 1 Online 2
Un. time Fairness | Un. Time Fairness | Un. time Fairness
inter. inter. inter.
1 22.0C +1.€ 0.0C 22.3%1.k 0.0z+0.01 | 28.57=0.¢ 0.74+0.0¢
2 16.67+1.0C 0.0C 16.67+1.0C 0.0C 22.971+0.€ 0.84+0.0¢
3 4.23+0.7¢ 0.07+0.01 | 5.4+0.6¢ 0.01+0.01| 15.57+0.9¢ 0.55+0.0¢
4 0.0€+0.0¢ 0.1€+0.0Z | 0.10+0.0¢ 0.25+0.01| 3.30+0.€ 3.5(+0.0z2
5 0.0=0.07 0.22+0.01 | 0.07+0.0¢ 0.24+0.0Z | 0.30+0.22 0.3¢+0.0z
6 0.070.07 0.22+0.01 | 0.30+0.17 0.22+0.01 | 1.97+0.4< 0.30+0.0z

Table 4: Results of the numerical experiments

First of all, we can see in Table 4 that onlinerfstig 2 yields significantly worse results tham th
MILP and online heuristic 1. It tries to avoid gapsthe schedule through offering only the first
fitting appointment. But as it doesn’t considerfprences, some patients reject the offer and in the



end more time intervals are left unused. The redaftthe MILP and online heuristic 1 don't differ
significantly for scenarios 1 and(@xpected under-utilization). The reason for thiprisbably that

for expected under-utilization the consideratiorup€oming demand is not as important because
there are enough free time sld&egarding scenario 3 the MILP has less unusedititeevals and

a little higher fairness value compared to onlimairistic 1. In the cases of scenarios 4, 5 and 6
(exceeded daily capacity) the MILP vyields slightigtter results than online heuristic 1. In these
cases, considering future demand seems to be biahefi

Conclusion and Outlook

In this paper we presented a mixed integer lineagramming model determining a set of
appointments to offer to a patient with certaindipreferences and a service length in order to
schedule this patient while also taking future dedhdnto account to maximize the overall
utilization while assuring a certain fairness level

Possible future work on the model includes more eniral experiments to determine scenarios
where the MILP model yields an additional benedinpared to the online heuristics. Further, more
sensitivity analyses considering the model paramaetgould be conducted.

In addition, the presented model can be extendsdvuaral ways. The assumption that the type of a
patient is known could be relaxed. In additionadabm outpatient clinics about time preferences
and service time lengths should be collected aust@ted in order to find realistic patient types.
Further, it could be beneficial to generate moentbne schedule for every patient request in order
to find even more appointments to offer. One cauddsider several days at the same time testing
the limits of the mixed integer programming modedr large problems constraint programming
could be applied as it has been done in (Hahn-Gogdet al. 2014).

References

Cheraghi-Sohi, Sudeh, Arne Risa Hole, Nicola Méatth Mcdonald, Diane Whalley, and Peter
Bower. 2008. “What Patients Want From Primary G2oasultations: A Discrete Choice
Experi- Ment to Identify Patients’ Priorities&nnals Of Family Mediciné(2): 107-15.

Européische Kommission. 201die Europaische Union Erklart: Gesundheitswesen

Feldman, Jacob, Nan Liu, Huseyin Topaloglu, anth&=eZiya. 2014. “Appointment Scheduling
Under Patient Preference and No-Show Behavidpérations Researdd2(4): 794-811.
http://pubsonline.informs.org/doi/abs/10.1287/0pdé4.1286.

Gerard, Karen, Chris Salisbury, Deborah Streeth&ate Pope, and Helen Baxter. 2008. “Is Fast
Access to General Practice All That Should MatteDiscrete Choice Experiment of
Patients’ PreferencesJburnal of health services research & polit§(2): 3—-10.

Hahn-Goldberg, Shoshana. 2014. “Dynamic Optimirafiddressing Chemotherapy Outpatient
Scheduling.” University of Toronto.

Hahn-Goldberg, Shoshana, Michael W Carter, J Gipfsr Beck, Maureen Trudeau, Philomena
Sousa, and Kathy Beattie. 2014. “Dynamic Optim@atf Chemotherapy Outpatient
Scheduling with Uncertainty Flealth care management scierlcg4): 379-92.
http://www.ncbi.nlm.nih.gov/pubmed/24477637 (Felbyud, 2014).

Klassen, Kenneth J., and Thomas R. Rohleder. 1$@e6eduling Outpatient Appointments in a
Dynamic Environment.Journal of Operations Managemeht(2): 83—-101.



McFadden, Daniel. 1973. “Conditional Logit AnalysisQualitative Choice BehaviorFrontiers
in Econometrics105-42.

Rohleder, TR. 2000. “Using Client-Variance Inforinatto Improve Dynamic Appointment
Scheduling Performance0Omega28(3): 293-302.
http://www.sciencedirect.com/science/article/pi386048399000407 (January 12, 2015).

Wang, Jin, and Richard Fung. 2015. “Dynamic Appoient Scheduling with Patient Preferences
and Choices.Industrial management & data systefrib(4): 700-717.

Wang, Wen-Ya, and Diwakar Gupta. 2011. “Adaptivepdintment Systems with Patient
Preferences.Manufacturing & Service Operations Managemg8(3): 373—-89.
http://pubsonline.informs.org/doi/abs/10.1287/mskit0.0332 (November 1, 2013).



