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Abstract

GNSS-based state of the art systems can provide a train-borne localization in
many cases. Nevertheless, their positioning accuracy is insufficient when other
tracks are nearby. In addition, tunnels for example completely block satellite
signals, so that their measurements are not always available. However, ambigu-
ous situations primarily arise on turnouts, which connect several tracks. Thus,
a reliable detection of both is the key to success.
For this purpose, a comprehensive detection system is proposed herein. The
first part introduces a train-borne setup which perceives additional information
on the nearby environment only from a 2d lidar sensor as an independent and
diverse sensor principle. In the main part, a multistage method is proposed. The
structure of the approach highly resembles that of a common railway network.
Based on the expected measurements of an a priori known rail profile, rails and
tracks can be detected. In contrast to most related work, turnouts are explicitly
considered. Finally, topology and branching events, that provide information
on tracks within the nearby environment (topology of the railway network) and
branching maneuvers of the railway vehicle on single turnouts (reference posi-
tion, direction, and side taken thereon), can be raised. The qualitative and quan-
titative evaluation on a demanding test ground with varied topologies and a large
number of branching situations shows a high level of correctness and complete-
ness of the detections. Moreover, the reference position on single turnouts can
be determined with an accuracy of one meter. The last part draws conclusions
from this work and shows in which ways it can be extended. At the same time,
it identifies the required information for the integration of those events into a
train-borne localization system which even considers the potential inaccuracy
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and incompleteness. The prototypically realized integration into a train-borne
localization system was already able to reduce or even eliminate negative ef-
fects, such as ambiguity problems, whereby the individual benefits depend on
the topological situation.
In summary, this work demonstrates that rails, tracks, and turnouts can be de-
tected systematically. Furthermore, the approach provides valuable information
on the environment and in particular the driven route, even if GNSS measure-
ments are not available. It allows to improve the estimated position of a railway
vehicle and to assess several possibilities independently. Overall, it shows that
detections from 2d lidar sensor measurements can even reduce ambiguity prob-
lems in train-borne localization systems.
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Kurzfassung

Bereits heute ist eine rein fahrzeuggebundene Lokalisierung von Schienenfahr-
zeugen mit satellitenbasierten Systemen in vielen Fällen möglich. Jedoch ist
deren Genauigkeit oft unzureichend. Dies gilt insbesondere für Orte, in deren
Nähe sich parallele Gleise befinden. Zudem kann die notwendige Sichtbezie-
hung zu Satelliten unterbrochen sein, was beispielsweise in Tunneln der Fall
ist. Deshalb ist eine Positionsbestimmung nicht unter allen Umständen möglich.
Mehrdeutige Situationen entstehen vor allem durch das Befahren von Weichen,
also an Orten, an denen ein Wechsel zwischen mehreren Gleisen möglich ist.
Um eventuell auftretende Mehrdeutigkeiten bereits bei ihrer Entstehung erken-
nen zu können, wird in dieser Arbeit die Detektion von Nachbargleisen und
Weichen verfolgt.
Diese Arbeit schlägt dazu ein umfassendes Lösungspaket vor, welches ein eta-
bliertes Setup um ein komplementäres Messprinzip erweitert (Laser-Abstands-
messung). Mit Hilfe eines Einzeilen-Laserscanners können Informationen über
das nähere Umfeld des Schienenfahrzeugs erfasst werden. Dazu wird ein mehr-
stufiges Detektionsverfahren beschrieben, das ausschließlich auf zum Fahren
notwendige und damit stets vorhandene Infrastruktur abzielt. Die Struktur des
Verfahrens spiegelt dabei den Aufbau eines Gleisnetzes wider. Die wiederholte
Beobachtung von Schienenprofilen in den Messdaten ermöglicht die Erkennung
von Schienen- und Gleisverläufen während der Fahrt. Daraus können Informa-
tionen zur Existenz von Nachbargleisen (Topologie des Gleisnetzes) sowie zu
Weichen und deren Befahrrichtung (Referenzposition, Richtung sowie befah-
rene Seite) detektiert werden, die als Events bereit gestellt werden. Messfahr-
ten in einem Testgelände ermöglichten eine qualitative und quantitative Evalu-
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ierung des vorgeschlagenen Verfahrens. Trotz anspruchsvoller und vielfältiger
Topologie und einer Vielzahl an Weichenbefahrungen zeichnen sich die Ergeb-
nisse durch ein hohes Maß an Korrektheit und Vollständigkeit aus. Während
viele verwandte Arbeiten Weichen nicht berücksichtigen, ermöglicht diese Ar-
beit die Bestimmung ihrer Referenzposition mit einer Genauigkeit von einem
Meter. Abschließend werden die Ergebnisse dieser Arbeit zusammengefasst
und ausgewertet sowie Erweiterungsmöglichkeiten aufgezeigt. Zudem werden
die erforderlichen Informationen zur Integration der Detektionen in ein bord-
autonomes Lokalisierungssystem identifiziert und es wird gezeigt, wie dabei
selbst mögliche Ungenauigkeiten oder Unvollständigkeiten berücksichtigt wer-
den können. Bereits eine prototypische Integration der vorgeschlagenen Events
in ein Lokalisierungssystem demonstriert, dass negative Auswirkungen, zum
Beispiel in Form von Mehrdeutigkeiten, reduziert oder gar komplett eliminiert
werden können.
Diese Arbeit zeigt, dass Schienen, Gleise und Weichen systematisch erkannt
werden können. Zudem funktioniert das Verfahren selbst dann, wenn eine satel-
litenbasierte Lokalisierung gestört oder gar nicht möglich ist. Zusätzlich liefert
es wertvolle Informationen über das nähere Umfeld des Schienenfahrzeugs und
insbesondere seine Fahrt durch das Gleisnetz. Diese erlauben es, die geschätzte
Fahrzeugposition in einem Lokalisierungssystem fortlaufend zu aktualisieren
und im Falle mehrerer Möglichkeiten, diese individuell zu bewerten. Insge-
samt wird gezeigt, dass bereits Detektionen aus Messungen eines Einzeilen-
Laserscanners ausreichen, um Mehrdeutigkeiten in der bordautonomen Lokali-
sierung zu reduzieren.
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1 Introduction

Automation is becoming increasingly more important for rail transport. It ef-
fects railway traffic control and even enables automatic train operation. With
the help of modern operation procedures, safety can be ensured, collisions can
be avoided, and the capacity of the railway network can be enhanced. For all
these cases, accurate positioning is indispensable.
This work contributes to this challenge by improving track-selective localiza-
tion. It is shown which specific requirements arise from the characteristics of a
railway scenario and it is furthermore illustrated in which way the accuracy of
railway vehicle self-localization can be improved effectively.

1.1 Motivation

A railway vehicle can carry large amounts of goods or several hundred passen-
gers at high velocities over long distances. However, the characteristics of the
system differ significantly from those of road traffic. Railway vehicles can nor-
mally not be driven on sight, since the static friction is about eight times smaller
than for road vehicles, which results in very long braking distances [Pachl
2016]. Furthermore, railway vehicles are guided. They can thus not avoid an
obstacle and change their track only on turnouts.
As an illustration, the scenario in Figure 1.1 should be considered. Railway ve-
hicle v1 is scheduled to arrive on platform p1. If it arrives on another platform
like p2 for operational reasons, passengers might be confused or frustrated at the
best. However, if another railway vehicle v2 comes along, dangerous situations
can arise, such as a potential frontal or lateral collision. Then, the second rail-
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way vehicle v2 must not enter the track section in front of platform p2 as long as
v1 has not left it completely. Thus, v2 has to wait at its current position as shown
in Figure 1.1. In contrast, if v1 is located at platform p1 as planned, v2 can drive
towards platform p2, since both railway vehicles do not come into conflict.

Figure 1.1: Exemplary railway scenario at a station. Arrows indicate the (intended) driving direc-
tions of both railway vehicles v1 and v2 towards platforms p1 and p2. t1 denotes a single turnout.

To prevent these dangerous situations, the locations and directions of the rail-
way vehicles need to be known. The location includes the knowledge of the
lateral and the longitudinal position (i.e., an identifier of the track and the po-
sition thereon). The distance traveled as the only information is insufficient
for this, because it does not allow to differentiate between whether railway ve-
hicle v1 is located on the track section in front of platform p1 or the parallel
and nearby track section in front of platform p2 after passing turnout t1 in Fig-
ure 1.1. However, these ambiguity problems can only arise on turnouts, so that
three solutions are conceivable for this. A human observer could be placed near
turnout t1 and monitor all passing railway vehicles. However, this might be
necessary around the clock, requires permanent concentration, and is resource
intensive, since every turnout requires such an observer. Moreover, human fac-
tors already are a main cause of railway accidents [Federal Railroad Adminis-
tration 2017]. The second option is a technical solution of the observer, where
additional elements are installed on the railway network, which is the current
state of the art. They allow to detect the presence of railway vehicles or ex-
change information with them. Examples include track circuits, axle counters,
balises, and further components of CBTC (communication-based train control)

2



1.2 Problem statement

systems. On the one hand, the concentration problem is eliminated and a high
positioning accuracy is enabled particularly by the use of balises. On the other
hand, the supplementary infrastructure causes further costs for installation and
maintenance. This is not cost-efficient in particular for low density lines, which
is why they are often not installed. Thus, the most promising solution is the
equipment of railway vehicles with appropriate sensors, which determine the
track and the position thereon. This is especially attractive, since the total num-
ber of railway vehicles is typically much smaller than the number of sites which
need to be equipped, such as turnouts1.
Common solutions without any track-side installation and their main challenges
for the railway vehicle position determination are identified subsequently2.

1.2 Problem statement

As motivated before, the position of a railway vehicle within a railway network
should only be determined with information that is available on-board, but does
not originate from track-side installations. Such self-localization systems of
the current state of research are almost exclusively based on global positions
from GNSS (global navigation satellite system)3, information on the movement
of the railway vehicle4, and a digital map5 of the railway network. They are
surveyed for example in [Marais et al. 2017; Winter et al. 2017].

1 In addition, physical balises can be replaced by virtual balises [Röver et al. 1998; Lauer and Stein
2015].

2 Train protection systems also address further aspects, such as the communication with a control
station or other railway vehicles, an examination of train integrity and speed limits, or the ex-
change of information with an interlocking. These are however not within the scope of this work.

3 This includes current and future global systems, such as the US-American GPS, the Russian
GLONASS, the European Galileo, and the Chinese BeiDou, as well as satellite or ground based
augmentation systems and enhancement techniques, such as the US-American WAAS, the Euro-
pean EGNOS, Differential GPS, or RTK [Bacci et al. 2012].

4 This includes the traveled distance, velocity, or acceleration, which are measured by an odometer,
tachometer, or accelerometer respectively.

5 This digital map contains information on the geometry and geography of the railway network
and its topology, where various connection types, such as single turnouts, are used.
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GNSS-based systems allow continuous positioning in many cases and can in-
crease the safety level, since they would also work in case of an error, such as a
wrongly set route on a turnout. The availability, accuracy, and reliability of the
used sensors is however insufficient in some cases. The error of odometers or
tachometers increases with the traveled distance. GNSS receivers suffer from
signal shadowing in tunnels or under bridges, multi-path effects near buildings,
and further disturbances or interferences [Saab 2000b; Stadlmann et al. 2010;
Heirich et al. 2012; Allotta et al. 2014; Marais et al. 2017]. Those effects result,
inter alia, in an inadequate lateral resolution, especially where nearby tracks
exists. Thus, the track which the railway vehicle is currently running on can
only be determined ambiguously, which is often referred to as missing track-

selectivity. With regard to the continuous position determination, [Winter et al.
2017] identified the unsolved overall problem:

How can the location of the railway vehicle as well as its change
from one track to another be determined reliably regardless of en-
vironmental conditions?6

Previous research showed that the track can be determined unambiguously only
after driving a few hundred meters, especially when there are parallel tracks
nearby [Lauer and Stein 2015]. However, areas with reduced or no signal avail-
ability can always occur. Thus, a further improvement of the GNSS-based lo-
calization itself is not expedient for this. A promising alternative is the integra-
tion of another sensor principle that is independent from the already integrated
GNSS and movement measurements [Mirabadi et al. 1996]. In this way the
thereof approximately determined position of the railway vehicle can be further
refined. This leads to the specific problem that is addressed herein:

6 This includes both the self-localization after an initialization of the system as well as the further
continuous determination of the railway vehicle position.

4



1.3 Solution approach

Which sensor can provide additional information in as many situ-
ations as possible, which allows to reduce or eliminate the previ-
ously mentioned ambiguity problems?

Potential solutions are considered in the subsequent section.

1.3 Solution approach

As motivated before, a sensor is required that is preferably independent from
most environmental conditions, that does not suffer from the drawbacks of
GNSS-based systems, and whose acquisition costs are admissible for a rail-
way vehicle7. Various ideas have been proposed for a solution, which include
the detection of stationary objects (e.g., bridges, level crossings, masts, plat-
forms, or tunnels [Heirich et al. 2012; Rahmig et al. 2013; Daoust et al. 2016])
or location-dependent properties (e.g., changes of the curvature or supereleva-
tion of the track as well as inductance, magnetic field, or vibration [Saab 2000a;
Heirich et al. 2011; Heirich et al. 2013a; Heirich and Siebler 2015; Spindler et
al. 2016b]). For this, typical additional on-board sensors include:

• inertial measurement units (IMU) [Saab 2000a; Plan 2003; Broquetas et
al. 2012; Heirich et al. 2013b; Heirich et al. 2013a],

• cameras [Maire 2007; Kaleli and Akgul 2009; Wohlfeil 2011; Qi et al.
2013; Corsino Espino and Stanciulescu 2013; Zwemer et al. 2015],

• light detection and ranging (lidar) sensors [Blug et al. 2004; Rahmig et al.
2013; Yang and Fang 2014; Hackel et al. 2015], and

• eddy current sensors (ECS) [Mesch et al. 2000; Geistler and Böhringer
2004; Hensel et al. 2011].

7 [Manz et al. 2015] for example, assume that the acquisition costs for the whole train-borne lo-
calization system which consists of four sensors and the corresponding processing units are not
more than 50,000 EUR. Thus, they are assumed to be less than 10,000 EUR per sensor herein.
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However, with regard to the considered problem, two observations are particu-
larly striking:

1. Since railway vehicles are guided, track-selectivity only gets lost when
the railway vehicle passes a turnout in facing direction. In such cases,
one track splits up into typically two tracks (cp. for example railway ve-
hicle v1 in Figure 1.1, which can run either towards platform p1 or p2

when passing turnout t1 in reading direction).

2. In addition, ambiguous situations result from the fact that at least one

more track is a possible location for the railway vehicle. Resulting from
the first observation, the other track is located in close proximity directly
after passing the turnout.

Thus, only the detection of nearby tracks and turnout passings addresses the
cause of the ambiguity problem [Mesch et al. 2000; Stein et al. 2014a].
IMU and ECS can only provide information on the running of the railway vehi-
cle on the ego track, but cannot include its environment or enable a look ahead.
Furthermore, ECS is still a research subject and thus not close to the market. In
contrast, different versions of IMUs are available, but they either strongly suffer
from drift or are quite expensive [Heirich et al. 2012]8.
On the one hand, cameras and lidar sensors can perceive the environment,
whereby the former ones provide a higher resolution. On the other hand, their
measurements might be affected by environmental conditions, such as illumi-
nation and weather (e.g., rain, fog, or snow). Cameras in particular depend
on external illumination9 and require an interpretation of the measured struc-
tures, while lidar sensors provide their own illumination and measure distances
directly and precisely [Reiterer et al. 2014].

8 More stable sensors start at 15,000 EUR and can exceed 100,000 EUR.
9 The lighting of the railway vehicle is insufficient for this, for example when passing a tunnel or

when driving at night.
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Thus, lidar sensors appear to be the most promising sensor principle for a spa-
tially close detection of the above mentioned elements and will be used herein.

1.4 Aims, contributions, and outline

This work investigates how additional information on the environment can be
perceived by a low cost lidar sensor that is mounted on a railway vehicle. This
is often called mobile laser scanning, whereby laser is an acronym for light
amplification by stimulated emission of radiation. The lidar sensor extends
the common train-borne GNSS-based localization setup, which suffers from
missing track-selectivity. The proposed approach focuses on the detection of
omnipresent infrastructure elements, which are necessary for the running of the
railway vehicle. In doing so, the following issues are addressed in particular:

• Which setup is beneficial for this problem? Which characteristics of the
lidar sensor are crucial and which information can be used?

• How can rails and tracks10 be detected in mobile lidar sensor measure-
ments?

• How can topological information on the nearby environment of the rail-
way vehicle and in particular the route taken within the railway network
be determined?

• Which characteristics of these detections are valuable for evaluating po-
sition ambiguities and are thus required for their integration into a train-
borne localization approach?

Chapter 2 presents the overall idea of the proposed approach and gives an
overview of basic railway characteristics. Based on this, a universal setup is
introduced. In contrast to most related work, the proposed approach makes

10 This includes the ego track, i.e., the track, on which the railway vehicle is running, as well as
parallel and diagonal tracks in the nearby environment.
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use of all information from a 2d lidar sensor, which includes distance and echo
measurements as well as the knowledge of their temporal and spatial arrange-
ment. Furthermore, it describes, how rails and tracks can be detected from
mobile lidar sensor measurements methodically. It makes use of different fea-
tures such as occluding edges and combines proven region based as well as
model based methods. Moreover, this approach explicitly considers turnouts
and their general structure, but it does not require any pattern database for their
detection. In this way information on nearby tracks, positions of turnouts on the
ego track, and branching directions thereon can be derived, which directly ad-
dresses the causes of ambiguity problems. In addition, the approach even works
when GNSS or movement measurements are disturbed or unavailable, since it
only requires lidar sensor data. A comprehensive experimental evaluation on a
demanding railway test ground provides a variety of branching situations and
diverse topologies. Chapter 3 evaluates the obtained results qualitatively and
quantitatively. Based on this, Chapter 4 extensively discusses the strengths and
weaknesses of the proposed approach, highlights the contributions of this work,
and shows extension opportunities. Furthermore, the results have already been
integrated into a train-borne localization system. Since the position of turnouts
as well as the branching direction thereon is known, positions can be adjusted
and potential ambiguities further assessed. The final chapter summarizes this
work, draws overall conclusions, and provides an outlook on future research
directions.
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In order to detect the topology of the railway network and the branching direc-
tion on turnouts, a multistage approach is proposed that considers the structure
of a common railway network and its characteristics. The motivation for the
overall concept is illustrated at first. Afterwards, a train-borne setup with an
additional lidar sensor is introduced, which provides a series of vertical cross-
sections of the nearby environment. A multistage approach is presented in the
main part. It detects rail profiles within single scans using different features and
model based approaches. The spatial clustering of rail profiles over consecutive
scans allows to recognize rail and track sections. This way information on the
topology of the railway network can be inferred. Finally, positions of turnouts
on the ego track as well as the direction in which the railway vehicle passed
them can be derived.

2.1 Overall concept

Since railway vehicles are guided, their infrastructure requires well defined
characteristics. Thus, the basic idea is to analyze the structure of a common
railway network top-down. A special focus is on those elements which are
most important for the running of a railway vehicle. Based on this general de-
composition, a bottom-up multistage approach is proposed which resembles a
railway network and complies with the structure of this chapter. The particular
characteristics of those elements are described more detailed with the relevant
detection steps, while this section provides a clear overview.

9



2 Method

(a) Two parallel tracks that are connected by two single turnouts.

(b) Several tracks with a diamond crossing in front of the train.

Figure 2.1: Exemplary railway scenarios. Several tracks and different connection types, such as
single turnouts and a diamond crossing, are shown. Each track is built up of two parallel rails with
a fixed distance (photos by courtesy of Martin Lauer).

The railway network consists of a set of tracks (cp. Figure 2.1). These tracks
can be arranged in different ways, e.g., parallel or intersecting, and at varying
distances to each other. They are primarily interconnected by turnouts11 (cp.

11 To be consistent, the generic term “turnout” is used for the railway network element that allows
branching. Other common terms, in particular “point switch” or “(set of) points”, are in conflict
especially with the measurements of the lidar sensor (point) or their arrangement (point cloud).
For the latter ones, the generic term “measurement” is used herein. However, it cannot be avoided
that common railway terms contain “point” or “switch”.

10



2.1 Overall concept

Figure 2.1a) and diamond crossings12 (cp. Figure 2.1b). It is essential that only
turnouts allow the railway vehicle to change from one track to another. In con-
trast, two tracks intersect at diamond crossings where turning is not possible.
Tracks consist of a tuple, normally a pair, of parallel counterparts called rails.
Finally, those rails have a certain profile. This decomposition can also be seen
in the left side of Figure 2.2.

Figure 2.2: Overall concept. Structure of the railway network (left side) and the proposed detection
approach (right side).

The proposed multistage approach exactly follows the structure of the environ-
ment, but in reversed order (cp. the right side of Figure 2.2). It takes advantage
of the fact that all elements which are fundamental for the running of the railway
vehicle are usually built up of rails and are available in almost every scenario.
Based on the detection of their profile, sections of rails and tracks can be de-
termined. Their arrangement provides valuable information on the topology of
the nearby environment. Finally, the location of turnouts and the route taken
thereon can be inferred, which is referred to as branching direction. This infor-
mation can be used in an application, such as a train-borne localization system.

12 The common terminology might be confusing. Different variants of both connectors, i.e.,
turnouts and diamond crossings, can contain the words “diamond crossing”. The connection
type “diamond crossing” is comparable to four way intersections where turning is prohibited. In
contrast, “diamond crossings with single or double slips”, which belong to the connection type
turnout, are built up of a centered diamond crossing and two or four interleaving single turnouts.
Thus, they additionally allow a change of the track, i.e., left turns from one (in case of single
slips) or two (double slips) ways and right turns vice versa.
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In order to detect rail profiles, rails, and tracks as well as the topology and
branching direction on turnouts, a setup for a mobile perception system with a
lidar sensor is proposed subsequently.

2.2 Setup, sensor, and data

The proposed multistage approach requires a setup for the detection of rails and
tracks (cp. the lower part of Figure 2.2). Subsequently, it is described which
characteristics of a lidar sensor and its mounting are relevant for these detec-
tions. Finally, the corresponding measurements are abstracted in such a way
that the approach is independent of a specific setup.

2.2.1 Mobile perception system

Throughout this work, a setup with one lidar sensor is considered. It is mounted
on a railway vehicle as shown in Figure 2.3. Its laser beam is rotating in one
plane. That is why it is called a single-layer13 lidar sensor. In this way it per-
ceives the shape of the environment in the x-z-plane, whereby the optical center
of the lidar sensor is the origin of the 2d Cartesian coordinate system x-z. It usu-
ally provides hundreds of thousands distance measurements per second, while
all measurements within one revolution of the laser beam are called a scan. The
laser beam provides the necessary lighting, so that the sensor is independent
from illumination conditions and properly operates even at night.
Lidar distance measurements from such a moving ground vehicle are also re-
ferred to as MLS (mobile laser scanning) application. However, the same lo-
cation is typically measured just once, while the railway vehicle moves (cp.
Figure 2.3c).

13 The proposed approach can also be applied to each of several layers stacked over each other in a
multi-layer lidar sensor. Since it provides additional cross-sections and a forecast in y-direction,
objects might be detected slightly earlier. However, multi-layer sensors are still too expensive and
typically provide a coarser angular resolution. Thus, they are not considered in the following.
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2.2 Setup, sensor, and data

(a) Side view. (b) Front view.

(c) Top view.

Figure 2.3: Proposed setup with a lidar sensor on the front of a railway vehicle. Exemplary mea-
surements are shown in orange (orientation of the three dimensions x,y,z, mounting height H,
inclination angle β , field of view α , radial distance di, measurement angle ϕi, boundaries of the
measuring range xmin,xmax,zmin,zmax). The spatial distribution of the measurements on a ground
plane is shown by orange dots in (c), while constant railway vehicle velocity is assumed. Gray dots
represent exemplary measurements at a standstill or their projection on a common y-value per scan.
The latter representation is used subsequently regardless of the velocity.

Previous research showed that the proposed centered and upright mounting (i.e.,
inclination angle β = 0◦, cp. Figure 2.3a) benefits from various reasons com-
pared to a tilted setup [Stein et al. 2014a; Stein et al. 2016a]14. For example,
the loss of information caused by reflections at flat incidence angles is reduced.
Furthermore, vibrations or the pitching of the railway vehicle result in minimal
variations in y-direction. Finally, the protection against environmental influ-

14 If an upright mounting is not possible, the inclination angle β > 0◦ is used for a transformation. A
scaling of all z-values by cos(β ) projects them into a cutting plane in x-z-direction. Additionally,
the forecast in y-direction of H · tan(β ) has to be considered when referencing the observed place.
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ences, such as rain or dust accumulating on the sensor housing, can be imple-
mented most effectively.
The mounting height H should be the highest technically feasible point. In
this way a better overview also on neighboring tracks is enabled. Furthermore,
occlusions by other railway infrastructure elements can be reduced. However,
the maximal height for railway vehicles is defined by the structure gauge, which
is for example 4.74 m in Germany [EBO].
It is assumed that the lidar sensor at least covers the area bounded by xmin, xmax,
zmin and zmax below its mounting (cp. Figure 2.3b). Thus, the lidar sensor has
a maximal measurement distance of dmax ≥

√
x2

min + z2
min and a field of view

α ≥ 2 · arctan(xmax/|zmax|) when — without loss of generality — axial symmetry
is assumed (|xmin| = xmax). [Stein et al. 2016a] already showed that α = 180◦

(as illustrated in Figure 2.3b) and dmax = 10m are optimal for the investigations
herein. Furthermore, an angular resolution of ∆ϕ ≤ 1/10◦ allows a sufficient
discretization of the scanned objects in lateral direction (Figure 2.3 illustrates
∆ϕ ≈ 2◦), while a measurement rate of f ≥ 50 scans/s is recommended for the
discretization in longitudinal direction.
Further lidar sensor properties and their influence on the measurements are de-
scribed, e.g., in [Wölfelschneider 2009; Stein et al. 2014a]. [Stein et al. 2016a]
give an overview of appropriate products, whereby the most suitable sensor will
be used in an experimental evaluation in Chapter 3. Finally, the upcoming sec-
tion describes the measurements in such a way that the proposed approach is
independent of a specific setup.

2.2.2 Lidar sensor data

In the following, the Cartesian coordinate system x-y-z as shown in Figure 2.3 is
used. The movement of the railway vehicle, and thus the lidar sensor, in driving
direction is represented by y. The measurements of the uprightly mounted lidar
sensor are described in the lateral and vertical dimensions x and z. The distance

14
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between consecutive measurements within one scan is quite small15. Thus, the
longitudinal motion within each scan is neglected. This is often done in lidar
sensor data processing (see also [Kutterer 2010]) and is illustrated by gray dots
in the first scan in Figure 2.3c.
Each measurement within a scan can be described by a triple

mi = (ϕi,di,ei) (2.1)

in polar representation with 1 ≤ i ≤ N (cp. Figure 2.3b). The measurement
angle ϕi is discretized equidistantly with the angular resolution ∆ϕ = 360◦/N. It
starts with ϕ1 = 0◦ and covers the interval [0◦;360◦). The radial distance di (in
meter) and the dimensionless echo ei of the i-th measurement are positive. The
polar representation ϕi and di can be transferred into a Cartesian description of
the shape of the environmentxi

zi

= di ·

cos(ϕi)

sin(ϕi)

 . (2.2)

(xi,zi) is a point in the x-z-plane. This Cartesian representation is used espe-
cially for illustration purposes.
A series of O scans is called a measurement run (1≤ j ≤ O). Each scan

s( j) = (n( j),y( j),m( j)
1 , . . . ,m( j)

N ) (2.3)

is described by an identifier n( j), the railway vehicle position in driving direc-
tion y( j), and N measurements (cp. (2.1)). The time intervals between consec-

15 Even for highest velocities of 360 km/h, the value of y changes by only 0.4 mm between con-
secutive measurements when assuming an angular resolution ∆ϕ = 1/14◦ and a measurement
rate f = 50 scans/s as used in the experimental evaluation in Chapter 3.

15



2 Method

utive measurements and consecutive scans are determined by the measurement
rate f , the field of view α , and the angular resolution ∆ϕ16.
In summary, the representation in (2.1)–(2.3) makes the measurements inde-
pendent from a specific setup. Thus, the subsequently proposed multistage ap-
proach works for all measurements within vertical cross-sections of the nearby
environment.

2.3 Detection of rail profiles in single scans

As a first step for the detection of the railway network (cp. the overall structure
in Figure 2.2), this approach considers the lateral and vertical dimension of the
nearby environment within vertical cross-sections. Since rails are located near
the ground, a proper detection area is defined at first and extensive areas are
identified where rails are not arising. The detection of rails in single scans is
based on their location and appearance within the lidar sensor data. It makes
use of different features, such as occluding edges, in the distance and echo
measurements which further restrict the search space. Finally, a model based
approach determines the locations of the rail profile within each scan.

2.3.1 Restriction of the evaluation range

Since the main scope of this work is the rail based detection of tracks and the
branching direction of the railway vehicle on turnouts, their position relative
to the lidar sensor is focused on at first. Therefore, the typical structure of the
railway environment within vertical cross-sections is analyzed in lateral and
vertical direction. Based on this, restrictions on the area where rails typically
arise are derived. Figure 2.4 shows an exemplary scan which is the basis for the
illustration of all subsequent steps.

16 Equidistant “temporal” discretization in lateral (angular resolution ∆ϕ) and longitudinal direction
(measurement rate f ) is assumed herein. However, this implies no further restriction. It is fulfilled
for all such lidar sensors and does thus not result in loss of generality.
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2.3 Detection of rail profiles in single scans

(a) All measurements below the lidar sensor.

(b) Typical objects within the detection area (boundaries in turquoise): rails (highlighted in yellow)
and third rails (purple).

Figure 2.4: Exemplary measurements from a railway vehicle. Also depending on the environment,
the gaps between the measurements (black dots) for |x| ≥ 8m in (a) increase significantly, while (b)
shows a scale-up for |x| ≤ 6m. Note that a railway vehicle cannot run on third rails, but they can
provide power supply to it.

Restriction in lateral direction

Based on the proposed setup and the characteristics of the railway network,
the lateral position of the rails of the ego track17 is expected within the inter-
val |x| ≤ G/2 + xd where the gauge18 G is the distance between the rails of a
track (as shown in Figure 2.5a) and xd denotes the maximal deflection of the
lateral center of the railway vehicle relative to the center of the track. The
maximal deflection xd takes effect especially in curves and is assumed to be
less than 1 m. Typical values for G in Central Europe are 1435mm (normal
gauge) and 1000mm (meter gauge). The gauge is almost constant, otherwise

17 The ego track is the track where the considered railway vehicle is running on.
18 It is defined as the minimal distance 0 to 14 mm below the upper surface of the rail [EN 13848-1;

Matthews 2007].
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the guided railway vehicle might derail. However, slight variations within the
interval [G−5mm;G+35mm] are permissible [Matthews 2007; EBO].

(a) Dimensions of the railway network and the pro-
posed detection area.

(b) Vignole rail
profile.

Figure 2.5: Positions and dimensions of rails and tracks (orientation of the dimensions x,z, bound-
aries of the detection area xmin,xmax,zmin,zmax, gauge G, minimal lateral distance of parallel
tracks xt,min, height of the rail hr, width of the head of the rail wh, width of the foot of the rail wf).

Since this work is also interested in the detection of nearby tracks, their common
lateral distance needs to be considered as well. It is defined as the horizontal
offset between the center points of both tracks. Its minimum for parallel tracks
is 3.5 m in Germany due to historical reasons, but it is typically at least 4 m and
also depends on the nearby environment [EBO]. Thus, the leftmost rail of the
closest parallel track to the left is expected at x≈−xd−G/2−xt,min. For normal
gauge tracks with G≈ 1.4m and a minimal lateral track distance of xt,min ≈ 4m
(as shown in Figure 2.5a), xmin = −6m is a reasonable left boundary for the
detection area19. The same applies to parallel tracks on the right side. Thus, the
opposite boundary is xmax = 6m (cp. Figure 2.5a).

19 An extension of the lateral boundary such that two parallel tracks on the left side are covered is
not recommended for technical reasons. The leftmost rail is expected at minimal -9 to -10 m to
the left, which results in an incidence angle on ground of about 25◦ even at the largest feasible
mounting height H ≈ 4.7m. This flat incidence angle increases the risk of reflections and occlu-
sions by other objects significantly. Since the ray density on the ground decreases outwards, the
rail is discretized worse. Moreover, the second left track would not help to detect the branching
direction of the railway vehicle on turnouts, since it is too far away from the ego track. Further-
more, this track has to intersect the track on its right side first. In contrast, [Mikrut et al. 2016]
for example limit the lateral area to ±4.75m.
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Finally, corresponding regulations exist for narrow gauge (tracks with
G ≤ 1000mm) [ESBO] or light rail and tram railway networks [BOStrab].
Thus, these considerations apply almost unchanged for them.

Restriction in vertical direction

In order to detect rails and tracks in lidar sensor measurements, the detection
area can also be restricted on relevant parts in vertical direction. In this way the
search space can be further limited. The vertical distance from the ground is
similar to the mounting height H for the ego track. Other tracks are not neces-
sarily on the same vertical position (cp. left and centered track in Figure 2.5a).

Table 2.1: Main dimensions of typical Vignole rails (height of the rail hr, width of the head of the
rail wh, width of the foot of the rail wf as shown in Figure 2.5b) [EN 13674-1].

profile hr [mm] wh [mm] wf [mm]

49E1 (DIN S49) 149 67 125

54E3 (DIN S54) 154 67 125

60E1 (UIC 60) 172 72 150

However, the ego track and all tracks merging into or diverging from the ego
track, which are later on relevant for the detection of the branching direction,
are on almost the same altitude. Otherwise, the railway vehicle could not branch
from one track into another. Tracks are elongated straight or curved objects and
are typically built up of two parallel rails with a certain profile. Vignole rails are
the most common class and are thus considered herein. They are raised objects
and their predominant part is typically above the ground (cp. their profile in Fig-
ure 2.5b and dimensions of typical variants in Table 2.120). Thus, the evaluation

20 This also holds for lighter versions of Vignole rails [EN 13674-4]. In contrast, the predominant
part of grooved rails [EN 14811] that are typical for tramway scenarios or used on level crossings
is not necessarily above ground. Since they only cover a small percentage of the railway network
rails, they are not considered herein.
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range can also be restricted relative to the mounting height H in vertical direc-
tion. An offset of about thrice the mean rail height hr is a good compromise,
which leads to zmin =−H−0.5m and zmax =−H +0.5m (cp. Figure 2.5a).
As a result, only a subset of the measurements below the sensor with
180◦ < ϕi < 360◦ is considered (cp. Figure 2.4b). Note that the detection area
cannot cover all tracks that are somewhere in the surroundings of the railway
vehicle, e.g., in case of a large number of tracks, such as in front of a railway
station (cp. Figure 2.6). However, tracks that merge into the ego track or branch
from the ego track always are within the detection area, since they end or start
laterally and vertically close to the ego track. Only those are required for the
detection of the branching direction of the railway vehicle on turnouts later on.

Figure 2.6: Exemplary scenario near a railway station with several tracks and single turnouts. The
parallel tracks left and right of the railway vehicle will be within the detection area. Especially the
tracks in the right part of the picture are too far away (photo by courtesy of Martin Lauer).

2.3.2 Detection of extensive structures

In order to further restrict the search space, areas are identified where rails are
typically not present. The most relevant area is the ground below the rail foot,
which is considered firstly. Secondly, vertical objects are detected.
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Ground detection

Idea: The most important area for ground detection is located between the rails
of the same track. Its surface depends on the type of the superstructure and con-
sists of different materials, e.g., ballast, concrete, wood, or metal [Matthews
2007]. However, it is flat most of the time and possibly has a small cross
slope (cp. also Figure 2.7). Thus, inspired by [Neubert et al. 2008], the ex-
istence of at least one ground plane that most probably belongs to the ego track
can be assumed. Therefore, a model for the ground plane and a method are
needed that decides on the belonging to this ground plane for every measure-
ment within a scan.

Figure 2.7: Exemplary railway scenario with varying materials. The sleepers of the track on the
left side are wooden, whereas those on the center tracks are made of concrete. In addition, ballast
and mostly rusted rails can be found, while at most small cross slopes occur (photo by courtesy of
Martin Lauer).

Method: Since vertical cross-sections in the 2d x-z-plane are considered and
major parts of the environment of the rail are assumed to be planar, a straight
line hypothesis

z = m · x+n (2.4)

21



2 Method

with slope m and z-intercept n in Cartesian representation can be used for the
ground plane. This line can be expressed in polar representation

ρground,i =
δground

cos(ϕi−αground)
with

αground = arctan(−1/m),

δground = n · sin(αground). (2.5)

δground is the distance between the origin of the x-z-coordinate system and this
line, αground is the angle between the x-axis and the normal of the line, and
ρground,i is the distance of a point on the line measured at angle ϕi from the origin
of the x-z-coordinate system (cp. Figure 2.8). Since the origin of the x-z-plane
is located in the optical center of the lidar sensor and each measurement of the
lidar sensor is described by the measurement angle ϕi and the associated radial
distance di, the radial distance between the i-th measurement and the line is

dground,i = ρground,i−di. (2.6)

Figure 2.8: Idea of ground detection. Exemplary measurements (orange dots) on two rails and the
ground (gray) with the estimated ground plane (dark blue line; orientation of the dimensions x,z,
angle between the x-axis and the ground plane αground, minimal distance of the ground plane from
the origin δground, radial distance di and measurement angle ϕi of the i-th measurement, deviation
of the i-th measurement from the ground plane dground,i; the radial distance of the i-th measurement
from the ground ρground follows (2.6)).
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Thus, the binary classifier cground decides on the belonging of the i-th measure-
ment to the ground plane depending on its distance from the line:

cground(i) := |dground,i| ≤ λground. (2.7)

λground is the distance threshold for the ground plane.
The idea of the common RANSAC (random sample consensus) estimator,
which has been introduced by [Fischler and Bolles 1981], is used, since it is
robust against outliers. Two randomly selected points (x j,z j) and (xk,zk) re-
peatedly create line hypotheses (2.5) with

m =
zk− z j

xk− x j
and

n = z j−m · x j. (2.8)

Finally, the line with the highest number of inliers fulfilling (2.7) is selected.
Figure 2.9 shows exemplary results of the proposed ground plane detection.
Since most measurements on rails are not located on this ground plane, those
measurements are not considered as potential key points in the subsequent step.
In this way the search space can be restricted effectively.

Figure 2.9: Exemplary ground plane detection results (dark blue line described by z = −0.0317 ·
x− 3.9670m). More than 58 % of the 1489 depicted measurements are assigned to the ground
plane (light blue dots on ground plane, all others in black), which most probably are not relevant
points on the five raised Vignole rails (cp. also Figure 2.4b).

23



2 Method

Vertical object detection

Idea: Extensive vertical objects, such as masts of the overhead contact line or
signals (cp. Figure 2.1), do also not contain measurements that belong to a rail.
Method: For the detection of vertical objects, the method for ground detection
is used with a modified model of (2.5). A vertical line model in polar represen-
tation

ρvertical,i =
δvertical

cos(ϕi)
, (2.9)

is used, where δvertical is the x-value of one randomly selected measurement.
Similar to (2.7), the binary classifier for extensive vertical objects cvertical is
defined for the i-th measurement of the scan by

cvertical(i) := |ρvertical,i−di| ≤ λvertical. (2.10)

It decides whether a measurement is located on the vertical structure or not.
λvertical is used as the distance threshold for vertical objects.
Again, measurements which are located on extensive vertical structures are not
considered as potential key point hereafter.
Remarks: Even a potentially insufficient detection of the ground or vertical
structures will not influence the correctness of the following steps, but might
increase the search space and thus influence the running time, while additional
erroneous detections can be filtered out in a later step.

2.3.3 Detection of key points for rails

Most measurements on rails are not located on the previously detected extensive
horizontal and vertical structures. Thus, only the remaining areas within the
symmetric detection area are further considered. In order to detect rail profiles,
the lidar sensor measurements are analyzed for significant features that arise
from Vignole rails in single scans. It is subsequently described which of them
occur in distance and echo measurements and how they can be detected.
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2.3 Detection of rail profiles in single scans

Geometrical rail key point detection

Idea: Vignole rails are raised objects that are located above the ground (cp. Fig-
ure 2.5). When they are scanned from a lidar sensor, the part which faces away
from the lidar sensor is occluded (cp. Figure 2.10a). This is because the laser
beam cannot penetrate materials such as metal. These occlusions are the ma-
jor geometrical indicator for the existence of Vignole rails in the neighborhood,
whereby the subsequently proposed detection method is inspired from [Hackel
et al. 2015].

(a) Variation of the measured radial
distances.

(b) Variation of the incidence angles.

Figure 2.10: Typical influences used for the key point detection in the x-z-plane (selected laser
beams in orange, rail profile in gray). (a) The rail causes an occlusion of the area behind it which
results in significant changes ∆di between neighboring distance measurements (last measurement
on the top of the rail is a distance key point; red triangle). (b) The rail shape (surface normals
shown as black arrows) causes large changes of the incidence angle (exemplary marked for the left
measurement) which results in significant changes of the echo measurement (potential echo key
points denoted by green asterisks).

Method: Occlusions result in a significant change of the measured radial dis-
tance. These changes are defined by the deviation ∆di between consecutive
measurements:

∆di =

di−1−di 180◦ < ϕi ≤ 270◦

di+1−di 270◦ < ϕi < 360◦,
(2.11)
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where the innermost measurement is selected. The binary classifier cocclusion

decides whether the deviation of the i-th measurement is significant and thus
causes an occlusion:

cocclusion(i) := ∆di > λocclusion. (2.12)

λocclusion is the corresponding deviation threshold. Measurements fulfilling
(2.12) are called an “occluding edge” (cp. Figure 2.11).

Figure 2.11: Exemplary results of the detection of occluding edges. Occluding edges (red triangles)
especially appear at the sides of the rails that face away from the lidar sensor. Black dots represent
measurements (cp. also Figure 2.4b).

Remarks: In a smooth, continuous environment, only small changes between
consecutive measurements are expected. They range in the size of the mea-
surement noise. Significance is given when this assumption is considerably
violated. Thus, λocclusion should be a small multiple of the standard deviation of
the radial distance measurements, which can be determined experimentally.

Echo based rail key point detection

Idea: Besides the geometrical appearance, the reflection is an essential charac-
teristic for the detection of rail profiles. Figure 2.10b shows that the incidence
angle of the laser beam changes several times when measuring the rail profile.
Furthermore, the material and its reflectivity changes as well, e.g., from ballast
or concrete on the left side to blank steel on the top which is caused by the
wheel-rail-contact, and rusted steel on the right side of the rail. Both effects
result in several significant changes in the reflected energy and especially occur
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in the neighborhood of rails as already observed by [Blug et al. 2004; Yang
and Fang 2014]. Again, a criterion for this effect and thus an indicator for the
existence of nearby rails is needed.
Method: The changes in reflection can be observed in the echo measurements.
The latter ones are interpreted as ordinal data. Similar to (2.11), the devia-
tion ∆ei between consecutive measurements is defined by

∆ei =

ei−1− ei 180◦ < ϕi ≤ 270◦

ei+1− ei 270◦ < ϕi < 360◦.
(2.13)

The binary classifier cecho decides whether the i-th measurement causes a sig-
nificant deviation in the echo

cecho(i) := |∆ei|> λecho. (2.14)

λecho is the threshold for echo deviations. Measurements fulfilling (2.14) are by
definition an echo key point (cp. Figure 2.12). Note that upward and downward
deviations are considered in contrast to (2.12).
Remarks: In a smooth, continuous environment that consists of homogeneous
materials, only smooth changes of the echo are expected. They are near the
measurement noise, too. In contrast, when the incidence angle or the material
change, significant deviations occur (cp. Figure 2.10b). Again, λecho should be
a small multiple of the experimentally determined standard deviation, but this
time of the echo measurements.
The aim of both key point detectors is to further limit the search space. How-
ever, missing detections cannot be reconstructed anymore. Thus, Figure 2.11
and Figure 2.12 show more key points than rails. Those additional detections
can be filtered out in a later step.
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(a) Echo measurements.

(b) Distance measurements.

Figure 2.12: Exemplary echo key point detection results (represented by green asterisks; black dots
represent distance and echo measurements; cp. also Figure 2.4b). From the corresponding distance
measurements in (b), it can be clearly seen that echo key points especially appear on parts such as
rails where the incidence angle or the material changes frequently.

2.3.4 Template matching

After the steps that focused on the search space, the actual shape of the rail is
explicitly considered as proposed in the overall structure in Figure 2.2.
Idea: Rails have a defined geometrical shape which predominantly appears in
the x-z-plane and is a priori known (cp. Figure 2.5). This model knowledge can
be used to compare their actual measurements to expected ones, since the posi-
tion of the lidar sensor and the detection area are also known. Thus, a method is
required which evaluates whether the rail exists and where it is located within a
scan. Several rails which need to be detected can appear per scan.
Method: In order to evaluate the similarity between the rail shape and its ap-
pearance in a scan, a template matching approach is used as proposed in [Stein
et al. 2016b]. Since the lidar sensor measures distances radially, the templates
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2.3 Detection of rail profiles in single scans

are also described in polar representation. This allows a direct comparison
between actual distance measurements of the lidar sensor and expected ones,
which are located on the rail shape model. The structure of the corresponding
template library, the search space of each rail investigation, and the use of the
template matching for the detection of rail shapes are considered for this.
The template library describes undisturbed measurements within the detection
area. It contains all expected measurements {ϕ̃i, d̃i} on the rail shape (cp. the
magenta dots in Figure 2.13a) for every translation tx, tz of the center of the
template. ϕ̃i denotes the measurement angle and d̃i is the corresponding radial
distance of the i-th measurement in polar representation.

(a) The template library contains all
expected measurements (magenta
dots) on a shape template (ma-
genta line) for a given transla-
tion tx, tz.

(b) Exemplary search space for tem-
plate (magenta) matching on a
rail (gray) with previously de-
tected key points (red triangle
and green asterisks; cp. also Fig-
ure 2.10).

Figure 2.13: Idea of model based rail profile detection in the x-z-plane (selected laser beams in
orange). The rectangular search grid in (b) is discretized with the resolution of the translations ∆tx
and ∆tz.

Previously detected key points restrict the search space S in which the template
matching applies (cp. Figure 2.13b). Since occluding edges and echo key points
are characteristic for lidar sensor measurements of rails, both are required on
the template. Thus, all translations in the local neighborhood of an occluding

29



2 Method

edge (which has been detected on the k-th measurement) are considered if also
an echo key point occurs on the template:

Sk = {(tx, tz) |cocclusion(k)∧ k ∈I ∧∃ j ∈I : cecho( j)

with I = fshape(tx, tz)}. (2.15)

fshape provides only indexes of measurements that are located on the considered
shape for a given translation tx, tz.
In order to allow a direct comparison, the measurement angles used in the
template library equal those of the lidar sensor measurements (i.e., ϕ̃i = ϕi,
1≤ i≤ N). Thus, a direct comparison between radial distance measurements d

of the lidar sensor and expectations on the template d̃ is possible. The mean
squared error E for the translations tx and tz quantifies their deviation

Etx,tz =
1
|I | ∑

i∈I
(d̃i−di)

2 with I = fshape(tx, tz), (2.16)

where only measurements i that are located on the rail shape are considered.
Finally, a binary classifier decides whether the measurements resemble the tem-
plate as proposed in [Hackel et al. 2015]. It evaluates the minimal deviation of
all translations within the search space

min
(tx,tz)∈Sk

(Etx,tz)< λshape (2.17)

and detects a rail profile if this deviation is below a threshold λshape. Exemplary
results of the template matching are shown in Figure 2.14.
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2.3 Detection of rail profiles in single scans

(a) Five correctly detected rail profiles (magenta; cp. also Figure 2.4b).

(b) Used features which have been derived in previous steps: ground plane (blue dots), occluding
edges (red triangles), and echo key points (green asterisks).

Figure 2.14: Exemplary rail profile detection results. Black dots represent measurements.

Remarks: Since the shape of the rail is a priori known, the template library can
be initially determined by simulation, using for example a ray casting approach.
For an efficient implementation, the template library only contains measure-
ments that are located on the template (cp. fshape in (2.15) and (2.16)). More-
over, the detection area is subdivided equidistantly in x- and z-direction with
resolutions ∆tx and ∆tz respectively where ∆tx = ∆tz = 1cm is sufficient for this
work.
Note that [Blug et al. 2004] require that each object has at least to be hit by three
measurements. In contrast, this approach covers — depending on the transla-
tions tx and tz — from 27 to 42 measurements that are located on an UIC 60
rail profile within the proposed detection area, while assuming an angular res-
olution of ∆ϕ = 1/14◦. It significantly exceeds this minimal requirement and is
thus robust against a few missing measurements or outliers. By considering all
feasible translations within the search space, the approach does not get stuck in
a local minimum, but guarantees a globally optimal solution.
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2.4 Detection of rails and tracks within
consecutive scans

After the shapes of rails have been detected within vertical cross-sections of the
nearby environment (x-z-plane), their appearance in longitudinal dimension (y-
direction) is considered. Individual rail profile detections are observed over
consecutive scans and spatially clustered to rail sections at first. Then, tuples of
parallel rail sections are validated for plausibility and arranged in such a way
that track sections can be derived21. This corresponds to the second and third
step of the multistage approach proposed in Figure 2.2.

2.4.1 Detection of rail sections

Idea: Rails are elongated objects which can be straight or curved (cp. Fig-
ure 2.1). Their common features are identified at first. Straight rails are linear by
definition. They hardly change their position relative to the lidar sensor between
consecutive scans as long as they are parallel to the driving direction of the rail-
way vehicle. If they are diagonal to the ego track, they have a linear course
in the x-y-plane (i.e., in a top view). Even curved tracks cannot change their
course abruptly, since they need to be continuous for design and comfort rea-
sons. Thus, rails can be assumed to be approximately linear within short periods
when they are scanned by the proposed setup22. A method is required that de-
cides whether detections of rail profiles within consecutive scans belong to the
same rail or not. More than one rail section is typically located within a scan.

21 The term “section” refers to the fact that only parts of such elongated objects can typically be
observed. Their starts and ends do not necessarily correspond to their physical ones, since they
might be partially occluded or not observed within the considered detection area.

22 Even when the railway vehicle drives through a curve with the maximal allowable velocity, the
lateral deviation of the curved track compared to a straight track is less than 1 m within 1 s. How-
ever, within this period of time, there are at least 50 scans which perceive the nearby environment
within vertical cross-sections. Thus, the lateral deviation between consecutive scans is just a few
centimeters, while a rail has a width of more than 10 cm (cp. Table 2.1). Moreover, the dynamics
of railway vehicles are limited. The maximal acceleration is typically much smaller than 1 m/s2.
Thus, the velocity can be assumed as constant within such a period.
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2.4 Detection of rails and tracks within consecutive scans

Method: To group rail profile detections that have been detected in several
scans a spatial clustering approach is used as proposed in [Hackel et al. 2015;
Stein et al. 2016b]. It is based on seeded region growing which is a fast bottom-
up approach that identifies homogeneous clusters [Adams and Bischof 1994].
It allows to incorporate model knowledge, such as the piecewise linearity of rail
courses. Its basic structure, the treatment of ambiguity, and the used similarity
measure are considered subsequently.

Algorithm 2.1: Basic structure of the spatial clustering algorithm (sliding window size ω , maximal
deviation δ , minimal number of observations ν , number of scans O; based on [Stein et al. 2016b]).

procedure RAILSECTIONDETECTION(ω,δ ,ν)
Call← /0 . set of all clusters
Cwindow← /0 . clusters in sliding window
for scans s = n(1) . . .n(O) do

for all rail profile detections r in scan s do
(cmin,dmin)← CLOSESTCLUSTER(r,Cwindow)
if dmin ≤ δ then

Call←Call \ {cmin}
cmin← cmin∪{r} . add to existing cluster

else
cmin←{r} . create new cluster

end if
Call←Call∪{cmin}

end for
Cwindow←{c ∈ RECENTCLUSTERS(s,Call,ω) | |c| ≥ ν ∨ . . .

s−ω +1 < FIRSTOBSERVATION(c)≤ s}
. ignore old detections and tiny clusters

end for
return Call

end procedure

Algorithm 2.1 shows the basic structure. Every rail profile detection of the first
scan is an initial seed. Thus, it is a cluster, which describes a potential rail
section. Then, the approach works incrementally, is only applied in driving
direction, and is thus causal. Based on the last scans, a decision is made for
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every further rail profile detection in every consecutive scan. If a detection fits
to a current rail section, it is added. In this way the region grows. Otherwise, a
new cluster has to be established. To avoid endless sequences and to correspond
to the assumption of piecewise linear courses, only rail profile detections within
a sliding window of at most ω scans are considered (cp. RECENTCLUSTERS in
Algorithm 2.1). Furthermore, current clusters need to have a minimal number
of observations ν within this sliding window or they are not further considered.
Recently created clusters remain (cp. FIRSTOBSERVATION in Algorithm 2.1).
Rail profile detections are added to the nearest existing cluster as long as they
are not more than a maximal deviation δ away from it. Moreover, every cluster
is extended at most by one rail profile detection per scan23, since rails are as-
sumed to be linear (cp. Figure 2.15). However, in the case of a splitting from
one rail into two rails, which occurs for example on turnouts, the recent cluster
follows the closest detection. The other detection establishes a new cluster.

Figure 2.15: Idea of seeded region growing (top view). Each of the 12 squares represents a rail
detection: three magenta ones (denoted as ri) are detected in the current scan, turquoise ones have
already been assigned to the only cluster c1 (main direction represented by dotted line) within the
sliding window of ω = 10 scans. Detection r3 is too far away from c1, thus it is represented by a
new cluster. In contrast, detections r1 and r2 are less than the maximal deviation δ away from c1.
However, only the nearer r2 is added, while another cluster is created for r1.

23 Note that this is not explicitly shown in the basic structure of Algorithm 2.1.
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2.4 Detection of rails and tracks within consecutive scans

For a clear allocation to a cluster, a similarity measure is needed. The corre-
sponding method CLOSESTCLUSTER returns the nearest cluster and the small-
est distance from it. The orthogonal distance24 from the main direction of the
closest cluster is used. A principal component analysis (PCA) determines the
main direction of previous clusters as proposed in [Yang and Fang 2014]. Ex-
emplary rail section detection results are shown in Figure 2.16.

(a) Metric representation. (b) Index representation.

Figure 2.16: Exemplary rail section detection results. The rail profile detections (dots represent
their centers) from Figure 2.14a are shown on the left side (as the scan with minimal y-value or min-
imal scan identifier respectively). Both the Cartesian representation in the (metric) x-y-plane and the
sensor representation in indexes of measurements and scans is shown (cp. also Section 2.2.2). The
movement of the railway vehicle in y-direction, which is for example determined by an additional
odometer, is only shown for illustration purposes, but not considered in the proposed approach.
Valid clusters have an individual highly saturated color, but the color might be used repeatedly.
Too small clusters (gray) are not further considered. Note that especially wing rails in the center
are assigned to individual clusters, since their orientation differs from the other rails. A few small
clusters occur outside of the tracks.

Remarks: The minimal requirement of at least three measurements per ob-
ject from [Blug et al. 2004] applies for the longitudinal direction of rails as
well. However, to avoid tiny, but erroneous clusters, ν = ω/10 is required herein
where a sliding window size of 1 s is a good choice (i.e., ω = 50 or more scans,
depending on the measurement rate f ). Even a segmentation of one rail into

24 The Euclidean distance is used instead, if a cluster only contains one detection within the sliding
window.
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several clusters is uncritical and can be taken into account in subsequent steps.
In contrast, an interpolation or extrapolation is not expedient, since rails can ac-
tually be split (cp. the missing parts of a straight track in a real world scenario
on the right side of Figure 2.6). Thus, short periods of missing detections are
taken into account, while a new cluster is created otherwise. Whereas [Hackel
et al. 2015] required 3d information to evaluate similarity, distances in the x-y-
plane are replaced by the knowledge of the temporal and spatial arrangement of
the measurements25.

2.4.2 Detection of track sections

Idea: A track is an elongated object. It is formed by parallel rails (typically a
pair of rails) that have a certain lateral distance (cp. gauge G in Figure 2.17).
Otherwise, the guided railway vehicle might derail. Thus, a method is required
that decides whether and which previously detected rail sections (i.e., clusters)
belong to the same track section as proposed in the overall structure in Fig-
ure 2.2. At least one track section that belongs to the ego track is expected in a
scan.

Figure 2.17: Exemplary gauge observation of two tracks (top view). Since the railway vehicle runs
on the right track, the left track is observed diagonally with oblique angle γ . Thus, an increased
value Ĝ of the actual gauge G is observed in a single scan (orange).

25 The corresponding equidistant grid resembles the chronological sequence of measurements
within a scan (index i, cp. (2.1)) and between scans (identifier n( j), cp. (2.3)) as shown in Fig-
ure 2.16b. Linearity can be examined heuristically in this way. Finally, the mean index of all
measurements on the rail profile is used as reference of every rail profile detection.
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2.4 Detection of rails and tracks within consecutive scans

Method: Based on the geometrical and topological characteristics of a track,
an incremental detection approach is proposed, which consists of two substeps
and only applies in driving direction. It decides upon the potential side of a rail
in the track (i.e., left or right) at first. Consecutively, it determines whether and
which rail sections form a track section. In addition, it is shown how potential
ambiguities are treated. First of all, the lateral search area is determined, which
is used to find parallel counterparts of the previously detected rail sections.
Since this approach aims to detect track sections immediately, a decision after
each scan is required as previously done for rail sections. However, the gauge
cannot be measured by definition (cp. Section 2.3.1), since one side of the rail
might be occluded26. Moreover, tracks besides the ego track might be observed
diagonally from the lidar sensor. In that case, the distance between both rails in
a scan does not equal the gauge G, but has a larger value Ĝ depending on the
oblique angle γ between the lidar sensor measurements and the track (cp. the
left track in Figure 2.17):

Ĝ =
G

cos(γ)
. (2.18)

As a result, the gauge is only approximated within one scan. To avoid that every
cluster is a potential partner of every other cluster (i.e., Ĝ→ ∞ for |γ| → 90◦),
the absolute value of the considered oblique angle is further limited by γmax.
Thus, the lateral search area for corresponding rail sections ranges from the
minimal gauge (e.g., Gmin = 1430mm for normal gauge) to the maximal con-
sidered, but diagonally measured gauge (e.g., Gmax = 1470mm observed under
oblique angle γmax in (2.18)).

26 Note that only 2d information from the lidar sensor in the x-z-plane is considered herein. How-
ever, if distances between consecutive measurements in y-direction are available, parallelism can
be checked additionally as done for example in [Hackel et al. 2015].
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Algorithm 2.2: Basic structure of the detection of track sections (detected rail sections Call from
Algorithm 2.1, sliding window size ω , minimal number of observations ν , minimal and maximal
gauge Gmin,Gmax, maximal absolute oblique angle γmax, number of scans O).

procedure TRACKSECTIONDETECTION(Call,ω,ν ,Gmin,Gmax,γmax)
Swindow← /0 . potential cluster sides in sliding window
Tall← /0 . all detected tracks
for scans s = n(1) . . .n(O) do

Cwindow←{c ∈ RECENTCLUSTERS(s,Call,ω) | |c| ≥ ν ∨ . . .
s−ω < FIRSTOBSERVATION(c)≤ s}

. only consider new or sufficiently large clusters, cp. Algorithm 2.1
for all clusters c in scan s do

Swindow← POTENTIALRAILSIDE(s,c,Swindow,Cwindow,ω, . . .
Gmin,Gmax,γmax)

if s < n(ω) then
continue . initialization phase of ω−1 scans

end if
(Swindow,Tall)← RAILASSOCIATION(s,c,Swindow,Cwindow, . . .

Tall,ω,ν ,Gmin,Gmax,γmax)
end for

end for
return Tall

end procedure

In the first detection substep, the potential side of a rail in a track is determined
based on the lateral arrangement of the clusters. Besides “left” and “right”
rails in a track, possible decisions also include “undecided” and “irrelevant”.
A cluster is irrelevant if no corresponding cluster to its left or right side can
be found within the sliding window of ω scans. In contrast, a cluster has an
undecided side as long as it is not considered in a track section or if the cur-
rent arrangement contradicts the previous side. Since the shape of Vignole rails
is symmetric, it cannot directly be decided on this side from their lidar sensor
measurements. For example, the second rail from the left in Figure 2.17 has a
similar lateral distance from the rail on its left and on its right side. This means
that it might fit to both rails if only the detections within the current scan were
evaluated. Thus, the previous side of each rail section is also considered (cp.
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2.4 Detection of rails and tracks within consecutive scans

POTENTIALRAILSIDE in Algorithm 2.2). However, the final decision is made
when a track section is detected. Again, the decision only bases on the detec-
tions in the sliding window of ω scans (cp. the rectangles in Figure 2.18a, that
exemplarily represent the size of the lateral search area and the (longitudinal)
sliding window for one rail) where the first ω − 1 scans are used to initially
determine potential sides of rails in a track (cp. Figure 2.18b).

(a) Overview. (b) End of initialization phase.

(c) Analysis of rail sides. (d) Associated rails.

(e) Treatment of ambiguity. (f) Final result.

Figure 2.18: Idea of track section detection (top view; selected measurements in orange, rails in
gray, potential rail sides l (left), r (right), and u (undecided)). Each rail and track section has their
individual color. Both rectangles in (a) exemplarily represent lateral and longitudinal search areas of
the second rail from the right for potentially associated rails on the left and the right side assuming
a sliding window of four scans. It can be clearly seen, that the rail to its left is only once within the
lateral search area. Thus, the blue track section is continued in (e) and (f).

The second detection substep decides for every rail section directly after each
scan whether it belongs to a track section or not and on which side the rail
section is therein (cp. RAILASSOCIATION in Algorithm 2.2, Figure 2.18c, and
Figure 2.18d). If a combination of rail sections fits to an existing track section,
it is continued, otherwise a new track section is created. Similar to rail sections,
at most one detection is added to a track section per scan. In contrast, track
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sections might split on turnouts. In order to avoid erroneous decisions, rail
sections are only considered when they at least have ν observations within the
sliding window ω . In this way track sections grow, new ones arise, and no
longer relevant ones terminate.
Every potential combination to the left and/or right in the lateral search area is
evaluated for every cluster. Ambiguous combinations need to be treated where
rails might be used either on the left or the right side of a track or are a potential
partner for several tracks (cp. again the second rail from the left in Figure 2.17,
which has a similar lateral distance from the rails to its left and right side).
Thus, rail sections are only assigned to a track section if a clear decision of both
involved rail sections is made (cp. Figure 2.18e and Figure 2.18f). Exemplary
results of the detection of track sections are shown in Figure 2.19.

Figure 2.19: Exemplary track section detection results. Detected track sections have an individual
highly saturated color where the colors are completely independent from those of the rail sections
in Figure 2.16. Dots represent the centers of the corresponding rail profile detections. Unused parts
of rail sections (gray) are not further considered. Note that the assignment of rail sections to track
sections typically changes only on turnouts due to the variety of potential combinations. Clusters
which are detected outside of the tracks have not been used at all herein.

Remarks: The minimal number of measurements per object introduced by
[Blug et al. 2004] applies again. As for the rail section detection, a minimum
of ν = ω/10 observations is required before a track section is valid, whereby the
sliding window size equals 1 s again (i.e., ω = 50 or more scans, depending on
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the measurement rate f , whereby significant changes of a track are not expected
therein).
Since the gauge cannot be determined by definition within a scan, the lateral
distance between the axes of symmetry of both rail profiles is used. Their val-
ues tx are directly known from template matching.
The maximal absolute value of the oblique angle should be chosen so that
Ĝ is always smaller than the minimal lateral distance of parallel tracks xt,min

(e.g., xt,min = 3.5m for railway tracks in Germany that have normal gauge
G = 1.435m; cp. also Figure 2.5a), otherwise further ambiguities would occur.
γmax = 39◦ is a good compromise (as shown below).
The decision on a side or on the belonging to a track section is implemented
as a majority vote, whereby recent observations have a stronger weight. Every
potential cluster within the lateral search area counts where several votes are
possible per considered detection and scan depending on the overall arrange-
ment. Since parallelism, fixed lateral distance, and similar direction cannot be
evaluated in a scan, they are checked by the similarity of the observed lateral
distances Ĝ between consecutive scans within the sliding window.
Extension option for various gauges: In rare cases, multiple rails form a track.
For example, a mixed gauge track with three rails has two rails on the left (or
right) side (cp. Figure 2.20b and Figure 2.20c respectively). Their lateral dis-
tances to the right rail (or left rail) are those of two gauges. Thus, it allows
for example the running of both normal and meter gauge railway vehicles (cp.
Figure 2.20a and Figure 2.20d).
An extension from two to three rails per track is considered herein (cp. for
example also the red track section in Figure 2.19). However, the proposed ap-
proach can be adapted analogously for every rail arrangement. Only RAILAS-
SOCIATION needs to be extended for modified rail arrangements within a track.
It is the first step of the overall proposed approach that is influenced by various
gauges. It examines all combinations shown in Figure 2.20 for their detection
and checks whether the scaling of both observed gauges is similar. In addition,
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and identical to common tracks, their development between consecutive scans
is evaluated.

(a) Normal gauge track.

(b) Mixed gauge track with three rails, common rail right.

(c) Mixed gauge track with three rails, common rail left.

(d) Meter gauge track.

Figure 2.20: Exemplary track types (cross-sections). Rails for meter gauge (G = 1000mm) and/or
normal gauge (G = 1435mm) vehicles are shown.

Finally, the maximal oblique angle γmax allows to distinguish between both
gauges, whereby its previously proposed value of 39◦ is the maximal value27.
In this way a track can be classified additionally whether it has meter or normal
gauge or is a mixed gauge track with three rails (and whether the latter one has
its common rail on the left or the right side).

2.5 Inference from detected rails and tracks

To conclude on the topology of the railway network and the movement of the
railway vehicle therein, the previously detected rail and track sections are fur-
ther processed. Firstly, the lateral arrangement of several tracks is evaluated.

27 In contrast, if γmax is increased by another degree, the maximal observed meter gauge exceeds
the minimal normal gauge of 1430 mm (maximal meter gauge (1035 mm) plus twice the lateral
offset of the symmetry axis of the templates (equals in total the width of the head of the rail;
172 mm) observed under oblique angle γ results in the observed gauge following (2.18)).
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Secondly, positions on the turnout are determined and the branching direction
thereon is detected. This corresponds to the fourth and fifth step of the pro-
posed multistage approach (cp. its overall structure in Figure 2.2) and completes
the information which can solely be obtained from lidar sensor measurements.
Thereby derived and further provided information will be called event, which is
motivated by [Rahmig et al. 2013].

2.5.1 Detection of topology events

Idea: Based on the previous steps of the multistage approach, it is already
known whether and which rail section belongs to the same track section and
how they are arranged therein (i.e., whether they are a left or a right rail). Sev-
eral tracks can be arranged in different ways to each other, such as parallel,
diagonal, or intersecting, and at varying lateral distances (cp. Figure 2.1). Their
lateral arrangement provides information on the topology within the nearby en-
vironment of the railway vehicle.
Method: The proposed approach detects the ego track and classifies all other
tracks into those on the left and on the right side. In addition, a compact repre-
sentation can be created, which consists of topology events (cp. Algorithm 2.3).
Then, the latter ones can be fed into an application, such as a train-borne local-
ization system. In every case, a decision is again made directly after each scan.
To avoid premature and erroneous decisions, only (track) sections which at least
have ν observations within the sliding window ω are further considered as al-
ready proposed in Algorithm 2.1 and Algorithm 2.2 (cp. RECENTTRACKS and
FIRSTOBSERVATION in Algorithm 2.3). Based on this, the ego track can be
determined (cp. EGOTRACK). Initially, this is the track in the current scan that
is closest to the center of the x-axis. Previous decisions on the ego track are
considered in subsequent scans, whereby the track with the minimal lateral de-
viation from the center of the previous ego track is chosen.
Based on the knowledge of the ego track and its lateral center, lateral distances
from every track can be determined (cp. NEARBYTRACKS in Algorithm 2.3).
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Algorithm 2.3: Basic structure of the inference of topology events (detected track sections Tall
from Algorithm 2.2, sliding window size ω , minimal number of observations ν , maximal gauge
Gmax, number of scans O).

procedure TOPOLOGYDETECTION(Tall,ω,ν ,Gmax)
x̄ego, 0← 0.0 . default center of ego track
Eall← /0 . all ego tracks
Lall← /0 . all left tracks
Rall← /0 . all right tracks
Nall← /0 . all topology events
for scans s = n(1) . . .n(O) do

Twindow←{t ∈ RECENTTRACKS(s,Tall,ω) | |t| ≥ ν ∨ . . .
s−ω < FIRSTOBSERVATION(t)≤ s}
. only consider new or sufficiently large track sections

Eall = EGOTRACK(s, x̄ego, 0,Eall,Twindow,Gmax)
for all track sections t in scan s do

(Lall,Rall)← NEARBYTRACKS(s, t,Eall,Lall,Rall,Twindow)
Nall← TOPOLOGYEVENTS(s, t,Eall,Lall,Rall,Nall,Twindow,ω, . . .

ν ,Gmax)
end for

end for
return (Eall,Lall,Rall,Nall)

end procedure

Current tracks, whose x-value of the track center is smaller than that of the
ego track, are classified as left tracks28. All tracks with a center whose x-value
exceeds those of the ego track are located on the right side. A side can be deter-
mined for every observation of a track. However, this assignment can change
over time, for example from left to right if this track intersects the ego track on
a diamond crossing (cp. also Figure 2.1b).
The information on the nearby environment can be further compressed (cp.
TOPOLOGYEVENTS in Algorithm 2.3). In order to avoid endless or erroneous

28 This side is defined as observed by the lidar sensor. If the railway vehicle drives backwards,
this track is located on the opposite side in driving direction. Such a reversing cannot be de-
tected in lidar sensor data. Nonetheless, the overlying application usually has information on the
movement and can thus adapt the sides where appropriate.
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topology events, each left or right track is only reported once within the sliding
window of ω scans. Furthermore, at least ν observations therein are required
for such an event. Relevant characteristics of the corresponding topology event
are summarized in Table 2.2. Its mandatory part includes the point in time29 of
the first observation, which is relevant for this event, its detection time, and the
detected side. Additionally, the centers of the ego and the reported track can
be included, which allow to determine their lateral distance. Finally, to charac-
terize the relevance of an event, the number of observations since the last event
and for all the time can be integrated. Figure 2.21 shows exemplary topology
detection results.

Table 2.2: Contents of a topology event. Optional entries are italic.

category entry values unit

points in time
for this event

first observation double s

detection double s

arrangement

side left | right none

center ego track double m

center this track double m

number of
observations

this event unsigned integer none

overall unsigned integer none

29 Points in time are used instead of distances in y-direction, since the latter ones cannot be deter-
mined from the considered 2d lidar sensor data. However, the overlying application can syn-
chronize those points in time with corresponding motion and position measurements and thus
determine the (global) location of the reported detection. Assuming a constant measurement
rate f , even the typically ascending identifiers from (2.3) can be used. In this way identifiers can
be converted into relative time stamps.
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Figure 2.21: Exemplary topology detection results. Vertical green lines indicate the position in
y-direction where a topology event on the right side of the ego track has been detected, while their
start and end point in x-direction represent the estimated track centers of the ego and the other track.
Black dots represent rail centers of detected track sections from Figure 2.19, whereas gray dots
correspond to centers of excluded rail sections. Although the assignment of rail sections changed
on the turnout, topology events have been detected accurately, while their distance in y-direction
rises with increasing velocity of the railway vehicle.

Remarks: The parameters ω , ν , and Gmax are chosen as before. Since the
lateral center of a track cannot be determined by definition in a single scan,
both symmetry axes of the corresponding rails are used again. In this way the
center point and thus lateral distances x̂t between tracks are approximated (cp.
Figure 2.22). Since turnouts are detected in the subsequent step, tracks which
most probably have at least one rail within the ego track (i.e., their center is
located within |x| ≤ Gmax/2) are excluded from topology events. This comprises
the ego track and nearby other tracks, whereby the latter ones are that close only
within short sections. Thus, this exclusion causes no further limitations, while
the information on turnouts is reported by subsequent branching events.
A smaller fraction of the maximal gauge Gmax can be used to restrict the lateral
search area for the ego track, which especially results from deviations of the
lidar sensor relative to the track center. The optional number of observations
in Table 2.2 is an indicator for the certainty of the current event, which has
been proposed, but not further specified in [Rahmig et al. 2013]. Finally, to
achieve maximal (stochastic) independence of topology events, track sections
are not considered for reporting as long as any of their rail sections (i.e., the
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2.5 Inference from detected rails and tracks

smallest, not independent detection) is already used for a topology event within
the sliding window.

Figure 2.22: Exemplary lateral distance observation between two tracks (top view). The railway ve-
hicle runs still on the right track and the left track is thus observed diagonally in a single scan (mea-
surements in orange). The lateral track distance x̂t can be determined from the possibly increased
values Ĝ of the gauges G.

Extension option for various gauges: The proposed topology event in Ta-
ble 2.2 can even be extended to the additionally considered mixed gauge tracks
with three rails (cp. the (horizontal) ego track in Figure 2.21). Since several
kinds of tracks exists (cp. the four ones shown in Figure 2.20), their detected
type can be reported additionally. Moreover, the center of the track can be de-
termined for meter and/or normal gauge (i.e., a mixed gauge track with three
rails has for example a center for meter gauge and a center for normal gauge,
while a common normal gauge track only has a center for normal gauge and
none for meter gauge). Those extensions for the track type and different center
points apply for both the ego track and the reported nearby track30, whereas
further adaptations are not required for Algorithm 2.3.

30 Moreover, depending on the type of the track, lateral distances between tracks vary. A mixed
gauge track with three rails and the common rail on the left side has a larger distance from a
detected meter gauge track on the right side compared to a mixed gauge track with three rails and
the common rail on the right side. However, if tracks have several gauges, the greatest common
gauge should be used for determining x̂t from Figure 2.22.

47



2 Method

2.5.2 Detection of the branching direction on turnouts

Turnouts lead to ambiguity problems, which have been described in Chapter 1.
However, the knowledge of their position would help to adjust the estimated
position of the railway vehicle. In order to detect turnouts on the ego track
and the branching direction thereon, the most common turnout type, i.e., sin-
gle turnouts, is considered herein. Moreover, those turnouts should be pre-
ferred to other designs due to their simplicity [Matthews 2007]. Several types
of construction exist (cp. Figure 2.23), while all have in common that they allow
branching from one track into two tracks. Therefore, in the following, each of
them is referred to as a single turnout, so that it is independent of whether one
(cp. Figure 2.23a and Figure 2.23b) or both (cp. Figure 2.23c and Figure 2.23d)
of the branching tracks are curved. Note that the curvature of the branching
tracks affects the maximal allowed velocity, i.e., the more elongated the turnout
is, the faster a railway vehicle can pass the turnout on this curved track.

(a) Straight and curved track, left-hand. (b) Straight and curved track, right-hand.

(c) Both tracks curved in same direction. (d) Both tracks curved, but with different direc-
tions (wye switch).

Figure 2.23: Types of single turnouts.

Two reference positions on single turnouts are considered at first. Finally, it
is detected in which direction the railway vehicle passed the turnout and how
corresponding events can be created from it.
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2.5 Inference from detected rails and tracks

Detection of the reference position on turnouts

Idea: Typical elements of a single turnout are switch blades, check rails, wing
rails, and the frog (cp. Figure 2.24). They occur independent of whether one or
both tracks are curved and whether the single turnout is left-hand or right-hand.
The frog and the switch blades are considered next, since they are distinctive
points for a detection of the turnout. In contrast, the railway vehicle does neither
drive on wing rails nor on check rails, but they prevent derailing.

Figure 2.24: Relevant elements of a single turnout. Switch blades are movable.

When driving in reading direction in Figure 2.25, the lidar sensor observes a
blade rail at first and later on a check rail on the right side as well as the wing
rail and the frog on the left side. The tip of the frog is the first point where
the gauges G of the ego track and the branching track do not overlap (cp. the
turquoise and gray areas in Figure 2.25a). Moreover, the railway vehicle drives
by the frog each time when it passes a turnout. This is independent of the
direction taken thereon.
The switch blades are movable and thus determine the branching direction.
However, only one side of them is striking, since it is located within the ego
track (cp. the orange part in Figure 2.25b), while the opposite side is part of the
ego track in this scenario. Following the idea of [Hackel et al. 2015], this orange
part of the switch blades is characterized as the rail, which is located within the
ego track and has a lateral distance of less than the minimal gauge Gmin from
it (cp. also the yellow area in Figure 2.25a). Furthermore, its distance ∆xb from
the nearby rail of the ego track at least is 100 mm for design reasons [Fiedler
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1999]. Thus, this blade rail differentiates from other rails. The position of the
tips of frog and blade are detected subsequently.

(a) Reference positions.

(b) Detections on turnouts.

Figure 2.25: Idea of single turnout detection. In (a) turquoise and gray areas represent sections
with a valid gauge G. In contrast, the yellow area has a width of less than Gmin for design reasons,
since the railway vehicle could otherwise not pass the turnout on the gap denoted with ∆xb. In (b)
relevant detected track sections are shown: ego track (turquoise) and branching track (gray), which
is at first partially inside and then completely outside. Left rails are denoted by l and right rails by r.

Method: The frog provides the basis for the detection of a turnout. In order
to determine its tip, already detected track sections from Algorithm 2.2 can
be used. Moreover, their assignment to ego, left, and right tracks from Algo-
rithm 2.3 allows to distinguish their arrangement. The relevant track sections
for the turnout detection include the ego track as well as the branching track (cp.
the turquoise and gray parts in Figure 2.25b respectively). The branching track
has a part which is partially located inside the ego track and another part that is
completely outside of the ego track. The intersection point of the rail extensions
which are closest to the frog determines the position of its tip. For the example
shown in Figure 2.25b, this includes the right rails of the branching track (de-
noted by rin and rout) and the left rail of the ego track (denoted by lego). In order
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2.5 Inference from detected rails and tracks

to avoid premature decisions, at least ν observations are required for both the
inside and the outside part of the branching track. Thus, the detection of the
tip of the frog always occurs after its passing. Exemplary detection results are
shown in Figure 2.26a.

(a) Detection of the tip of the frog. (b) Detection of the tip of the blade.

Figure 2.26: Exemplary reference position detection results on single turnouts. Vertical solid lines
indicate the position where the reference position has been detected, while dotted lines represent
the position of the estimated tip. The color of each line indicates the detected branching direction
where purple represents trailing right. Black dots represent rail centers of detected track sections
from Figure 2.19, whereas gray dots correspond to centers of excluded rail sections. While the
estimated frog position is imprecise, the tip of the blade fits its actual position, even though the tip
is not part of the detected branching track and thus shown in gray.

However, the position of the frog only has minor significance for the branching
detection. For this, the switch blades are the relevant part on turnouts, since their
setting determines the route taken on a turnout. This means that the detection
of the frog is a necessary prerequisite. In Figure 2.25a, the tip of the blade
is the first observed point on the right rail of the branching track. In order to
avoid premature or erroneous decisions, this point is only classified as tip of the
blade when at least ν detections on rin are observed on both sides of the center
of the ego track (besides the ν observations on the part of the branching track
that is completely outside of the ego track as previously required for the frog
detection). In this way potential blades can be distinguished from other rails
within the ego track, such as check rails. The latter ones are either located left
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or right of the center of the ego track. Moreover, the detection of these reference
positions on single turnouts provides the basis for the detection of the branching
direction thereon. Exemplary blade detection results are shown in Figure 2.26b.
Remarks: This approach applies for different types of single turnouts analo-
gously. It is irrespective of whether the single turnout is right-hand instead of
left-hand, if both tracks are curved, or if it is passed from the opposite side
where the sides of the considered rails might change. Since the longitudinal
dimension of the single turnout varies and this step is no longer focusing on the
linearity of objects, the minimal number of observations ν is not limited to the
sliding window of ω scans.
Although the frog is always passed on single turnouts, its position can only be
approximated herein31. This results from the detected parts of the branching
track that do typically not include the tip of the frog itself. There might be no
detection of the branching track near the tip of the blade, since the correspond-
ing Algorithm 2.2 considers the minimal gauge Gmin. Thus, the beginning of
the blade rail which has been detected in Algorithm 2.1 can be used instead of
the beginning of the branching track32.
Extension option for various gauges: This approach can even be used for
complex turnouts which also have mixed gauge tracks with three rails. Since
several frogs might occur for design reasons, the outermost frog, which results
from the intersection of the largest gauges of each connected track, can be de-
tected similarly to the proposed approach. The same applies to the tip of the
blade where that with the largest gauge will be detected. Moreover, it can be
further checked whether the potentially connected tracks are compatible. For
example, a meter gauge ego track cannot be connected to a branching normal
gauge track and thus, no blade is detected.

31 A specific frog detector might be used instead, as proposed for example in [Hackel et al. 2015].
However, 3d information is required for this.

32 Since no distances in y-direction can be observed in the considered 2d lidar sensor measurements,
the consistency of the outer rail of the branching track (i.e., the left rail in Figure 2.25b) is ensured
when both the inside lin and the outside part lout belong to the same cluster from Algorithm 2.1.
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2.5 Inference from detected rails and tracks

Detection of the branching direction thereon

Idea: When driving again in reading direction in Figure 2.27a, the railway vehi-
cle runs towards position B. In contrast, the railway vehicle would drive towards
position C if the setting of the switch blades was as shown in Figure 2.27b.
Overall, single turnouts allow four different routes which are called branching
directions: facing left (A→B), facing right (A→C), trailing left (B→A), and
trailing right (C→A). Facing means that the railway vehicle is moving towards
the tip of the frog, i.e., the single turnout is passed from its beginning (A) to-
wards one of both ends (B or C), while trailing qualifies the opposite direction.
The sides left and right are always defined in viewing direction from position A.
They are independent of the driving direction and whether tracks are curved or
not. Furthermore, it is irrespective of whether the branch is located on the left
or the ride side (cp. left-hand and right-hand single turnouts in Figure 2.23a
and Figure 2.23b respectively). A method for the detection of the branching
direction is proposed subsequently, which is motivated by observations from
[Rahmig and Johannes 2013].

(a) Facing (or trailing) left.

(b) Facing (or trailing) right.

Figure 2.27: Idea of branching directions on single turnouts. Facing characterizes a passing from
position A to B or C, while trailing qualifies the opposite direction.
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Method: To directly decide on the branching direction after each scan, previ-
ously detected frogs and blades can be used (cp. TURNOUTTIPPOSITIONS in
Algorithm 2.4). Based on the chronology and the side of their observations, the
branching direction can be determined. This is a decision on one out of four pos-
sibilities (cp. Table 2.3). The chronology describes whether the branching track
is observed inside or outside of the ego track first. Moreover, the branching
track can be on the left or the right side of the ego track. Based on these obser-
vations, branching events can be raised (cp. Table 2.4 and BRANCHINGEVENTS

in Algorithm 2.4). They include the estimated reference position of the blade,
the point of its detection, and the detected branching maneuver. Correspond-
ing information on the frog might be included in addition. Finally, even the
number of observations can be added. This includes the part of the branching
track, which is located completely outside of the ego track and the part, which
is partially inside. The latter one is further divided into both halves of the ego
track (i.e., the half of the ego track, which includes the tip of the blade, and
the opposite side, which is close to the frog). Exemplary branching direction
detection results are already shown in Figure 2.26.

Algorithm 2.4: Basic structure of the inference of branching events (detected rail sections Call
from Algorithm 2.1, detected track sections Tall from Algorithm 2.2, ego, left, and right tracks
Eall,Lall,Rall from Algorithm 2.3, sliding window size ω , minimal number of observations ν , num-
ber of scans O).

procedure BRANCHINGDETECTION(Call,Tall,Eall,Lall,Rall,ω,ν)
Fall← /0 . all potential frogs
Mall← /0 . all potential blades
Ball← /0 . all branching events
for scans s = n(1) . . .n(O) do

(Fall,Mall)← TURNOUTTIPPOSITIONS(s,Call,Tall,Eall,Lall,Rall,ν)
Ball← BRANCHINGEVENTS(s,Fall,Mall,Ball,Call,Tall,Eall,Lall, . . .

Rall,ω,ν)
end for
return Ball

end procedure
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2.5 Inference from detected rails and tracks

Table 2.3: Determination of branching directions on single turnouts.

chronology of the branching
track relative to the ego track

side of the
branching
track

branching direction
(abbreviation)first part second part

inside outside
left facing right (FR)

right facing left (FL)

outside inside
left trailing left (TL)

right trailing right (TR)

Remarks: The parameters ω , ν , and Gmax are chosen as before. Similar to
topology events, points in time are used for the position of the detection and the
reference element. The optional number of observations is again an indicator
for the certainty of the current event as proposed by [Rahmig et al. 2013]. To
achieve (stochastic) independence, every turnout is reported at most once and
not before at least ν observations have been made in each of the three parts of
the branching track (cp. Table 2.4). Additionally, each potential blade cluster is
considered at most once, since it cannot be used within several turnouts on the
ego track. To guarantee that the last observation on the blade rail is determined
as its tip, it is reported at least ω scans after its latest detection (and thus much
later than the tip of the frog).
Extension option for various gauges: Even Algorithm 2.4 can be extended
for mixed gauge tracks with three rails, which makes use of the same ideas.
As previously discussed, the blade which belongs to the largest gauge of the
branching track is detected. It is reported at most once and the compatibility
of the connected gauges is checked again. Additionally, the information on the
connected gauges that occur on all three sides of the single turnout (cp. positions
A, B, and C in Figure 2.27) can be added to the corresponding branching event.
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Table 2.4: Contents of a branching event. Optional entries are italic.

category entry values unit

points in time
for blade

tip position double s

detection double s

points in time
for frog

tip position double s

detection double s

maneuver
direction facing | trailing none

side left | right none

number of
observations

inside, tip of blade unsigned integer none

inside, tip of frog unsigned integer none

outside unsigned integer none

2.6 Interim Conclusion

In summary, a multistage approach has been proposed. It allows to detect the
topology of the railway network and the branching direction on single turnouts
and bases on the overall structure shown in Figure 2.2. It makes use of the char-
acteristics of a common railway network and follows its structure bottom-up.
Motivated by the appearance of railway objects in 2d lidar sensor measurements
and their characteristics, features as well as region based and model based ap-
proaches are used to detect rail profiles. Based on this, rail and track sections
of the ego and nearby tracks can be determined step-by-step. Finally, the posi-
tion of turnouts and even the branching direction thereon has been detected. In
addition, extension options for its use in more complex, but rare scenarios with
several rails per track have been proposed. Its implementation will be evaluated
experimentally next.
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In order to validate the proposed approach, various experiments have been per-
formed on different tracks, including several types of turnouts on a commercial
railway test ground. A large amount of measurement data has been recorded,
which allows to evaluate the results of the proposed multistage approach step
by step (cp. also its overall structure in Figure 2.2). For this purpose, the ex-
perimental setup, substantial properties of the test ground and the considered
data sets are introduced first. Then, the results of the rail profile, rail and track
section as well as the topology and branching direction detection are discussed.
The evaluation starts with a qualitative analysis of a single data set and a de-
tailed consideration of each step in the corresponding sections. After that, de-
rived quantitative results are presented in a general view. On top of that, Chap-
ter 4 extensively discusses the achieved results, highlights the contribution, and
works out the general benefit.

3.1 Overview of the experiments

Based on the proposed approach, the experiments were designed to cover a
wide range of topological situations, which are passed at different velocities
and also contain a large number of branching situations. The characteristics of
the experimental setup, the demanding test ground, and the selected data sets
are described in the following.
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3.1.1 Experimental setup

As proposed in the setup in Figure 2.3, a lidar sensor33 has been mounted ad-
ditionally on its front for the experiments (cp. Figure 3.1). Measuring from a
mounting height of H = 3.97m with a field of view of α = 360◦ and an angu-
lar resolution of ∆ϕ = 1/14◦, the setup provides a “panoramic view” with fine
resolution in the x-z-plane, while the chosen measurement rate of f = 50 scans/s

provides dense measurements in y-direction.

Figure 3.1: Experimental railway vehicle IFS 1. The lidar sensor (scale-up on the lower left side)
is mounted vertically on the front. Thin orange lines represent selected laser beams which generate
a profile of the environment.

For the experiments, the IFS 1 has been used. It is a powered experimental
railway vehicle for normal gauge tracks of the RWTH Aachen University. The
IFS 1 already has several navigation and motion sensors installed [Lüdicke et al.
2014].
The measurements are restricted to |x| ≤ 6m and |z+H| ≤ 0.5m as proposed in
Section 2.3.1 in order to sense only the relevant railway infrastructure elements.

33 Pepperl+Fuchs OMD30M-R2000-B23-V1V1D-1L [Pepperl+Fuchs 2016a; Pepperl+Fuchs
2016b]
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3.1 Overview of the experiments

3.1.2 Test ground

All experiments have been performed in cooperation with the RWTH Aachen
University on a commercial test ground [Siemens 2012] in Germany (cp. also
Figure 3.2). Its area is set up for both meter and normal gauge railway vehicles
and is predominantly built up of Vignole rails. Thus, it is possible to test the
normal gauge case which is the most common railway scenario in the world.
Additionally, even varied and more complex topologies that are quite rare in
real world scenarios are provided thereon (cp. normal gauge and more complex
turnouts in Figure 3.3), which allows to test the universality and robustness
of the proposed approach. Overall, this area is an ideal and at the same time
demanding test ground.

Figure 3.2: Railway network of the commercial test ground (map data: © OpenStreetMap contrib-
utors34). The map only shows relevant parts where each line represents a track, not a rail.

34 Contributions from the author see https://www.openstreetmap.org/user/steindcom/h
istory#map=15/51.1162/6.2213 (accessed: 26.06.2017).
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3 Experimental results

(a) Left-hand, normal gauge. (b) Right-hand, normal gauge.

(c) Left-hand, meter from mixed gauge. (d) Right-hand, meter from mixed gauge.

(e) Left-hand, normal from mixed gauge. (f) Left-hand, mixed from mixed/normal gauge.

Figure 3.3: Simplified representation of all passed single turnout types.

3.1.3 Data sets

From many kilometers of measurements recorded during day and night, nine
data sets with a total length of about 24 km were selected. On the one hand,
these data sets contain the repeated passing of the same place at different ve-
locities and in opposed driving directions, which allows to analyze the repro-
ducibility of the results. On the other hand, sections where several turnouts are
located closely together reflect typical railway station scenarios in which many
branching situations occur. The data sets can be classified in tracks of the cir-
cuit as well as siding and exchange tracks. Table 3.1 gives a detailed overview,
particularly on the branching situations.
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3 Experimental results

• Circuit: Data sets D1–6 contain the repeated driving on a circuit with
about 2.5 km length of circumference and a curve radius of 300 m at
different velocities [Siemens 2012]. Its mixed gauge track with three
rails (cp. also Figure 2.20) contains three single turnouts, whereby
turnouts T1 and T3 provide a passage for normal gauge vehicles (cp.
Figure 3.3e), while turnout T2 is for meter gauge (cp. Figure 3.3c).

• Siding and exchange tracks: Data sets D7–9 include the passing of an-
other 15 single turnouts in shunting mode (max. 25 km/h). They cover
common normal gauge single turnouts — both left-hand (T5, T6, T7,
T12, T16, and T18 cp. Figure 3.3a) and right-hand (T4, T10, T11, T13,
T14, T15, and T17 cp. Figure 3.3b). They also contain further types of
single turnouts connecting mixed gauge track with three rails with nor-
mal gauge (cp. T8 in Figure 3.3f) or meter gauge tracks (cp. T9 in Fig-
ure 3.3d).

Within these data sets, 18 different single turnouts are passed 56 times. In
48 cases, turnouts are passed in facing direction, which leads to ambiguous
branching situations. In order to align the number of appearances per branching
direction and therefore increase the number of test cases in total, all data sets
have been mirrored. By flipping the sign of the x-values in the recorded data
and/or reversing them in y-direction, the number of test cases is quadrupled.
Thus, an increased number of (virtual) test drives as input sequences allows a
varied and extended evaluation of the proposed approach. Table 3.2 illustrates
the influence of this mirroring on the branching directions, which are shown in
Table 3.1.
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3.2 Exemplary evaluation

Table 3.2: Influence of the mirroring of the data set on the branching direction. FL . . . TR represent
facing left . . . trailing right.

flip in x-direction no yes no yes

flip in y-direction no no yes yes

branching directions

FL FR TR TL

FR FL TL TR

TL TR FR FL

TR TL FL FR

3.2 Exemplary evaluation

Each step of the proposed approach contributes to the topology and branching
events (cp. also its overall structure in Figure 2.2). Thus, the results of each step
are analyzed exemplarily for the shortest data set D6 at first. For their quantita-
tive evaluation, two key performance indicators will be used in particular:

R =
#T P

#T P+ #FN
(3.1)

P =
#T P

#T P+ #FP
. (3.2)

The recall R is a measure for the completeness of the detections and the pre-
cision P characterizes their accuracy. For both values, 100% is the optimal
outcome. #T P denotes the number of correctly detected objects (true positives),
while #FN and #FP count the number of missing or erroneous detections re-
spectively (false negatives and false positives). R̄ and P̄ denote arithmetic means
of R and P respectively where potential indexes designate the considered data
set and/or evaluation step.
The results of the first three railway infrastructure detection steps (rail profile,
rail section, and track section) described in Chapter 2 are evaluated based on
scan-wise labeled areas (ground truth). Therein, one object is a single rail pro-
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file in a single scan. Thus, even for this shortest data set, the denominator of R

is already a five-digit number.
For each topology event, it is evaluated whether the detected neighboring track
exists or not. Since only #T P and #FP are known, R is abandoned in this eval-
uation. The denominator of P becomes much smaller, since the events are only
raised for neighboring tracks and the events should be independent. For this
shortest data set, the denominator of P is 28.
Finally, the detected turnouts and the branching directions thereon are evalu-
ated against actual positions of the corresponding tips of both frog and blade as
well as the directions the railway vehicle passed them. Thus, it is possible to
quantify R and P. Since this shortest data set passes exactly two single turnouts,
the denominator of R is two as well.

3.2.1 Detection of rail profiles

Summary

The scan-wise detection of single rail profiles is primarily based on a template
matching approach (cp. Section 2.3). As shown in Figure 3.4, the results are
almost identical in each case, although the data sets were mirrored. The present
rails are almost completely detected, which can be seen from the dominance of
black areas in Figure 3.4 representing true positive detections compared to very
limited false negatives on turnouts in highly saturated colors. This leads to the
recall R̄D6,profile = 97.4%. At this stage, a few false positive detections, shown
in brown, arise, which results in the precision P̄D6,profile = 85.1%.

Detailed discussion

Considering the real test drive shown in Figure 3.4c, almost all parts of the
rails have been detected successfully. Their positions are — compared to the
three mirrored results — quasi congruent (black areas). However, the results
cannot be completely identical between all of them, since the RANSAC estima-
tor which is primarily used for the ground detection has a random component.
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3.2 Exemplary evaluation

(a) Flipped in x-direction
(Rprofile = 97.4%,Pprofile = 85.0%).

(b) Flipped in x- and y-direction
(Rprofile = 97.4%,Pprofile = 85.1%).

(c) Unflipped
(Rprofile = 97.5%,Pprofile = 85.2%).

(d) Flipped in y-direction
(Rprofile = 97.5%,Pprofile = 85.3%).

Figure 3.4: Rail profile detection results for data set D6. In each case, the railway vehicle is
(virtually) driving from left to right. True positives are represented in black, false negatives in
highly saturated colors, false positives in brown, and white spaces denote both true negatives and
regions where no measurements remained after the restriction of the detection area.

Thus, each step can base on a slightly different assignment of measurements to
the ground.
The same observations hold for the positions of the false negatives and false
positives. The former ones only appear as small gaps near the frogs and on the
wing rails (highly saturated colors), while the latter ones are primarily caused
by erroneous detections on more or less rail-profile-like objects (brown areas).
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Examples of this include power cables (1.5m≤ x≤ 3m, y < 3m), mechanisms
to adjust the positions of the movable frogs (e.g., 1m≤ x≤ 3.5m, y≈ 32m
and −0.5m≤ x≤ 3m, y≈ 36m for turnout T1) or the blades (0m≤ x≤ 2m,
y≈ 54m for turnout T1), or lateral third rails that provide power supply
(x≈−1.7m for the ego track). Most other false positives belong to discontinu-
ities in the environment and appear randomly. However, their spatial extension
is limited, so that most of them will be filtered out in the subsequent steps.

Interim conclusion

In other words, more than the existing rail profiles are detected, while the
present rails are recognized almost perfectly. This leads to a high complete-
ness of the rail profile detections at the expense of reduced accuracy.

3.2.2 Detection of rail sections

Summary

Based on the rail profile detections presented beforehand, the spatial cluster-
ing approach proposed in Section 2.4.1 generates rail sections. The detection
results are once again evaluated against the scan-wise labeled ground truth and
presented similarly (cp. Figure 3.5). Thus, they are directly comparable to those
of the rail profile detection. Although the data sets are mirrored, the related re-
sults are quite similar. Generally, almost all true positives remain unchanged.
This results in an unaffected recall R̄D6,rail = 97.4%, whereas the number of
locally scattered erroneous detections has been slightly reduced, which results
in the precision to be increased to P̄D6,rail = 87.1%.
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3.2 Exemplary evaluation

(a) Flipped in x-direction
(Rrail = 97.3%,Prail = 87.0%).

(b) Flipped in x- and y-direction
(Rrail = 97.3%,Prail = 87.0%).

(c) Unflipped
(Rrail = 97.5%,Prail = 87.2%).

(d) Flipped in y-direction
(Rrail = 97.5%,Prail = 87.3%).

Figure 3.5: Rail section detection results for data set D6. In each case, the railway vehicle is
(virtually) driving from left to right. True positives are represented in black, false negatives in
highly saturated colors, false positives in brown, and white spaces denote both true negatives and
regions where no measurements remained after the restriction of the detection area.

Detailed discussion

All in all, there are no notable changes concerning the true positives and the
false negatives, which are drawn in black and highly saturated colors respec-
tively. This demonstrates that the approach is capable of spatial grouping nearby
rail detections. However, the position of the remaining false positives shown in
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brown slightly differs. This is due to the dependence between the direction of
clustering and the corresponding normal direction, even though the effects are
limited yet. Overall, more or less random detections with few observations can
be filtered out, while repeated detections over larger areas cannot yet be elimi-
nated (cp., e.g., the power cables 1.5m≤ x≤ 3m, y < 3m in Figure 3.5c).

Interim conclusion

The results of the detection of rail sections can be summarized as follows: On
the one hand, the spatial clustering slightly increases the accuracy compared to
the previous step (cp. the reduced number of brown areas between Figure 3.4
and Figure 3.5). On the other hand, it keeps the almost complete detections,
which can again be seen by the dominance of black areas compared to those in
highly saturated colors.

3.2.3 Detection of track sections

Summary

The final step in the detection of relevant railway infrastructure elements is
the detection of track sections, which has been introduced in Section 2.4.2 and
builds up on the previous results. The corresponding results shown in Figure 3.6
are comparable to the previous steps, since they use the same ground truth. The
accuracy has been significantly increased to almost perfect P̄D6,track = 99.9%,
while the completeness slightly decreased to R̄D6,track = 90.7%.
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3.2 Exemplary evaluation

(a) Flipped in x-direction
(Rtrack = 89.9%,Ptrack = 99.8%).

(b) Flipped in x- and y-direction
(Rtrack = 91.3%,Ptrack = 100.0%).

(c) Unflipped
(Rtrack = 89.6%,Ptrack = 100.0%).

(d) Flipped in y-direction
(Rtrack = 92.2%,Ptrack = 100.0%).

Figure 3.6: Track section detection results for data set D6. In each case, the railway vehicle is
(virtually) driving from left to right. True positives are represented in black, false negatives in
highly saturated colors, false positives in brown, and white spaces denote both true negatives and
regions where no measurements remained after the restriction of the detection area.

Detailed discussion

Particularly striking therein is the increase of false negatives. The reasons for
the change from black to highly saturated colors are twofold: Firstly, rail sec-
tions without parallel rail near the lateral boundaries of the detection area are
— depending on the driving direction — not considered, since they can no
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longer or not yet form a track (cp. for example the light purple rail section
near x ≥ 4.8m, 25m ≤ y ≤ 35m in Figure 3.6c). Thus, the recall for the
data sets with flip in y-direction is slightly higher, since the detected branch-
ing track can be temporarily continued at the boundary. Secondly, especially
on turnouts, large portions of the wing rails (cp. the light blue and dark green
areas near 0.1m ≤ x ≤ 1.0m, 29m ≤ y ≤ 36m in Figure 3.6c) and some parts
of the non-fitting blade rail (cp. the light blue areas near −0.7m≤ x≤−0.5m,
50m ≤ y ≤ 55m in Figure 3.6c) are no longer included in the detections. In
all cases, this is correct, since the rails form no track with valid gauge within
the detection area on which the railway vehicle can run on. However, the miss-
ing corresponding rail sections are treated as false negatives in the performance
measures to allow comparisons between the three steps. The remaining false
negatives result from temporarily neglecting rail sections when forming track
sections. They occur in particular on turnouts, but are more or less random.
Remarkable, however, is the fact that hardly any false positives remain, which
can be seen by the significant reduction of brown areas.

Interim conclusion

All in all, the track section detection provides highly accurate results with a
slight loss on completeness, while the results slightly depend on the direction of
the tracks. Their (ir)relevance for the detection of the topology and the branch-
ing direction on turnouts is addressed in the subsequent sections.

3.2.4 Detection of topology events

Summary

Based on the detection of track sections presented beforehand, information on
their topology can be inferred as proposed in Section 2.5.1. The results shown
in Figure 3.7 are — independent of the mirroring — quite similar. Detected
events on the left or the right side are shown as vertical purple or green lines
respectively, while their start and end points correspond to the detected track
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centers. False positive detections would be represented by the same color, but
with vertical lines not starting or ending in a track center. Since all 28 detected
topology events fit the detected tracks even in the visual representation, they are
true positives. Finally, this leads to P̄D6,topology = 100%.

(a) Flipped in x-direction
(Ptopology = 100%).

(b) Flipped in x- and y-direction
(Ptopology = 100%).

(c) Unflipped
(Ptopology = 100%).

(d) Flipped in y-direction
(Ptopology = 100%).

Figure 3.7: Topology detection results for data set D6. In each case, the railway vehicle is (virtually)
driving from left to right. Vertical purple lines indicate the position in y-direction where a topol-
ogy event on the left side has been raised, while their start and end point in x-direction represent
the estimated track centers of the other and the ego track. Accordingly, green lines represent de-
tected topology events on the right side. Black dots represent rail centers of detected track sections,
whereas gray dots correspond to centers of excluded rail sections.
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Detailed discussion

The spacing in y-direction between events on the same side depends on the
velocity of the railway vehicle and the constant measurement rate of the li-
dar sensor. Since the events should be independent from previous ones, there
is a minimal space between them. Figure 3.7c shows for example 12 events
raised when driving with constant velocity (cp. 15m ≤ y ≤ 75m), while sev-
eral nearby events especially occur in the beginning. Due to the speed-up phase
of the railway vehicle, the number of events for the branching normal gauge
track (y≤ 55m) is higher than for the branching meter gauge track (y≥ 25m).

Interim conclusion

All in all, the topology is accurately detected, while only slight temporary dif-
ferences occur between the mirrored data set.

3.2.5 Detection of the branching direction on turnouts

Summary

Based upon the rail and track section detections, even turnouts and the branch-
ing direction thereon can be inferred as proposed in Section 2.5.2. The detection
of the passing of both the frog and the blade (and thus the turnout) is shown for
the exemplary data set in Figure 3.8 and Figure 3.9 respectively. Each ver-
tical solid line represents a turnout detection, while each vertical dotted line
indicates the estimated reference position in y-direction of the corresponding
tip of the frog or the blade. The color of the line additionally encodes the de-
tected branching direction. Green is used when passing trailing left, purple
when passing trailing right, and red and blue when facing left and right re-
spectively. Since each plot contains two detected turnouts and their line colors
correspond to the expected branching directions (cp. Table 3.1 and Table 3.2),
all branching directions (and thus the corresponding turnouts) have been de-
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3.2 Exemplary evaluation

(a) Flipped in x-direction
(Rfrog = 100%,Pfrog = 100%).

(b) Flipped in x- and y-direction
(Rfrog = 100%,Pfrog = 100%).

(c) Unflipped
(Rfrog = 100%,Pfrog = 100%).

(d) Flipped in y-direction
(Rfrog = 100%,Pfrog = 100%).

Figure 3.8: Frog based branching direction detection results for data set D6. In each case, the
railway vehicle is (virtually) driving from left to right. Vertical solid lines indicate the position
where the branching has been detected, while dotted lines represent the position of the estimated tip
of the frog. The color of each line indicates the detected branching direction where red represents
facing left, blue facing right, green trailing left, and purple trailing right. Black dots represent rail
centers of detected track sections, whereas gray dots correspond to centers of excluded rail sections.
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(a) Flipped in x-direction
(Rblade = 100%,Pblade = 100%).

(b) Flipped in x- and y-direction
(Rblade = 100%,Pblade = 100%).

(c) Unflipped
(Rblade = 100%,Pblade = 100%).

(d) Flipped in y-direction
(Rblade = 100%,Pblade = 100%).

Figure 3.9: Blade based branching direction detection results for data set D6. In each case, the
railway vehicle is (virtually) driving from left to right. Vertical solid lines indicate the position
where the branching has been detected, while dotted lines represent the position of the estimated tip
of the blade. The color of each line indicates the detected branching direction where red represents
facing left, blue facing right, green trailing left, and purple trailing right. Black dots represent rail
centers of detected track sections, whereas gray dots correspond to centers of excluded rail sections.

Detailed discussion

In each case, the solid lines are located after the passing of the outermost frog,
while the positions of the tip of the frog and the blade respectively are estimated
opposite to the driving direction. The position of the tips is more important
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3.3 Quantitative evaluation

thereby. The tips of the blades are detected almost perfectly (cp. Figure 3.9),
while the estimated position of the frogs differs by a few meters, especially
when passing the turnouts in trailing direction (cp. Figure 3.8a and Figure 3.8c).
The reason for the latter deviation is that at each single turnout in data set D6,
two frogs are passed — one on the meter gauge part and another one on the nor-
mal gauge part of the ego track (cp. for turnout T1 its tips at x = 0.7m, y = 31m
when intersecting the right normal gauge rail and at x = 0.3m, y = 36m the
right meter gauge rail respectively in Figure 3.8c). However, single turnouts
in common railway scenarios only have one frog and do thus not provide such
ambiguities.
In general, the space in y-direction between the estimated tip and the detection
itself differs between trailing and facing passings. In the case of the frog, this
space tends to be larger for trailing passings, since the branching track needs to
pass the frog and about half of the gauge of the ego track. The behavior for the
blade is vice versa, which also results from the typical dimensions of turnouts.
The space between the estimated tip of the blade and the detection itself is larger
for facing passings, since the passing of the blades and the frog is required in ev-
ery case. In the particular case of the blade detection in trailing direction, a con-
stant temporal delay occurs that complies with the sliding window size of 1 s.

Interim conclusion

All in all, it is possible to detect both turnouts and the branching direction
thereon, whereby the timings differ between facing and trailing passings. In
the considered data set D6, all turnouts and branching directions have been de-
tected accurately and completely.

3.3 Quantitative evaluation

After the exemplary analysis of one data set in detail, the following sections
present the results over all data sets and the corresponding conclusions more
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compactly. The five main steps are considered once more, but a specific mirror-
ing of a data set is only examined when necessary. Derived values of the key
performance indicators are considered herein.

3.3.1 Rail profile, rail section, and track section detection

Summary

Since the rail profile, the rail section, and the track section detection are eval-
uated on the same ground truth, these three steps are analyzed as one. Their
results are plotted in Figure 3.10 where each color represents a data set, while
the corresponding sequences develop from the left to the right.

(a) All data sets. (b) Only repeated driving on circuit.

Figure 3.10: Overall results of the rail profile, rail section, and track section detection. Mean values
of recall R and precision P per data set, where . represents results of the rail profile detection,
# results of the rail section detection, and � of the track section detection, while the dotted lines
are plotted for faster visual assignment. The mean results of data sets D1–5 are summarized in
black in (a), whereas (b) shows their individual results in an enlarged view. Both axes in (a) start at
70 % and in (b) at 90 %, while all end at 100 %.

The similar characteristics for each data set are particularly striking. Starting
with the most complete results after the rail profile detection in Section 2.3,
the detection of rail sections from Section 2.4.1 slightly improves the precision,
but hardly changes the recall. Finally, the track section detection proposed in

76



3.3 Quantitative evaluation

Section 2.4.2 significantly increases the precision at the expense of a reduced
recall.
The detection results improve step by step for each data set. The growth in
accuracy is (much) higher than the loss in completeness (P̄track − P̄profile �
|R̄track− R̄profile|). Furthermore, the detection of track sections concludes with
the highest accuracy in every case (P̄track� 95%).

Detailed discussion

Within this evaluation, each particular case is assessed regarding the correctness
of a single rail profile detection in a single scan, which makes the results of
the three different steps comparable. Two observations summarize the results
shown in Figure 3.10:

• The values of both key performance indicators differ only slightly within
every step between the four mirrored versions of each data set (mean
deviation values: 0.3% for R and 0.1% for P). Thus, they are represented
by a mean value per data set each time. Using the example of data set D6,
the four recall and the four precision values denoted in Figure 3.4 are
averaged in each case and depicted as light blue . in Figure 3.10a. The
same holds for the values of the rail section detection shown in Figure 3.5
and the track section detection from Figure 3.6 that are denoted as light
blue # and � in Figure 3.10a respectively.

• A repeated passing of the same location leads to similar detection results.
This can be observed in particular from data sets D1–5, which have been
recorded within the circuit. Their almost identical results are further sum-
marized in Figure 3.10a, while Figure 3.10b shows an enlarged view. In
contrast, varying environments lead to different disturbances, so that the
results of the other data sets are not directly comparable.

Occluded rail profiles on level crossings and extended objects with rail like
shape have been identified as the major cause for false negative and false pos-
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itive detections respectively. The data sets with the lowest initial recall and
precision are used for their further examination hereinafter.
In data set D8, several level crossings are passed that allow road vehicles to
cross the track on the same level. Since the rail shape is not fully visible for
the lidar sensor in these regions, they are temporarily not detected as rail pro-
file. Their missing detections are treated as false negatives35 (cp. the longest
level crossings on the ego and the parallel track which are shown in highly satu-
rated colors at 930m≤ y≤ 1015m in Figure 3.11) which results in lower recall
values.

(a) Rail profile detection
(Rprofile = 83.3%,Pprofile = 86.1%).

(b) Track section detection
(Rtrack = 79.2%,Ptrack = 96.9%).

Figure 3.11: Detection results for data set D8 (unflipped). The railway vehicle is driving from
left to right. True positives are represented in black, false negatives in highly saturated colors, false
positives in brown, and white spaces denote both true negatives and regions where no measurements
remained after the restriction of the detection area.

35 Herein, rails are assumed to be detectable when the corresponding track section can be driven on
without collision. On the one hand, missing detections that are caused by erroneous assumptions
in the proposed approach are treated as false negatives (e.g., the temporary violation of the unique
rail profile assumption that cannot be fulfilled on level crossings). On the other hand, rails and
tracks that are occluded by other railway vehicles are not detectable by the proposed setup, since
the laser beam can neither penetrate objects, nor look behind them. Thus, these sections are not
treated as missing detections, but can be temporarily treated as an erroneous detection (cp. the
temporarily detected left rail of the partially occluded track at x ≥ 3.8m, 175m ≤ y ≤ 365m in
Figure 3.11a).
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The cause for the initially lower precision of data set D9 lies in more or less
randomly distributed false positives. They result from erroneous rail profile
detections (cp. the brown course caused by vegetation and a wire mesh fence
at x < −2.5m, 0m ≤ y ≤ 315m in Figure 3.12a) and lead to a reduced preci-
sion. However, most erroneous detections can be eliminated in the track section
detection. This is evident from Figure 3.12b where the corresponding brown ar-
eas have almost entirely disappeared and from Figure 3.10a where the orange�
represents a significantly increased precision.

(a) Rail profile detection
(Rprofile = 96.7%,Pprofile = 72.8%).

(b) Track section detection
(Rtrack = 93.1%,Ptrack = 99.5%).

Figure 3.12: Detection results for data set D9 (unflipped). The railway vehicle is driving from
left to right. True positives are represented in black, false negatives in highly saturated colors, false
positives in brown, and white spaces denote both true negatives and regions where no measurements
remained after the restriction of the detection area.

Whether and to what extent these results affect the topology detection and espe-
cially the detection of turnouts and the branching direction thereon, is analyzed
in the subsequent sections.

Interim conclusion

All in all, the results show a similar development over the three considered eval-
uation steps, while the quantitative values differ due to varying environments.
Both the qualitative and the quantitative results demonstrate that the track sec-
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tion detection, reliably and independent of the data set, eliminates almost every
false positive detection on the one hand, which results in highest accuracy val-
ues up to 100 %. On the other hand, the vast majority of rails is successfully
detected, whereby the loss in completeness between the rail profile detection
and the track section detection is less important than the increase of accuracy.
In the end, less than every 120th detection is erroneous, while the detections
have a completeness of 79 to 95 %.

3.3.2 Detection of topology events

Summary

The topology of the railway network within the nearby environment can be
inferred from the previously detected track sections. For each corresponding
event, it has been manually evaluated whether it fits to an actually existing track
or not. Thus, only the correctness of the results can be specified by the preci-
sion P̄topology = 98.5% (cp. Table 3.3). Thereby, no significant deviations occur
between individual data sets or their mirrorings. Overall, the vast majority of
neighboring tracks has been detected correctly — regardless of their side.

Table 3.3: Overall results of the topology detection. P̄topology denotes the mean precision for the
detected topology events (i.e., track on the left or right side) and #T P and #FP count the number of
correct and erroneous detections respectively.

side #T P #FP P̄topology

left 1135 17 98.5 %

right 1149 18 98.5 %

any 2284 35 98.5 %

Detailed discussion

It can be observed that three main causes affect the topology detection results.
The velocity of the railway vehicle has the largest influence on the spacing in
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y-direction between topology events on the same side. Moreover, both types of
erroneous track section detections discussed in Section 3.3.1 have an impact.
On the one hand, false negative track section detections increase the distance
between consecutive topology events, while they do not affect the correctness.
On the other hand, false positive track section detections can result in erroneous
topology events. Those effects are illustrated using data set D7, which provides
68 correct topology detections besides the maximal number of erroneous ones.

(a) Track section detection
(Rtrack = 84.3%,Ptrack = 98.3%).

(b) Topology detection
(Ptopology = 95.8%).

Figure 3.13: Detection results for data set D7 (unflipped). The railway vehicle is driving from left
to right.
(a): True positives are represented in black, false negatives in highly saturated colors, false posi-
tives in brown, and white spaces denote both true negatives and regions where no measurements
remained after the restriction of the detection area.
(b): Vertical purple lines indicate the position in y-direction where a topology event on the left side
has been raised, while their start and end point in x-direction represent the estimated track centers
of the ego track and the other track. Accordingly, green lines represent detected topology events
on the right side. Black dots represent rail centers of detected track sections, whereas gray dots
correspond to centers of excluded rail sections.

In Figure 3.13b, a vertical purple or green line is drawn each time when a topol-
ogy event has been raised on the left or the right side respectively. It shows
that almost every detected neighboring track visually matches the actually ex-
isting ones. Moreover, the start and end points of each line correspond to the
track centers detected for the ego and the neighboring track. The latest topology
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events are much closer to each other, since the railway vehicle slowed down (cp.
the green lines for detections on the right side at y > 340m in Figure 3.13b).
Partially missing track section detections result from two level crossings (cp.
the areas in highly saturated colors on the left parallel track at x <−3.8m,
170m < y < 180m and 260m < y < 270m in Figure 3.13a). They result in a
slightly larger spatial distance between the corresponding topology events (cp.
the increased spacing between successive purple lines near y = 175m and
y = 265m in Figure 3.13b). Since missing detections cannot result in any topol-
ogy detection, they do not influence the correctness of the detected topology.
In contrast, extended areas with false positive detections of track sections may
cause erroneous topology detections. For 205m ≤ y ≤ 340m, no neighboring
track can be detected on the right side, which is perfectly correct. At first, its
right rail is located outside of the considered detection area. Consecutively,
another railway vehicle occupies the track. However, within a certain area, the
left rail of this track has been detected again, while some of these detections
are associated with erroneous ones to form a track section (cp. the false positive
track section detections at x > 2.8m,310m < y < 335m shown in brown in
Figure 3.13a and the corresponding topology events indicated by three green
lines at 315m < y < 335m in Figure 3.13b). These detections are objectively
wrong, even though a neighboring track on the right side exists.
After all, it is noteworthy that even the three tracks branching into the left par-
allel track have been detected correctly (cp. the purple lines near y = 95m,
y = 132m, and y = 281m in Figure 3.13b which point further upwards in each
case).

Interim conclusion

All in all, the topology detection shows a good coverage of the neighboring
tracks. Nonetheless, these cannot be detected if they are too far away from
the ego track or if they are partially hidden, e.g., by another railway vehicle.
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However, more than 95 % of the detections are correct. Thus, they provide
valuable information on the nearby environment.

3.3.3 Detection of the branching direction on turnouts

Summary

On the basis of the mirroring, every single turnout on the ego track has been
passed (virtually) in every possible branching direction (cp. Table 3.1 and
Table 3.2). Each of the 212 expected entire passings of single turnouts has
been rated, in terms of whether the branching direction (and thus implicitly the
turnout itself) has been detected and whether the detected branching direction
fits to the expected one. In summary, the vast majority of branching directions
has been detected, while almost every detection is accurate (cp. Table 3.4).
This results in identical mean values of 98.1 % for the recall and the precision.
Moreover, it makes no difference for the values if the detection of the single
turnout or the branching direction thereon is considered or whether it is based
on the detection of the frog or the blade.

Table 3.4: Overall results of the branching direction detection on turnouts. R̄branching and P̄branching
denotes the mean recall and precision for the detected branching direction (facing left . . . trailing
right) and #T P, #FN, and #FP count the number of correct, missing, and erroneous detections
respectively.

branching direction #T P #FN #FP R̄branching P̄branching

facing left 52 1 0 98.1 % 100 %

facing right 52 1 1 98.1 % 98.1 %

trailing left 52 1 2 98.1 % 96.3 %

trailing right 52 1 1 98.1 % 98.1 %

any 208 4 4 98.1 % 98.1 %
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Detailed discussion

In order to integrate the branching events into a train-borne localization ap-
proach later on, two aspects need to be addressed. At first, influences on the cor-
rectness and the completeness of branching direction detections are presented.
Afterwards, their position accuracy is evaluated.
Correctness and completeness: As already noted, there is no need to distin-
guish between the correctness of the turnout detections, the correctness of the
branching direction detections, or whether they are based on the frog or the
blade as reference element, since all of them are equal. This also holds for the
completeness. In every case, there is a common major reason for erroneous or
missing branching direction detections. On the one hand, false positive detec-
tions primarily result from the higher complexity of turnouts, which operate on
both meter and normal gauge. On the other hand, false negative branching di-
rection detections often arise from missing track section detections, which are
caused by temporarily occluded rails or missing data (cp. Section 3.3.1). Both
effects are further analyzed using appropriate examples. In the corresponding
diagrams, the y-position of the turnout detection and the detected tip of the frog
or the blade are represented by a solid or dotted vertical line respectively. Addi-
tionally, the color of each line complies with the detected branching direction.
Figure 3.14 shows two detections (cp. both nearby blue solid lines at y = 73m)
on the second single turnout, which is of a complex type (cp. Figure 3.3e). The
tip of the normal gauge blade has been detected correctly (cp. the blue dotted
line near y = 50m in Figure 3.14b), while the begin of the meter gauge rail has
been detected as the tip of another blade (cp. the blue dotted line at y = 0m
in Figure 3.14b). The latter one is incorrect, since it is not a movable rail.
However, such types of turnouts are unusual in common railway networks. All
other branchings are detected correctly and even match the actual positions of
the frog and the blade.
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(a) Frog detection
(Rfrog = 100%,Pfrog = 80%).

(b) Blade detection
(Rblade = 100%,Pblade = 80%).

Figure 3.14: Branching direction detection results for data set D7 (flipped in x-direction). The
railway vehicle is (virtually) driving from left to right. Vertical solid lines indicate the position
where the branching has been detected, while dotted lines represent the position of the estimated tip
of the frog or blade respectively. The color of each line indicates the detected branching direction
where red represents facing left, blue facing right, green trailing left, and purple trailing right.
Black dots represent rail centers of detected track sections, whereas gray dots correspond to centers
of excluded rail sections.

Another example in Figure 3.15 shows that all seven branching directions are
detected correctly, but a blue solid line near y = 570m representing a facing
right branching is missing (which can be better recognized in Figure 3.15a).
Buried rails (most probably due to construction work) on the branching track
were partially not detectable, so that sections of this track and thus a branching
direction has not been detected. In this case, a branching to the left side might
lead to a derailment, where its missing detection becomes negligible.
On top of that, it needs to be noted that false positive track section detections
did not influence the detection of turnouts. Moreover, all branching events that
have been evaluated as false positives were basically correct. They detected the
correct branching direction, but the branching itself has been reported for the
second time or the turnout has not been passed completely in the data set.
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(a) Frog detection
(Rfrog = 87.5,%,Pfrog = 100%).

(b) Blade detection
(Rblade = 87.5%,Pblade = 100%).

Figure 3.15: Branching direction detection results for data set D8 (flipped in y-direction). The
railway vehicle is (virtually) driving from left to right. Vertical solid lines indicate the position
where the branching has been detected, while dotted lines represent the position of the estimated tip
of the frog or blade respectively. The color of each line indicates the detected branching direction
where red represents facing left, blue facing right, green trailing left, and purple trailing right.
Black dots represent rail centers of detected track sections, whereas gray dots correspond to centers
of excluded rail sections.

Overall, the total number of missing or erroneous detections is low, while no
error appeared on normal gauge single turnouts. Thus, it is expected that the
number of false detections is even lower on common railway networks.
Position accuracy: The evaluation of the position where the branching direc-
tion has been detected, and the estimated reference of all 208 correctly detected
single turnouts, shows two things. Firstly, no major differences appear between
the left and the right side of a facing or trailing passing. Therefore, only the
facing and the trailing direction are considered subsequently. Secondly, though,
the results vary between the two detected reference elements. For this, two dis-
tance measures and a temporal delay have been determined for both the frog
and the blade as shown in Figure 3.16.
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(a) Frog detection in facing direction. (b) Blade detection in facing direction.

(c) Frog detection in trailing direction. (d) Blade detection in trailing direction.

Figure 3.16: Evaluation of the detections on single turnouts. ∆y denotes a spatial distance, while ∆t
complies with a temporal delay. Vertical solid lines indicate the position where the branching has
been detected. Dashed lines represent the position of the estimated tip of frog or blade respectively,
whereas their actual position in y-direction is shown as dotted orange line. Blue and green represent
a passing facing right or trailing left respectively.

The position of the tip of the frog and the blade is almost perfectly estimated.
This can be seen from Figure 3.17 where blue bars represent the histogram of
the deviations from their actual position. The corresponding probability dis-
tribution shown in red has its center close to 0 m in every case, but different
spreadings. The blade is determined even more precisely where less than 10 %
of the deviations are greater than ±0.5m. This results in a mean of almost 0 m
and a standard deviation of less than 1.5 m (cp. Figure 3.17b and Figure 3.17d).
The few significant outliers have two main causes. On the one hand, erroneous
detections of the tip of the frog on more complex single turnouts as shown in
Figure 3.8c result in an increased deviation (cp. the bar at 6 m representing
4 % of all cases in Figure 3.17c). On the other hand, several missing scans
on the blade prevented the approach from estimating the exact position of its
tip (cp. the bar at 10 m representing 2 % of all cases in Figure 3.17b). However,
their deviation can be described by a normal distribution for the facing and the
trailing direction as shown in Figure 3.17. Moreover, in most cases, both the tip
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of the frog and the blade have been detected with only a small deviation from
the exact position.

(a) Frog position in facing direction. (b) Blade position in facing direction.

(c) Frog position in trailing direction. (d) Blade position in trailing direction.

Figure 3.17: Deviation of the estimated reference position from their actual position on sin-
gle turnouts. The histograms have a bin size of 1 meter. The distribution of ∆yfrog, position
and ∆yblade, position respectively is shown in blue, while the red curve represents the correspond-
ing probability distribution, whose mean and standard deviation are denoted above each figure.

The differences in the spatial distance between the tip of the reference element
and its detection (cp. the four plots in Figure 3.18) and the temporal delay be-
tween the estimated tip of the reference element and its detection (cp. the four
plots in Figure 3.19) primarily result from the dimensions of the turnout and the
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velocity of the railway vehicle. Once more, histograms with integer resolution
and the corresponding probability distribution are shown.

(a) Frog detection in facing direction. (b) Blade detection in facing direction.

(c) Frog detection in trailing direction. (d) Blade detection in trailing direction.

Figure 3.18: Distance between the actual reference position and their detection on single turnouts.
The histograms have a bin size of 1 meter. The distribution of ∆yfrog, detection and ∆yblade, detection
respectively is shown in blue, while the red curve represents the corresponding probability distribu-
tion, whose mean and standard deviation are denoted above each figure.

The distribution of the spatial distance between the tip of the blade and its detec-
tion in facing direction (cp. Figure 3.18b) highly resembles those of the frog (cp.
Figure 3.18a). The major difference is the constant shift to the right side, which
results from the distance between the tip of the blade and the tip of the frog.
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(a) Frog delay in facing direction. (b) Blade delay in facing direction.

(c) Frog delay in trailing direction. (d) Blade delay in trailing direction.

Figure 3.19: Temporal delay between the estimated reference position and their detection on single
turnouts. The histograms have a bin size of 1 second. The distribution of ∆tfrog and ∆tblade respec-
tively is shown in blue, while the red curve represents — where appropriate — the corresponding
probability distribution, whose mean and standard deviation are denoted above each figure.

Moreover, the shape of the histogram of the spatial distance between the tip of
the frog and its detection in trailing direction (cp. Figure 3.18c) is quite sim-
ilar to those in facing direction (cp. Figure 3.18a). Since the railway vehicle
needs to pass the frog and additionally at least parts of the blade for a detection
in trailing direction, there is another offset, although it is smaller. In contrast,
the distribution of the spatial distance between the tip of the blade and its de-
tection in trailing direction (cp. Figure 3.18d) looks quite arbitrary. Since the
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tip of the blade is always detected 1 s after its passing in trailing direction (cp.
Figure 3.19d; which equals the chosen sliding window size), Figure 3.18d only
reflects the distribution of the distance traveled at the respective velocity of the
railway vehicle within this interval.
Overall, the blade has been detected in 99 % of all cases within less than 10 s
after passing its tip (cp. Figure 3.19b and Figure 3.19d), while the extended
delays are exclusively caused by smallest velocities when starting from stand-
still or slowing down respectively. Moreover, the frog — in the considered data
sets — has always been detected less than 3 s after passing its estimated tip (cp.
Figure 3.19a and Figure 3.19c). Thus, each event is raised close in time to the
detected tip of the frog or the blade. This can help to assess several hypotheses
within a train-borne localization system, which, inter alia, is considered in the
subsequent chapter.

Interim conclusion

Not only has almost every single turnout on the ego track been detected cor-
rectly, but also the branching direction thereon. Additionally, the deviation of
the estimated position from its reference is in the smallest single-digit meter
range for both the tip of the frog and the tip of the blade. Finally, in the ma-
jority of cases, the corresponding event has been raised within 10 s after the
detected tip of the frog or the blade and often much earlier. Thus, in addition to
the topological information, the proposed approach provides the direction of the
respective branching maneuver and the corresponding reference position with
high accuracy.
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In this chapter, the experimental results are analyzed and overall conclusions are
drawn. Afterwards, the proposed approach and its experimental results are put
into context with the state of the art. Thus, a classification of the contribution
within a broad perspective can be achieved.

4.1 Review of the proposed approach

The experimental evaluation in Chapter 3 already showed promising results and
proved that the proposed multistage approach is able to deal with complex sit-
uations. Although some imperfections resulted from the characteristics of the
test ground and will thus most likely not occur in a common railway scenario,
three main issues have been identified. Their impact is analyzed and potential
countermeasures are proposed. Based on this, conclusions from the experimen-
tal results of the proposed approach are drawn. Furthermore, opportunities are
shown in terms of how the detection of rails and tracks can be adapted to varied
railway environments. Finally, this section demonstrates in which way the de-
tection of both topology and branching directions on turnouts can promisingly
be integrated into an application, such as a train-borne localization system.

4.1.1 Remaining limitations and their elimination

Based on the results presented in Chapter 3, three main causes for limitations
have been identified. For each, the impact is analyzed and potential counter-
measures are pointed out where necessary.
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The first type of limitation occurs when a track is located partially or completely
outside of the evaluation range as introduced in Section 2.3.1. Such situations
particularly arise when the lateral distance between the ego and another (paral-
lel) track exceeds 5 m. Since at least one rail is temporarily not “visible”, track
sections cannot be detected and the corresponding topology events are thus not
raised. Its impact can be reduced by enlarging the evaluation range specifically
in x-direction36,37. However, this limitation type and the proposed countermea-
sures only influence the completeness of track and topology detections. Neither
do they affect the completeness, nor the correctness of the detection of turnouts
on the ego track and the branching direction thereon. For turnouts on the ego
track, the chosen evaluation range is already perfectly adequate.
The second limitation type is caused by extensive occlusions of the rail pro-
file. Unlike the first limitation type, it affects both the ego and all other tracks.
While buried rails are comparatively rare (and the thereby slightly decreased
completeness of topology events is accepted subsequently), covered tracks can
be found, inter alia, on level crossings. Since the rail profile is not entirely
visible, the template matching approach introduced in Section 2.3.4 rejects the
related measurements due to their low similarity with the assumed Vignole rail
profile. Thus, track sections and the corresponding topology events cannot be
detected within these areas. As long as level crossings occur only sparsely and
turnouts on the ego track are not located within these areas, the resulting re-
duction in the completeness of topology events can be accepted. Otherwise,
the approach can be extended by a model of their profile. Nonetheless, sev-
eral types of construction exist which use Vignole as well as grooved rails38,
while the smaller visible dimensions make their detection even more difficult.

36 However, there is an upper limit (cp. Section 2.3.1). For the considered setup described in Sec-
tion 3.1.1, it is around ±8m in x-direction.

37 An enlargement in z-direction enables the detection of further nearby tracks, which are located
on a lower or higher level compared to the ego track. The conclusions drawn for the x-direction
apply analogously for this.

38 Their profile and main dimensions are for example defined in [EN 13674-1] and [EN 14811]
respectively.
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However, approaches for the detection of level crossings in general [Rahmig
et al. 2013] and grooved rails in particular [Stein et al. 2016a] have been pro-
posed. Thus, the completeness of the detections can be increased again, which
applies for all steps starting with rail profiles and ending up with topology and
branching directions.
Finally, the third limitation type results from two incidents which are analyzed
separately at first. On the one hand, rails might as well not be visible. This
happens in extended areas when the corresponding track is occupied by another
railway vehicle or when noise barriers are located between the other track and
the respective railway vehicle. The resulting missing track and topology de-
tections are insignificant due to the fact that lidar sensors — as most of the
other concepts — can neither penetrate those objects, nor look behind them.
However, parts of the closer rail below the other railway vehicle might be de-
tected. On the other hand, the assumption of one common rail profile might not
be applicable everywhere39 without it being a problem of visibility. The tem-
plate matching approach at least tolerates slight deviations from the rail profile.
Missing rail detections especially occur near the frog and are thus rather lim-
ited. Some erroneous detections caused by extended objects with rail like shape
even remain after the detection of rail sections.
When the drawbacks of both incidents occur closely together, actually uncrit-
ical phenomena might result in erroneous track detections and corresponding
topology events. Anyway, potential countermeasures exist on different stages.
The side of a rail within a track (i.e., left or right in the direction of travel)
might already be recognized in the profile detection and could be used for its
further evaluation. However, the shape of Vignole rails is symmetric and thus

39 While straight and curved tracks typically have the same rail profile [EN 13674-1], parts of
turnouts (cp. Figure 2.24 and [EN 13232-2]) might require a special design, for example rails
of the switch blades [EN 13232-5], the frog [EN 13232-6], or check rails [EN 13232-3]. Fur-
thermore, diagonal tracks in particular lead to an affine transformation of the visible rail pro-
file (strictly speaking, a rotation followed by a non-uniform scaling and a translation). In both
cases, this leads to deviations from the ideal cross section profile.
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its side is indistinguishable in such way. A better approach is the investigation
of the orientation of all rails potentially forming a track as proposed for example
in [Hackel et al. 2015]40. This might increase the accuracy of track and topology
detections. Yet, the optimal solution is the awareness of the potential inaccu-
racy for each event and its consideration in the overlying application, such as a
train-borne localization, which is described exemplarily in Section 4.1.4.
In conclusion, the impact of many causes is limited. For all other cases, coun-
termeasures have been proposed and partly already implemented.

4.1.2 Conclusions from the results

The focus on primary characteristics of the railway network, which are neces-
sary for the running of the railway vehicle and are thus available in almost every
scenario, allowed to receive the desired information:

• The proposed multistage approach makes use of the basic structure of a
railway network (cp. also its overall structure in Figure 2.2). It thereby
considers the most commonly used railway infrastructure elements:
(Vignole) rails and tracks.

• It not only allows to recognize the ego track, but also works when sur-
veying the nearby environment — irrespective of whether the tracks are
parallel or diagonal therein. From that, the topology of the railway net-

work can be derived.

• Moreover, it detects the position of that element, which makes the change
from one track into another possible: single turnout.

• Additionally, it determines the chosen direction when driving across
single turnouts: branching direction thereon.

40 Information on the movement of the railway vehicle is required for this, so that 3d coordinates
can be determined. Since the proposed approach solely considers 2d lidar sensor data, parallelism
can only be checked heuristically as described for example in Section 2.4.1.
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• Finally, these detections have become possible by using only 2d lidar sen-

sor data without the help of any supplement, such as external illumina-
tion, information on the movement41 of the railway vehicle, or location-
based data from a digital map.

From the results in Chapter 3, it can be concluded that the proposed setup and
the lidar sensor are capable of detecting the relevant information on the envi-
ronment, while countermeasures for the few remaining limitations have already
been proposed in the previous section.
The results are reliable and repeatable. Above all, this can be seen from the
experiments on the circuit, which has been traversed in opposed driving di-
rection and with different velocity profiles without a significant effect on the
quantitative results (cp. Figure 3.10). Furthermore, demanding railway station
scenarios with several single turnouts and many different branching situations
did not influence their detection. The experiments on the siding and exchange
tracks, which represent such scenarios, have proven this fact. There and in
general, 98 % of the turnouts and the branching directions thereon have been
detected. The same quantitative value has been reached for the accuracy of
both the branching and topology events (cp. Table 3.3 and Table 3.4), which
substantiates the strengths of the proposed approach. Moreover, the position
of the tip of the blade as major reference position on a single turnout has been
determined very accurately. This is evident from an overall mean of less than
10 cm and a standard deviation of about 1 m (cp. Figure 3.17).
Furthermore, the proposed approach performed well even in scenarios that pro-
vide tracks for meter and normal gauge. While the increased complexity of
the corresponding single turnouts results in a few erroneous detections thereon,
common railway networks do not require such complex infrastructure elements.
Thus, the accuracy might be even higher there.

41 Although a movement of the railway vehicle in the direction of travel is shown in most figures,
this information is only considered for illustration purposes, but not in the proposed approach.
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Finally, the detected events provide valuable information on the topology of the
railway network and the branching maneuver, which the railway vehicle has
performed therein. How the proposed approach can easily be adapted to varied
environments is shown subsequently.

4.1.3 Adaptability to varied environments

Based on the promising results, it is shown in which way the proposed approach
can be adapted to varied environments. This includes possible modifications re-
sulting from the railway vehicle which hosts the corresponding setup on the one
hand. On the other hand, different railway network characteristics might affect
the multistage approach. It can be adapted to varied geometrical dimensions
and extended to detect other connection types.

Railway vehicle-related modifications

The characteristics of the railway vehicle primarily influence the setup which
has been proposed in Figure 2.3. The experimental railway vehicle, which has
been used for the evaluation, allowed an upright mounting of the lidar sen-
sor (cp. Figure 3.1). In general, the inclination angle should be as small as
possible, since otherwise, vibrations or reflections might strongly disturb the
measurements. However, tilting cannot always be prevented, which can be seen
from the steep front of modern high-speed trains such as the ICE 4 [Siemens
2016]42. Anyway, those inclined measurements can be transformed, so that they
describe the shape in the x-z-plane again (cp. Section 2.2.1).
Independent of the design of the front, the lidar sensor should be mounted in the
highest possible position (cp. Section 2.2.1). In contrast, an installation below
the railway vehicle leads to an increased proportion of occluded rails, which

42 A strongly inclined mounting decreases the share of the laser beam that is reflected to the lidar
sensor, which might result in information loss. Additionally, the bigger the tilting is, the higher
is the leverage effect of vibrations, which adversely affects the measurement results.
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form the basis for all detections43. Missing information cannot be recovered, so
that mounting too low is not recommendable.
The measurement rate of the lidar sensor should conform to the maximal ve-
locity of the railway vehicle. As soon as the railway vehicle runs with double
speed, the distance in driving direction between consecutive scans increases ac-
cordingly. Too little information on the environment can be obtained in this way
and thus, the detection of rail and track sections might be prevented. However,
this effect can be compensated by an increased measurement rate of the lidar
sensor44.
In summary, the proposed setup can easily be adapted to varied characteristics
of the railway vehicle. In addition to the described modifications, the current
admission requirements need to be considered for an operation in a railway
scenario45.

Adaptations to other railway network properties

The characteristics of the railway network primarily influence the approach pro-
posed in Chapter 2. Possible adaptations resulting from varied environments are
discussed accordingly. Finally, it is shown how branching directions on further
connection types might be detected when using the proposed approach for sin-
gle turnouts again.

43 Occlusions make the detection of nearby tracks and tracks branching from or into the ego track
difficult or even impossible. Thus, they reduce the completeness of the topology events and
particularly prevent the detection of turnouts and the branching direction thereon.

44 For high-speed trains, a measurement rate in the lower three-digit range is required, while the
angular resolution can remain unchanged compared to the experimental setup (cp. Section 3.1.1).
However, such lidar sensors currently cost a six-figure EUR sum. Furthermore, the resolution in
y-direction also depends on the requirements of the specific application.

45 While [Stein et al. 2016a] derive functional demands on the measurements of a lidar sensor,
such commercial off-the-shelf products have to be further toughened up for their permanent
use in a railway scenario. For example, the lidar sensor needs to be electromagnetically com-
patible [EN 50121], have a proven robustness against varied climatic and operating condi-
tions [EN 13848-2], and meet the needs of reliability and safety [EN 50126]. However, such
a customization is beyond the scope of this work.
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The discussion of the limitations already showed that the detection does not
rely on a perfect match between the considered rail profile and its measure-
ments. However, the used template library can be prepared for every Vignole
rail shape (cp. also their typical dimensions in Figure 2.5 and Table 2.1). At the
same time, the gauge, which is considered in the detection of track sections, can
be adapted to the value that is used in the according railway scenario. Finally,
the detection of track sections can even be extended to detect every mixed gauge
scenario, which has already been demonstrated by the detection of both gauges
on the test ground (cp. at the end of Section 2.4.2).
Even the use of an explicit geometrical track model might be possible. However,
it would not prevent the few missing detections of track sections. On the one
hand, tracks that are almost perpendicular to the ego track will hardly be ever
detected, since the profile of their rails cannot be observed within a scan. On
the other hand, some parts of turnouts do not have a parallel counterpart, which
results from their function. This holds in particular for parts of the blade, but
also for wing and check46 rails where no parallel rail with a lateral distance of
at least the minimal gauge can be found. In fact, the heuristic detection of track
sections proposed in Section 2.4.2, which considers only the minimal allowable
gauge, even enables an association of rail sections which are not yet perfectly
parallel47. Thus, it also tolerates slight deviations in the lateral position, which
might result from erroneous measurements or an imprecision in the execution
of previous steps.
In addition, the proposed approach can be extended to further connection types.
Since complex turnouts are effectively assembled from interleaving single
turnouts, the detection of single turnouts from Section 2.5.2 can be utilized.

46 The influence of check rails on the detection results should be further examined experimentally.
Since none of the passed turnouts contained them, it can just be assumed, that their impact is
comparable to those of wing rails. The detection of track sections has been slightly delayed, but
they did especially neither influence the completeness nor the accuracy of branching events.

47 A further check on the parallelism of rails or tracks would again require 3d information, which
is not used herein (cp. also footnote 40 on page 96).
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For this purpose, it is possible to apply the concept of branching directions to
less frequent connection types (cp. Figure 4.1). Again, it is irrelevant whether
tracks are straight or curved. Two structurally different cases have to be distin-
guished: three-way switches and connections based on diamond crossings.

(a) Three-way switch.

(b) Diamond crossing.

(c) Diamond crossing with single slips.

(d) Diamond crossing with double slips.

Figure 4.1: Complex connection types. A to D denote positions thereon.

In the first case, three-way switches are considered. They are assembled by two
interleaving single turnouts. When driving in reading direction in Figure 4.1a,
the first single turnout allows to drive either to position D or to the second single
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turnout, which heads either for position B or for C. All expected detections of
branching directions are summarized in Table 4.148.

Table 4.1: Branching directions when passing complex connection types, such as three-way switch,
diamond crossing, and diamond crossing with single or double slips as outlined in Figure 4.1. The
already considered passing of a single turnout is additionally listed (cp. also Figure 2.27). A to D
denote positions thereon, while FL . . . TR represent the expected branching direction (facing left . . .
trailing right). If a branching maneuver is not possible, the corresponding direction is represented
by ÷, whereas route C→D and vice versa occurs in no case.

branching direction(s) on

single
turnout

three-
way

switch

diamond crossing

route “pure”
single
slips

double
slips

A→B FL FL FL ÷ ÷ ÷

A→C FR FL FR FL FL TL

A→D ÷ FR ÷ FR TL FR TL

B→A TL TL TL ÷ ÷ ÷

B→C ÷ ÷ ÷ ÷ FL TR

B→D ÷ ÷ TR FR TR

C→A TR TR TL TL FL TL

C→B ÷ ÷ ÷ ÷ FR TL

D→A ÷ TR ÷ FL TR FL TR

D→B ÷ ÷ FR FR TR

The second case comprises three different connection types: diamond cross-
ings (without a name affix) as well as diamond crossings with single or double
slips. Diamond crossings are an intersection of two tracks which provide four
routes in total (A→C, B→D, and vice versa; cp. the positions in Figure 4.1b).

48 Note that in two cases (A→D and vice versa) only one single turnout is passed, so that only one
branching direction detection is expected thereon.
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Since no single turnout is used, no branching is possible and thus no corre-
sponding detection is expected thereon (cp. Table 4.1). Diamond crossings with
single slips are assembled from a diamond crossing and two interleaving sin-
gle turnouts. Besides the four routes on the diamond crossing, they allow an
additional diagonal passing from position A to D (and vice versa as shown in
Figure 4.1c). While those diagonal maneuvers cause two detections of branch-
ing directions, a single detection is expected for a straight route (cp. Table 4.1).
Finally, two further interleaving single turnouts allow another diagonal pass-
ing from position B to C (and vice versa) on diamond crossings with double

slips (cp. Figure 4.1d). Since each of the eight potential routes passes two sin-
gle turnouts, two branching directions can be expected in each case (cp. Ta-
ble 4.1)49.
Thus, the branching direction detection on complex connection types reduces
to the detection of the interleaving single turnouts therein. However, this has
already been solved, as extensively discussed before. Even if those further con-
nection types cannot (correctly) be identified50, though the corresponding tracks
have most probably already been detected in the topology events (for example
when driving from position A to C as shown in Figure 4.1a, topology events on
the left and right side for the track towards position B and D respectively can
be expected).
The detection of turnouts beyond the ego track is conceivable and has been in-
vestigated for example in [Ponciano et al. 2015]. However, due to the occlusions

49 The first passing always occurs in facing direction, while the second one is in trailing direction.
The corresponding side (left or right) is equal for straight passings, whereas it is different for
diagonal ones.

50 An additional detection of the connection type is conceivable. However, complex turnouts are
rare compared to single turnouts. Since the test ground does not contain any complex connection
type, the detection of them or the branching direction thereon cannot be evaluated. It can simply
be assumed that, due to their increased complexity, the detection of the branching direction is
more difficult compared to those on single turnouts. Otherwise, lateral distances between rails,
which are smaller than the considered gauge, can be an additional indication for their existence, as
done in [Hackel et al. 2015; Oude Elberink and Khoshelham 2015]. However, valid statements on
the correctness and completeness of their detections and the accuracy of the estimated reference
position require corresponding experiments.
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of their rails, this is much more difficult compared to turnouts on the ego track
and might result in a limited completeness. Nonetheless, even if those turnouts
had been detected, the information on the corresponding “branching direction”
would not be useful for the railway vehicle on the ego track.
In summary, the proposed approach can easily be adapted to varied characteris-
tics of the railway network. It can even be extended to further connection types
which for example can be found in railway station scenarios where many tracks
are interconnected closely together. Furthermore, it is generic in so far as every
complex turnout is assembled from interleaving single turnouts, whose detec-
tion has already been evaluated experimentally. How an exemplary application
can utilize the additional information from the herein proposed detections, is
outlined subsequently.

4.1.4 Integration into a self-localization framework

Finally, train-borne localization is examined as an application. At first, the
major challenge of those system is identified. Furthermore, it is shown how
the resulting ambiguities and uncertainties are considered therein. For their
elimination, the branching and topology events proposed within this work might
provide an added value. Thus, requirements for their integration into such a
self-localization framework are identified. Finally, it is demonstrated that these
requirements are already met by a prototypical implementation.
In the following, a digital map of the railway network is assumed as given. It
describes the relevant geometrical and geographical features of the railway net-
work and its topology, where several connection types are considered51. How-

51 Potential data sources are railML [Nash et al. 2004] or OpenStreetMap [Rahmig and Kluge
2013]. In each case, the herein considered framework and its continued development provide
appropriate parser. They ensure that the relevant information on the infrastructure of the railway
network can be extracted, so that the required topographical map is created.
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ever, the information from topology and branching events can at least be used
for a topological mapping of the nearby environment52.

Characteristics of current self-localization approaches

State of the art localization systems which use longitudinal and geographical
position information and a digital map are not always track-selective (cp. Sec-
tion 1.2). For these, it is especially difficult to determine on which of two or
more parallel tracks the railway vehicle is located. Self-localization approaches,
such as [Lauer and Stein 2015], consider three main issues in order to avoid er-
roneous decisions and thus enable a safe operation:

• Instead of promptly deciding on the most likely, but possibly erroneous
location of the railway vehicle, such approaches explicitly consider am-
biguities of potential positions in the railway network and their individual
probability (Bayesian multi-hypothesis approach).

• Each measurement of the sensors is regarded as inaccurate. Thus, not
only its value, but also uncertainties are considered (stochastic modeling
in terms of distributions).

• The corresponding method decides on the generation and elimination of
hypotheses53 depending on the topological situation and the probability
of the hypotheses. Furthermore, it considers those uncertainties in de-
rived quantities and even allows to integrate delayed measurements (in-
cremental processing and prediction).

52 If information on the movement of the railway vehicle is directly considered, so that 3d coordi-
nates are available, a topographical map could be derived.

53 A hypothesis corresponds to a potential position of the railway vehicle. In [Lauer and Stein
2015] for example, they are described by a quadruple (track, orientation thereon, longitudinal
position along this track, and velocity of the railway vehicle) in the form of a Gaussian mixture
distribution and their individual probability.
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Capabilities of the proposed events

Ambiguous situations in particular arise when (single) turnouts are passed in
facing direction. In this case, the previous position needs to be split into one
hypothesis per connected track, whereby each track is driven on with the same
probability at the moment.
However, the mandatory part of topology and branching events described in
Table 2.2 and Table 2.4 respectively already provides valuable information on
the environment and especially the route driven therein. The estimated tip of
the blade54 on a single turnout represents a specific longitudinal position. Fur-
thermore, the detected branching direction thereon allows to distinguish the lat-
eral position: in terms of the passing direction (facing or trailing), the side
of the chosen track (left or right), and thus the probability of the correspond-
ing hypothesis. At least the rating of hypotheses can be changed in this way.
Hypotheses which comply with the detected branching direction become more
probable, while all others are less likely. Further observations of neighboring
tracks (tracks detected on the left and/or right side at a specific longitudinal
position) might lead to the exclusion of unlikely positions.

Requirements for the integration of events into a self-localization
approach and their implementation

Four requirements have been identified as prerequisite for the integration of the
proposed events into a self-localization approach: incompleteness, inaccuracy,
deviations, and past events. They base on the characteristics of the probabilistic
localization framework and the features of topology and branching events. In
the following, each requirement is described and the implementation approach,
which is used in the prototypical integration, is given. Additionally, each re-
quirement is illustrated using the example of passing a single turnout.

54 The tip of the blade has been identified as the more relevant reference position compared to the
also determined tip of the frog in Section 2.5.2 and the experimental results.
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1. Absolute completeness of topology and branching events cannot be
guaranteed:

• Description: The occurrence of events strongly depends on the spa-
tial situation. On the one hand, branching events only occur at certain
places, namely on turnouts, and are expected at most once thereon. On
the other hand, topology events can be raised several times and almost
everywhere, as long as neighboring tracks are in the nearby environ-
ment. However, occlusions by noise barriers or other railway vehicles
might result in missing detections.

• Implementation: Since no general rule on the occurrence of those
events can be derived, their absence is implicitly considered in the
method. Inspired by [Johannes and Almeida 2014], only “positive”
observations (regardless of whether they might be evaluated as a true
or false positive afterwards) can have an influence on the position and
probability of hypotheses, while missing observations must not.

• Example: A missing single turnout detection does not have an impact
on any hypothesis. Furthermore, it is not concluded on their absence,
so that the previous state is kept.

2. Total accuracy of topology and branching events cannot be assumed:

• Description: Each event can be erroneous, which results for example
in “phantom tracks” or in repeated detections of single turnouts with
different gauges.

• Implementation: The incorrectness of each event is explicitly consid-
ered, as proposed by [Rahmig et al. 2013]. Unlike the previous case,
their overall error probability can be determined experimentally. The
precision quantifies the accuracy of the corresponding event, which is
denoted in Table 3.3 and Table 3.4 for topology and branching events
respectively.
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• Example: A single turnout is passed in facing right direction and this
branching direction has been detected. In the following, the probability
of the corresponding hypothesis increases, while for example a poten-
tial hypothesis driving in facing left direction becomes less likely, but
it is not excluded, since the detected branching direction might be er-
roneous (cp. the size and saturation of the triangles in Figure 4.2b).

3. Deviations have to be taken into account:

• Description: Similar to other measurements, the longitudinal position
of the event does not have a fixed value, but might deviate from it.

• Implementation: While the side of a topology event and the detected
branching direction are categorical data, only the position uncertainty
of the estimated tip of the blade needs to be considered explicitly55.
It is yet again modeled as Gaussian, whereas its distribution depends
on whether the single turnout is driven on in facing or trailing direc-
tion. The mean and the standard deviation from Figure 3.17b and Fig-
ure 3.17d denote the corresponding values respectively.

• Example: When passing a single turnout, the longitudinal position of
the hypotheses might be aligned towards the estimated longitudinal po-
sition of the blade56, which also allows to compensate a drift caused by
other sensors.

55 Unlike many other approaches, [Lauer and Stein 2015; Pottberg 2016] explicitly consider the
uncertainty of the given digital map in addition to those of the sensor measurements and the
estimated reference positions of the events (cp. the search areas in Figure 4.2). In contrast,
[Rahmig et al. 2013] for example only consider the standard deviation of the detected turnout
position. While the examination of the topological correctness of the digital map is relatively
simple, the verification of its geometrical and geographical accuracy would result in great effort
for reference measurements, since an up-to-date information is usually not available.

56 Additionally, it might be considered that the detection of the turnout itself is erroneous. For
this purpose, another hypothesis needs to be established. This keeps the original longitudinal
position, but its probability will be reduced significantly.
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4. Detections might be located in the past:

• Description: Events do not solely base on the current lidar sensor mea-
surements, but rely on their progression as well.

• Implementation: The method already explicitly considers the fact that
measurements might be delayed and need to be integrated subsequently.
This holds in particular for branching events, since the position of the
tip of the blade is estimated after its passing. This delay results from the
dimensions of the turnout, the velocity of the railway vehicle, and the
direction of the passing. Corresponding quantitative values are shown
in Figure 3.19b and Figure 3.19d for a passing in facing and trailing
direction respectively.

• Example: When passing a single turnout in trailing direction, the blade
is promptly detected. A passing in facing direction results in a higher
delay between the tip of the blade and its detection due to the larger
extension of the single turnout. Thus, the method needs to wait longer,
whereby at least a common threshold should be considered therein.

Based on this work and the described requirements, topology and branching
events have already been implemented prototypically into a probabilistic lo-
calization framework (cp. [Pottberg 2016]). The corresponding visualization
of exemplary scenarios in Figure 4.2 shows several hypotheses and the search
area for topology and branching events in the digital map. These events affect
the determination of the hypothesis positions and probabilities as illustrated
in Table 4.2. The mathematical derivation of the probabilistic modeling of
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those events and their implemented integration into the probabilistic localiza-
tion framework is described in [Pottberg 2016]57.

(a) Track on the left side: If the topology event supports the hypothesis, it is highlighted in green,
while red represents the fact that no neighboring track is present in the digital map. Trapezes
border the search area for tracks.

(b) Passing a single turnout in facing right direction: If the branching event supports the hypothesis,
it is shown in green, while orange represents an inaccurate branching direction. The extension
of the green or orange triangles along the track denotes the search area for turnouts.

Figure 4.2: Examples for topology and branching events in the implemented approach. Black lines
represent tracks. Every triangle shows the position of a hypothesis, whereas its size and saturation
reflect the corresponding probability.

Interim conclusion

Topology and branching events enable an additional and independent evalua-
tion of the probability of the hypotheses and are thus useful to improve track-
selectivity. In addition, the detected tip of the blade enables an increased (longi-

57 It should further be noted that [Pottberg 2016] outperforms the concepts which have been pub-
lished before. [Rahmig et al. 2013] only use the beginning and the end of level crossings for an
adjustment of the longitudinal position of the railway vehicle, but cannot determine the position
of a single turnout accurately. However, [Pottberg 2016] presents a method how the herein deter-
mined reference position is actually used for this. In addition, it considers the detected branching
direction thereon and uses detected neighboring tracks for the evaluation of the probability of
hypotheses, while [Johannes and Almeida 2014] just express these ideas. Moreover, [Pottberg
2016] also considers the incorrectness of each detection and quantifies the added value when
using both events in the self-localization approach, whereas [Rahmig et al. 2013] only speculate
on their advantages.
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tudinal) position accuracy. Since only positive detections are considered58, the
individual benefit of each event depends on the topological situation. However,
in a single-track scenario without any turnouts the major problem of current
train-borne localization does not appear. First investigations in [Pottberg 2016],
that also base on experiments and results of this work, have demonstrated that
track-selectivity has been faster and in more cases restored when using those
events compared to a self-localization that is solely based on GNSS and veloc-
ity measurements59.

Table 4.2: Influence of the events on the position of a hypothesis and its probability. Each table
entry denotes direct impacts and the thereby considered deviation.

event
type

affected feature of the hypothesis

longitudinal position probability

topology no influence topology precision

branching blade position uncertainty branching direc-
tion precision

4.2 Review of the state of the art

In recent years, the number of lidar sensor systems for the monitoring and map-
ping of the railway environment has increased [Beger et al. 2011; Puente et
al. 2013; Reiterer et al. 2014; Mikrut et al. 2016]. Typical applications are
the inspection or inventory of tracks (including the monitoring of the rail pro-
file, the measurement of gauge, superelevation, or radii, and the capturing of

58 The information about the absence of nearby tracks or turnouts on the ego track can also be
modeled in the self-localization framework, which requires their reliable detection. However, it
is extremely difficult to distinguish whether a nearby track is for example covered by snow, or
occluded by a noise barrier, or whether it is actually not present.

59 While no erroneous branching event occurred in [Pottberg 2016], nine false positive topology
events had no apparent impact and did especially not lead to wrong position estimates.
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the clearance gauge) [Leslar et al. 2010; Soni et al. 2014; Mikrut et al. 2016],
tunnels [Kang et al. 2014], or overhead contact lines [Jung et al. 2016]. Sta-
tionary, driving, as well as flying systems are used therefore which are referred
to as terrestrial, mobile, and airborne laser scanning systems (abbreviated as
TLS, MLS, and ALS respectively). While point density and measurement ac-
curacy typically decrease from TLS to ALS, the covered area increases in re-
turn. However, specialized software to process and interpret the data is often
needed [Neubert et al. 2008; Leslar et al. 2010; Kremer and Grimm 2012; Soni
et al. 2014] or data has to be selected manually [Mohamad et al. 2013], which
is almost exclusively possible in post-processing. Since an online application
such as train-borne localization cannot wait for information that is generated
after the completion of the journey, but close to the measurement time, a causal
and real-time capable approach is required.
No common approach exists with regard to MLS and the detection of relevant
infrastructure in this data. Moreover, the number of publications covering their
individual method at least for parts of the considered rails, tracks, and turnouts
is modest. Table 4.3 gives a comprehensive overview60, while strengths and
weaknesses of related work are addressed subsequently.
Not included therein is [Daoust et al. 2016], which only rely on a horizontally
scanning lidar sensor, but do not capture rails. It allows to localize the subway
in tunnels61 and relies on the homogeneous shape of the environment, whereas
common railway scenarios change dynamically (e.g., vegetation depending on
the season) or such nearby objects are not present.

60 For example, [Arastounia 2015] primarily focuses on overhead contact lines, but also detects rails
for this. [Neubert et al. 2008] use ALS data, but projects them on cross-sections along the track,
which in turn resembles MLS measurements. Thus, these publications are also included.

61 Previous lidar sensor measurements of each track are required for this. Their extent increases
with the size of the railway network, whereas this work only needs the appearance of a rail
profile in a single scan.
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4.2.1 Setup, sensor, and data

Within the related work, the system is often mounted on the front of the railway
vehicle or on its top. Especially the tilted setup in [Rahmig et al. 2013; Johannes
and Almeida 2014] allows the detection of objects, such as turnouts, before they
are passed by the railway vehicle. Additionally, the inclined measurement of
rails results in increased height differences and might thus ease their detection.
However, the risk of reflections and the disturbance by vibrations increase as
well (cp. Section 2.2.1).
The lidar sensors used in the related work can be divided into two categories,
which differ in performance and acquisition cost. The first one includes highly
specialized mapping systems that often consists of two lidar sensors. Since
their total number is limited, those are very expensive. In contrast, [Rahmig et
al. 2013; Johannes and Almeida 2014] and this work use low cost lidar sensors
with adequate accuracy62.
While almost all approaches of the first category require 3d information at least
for parts of their subsequent processing, the methods of the second category
benefit from the known arrangement of the measurements within a scan. How-
ever, vertical cross-sections are also directly available due to the upright mount-
ing of the lidar sensor in [Blug et al. 2004; Ponciano et al. 2015; Hackel et al.
2015] or indirectly by projecting measurements on vertical planes in [Neubert
et al. 2008; Yang and Fang 2014].
In summary, all MLS approaches provide measurements of at least the herein
considered detection area, which covers the ego track and nearby tracks, while
the lateral and longitudinal resolution of the data differs.

62 The measurement accuracy is — with regard to the present state — about 0.5 cm for the first
category and between 1 and 3 cm for the second one (such as this work). The angular resolution
ranges between 1/6◦ and 1/14◦, while the measurement rate ranges from 25 scans/s [Johannes and
Almeida 2014] to about 300 scans/s per lidar beam for the chosen angular resolution (this work:
1/14◦ and 50 scans/s). All systems at least allow measurements in a semicircular area up to 10 m,
which is sufficient for the detection of the ego track as well as nearby tracks. However, there is a
large price range starting about 6,000 EUR (this work) and significantly exceeding 100,000 EUR.
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Table 4.3: Overview of related works in rail, track, and turnout detection from lidar sensor
data for driving vehicles. If an approach meets a criterion wholly or partially, it is denoted by
checksXand X respectively.
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this worka X X X X X X X

[Blug et al. 2004] b X

[Neubert et al. 2008] X X Xc

[Rahmig and Johannes 2013] X d Xe Xf Xe Xe

[Rahmig et al. 2013] d X Xf Xe Xe

[Oude Elberink et al. 2013] X X Xc X

[Johannes and Almeida 2014] X Xf Xe Xe

[Yang and Fang 2014] X X X X

[Oude Elberink and
Khoshelham 2015] X X X Xg X

[Hackel et al. 2015] X X X X X

a Includes [Stein et al. 2016b].
b States characteristics of echo near rails, but does not use it for their detection.
c Not presented, but expected.
d Only used for the detection of level crossings.
e Vaguely described.
f Only in proximity to ego track.
g Even on neighboring tracks, but not in parallel with geometrical model.
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Continued Table 4.3: Overview of related works in rail, track, and turnout detection from lidar
sensor data for driving vehicles. If an approach meets a criterion wholly or partially, it is denoted
by checksX and X respectively.
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this worka X X X X X X X

[Jwa and Sohn 2015] X X

[Arastounia 2015] X X

[Ponciano et al. 2015] X X X X X

[Arastounia and
Oude Elberink 2016] X X X X

[Arastounia 2017] X X X

a Includes [Stein et al. 2016b].
Even on neighboring tracks.

4.2.2 Method

The related work differs with regard to the used approaches, the level of detail in
the modeling, and the detectable objects. The first part of this section considers
rails and tracks, whereas the second one focuses on branching situations.
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Detection of rails and tracks

Several approaches for the preprocessing and detection of rails and tracks have
been proposed. They differ in the individual procedure as well as in the uti-
lized detail of railway knowledge and lidar sensor information, while all have
in common that they at least detect rails (cp. Table 4.3).
Various methods have been proposed to restrict the search space. Potential
points on the track bed are often detected at first, which can be excluded
subsequently as done in [Oude Elberink et al. 2013; Yang and Fang 2014;
Oude Elberink and Khoshelham 2015; Arastounia 2015; Arastounia and Oude
Elberink 2016; Arastounia 2017]. The processed 3d data can also be disassem-
bled in stripes with a fixed longitudinal size [Jwa and Sohn 2015].
Furthermore, several assumptions are made. Almost generic examples are the
fact that rails have a continuous course with smooth curvature or that tracks are
formed of pairs of rails with a similar alignment and a certain lateral distance.
Even the assumption of (piecewise) straight courses or the fact that most points
on rails are typically above the ground can often be fulfilled. Nonetheless, the
expectation of at most one rail per meter in lateral direction [Oude Elberink et
al. 2013; Arastounia 2015] disregards turnouts and diamond crossings. Besides,
the assumption of an overhead contact line for each track [Arastounia and Oude
Elberink 2016; Arastounia 2017] is too restrictive, since it would exclude for
example almost one half of the German railway network63.
The first proposed approach has been found in [Blug et al. 2004]. It detects the
rails of the ego track within fixed areas of several accumulated vertical cross-
sections. However, the detection and their check for plausibility solely bases
on features such as relative positions within a scan, lateral distances, and differ-
ences in height. Since those detections form the basis for the inspection of the
clearance gauge, no other tracks are considered.

63 Based on statistics [European Commission 2014].
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In [Neubert et al. 2008], a correlation based approach using a simplified geo-
metrical model of the track cross-section has been proposed. However, since no
turnouts are considered, problems especially arise in their environment. Further
approaches subsequently made use of explicit geometrical models with different
level of detail in 2d and 3d. They cover simplified geometries of cross-sections
of rails [Rahmig and Johannes 2013; Hackel et al. 2015] or tracks [Ponciano
et al. 2015] as well as straight sections of rails [Oude Elberink et al. 2013]
or tracks [Oude Elberink and Khoshelham 2015], while this approach uses a
detailed rail profile [Stein et al. 2016b]. Slightly different is the model used
in [Arastounia and Oude Elberink 2016], which is a simplified top view on a
straight track section.
In contrast, many approaches waive the use of explicit models and heavily rely
on heuristics and descriptive statistics (e.g., quantiles and thresholds in his-
tograms for the assignment of points to the ground [Oude Elberink et al. 2013;
Oude Elberink and Khoshelham 2015; Arastounia 2017] or to rails [Arastounia
2015; Arastounia and Oude Elberink 2016]) and partially seem to be tailored to
the considered example data. Furthermore, only [Yang and Fang 2014] consider
the echo as additional information for the detection besides this work (cp. also
b and d in Table 4.3), while all approaches use lidar distance measurements.
Rail and track sections are typically identified in multiple stages by fitting lines
(e.g., RANSAC [Oude Elberink et al. 2013; Oude Elberink and Khoshelham
2015], least squares, and other optimizations [Hackel et al. 2015]), using clus-
tering or region growing approaches [Oude Elberink and Khoshelham 2015;
Ponciano et al. 2015; Hackel et al. 2015; Arastounia 2017], and different kinds
of template matching (e.g., by correlation [Arastounia and Oude Elberink 2016]
or even by estimating all six degrees of freedom for a given 3d model [Oude
Elberink et al. 2013; Oude Elberink and Khoshelham 2015]). Remarkably,
in [Oude Elberink and Khoshelham 2015] even the third adjacent track has been
detected. However, the radius search used in many cases for almost every point
is computationally intensive [Arastounia and Oude Elberink 2016; Arastounia
2017]. The same holds for the estimation of all six degrees of freedom, whereby
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these results need to be confined even further by a line estimation in [Oude
Elberink et al. 2013; Oude Elberink and Khoshelham 2015]. Finally, the only
detection of the ego track in [Blug et al. 2004; Jwa and Sohn 2015; Arastounia
2015]64 is insufficient for the purpose of this work, since no topology events
can be raised (cp. also f in Table 4.3).
In summary, all approaches detect the rails of the ego track, while most of them
also detect nearby tracks, so that topology events could be raised. However,
quite different approaches and levels of detail are used for this, whereas some
assumptions are too restrictive.

Detection of turnouts and the branching direction

While various approaches detect tracks, many of them ignore branching situa-
tions. Some authors also observed that their non-consideration results in prob-
lems in the rail and track detection and thus poorer results [Yang and Fang 2014;
Oude Elberink and Khoshelham 2015].
For the detection, [Ponciano et al. 2015] use a “fixed logic with thresholds”,
which assembles X- and Y-shaped rail section patterns to turnouts and even
classifies complex connection types. It is remarkable that [Oude Elberink and
Khoshelham 2015; Ponciano et al. 2015] even detect turnouts on neighboring
tracks, which are not relevant for the purpose of this work, though. However,
neither a reference position, nor a branching direction are derived. The same
holds for [Oude Elberink and Khoshelham 2015; Hackel et al. 2015], who detect
turnouts by comparing the lateral distance between several nearby rails, their
orientation, and arrangement, for which 3d information is required. [Rahmig
and Johannes 2013; Rahmig et al. 2013; Johannes and Almeida 2014] already
observed that particular elements on a turnout might be detected, such as the
frog and check or wing rails. Furthermore, the lateral distance between the cor-
responding tracks increases from almost zero to approximately the gauge at the

64 Note that especially the data set in [Jwa and Sohn 2015] contains four parallel tracks, but only
one is considered.
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tip of the frog when passing in facing direction. Finally, [Johannes and Almeida
2014] expressed the idea to detect the four herein considered branching direc-
tions from their chronological order. Yet, they were not able to determine a
reference position on the turnout accurately, which might be used for a lon-
gitudinal position correction (cp. Section 4.1.4). It is furthermore striking that
especially [Rahmig et al. 2013; Johannes and Almeida 2014] indicate promising
ideas, but do not provide a specific method and the corresponding (quantitative)
results (cp. also e in Table 4.3).
In summary, one half of the related work neglects turnouts, while some consider
them. However, specific reference positions are hardly determined, whereas the
approach has not been elaborated for the detection of branching directions.

4.2.3 Results and evaluation

A direct comparison of the related work is not feasible, since there is no com-
mon data set or benchmark. However, a part of the related work waives a quan-
titative evaluation (cp. Table 4.3). For example, [Neubert et al. 2008] only pro-
vide a visual inspection. [Rahmig et al. 2013] characterize their approach as
“very stable for the detection”, but just present one example.
If an evaluation is provided, most of the time only one data set with a length of
a few 100 m is used that contains either a single track or several parallel tracks
without branching, so that demanding branching situations cannot arise. In con-
trast, this work considered various scenarios and more than 200 branching situ-
ations. Finally, although [Arastounia and Oude Elberink 2016] emphasize their
advantages compared to their previous works [Oude Elberink and Khoshelham
2015; Arastounia 2015], they neither used the same data set nor compared their
approaches quantitatively.
With regard to quantitative measures, [Oude Elberink et al. 2013; Oude Elberink
and Khoshelham 2015] provide deviation measures, but no statements on cor-
rectness and completeness. [Yang and Fang 2014] accomplish accurate and al-
most complete detections, but regard deviations up to 15 cm as properly, which
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corresponds to twice the width of the rail head. On top of that, [Arastounia
2015; Arastounia and Oude Elberink 2016; Arastounia 2017] achieve almost
complete and quite accurate rail detections where erroneous detections result
from nearby vegetation or other raised objects. In contrast, [Jwa and Sohn
2015] detect only 82 % of the ego track. Remarkable is, that [Oude Elberink and
Khoshelham 2015; Hackel et al. 2015] additionally use an independent refer-
ence system for their evaluation. The latter one reaches a mean deviation of less
than 5 mm on the ego track. Furthermore, 35 out of 36 turnouts have been de-
tected correctly, while three erroneous detections occurred. Finally, [Ponciano
et al. 2015] detected 147 out of 151 turnouts, whereas missing detections re-
sulted primarily from missing data and low point density on nearby tracks.
In summary, the related work often uses a single and short, but less complex data
set for the evaluation and partially waives quantitative results. A few approaches
achieve detection results comparable to the herein obtained ones. However,
quantitative detection results of reference elements on single turnouts or the
branching direction thereon are provided in no case.

4.2.4 Interim conclusion

This work provides a comprehensive system for the detection of all rail-related
parts of the environment. It starts from rails, includes tracks and turnouts, and
ends up with the branching direction thereon, while the number of related works
in that order drastically decreases (cp. Table 4.3). It makes use of all informa-
tion from a low cost lidar sensor, such as both distance and echo information
and the temporal and spatial arrangement of the measurements. The most de-
tailed model has been used, which still requires little memory. Finally and in
contrast to most related work, it provides an extensive qualitative and quanti-
tative evaluation and — along with [Lauer and Stein 2015; Pottberg 2016] —
demonstrated to reduce ambiguities in train-borne localization.
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and future work

Herein, the main parts of the work are summarized. Based on this, overall
conclusions are drawn on various levels and the contributions are elaborated.
Finally, an outlook on future research directions is given.

5.1 Summary

This work proposes a multistage perception approach for railway environments
that aims at reducing accuracy and ambiguity problems of current train-borne
localization systems. It solely bases on mobile lidar sensor measurements and
thus relies no longer on costly track-side infrastructure. The basic idea is to
detect rails as the pervasive key element, which are fundamental for the running
of a railway vehicle. Since positioning ambiguities primarily result from nearby
tracks and their connections with the ego track, those elements are further de-
tected.
The corresponding method is based on both features and model knowledge,
which highly reflect the structure of a common railway network and its char-
acteristics. Occluding edges, significant deviations of the echo, and a template
matching allow the detection of rail profiles. Rail and track sections can be
determined with the help of spatially clustered detections and their associa-
tions. From their geometrical and chronological arrangement, information on
the nearby environment in general (railway network topology) and in partic-
ular branching maneuvers of the railway vehicle on single turnouts (position,
direction, and side taken thereon) can be derived.
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5 Summary, conclusions, and future work

The approach achieved convincing qualitative and quantitative results. Its ex-
tensive evaluation on a demanding test ground covered varied topologies with
neighboring tracks and several single turnouts, which enabled to test the ap-
proach on more than 200 branching situations at different velocities. Finally, it
has been shown which characteristics of the proposed topology and branching
events are required for an integration into a train-borne localization system and
how their potential inaccuracy or incompleteness is considered.

5.2 Conclusions

Conclusions can be drawn on various levels, which include the suitability of the
proposed setup, the extent of the detected objects, the achieved results, and their
utilization within a self-localization system.
The results show that even a low cost lidar sensor, which is mounted on the
railway vehicle, is capable of perceiving the relevant nearby environment and is
thereby independent of illumination conditions. Furthermore, only distance and
echo measurements within vertical cross-sections, as well as their temporal and
spatial arrangement, are adequate for the detections, so that additional sensors
with their individual error sources can be waived.
The approach utilizes ideas and methods proposed in related work. This allows
the detection of rails as well as the ego track and neighboring tracks. However,
in contrast to many other approaches, turnouts are explicitly considered and
even the branching direction thereon is detected.
Furthermore, the coverage of the experimental evaluation exceeds most similar
works. The achieved results are promising, even though a few weaknesses oc-
cur, such as the fact that occluded rails cannot be detected on level crossings,
or that a few false positive turnout detections arise. Even so, the strengths of
the proposed approach are demonstrated, for example by an accurate and repro-
ducible determination of the tip of the blade, which has an absolute deviation
of less than half a meter in more than 90 % of all cases, or the correctness of
topology and branching events, which exceeds 98 %. Thus, these results allow
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5.3 Future work

to adjust the estimated position of the railway vehicle and assess their probabil-
ities in the case of ambiguity within a train-borne localization system.
Finally and with the help of [Lauer and Stein 2015; Pottberg 2016], it has been
demonstrated that topology and branching events can be modeled stochastically
and in this way integrated into such a self-localization system. While state of the
art systems, which base on measurements of GNSS, an odometer or tachometer,
and a digital map, suffer from position inaccuracy and missing track-selectivity,
this joint approach can reduce or even eliminate their negative effects.

5.3 Future work

Based on the results of this work, it is now possible to further develop the re-
search prototype for lidar based infrastructure detection to a system on product
level and to integrate it into an on-board self-localization approach for railway
vehicles. Different from the development of this work, which was designed as
a pure research project, the systematic product development could achieve the
required safety level for operation in safety relevant environments. The appli-
cation of such a system would finally allow to remove track-side infrastructure
for positioning of railway vehicles and increase the capacity of railway lines.
The first steps into that direction have already been developed in the GaLoROI
project [Manz et al. 2015].
Moreover, the further development of self-localization approaches for railway
scenarios requires an extensive empirical evaluation in order to prove the relia-
bility and safety of these systems. The amount of required data considerably ex-
ceeds all experiments that have been done by now. Thus, the systematic record-
ing of sensor data for self-localization in a large scale experiment becomes an
important issue in the future. First steps into this direction have been started
in a collaboration project between Deutsche Bahn and the Technische Univer-
sität Darmstadt which is strongly supported by the railway research group at
the Institute of Measurement and Control Systems of the Karlsruhe Institute of
Technology [Winter et al. 2017].
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5 Summary, conclusions, and future work

Finally, although this work has already shown how rails and turnouts are iden-
tified within lidar sensor measurements and how their detections can support a
self-localization approach, there are further objects next to the track that might
be detected with the mobile laser scanning system, e.g., level crossings, tun-
nels, bridges, and platforms. While those objects do not belong to the track
itself, they might serve as additional reference points and thus, provide valuable
information for a train-borne localization system.
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It is already possible to provide a train-borne localization with GNSS-
based systems in many cases. Nevertheless, their positioning accuracy is 
often insuffi cient (e.g., with parallel tracks) and satellite signals are not 
always available (e.g., in tunnels). This results in ambiguous situations.
In order to reduce their negative effects, this work proposes a multi-
stage approach for the detection of nearby tracks and turnouts that is 
solely based on 2d lidar sensor measurements. The repeated percep-
tion of rail profi les in these measurements allows to detect rails and 
tracks when passing by. Additional information on tracks within the 
nearby environment (topology of the railway network) as well as turn-
outs and branching directions (reference position, direction, and side 
taken thereon) can be derived from these detections. The experimental 
evaluation on a demanding test ground with varied topologies shows 
a high level of correctness and completeness of the detections. Moreo-
ver, the reference position on single turnouts can be determined with 
an accuracy of one meter. Thus, these results allow to improve the esti-
mated position of a railway vehicle in a train-borne localization system 
continuously and to assess several possibilities independently.
In summary, this work demonstrates that detections from 2d lidar sen-
sor measurements are suffi cient to reduce ambiguity problems in train-
borne localization. 
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