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Abstract 

 

The multicomponent model and the effective diffusivity model are well established diffusion 

models for numerical simulation of single-phase flows consisting of several components but are 

seldom used for two-phase flows so far. In this paper, a specific numerical model for interfacial 

mass transfer by means of a continuous single-field concentration formulation is combined with 

the multicomponent model and effective diffusivity model and is validated for multicomponent 

mass transfer. For this purpose, several test cases for one-dimensional physical or reactive mass 

transfer of ternary mixtures are considered. The numerical results are compared with analytical or 

numerical solutions of the Maxell-Stefan equations and/or experimental data. The composition-

dependent elements of the diffusivity matrix of the multicomponent and effective diffusivity model 

are found to substantially differ for non-dilute conditions. The species mole fraction or 

concentration profiles computed with both diffusion models are, however, for all test cases very 

similar and in good agreement with the analytical/numerical solutions or measurements. For 

practical computations, the effective diffusivity model is recommended due to its simplicity and 

lower computational costs. 

  



- 3 - 

1 Introduction 

In recent years, there has been a notable progress in the development of numerical methods for 

interface-resolving simulations of gas-liquid two-phase flows [1, 2]. These methods allow studying 

transport phenomena within the phases and across the interface numerically and offer the 

opportunity to acquire detailed insights into transport processes in reactive gas-liquid flows. These 

models and simulations can support the development and optimization of technical devices, e.g. 

in micro process engineering [3-5]. At small scales, diffusion may become dominant and its 

adequate modeling is thus a prerequisite for accurate simulation of transport phenomena in micro 

reactors operated at low Péclet numbers. 

Numerical methods for interface-resolving simulations of two-phase flows such as the 

volume-of-fluid method [6], the level-set method [7] and the front-tracking method [8] rely on the 

single-field formulation of the Navier-Stokes equation. For simulation of interfacial mass transfer, 

these methods must be combined with a transient transport equation for each chemical species. 

Corresponding numerical methods suffer from two difficulties, namely (i) the concentration jump 

at the interface (which results from the different species solubility in both phases) and (ii) thin 

boundary layers with large concentration gradients normal to the interface. To resolve the 

difficulty concerning the concentration jump, two different approaches exist essentially. In the so-

called two-field (or two-scalar) approach, a separate concentration equation is solved for each 

phase [9-13]. For this purpose, two concentration fields are employed which are set to zero when 

continued into the other phase. In the single-field approach, in contrast, one single concentration 

equation is solved for each species, which is valid in the entire domain. Here, one can distinguish 
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between methods that numerically preserve the discontinuity of the concentrations at both sides of 

the interface [14-16] and methods that solve for a transformed concentration field which is 

continuous at the interface [17-21]. A discussion of the advantages and disadvantages of the 

different concepts is provided in Deising et al. [16]. 

In the literature, the application of the above numerical methods is often restricted to the mass 

transfer of one single dilute species or to the evaporation of a pure liquid where the gas phase is a 

binary mixture of air and the vapor of the liquid phase [22, 23]. In other applications, the 

evaporation of a binary liquid mixture adjacent to vapor mixture of the same components is 

considered [24]. In all these cases, Fick’s law with a constant or temperature dependent binary 

diffusion coefficient can describe the diffusion process. In chemically reacting flows, however, 

multiple species are involved and for each species a separate advection-diffusion-reaction equation 

needs to be solved to determine the local instant concentration. In mixtures with more than two 

species, the diffusion of a species is influenced not only by its own concentration gradient, but also 

by the concentration profiles of the other species. In such multicomponent mixtures, complex 

interactions between diffusing components (so-called cross effects) may occur [25, 26] which can 

only be described by multicomponent diffusion concepts. 

A brief review of the relevant work on multicomponent diffusion theory is provided by Bird 

et al. [27]. Historically, there are two major formulations for the mass-flux relations due to 

diffusion in a n -component mixture. In the generalization of Fick’s law (GFL) the mass flux is 

written as a linear combination of concentration gradients while in the Maxwell-Stefan (MS) 

equations, which can be considered as the most fundamental model for the description of material 
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transport in multicomponent system, the concentration gradient is given as a linear combination of 

the mass fluxes [28]. Both formulations lead to different n n  diffusivity matrices which are, 

however, convertible [28-30]. 

The GFL form has the advantages that it is easily combined with mass balances and can be 

directly used with standard computational fluid dynamic (CFD) routines [31]. In engineering CFD 

computations, usually only 1n  species balance equations are solved while the concentration or 

mass fraction of component n  (the solvent) is determined from an overall material balance [32, 

33]. This leads to a ( 1) ( 1)n n    matrix of diffusion coefficients which is in general asymmetric 

and dependent on composition. Except for ideal gas mixtures, there is no accepted way of 

estimating these coefficients other than by exhaustive experimentation [32, 34]. In the MS 

equations, instead, the well-documented binary diffusivities appear, though there is no a priori 

reason to assume this [27]. A remedy for determining the elements of the ( 1) ( 1)n n    GFL 

diffusivity matrix is therefore the inversion of the respective matrix of MS diffusivities [26, 35, 

36]. This approach is denoted here as the (GFL) multicomponent model and is widely used in 

analytical studies as well as in numerical applications [37]. 

To avoid the matrix inversion of the multicomponent diffusion model, the effective diffusivity 

model was developed [38]. It is also called dilute approximation model [25, 39] or mixture-

averaged diffusion model [40]. Though this model has limitations due to a violation of the overall 

mass conservation [25], it is widely used in numerical simulations [41-44] especially for dilute 

conditions. Some studies in catalytic combustion applications report that the effective diffusivity 
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model is sufficiently accurate [39, 45], while other studies report that omitting multicomponent 

diffusion causes significant errors [46], e.g. in combustion simulations of laminar flames [47]. 

In addition to the references on gaseous single-phase mass transfer in the previous paragraph, 

there exist a limited number of studies where the multicomponent or effective diffusivity models 

are employed for interfacial mass transfer in two-phase systems. Kenig and coworkers developed 

a mathematical model for calculation of heat and mass transfer with reaction in a laminar falling 

liquid film [48]. The model was verified by comparison with numerical and linearized analytical 

approaches [49]. Furthermore, a general analytical solution is derived for an unsteady (linearized) 

multicomponent diffusion-reaction problem in terms of the film model [50]. However, in the 

numerical examples of references [48, 50] the elements of the diffusion matrix are constant and do 

not depend on composition. In a CFD study with COMSOL Multiphysics, the effective diffusivity 

model is used to investigate multicomponent mass transfer in liquid-liquid extraction in a micro-

extractor for the standard system water/toluene/acetone/metyl-isopropylketone [51]. The aqueous 

and organic phases are in a laminar counter-current flow and separated by a stationary flat interface. 

Since the latter coincides with grid cell boundaries, the exact local conditions for thermodynamic 

equilibrium and the component flux continuity at the interface can be easily applied. In interface 

capturing methods such as the VOF and level-set methods, the (moving) interface is not aligned 

with the mesh cell boundaries but divides the mesh cell volume into two subdomains. Then, in the 

single-field approach, a special numerical treatment of the diffusion term is necessary in order to 

fulfill the conditions of thermodynamic equilibrium and component flux continuity at the interface 

simultaneously. 
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Several authors applied the VOF method in FLUENT for performing detailed numerical 

studies on multicomponent heat and mass transfer in stratified gas-liquid flows [52-54]. Banerjee 

[52] and Haelssig et al. [53] use the effective diffusivity model where the binary diffusion 

coefficients are determined by Fullers method [55]. Cui et al. [54] instead account for cross-

diffusion effects and compute the elements of the diffusion matrix via an exponential relationship 

in terms of mole fractions [26]. Finally, it is worth to mention that Dal’Toé et al. [56] studied cross 

diffusion effects in the interfacial heat and mass transfer of multicomponent droplets using the 

Euler-Lagrange approach in FLUENT. They found that cross diffusion effects were not significant 

for the mixture studied so that the effective diffusivity model can be used. 

The main objective of the present paper is to validate a previously developed single-field 

approach for numerical simulation of interfacial mass transfer [20] for multicomponent diffusion-

reaction systems where the interface position is not identical with mesh cell boundaries. This 

validation is a prerequisite for applying the method subsequently for full three-dimensional 

interface-capturing simulations of multicomponent mass transfer in two-phase flows. A second 

objective is to test and compare multispecies diffusion models used for single-phase (mostly gas-

phase) mass transfer for gas-liquid mass transfer. For this purpose, numerical simulations with the 

multicomponent diffusion model and the effective diffusivity model are performed for various 

one-dimensional test problems and the results are compared with analytical or numerical solutions 

of the Maxwell-Stefan equations and/or experimental data from literature. In this paper, only static 

phases separated by a planar gas-liquid interface without flow (advection) are considered for 

comparison with known analytical and/or experimental data. This study shows that the differences 
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resulting from the two diffusion models are in general small. Furthermore, it sheds light on the 

conditions when composition-independent diffusion coefficients may be assumed. 

The outline of the paper is as follows. In Section 2 the different diffusion models and the 

numerical method are introduced. In Section 3 result for various diffusive or diffusive-reactive test 

cases are presented and discussed. The paper closes with summary and conclusions in Section 4. 

2 Mathematical model 

2.1 Definitions and partial mass balances 

Let us consider a multicomponent fluid (gas or liquid) composed of n  chemical components 

(species). The thermodynamic state of the system is described by n  partial mass densities 1,..., n  , 

by n  partial velocities 1,..., nu u  of the constituents (with respect to a fixed frame of reference) and 

by the temperature T  of the mixture. This paper is restricted to isothermal conditions so that T  is 

spatially uniform and constant in time. With regard to the various test cases considered in this 

paper, it is useful to introduce the governing equations in terms of both, mole fractions and 

concentrations. With partial molar concentration : /i i ic M  and mole fraction t: /i ix c c , the 

molar-average velocity u  and the molar diffusive fluxes ij  relative to u  are given by 

1

:
n

i i

i

x


u u     and    : ( )i i ic j u u  (1) 

where 

t

1

:
n

i

i

c c


     and    
1

0
n

i

i

 j  (2) 
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Similarly, with mixture molar volume 
t t: 1/V c  and volume fraction :i i icV  , the volume-

average velocity V
u  and the molar diffusive fluxes relative to V

u  are given by 

V

1

:
n

i i

i




u u     and    V V: ( )i i ic j u u  (3) 

where 

1

1
n

i

i




     and    
V

1

0
n

i i

i

V


 j  (4) 

With these definitions, the partial mole balances can be written in terms of the mole fraction 

t
i

i i i

x
c x r

t

 
    

 
u j  (5) 

and in terms of concentration and with respect to the volume-average velocity (see [26]) 

V V Vi
i i i

c
c r

t


  


u j  (6) 

For solving the latter set of equations, knowledge of the velocity field ( u  or V
u ) and 

appropriate constitutive equations for the diffusive fluxes ( ij  or V

ij ) as well as for the source/sink 

term due to homogeneous chemical reactions, ( ir  or V

ir ) are required. In the sequel, only 

heterogeneous chemical reactions are considered and the source terms are set to zero V( 0)i ir r  . 

2.2 Modeling multicomponent diffusion 

This section summarizes constitutive equations for the diffusional fluxes in multicomponent 

systems. In this paper, only one-dimensional problems are considered. The diffusive flux vectors 

then simplify to T(0,0, )i ijj  and V V T(0,0, )i ijj , where ij  and V

ij  denote the diffusive fluxes 
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of species i  in z-direction. For compact notation, we define  
T

1 2 1, , , nj j j j :=  and 

 
T

V V V V

1 2 1, , , nj j j j := . 

2.2.1 Generalized Fick’s law (GFL) 

In binary systems ( 2n  ), Fick’ law relates the diffusive flux to the composition gradient of one 

species via a (scalar) binary diffusion coefficient 1,2 2,1 0D D  . For n  constituents, only 1n  

fluxes are independent, as nj  and V

nj  can be computed from the other fluxes via Eq. (2) and (4). 

Furthermore, only 1n  composition gradients are independent. The generalized Fick’s law relates, 

therefore, 1n  fluxes linearly with the 1n  composition gradients. In matrix form, it reads 

tc  xj  (7) 

where T

1 2 1( , ,..., )nx x x x  represents the column matrix of the mole fractions. The square GFL 

diffusivity matrix  is given by 

1,1 1, 1

1,1 1, 1

n

n n n

D D

D D



  

 
 

  
 
 

 (8) 

The off-diagonal elements of this matrix represent the cross diffusion effects. The concentration 

related quantities c  and 
V V

,i j  are defined accordingly and the diffusion matrices can be 

transformed from one reference velocity frame to the other [26]. 

When all elements of the diffusivity matrix  (or V ) are known, the system is closed with 

respect to the diffusive fluxes. As discussed in the introduction, determining the GFL diffusivity 

matrix is intricate as the non-diagonal matrix elements are in general non-zero with a positive or 
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negative sign and their values are a complicated function of composition [26, 34]. Therefore, more 

practical approaches are required for estimating the diffusivity matrix as discussed next. 

2.2.2 Multicomponent model (MCM) 

The MS equations for multicomponent systems can be written in the following 1n  dimensional 

matrix form [26] 

1

tc   xj  (9) 

The diagonal elements ,i iB  and the off-diagonal elements ,i jB  of the square matrix  are defined 

as 

, ,

1, , , ,

1 1
,

n
i k

i i i j i

ki n i k i j i n
i k

x x
B B x

Ð Ð Ð Ð


 
      

 
  (10) 

where , , 0i j j iÐ Ð   denotes the (binary) Maxwell-Stefan diffusivity of i -component into j -

component. For binary mixtures ( 2n  ), the Fick’s diffusivity 1,2D  and the Maxwell-Stefan 

diffusivity 1,2Ð  are identical for ideal fluids where only binary collisions are assumed to take place. 

The matrix  in Eq. (9) represents the thermodynamic correction factor, which accounts for 

non-ideality effects. In the sequel, diffusion in ideal fluids is assumed so that  . Comparing 

Eq. (9) with Eq. (7) then yields 
1 . This relation is the basis of the (GFL) multicomponent 

model. It states that the elements of the diffusivity matrix  in the generalized Fick’s law can be 

computed by inverting the binary Maxwell-Stefan diffusion matrix . 
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2.2.3 Effective diffusivity model (EDM) 

To avoid the matrix inversion in the MCM, various forms of effective diffusivity models have 

been suggested as an alternative [26]. Here, we consider the limiting case when species i diffuses 

through n – 1 stagnant gases which leads to the model of Wilke [38]. In this case, the effective 

diffusion coefficients ,effiD  are obtained as 

,eff

,

1

1

/

i
i n

j i j

j
j i

x
D

x Ð







 (11) 

The diffusive flux of the effective diffusion model can be written as 

t effc  xj  (12) 

where 

1,eff

eff

1,eff

0

0 n

D

D 

 
 

  
 
 

 (13) 

The EDM can save computational time not only by avoiding the matrix inversion but also during 

the solution of the individual partial mass balance equations, because the off-diagonal elements 

are zero (and thus cross diffusion effects are absent). 

2.3 Numerical method 

One goal of this paper is the advancement of the in-house computer code TURBIT-VOF [57, 58] 

toward numerical simulation of multi-species reactive two-phase flows. So far, this code has been 

validated and applied only to two-phase flows with single-species mass transfer (with or without 

first order reaction) under dilute conditions [20, 59]. The code solves the non-dimensional three-
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dimensional single-field Navier-Stokes equations with surface tension by a volume-of-fluid 

method with piecewise linear interface calculation (PLIC) on a staggered Cartesian grid [60]. Here, 

the hydrodynamic part of the code is not relevant since in this paper only reaction-diffusion 

problems are considered to test the multicomponent and effective diffusivity model. In this section, 

therefore, only the numerical approach for the mass transfer part of the code is detailed. 

The TURBIT-VOF code solves the transient three-dimensional single-field concentration 

equation in a non-dimensional form. This equation is derived by summing up the volume-averaged 

concentration equations of each phase as detailed in Onea et al. [20]. In the sequel, quantities in 

the single-field formulation are marked by subscript “m” as they are representative for the phase-

averaging of the two-phase mixture. The normalization is based on a reference length scale refL , a 

reference velocity scale refU , a reference time scale ref ref ref/t L U  and a reference concentration 

refc . For the one-dimensional reaction-diffusion problems considered in this paper, the respective 

concentration equation for species i  has the form 

m, V

m, m,

ref

1
( )

i

i i

C
C U J

Z Pe

 
 

 
=  (14) 

where ref: /t t  , ref: /Z z L , V

ref: /U u U  and ref ref ref ref: /Pe L U D . In Eq. (14), 

L, G,

m,

ref

(1 )
:

i i i

i

fc f H c
C

c

 
  (15) 

is a non-dimensional transformed and continuous two-phase mixture concentration (see below), 

m,V

m, m,

i

i i

C
J D

Z Z

 
   

  
 (16) 

is the non-dimensional diffusive flux formulated in the flavor of the EDM, and 
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m, L, G,: (1 )i i iD f D f D    (17) 

is the two-phase mixture diffusivity. Here, f  is the liquid volume fraction within the mesh cell. 

For pure liquid cells it is 1f  , for pure gas cells it is 0f   while in mesh cells containing the 

interface, f  can take any value in the range of 0 1f  . 

In Eq. (15), L,ic  and G,ic  denote the (mean) concentrations of species i  in the liquid (L) and 

gas (G) phases within the mesh cell. Furthermore, 
eq eq

L, G,: /i i iH c c  is the ratio of concentrations on 

both sides of the interface at thermodynamic equilibrium (denoted here as non-dimensional Henry 

number). In the general case, a concentration jump occurs at the interface so that 1iH  . Including 

iH  in definition (15) ensures that m,iC  becomes continuous at the interface which is advantageous 

from a numerical point of view since concentration jumps of m,iC  at the interface are avoided. 

A disadvantage of the above transformed continuous concentration formulation is that special 

measures are required to ensure the continuity of the species mass flux across the interface for 

mesh cells containing both phases. In TURBIT-VOF, the method described by Onea et al. [20] is 

adopted for this purpose. This method is inspired by the formulations of Patankar [61] and 

Davidson & Rudman [62] and revises the mixture diffusivities in two-phase mesh cells as follows. 

Let k  and 1k   denote the positions of two neighboring mesh cell centers in a one-dimensional 

problem. Then, the revised mixture diffusivity at the position of the mesh cell boundary 1/ 2k   

is computed as 

1
0.5

1/2 1/2
m, ; 1/2 ; 1/2 ; 1/2

m, ; m, ; 1

1.5k k
i k i k i k

i k i k

D F G
D D

 




 
  



 
   
 

  (18) 

where 
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 1/2 1max min ,1.5 ,0.5k k kf f  
     (19) 

Here, it is ; 1/2i k iF H   for 0kf   and 10 1kf   , and ; 1/2 1i kF    otherwise. Similarly, it is 

; 1/2i k iG H   for 1 0kf    and 0 1kf   and ; 1/2 1i kG    otherwise. In [20], this formulation was 

validated by comparison with analytic/numerical solutions of one-dimensional transient diffusive 

mass transfer of a single species across a planar/cylindrical interface. In the sequel, this diffusivity 

revision procedure is referred to as continuous-concentration diffusivity model (CCDM) to 

distinguish between the mixture of phases in a mesh cell and the mixture of species within a phase. 

The numerical solution of Eq. (14) requires initial conditions and boundary conditions which 

will be detailed below on a case-by-case basis. Here, it is noted that heterogeneous reactions are 

realized by the following boundary condition for the non-dimensional diffusive flux 

V

m,

ref

1
i iS J

Pe
  (20) 

where ref ref/ ( )i iS s U c  denotes the productive or consumptive non-dimensional reaction rate of 

species i  at the reactive wall. For the numerical solution of the concentration Eq. (14) with 

TURBIT-VOF, spatial derivatives are approximated by second-order central differences and an 

explicit third-order Runge-Kutta time integration method is employed. 

Overall, the calculation procedure for multicomponent two-phase mass transfer from one time 

step to the next employing the effective diffusivity model can be summarized as follows: 

1. Determine from the concentration fields m,iC  with 1,..., 1i n  at time level m  the 

composition T

1, 2 1( ,..., )nx x x x  in all mesh cells. Use the liquid volume fraction field f  to 

associate the composition in each mesh cell with the gas phase (when 0f  ), the liquid phase 
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(when 1f  ) or with both phases (when 0 1f  ), assuming in the latter case local 

equilibrium in two-phase mesh cells according to Henrys law. 

2. Determine from composition T

1, 2 1( ,..., )nx x x x  at time level m  the phase-associated 

effective diffusivities ,effiD  using Eq. (11) 

3. Use Eq. (17) to compute from the phase-associated effective diffusivities ,effiD  the cell-

centered two-phase mixture diffusivities m,iD  in all mesh cells and for all species 

4. Use the CCDM with Eq. (18) and (19) to compute from the cell-centered two-phase mixture 

diffusivities m,iD  the diffusivity values at mesh cell faces 

5. Solve the species transport equation Eq. (14) with the diffusive flux given by Eq. (16) for all 

species 1,..., 1i n   from time step m  to 1m  

3 Results and discussion 

This section is divided into three parts, namely (i) mass transfer within a single phase (with two 

test cases), (ii) mass transfer across the interface between two phases (with three test cases) and 

(iii) dilution effect in a single phase (one test case). All test cases are one-dimensional problems 

in a domain 0 z h  . The reference length scale is refL h  so that 0 1Z  . This computational 

domain is discretized by a uniform grid consisting of 40 mesh cells. Further reference quantities 

(e.g. refU ) are defined implicitly by setting ref 1Pe   if not mentioned otherwise. 

For the multicomponent test cases, a ternary mixture is chosen ( 3)n  . The species are 

indicated by subscripts 1, 2 and 3 and the respective MS diffusivities are 1,2Ð , 1,3Ð  and 2,3Ð . The 

2 2  diffusivity matrix 
1  of the MCM has four non-zero elements ( 1,1D , 1,2D , 2,1D , 2,2D ), 
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where 1,2D  and 2,1D  represent the so-called cross-effects. For 3n  , these diffusivities can be 

directly computed from the MS diffusivities [26, 35]. For the EDM, the two non-zero diagonal 

matrix elements ( 1,effD , 2,effD ) are computed by Eq. (11). For 3n  , the concentration Eq. (14) is 

solved for species 1 and species 2 only, while the mole fraction of species 3 is determined from 

the relation 3 1 21x x x   . 

3.1 Revisiting multicomponent mass transfer within a single phase 

This subsection presents results for two single-phase multicomponent problems (with and without 

surface reaction). The MCM and EDM are employed and compared with the solution of the MS 

equations. The purpose is to validate the numerical approach for a single phase before turning to 

two phases. 

3.1.1 Ternary diffusion in a Stefan tube 

As first test case, the ternary diffusion in a Stefan tube according to the experiment by Carty and 

Schrodt [63] is considered. In this experiment, a binary liquid mixture of acetone (1) and methanol 

(2) evaporates at temperature 328.5KT   and pressure 
49.94 10 Pap    and diffuses into the 

ambient air (3) which is treated as a single component. This case is a well-known example for 

employing the MS equations. Taylor & Krishna [26] solved the MS equations with 

6 2

1,2 8.48 10 m /sÐ   , 
6 2

1,3 13.72 10 m /sÐ   , and 
6 2

2,3 19.91 10 m /sÐ    by a fourth-order 

Runge-Kutta method and obtained for the total evaporative flux at the liquid-vapor interface the 

result 3 2

t 4.91 10 mol/(m s)N    (see example 2.1.1 in their book). More recently, Newman [64] 
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solved the MS equations numerically for the same system considering the film, penetration and 

boundary layer models.  

Fig. 1 shows a sketch of the present numerical set-up. As boundary conditions, at the liquid 

surface ( 0z  ) the equilibrium composition of the mixture is specified ( 1;0 0.319x  , 2;0 0.528x  ), 

while at the end of tube ( ref 0.238mz h L   ) the mole fractions are set to 1; 2; 3;1 0h h hx x x    . 

To account for the non-zero total molar flux, a constant and uniform molar-average velocity 

t t/u N c  is specified in the convective term of the species mole fraction Eq. (5) in the entire 

computational domain. Here, the total concentration is computed from the ideal gas law as 

3

t / ( ) 36.4mol/mc p RT   so that 0.135mm/su  . For this test case ref 0.238Pe   is used and a 

mesh dependency test is conducted. The maximum variation of the results for 20, 40, 60 and 80 

mesh cells is only 0.1%, both for MCM and EDM. In the sequel, the results obtained with 40 mesh 

cells are presented. 

 

 

Fig. 1: Schematic diagram for the Stefan diffusion example (adopted from [26]) 
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Fig. 2 shows a comparison of the mole fractions computed with the MCM and the EDM with 

the experimental data of Carty and Schrodt [63] and a numerical solution of the MS equations (see 

Appendix A). The MCM and EDM results are both in excellent agreement with the solution of the 

MS equations and are in reasonable good agreement with the experimental data. Also, the 

differences between the mole fraction profiles of both diffusion models are in general very small; 

the largest differences occur for air in the range 0.1 0.5Z   but are still below 2.3% for the MCM 

and below 4.3% for the EDM. Thus, the difference between both diffusion models is not significant 

and the EDM gives good results with lower computational cost. This result is in agreement with 

studies on multicomponent diffusion in other single phase test cases [39, 45]. 

 

Fig. 2: Comparison of computed mole fraction profiles for the multicomponent and effective 

diffusivity model with experimental data [63] and numerical solution of the MS equations 

In Fig. 3, the profiles of the elements of the diffusivity matrix are displayed for both diffusion 

models. The comparison of the diagonal matrix elements of both models reveals two points. First, 

the difference between both models depends on the species composition. The differences between 
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the diagonal diffusivities 1,1D  and 1,effD  as well as between 2,2D  and 2,effD are largest at the gas-

liquid interface ( 0Z  ), gradually decreases along the Z -axis and becomes virtually zero for 

0.95Z  . The values of the off-diagonal diffusivities of the MCM are largest at the gas-liquid 

interface as well and drop to zero as Z  approaches unity. To explore this behavior, the diffusivity 

profiles in Fig. 3 are compared with the mole fraction profiles in Fig. 2. In the left part of the 

domain, the mole fractions of acetone and methanol are higher than the mole fraction of air, while 

in the right part the mole fractions of acetone and methanol are much smaller than that of air. Thus, 

the difference between the diagonal elements of the diffusion matrix of both models is large in that 

part of the domain where the species mole fractions are higher than the mole fraction of the carrier 

species, and diminishes in regions where the acetone and methanol mole fractions are quite low so 

that both species can be considered as dilute. This prominent effect of the state of dilution is further 

investigated in Section 3.3. 

 

Fig. 3: Diffusivities of multicomponent model and effective diffusivity model for the Stefan tube 

example 
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The second notable point is that the local mole fractions computed by the two diffusion models 

are very similar even if the difference in the diagonal elements of the diffusivity matrix is quite 

large. Here, one may estimate the (binary) Péclet number as , ref ,: /i j i jPe L u Ð , which characterizes 

the ratio of convective and diffusive mass transport. The respective values for the three species 

pairs are 1,2 3.79Pe  , 1,3 2.34Pe   and 2,3 1.61Pe  . All these values are larger than unity which 

indicates that convection predominates diffusion. One may thus conclude that differences in the 

diffusivities do not significantly affect the species mole fraction profiles in dilute conditions when 

diffusion is not the predominant mechanism. 

3.1.2 Ternary diffusion with heterogeneous reaction 

The second test case is a reaction-diffusion problem for three species for which an analytic solution 

of the MS equations is available [25]. The three species are 2CO  (1), 2O  (2) and CO  (3). This 

test case describes the mass transfer to a catalytic solid surface where CO oxidation takes place by 

a one-step reaction 2 22CO + O 2CO  with arbitrary rate constant. A sketch of the computational 

domain and boundary conditions is depicted in Fig. 4. At the left boundary ( 0z  ) constant mole 

fractions ( 1;0 0.1x  , 2;0 0.2x  ) are specified whereas for the right wall ( ref 1 mmz h L   ) a flux 

condition is used. There, the molar flux for 2CO  production is specified as 2

1 0.1mol/(m s)N    

and the molar fluxes for consumption of the other two species are obtained by stoichiometry 

2 3 12N N N   . The total molar flux consumed at the catalytic wall is 

t 1 1 3 10.5N N N N N     . These molar fluxes can be used to solve the MS equations. 

The binary diffusivities for three species pairs are calculated from the kinetic theory [25]. The 

estimated MS diffusivities at a temperature of 300K  and a pressure of 
51.013 10 Pa  are 
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5 2

1,2 1.526 10 m /sÐ   , 
5 2

1,3 1.528 10 m /sÐ   , and 
5 2

2,3 2.064 10 m /sÐ   . Since the values of 

1,2Ð and 1,3Ð  are almost the same, we follow Bird et al. [25] and set 
5 2

1,2 1,3 1.528 10 m /sÐ Ð    . 

Thus, the binary diffusivity for CO  and 2CO  is assumed to be same as that for 2O  and 2CO . The 

advantage of this assumption is that the MS equations can then be solved analytically. The 

corresponding steady analytical mole fraction profiles are [25] 

 

 

Fig. 4: Sketch of the single phase reaction-diffusion problem with one-step surface reaction 
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 (22) 

Since the total molar flux for this second test case is non-zero as well, the numerical simulation 

is again obtained by specifying a constant and uniform velocity in the convective term of the 
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species mole fraction Eq. (5). Here, the respective value of the molar-average velocity in the entire 

computational domain is t t/ 1.23mm/su N c  . Using the definition of the molar flux 

ti i i i iN c u j N x j     (23) 

the boundary conditions at 1Z   are specified as 

 1 1 1 t 1 1 1 2 2 2 t 2 1 2

1 1
1 , 1

2 2
j s N N x N x j s N N x N x

 
          

 
 (24) 

Fig. 5 compares the steady numerical results employing the MCM and EDM for the mole 

fraction profiles with the solution of the MS equations given by Eq. (21) and (22). For the EDM, 

results are additionally shown for the general case 
5 2

1,2 1,31.526 10 m /sÐ Ð    which have been 

obtained by the DETCHEMTM code [65]. The purpose of this simulation is to crosscheck the 

implementation of the EDM in TURBIT-VOF and to quantify the effect of the assumption 

1,2 1,3Ð Ð . The results of the MCM are in excellent agreement with the analytical solution of the 

MS equations. The same holds for the EDM with the simplifying assumption 1,2 1,3Ð Ð  in the 

region 0.5Z   while for 0.5Z   slight deviations occur for 2O  and 2CO . The reason is that the 

diffusivities from both models depend on the composition, see below. Nevertheless, also for this 

test case the results of both diffusion models are in reasonable good compliance with the analytic 

solution of the MS equations. The comparison of the results of the EDM with and without 

simplifying assumption shows that the mole fraction profiles for 2O  are almost identical while for 

2CO  and CO  differences of up to 4.9% and 2.3% occur at 1Z  , respectively. 
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Fig. 5: Steady mole fraction profiles for the single-phase reaction-diffusion example. 

Comparison of results of the multicomponent model and effective diffusivity model (with and 

without assumption 1,2 1,3Ð Ð ) with the analytical solution of the MS equation 

Fig. 6 shows the comparison of the profiles of the elements of the diffusivity matrix for the 

MCM and the EDM. For 2CO  the diffusivities 1,1D  and 1,effD  are the same because of the 

assumption. Furthermore, the cross-coefficient diffusivity 1,2D  is zero. The diffusivity matrices in 

the MCM and EDM with simplifying assumption are thus identical and so are the mole fraction 

profiles of 2CO . However, for the EDM without assumption, the diffusivity of 2CO  differs from 

1,1D  of the MCM which causes the different mole fraction profile of 2CO  in Fig. 5. Concerning 

2O , the profiles of the diffusivities 2,effD  for the two EDMs (with and without simplifying 

assumption) and the profile of 2,2D  for the MCM are almost identical. The slight differences in the 

mole fraction profiles for 2O  in Fig. 5 between the two EDMs and the MCM are thus only due to 

the cross-coefficient diffusivity 2,1D . The values of the binary Péclet numbers for this test case are 

1,2 1,3 0.08Pe Pe   and 2,3 0.06Pe  . These data are much smaller than unity which means that the 

convective flux (which occurs due to a non-equimolar reaction in this example) is smaller than the 
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diffusive flux. It is remarkable that the difference of diffusivity does not significantly affect the 

mass transfer on a macro scale. 

 

Fig. 6: Diffusivity profiles for the single phase reaction-diffusion example. Comparison of 

multicomponent model and effective diffusivity model with and without assumption 1,2 1,3Ð Ð  

3.2 Mass transfer across a planar gas-liquid interface 

In this section, three test cases with mass transfer across a planar gas-liquid interface are considered. 

In the first two test cases, the continuous-concentration diffusivity model (CCDM) for interfacial 

mesh cells in TURBIT-VOF is validated for a binary mixture. In the third test case, the MCM and 

the EDM are employed for a ternary mixture. The second and third test cases involve a 

heterogeneous chemical reaction. In all three test cases the phase interface is located in the middle 

of the one-dimensional computational domain as shown in Fig. 7. This domain can be considered 

to represent a part of liquid film region in Taylor flow, in which the mass transfer occurs from the 

gas to the liquid phase towards a potentially reactive wall [66]. For all three test cases it is V 0u   

so that the convective term in the concentration Eq. (14) disappears. 
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Fig. 7: Sketch for test cases on two-phase mass transfer across the interface 

3.2.1 Validation of continuous-concentration diffusivity model for transient mass transfer 

To investigate the accuracy of the continuous-concentration diffusivity model (CCDM) of Onea 

et al. [20] for transient pure diffusive mass transfer across a phase-interface (cf. Section 3.2), we 

revisit one test case of that paper where a time-dependent analytical solution is available for 

comparison. For the initial conditions of a uniform concentration 
3

G;0 ref 1mol/mc c   in the gas 

phase ( int0 z z  ) and zero concentration in the liquid phase ( intz z h  ), the analytic solution 

for ref: /C c c  in an infinite one-dimensional domain reads [67] 

L G int G

int

L G
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L G
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1 /

erfc ( ) / (2 )
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1 /
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H D D

   
  

 
 

    


 (25) 

Note that at the interface ( intz z ) this concentration profile is discontinuous for 1H  . 
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For the numerical simulations, the computational domain needs to be finite. Here, the 

configuration displayed in Fig. 7 is used (with ref 1 mmh L  ) in combination with a gradient 

free boundary condition at 0Z   and 1Z  . Starting from the above initial conditions, the 

concentration Eq. (14) is solved in time. To allow for a meaningful comparison with the analytical 

solution for the infinite domain, the simulations are stopped before the concentration values at 

0Z   and 1Z   deviate notably from the respective initial values. In the simulations, the 

diffusivity in the gas phase is fixed 5 2

G 5 10 m /sD    while the diffusivity in the liquid phase LD  

is varied. The Henry number is unity ( 1)H   so that for this test case the physical concentration 

profile is continuous at the interface for 0t  . The purpose of revisiting this test case is to quantify 

the influences of the CCDM as well as that of the interface position relative to the mesh cell 

boundary on the accuracy of the method. Simulations are thus performed with and without CCDM. 

The relative position of the interface with respect to the mesh cell boundary is quantified by the 

liquid volumetric fraction in the interfacial mesh cell ( intf ) and is varied from 1 to 0.5, see the 

inset in Fig. 9. 

Fig. 8 compares the analytical and computed concentration profiles for int 1f   at 50μst   

and three different values of the diffusivity ratio G L: /D D  . For the diffusivity ratio 1  , there 

is no diffusivity contrast between phases and the test case corresponds essentially to a single phase 

diffusion problem. For the diffusivity ratios 0.1 and 10, the time scale of diffusion is different in 

both phases and the concentration gradient is discontinuous at the interface. The numerical results 

obtained with the CCDM are in excellent agreement with the analytical solution given by Eq. (25) 

while the concentration profiles computed without the CCDM slightly differ from the analytical 
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solution for the cases where 1  . We also checked that the results with CCDM are independent 

on the number of mesh cells. The maximum difference among grids with 21, 41, 61 and 81 cells 

is only 0.71%. 
 

 

    

 

 

Fig. 8: Instantaneous concentration profiles for three different values of the diffusivity ratio 

( 1H  , int 1f  , 50μst  ). Comparison of analytical solution and numerical solution with and 

without continuous-concentration diffusivity model (CCDM) 

To study the effect of the interface position within a mesh cell, simulations for six different 

interface locations were performed for the diffusivity ratio 0.1  . Fig. 9 shows the normalized 

difference between the numerical and analytic concentration profile for the simulations with and 

without CCDM. With CCDM, the deviation from the analytical solution is about one order of 

magnitude smaller than without CCDM. The largest absolute error with CCDM (0.0047 for int 1f  ) 

is smaller than the smallest error without CCDM (0.0134 for int 0.5f  ). For interface positions in 

the range of int0 0.5f  , no results are shown in Fig. 9. There, the errors are smaller and the 
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maximum error without CCDM is 0.0124 at int 0.1f   while the largest error with CCDM is only 

0.0049 at int 0.4f  . This highlights the importance of the CCDM even for 1H   when the 

diffusivity ratio differs from unity. Note that the increase of the deviation between numerical and 

analytical results, which is visible in Fig. 9 for region 0 0.1Z  , originates from the zero gradient 

boundary condition at 0Z   and is thus without relevance here. 

Both with and without CCDM, the deviation from the analytical solution is smallest when the 

interface is located in the middle of the mesh cell and largest when the interface coincides with the 

mesh cell boundary. This behavior stems from the fact that in the finite volume code TURBIT-

VOF the diffusivity at the cell face is needed to calculate the diffusive flux between two adjacent 

mesh cells. If the interface is located in the middle of the mesh cell, then the diffusivities at the 

cell faces are determined as the diffusivity of the respective phase. If the interface coincides with 

the face of two neighboring mesh cells or is close to it, then the diffusivity at this mesh face is 

ambiguous in the single-field formulation. In TURBIT-VOF, the respective diffusivities are 

estimated by the CCDM via Eq. (18). 

In three-dimensional simulations, the interface orientation and the location is determined by 

the geometric interface reconstruction algorithm of the VOF method. The interface orientation is 

then hardly parallel to the cell face as in the present one-dimensional test case where the maximum 

error with CCDM is about 0.47%. Though the error in three-dimensional cases will be larger, it is 

clear that the CCDM is an indispensable ingredient of the present numerical method for an accurate 

simulation of interfacial mass transfer. 
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Fig. 9: Profiles of instantaneous concentration differences between analytic and numerical 

solution with and without CCDM for different interface locations within a mesh cell ( 1H  , 

50μst  ). The concentration difference is normalized by refc  

3.2.2 Effect of diffusivity ratio, Henry number and reaction rate in steady state 

In this test case, the reactive mass transfer of a single species across a planar interface is simulated 

till steady state. The numerical solution is compared with the analytical solution of a non-

equilibrium stage model (NESM) where the reactor is divided in several stages [68]. Recently, this 

approach has been used for modelling of a dividing wall distillation column [69]. In the present 

work, the NESM suggested by Kenig et al. [70] is used, see appendix B. The boundary conditions 

combine a fixed concentration m 1C   at 0z   with the flux condition V

m mJ S kC    at 

1mmz h  . In the simulations the diffusivity ratio, the Henry number and reaction rate are varied. 

The lower diffusivity of the two phases is always set to 
21m /s . 
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Fig. 10 shows the concentration profiles for the diffusivity ratios 0.1, 1 and 10 at a constant 

reaction rate 10 m/sk   for 1H  . The numerical results are in very good agreement with those 

of the NESM. They show that a higher/lower diffusivity in a phase results in a lower/higher 

concentration gradient in that phase. An interesting result is that the concentrations at the right 

wall are not identical for the three diffusivity ratios even though the reaction rate is identical for 

all cases. The wall concentration for 1   is lower than the wall concentration for 0.1   and 

10   which are identical. The reason is the different diffusive flux. For the cases with 0.1   

and 10   the diffusive flux is larger as compared to the case with 1   because in the former 

cases the diffusivity in one phase is increased by a factor of 10. 

 

Fig. 10: Concentration profiles for steady state two-phase reactive mass transfer ( 1H  , 

10 m/sk  ). Comparison between numerical and NESM solution for three different diffusivity 

ratios 
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The effect of the reaction rate is studied by comparing simulation results for 1 m/sk   and 

10 m/sk  . In both cases the diffusivity ratio is unity and the Henry number is 0.5 so that a 

concentration jump occurs at the interface. The respective concentration profiles are displayed in 

Fig. 11, where the continuous concentration mC  is transformed back into the discontinuous 

physical concentration. Again, the numerical results are in very good agreement with those of the 

NESM. Since the diffusivity ratio is unity, the concentration gradients in both phases are identical 

for each case. The concentration gradient of the two cases is, however, different. The reason is that 

the species consumption at the reactive wall relies on the reaction rate and therefore, the diffusive 

mass flux and in-phase concentration gradient is higher for the case with 10 m/sk   than for the 

case with 1 m/sk  . From the results of these test cases, it is concluded that the CCDM is well 

validated for single-species interfacial mass transfer, both for transient as well as steady state 

conditions. 

 

Fig. 11: Concentration profiles for steady state two-phase reactive mass transfer ( 0.5H  , 

diffusivity ratio unity). Comparison between numerical and NESM solution for two different 

reaction rates 
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3.2.3 Reaction-diffusion of H2-O2 in water-vapor two-phase condition 

The next example concerns a ternary reaction-diffusion problem across the phase interface. The 

three species involved are 2H  (1), 2O  (2) and 2H O  (3). In the left half of the computational 

domain 2H O  is in a gaseous state (water vapor) whereas in the right half it is in a liquid state. The 

temperature is 25°C and the pressure is 
51.013 10 Pa . There is no phase change from gaseous to 

liquid 2H O  or vice versa. Only 2H  and 2O  undergo mass transfer across the phase interface as 

they dissolve in liquid water and react at the catalytic wall to liquid 2H O . Under these conditions, 

there are six binary diffusivities which take the values 
5 2

1,2(G) 1,2(L) 7.992 10 m /sÐ Ð    , 

5 2

1,3(G) 8.068 10 m /sÐ   , 
5 2

2,3(G) 2.099 10 m /sÐ   , 
8 2

1,3(L) 4.50 10 m /sÐ    and 

8 2

2,3(L) 2.10 10 m /sÐ   , respectively [71]. The values of the Henry number of 2H  and 2O  are 

1 52.36H   and 2 31.35H  , respectively [72]. Thus, in this example the diffusivities in both 

phases differ by about three orders of magnitude and there is a large concentration jump at the 

interface. These features are also typical for many practical applications. 

In the numerical simulation for this test case, the following boundary conditions are used. At 

0z   the concentrations are fixed to 1 0.001C  , 2 0.001C   and 3 0.998C  , respectively. At 

ref 1mmz h L    the continuity between reactive and diffusive flux is specified according to 

1 2i iS k C C  (26) 

The values of the stoichiometric coefficients are 1 2 32       and the reaction rate is arbitrary 

specified as 1 m/sk  . For the single phase mass transfer it was concluded that the EDM is 

sufficiently accurate for all cases. In this test case, therefore, only the EDM is considered (in 
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combination with the CCDM). The steady state numerical results are compared with results of the 

NESM where the diffusivities are, however, evaluated with the MCM. 

The profiles for 2H  and 2O  in Fig. 12 (a) show that the concentration of both species in the 

gas phase is almost uniform (due to the high diffusivities). At the interface, both concentrations 

drop dramatically according to the Henry numbers and the concentration in the liquid phase is very 

small. The zoom up in Fig. 12 (b) shows that the concentrations decrease toward the right wall, 

where the reaction takes place. Overall, the numerical results agree quite well with the results of 

the NESM. 

 

 

Fig. 12: Concentration profiles for two-phase reactive mass transfer of H2-O2-H2O mixture. (a): 

entire domain, (b): zoom-up for liquid region 

In Fig. 13 the profiles of the elements of the diffusivity matrix are displayed for the gas and 

liquid phase. This can also be regarded as a comparison between MCM and EDM under practical 

conditions. In each phase, the profiles of all elements of the diffusivity matrix are almost uniform. 

In the gas phase, 2H  and 2O  are diluted by 2H O , which lowers the composition-dependency of 
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the diffusivities due to the relatively small change in the species composition. In the liquid phase, 

the concentrations of the dissolved gas species are extremely small as compared to the 2H O  

concentration. These highly diluted conditions cause uniform diffusivity profiles in the liquid 

phase as well, with values very similar to the binary diffusion coefficients. The latter finding 

supports a number of studies [18, 73, 74] which use the binary diffusion coefficient directly for 

diffusion in the liquid phase. Nevertheless, in cases where a reaction occurs in the liquid phase 

which changes the composition, the EDM or even the MCM may still be essential. 

 

Fig. 13: Profiles of the elements of the diffusivity matrix in (a) gas phase and (b) liquid phase 

for 2 2 2H -O -H O  mixture. Comparison of EDM (TURBIT-VOF) and MCM (NESM) 

3.3 Influence of dilution 

From the investigations in the previous sections, it turns out that the differences between the 

diffusivities of the MCM and the EDM are often negligible. Accordingly, the mole fraction and 

concentration profiles obtained by both diffusion models are very similar. The results for the Stefan 

tube (Section 3.1.1) indicate, however, that the differences in the diffusivities of both diffusion 



- 36 - 

models are very small when the mole fractions of the respective species are very small as well, but 

increase as the mole fractions increase. In this section, the dependency of the differences between 

both diffusion models on the composition of the mixture is studied therefore, in order to investigate 

the effect of dilution in more detail. 

 

 

Fig. 14: Prescribed mole fraction profiles for studying the dilution effect. The inset shows the 

profile of the respective degree of dilution as defined by Eq. (27) 

To this end, a (gaseous) single phase ternary system is considered. It consists of 2-propanol 

(1), water vapor (2) and nitrogen (3) which is regarded as a diluent. The gas composition is 

prescribed according to the non-uniform mole fraction profiles displayed in Fig. 14. The binary 

diffusion coefficients are taken from literature [26] and their values for the three species pairs are

6 2

1,2 15.99 10 m /sÐ   , 
6 2

1,3 14.43 10 m /sÐ    and 
6 2

2,3 38.73 10 m /sÐ   , respectively. To 

analyze the results in terms of dilution, a degree of dilution parameter is defined 

1
1 2
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where nx  with 3n   here represents the carrier species in the mixture. Thus, for 1   the mole 

fraction of species nx  is larger than the sum of mole fractions of all other species which can be 

considered as diluted. The profile of   for the assumed composition profiles is displayed in Fig. 

14 as inset. 

Fig. 15 shows the diffusivities calculated from the MCM and EDM for the given mole fraction 

profiles. It is evident that the diagonal diffusivities of the MCM ( 1,1D  and 2,2D ) and the 

diffusivities of the EDM ( 1,effD  and 2,effD ) are almost identical for a wide range of the degree-of-

dilution parameter. For 0.1  , the difference between the two models is very small and 

diffusivities from both models are hardly distinguished. Also, the cross-coefficient diffusivities 

( 1,2D  and 2,1D ) of the MCM are almost zero in this region. As a consequence, both diffusion 

models will predict almost identical mole fraction profiles for dilute conditions. 

Though the Stefan tube (Section 3.1.1) and the ternary reaction-diffusion examples (Section 

3.1.2) are not in the diluted condition, the EDM predicts reasonable results as compared to the 

MCM for these test cases as well. Overall, the results of the present series of test cases provide 

good evidence that the EDM is sufficiently accurate with a low computational cost. 

The gas-liquid test cases in the present paper are restricted to stagnant phases. In the general 

case with streaming phases, the velocity field of the two-phase flow is determined by solution of 

the Navier-Stokes equation. In the volume-averaged single-field formulation of the Navier-Stokes 

equations (which is used in TURBIT-VOF), the velocity has to be interpreted as center-of-mass 

velocity. Since it is this velocity which enters the convective term in the concentration equations, 
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it is of interest to estimate the difference in the various definitions of the velocity used to define 

the diffusive fluxes (cf. Section 2) in dependence of the dilution. 

 

 

Fig. 15: Diffusivities of multicomponent model and effective diffusivity model as a function of 

the degree-of-dilution parameter 

Besides the molar-average velocity, Eq. (1), and the volume-average velocity, Eq. (3), the 

mass-average velocity 

M

1

:
n

i i

i




u u  (28) 

is often used in CFD codes, where i  denotes the mass fraction. While the velocities u , V
u  and 

v  are all identical for 1n  , they differ for mixtures where 2n  . In this section, the prescribed 

mole fraction profiles from Fig. 14 are used to study the dependency of these three velocities on 

composition. For this purpose, the diffusive fluxes ij  are computed by the MCM with the elements 

of the diffusivity matrix given in Fig. 15. The total concentration is 3

t 40.2mol/mc   where the 

temperature is 30°C and the pressure is 
51.013 10 Pa . The component velocities are then 



- 39 - 

evaluated as t/ ( )i i iu j c x . With the molecular species weights 1 60.1g/molm  , 

2 18.01g/molm   and 3 14.0g/molm   the mole fractions can be converted to mass fractions, and 

with the molar species volumes 3

1 0.022m /molV  , 3

2 0.014m /molV   and 3

3 0.011m /molV   to 

volume fractions. From these data, the molar-average velocity u , the volume-average velocity V
u , 

and the mass-average velocity 
M

u  are evaluated. Fig. 16 shows the dependence of these velocities 

on the degree of dilution. As   decreases, the differences between the three velocities decrease as 

well. For the present case, one may speculate that the differences become negligible small when 

  is below about 1%. However, this statement should be considered as qualitative and a detailed 

quantification of the dilution effect is beyond the scope of this paper. 

 

Fig. 16: Dependence of differently averaged velocities on degree-of-dilution parameter 
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4 Conclusions 

In the present paper, multispecies single-phase and two-phase mass transfer is studied numerically, 

and the continuous-concentration diffusivity model (CCDM) described by Onea et al. [20] for 

computation of interfacial mass transfer by means of a continuous single-field concentration field 

is validated for multicomponent mass transfer. Transient simulations are performed for several 

one-dimensional non-reactive and reactive ternary test cases employing two different diffusion 

models in the context of Fick’s generalized law, namely the multicomponent model and the 

effective diffusivity model. For all cases, the mole fraction or concentration profiles computed 

with both diffusion model are very similar and in good agreement with analytical solutions or 

experimental data. Since the effective diffusivity model is associated with lower computational 

costs, as compared to the more general multicomponent model, this model is recommended for 

practical computations. 

Although the mole fraction and concentration profiles computed by both diffusion models are 

always similar, the profiles of the elements in the respective diffusivity matrix can show notable 

differences. The diffusivities of both models depend on the composition and the degree of dilution. 

For cases where the mole fractions of species undergoing mass transfer are low as compared to 

that of the carrier species (dilute conditions), the differences between the diffusivities of both 

models are low as well. The profiles of the diffusivities in the liquid phase are then almost uniform 

with values close to the binary diffusion coefficients. 

In conclusion, the results of the present study indicate that the combination of the effective 

diffusivity model and CCDM is well applicable for multispecies mass transfer in gas-liquid flows. 
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So far, only one-dimensional test case have been considered in this paper. For two-dimensional 

problems, there are neither analytical solutions nor experimental data available for 

multicomponent diffusion with more than two species, which provide concentration field data for 

at least two species. The present study, nevertheless, paves the way to investigate reactive 

multiphase flows with multiple species under non-dilute conditions such as the Taylor flow in 

monolith channels with catalytic walls by two- or three-dimensional simulations. 
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Nomenclature 

ic  molar concentration of species i  mol/m3 

refc  reference concentration mol/m3 

tc  total molar concentration of mixture mol/m3 

C  concentration normalized by refc   

,i jD  Fick diffusion coefficient in the GFL diffusivity matrix m2/s 

,i jÐ  Maxwell-Stefan diffusion coefficient for species pair i  and j  m2/s 

,effiD  effective diffusivity of species i  m2/s 
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f  volume fraction of liquid phase  

iH  Henry number of species i   

h  length of computational domain m 

ij  diffusive molar flux of species i  relative to molar-average velocity mol/(m2s) 

V

ij  diffusive molar flux of species i  relative to volume-average velocity mol/(m2s) 

ij  diffusive molar flux vector of species i  with molar-average velocity, 

T

, , ,: ( , , )i i x i y i zj j jj  

mol/(m2s) 

V

ij  diffusive molar flux vector of species i  with volume-average velocity, 

V V V V T

, , ,: ( , , )i i x i y i zJ J Jj  

mol/(m2s) 

j  vector of diffusive molar flux for 1n  species in one-dimension with 

molar-average velocity, T

1 2 1( , , , )nj j j j :  

mol/(m2s) 

k  reaction constant m/s 

m  time step index  

iM  molecular weight of species i  g/mol 

n  number of species  

N  molar flux  mol/(m2s) 

,i jPe  binary Péclet number  

refPe  reference Péclet number  

ir  reactive source term of species i  in Eq. (5) mol/(m3s) 

V

ir  reactive source term of species i  in Eq. (6) mol/(m3s) 

is  reaction rate mol/(m2s) 

iS  non-dimensional reaction rate  

t  time s 

u  molar-average velocity m/s 

iu  velocity of diffusion of species i  m/s 

Vu  volume-average velocity m/s 

Mu  mass-average velocity m/s 
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iV  partial molar volume of species i  m3/mol 

tV  total molar volume of mixture, 
t t1/V c  m3/mol 

ix  mole fraction of species i   

z  coordinate of one-dimensional problem m 

Z  non-dimensional coordinate, ref: /Z z L    

Greek symbols 

   degree of dilution  

  stoichiometric coefficient  

t  total mass density kg/m3 

i  mass density of species i  kg/m3 

  non-dimensional time  

i  mass fraction of species i   

Subscripts 

eff effective 

i  species index 

int interface 

G gas phase 

L liquid phase 

m two-phase mixture quantity 

ref reference 

t total 

0 initial value 

Superscript 

eq equilibrium 

M mass average 

V volume average 
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Abbreviations 

CCDM continuous concentration diffusion model 

EDM effective diffusivity model 

GFL generalized Fick law 

MCM multicomponent model 

MS Maxwell-Stefan 

NESM non-equilibrium stage model 

 

Appendix A. Numerical solution of Maxwell-Stefan equations 

A classical model for describing diffusion in multicomponent systems is the Maxwell-Stefan 

diffusion, see e.g. [26]. At constant temperature and pressure, the total concentration and the binary 

diffusion coefficients are constant, and the driving forces of the Maxwell-Stefan diffusion are the 

gradients of mole fractions. For the one-dimensional problems considered here, the Maxwell-

Stefan equations for ideal mixtures have the form 

t

1

( )d

d

n
i j j ii

j ij
j i

x N x Nx
c

z Ð



   (A.1) 

To obtain the species distribution from the molar fluxes, the first order spatial derivative is 

discretized by a forward finite difference so that Eq. (A.1) is discretized at position k  as 

; ;; 1 ;

t

1

( )n
i k j j k ii k i k

j ij
j i

x N x Nx x
c

z Ð







 


  (A.2) 

At the left wall ( 0z  ), fixed mole fractions are specified as boundary conditions and 40 nodes 

are used for the Stefan-tube example of Section 3.1.1. 
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Appendix B. Numerical solution of non-equilibrium stage model (NESM) 

Kenig et al. [70] suggested an analytical model for two-phase mass transfer in a steady state, which 

is based on the non-equilibrium stage model [26]. In the NESM, the reactor is divided into several 

stages. Between the stages, different kinds of fluxes (due to feeding, production and consumption) 

are transferred. Kenig et al. [70] provided the stage equation for the two-phase mass transfer with 

a heterogeneous model for each phase. The equations for species i  in stage j  for gas and liquid 

phases are 

1 ,

G G, G, FG, G, int(1 ) 0j j j V j j

i i i ir V V V J a      (B.1) 

1 ,

L L, L, FL, L, int r(1 ) 0j j j V j j j j

i i i i ir V V V J a S a       (B.2) 

Here, G,

j

iV  and ,

j

L iV  denotes the molar flow rate to stage j  with side stream, and Gr  and Lr  are the 

ratio of side stream to inter-stage flow. The second terms in Eq. (B.1) and Eq. (B.2) denote molar 

flow rates to stage 1j  . The third terms represent the molar flow rates by additional feed, and the 

fourth terms represent the mass transfer across the gas-liquid interface (with interfacial area int

ja ). 

The fifth term, which appears only in the liquid phase equation, is the rate of heterogeneous 

reaction at the surface (with surface area r

ja ). 

For the test cases presented in section 3.2, side streams and additional feeds to the stages are 

neglected so that G L 0r r   and FG, FL, 0j j

i iV V  . Furthermore, the one-dimensional domain is 

divided into a number of neighboring stages so that Eq. (B.1) and Eq. (B.2) simplify to three types 

of equations. For stages containing one phase only it is, depending on the phase, either 

1

G, G,

j j

i iV V   or 
1

L, L,

j j

i iV V   (B.3) 
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For the stage with the gas-liquid interface it is 

,

G, G, int

j V j j

i iV J a  and 
,

L, L, int

j V j j

i iV J a , (B.4) 

while for the stage with the reactive surface it is 

L, r

j j j

i iV S a  (B.5) 

For the present one-dimensional problems, the interfacial area (
int

ja ) and surface area of reaction 

( r

ja ) are assumed to be identical so that the latter equations simplify to 

, , 1

G, G,

V j V j

i iJ J  , 
, , 1

L, L,

V j V j

i iJ J   (B.6) 

and for the stage at the right wall 

,

L,

V j j

i iJ S  (B.7) 

These equations turn out to be the same as the flux balance equation. The solution procedure 

is, therefore, similar as for the flux balance equation by finite difference method. The solution of 

this elliptic problem is obtained by an iterative method with 21 stages including one stage at the 

middle of the domain ( 0.5Z  ) with the gas-liquid interface, and one stage at the right reactive 

wall ( 1Z  ). 
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