KIT | KIT-Bibliothek | Impressum | Datenschutz
Open Access Logo
§
Volltext
DOI: 10.5445/IR/1000077908
Veröffentlicht am 12.12.2017

Numerical approximation of planar oblique derivative problems in nondivergence form

Gallistl, Dietmar

Abstract:
A numerical method for approximating a uniformly elliptic oblique derivative problem in two-dimensional simply-connected domains is proposed. The numerical scheme employs a mixed formulation with piecewise affine functions on curved finite element domains. The direct approximation of the gradient of the solution turns the oblique derivative boundary condition into an oblique direction condition. A priori and a posteriori error estimates as well as numerical computations on uniform and adaptive meshes are provided.


Zugehörige Institution(en) am KIT Institut für Analysis (IANA)
Sonderforschungsbereich 1173 (SFB 1173)
Publikationstyp Forschungsbericht
Jahr 2017
Sprache Englisch
Identifikator ISSN: 2365-662X
URN: urn:nbn:de:swb:90-779085
KITopen-ID: 1000077908
Verlag KIT, Karlsruhe
Umfang 24 S.
Serie CRC 1173 ; 2017/30
Schlagworte oblique derivative problem, nondivergence form, Cordes coefficents, a priori error analysis, a posteriori error analysis
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page