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Introduction

Electromagnetic waves can be found everywhere. Since their discovery in 1888 by
Heinrich Hertz, they led to countless technological innovations. The underlying theory
of electromagnetism has thus not only become a classical theory in physics, but builds
the cornerstone for all the advances in optics and electrical engineering that have been
made in the last 130 years.

The theory of electromagnetism originated in the early 19th century. Extensive ex-
perimental studies by Hans Christian @Qrsted, André-Marie Ampére, Michael Faraday
and others led to several phenomenological discoveries and corresponding mathemat-
ical theories. Combined with theoretical considerations by James Clerk Maxwell, the
theory of electromagnetism could finally be cast in the form

1 1

eoOhE = —curl B — J, divE = —p,
Ho €o
0B = —curl E, div B = 0.

Here E denotes the electric field, B the magnetic field, and 3 and gy the vacuum
permittivity respectively permeability. The field J denotes the current density and
the quantity p the charge density. This set of partial differential equations is known
as microscopic Maxwell’s equations or Maxwell’s equations of the vacuum. We refer
to [Raul4] and [Sha73] for an historical overview of the genesis of Maxwell’s equations.

In the presence of a material, the microscopic Maxwell’s equations are in principal
still valid - however one has to take every single atom into account. It is hopeless to
treat the arising system. One therefore wants to describe the response of a material
on external electric and magnetic fields on a macroscopic level. To that purpose, the
displacement field D = ggE 4+ P and the magnetizing field H = %B — M are intro-
duced, where P denotes the polarization and M the magnetization. Polarization and
magnetization contain the material response. For example the polarization accom-
modates the electric field generated by a macroscopic bound charge in the material
which arises from tiny displacements of charges due to an external electric field. The
electric fields D and E and the magnetic fields B and H are then described by the
macroscopic Maxwell’s equations

oD =curlH — J, divD = p,

. (L.1)
0B = —curl E, divB =0,

also called Maxwell’s equations in matter.

For applications one also has to consider Maxwell’s equations on domains G C R3.
System (1.1) then has to be equipped with suitable boundary conditions. One of
the most relevant boundary conditions are those of the perfect conductor. Maxwell’s
equations themselves imply that the tangential components of the electric field E
and the normal component of the magnetic field B have to be continuous across the
boundary, see [DL90a|. If one assumes that the material on one side of the boundary is
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a perfect conductor, one obtains the so called perfectly conducting boundary conditions

Exv=0, B-v=0 ondG,

where v denotes the outer unit normal vector of dG. If we combine the Maxwell
system (1.1) with the perfectly conducting boundary conditions and suitable initial
conditions, we arrive at the initial boundary value problem

0D =curlH — J, div D = p, for x € G, t > to,

0B = —curl E, div B =0, for z € G, t > to, (12)
Exv=0, B-v=0, for x € 0G, t>to,
E(ty) = E,, B(ty) = By, for x € G,

for an initial time ¢y € R. We point out that the electric fields E(t, ) and D(t, x), the
magnetic fields H (t,z) and B(t,z), and the current density J(¢,z) depend on time
and space and take values in R3. Similarly, the charge density p(¢, z) depends on time
and space and takes values in R.

System (1.2) has to be complemented by constitutive relations between the electric
fields and the magnetic fields. As mentioned above, polarization and magnetization
consider the reaction of the material to external electric and magnetic fields. The
material response however depends on these external fields. Choosing the fields E
and H as state variables and setting eg = po = 1 for convenience, we obtain that
D=E+PEH)and B=H+ M(E,H).

The actual form of the constitutive relations, the so called material laws, is a question
of modeling. Several kinds of material laws have been considered in the literature. In
the so called retarded material laws the fields D and B depend also on the past of
E and H, see [BF03| and [RSY12] for instance. In dynamical material laws there are
additional evolution equations for the polarization or magnetization, see e.g. [AHO03],
[DS12], [Joc05], or [JMRI6].

In this work we concentrate on the instantaneous material laws. Here the fields
D and B are given as local functions of E and H, i.e., we assume that there are
functions 61, 0y: GxRS — R3 such that D(t,z) = 0 (z, E(t,2), H(t,z)) and B(t,z) =
Os(z, E(t,z), H(t,z)). The most prominent example is the so called Kerr nonlinearity,
where

P =9|E|?E, M =0, (1.3)

and ¥: G — R3*3. We further make the ansatz J = Jo + o1 (E, H)E, where J is an
external current density and o; denotes the conductivity. If we insert these material
laws into (1.2) and formally differentiate, we obtain

(0D, 0,B) = 0,0(z, E, H)O,(E,H) = (cwtl H — J, — curl E)

for the evolutionary part of (1.2), where 0,6 denotes the derivative with respect to
the second variable of (z,y) = (61(z,y),02(x,y)). The arising resulting equation is
a first order quasilinear hyperbolic system, and it is thus natural to reformulate it in
the language of first order systems. To that purpose, we first introduce the matrices

00 0 0
Ji=(0 0 —1], J=][o0
01 0 -1

0 1 0 -1 0
00|, B=[1 0 o
0 0 0 0 0

and

o _ (0 —J;
(2 D) ”



for j = 1,2,3. Observe that 22:1 J;0; = curl. Writing x for 9,0, f = (—Jo,0),

o= (%1 8)7 and using u = (E, H) as new variable, we finally obtain

3
x ()0 + Z A5°0ju+ a(u)u = f. (1.5)

j=1

Under weak regularity assumptions we will show in Chapter 7 that a solution of (1.5)
preserves the divergence conditions in (1.2) over time, so that these conditions only
impose a restriction on the initial value. Similarly, if a solution of (1.5) satisfies the
first part of the boundary conditions E x v = 0 on (tp,T") x G and the second part at
the initial time, i.e., B(to) v = 0 on G, then it satisfies the second part B-v =0 on
(to,T) x OG. We refer to Lemma 7.25 for the precise statement. Defining the matrix

0 V3 —Uy 0 0 O
B=|-vs 0 vp 0 0 0
120} —U1 0 0 0 O

on 0G, we can cast system (1.2) into the first order quasilinear hyperbolic initial
boundary value problem

3
x(u)Opu + ZA;O@U +o(u)u = f, z € G, teJ;
=1 (1.6)
Bu =g, r€0G, teJd;
u(to) =up, z€Gj

plus additional conditions on the initial value. Here J = (t9,T) is an open interval. We
also included an inhomogeneous boundary value. On the one hand, inhomogeneous
boundary conditions are interesting from the mathematical point of view, on the other
hand they also have physical relevance, see [DL90a|. We make the further assumption
that y is symmetric and at least locally positive definite. This is of course a restriction
on the material laws we can treat. However, the most important examples arising
from Kerr-like nonlinearities are included. The advantage of this assumption is that
the system (1.6) becomes symmetric, simplifying crucial parts of the theory. Without
the positive definiteness assumption all of the available theory breaks down. We further
note that the results for first order systems in the literature, even in the linear case,
assume at least symmetrizability of the system.

The initial value problem on the full space (without boundary conditions) corre-
sponding to (1.6) has been solved by Kato in [Kat75] in a more general setting, relying
on previous results in [Kat70] and [Kat73]. Kato first freezes a function @ in the
nonlinearities and then studies the corresponding linear problem

3
X(@du+ Y ACou+o(iyu=f, zeRS, tel;
=1
u(ty) = up, = €R3.

He establishes a priori estimates for the solution of the linearized problem in suitable
norms so that he can apply a fixed point argument to obtain a solution of the quasi-
linear problem. His method works in an abstract functional analytic setting, which
requires however the existence of an isomorphism between certain function spaces fit-
ting to the linearized problem. It is unlikely that it is possible to construct function
spaces which incorporate the perfectly conducting boundary conditions such that an
isomorphism as required by Kato’s theory still exists, cf. [Miill4].
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We thus follow a different strategy. We still freeze a function @ in the nonlinearities
and study the arising linear initial boundary value problem

3
X (1) 0u + ZA;OOju +o(t)u = f, z€G, teJ;
i=1 (1.7)
Bu = g, x€dG, ted;
U(to) = U, xr € G,

aiming at a fixed point argument for the solution of the quasilinear problem. But
to derive the a priori estimates needed for this fixed point argument, we use energy
techniques.

Energy techniques have been proven to be a flexible and powerful tool in the theory
of first order hyperbolic systems. We refer to the monograph [BGS07] for an overview
of the state of the art. Energy techniques work in L2-based spaces, but already on
the L2-level they require coefficients in W1>°. Accordingly, the available theory for
the linear initial boundary value problem (1.7) requires coefficients in W1>°(J x G)
and yields solutions in C(J, L*(G)), see [Ell12] for the precise statement. In view of
the fixed point argument we want to apply, we thus have to bridge the gap between
C(J,L*(G)) and W1°°(J x G). This is done via Sobolev’s embedding (on domains G
where this embedding theorem is valid). If a solution of (1.7) belongs to C(J, H*(G))N
CYJ,H*"Y(@)) for s > 2 + 1, it is contained in Wh*°(J x G). If x and o are
reasonably regular, then also (@) and o (@) are contained in W1°°(.J x G) if @ belongs
to WH°(J x G). We are therefore led to look for solutions in H*(G) with s > 2.
We stress that the requirement of this relatively high regularity is not a result of
the specific techniques we want to apply, but has been a long standing assumption
in the theory of quasilinear systems. It is also imposed by Kato for the initial value
problem in [Kat75] and has not been weakened since that time, see for instance [Ali09],
[BCD11], and [Sogl3] for more recent treatises.

While the aforementioned sources all treat the initial value problem, there are less
methods available for initial boundary value problems on domains. To the best of our
knowledge, all results concerning quasilinear initial boundary value problems work in
Sobolev spaces of integer regularity, see e.g. [BGS07] and [LMSTYZ01]. Hence, we will
construct solutions of the quasilinear system (1.6) in H™(G) for m € N with m > 3. In
fact, we are mainly interested in the lowest regularity regime possible, which is m = 3.
But it turns out that we can handle all m € N with m > 3 by the same methods
so that we derive a satisfying regularity theory for (1.6) simultaneously. Although
C(J,H™(G))NCY(J, H" 1(G)) embeds into W (J x G) for m > 3, the techniques
we are going to apply to solve (1.7) require that its solution has the same amount of
regularity in time as in space. We thus introduce the function spaces

Gm(J x G) = () C/(J,H"(G)) (1.8)
j=0
for all m € Ny, where J is an open interval and G C R?® a domain, see also [BGS07],

[LMSTYZ01], and [RM74]. Defining the function e_.: ¢t + e~ 7, we equip the space
G (J x G) with the family of time-weighted norms

Ivlla,.. (xa) = jmax le—v 0l vl L2(1xa)

for all v > 0. In the case v = 0, we also write [|v||q,,(sxq) instead of [[v||q,, ,(7xa)-

To work in the spaces G, (J x G) with m > 3 of course requires to control the
solution of (1.7) in this space in view of our fixed point argument. In the case of our
linearized Maxwell system (1.7) this is a highly delicate task because this problem has
a characteristic boundary, i.e., the so called boundary matriz

3
A(w) =Y A%y,
j=1
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on JG is singular, see Remark 3.6. In order to explain the drawback of a singular
boundary matrix, we assume that G = Ri for the moment. Then the boundary
matrix is simply —A$°. The derivation of higher order a priori estimates of the linear
problem

3
Apdpu+ Y ACOju+Du=f, xeRl, teJ;

=1 , (1.9)
Bu =g, redRy, telJ;

u(to) = ug,  €R3;

relies on the following idea. The derivative of a solution of (1.9) with respect to
t, x1, and x5 again solves (1.9) with suitably adapted data, which allows to apply
the basic L2-estimate to the derivative. Controlling the error terms arising from the
adapted data then yields higher order a priori estimates. However, this approach can
only work for derivatives in tangential variables as we do not have any information
about the boundary value of a derivative in normal direction. If the boundary is
noncharacteristic, i.e., the coefficient in front of Js is invertible, one can express the
derivative of a solution in the normal direction by derivatives in tangential directions
and the solution itself. This explicit representation yields estimates for all derivatives
of a solution.

In the characteristic case it is however unclear how to obtain control over the deriva-
tive in normal direction. It is thus not surprising that much less is known about char-
acteristic than about noncharacteristic initial boundary value problems, cf. [BGS07].
Majda and Osher show with an explicit example that a loss of regularity may happen
in characteristic problems, i.e., that the solution is less smooth than the data, see
Section B.3 in [MO75]. In such a case we also have a loss of derivatives in the a priori
estimates, which makes it impossible to close the fixed point argument. It is thus a
key step in our strategy to prove that this loss of regularity does not occur for the
Maxwell system (1.9).

A first attempt to develop a general theory for linear characteristic initial boundary
value problems was made in [MO75]. Besides existence and the energy estimate on the
L2-level, also a priori estimates of higher order are studied there for a certain family of
boundary conditions. However, the perfectly conducting boundary conditions are not
covered by these results, see Proposition 2.2 and the discussion thereafter in [MOT75].
A different approach is taken in [Gué90]. Results for the quasilinear problem (1.6)
are provided there. But they require high regularity (at least H%(G)) and are given
in Sobolev-like spaces incorporating weights in the normal direction. In [Ohk81] a
structural assumption on the coefficients of the linear problem is introduced in order
to avoid a loss of regularity in normal direction. This result is applied in [Ohk89] to
solve a quasilinear system under these structural conditions. But quasilinear Maxwell’s
equations are not covered by these results unless the material law is diagonal, i.e., the
matrix function x has only entries on the diagonal. This condition is not even satisfied
in the basic examples of Kerr-like nonlinearities. In [PZ95] the authors concentrate
on Maxwell’s equations (1.6). They use different boundary conditions (belonging to
the class considered in [MO75] in the linear case) than the perfectly conducting ones.
Moreover, only the existence of a solution is claimed there, see also [CE11].

Somehow surprisingly, the physically highly relevant quasilinear Maxwell system (1.2)
with perfectly conducting boundary has not yet been treated and even the basic ques-
tions on local existence and uniqueness are still open. We will close this gap by
providing a complete local wellposedness theory. We will prove that

(i) the system (1.6) has a unique maximal solution w in (\j~, C7((T—, T4.), H™(G))

for all m € N with m > 3 provided the data are sufficiently regular and compat-
ible with the material law,

(ii) finite existence time can be characterized by blowup in the Lipschitz-norm,
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(iii) the solution depends continuously on the data.

We refer to Theorem 7.23 for the precise statement. We point out that this theorem
is local in nature. The derivation of global properties for (1.6) is a highly nontrivial
task. In particular, it is already known that global existence cannot be expected for
all data. Blow-up examples in the Lipschitz-norm are given in [Maj84]. On different
domains and with different boundary conditions than we consider, blow-up examples
in the H(curl)-norm are provided in [DNS16].

The proof of the local wellposedness theorem requires several steps. In Chapter 2 we
collect rather technical preparations, which are however fundamental in the following
chapters. Section 2.1 explains how to interpret the boundary term Bu in (1.9). When
we derive the a priori estimates, we start from an LQ(Ri)—solution on the half-space
so that we cannot simply apply the standard trace operator to u. Indeed, the solution
u itself need not have a trace on 8Ri. We show how one can still make sense of Bu
on the boundary. The trace concept for this term is developed in detail since we are
also interested in further properties of this trace operator. In later chapters we need
to know if it commutes with derivatives, mollifiers, and integration in time. These
questions are also addressed in this section.

When we outlined our strategy above, we only introduced the spaces G, (J x G)
where we look for our solutions. We did not specify which properties the coefficients
in the linearized problem (1.9) need to possess. This will be done in Section 2.2. We
introduce function spaces for the coefficients which are tailored for the application in
a fixed point argument. However, these spaces are not standard so that we have to
prove several properties ourselves, e.g. bilinear estimates and estimates for the inverse
if it exists. We note that these function spaces allow for quite a precise analysis. This
approach might be laborious at times but it yields more general results than available
in the literature even in the noncharacteristic case.

At the end of that section we also explain the compatibility conditions for the lin-
earized problem (1.9). These are necessary conditions on the coefficients and the data
so that a solution of higher regularity can exist. Roughly speaking, the compatibility
conditions arise since for a G, (J x G)-solution of (1.9) higher order time derivatives
of the solution still have a trace on {t = 0} x G, see Lemma 2.31.

In Chapter 3 we derive the desired a priori estimates for the linearized problem. To
that purpose, we work on the half-space G = Ri with the idea that a localization
procedure will transfer our results on R} to more general domains. However, the
localization requires to treat (1.9) with variable coefficients. We are thus led to study
the problem

3
Apdu+ Y Ajdju+Du=f, xeRl, tel;

=1 (1.10)
Bu=g, xG@Ri, teJ,

u(ty) =ug, € Rf_;

where Z?Zl A;0; is a variable coeflicient Maxwell operator in the sense that it has a

structural similarity with the standard Maxwell operator Z?:l A5°0;.

In a first step we show that derivatives in tangential directions of (1.10) again solve
this system with modified data. We identify this data and provide estimates in the
corresponding norms. For the a priori estimates we then use a basic L?-estimate and
existence result in [Ell12]. Differentiating in time and in spatially tangential directions
and applying the LZ-estimate to these derivatives yields a priori estimates for the
derivatives in tangential directions of a solution. In a key step we next derive an a
priori estimate for the derivative in normal direction as we explained above. This is
done in Lemma 3.11. There we crucially exploit the structure of the variable coefficient
Maxwell operator. Once we obtained the estimate in normal direction, it only remains
to set up an iterative scheme to deduce the full higher order a priori estimates.
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Since |Ell12]| only treats the L2-level, we also have to establish the existence of
solutions of (1.10) in higher regularity. Due to the characateristic boundary this is
a difficult task, performed in Chapter 4. In the noncharacteristic case, one can rely
on regularization in tangential directions since derivatives in normal direction can be
expressed by the ones in tangential directions and lower order terms. The lack of such
a representation of derivatives in normal direction complicates the problem heavily.
We proceed in several steps, using different techniques in normal direction, spatially
tangential directions, and in time, which also have to be intertwined in a subtle way.
In a first step we apply a mollifier in all spatial variables, use commutator estimates
from the paradifferential calculus, and exploit our a priori estimates. However, as
we mollify over the half-space, it is crucial to avoid a loss of regularity across the
boundary. To regularize in the spatially tangential variables, we apply a mollifier in
x1- and xo-directions, exploit our a priori estimates and employ commutator estimates
for a family of norms which has proven to be highly suitable for the regularization of
boundary value problems, see [Hoe76] and [BGS07]. However, in the characteristic case
it is crucial to avoid commutator terms involving a derivative in normal direction. We
will show that this is possible due to the structure of the variable coefficients Maxwell
operator.

The a priori estimates show that we cannot gain regularity in time by means of a
mollifier. We therefore formally differentiate (1.10) in time, expecting that a solution
of the differentiated problem is a candidate for the time derivative of the original
solution. This approach leads to a loss of regularity in the coefficients so that we
obtain regularity in time only under an additional smoothness assumption on the
coeflicients in a first step. To get rid of this extra assumption, we approximate the
coeflicients by smoother ones and make use of the a priori estimates once more. We
note that this approach is quite delicate since we also have to approximate the data
in such a way that the tuples consisting of approximating coefficients and data still
satisfy the compatibility conditions. Finally, we obtain a full differentiability theorem,
which tells us that the solution has the expected amount of regularity if the data is
regular and compatible. We refer to Theorem 4.13 for the precise statement. We
note that several of the problems we have to face in the regularization process are
due to the fact that we only assume minimal smoothness for our coefficients. In the
literature, problem (1.10) is often considered with C'*°-coefficients or coeflicients of the
form x(v) for a C*°-function y. Some difficulties then simply disappear and different
techniques are available which are not employable in our setting, cf. [BGS07]. We will
make further comments on this point in Chapter 4 and Chapter 7.

In Chapter 5 we transfer the results from Chapters 3 and 4 from the half-space
to more general domains. We are able to treat domains which do not have a C°°-
boundary and also certain domains with an unbounded boundary. Although the ideas
for the localization are canonical, its execution is quite technical and lengthy. We refer
to Chapter 5 for a discussion of the difficulties one has to face. In Chapter 6 we prove
that the solution of the linearized problem (1.10) on domains has finite propagation
speed, a typical feature of hyperbolic equations. Most authors establish this property
only on the full space, see e.g. [Eval0], [BCD11], or [BGS07]. In [CP82] the finite
propagation speed is shown for initial boundary value problems under an additional
structural assumption. We will follow the ideas of [BCD11], where a weighted energy
estimate is derived in order to prove the finite propagation speed property. It turns
out that this approach is well adaptable to our initial boundary value problem.

In Chapter 7 we finally turn to the nonlinear problem (1.6). Working with instan-
taneous material laws in spaces H™(G) with m > 3 requires a higher order chain rule
for compositions of the form x(u). We establish this so called Faa di Bruno’s formula
and corresponding estimates in the needed function spaces in Section 7.1. The a priori
estimates and the regularity result then allow us to perform a fixed point argument
which yields local existence of solutions of (1.6) in Gy, ((to,to + 7), G) for a small time
step 7 if the data is sufficiently regular and compatible. By standard techniques we
extend this local solution to a maximal one. The fixed point argument also implies a
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first blow-up condition in the H™(G)-norm. In Section 7.3 we improve this blow-up
condition by characterizing the finite existence time by blowup in the Lipschitz norm.
The proof requires a refined analysis of solutions of the nonlinear problem. To that
purpose, we have to localize the solution of (1.6) again to the half-space. There we
apply Moser-type inequalities in order to show that the (localized) solution is bounded
in the H™(R3.)-norm if it is bounded in the W!>°(R% ) norm. Finally, we address the
continuous dependance of the solution on the data. The main difficulty here is that
the quasilinear nature of (1.10) implicates a loss of derivatives when one estimates the
difference of two solutions. The proof thus relies on a tricky splitting of the problem.
In one of the arising subproblems we can again apply a regularization technique which
compensates for this loss of regularity. In the second subproblem we exploit the struc-
ture of the variable coefficients Maxwell operator and ideas from the proof of the a
priori estimates in normal direction in order to control all arising error terms.



2

Preliminaries

In Chapters 3 to 7 we will need various tools, whose proofs are quite technical and
which would disturb the line of argument in these sections. We therefore present them
here.

In the first part we introduce the concept of trace which is used in the following. It is
based on the trace theorem for Hg;,. We then show that the trace operator commutes
with differentiation in tangential direction, integration in time, and convolution in
tangential spatial directions.

The second part of this section is concerned with the regularity of the coefficients of
the initial boundary value problem (1.9). We introduce suitable function spaces and
prove approximation results for them. At the end, we further show various product
estimates adapted to the products between coefficient and solution.

Throughout let to,T € R, to < T, J = (t9,T), and Q = J x Rj_. Then 09) =
((to, T) x R* x {0}) U ({to} x RL) U ({T} x RY). Set ' = (to, T") x R* x {0} C 90 We
will often identify I with the chart (ty,T) x R2.

2.1 The trace operator

In the following it will be useful to approximate a function v by smooth ones in such
a way that certain derivatives of the approximating functions also approximate the
corresponding derivatives of v.

Lemma 2.1. Letk € N. Let 1 < p,q < 0.
(i) Let A; be a linear differential operator on R3 with constant coefficients given by
& k
A= a0 +d;,
=1

with d;,ci; € R, kiy € N forl € {1,2,3} and ¢ € {1,...,k}. We set Av =
Zle Ayv; for every v € D'(R3)*. We further define the space

H(RS, A, p.q) = {v € LP(®)*: Av € LI(RY)).
Then there exists a family of linear operators
Tt L (RY) — 0 (R
with Tov € H(RY, A, p,q), Tev — v in LP(RY) and AT.v — Av in LY(RY) as

e — 0 for allve H(RY, A, p,q) and A as above. Moreover, AT.v = T.Av on R3.
foralle >0, v € H(Rj_,A,p, q), and A as above.
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(ii) Let At be a first order linear differential operator on R* with constant coefficients
given by

3
AL = "cii0+ di,
1=0
with ds, ci; € R for 1 €{0,...,3} andie {1,...,k}. Set Atv =S Alw; for all
v e D () and

H(Q,A' p) = {v e (LP(Q)F: Alv € LP(Q)}.
Then there is a family of linear operators
T!: Lige(Q) — C=(RY*

with T'v € H(Q, A, p), Tiv — v in LP(Q) and A'T!v — Alv in LP(Q) as e — 0
for allv € H(Q, A, p) and A* as above. If all the operators Al do not contain a
time derivative, i.e., ¢;o =0 for alli € {1,...,k}, we also have A'Tv = T!A'v
foralle € (0,3T), v e H(Q, A, p), and A* as above.

Proof. (i) Let Z: L}, .(R3) — L}, .(R?) denote the zero-extension. We further define
T L

loc(Rs ) - Llloc(IR2 X (_ )) by

(1ev) (21, 22, 23) = v(21, 22,23 + €) for almost all z € R? (2.1)
for each ¢ € R. With a slight abuse of notation we also write 7. for the translation
operator on L} (R3) defined by formula (2.1) for each ¢ € R. Let p be the kernel
of a standard mollifier over R3. As usual we set p. = e 3p(e~!:) for all ¢ > 0 and
p(z) = p(—x) for all z € R3. We then define

T.: (L}OC(Ri))k = C®R?), v (pe* (2 Z01),. .., pe * (Toc Zuy))
for all € > 0. Clearly, T.v € (C*°(R®) N LP(R?))* for all v € (LP(R3))*. As 7. is

strongly continuous on LP(R?), we further deduce
ITev = vllLegs) < llpe * (T2e Zv) = Zv] Lo (g3)
< lpe * (12e Zv — Z0)|| 1o w3y + ||pe * Zv — Zv| 1o (r3)
< ||7'25Z’U — Z’U”Lp(RS) + HpE * Jv — ZUHLP(RS) — 0 (22)
as e — 0.

Fix a differential operator A and take v € H(R?’H A, p,q). By assumption, there is a
function vy € L9(R3) with vy = Av on R, i.e.,

(Av, ©)pr(r3 ) xD(®RE) = Z/ v\ pdr = /RS vapds = (UA, 9)pr (2 ) x D(R? )

for all o € C°(R3). Let ¢ € C°(R3). Since A is a differential operator with constant
coefficients, the same is true for its adjoint A*. We then obtain

k
(ATev, ©)pr (g2 )xD(RE ) = Z(pa * (Toe Zvi), A} Zp) pr (r3) x D(R?)

i=1
k
= Z Zvi, T_2:(Pe * N; Z0)) pr (R3) x D(R?) Z/ Vil (T_2e (e x Zp))dx.  (2.3)

Since suppp C Ri, the support of j. x ¢ is contained in R? x (—¢,00). Hence,
supp 7_2:(pe * ¢) CR3, L., T_oo(pe * ) belongs to C°(R3). We thus deduce

(AT.v, 0)p (R2)xD(R?) = Z/ VN (T_oc(pe * Zip))dx
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= /3 Av(T_2e(pe * Z))dx = (pe * (Toc ZAV), Z9) pr (w3) x D(R3)
R
= (T:Av @)D/(]R )xD(R3 ) (2.4)

ie., AT.v = T.Av on R3. The convergence of T.Av to Av in L4(R3.) now follows as
n (2.2).

(ii) Fix a differential operator A’ and take v € H(Q, A, p). Note that this particu-
larly implies the existence of a function vy € LP(Q) with

k
(A, ©)pryxp(a) = Z/ v pd(t, z) = / vparedr = (VAt, P)Dr(Q)xD(Q)
=179 Q

for all ¢ € C°().
Next take two functions 61,6, € C°(R) with supp6; C [-1, % T] and suppfs C
[5T,T +1] and 61 + 62 = 1 on [0, T]. We further define the sets
Qp ={(t,x) eR*: t >0, 25 > 0}
Q- ={(t,x) eR*: t < T, x3 > 0}.
Let Z denote the zero extension from € to R*. We first show that A’(6;Zv) belongs

to LP(Q, ), where (01 Zv)(t,x) = 61(t)(Zv)(t,z) for all (¢t,z) € R*. To that purpose,
let ¢ € C(Q,). Exploiting that A! is a first order differential operator, we infer

k
(A (01.20), 9)pr(yxpiey) = D _(Zvi, 0101 0 priay ) x Dy

_Z/vl 9190 + ¢;,0(0bh)p)d(t, ).

Since 61 belongs to C'°(£2), we obtain

(A (0120), ©)pr(04)xD(04) Z/vAt91<,0d (t,x +ZCZO/Uiat91¢d<tax)
Q

i=1

k k
= / (q%va + Z Ci708t91Z1}i)<pd(t, J}) = <91Z11At + Z ci,o(')tHlZvi, <p>
Q4 i=1 i=1

D/(Q4)xD(Qy)

We conclude that A'(61Zv) = 61Zvpe + Zle ¢i,00t01Zv; on Q4. In particular,
A (60,Zv) € LP ().
Analogously, one derives that A*(6;Zv) = 03 Zvpe + Zle ¢i,00t02Zv; on Q_ and
AH(0>2v) € LP(Q).
We next define the translation operators
Tt L (RY) = L, (RY), (r1.w)(t,2) = w(t +¢,21, 22,73 + ),
Toe: L (RY) — L} (RY), (ro,ew)(t,z) = w(t — e, x1, T2, 23 + €),

and the regularization operators

Tic: Lip(RY)Y = CORY*, w = pe x (11,0:(610)),
Tt Llloc(R4)k - COO(R4)k7 w > pe * (T2,2:(G2w)),

for all € > 0. Finally, we set

Tst =T+ T..
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Clearly, T! maps LP(Q)* into LP(R*)*. As in (2.2) it follows that T3 .w — 61w in

LP(Q4) and Ty cw — Gow in LP(Q_) as e — 0 for all w € LP(Q)*. Consequently, T w

converges to (61 +02)w = w in LP(Q2) as € — 0, where we used that 6; + 602 = 1 on Q.
The same arguments as in (2.3) and (2.4) yield

k
AtTLE’U = ps * (leggAt(HlZ’u)) = Tl.,s'UA” —+ ps * (7—1,26 Zci’oaté)lZvO on Q+,
=1
(2.5)
k
AtT215’0 = Pe * (TQ’QEAt(QQZU)) = TQ?E'UAt + pe * (T2125 Zci’oat9220i> on Q,,
=1
(2.6)

for all € € (0,37T). Since A'v = vxr belongs to LP(2) we infer as in (2.2) again

k

AtTLE’U — 01vAt + Zci,oﬁfﬂlvi,
1=1
k

AtT275’L) — Bavpt + Zci,oﬁtegvi,

=1

in LP(Q2) as ¢ — 0. Employing that 6, + 62 = 1 on Q and thus 9,6, + 9;62 = 0 on £,
we obtain

ATov= AtTLEv + AtTQ,EU — 01A 4+ 05A = Alv
in LP(Q2) as e — 0. Finally, if ¢;o =0 for all s € {1,...,k}, we have
ANTow=NT 0+ AT v =T Ao+ T Al =T A
on Q for all e € (0, 7). O

To define the trace properly, we introduce the following spaces.

Definition 2.2. We define

3

H(divy, Q) = {(qo, @) € LAY divig=Y 9545 € LQ(Q)}7
§=0

H(divs, Q)3 = {v € L*(Q): 3¢ € H(divs, Q) with g3 = v},

and we equip these spaces with the norms

Nl=

ol zaives) = (W22 + 1 divevlliag) )
(

vl (dive,0) = qlél‘f/ 91l £ (v, 02)5

where V' contains all functions q from H(dive, Q) with g3 = v.

Since the space H(div, Q)3 is not standard, we decided to give detailed proofs of
two main properties of this space. We will show that H(div,2)3 is complete and that
C°(Q) is dense in H(dive, 2)3.

Lemma 2.3. The space H(div, Q)3 is complete and C°(Q) is dense in H(divy, Q)3.

Proof. Tt is easily seen that

Y ={q € H(div{,Q): g3 = 0}
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is a closed subspace of H (div, ). The quotient space H (divy, 2)/Y is thus complete.
Let Q: H(div, Q) — H(div, Q)/Y, u— u+Y be the quotient map. We denote Qu
also by 4 for every u € H(divy, ).

If 4 = v for two functions u,v € H(div¢, ), then u — v belongs to Y implying
uz = v3. The map

J: H(divy, Q)Y — H(divy, Q)3; @+ us,
is thus well-defined. Clearly, J is linear and bijective. Moreover,

Tl e (dive.0)s = lusllm(giv,.0) = ylgg lw =yl & @ive,0) = 4l m@iv.,0)v
< ullzaive,0) (2.7)

for all & € H(divs,Q)s, where we used that for all ¢ € H(div,, Q) with g3 = ug we
have ¢ —u € Y. This means that J is an isometric isomorphism from H (div¢,2)/Y
to H(divy, Q)3. We conclude that H(dive, Q)3 is a Banach space.

To show the density result, let v € H(divy, Q)3. Take a function v in H (divy, 2) with
u3 = v. Lemma 2.1 (ii) gives a sequence (¢, ), in C2°(Q)* with ¢,, — u in H(div, Q)
as n — oo. From (2.7) we obtain that

||U - Spn,3||H(divt,Q)3 = ||U5 - ‘Pn,S”H(divt,Q)g, < HU - <PnHH(div,,,Q) —0
as n — o0o. This shows that C°(Q2) is dense in H(divy, Q)3. O

We next note that H*(99Q) is well-defined for all s € [0,1] by Definition 13.5.7
in [TW09] since 99 is a Lipschitz boundary which can be covered by finitely many
charts. An inspection of the proof of Theorem 1.4.2.4 in [Gri85] yields the following
result.

Lemma 2.4. For s € (0,3] the space C°(T) is dense in H*(T'). In particular, the
zero extension of a function from H= (L) to OQ belongs to Hz (892).

We note that Lemma 2.4 further allows us to identify H z (T") with a closed subspace
of Hz (0) via the zero extension.

With these preparations at hand we can prove that functions from H(div, Q)3 have
a trace on I'. The idea is to use the trace theorem for H(div, Q)-functions and to
exploit the special structure of 9.

Lemma 2.5. There exists a unique linear and continuous trace operator
Tr: H(divy, Q)5 — H 2 (I),

which extends the mapping
Ce(Q) = C=(T), ¢ o

Moreover, the Green’s formula
<w\f‘7Trq3>H1/2(1")><H*1/2(F) = —/Qdin(VJJQ) d(t,r)
= —/ V- qd(t,x) — / Y divy qd(t, x)
Q Q

is valid for all ¢ € H(divy, Q) and ¢ € C(Q) with supp Ylaa €T

Proof. Let ¢ € C2°(). Then ¢y = ¢(-,0) belongs to C°(T). Let v be the unit outer
normal of 9. Note that vjr = —es. Let ¢ € C°(Q)* N H(divy, Q) with g3 = ¢. We
obtain ¢;r = —v - gp. Since H/2(I') is a subspace of H/2(92), we infer that

||90\F|\H—1/2(r) = HQ3|F||H—1/2(F) =|v- Q|F||H—1/2(F) <|v- Q|aQHH—1/2(aQ)



20 2 Preliminaries

< Cllall zaiv,.9) (2.8)

where we used the standard trace theorem for H(div, ), see e.g. Theorem 1 on page
204 in [DL90b] (and also Theorem 1 on page 279 of [DLIO0D]).

Next take ¢ € H(div, Q) with g3 = ¢ and set ¢ = (0,0,0, ). Let Y be as defined in
the proof of Lemma 2.3. By this proof there is a function y € Y with ¢ — @ = y. Since
y € H(div,, ), Lemma 2.1 and the construction of the operators T, therein show that
there is a family {y.}es0 C Y N (C*(Q))?* such that y. — y in H(divy, Q) as e — 0.
We thus deduce from (2.8) that

lerrllg-1720y < Cllé + Yell m(aiv, .0

for all € > 0. Letting € — 0, we obtain

lewllg-120y < Clle + ylla@ive.0) = Cllall ziv, .0)-

Since ¢ € H(div¢, ) with g3 = ¢ was arbitrary, we can take the infimum over all such
q. This leads to

ol g-1r2ry < Clloll m(dive,0)s-

We conclude that the restriction of C2°(Q)-functions to I' is continuous from the

space H(div;, Q)3 to H-Y/2(T). As C°(Q) is dense in H(divs, Q)3 by Lemma 2.3,
there exists a unique continuous extension Tr.

Take ¢ € C°(Q) with supptjpn € I'. Let ¢ € C2°()*. Since ¢jpo\r = 0, Gauf’
Theorem gives

(Uir, Tr@s) gy a-12(0) = /F7/1803 do = */mwsﬁ'”dg = */Qdin(l/HP) d(t,z)
:f/Vtwwpd(t,x)f/z/;divtcpd(t,x).
Q Q

For g € H(div, ) we take a sequence (¢, ), in C°(Q)? converging to ¢ in H (divy, ).
Then

/ Vit - ond(t, ) + / W dive pn d(t, z) — / Vi - qd(t,z) + / P div, d(t, z)
Q Q Q Q

as n — oo. The continuity of the coordinate map Ps: H(dive, Q) — H(dive, Q)s,
q — g3 further shows that ¢, 3 tends to g3 in H(div,, Q)3 as n — oo. Consequently,
Tr ¢, 3 converges to Trgs in H~Y2(T") as n — o0, so that we arrive at

<w|1—‘7Trq3>H1/2(F)><H—1/2(F) = 7/QVIL1/) . qd(t,I) — /deIVt qd(t,x) O

For smooth functions, the order of taking the trace and a derivative in a tangential
direction does not matter. The following corollary shows that this result extends in a
certain sense to H (div¢, )s.

Corollary 2.6. Let v € H(div,,Q)3. Assume that also O;v belongs to H(divy, Q)3 for
an index j € {0,1,2}, where g = O;. Then the distributional derivative of Trv in
direction e; belongs to H=/2(T') with

0; Trv = Tr(0;v).

Proof. We first note that in this proof we will identify the C°°-manifold I = (0,7") x
R? x {0} with the image of its chart (0,7") x R?. Due to Lemma 2.4 it is moreover
clear that H~1/2(T") is continuously embedded in D'(T") via

(P U>D(F)><D’(F) = (p, u>H1/2(F) xH=1/2(T")
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for p € C(I') = D(T) and u € H~'/%(T).

Since v belongs to H(dive, Q)5 there is a function ¢ € H(div¢, Q) with g5 = v.
Analogously, 0;v € H(div, Q)3 implies the existence of a function r € H(div, Q) with
r3 = O;v. Applying Lemma 2.1, we see that T.q belongs to (C>°(€2))* N H(div¢, Q)
for all e > 0 and Tr.q — ¢ in H(div¢, Q) as € — 0. It follows that T.v is contained
in C>(Q) N H(divy, Q)3 and Tov — v in H(divy, Q)3 as € — 0. In the same way we
deduce that T.0;v — 0;v in H(div,, Q)3 as e — 0.

In the case j € {1,2}, we then infer that

8j TI(TE’U> = 8]»T6v(-, 0) = Tr(8jT€v) = Tr(TE(')jv) (29)

for all ¢ > 0, where we used that T.v € (C*°(Q))* and that 7. commutes with 9,
by Lemma 2.1 (ii). Letting ¢ — 0, the right-hand side of (2.9) tends to Tr(d;v)
in H=1/2(T") since T.(9;v) — ;v in H(div,,Q)3 as ¢ — 0 and Tr is continuous on
H(divs, ©)3. On the left-hand side of (2.9), the function Tr(7.v) converges to Trv in
H=Y2(T) since T.v — v in H(div;, Q)3 as ¢ — 0. We conclude that 9; Tr(7.v) tends
to 9; Trv in D'(T'). The continuous embedding of H~/2(T') into D'(T') thus leads to
9; Trv = Tr(d;v) in D'(T') and therefore d; Trv belongs to H~/2(T') and the previous
equality is also valid in this space.

It remains to consider the case j = 0. Formulas (2.5) and (2.6) from the proof of
Lemma 2.1, for the differential operator 0; and & = 1 in each component, yield

0:Tj,cq =T;,.0:q + pe * (Tj,2:0:0; Zq)

on {2, respectively Q_ for j € {1,2} and all € > 0. With the same arguments as in the
proof of Lemma 2.1 one can now show that div; p. * (75,2:0:0;Zq) belongs to L*(Q)
respectively L?(2_) and that

pe * (T1,2:0:012q) + pe * (T2,2:0:02Zq) — 0
in H(div, Q) as € — 0. We conclude that
Pe * (T1,2:0001 Z0) + pe * (T2,2:0002Zv) — 0
in H(divy, Q)3 as € — 0 and therefore
Tr(pe * (71,2:0101 Z0) + pe * (T2,2:0002Zv)) — 0
in H=/2(T) as ¢ — 0. Analogous to (2.9), we next infer

0y Tr(Tov) = 0:Tev(-,0) = Tr(0:T.v)
= TI‘(TeatU) + TI‘(pE * (7'17283t91Z1}) + pe * (ngeﬁtﬁng))

for all £ > 0. The rest of the proof is the same as in the case j € {1,2}. O

In Chapter 4 we examine the regularity of solutions. A crucial tool in this context
are mollifiers in spatial tangential variables. To apply them effectively in Chapter 4,
we need to be able to commute them with the trace operator.

We start by fixing some notation. Let x be the kernel of a standard mollifier over
R?, i.e., x is a nonnegative function in C°(R?), positive on B(0, 1) with integral one.
Set x. = e 2x(e~!). The convolution operator over R? with kernel x. is given by

Jev = xe *v (2.10)

for all v € §'(R?). With a slight abuse of notation, we also denote the convolution in
spatial tangential variables over Q = J x Ri respectively J x R? 2 T by J.; i.e.,

Jou(t, ) = Xe *ta v(t, ) = /]1{{2 v(t, (z1,22) — y,x3) X (y)dy (2.11)
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for all (¢,z) € Q, where v € L}, (), and

loc
Jou(t,2') = Xe *ta v(t, 7)) = / v(t, ' — y)xe(y)dy (2.12)
Rz

for all (¢,2') € J x R?, where v € L}, (J x R?).

loc
At least for sufficiently smooth functions, the convolution in tangential spatial vari-

ables does not effect the boundary values. We want to show that this is still true
for functions in H(div¢,Q)s, i.e., the operators J. and Tr commute on H(dive, Q).
To that purpose, we first have to extend the operator .J. to H~'/2(T"). We therefore
introduce the formal adjoint

JIW = Xe *pa W

for w € L?(J x R?) and Y(z1,72) = Xe(—x1, —x2) for all (z1,72) € R2. The next
lemma shows that J* maps H'/2(T") into itself.

Lemma 2.7. Let ¢ > 0. Then J* maps H'/?(T) continuously into itself.

Proof. We first note that

F3(Xe *ta £)(7,€) = (FaXe) () (F3f)(7,§)

for all f € S(R?) and (7,¢) € R x R?, where F; denotes the Fourier transform over R?
and F3 means the Fourier transform over R?. By continuity, this equality extends to
all f € L?(R3).

Next take w € H'/?(J x R?) and denote its zero-extension to R® by W. Then W
belongs to H'/?(R?) by Lemma 2.4 and Y. % w = Xe *ta W on J x R2. Consequently,

HJ:w”%il/?(Jx]}W) = H)ze *ta W”?_Il/Q(RS)

= [ A+ IO R s W) P 6)
= [ @ I P ER O PR (O P, )

<Ny [+ RO W (P8
= |“7:2>26|‘%°°(R2)HWH%—[l/z(R?’) = HJ:QSCEH%“’(]R?)Hw”iﬂ/?(]xR?)'
We conclude that J* maps H'/?(J x R?) continuously into itself. O
Lemma 2.7 allows us to extend the operators J. to H_1/2(1") by duality. We set
(Jev,¥) = (v, JZY) (2.13)

for all v € H=/2(T") and v € H'/?(T).
Finally, we can show that the trace operator Tr commutes with J. on H(div¢, Q)s.

Lemma 2.8. Let v € H(divy, Q)3 and let € > 0. Then
Tr J.v = J. Tro. (2.14)

Proof. As usual we identify T’ with J x R2. Let ¢ € C2°(Q). Then

(Tr Je@)(tvxlvmf) = (JEQO)(tvmlax%O) = / Xs(y)sp(taxl — Y1, T2 — yZaO)dy
R2

:/ Xe(W)(Tro)(t, 21 — y1, 22 — Y2)dy
]R2

= (Je Trp)(t, 21, 22) (2.15)
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for all (t,z1,72) € J x R2. For v € H(divy, Q)3 we find a sequence (py,),, in C°(€2)
converging to v by Lemma 2.3. Since J. is continuous on H (div;, )3 and Tr maps
H(div, Q)3 continuously into H~'/2(T"), we obtain Tr J.,, — TrJov in H~'/2(T) as
n — 0o. Moreover, Try, — Truv in this space and as J. is continuous on H~'/2(T")
by Lemma 2.7 and (2.13), we obtain J. Tr,, — J. Trv in H~Y/%(T) as n — oo. The
assertion is then a consequence of (2.15). O

In Chapter 4 we also have to integrate solutions of (3.2) in time in order to gain
regularity in time. We are therefore also interested in the traces of such integrals. But
before stating the appropriate result, we again have to introduce some notation.

Definition 2.9. Let tg, T € R with to < T and J = (to,T). Let d € N, and U C R?.
We define

Ijgu: LA(J x U) = L*(J x U),

¢
(Iyxpv)(t,x) = / v(s,x)ds for almost all (t,z) € J x U.

to

The next lemma shows that the above operator is not only well-defined, but also
linear and bounded.

Lemma 2.10. Let tg,T € R with to < T and J = (to,T). Let d € N, and U C R?.
The operator Ij«y is linear and continuous both on LQ(J x U) and on Hl(J x U).

Proof. The operator I;4 is clearly linear. Minkowski’s inequality further shows

Isxo vl = | [ xiwatetsagas]],

< [ (6100 )luz, ot < (7 = to)olzzaney - (216)

for all v € L2(J x U).

By Fubini’s theorem, we have 9;1;xyv = I;xpd;v for all v € H'(J x U) and
j €{1,...,d}. We thus obtain the estimate ||0;I;xvv| r2(sxv) < (T—t0)||05v|| 2 (1x 0
from (2.16) for all v € H'(J x U) and j € {1,...,d}. Moreover, we have 9,1 ;xyv = v
for all v € H'(J x U) so that the assertion follows. O

If we want to commute the trace operator with the integral, we first have to make
sense of the integral on H~1/2(T).

Corollary 2.11. Let t,T € R with tg < T and J = (to,T). Identify T with J x
R2. Then the operator It introduced in Definition 2.9 extends uniquely to a linear
continuous operator on H’1/2(F), which we still denote by Ir.

Proof. By interpolation, see Theorem 1.4.3.5 in [Gri85], we infer from Lemma 2.10 that
Ir maps HY/ 2(T") continuously into itself. Analogously, one obtains that the operator

Ir: L2(J xT) — L*(J x T),
(Irv)(t, ) = /T v(s,xz)ds for almost all (¢t,z) € J x U;
¢
is continuous on H'/2(I'). Since Ip is the adjoint of It on L2(T), and H'/2(T) is
densely imbedded in L?(T'), we infer that the extension by duality, i.e.,
<IF'U,1/}>H*1/2(F)><H1/2(F) = <UvI~F¢>H*1/2(F)><H1/2(F)
for all v € H=/2(T") and ¢ € H'/?(T"), is unique. 0O

After these preparations we are now ready to prove that the trace operator and the
integral in time commute.
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Corollary 2.12. Let tg,T € R withtqg <T and J = (to,T). Let v € H(divy, Q)3 with
Igv € H(divy,Q)s. Then

Trlgv = Ipr Tro,

where Iq is the integral operator from Definition 2.9 and Ir the integral operator from
Corollary 2.11.

Proof. As always we identify I" with its chart (to,7) x R2. Let T. be the operator
defined in Lemma 2.1 (i) for all € > 0 and let Z denote the zero-extension of a function
defined on R? to R?.

I) Fix £ > 0. We start by showing that div; and T. commute on H(div, ), where
the operator T is applied pointwise in time.

So let w € H(divy, Q) and ¢ € C(Q). Let p(z) = p(—z) for all z € R3. We
compute

/ Tow - Vihd(t, x) = / / Pe * (Toc Zw) - Vi Z1p dadt
Q J JR3

:// ngZw-ﬁe*(VtZw)dxdt:// Toe Zw - Vi(pe * Z1p) dadt
7 JR3 J JR3

:// w~VtT_25(ﬁE*Z¢)dzdt:f// divy w T_9:(pe * Z1)) dadt
J RS 7 JRS
:—/ T.(div; w) ¢ d(t, x),

Q

where we used that 7_a.(pe * Z1)) belongs to C2°(£2) in the third line. We conclude
that T.w belongs to H(divs, Q) and divy Trw = Te div w.

IT) Let ¢ € H(divy, Q) with g3 = v and r € H(divy, Q) with r3 = Iqv. Step I) and
Lemma 2.1 (i) show that T.¢ — ¢ and T.r — r in H(div¢, ) as € — 0. We conclude
that T.v and T.Igv converge to v respectively Iqv in H(divs, )3 as € — 0. Fubini’s
theorem further yields

T Iqw(t,x) = /Ra (/tt(TQEZw)(s,y)ds)pg(x —y)dy

t
- / / pe( — y)(rae Zw) (s, y)dyds — / Tow(s, 2)ds = IoTow(t,z)
to JR3 to

for all w € L?(Q) and (t,2) € Q, i.e.,
TEIQ’U = IQTE’U

on (Q for all € > 0.

Next observe that T.w belongs to L*(.J, H*(RY)) for all w € L?*(2). It is moreover
easy to check - via the definition of the weak derivative and Fubini’s theorem - that
dilqw = Iod;w for all w € L*(J, H*(RY)) and j € {1,2,3}. Therefore, both IoT.q
and T.q belong to L*(J, H*(RY)).

Let tr be the standard trace operator from H'(R3) to H'/2(9R%). With a slight
abuse of notation we also denote by tr the operator which maps L?(J, H!(R3)) to
L2(J,H'Y2(0R3)) defined by tr(u)(t) = tr(u(t)) for almost all ¢ € J. If a function u
belongs to L?(J, H'(R?)) N H(divy, )3, step I) and Lemma 2.1 (i) imply that T.u
converges to u both in L?(J, H(R%)) and H(div, )3 as € — 0. As the operators tr
and Tr coincide on smooth functions, we obtain that the operators tr and Tr coincide
on L?(J,H'(R%)) N H(div¢,Q)s. Exploiting that tr is a continuous operator from
HY(R3) to H/?(0R3), we thus infer

Tr(T. Igv) = tr(T.Iqu) = tr(IgTev) = tr (/t Tsv(s)ds) = /t tr(T.v(s))ds

to tO
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= /t tr(Tev)(s)ds = Iv tr(Tov) = It Tr(Tov) (2.17)

to
for all e > 0. The functions T.Igv converge to Iqv in H(div¢, Q)3 as € — 0, so that
the continuity of Tr implies

Tr(T.Iqv) — Tr Igu

in H=/2(T). On the other hand, T.v tends to v in H(div,, Q)3 and thus Tr(T.v) — Trov
in H=Y/2(T"). As Ir is a continuous operator on this space, we obtain

Iy Te(Tov) — Ir Tro
as € — 0. The identity in (2.17) thus implies the assertion. O
We next state that the trace operator also commutes with the multiplication with
C*°-functions.

Lemma 2.13. Let p € C°(Q) N WH°(Q). Then pv is an element of H(div,, Q)3
and

Tr(pv) = (-, 0) Tro (2.18)
for all v € H(dive,$2)s.
Proof. The first part of the assertion is a direct consequence of the assumption that
¢ belongs to W1>°(Q). Identity (2.18) clearly holds for v € C°(Q). Since C2°(Q) is
dense in H(div¢, Q)s, the assertion then follows. O

We have now developed the concept of a trace for functions in H(div¢, Q)s. In the
remaining part of this section we will show how this leads to a trace operator for weak
solutions of certain first order partial differential equations.

Remark 2.14. Let Ao, ..., A3z € (W1H>°(Q))"*" be symmetric, D € (L>(2))"*", and
let f € (L%(Q2))". Define the differential operator

3
L= A0+ Y A;o;+D. (2.19)
j=1

By a weak solution of Lu = f we mean a function u € (L?*(Q2))™ with

3
/f-cpdac:/u-L*godx:—Z/u-aj(Aj@)dx—i—/u-DTgpdx (2.20)
Q Q par i) Q

for all p € (H}(Q))". Note that Lu is at first defined in (H~1(Q))" and (2.20) says
that

(Lt @) o =/Qu~L*sodx:/Qf-sodx=<f,so>H4xH01

for all ¢ € H}(). We conclude that Lu = f in L?(Q), in particular Lu € L?(Q).
Next observe that Lu can be equivalently written as

3 3

LU = Zﬁj(A]u) — ZajAjU + DU
§=0 §=0
Hence,
3 3
0;(Aju) = f+ Y 9;Au— Due L*(Q). (2.21)
j=0 7=0

For all k € {1,...,n} we define ¢8 = (Aju)y for j € {0,...,3}. From (2.21) we
deduce that ¢* € H(div, Q) for all k € {1,...,n}. In particular, ¢§ = (A3u); belongs
to H(dive, )3 for all k € {1,...,n}. The trace of each component of Asu on I is
therefore well-defined in the sense of Lemma 2.5. <&
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We use our observations from Remark 2.14 for the following definition.

Definition 2.15. Take n € N. Let Ag,..., A3 € WH(Q)" " be symmetric, D €
L) and let u, f € L*(Q)"™. Assume that u is a weak solution of Lu = f, where
L is defined by (2.19). We then define the trace of Asu on T by

’I‘I(Ag’U/) = (T‘T(A:;U)l, ey TI‘(Agu)n)
in H—l/Q(F)n‘

In the following chapters we will study boundary conditions on I' which are con-
servative in the sense of [Ell12], i.e., there are matrices B and C such that 245 =
CTB + BT(C and the boundary condition is given by Bu = g on I. This structural
assumption yields a matrix M with B = M A3 so that we can make sense of the term
Bu on I'. We will make this notion more precise in Section 3.2. For the moment, we
take these considerations as motivation for the following definition.

Definition 2.16. Let Ag, Ay, Aa, Az € WH(Q)"*" be symmetric and D € L ()™*™.
Assume that there are matrices B € W (Q)**" and M € WH(Q)**" for natural
numbers k and n. Take u, f € L?(Q)%. Suppose that u is a weak solution of Lu = f.
We define the trace of Bu on ' by

Tr(Bu) = M - Tr(Asu).

Remark 2.17. For a solution u in G1(2) we can define the trace of u itself on I'. There
is even more than one way to do so. Since u € G1(Q2), each component of u belongs
to H(divs, Q)3 and the trace Truy exists in H~'/2(T") in the sense of Lemma 2.5 for
ke {1,...,6}. However, the most natural way to define the trace of u is arguably the
following. We set (Try u)(t) = tr(u(t)) for all t € J and u € C(J, H'(RY)), where tr
is the usual trace operator from H'(R3) to H'/?(9R%) applied componentwise. This
defines Tr; as a mapping from C(J, HY(R%)) to C(J, HY/2(0R3)). In particular, also
the traces

Try(Bu) = Mjp - Tri(Azu) = M - A3 Tryu = BTryu

are defined in a natural way. However, our solution concept in Definition 3.1 will (and
has to) consider the trace of Bu in the sense of Definition 2.16. So the natural question
arises if these two trace operators coincide on G1(2).

This is indeed true and can be seen by the following argument. Let v € G1(2). Let
 be a continuous extension of v in C(R, H'(R%)) which is zero outside some compact
subset of R. Let ¢ be the kernel of a standard mollifier over R and v be the kernel of
a standard mollifier over R3. Note that (1) then forms the kernel of a mollifier over
R*. We define the family {v.}.~o by

vltr) = [ [ o= sa =)l l)duds
for all € > 0. Then v, belongs to G1(f2) for all € > 0. Moreover,
ve(t, ) — ﬁ<t7x) = /]R/]R3 ({)(t — 5T - y) - ﬁ(tvx))@e<s>ws(y)dyd3
— [ [ 6= 50— 0~ 5t~ 9)pls)e()dyds
R JR3
+ [ (6ta =) = oty

for all (¢,x) € R* and € > 0. Standard properties of mollifiers show that the second
integral converges to zero in C'(J, H'(R3)), where we also exploit that .J is compact.
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Employing Minkowsi’s inequality and the translation invariance of Lebesgue measure,
we obtain for the first term

| [ [ @t o0, = uestopiatduas|,
< [ 150t =5) = 50) sy 02 (s

for all ¢t € R. Since ¥ is continuous on an open set containing .J, we infer that the term
on the right-hand side converges to zero uniformly in ¢ € J. We have thus shown that
ve = vin C(J,H'(R3)) as e — 0.

We further note that v. € C°°(Q) so that the definitions of the trace operators Tr
and tr yield

(Try ve)(t, 21, 22) = (trove(t))(z1, z2) = ve(t, x1,22,0) = Tro. (¢, 1, x2)

for all t € J, (w1,22) € R?, and ¢ > 0. The continuity of Try yields that Tr; v. tends
to Try v in C(J, H'/2(R?)). Since this space is continuously embedded in H~'/%(T),
cf. Remark 2.19, we further infer that Try v. converges to Try v in H~'/2(T) as e — 0.

On the other hand, C(J, H'(R3)) is continuously embedded in H(div, )3, imply-
ing ve — v in H(divy, Q)3 as n — oo. We therefore obtain that Trv. tends to Trv
in H='/2(I"). As a result, Tryv = Tro in H~'/2(I"), i.e., the two traces coincide in
G1(Q). &

In the following corollary we transfer the properties of the trace operator Tr which

we have shown in Corollary 2.6, Lemma 2.8, and Corollary 2.12 to Tr(Bu), when u is
a weak solution of Lu = f.

Corollary 2.18. Let k,n € N and let Ay, Ay, Ay, A3 € WH(Q)" " be symmetric
and D € L>®(Q)"*". Assume that there are matrices B € WH(Q)**" and M €
Whee(Q)Fxn sych that B = M Az. Let u € (L?(Q))"™ with Lu € L?(Q)™.

(i) Assume additionally that B, M € W?2>(Q)**n A3 € W2(Q) and that also
u belongs to H'(Q)™ and Ld;u to L*(Q)™ for an index j € {0,1,2}. Then the
distributional derivative 9; Tr(Bu) exists in H~Y/%(I')* and

0; Tr Bu = Tr BOju + Tr; 0; Bu.

(#i) Let {J.}c>0 be the mollifier introduced in (2.10) to (2.12). Assume that also LJ.u
belongs to L*(Q)™ for a parameter € > 0. Then Tr(BJ.u) exists in H='/2(I')*
and

Tr BJ.u = Tr((BJ: — J.B)u) + J. Tr Bu.

(iii) Assume Az and M are time-independent and that also LIgu belongs to L?(2)™.
Then Blqu has a trace in H=Y/?(T)* and

Tr IoBu = Ir Tr Bu.

(iv) Let p € C*(Q). Then

Tr B(pu) = ¢(-,0) Tr Bu.

Proof. In Remark 2.14 we have seen that the functions ¢* defined by qlk = (Au)g
for I € {0,...,3} and k € {1,...,6} belong to H(divy,Q). In particular, (Asu)y is
contained in H (div¢, Q)s for all k € {1,...,6}.

(i) Applying the same argument to d;u, we infer that also ¢® defined by & =
(A;0ju)i are elements of H(div,, ) for all k € {1,...,6}. Since 0;Asu is contained in
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H'(€2), we infer that 9;(Asu)y = (A30;u), + (9;Asu)k belongs to H(divy, )3 for all
ke {1,...,6}. Corollary 2.6 thus yields that the distributional derivative of Tr(Asu)s
belongs to H~'/2(T") and

8j TI‘(Agu)k = Tr(A38ju + 8jA3u)k = TI‘(Agaju) + Trl(ajAg) Trq (u),

where we also write Try for the restriction of an W°°(Q)-function to I'. Therefore,
by Definition 2.15 and since derivatives in tangential derivatives commute with the
restriction to the boundary of W?2°°(Q)-functions, we obtain

8]' T‘I‘(BU,) = TI‘1 (8JM) TI‘1 (Agu) + TI‘l(M) Tr(Agﬁju) + Trl(M) Trl(ajAg) Trl(u)
= TI"(BaJ’LL) + TI“1 (@B) Trl(u)

The assertions of (i) now follow.

(iii) As in the proof of part (i) we deduce that ¢* defined by ¢F = (A;Iqq)x belongs
to H(divy, Q) for all k € {1,...,6} so that (Aslqu)y is contained in H(div, Q)5 for all
ke {1,...,6}. Corollary 2.12 therefore implies that (A3Iqu)y has a trace in H~'/2(T")
and

TI‘(AgIQ’U,)k = TI‘IQ(Ag’U,)k == Ip TI‘(Agu)k
for all k € {1,...,6}. With Definition 2.15 and 2.16, we finally obtain

TI‘(BIQU) =M - TI'(A3IQU) =M (TI'(A3IQ'U;)]§)]C=17___,6 =M (Ip TI‘(Agu)k)k=1,m76
=M - I[‘ ’I‘I‘(Agu) = IFM . Tr(Agu) = IF Tr(Bu),

and thus the assertion.
(ii) and (iv) These assertions follows in the same way as the ones in (i) and (iii),
using Lemma 2.8 respectively Lemma 2.13. O

At the end of this section we show that H'/?(T") is continuously embedded into
L?(J, H'/?(R?)). This implies that L?(J, H~/?(R?)) is continuously embedded in
H~'Y2(T"), showing that the regularity result for Asu in [Ell12], where u is a solution
of a certain initial boundary value problem, is indeed an improvement of what we know
from Corollary 2.18.

Remark 2.19. Let d € N and J C R be an interval. Throughout we denote the
isometric isomorphism from LP(R, LP(R?)) onto LP(R¥*1) by Z for 1 < p < cc.
I) In the following we will need that for an element f € L'(R, L*(R?)) we have

([ rwa)w = [ @

for almost all * € R?, where the integral on the left-hand side is an L!(R¢)-valued
Bochner-integral, whereas (Zf)(-, ) belongs to L!(R) for almost all 2 € R? by Fubini’s
theorem. Since we are not aware of a reference in the literature, we give the proof for
this identity here.

To that purpose, let f be a simple function on R with values in L'(R?). This means
that we find finitely many disjoint intervals I; of finite length, j € {1,...,m}, such
that f = Z;n:l X1,95, Where g; € L' (RY) for 1 < j < m. For this f we have

(/Rf(t)dt) (z) = (i \Ij|9j)($) = i 11| g;(x)

for almost all z € R, where |I;| denotes the length of the interval I;. On the other
hand,

[@naya =3 o
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for almost all z € R?, so that the claim is true for simple functions.

Next take f € LY'(R,L'(R%)). Let (f.)n be a sequence of simple functions con-
verging to f in L'(R, L'(R?)). The integrals Jz fn(t) dt thus converge to [, f(t)dt in
L'(R?), and, after excluding a subsequence, we obtaln pointwise convergence almost
everywhere in R?. Moreover, (Zf,), converges to Zf as n — oo in L'(R%*1) so that
Fubini’s theorem gives that

/ (Th)(t,) dt — / (@)
R R

in L'(R?). Excluding another subsequence, we obtain that the above convergence
holds also pointwise almost everywhere. The claimed identity is therefore valid for
almost all x € RZ.

IT) We next show that

IFe(Fif) = Fra(Lf)

for all f € L?(R, L*(R%)), where F; is the L?(R%)-valued Fourier transform over R,
F, is the Fourier transform on L?(R?) (applied pointwise), and F; . is the Fourier
transform over R4+1,

To show this claim we start once more with a simple function f, i.e., f = Z —1XI1,;95
for functions g; € L?(R%), disjoint intervals I, of finite length, and an index m € N.
For each j we take a sequence (g;,,, ) in C° (Rd) with g, — g; in L>(R?) as n — oc.
We define the functions f,, by f, = Z;n=1 X1,;94n for all n € N. Due to step I) we then
have

(Fe(x1;95,0) (7)) = (/

R

- / T, (0950 (@)dt = %1, (7)g7.0(2)

)0 ) @) = [ T, 0,0) 1)

R

for all 7 € R and for almost all 2 € R%. In particular, F;(x1,9jn)(7) = X1, (T)gjn in
L?(R?) for all 7 € R. Hence,

Ful(Fifu)(r (ZXI 1950 ) (€) =§:>? Fu(gjn)(€)

= Z/ e—it'TXIj (t) dt/ e—zzfgj’n(x) dx
j:]. R Rd
= Z/RHd e_i(t,w)‘(ﬂﬁ)z(xljgj’n)d(t,(E) = Fio(Zfn)(7,€)

for all (1,&) € R4, This implies that Z(F,(F fn)) = Fi.(Zf,) for all n € N. Letting
n — oo, the functions f,, converge to f in L?(R, L?(R?)) and therefore

L(FoFif) = lim L(F(Fifn)) = i FiolTfn) = Fio(Z)

in L2(R'*4). Approximating a general f € L?(R, L?(R%)) by a sequence of simple
functions and using the continuity of the Fourier transforms on the corresponding
spaces then proves the assertion.

I11) Finally, let v € HY2(I'). We identify T' with its chart J x R? again. Let
U € H'Y/?(R?) with U = u on J x R2. To simplify the notation we identify the
representant of Z71U in L?(R, L?(R?)) with U. Using the result from step II), we
compute

el 0oy < MU ey = U1 ooy
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— [1FU Bdr = [ [ 1FFUE)OP + P dedr
R R JR2
< /}R3 | P U (T, (1 + |7 + |5|2)% d(r,€) = ||UH§{1/2(]R3),

Taking the infimum over all U € H'/?(R%) with U = u on J x R? and using that
H'Y?(T) = HY*(T') (see Theorem 1.4.3.1 in [Gri85]), we obtain

||u||i2(J7H1/2(]R2)) < ||“Hi[1/2(r)-

This implies that H'/2(T') is continuously embedded in L?(J, H'/?(R?)). Identifying
L? with its dual, we finally conclude that L?(J, H~/2(R?)) is continuously embedded
in H-Y/2(T). &

2.2 Function spaces

In this section we first introduce various function spaces and corresponding norms
which play a crucial role in the following. We have already seen the spaces G (J x G)
for k € N in the introduction, where G is an open subset of R3. In these spaces we
will construct our solutions. In this context we will also need the function spaces

k
Gr(J x G) := [\ W (J, H* (@),
j=0
HE(J x G) :={ve L*(J x G): 9% € L*(J x G) for all a € N§ with |a| <k
and ag = 0},

HE(G) = {v € L*(G): 9*v € L*(G) for all @ € N} with |a| < k and az = 0}.

In the following we will mainly work in the spaces L?(J x G, H*(J x G)®, G1(J x G)¢,
and so on. However, when it is clear from the context if a function is scalar or vector
valued, we will simply write v € L?(J x G) instead of v € L?(J x )% and analogously
for the other function spaces. We equip the spaces G (.J x G) respectively Gy (J x G)
with the norms

lvlla,(rxa) = o X, 10%v]| Loe (1,12 (c)) (v e Gi(J x G))

for all £ € N. We further introduce the norms

1/2
hagoxey = (X 1070IEene) (0 € HL(I x @)

0< || <k
(13:0

and analogously

1/2
Il = (Y 10°0liee) (v e HAG)

0<|al<k
Oé3:0

on HE (J x G) respectively HE (G) for k € N.
Let e_,: R — R be defined by e™7" for all t € R. We will also use the weighted
norms

||UHL3(JxG) = ||6—7U||L2(ch;) (ve LQ(J x (),

1/2
ol rxa) = ( Z ||3av||%3(,]xg)) (ve H*(J x G)),
0<|a|<k
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”vHGk,n,(JXG) = O%Tlljék ”e—"/aaan‘X’(J,L?(G)) (ve ék(J x G)),

and analogously for ||v|| HE,(7xG)- Observe that the weighted norms are all equiv-
alent to the unweighted ones since the interval J is bounded. Moreover, we have
[vllrz(7xc) < vllr2(rxq) forall v € L?(J x G) and the analogous estimate is true for
the other norms.

Up to now we introduced the function spaces from which we take the data and where
we expect the solutions. For a thorough study of the coefficients, we will also need the
following spaces.

Definition 2.20. Let m,k € N, n > 0, and a € R***. We set

Fpi(J x G)i={A € WHe(J x G)***: 9°A € (L°°(J, L*(G)))*** for all o € N§
with 1 < |a| < m},
Frkn(J x G) :={A € Fy,1(J x G): A(t,z) € Sym(k) for all (t,x) € J x G and
A(t, x) is positive definite with A(t,x) >
for all (t,z) € J x G},
E X (J x G) = {A € F(J x G): there is a compact subset K of J x G
such that A is constant on J x G \ K},
E (I x G) = {A € Fpp(J x G): there is a compact subset K of J x G with
A=aonJxG\K},
k(I xG)i={A€ Fp(J xG): lim A(t,z) evists},

(@) =00

Foo(IxG)i={A€ Fup(J xG): lim A(t,z) = a},

[(t,x)] =00
rin,k,n(J X G) = m,k,n(J X G) N Frln,k(J X G)7 (AS {vac}a
Fyt (J % G) = Fpp(J x G)NF(J x G), i€ {cp,c},

F L (G) :={Ag € L®(G)"*: 0% Ay € L*(G)"* for all o € N}
with 1 < |a| < m}.

We equip all these spaces with the norms

| All £, (@) = max{[|A| w1 ), | Jnax 10 All Lo (7,02(a)) } (A€ Fx(),

<la|<m
respectively
[ Aoll o, (3 ) = max{[|Aol| o (rs), Jpax 10% Aol 22 )} (Ao € Fp, (RY)).

In fact, we will only need the cases k = 6 and k = 1. If it is clear from the context
whether we mean &k = 6 or kK = 1, we drop the index k to streamline the notation.
We go on with a crucial approximation result for elements from the spaces above.

Lemma 2.21. Let m,k € N. Take an open interval J C R and set Q) = J x Rf_.

Choose A € Fy, (). Then there exists a family {Ac}eso in C°(Q) with
(i) 0%Ac € Fp (Q) for all « € N§ and ¢ > 0,
(ii) |Acllwr=) < ClAllwre(o) and |0°Acllpesr2wa)) < CllAllF, ) for all

multiindices 1 < |a] <m and € > 0,
(iii) Ac — A in L>®(Q) ase — 0, and

(iv) A:(0) = A(0) in L>=(R3) and 0*A and 0*A. have a representative in the space
C(J, L*(R%)) with 0*A.(0) — 0*A(0) in L*(R}) as € — 0 for all a € N§ with
0<laf<m-—1.
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If A additionally belongs to F,7(Q), FS, 1.(Q), Furn(Q) for ann >0, or the inter-
section of two of these spaces, then the same is true for A, for all e > 0.

Proof. Without loss of generality we assume that J = (0,T) for a time T > 0.

I) Let ¢ € C*(R?) and p € C°(R) be nonnegative functions with integral 1 and
support in the unit ball. As usual we set ¢ (x) = e 3p(x/c) for all x € R? and p.(t) =
e~ 1p(t/e) for all t € R for all € > 0. Let 61,0 € C°(R) with supp6y C [—1, 27
and supp 6y C [%T,T + 1] such that 6; equals 1 in a neighborhood of 0, 62 equals 1
in a neighborhood of T, and 6y + 6, = 1 on [0,T]. Take g € (0,37 so small that
O1(t+¢)+62(t—e) >0forallt € J and € € (0,2¢0], #1 = 1 on B(0,2¢¢) and 0y = 1
on B(T,2¢p). As in the proof of Lemma 2.1, we define the translation operators

Tiet L (RY) — Ly (RY),  (r1cw)(t,2) = w(t +¢&,31, 72,73 + ),

T2+ Llloc(R4) — Llloc(R4)7 (TQ,Ew)(tﬂ {E) = U)(t —&,T1,T2,T3 + 6)'
Then there is a constant C' independent of £ such that

! !

E— 2.22
CT10c01 + To0c0 — (222)

on J forall [ € {0,...,m — 1} and ¢ € (0, 2e0). Moreover, we have

. 1

_ 0
t
T1,2e00 + T2,2:02

in L>(J) as € tends to 0 for all € {1,...,m — 1}.
We then set
T1,2:(01A) + T2,2:(624)
T1,2¢01 + T2,2:02

Ae = (pepe) *

for all € € (0,&0), where we identify A with its zero extension to R%.

Then A, is an element of C*°(Q2) for all ¢ € (0,&0) and (i) and (ii) are satisfied.
For (iii) we note that W1°°(Q) equals the space of functions which are Lipschitz
continuous on {2 as € is convex. In particular, A belongs to BUC(2). We thus obtain
that

01A+0:,A
A, — 00 A
in L>*(Q) as ¢ — 0. The first part of (iv) now also follows. For the remaining
assertion take o € N§ with 0 < |a] < m — 1. Then 9*A € L*(J,L*(R3)) and
00~ A € L*(J, L*(R3)) so that 9™ A has a representative in C(J, L*(R%.)) with which
we identify 0“A in the following.

Let ¢ > 0. As J is compact, 9*A is uniformly continuous on J with values in

L*(R3). Hence, there exists a number §; > 0 such that

[0%A(t1) — 0 A(t2)|| L2 (s ) <

NN

(2.23)
for all tl,tQ € 7 with |t1 — t2| S 51.
Moreover, the translation operator 7, : v + v(-—y) is strongly continuous on L?(R3).

We thus find a number > > 0 such that

I7,0% A(0) = 9 A(O) | 2 (s <

SN N

for all y € R® with |y| < d. Set § = min{d1,d2}. For (s,
then obtain

) € R* with |(s,y)| < & we

Iy 0% A(s) = 9*A(0)l| 22 )
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< |l 0 A(s) — 7,0% AO)|| ey ) + 7,07 A(0) = 9> A(D) | Laas
¢_¢
4

IN

< 110 A(s) — 0% A(O0)|| 2z ) + (2.24)

57
where we also used that 7, is contractive on L?*(R%) when the functions from this
space are identified with their zero extension.
Employing that 6; equals 1 and 65 equals 0 on B(0, 2¢(), we derive that

9%A:(0) = (p=pe) * (11,2:0%4)(0)
for all € € (0,e0). We set g1 = min{%so} and denote a point z € R? by (2/,3).
Using Minkowski’s inequality and that the support of p. respectively ¢, is contained
in B(0,¢), we infer

0% Ac(0) — 0 A(0) | L2 (m2

= || [ @ a5t 220 = s+ 22) - 0 A0 D))

LZ(R3)
< / 10%A(=s +2e,2" — ¢/, x5 — y3 + 2¢) — 0" A(0,2" — ¢/, 25 — y3 + 2¢) || L2 2 )
R4 N

- pe(s)p=(y)d(s,y)

- / 107 A0, 2" — o/, 5 — s + 26) — 8 A0, 2) | 2 sy = ()= (1) (5, 9)
R4

< [ 1% A(=s+22) — 04O e pe(s)ds + 5 [ eewiy
R R3

¢ ¢
<5 [ras+5=¢

for all € € (0,e1). The last assertion in (iv) thus follows. B
IT) If A additionally belongs to F;pk(Q), there is a compact set K C 2 and a matrix

a € R*** such that A =a on Q\ K. Define the compact set
K' = (K +B(0,(2v2+ 1)e;)) N Q.
Let (t,z) € @\ K" and € € (0,e1). We then have that
(B((t + 2¢,2', w3 + 2¢),e) U B((t — 26,2, 23 + 2¢),¢)) CR*\ K
for all € € (0,e1). We particularly infer that
(t—s+2e,2 —y 25 —y3 +26),(t—s—2e,2" —y 23 —ys +2¢) e R*\ K
for all (s,y) € B(0,e). We obtain

T1,2:(014) + T2,2:(624)
T1,2¢01 + 72,2:02

(t—s.2— )_91(t—s+28)a+92(t—s—25)a_a
T T Tt —s+20) + Oa(t—s—2)

and hence

T1,2:(014) + T2,2:(624)
T1,2¢01 + T2,2:02

Ata) = [ e (t = 5,2~ 9)d(s.9) = a

III) Now let Fy, ;(2) and a € REXF with lim|(¢,2)| 00 A(t, ) = a. Let ¢ > 0. Then

there is a compact set K C  such that |A(t,2) —a| < ¢ for all (t,z) € Q\ K. We
define K’ as in step II) and infer that

|A(t—s+2e,2" =y, w3 —ys+2e) —a| <(, JA(t—s5—2¢,2"—y x5 —ys+2¢)—al <¢
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for all (¢,2) € Q\ K', (s,y) € B(0,¢), and ¢ € (0,e1). We thus arrive at

7'1725(91|A — a|) + T2,25(92|A — a|)
T1,2¢01 + T2,2:02

(t — 5T y)d(S,y)

Ata)=al < [ pu(s)oclo)
<<

for all (t,z) € Q\ K" and € € (0,e1). We conclude that A.(¢,x) converges to a as
|(t,z)] — oo for all € € (0,¢7).
IV) Finally, we assume that A € F,, 1, ,(Q?) for an > 0. Then

T1,2: (0167 AE) + 7 0. (0267 A€)

T1,2¢01 + T2,2:02

§TA(t,2)¢ = /R4 pe(8)pe(y) (t—s,x—y)d(s,y) >n

for all ¢ € RF with |£| =1, (t,2) € Q, and ¢ € (0,¢;). O

For the treatment of quasilinear equations bilinear respectively multilinear estimates
are an indispensable tool. The next lemma provides the most basic results in this di-
rection. In a certain sense, one might think of it as an extension of the well-known
fact that the Sobolev space H™(R?) is an algebra if m > £, see e.g. Theorem 4.38
in [AF09]. In addition to this algebra property, we also need to deal with products
involving a factor with smoothness parameter less than % and we have to provide the
bilinear estimates in the norms corresponding to the function spaces G, () respec-
tively F,?L(Ri) However, the proof is elementary as it only combines the Sobolev

embedding theorem with Hélder’s inequality.

Lemma 2.22. Let J C R be an open interval and let G C R? be a domain with a
uniform C?%-boundary (see e.g. Definition 2.24). Take mi,mo € N with mi > my and
mq > 2 and a parameter v > 0.

(i) Let k € {0,...,m1}, f € G, 1(J x @), and g € Gr(J x G). Then fg €
Go(J x G) and

1 f9llGo ,(1xey < Cmin{||flla,., _xxa)ll9llGy @) 1fllGm, ., xa)llglleirxa)}-
(ii) Let f € G, (J x G) and g € G, (J X G). Then fg € Gum,(J x G) and
1£9l

Comyy(7xc) < Cmin{| flla,. (xa) 9, ~(1xG)

||f||Gm1_W(J><G) ||g||Gm2(J><G)}'
(i1i) Let f € Fpy(J X G) and g € Gy (J X G). Then fg € G, (J X G) and
If9llc,, - xa) < ClflF,, oxaldlle,, . xa)-
(iv) Let f € Fppy (J X G) and g € Fin, (J X G). Then fg € Frn,(J X G) and
1£9ll 7, 7y < CllfE,,, (1xa) gl Py (1xG)-
(v) Let k € {0,...,mi}, f € H™ %G, and g € H*(G). Then fg € L*(G) and
I fallzzay < Cllfllgmi—+ @) lgllaxa)-
(vi) Let f € H™(G) and g € H™(G). Then fg € H™(G) and
£

am2(c) < Cllfllamellglams )
(vii) Let f € Fp, (G), g € H™(G). Then fg € H™(G) and

1f9llzm2 () < CllflIrg, @) 9]l me @3-

my
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Proof. We first note that the regularity assumption on the boundary of G implies the
usual Sobolev embeddings, see e.g. Theorem 4.12 in [AF09]. 3
(i) Let k = 0. By Sobolev’s embedding, the function f belongs to G, (J X G) —
L*(J, H*(G)) = L*(£) so that the product fg is contained in Go(J x G) and satisfies
1fgllcorxa) < I flle=rxallglla, ., rxa) < Cllfla.., oxalglc ,rxe),
1f9llco - xc) < lle—yfllLerxa)llgllaorxe) < Cllflln, xallgllaorxa)-

In the same way one shows the assertion in the case ¥ = m;. In the case k €
{1,...,my — 1} the functions f and g belong to G1(J x G). Holder’s inequality and
Sobolev’s embedding thus yield

I falla,. (7xa) = sup le™ " f(£)g(t)| L2y < b;‘tellJD(||€_'ytf(t)||L6(G)HQ(t)HLB(G))
< 021615) le™ " F(&) |l sup lg@®) ey < Clifllay,xeyllglla, rxa

< Clfligm, k- rxayllgllayrxa)-

Interchanging the role of f and g, the assertion then follows.
(ii) Let a € N§ with |a| < ma. We have

0*(f9)= > (Z) P foFg. (2.25)

0<B<a
Fix 8 < a. The function 9° f belongs to éml_w(Q) whereas
9°77g € Gy —ja—p(Q) = Gy o118 (2) = G 5(Q).

Assertion (ii) now follows from (i).

(iii) and (iv) are proven as (ii) combined with straightforward considerations for
zeroth and first order derivatives.

(v) and (vi) are shown as (i) and (ii).

(vii) This fact follows easily from (vi). O

In the following chapters we will study partial differential equations where the coef-
ficient in front of the time derivative is uniformly positive definite. The inverse of this
coeflicient Ag thus exists and we have to deal with expressions involving this inverse,
in particular when it is evaluated at zero. The next lemma tells us that Ag(0)~! is as
smooth as Ag(0) and it provides us with estimates of A¢(0)~! in terms of Ay(0).

Lemma 2.23. Let J C R be an open interval and Q = J X Rﬁ_. Take m,k € N
with m > 3, n > 0, and Ay € Fry 1,n(2). Choose ty € J. Then Ay(ty)~! belongs to
Fr?m—l,k(Ri)f

8“A0(t0)_1 = —Ao(to)_l Z (g)aﬁAo(to)aa_ﬁAo(to)_l (226)
0<B<a

for all « € N3 with 0 < |a| <m — 1, and
||A0(to)71||Loo(Ri) <C(n),
||A0(t0)_1||F3171(R1) <Cm(1+ ||A0(t0>||F7‘3171(R3°’+))77L_2||A0(t0>HFSHI(]RE;) (2.27)
if m > 2. If Ay is another element of Frkn(Q), we have
|40 (to) ™" = Ao(to) ™" FO_, (RY) (2.28)
<C(m(+ [Ao(to)llFo_, r3) + H;l()(tO)||F£Z_1(]R:°"_))m71”AO(tO) - A(l(t())”F,QL_l(Ri)'
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Proof. Without loss of generality we assume that J = (0,7') for a time 7' > 0 and that
to = 0.

I) Let n € N with n > 2 and let Ay € F_,;(RY),A> € FO(R3). Let a € Nj with
0<|a] <n+1.If B =a, we have

107A10°7 P Asll L2qms ) = 0% A1 Aall L2qzs ) < 0% Al L2es Il A2ll Lo (es )

< Al

®)l[ A2l Fora )-

If 0 < B < a, we obtain that 9°A; € H"1=IFI(R3) and 92PN, € H—lel+IBI(RY).
Lemma 2.22 (vi) applied with k =n + 1 — || and

my=2n+1-|a|>n>2
then yields
Haﬁf\laa_ﬁ/\zHLz(Ri) < C||3ﬁA1||Hn+1—|B|(Ri)Haa_’gl\z||Hzn+1—|a\—<n+1—\m>(Ri)

< CllAillpe, , @) 10° P Aall go-ta-sims) < CllAallpe, | @3l A2l Fo s )-

n

Combining the two estimates, we arrive at

9B A, 5B
| 3 (5)o a0 na] ) < Ol o Mol

0<B<ax

IT) We next observe that since Ag(t,z) is positive definite with Ag(¢,z) > n for
all (t,z) € Q, we obtain |Ag(t,z)~ 1| < 1/n for all (t,z) € €, where | - | denotes the
matrix-norm induced by the euclidean norm on R*. We thus obtain

_ C _ C
||A0 1||L°°(Q) < g and HA()(O) 1HLOC(R3+) < g (2.29)
We fix a sequence (Ao,); in Fy, ;. (2) N C>(Q) with
[ 40,1(0) = Ao (0) |0, (m2) — 0

as | — oo, which exists by Lemma 2.21. Since Ay is classically differentiable, we can
apply Leibniz’ formula - which is also valid for matrix valued functions - to deduce

_ o B A
0=0%A014q]) = Z (ﬁ) 0% A,10° P Ay,
0<B<a

0" Ayl =—Ag Y <g>3"Ao,18“‘3A0,} (2.30)
0<B<La

for all I € N and o € N3\ {0}. We further know that ||A6711HL°° < C/n since A, €
Frn ke,n(€2) by Lemma 2.21.

I1I) We will show inductively that for all n € {1,...,m — 1} the function Ay(0)~*
belongs to F(RY), formula (2.26) is valid for all a € N} with |a| = n, and esti-
mates (2.27) and (2.28) hold for n.

We start with n = 1. First note that

IATY = A Lo rz) < I1AZ I Loo sy A1 — Aall Lo sy AT I Lo a3
SCM[Ar = Agllpee s (2.31)

for all A1, Ay € FY_{(R%) with Ay, Ay > n. We thus deduce

[ Ao, (0)~" — A0(0)71||Loo(Ri) < C()[[A0,1(0) = Ao(0)[| poe (3 ) — 0
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as | — oo and
| 40(0)~" — AO(O)AHLW(R?;) < C(n)]|Ao(0) — AO(O)HLw(Ri)-
Now take o € N3 with |a| = 1. Then
18%A0,1(0) " + Ao (0) 19 Ao (0) Ao (0) || L2
= [[A0,4(0) 9% A0,1(0) Ao, (0) ™" — Ag(0) T Ag(0) Ao(0) | L2 ms )
< || Ao (0)~" — AO(O)_I||L°°(R3_)HaaAO,l(O)HLQ(]Ri)”AO,I(O)_l”LN(Rﬁ_)
+ ||A0(0)_1||L00(R1)||3QA0,Z(0) - 3QA0(0)||L2(R3)||A0,l(0)_1\|Loc(R1)
+ 11 40(0) 7 [ oo r2) 0% A0 (0) | L2 k2 ) | 40,1 (0) ™ = Ao (0) ™| oo (g3 )
< O+ [ A0 (0) | o2 ) + 140 (0) ]l mp w3 )l A0,1(0) — Ao (0) || o (mes ) (2.32)
Letting | — oo, we obtain
0%A0,(0)™" — —A4p(0)710*Ap(0) Ap(0)~"  in L*(RY).
We conclude A4y (0)~! € FP(R3) with
9% Ag(0)~1 = —Ao(0) 710" Ap(0) Ag(0) ",
||A0(0)71||F10(1R§r) < C)[[Ao(0)ll pp(rs)-
Replacing Ao ;(0) by Ag(0) in (2.32), we further obtain
167 Ao (0)~" — 3“!‘10(0)71”1:2(11&1)
< C) 1+ ([ A0 (0) | ez ) + ||A0(0)HF10(R3_))||A0(0) - AO(0)||F{](R3_)'

Consequently, the claim is true for n = 1. Moreover, as 9*4y(0) € H*(R%) — L5(R3),
we deduce from (2.26) that also 9*Ao(0)~" belongs to LS(R%) for all o € N} with
la = 1.

Next consider the case n = 2. Take a € N} with |a| = 2. Let A; be an element
of span{A4(0), Ao,;(0): I € N} and let Ay belong to span{A4y(0)~*, Ap;(0)~': 1 € N}.
Using Sobolev’s embedding and Hélder’s inequality, we infer

> (g)aﬁAlaaﬁAszm)

0<B<a
(07 « o —
< 10 Az Wallesy + 2 (§)10°Arlosey 10 Al
0<B<a
< CllAallrgeesy (Isllpw ) + D 107 Aallpoqes))-
|B]=1

Applying this estimate three times and using formula (2.26) for first order derivatives
in combination with

> 140,1(0) 18" A0,1(0) A0,1(0) || Lo gs ) < I\Ao,z(O)_llliw(Ri) > 18”7 Ao, (0)[ Lo (rs )
[Bl=1 [Bl=1

<C(n) Z ||3BA0,1(0)HH1(R§1) < C)[Aoillrg sy
[8]=1

we deduce

|07 0u ()71 + A0 ()71 S <g>85A0(0)8“5A0(0)1’

0<B<a

L2(R3)



38 2 Preliminaries

= A0 07 3 (%) 0% A04(0)0 7 49,(0) "
B

0<B<La

—Ao(0)™" Y (a)aﬁAo(O)aa_ﬁAo(O)_l‘

0o \P
< O A0,1(0) ™" = Ao (0) ™M oo (r2 [ 40,1 (0) || g m2 ) C (1) | A0, (0) | m (3
+ C[|A0(0) ™| oo g2y 140, (0) — Ao (0)| g g2 ) C (1)1 A0, (0) | mp ez )

+ C‘IA(J(O)_l||L°°(R3+)||A0(0)HF2°(Ri)

(1404007 = A () lpesy + D 197 A00(0) ™ = 97 A0(0) lpoces) )
1Bl=1

< C(n)‘lAO,l(O)H%‘Q"(Ri)HAO,l(O) — Ao (0)[| poe (3
+ O A0, (0)l| rp ez ) 1 A0,1(0) — Ao (0) || o r2 )
+ Cn)ll Ao (0) | g ) (€)1 40.4(0) = Ao (0) ] < rs
+C(n)(1+ ||A0,l(0)||F20(R§r) + ||Ao(0)||F2°(R§r))|\140,l(0) - AO(O)HFg(Ri)))
< O+ A0 (0) | gz y + ||A0(0)|\F§(Ri))2||z40,l(0) - AO(O)”FQO(IR{E’;_)a (2.33)

L2(RY)

where we also employed the estimate

187 A0,1(0) ™" = 87 A9 (0) | Lo es )

< O+ ([ A0 (0) | ey + 140 (0) || 9 (2 )l A0,1(0) — Ao (0) || g (w2 ),
for all 8 € N§ with |3| = 1, which follows as in (2.32) by replacing L?(R3) by L°(R%)
and exploiting Sobolev’s inequality.

Letting [ to infinity in (2.33), we conclude that 0% Ay(0)~* € L*(R%) and

(07

0%Ag(0)71 = A(0)" D (B

)aﬂAo(O)aa—ﬂAo(O)—l
0<pB<Lax
for all o € N} with |a| = 2. Replacing Ag;(0) by A¢(0) in (2.33), we also derive

19 Ao (0)™H = 0% Ao (0) || L2 rs )
<O+ [[A0(0) | ry w2 ) + \\AO(O)||F3(R1))2||A0(O) - AO(O)||F§(R1)
for all @ € N} with |a| = 2. In combination with (2.28) for n = 1 we obtain

[A0(0) — AO(O)”FZO(R?;_)
< Cn) A+ ([ Ao (0) | o g2y + ||A0(0)||F§(R§_))2||A0(0) - AO(O)HFQ(Ri)-

Finally, the same arguments as in (2.33) yield

1% A0(0) ™ L2z ) < CllA0(0) ™l Lo mz) 140 (0) | m9 3y C(m) | Ao (0) | g (m3
< C()l| Ao (0)IIrg zs)

for all @ € N} with |a| = 2 and thus in combination with (2.27) for n =1
||A0(0)_1||F3(R1) < C) (1 + (| Ao (0)[| g w2 ) )l A0 (O)]| g e ) -

This shows the assertion for n = 2.



2.2 Function spaces 39

Now assume that we have shown the claim for an index n € {2,...,m — 2}. Let
o € N3 with |a| = n+ 1. The induction hypothesis implies that 4y(0)~! € FJ(R3)
and that (2.27) and (2.28) hold for n. Step I) therefore yields

0 A0s(0) 7" + Ao (0)7" S (g>63A0(0)8a5A0(0)1’

<8<

i 3 (5)o a0 a0

0<B<a

L2(®3)

— 4(0)" Z <g>85A0(0)8a5A0(0)1’

0<B<a
< Cl| Aoy (0)7 - AO(O)_1||LDO(R1)||Ao,z(0)| Fo,
+ CHAO(O)_I‘|L°°(R3_)||AO 1(0) — Ao (0) || po

n+1(R3)HAOI( )" Hlroes)
+ O A0(0) ™l 2y [ Ao (0l o, m2) 1402 (0) ™ = Ao (0) Ml porz)  (2:34)
< C)(1+ |40, (0)[| 7o

&) + 1 40(0)lro, 23 ))" 11 40.2(0) — Ao(0)l| o, , m2)

'n+1
for all I € N. We proceed as in the cases n = 1 and n = 2. Letting [ — oo, we infer
that 9> Ag(0)~* belongs to L*(R?) with

L2(®3)

L®&)l[ Ao (0)” ”FO(]R )

71+1

0 00) " = ~4o0) " 3 (50400000 4000)

0<B<ax

for all @ € N3 with || = n + 1. Replacing Ag; by Ag in (2.34) further gives
10%Ag(0)~" — ao‘fio(o)*l”m(uﬁ)

< Cm) A+ [|40(0) | o, , g2 ) + | A0 (0)] po

n+1

n+1 A
®2)) 1 A4o(0) — Ao (0)[| o, m2)

+1

for all & € N3 with || = n+ 1. In combination with the induction hypothesis we thus
arrive at

140(0) ™" — Ao (0) "l o

i (
< [JAo(0)~" = Ap(0)~ |\F3(R3+)+ Z ||5QA0(0)71*5%210(0)71\&2(1121)

|a|=n+1

(R%)

<O+ [[A0(0) ]| o

n+l

@) + [ 4o(0)] po

n+1

22))" 1 40(0) = Ao (0) | po

n+1 f

Employing the same arguments as in (2.34), we estimate

0% Ao(0) ™ 12 r3) < C[|A0(0)” 1||L°°(R 5) 140 (0) I 7o, ¢
C[Ao(0) o, , r2) (1 +[[A0(0)

o))" [ 4o (0)
< C) A+ [[A0(0)][ro, , @3))"[[40(0)

for all a € N} with |a| = n + 1 and thus

|40 (0)~ ”FOH(R )y < [[40(0)~ 1||F3(R§r)+ Z ||3QA0(0)71||L2(R34)
la|=n+1

)" [140(0)ll o, r2)

All the assertions now follow. O

(B2) [ Ao(0) " ||F3(R§r)

FR(RE)

R (RY)

<O+ |40 (0) | o,

n+1

We already mentioned in the introduction that solutions of (1.10) of higher regular-
ity lead to compatibility conditions at the boundary. These compatibility conditions
appear in the half-space case as well as on domains. We want to treat both cases
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simultaneously in the following. To that purpose, we first have to clarify which kind
of domains we want to consider.

We will treat domains with a uniform C™*2-boundary. Since there are slightly
different definitions of C""-boundaries in the literature, we first make our notion of a
uniform C™-boundary precise, see Paragraph 4.10 in [AF09] and Sections 1.2 and 1.3
in [Gri85].

Definition 2.24. Let m € N. A domain G C R? satisfies the uniform C™-regularity
condition if there exists a locally finite open cover (U;)ien of OG and correspond-
ing functions @; € C™(U;) which are bijections onto B(0,1) such that ¢¥; = 4,0;1 €
C™(B(0,1)) for all i € N and the following conditions are satisfied.

(i) There is a natural number N such that for all A C N with |A] > N we have
Miea Ui = 0.

(i) There exists a number § > 0 such that G5 = {z € G: dist(z,0G) < §} is
contained in | J;o, ¢;(B(0,1/2)).

(i11) For each i € N we have ¢;(U; NG) ={y € B(0,1): yq > 0} =: B(0,1).
(iv) There is a constant My > 0 such that

10%p;,j(2)| < My for all x € U;,
0% j(y)| < M for all y € B(0,1), (2.35)

forallje{1,...,d}, i €N, and o € Nd with 0 < |a| < m.

If a domain G satisfies the uniform C"-regularity condition, we also say that the
domain has a uniform C™-boundary. .

On domains with a uniform C™-boundary we can define Sobolev spaces via local-
ization. If we further assume that there is a smooth partition of unity (6;);cn for 0G
subordinate to the covering (U;);en such that all derivatives of the functions 6; are
bounded, we can also construct a trace operator which has the same properties as the
one on the half-space. It is hard to find a fitting reference in the literature, since many
authors restrict themselves to bounded domains respectively domains with a bounded
boundary, see e.g. [Gri85], [Ne¢12], and [TW09]. In [AF09] a trace operator on a gen-
eral uniform C"-boundary is constructed. However, this operator only takes values in
L1(0G). The same is true for [Tan97]. In [Bro61] the author works on general uniform
C™-domains but only deals with Sobolev spaces of integer regularity. Nevertheless,
this article is a good reference as it actually performs the localization argument and
one can see how the arguments transfer to the case of fractional Sobolev spaces.

In particular, the work [Bro61| shows that the properties of a uniform C™-boundary
are strong enough to allow the same constructions as performed in [TW09] and [Gri85]
in the case of a bounded domain. The only difference is that in the bounded domain
case there are only finitely many charts while we have to deal with infinitely many.
The local finiteness of the covering provided by Definition 2.24 and the assumption
of the existence of a partition of unity as described above are a sufficient replacement
for the finiteness of the covering. We also refer to Chapter 5 for an example of a
localization procedure on a domain with a uniform C"™-regular boundary.

Definition 2.25. Let m € N with m > 2 and let G C R? be a domain satisfying
the uniform C™-regularity condition. Let s € [0,m]. Take a covering (U;);en and
corresponding chart maps (¢;)ien as in Definition 2.24. We define the Sobolev space
H*(0G) as the set of all functions g € L?(9T) such that the functions g o ;' belong
to H*(¢;(U; N0Q)) and

o0
. —1
||9||qu(ac) = Z g0 w; ||%{8(<pi(Uiﬂ6G)) < 0.
=1
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As usual, this definition is independent of the concrete covering (U;, p;)ien and
taking another one leads to an equivalent norm.

As mentioned above, for the construction of the trace operator we make an additional
assumption, which is concerned with a suitable partition of unity. A localization
procedure then gives the following result.

Lemma 2.26. Let m € N with m > 2. Let G be a domain with a uniform C™-
boundary. Let (U;)ien be a covering of G as in Definition 2.24. Assume that there is
a smooth partition of unity (0;)ien for 0G subordinate to (U;)ien such that there is a
constant C' with

|090;(z)| < C

for all x € U; and i € N. Then there is a continuous trace operator tropg which maps
H*(G) continuously into H =2 (dG) for all k € {1,...,m}. Moreover, the operator
troe extends the mapping C°(G) — C™(0G), ¢ — ¢jac-

Lemma 2, Lemma 3, and Lemma 4 in [Bro61] show that the assumption of the
existence of such a partition of unity is inessential. A suitable replacement for this
partition of unity can in fact be constructed for every uniform C"-boundary. However,
we will need this partition of unity in Chapter 5 for the localization procedure of an
initial boundary value problem. The assumption of the existence of such a partition is
therefore included in the definition of a tame uniform C"*-boundary, see Definition 5.4.
Even more assumptions are included there, whose benefit are not apparent yet, so that
we postponed the definition of a tame uniform C"™-boundary to Chapter 5. Since we
will only consider domains with a tame uniform C"-boundary in Chapter 5, we can
also restrict ourselves to such domains here. For the moment it is enough to know that
every domain with a uniform C"™-boundary possesses a smooth partition of unity for
its boundary as in Lemma 2.26.

In later sections it will be convenient to have the statement of Lemma 2.23 not only
on the half-space but also on domains. To that purpose, we first remark that we can
transfer the result from Lemma 2.21 from the half-space to domains.

Remark 2.27. Let m,k € N, J C R be an open interval, and G C R? be a domain
with a uniform C™*{™2}_boundary. Take A € Fy, «(J x G). Then the assertion of
Lemma 2.21 still holds with R} replaced by G.

The proof of this statement is reduced to Lemma 2.21 via a localization procedure, cf.
the proof of Theorem 5.6. The assumption that A has a limit at infinity is introduced
to account for the fact that the domain G may have an unbounded boundary so that
infinitely many charts may be necessary to cover it. <&

Since in the proof of Lemma 2.23 the assumption that the underlying spatial domain
is the half-space Ri was only used to apply Lemma 2.21, we obtain the following
corollary.

Corollary 2.28. Let m,k € N with m > 3 and n > 0. Take an open interval
J C R and a domain G C R? with a uniform C™{™2} _boundary. Pick Ay, Ay €
ﬁ%,m(J x G). Then the assertions of Lemma 2.23 still hold with Ri replaced by G.

We now return to the compatibility conditions. They appear since we can both
differentiate the differential equation and the boundary condition in (1.10) with respect
to time. The former yields a formula for 87u(0) only involving the coefficients and the
data, while the latter prescribes the trace of 7u(0) at the boundary of Ri respectively
G. Therefore, coefficients and data have to be compatible. These “higher order initial
values” will be ubiquitous in the following. Hence, it is reasonable to introduce a
precise notation, which clarifies their dependencies on the coefficients and data.

Definition 2.29. Let m € N with 1 = max{m, 3}, J C R be an interval, and G C R?
be a domain with a tame uniform C™*{™:2} boundary. We define inductively for all
p €1{0,...,m} the operators

Scmp: J X Frpa(J x G) x (Fa(J x G)* x H™(J x G) x H™(G) — H™ ?(G),
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Sc.m,o(to, Ao, A1, A, A3, D, f,ug) = uo,
SG,m,p(th AO; AlaA27A3a D7 f7 uO)

3
= Ao(to) ™ (87 F(t0) = D As0;Smp-1(to, Ao, A, As, Ag, D, f,u0)
j=1
p—1

—1
-> <p l >8£A0(t0)sm,pl(t07A07A17A27A3aDafa )
=1

3 p—1

-1
_ Z Z (p l >8é14] (to)ajsm,p—l—l(to’ Ao, Ay, Ag, Az, D, £ uO)

j=11=0
p—1 p—1

_Z < l )8£D(t0)5m,p—1—l(t07AOvAlaA27A37D7.fa UO))’ (236)
=0

where Fry pa(J X G) = U, <o Fnn(J x G).

n>0

Observe that these operators indeed map into H™?(G) by Lemma 2.33 below. We
want to make the motivation before Definition 2.29 precise. To that purpose, we first
have to say with which boundary data we are going to work. In Section 3.2 we will
see that we have to treat initial boundary value problems which incorporate the loss
of half a derivative from the boundary to the interior. We thus make the following
definition.

Definition 2.30. Let m € Ny, J C R be an open interval, and G C R3 be a domain
with a tame uniform C™{m:2} boundary. We define

Em(J x 0G) = ﬁ Hi(J, H™ 271 (5G))

Jj=0

and equip this space with the family of norms

llgl Em ~(JXx8G) = ng.agjn HaggHL%(J,Hm“/Q*J'(aG)) = O<mja<Xm ||€—73ngLZ(J,HmH/%J(aG))

for all v > 0.

We point out that in the case G = R3 the space E,,(J x 0R%) consists of those
functions g € L2(J, HY/2(0R3)) for which all derivatives in time and spatially tangen-
tial directions up to order m belong to L?(J, H/2(0R3)). The next lemma makes the
motivation before Definition 2.29 precise.

Lemma 2.31. Letn > 0, m,k,l € N, and m = max{m,3}. Take an open interval
J C R and a domain G C R® with a tame uniform C™>{"2} _poundary. Choose
Ap € Fppn(J x G), symmetric Ay, Az, Az € Fsi(J X G), and D € Fy 1(J x G).
Let B € Wmtheo(J x G)>*k. Pick data f € H™(Q)F, g € En(J x 0G)!, and ug €
H™(R3)k. Assume that there is a solution w of (1.10) on the domain G, i.e., a
solution of (5.1), that belongs to G, (J x G)¥. Then

Wu(t) = Sa.mp(t, Ao, ..., A3, D, fou(t))
and
troc (BSG,mp(t, Ao, ..., D, f,u(t))) = Btrog Sc,mp(t, Ao, ..., D, f,u(t)) = 97 g(t)
forallt € J and p € {0,...,m — 1}.

Proof. After differentiating the differential equation in (1.10) with the domain R}
replaced by G p — 1 times with respect to time, we note that all appearing terms are
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still continuous with respect to time. Inserting ¢, solving for dYu(t), and performing
an induction on p yields 7 u(t) = Sg,mp(t, Ao, ..., As, D, f,u(t)) for all t € J and
p€{0,...,m}.

If p € {0,...,m—1}, the regularity of u and g allows us to differentiate the boundary
condition in (1.10) p times with respect to ¢, leading to Btrag 0Yu = 0¥g on J x 0G.
Since B trag OFu is still continuous with respect to time, we obtain

Btrog Sc,mp(t, Ao, - - -, Az, D, f,u(t))) = Btrag 0fu(t) = 97 g(t)
for all p € {0,...,m — 1}. O
The previous lemma applied with ¢t = ty shows that the identity

Btrog Sa,m.p(to, Aos - .., As, D, f,ug)) = 9 g(to)

is a necessary condition for the existence of a G, (£2)-solution of (1.10). Note that this
is a compatibility condition for the coefficients and the data. The natural question at
this point is, whether this condition is also sufficient for the existence of a G, (J x G)-
solution. We will answer it positively in Chapter 4.

Definition 2.32. Let J C R be an open interval and G C R3? be a domain with a
tame uniform C™{m:2} _poundary. Pick m,k,l € N and set m = max{m, 3}. Take
A € Fyppa(J x G), symmetric A1, Az, Az € Fai(J X G), D € Fy 1 (J X G), and
B € Wmtheo(J x GYXk. Choose data f € H™(J x G)*, g € E,(J x 0G)!, and
ug € H™(G)*. We say that the tupel (to, Ao, ..., As, D, B, f,g,u) fulfills the linear
compatibility conditions of order m if

traG(BSG,m,p(tO,A()v'",A37D7fvu0)) :afg(to) fO’f'O Spgm_l (237)

As mentioned above the operators Sg m,p will be omnipresent in the following sec-
tions. It is therefore essential to have good estimates for them. The next lemma
shows that Sg m,, maps into H™P(G) as claimed and that the H™ P(G)-norm can
be estimated by suitable norms of the coefficients and the data evaluated at tg.

Lemma 2.33. Let J C R be an interval and let to € J. Take n >0, m € N, and set
m = max{m,3}. Let G C R3 be a domain with a tame uniform cmax{m:2}_poundary.
Pick rg > 0. Choose Ay € Fy ,(J x G), symmetric A1, Az, As € Fp(J x G), and
D € Fs(J x Q) with

[Ai(to)llro (@) <710, [1D(o)llre_ (c) < Tos

| Jnax 187 A (t0) || rm-1-3(c) < o, | max 18] D(to)l| 156y < 70

for all i € {0,...,3}. Take f € H™(J x G) and ug € H™(G). Then the func-
tion S m.p(to, Ao, ..., A3, D, f,up) is contained in H™ P(G) for all p € {0,...,m}.
Moreover, there exist constants

Crmp = Cmp(n,r0) >0 (2.38)

such that

1S, m.p(to, Ao, - .., A3, D, fyu0) || pm—»(c)
p—1

S Cm»P(Z Hagf(tO)HHm—l—j(G) + ”uO”H’”(G))

Jj=0

for 0 <p<m.
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Proof. Without loss of generality we assume ¢y = 0. Observe that in the case p =
0 there is nothing to show. To streamline the notation, we further write S, , for
SG,m,p(07 A(]a ceey A37 Du f7 uO)‘

I) Let m € N and p = 1. We then have f(0) € H™ }(G), djup € H™ *(G) for
j=1,2,3,and D(0)ug € H™ (G) by Lemma 2.22 (vii). Part (vii) of the same lemma
and Corollary 2.28 therefore yield S,,1 € H™ !(G) and

1Sm1llam—1(c) < CllAo(0)7

FO

m— 1

G)Hf iA] aUo* (O)UOH
j=1

Hm—1 (G)

o m—1

<Cm)A+[[4O)F_ (@)
([LFO) | zm=1(c) + Clro)lluoll zm @y + 1DO)re . (@ lluollzm-—1(c))
< C(n,r0) (1 + |40 (0l po_,(c))™ (L + D)o _ ()

(||f( MWem—1(c) + HUOHHW(G))

The assertion is thus true for all pair (m, 1), m € N. In particular, we are done in the
case m = 1.

IT) In this step we consider m > 3 (implying m = m) and p € {2,...,m — 1}.
Assume that the assertion has been shown for all 1 < k < p. The function Sy, p—1
then belongs to H™~(P~1(@G) and thus 9;S,, ,_1 is contained in H™P(G) with

3
A5(0)0;Smp1 | < C(r0) | Smp 1]l ron—ps
| A28 0] . < CNS gl

< C(rg) - mp1(2||af Mrn-1-s6) + ol mree). (239)

Next let I € {1,...,p—1}. f m —1—1< 2, we have [ > m — 3 and hence
m—p+l>2m—-p—-3>2m—(m—-1)—-3=m—-22>1,

i.e., m—p—+Il > 2. Further note that m—p+I > m—pand m—1—1 > m—p. As 8§A0(0) €

H™'7YG) and S,, p—; € H™~P~D(@G), Lemma 2.22 (vi) shows that 9! A(0)S,, 1 €

Hmin{m—ptlm=1-1}(G) <y H™P(@G). From the induction hypothesis, we infer that

108 A0(0) S p—ill zrm () < ClIO A0 (0) | 11 1S m p—ill srm—rt1(c)
p—1—1
< C119; Ao (0) || grm—1-1(GyCom.p—1(1, 70 ( Z 107 £ ()| grom—1-3G) + Ilwo | 7o ))-

In particular,

p—1 p—1
B LA o — H
1> (P LU

<C Jnax ||8 Ao(0) [l rm-1-1(c) | nax 1Sm.p—tll frm=r+1(c)

C(n, 0 (Z 107 £ O 15 @) + luolln(c))- (2.40)

Analogously, one obtains

p—1 p—1
H Z ( l >8£D(O)Sm’pl1HHsz(G)
1=0

< C(1L+ DOy, @)1+ max [9DO)]sn-s1@) | max

max ||Sp p—i—1l|gm-r+ir1(q)
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lmm-1-5(c) + HUOHHm(G)>~ (2.41)

< Clnro) (D110 £(0)
=0

Lemma 2.22 (vii), Corollary 2.28, and (2.39) to (2.41) yield

3
Smpllrr-say < 14000) g, (e[| 087 7(0) = D 4305Smpa
j=1

—1 -1

p p
- ( I )atAO(O)Sm7p—l E < 1 )atD(O)vap_l_lHHmp(G)

1= =0
<o+ 400)les_ )™ (108 F Ol (e

C(n,ro (Zﬂaj )| grm—1- J(G)+||u0||Hm(G)))

Conp (.70 (ZW O)lsm-1-s(6) + lwollzmc) -

III) It only remains to show the assertion for the pair (m,m) for all m > 2. To this
purpose we first note that

3
I3 20500,

2(G) S C”Sm,mfl ||H1(G)

m—2

< C - Coana ( D2 102 O) 116y + ol )

Jj=0

due to the first two steps. For [ € {1,...,m — 1} the function 8! 4,(0) belongs to
H™'=Y@) while S, ,,_; is an element of H™~("™~0 (@) = H'(G) due to the previous
steps. Lemma 2.22 (v) thus shows

104 Ao (0) S, mleLZ(G) < Cl|A0(0)]

H™=1=1(Q) ||Sm,mfl ||Hl(G)

Cn. o (Z 102 £O) |z 156y + ol ) )

where we also used step I) respectively step II). For [ € {0,...,m — 1} one obtains
analogously

10, D(0) mmflfluLz(G < CID0)|| gr—t-1(a)l|Sm.m—i-1ll (@)

C(n, 7o (Z 107 £(O) | zm—1-3 ey + ||u0||Hm(G>>'

Finally, we deduce as in step II) that

|| mm||L2(G) < Cmm 77,7”0 (Z ||8 f |‘H"‘71’j(G) + ||u0HHm(G)) 0

At several places in the following it will be important to know that there exists a
function v in G,,(J x G) with prescribed k-th time derivative at time 0 in H™*(G)
for all k € {0,...,m}. We will show in the next lemma that such a function v exists.
The proof is a slight adaption of the proof of Theorem 2.5.7 in [Hoe76], where the
existence of an H™ (R’ )-function with prescribed boundary trace of the kth normal
derivative in H™ F=1/2(R*1) for 0 < k < m — 1 is shown.
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Lemma 2.34. Let m € N and let G C R3 either equal R® or be a domain with a tame
uniform C™>{m2}_boundary. Take hy, € H™ *(G) for allk € {0,...,m}. Then there
is a function u € Gy (R x G) with 0Fu(0) = hy, for all k € {0,...,m} and there is a
constant C' = C(m) such that

m
lulle,,@xc) < CY_ Nl gm-—rc)-
k=0
Proof. Let g € S(R?) for k € {0,...,m} and ¢ € C2°(R) such that ¢ equals 1 in a
neighborhood of 0. We define the function v by

u(t, z) :f—l(w((1+| 2126) 3" g ) (2.42)
k=0
for all (¢,z) € R, where F denotes the spatial Fourier transform. Since the mapping
m A tk
(1,€) = (1 + €)' 2 Y r(€)
k=0

belongs to S(R*), also the inverse spatial Fourier transform is an element of S(R%).
The dominated convergence theorem further yields

o v(0) = g (2.43)

for all k € {0,...,m}.
The crucial step is to show the estimate

lvllc,. mxrs) < CZ | g || rm—» (m3)- (2.44)
k=0

To this purpose we take j € {0,...,m} and compute

107 0117 o (g, s g2y = Sup/ (L+ €)™ F (@] o)(t, €)Pdé

<Conp [y 3 [oh (9004 k0 )

teR

<C Zsup / (L4 1E3)™ 97 g (&) P10 (D (1 + [€%)/24) (1 + €)M 20)")[Pde

tE]R

2\m—k|~ 2 J ky|2
< C%Ag<1+ €)™ H13u (O sup 10} (0(0)) e

O3 [ AR @)l = C 3 lonlFrn
k=0 k=0

Taking the maximum over all j € {0,...,m}, we arrive at (2.44).

The assumptions on the domain G imply that there exists a total extension operator
E for G, see paragraph 4.11 in [AF09] and Theorem VI.3.1.5 in [Ste70]. (In the case
G = R?® we set £ = id.) Then the functions Ehj, belong to H™ *(R?). We take
sequences (g¥),ey in S(R?) such that

g¥ — Ehy,

in H™*(R3). Let v, € S(R*) be the function constructed in (2.42) for the tuple
(g%,...,9™) for all n € N. Using the linearity of the construction (2.42) and esti-
mate (2.44), we deduce that (v, )nen is a Cauchy sequence in Gy, (R x R3). It thus
converges to a function u in G,,(R x R3). In particular, we have

dlu(0) = nh_{lgo dlvn(0) = nh_}ngo g, = Eh;

for all j € {0,...,m}. The restriction of u to R x G has all the asserted properties. [
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A priori estimates for the
linearized problem

For given coefficients Ay, ..., Az € WH(Q) and D € L>(Q) we define the first order
linear differential operator L = L(Ay,..., As, D) by

3
L(Ao, ..., A3, D)u= Agdu+ Y  A;0;u+ Du. (3.1)
j=1

We consider the corresponding linear initial boundary value problem

3
Apdru+ Y A;dju+ Du = f, reR:,  tel;

=1 , (3.2)
Bu =g, redRy, telJ;

u(0) = wo, r €R3;

where B is a suitable matrix function. In this section we estimate an a priori given
solution of this problem in the norm of G,,(£2) by the inhomogeneity f and the initial
value ugp in corresponding norms. We start with a result from [Ell12] which yields
such an estimate for m = 0 and also establishes the existence and uniqueness of
such a solution. We then show that the tangential derivatives of a solution of higher
regularity again solve (3.17) with suitable coefficients, inhomogeneities, and initial
values involving also lower derivatives of the solution. Iteratively, we can then derive
a priori estimates for tangential derivatives of solutions.

Because of the boundary condition in (3.2), there is no hope that the above procedure
could also work for the normal derivative. If the boundary is noncharacteristic, i.e., the
boundary matrix is invertible, one can express the normal derivative of the solution by
the solution itself and its spatial tangential and time derivatives. However, in our case
the boundary is characteristic so that we need another technique. We exploit that the
differential operator L in fact encodes Maxwell’s equations, i.e., the special structure
of A, As and As, to get the estimate for the normal derivative. Finally, an iteration
process yields the a priori estimates in G,,(Q) for all m € N.

We start by giving the solution concept for this initial boundary value problem.

Definition 3.1. Let J C R be an interval, to € J, and Q = J x Ri. Take an
inhomogeneity f € L*(Q), a boundary value g € L*(J, HY?(R%)), and an initial value
ug € L2(RY). A solution of the linear initial boundary value problem (3.2) is a function
uwe C(J,L*(R%)) with

(i) Lu = f in the weak sense (2.20), i.e.,

<LU7W>H*1><H3 =(f, 90>H*1><Hé =(f,p)rexzz forallp € H&(Q)7
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(ii) Tr(Bu) = g on J x OR3,
(iii) and u(ty) = o,
where the trace Tr(Bu) is defined in Definition 2.16.

3.1 Properties of regular solutions

We next note that a weak solution u, which additionally belongs to G1(£2), solves (3.2)
also in the strong sense.

Remark 3.2. Assume that a solution u of (3.2) belongs to G1(€2). Then Lu is an
element of L?(Q). An integration by parts yields that Lu = f in L?()) where the
derivatives exist in L*(Q). By Remark 2.17 we also have

g="Tr(Bu) =M - Tr(Asu) = M - Tr;(Azu) = B - Try u.

The function u therefore solves (3.2) also in the strong sense, i.e., the derivatives exist
in L?(Q)) and we obtain the boundary value of Bu by means of the standard trace
operator. &

The above result is the fundament for our a priori estimates. For the iteration

scheme explained in the introduction of this section, it is crucial to know that the
derivatives again solve a certain equation.

Lemma 3.3. Let J C R be an interval and set Q = J x Ri. Take coefficients
Ao, ..., A3, D € WL>°(Q) and an index k € {0,...,3}. Choose f € L*(Q) with Oy f €
L*(Q) and v € C(J, L*(R3)) such that d;u € C(J,L*(RY)) for all j € {0,...,3} with
OrA; # 0. Assume that u solves L(Ag, ..., As, D)u = f in the weak sense, i.e.,

<L(A0a .- '7A3aD)uﬂ‘p>H*1><Hé = <f7 90>H*1><H&

for all ¢ € HE(Q). Suppose that also Oxu belongs to L*(2). Then the function Oxu
solves L(Ay, ..., As, D)v = f1 i in the weak sense, where

3
Jik=0kf— ZakAjaju — O Du

=0
belongs to L?(12).

Proof. Let j € {0,...,3} with 9yA; # 0. Since d;u and dxu belong to L*(Q), we
obtain that both 9;0,u and 9,0;u belong to H~1(£2). As both functions coincide in
D'(), they are equal in H ().

In the following, we abbreviate L(Ay,..., A3, D) by L. Exploiting that the product
of a W (Q)-function with an H}(Q)-function again belongs to Hg (£2), we compute

3

(LOgu, §0>H*1><Hé = Z@jak% A?QP>H*1><H3 + (Oku, DTSO>H*1><H§
j=0

3
== (9, 0k(A]9)) 1212 — (u, 0p(D"9)) 25 12
i=0
3
= (L, 0hf) g1y — (O Aj05u,9) L2y 12 — (06D, @) L2 12
=0
3
= (Okf =) OAj0u — 0k Du, @) 12> = (ks ) 1ox 1

=0

for all ¢ € C>°(Q2). We conclude that Loyu = f1 5 in H1(Q). O
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In the following, it will be useful to have a higher order analogue of the above result.

Lemma 3.4. Let T" > 0, T € (0,T”), and Q = (0,T) x R%. Pick m € N and set
m = max{m,3}. Take Ao,...,A3,D € Fz(Q), f € H™(Q), and u € G,,(). Assume
that the function u solves L(Ao, ..., Az, D)u = f in the weak sense. Pick a € N} with
|a] < m and define the function f, by

3
fa=0"F=>_ > <g)aﬂAjaaﬂaju > <g)85D80‘5u.

J=00<B<L 0<p<a

Take r > 0 such that ||Ai|| g, ) < r and |D||p, ) <7 for alli € {0,...,3}. Then
fao belongs to H™121(Q) and 0%u is a weak solution of L(Ao,...,As, D)v = fa.
Moreover, there is a constant Cy, = Cp,(r,T") with

Vfall 1oty < 1Lzt ) + ol o0

for all v > 0.

Proof. 1) Fix j € {0,...,3}. We first note that 9°A; is an element of ém—|ﬁ|(9)
and 0;0% Pu one of ém—\a|+|ﬁ\—1(ﬂ) for all B € N§ with |3| € {1,...,]a|}. In order
to establish that their product belongs to C?m_m(ﬂ), we have to distinguish several
cases. Fix 8 € N} with |3| € {1,...,]a|} and v > 0.

In the case || < m — 2 we have

min{m — |af + |B] — 1,7m — |B[} = m — |a
and 7 — || > 2 so that Lemma 2.2 (ii) gives 9°4;0;0° Pu € G,,_|4/() and

10°4;0;0* Pulla, . . < Cl0°Ajlla..

g CT”U’”GWL,'\/(Q)'

@10;0° P ullg,

—lal,y — 18] —lal+181-1,7(2)

If | 8] = m, we infer
3<m=|p| <laf <m

so that m = |a| and

m—la|+ 18] —12 2
Hence, Lemma 2.22 (ii) again yields that 9°A4;0;0“ Pu is contained in ém_m(ﬂ)
with

107 4;0;0* Pl @ < Cl974;lq

S CT”U’”GWL.'\/(Q)'

aga—p
m—laly aoa@100° Pulla,, 0y s-1q @

It remains to consider |3| = m — 1. (Note that then m > 2.) If in this case |a| = |3]
and m > 3, we once more have that m — |a| 4+ |8] —1 > 2 and Lemma 2.22 (ii)
applies again. If |a| = || and m = 2, then both 9°4; and 9;0“ Pu belong to
G1(Q). Therefore, Lemma 2.22 (i) shows that 9% A;0;0% Pu is an element of Go(Q) =
ém_m‘(Q) and

10°A;0,0° P ull
< Clo° 4|

@ < Clo7Ajlle,@10;0° P ullg, . @

m—|al,y

Gﬁk\ﬁ\(ﬂ)”aﬂ'aaiﬂu' G o) +18]—1,~ (2) < CTHu”Gm,w(Q)'

Finally, if |a| > |3|, we deduce that m > 3 and that both 9°A; and 9;0% Pu are an
element of G1(Q). We then proceed as above.

We conclude that Z?:l > 0<p<a (g)aﬁAJ—ajaa—ﬂu belongs to G’m_M(Q). Since
0% Py € ém_|a|+‘5‘(9) — ém_|a‘+|ﬁ|_1(§2) for 0 < 8 < a, also the function
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> 0<p<a (g)aﬁpaa*ﬁu is contained in ém_w(Q). We have thus shown that f, be-
longs to H™~1*l(Q) with

[ fall grr=tor gy < 1 fllap @) + CrT?|ullg,,

for all v > 0.
IT) As u is the weak solution of (1.6) on J and belongs to G1(2), the function also
solves L(Ay, ..., As, D)u = f in the strong sense by Remark 3.2. It particularly fulfills

3
Agdyu+ Y AjOju+ Du = f (3.3)

Jj=1

on Q. All appearing factors possess weak derivatives in Go(2) up to order m — 1. We
can thus apply the product rule to infer

3
¥ (g) 0°4;0;0° Fu+ Y (g) 0P DO Pu = 0° f,
Jj=00<B8<a 0<B<a
3
A0 u+ Y A;0;0%u+ DO u = f,

j=1

for all € N} with || € {1,...,m — 1}.
Next let a € N§ with |a| = m. Take o/ € N§ and k € {0,1,2, 3} such that o = o/ +e,.
Observe that 9 u € G1(Q) solves

L(Ao, .. .,Ag,D)’U = fo/

in the weak sense, 8j8°‘/u belongs to L?(Q) for all j € {0,...,3}, and 9y f. is an
element of L?(2) as f,r € H(Q) by step I). Lemma 3.3 thus implies that 0%u weakly
solves

L(A(), e ,Ag, .D)'U = fo/,ka
where we set
3
fark = Onfor — Y OA;0;0% u— 0 DO u. (3.4)
j=0
We claim that f 1, = fo. To that purpose, we first note that
{BeN;:0<B<a}={BeN]:0<B<a;f =0}
U{BeENG:0<B<as1< B <ap—1}U{BENG:0<B<a; By =ar}
={BeN;:0<p<a;B=0U{BeEN;:er <B<a}
Uf{er} U{BEeNG: ex < B <a; B = ax}, (3.5)
where all unions are disjoint. We now take a look at the sum
3 o
>N (ﬁ>aﬁAjajaa Ay
j=00<8<a’

appearing in f,. Since every summand is the product of functions possessing weak
derivatives of first order in Go(2), we compute

3 , 3
(> > <Oé>a5Ajajaa’ﬁu)+§;)akAjajaa’u
=

7=00<B<a’
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_Z Z ( )8B+€kAaaa (Bter),,

j= 00<,8<oz’
+Z > ( )aﬁA 0;0° 'Bu—l—ZGkA 0;0% u
7=00<pB<a’ j=0

:Z 3 (5 o )aﬁAjajaa—ﬁu

j=0 ep<B<a

3
+>0> ( )aﬁAaa@ ﬁu+ZaekAaaa “ru

j=00<B<a’ =0

Z > (G2a)(5)) 7 amer
> 6"

)aﬁAaa ﬂu+z > ( )aﬂAjajaaﬁu

J=00<p<a’
Bk Oék Br=0

3 /
«
+3 1) 0% A,0,0° %,
=0 <<ek> > 7

where we used that (O[‘;) = 0if B € N§\ {0} does not fulfill 0 < 8 < & in the last step.
Observe that

(7 () =1 () + G) -1 () ()

i#k i#k

-11(3)- ()

for all 8 € Ny with e, < 8 < o/,

()~ TLC) () - T () - )

7

i#k ik

ng

for all B € N} with 0 < 8 < « and By = ay,

() -T0G) () -11(3) () - ()

for all B € N} with 0 < 8 < a and 8 = 0, and

A
(Oé)—i—l:a;c—i—lzak:(a).
ek €L

We then conclude via (3.5) that

3
(> > (oﬁ‘/>aﬁAjajaa’ﬂu)+ZakAj6jaa’u

J=00<p<a’ §=0

3
= (g) 0% A;0,0° Pu.
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Analogously, one derives

(X (C;/)aﬁpaa’ﬁu)+akpaa’u: 3 <g>aﬁpaaﬁu.

0<B<a’ 0<B<la
Since also 9,0% f = 9 f, we arrive at
for g = fa (3.6)
We have thus shown that 0%u is a solution of
L(Ay,..., A3, D)v = f,
in the weak sense for all a € N3 with |a| < m. O

The previous lemma shows that for a Gy, (£2)-solution u of Lu = f the derivative
0“u solves LO%u = f, in the weak sense for all multiindices o with |a| < m. If we
differentiate only in tangential variables, we expect that the derivative even solves
the initial boundary value problem (3.2) with suitably adapted boundary and initial
value. In order to verify this conjecture, we have to study the trace of BO%u for all
multiindices & with |a] < m and ag = 0.

Lemma 3.5. Let 7" > 0, T € (0,7"), and Q = (0,T) x RY. Pick m € N and
set m = max{m,3}. Take coefficients Ao, ..., Az, D € Fz(Q), Az € Wmtheo(Q),
and B € WmLee(Q). Assume that there is a matriv M € W™T1°(Q) such that
B = MA;. Choose f € H™(Q) and g € En(J x OR3). Suppose that there is a
function w € H™ () which solves L(Ay,...,As, D)u = f in the weak sense and which
satisfies Tr(Bu) = g. Pick o € N§ with || <m and ag = 0. Define the function

ga=0"— Y (“) tr(8° B 9P ).

0<B<a 'B
Then g, belongs to L*(J, H/?(0R2)) and Tr(BO“u) = go. Moreover, we can estimate

”ga”Egn(Jxa]Ri) < ||g||Em,~,(J><8Ri) + C”B”Wm“m(ﬂ)||U‘|H;“(Q)
for all v > 0.

Proof. Take a multiindex o € N3 with |a| < m and a3 = 0. In the case |a| < m — 1
we note that 9%(Bu) belongs to H*({) so that we can exploit that Tr coincides with
the standard trace operator tr applied pointwise in time (cf. Remark 2.17). Since the
standard trace operator commutes with derivatives in tangential directions, we obtain

0°g = tr(8"(Bu)) = Y (g) tr(9° Bo°~Pu),

0<p<a
tr(BO“u) = go.-

Here we exploited that also 9° BO*~Au is contained in H'(Q) for all 0 < 8 < a.

Next assume that |a| = m. Pick o/ € N§ and j € {0, 1,2} such that « = o/ +e;. The
first step shows that Tr(BA® u) = tr(Bd* u) = gos. The assumptions and Lemma 3.4
further imply that 0% u belongs to H'(Q) and that L(Ay,..., Az, D)0%u is contained
in L2(Q). Corollary 2.18 (i) thus yields that

0; Tr(BO™ u) = Tr(Bd%u) + tr(ajBao‘/u),
Tr(BO“u) = 0jgar — tr(ajBao‘lu).

The analysis of the binomial coefficients in the proof of Lemma 3.4, see (3.5) to (3.6),
now shows that )
go = 0jgor — tr(0; BO“ u) = Tr(BO%u).
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Take again a multiindex o € N} with |a] < m and a3 = 0 and fix v > 0. To
derive the estimate for g, we first note that 9%g is contained in Eo(J x OR3) and
10%gl &, L(TxoR) < 9l &, L (7xor%)- Moreover, the function 9° BO* By is an element

of H'(Q) and hence,

107 BO*~ull g, . (rxoms) < Cll0° BO*Pull 2 (g (es ) < CllBllwmsr @y ull i o)

for all 0 < 8 < a. The assertion thus follows. O

3.2 First order a priori estimates

We now begin to derive the desired a priori estimates for regular solutions of the
linear initial boundary value problem (3.2). Our starting point is an existence and
uniqueness result in L? from [EIl12], which also yields a basic a priori estimate in L?.
The results from Section 3.1 allow us to apply this zeroth order estimate to tangential
derivatives of a more regular solution, leading to a priori estimates in the tangential
variables. Since the problem (3.2) has a characteristic boundary, it is then crucial
to show that we can also control the normal derivative of a regular solution. Here
we heavily rely on the structure of the Maxwell equations. The combination of the
estimates for tangential and normal derivatives finally yields a full first order a priori
estimate.

In the derivation of a priori estimates without a loss of derivatives we exploit the
fact that we study a class of generalized linearized Maxwell equations on the half
space due to the localization procedure. This means that the coefficients in front of
the spatial derivatives posess a certain structure which resembles the structure of the
curl operator. We make this idea more precise by setting

FP Q)= {A € Fls()N WL ()0%6: Iy g, ps € EP ()N Wwmtheo(Q)

m,coeff

3
such that A = Z Agouj},

j=1
FS? e () = { A € FERg(0) N5 (Q)550: Sy iy, iy € I, (0) 1TV
3
such that A = ZA;O,uj and 3k € {1,2,3} with |ux| > 7 on Q}
j=1
Observe that all elements of F P () and F? ¢ (Q) are symmetric.

We first remark that if the boundary matrix A3 of the initial boundary value prob-
lem (3.2) belongs to F);’  .¢(©2) and does not vanish anywhere, then it satisfies the
structural assumption made on its spectrum on page 1925 in [Ell12].

Remark 3.6. Let o € R® and A = Z?Zl o; AS°. A straightforward computation shows
that
det(A — A) = A2\ + |a)2(\ — |a])?

for all A € C. Hence, if o does not equal 0, the matrix A has exaxtly 2 positive and
2 negative eigenvalues, counted with multiplicities, and 0 is a repeated eigenvalue of
multiplicity 2. O

We will assume in the following that the boundary conditions in (3.2) are conserva-
tive in the sense of [Ell12], i.e., that for nowhere vanishing A3 € F§% () the matrix
B belongs to W (J x R} )?*6, constant outside of a compact set, and there exists a
matrix C € WH(J x ]Ri)QXG, constant outside of a compact set, such that

1
Ag = Re(CTB) = 3 (CTB n BTC)
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on J X 8]1%3_. For later reference, we introduce the notation
BCn(As) ={B € F;*(J x G): 3C € Fy(J x G) such that
As =Re(CTB) on J x G} (3.7)

for all nowhere vanishing Az € FSEOQH(Q) and domains G C R3. When we study more

regular solutions of (3.2), we also need more regular coefficients. We therefore also
define

BCEH(As) ={B € Wt >*(J x G): 3C,M € Wt">°(J x G) such that  (3.8)
Az =Re(CTB) and B = M A3 on J x G}

for all m € N and domains G C R3, where W(Z}H’O"(J x G) contains those functions

in Wm+1o°(J x G) which are constant outside of a compact subset of J x G.
Proposition 5.1 of [Ell12] and its proof then give the following result.

Lemma 3.7. Let n > 0 and r > rg > 0. Take Ay € Fy (), A1, Az, Az €
e (1) with |Aillwiq) < v and [Ai(0)l[ e may < 1o for all i € {0,...,3},
and As(t,x) # 0 for all (t,x) € Q. Let D € L™(Q) with ||D|p~@) < 7 and
B e BCRi(Ag;) with ||Bllwi=(q) < ro. Let f € L*(Q), g € L*(J,HY/?(0R2)), and
ug € L*(RY). Then (3.2) has a unique solution u in C(J,L*(R%)), and there ezists a
number yo = yo(n,r, As) > 1 such that

—t 2 2
sup |le” " u(t + v||u
up o7 u(t) ey + 1l

< Cyyp

1
u0\|%2(R1) + 00,0||9||%3(J,H1/2(8R1)) + CO;HfH%g(Q) (3.9)

for all v > ~g, where Co = Cy(n,r, As) and Co o = Co (1, r0, As3).

Observe that the first term on the left hand side is nothing else but the Gy ,-norm
of u.

For the proof of the higher order tangential a priori estimates we need a variant of
the standard trace theorem with modified Sobolev norms.

Lemma 3.8. Let v € H'(R3). We then have the estimate
1
[ trv”?—]lm(aﬂgi) < 4“||”||§{t1a(]1§1) + EH83UH%2(R3) (3.10)

for all weights k> 0, where tr: H*(R3) — HY/2(OR3) denotes the usual trace opera-
tor.

Proof. First take v from C°(R?) and let F» denote the two dimensional Fourier trans-
form in z1- and xs-direction. We then compute via Holder’s and Young’s inequality

[0 0) 512 03 = /}R (U I E Bl 0)(€)de
—— [ [+l o e o) Pedry
0 R2

=9 /0°° /Rz(l + |§|2)%(]:2v)(§7I3)a3(]:2v)(§,x3)d§dz3

= 2(/000 /Rz(l + |€|2)|f20(£’x3)|2d§dx3) (/000 /Rz ‘8372U(§7x3)|2d§da:3)

1
= 2l[vll w2 1950] 23 ) < 4“”””?13&(11{1) + ;||83U||2L2(R3+)

for all & > 0. Since C°(R%), (i.e., the restriction of C2°(R?)-functions to R}) are
dense in H'(R3 ), the assertion now follows. O
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We now start to derive the desired a priori estimates. In a first step, we give estimates
for the tangential derivatives of a solution.

Lemma 3.9. Let n > 0 and r > rog > 0. Let m € N, m = max{m,3}, T" > 0,
T €(0,7'), J=(0,T), and 2 = JxR3.. Take Ay € Fyy, (Q), A1, A, Az € F) 0 (Q)
with As(t,x) #0 for all (t,z) € Q, D € F*(Q), and B € BCRi( 3) with

[Aillpr) <70 IDllFs @) <)

masc{ | 4:(0) s, s+, x| 104 A:(O) iy} < ro,

max{[|D(0)[| o (rs), max HagD(O)”H’?"*“J(Ri)}STO?

"1<j<m—1
[ Bllwm+1.00(1xom3) < To
for all i € {0,...,3}. Choose f € H(Q), g € Epn(J x ORY), and up € H™(R3).

Assume that the solution u of (3.2) belongs to G (Q). Then there exists vy, =
Ym (1,7, ¥3.7:0) > 1 such that

,_.

m—

Z Hao‘ullém(g)+WHU||§1;7M ( ||8J HHm 1-3(R3) +||u0||Hm(R3))
la|<m Jj=0
(,Y3:O
+ Cunolloll D (1 gy + Il ). (D)
m,0 Epm (I XORE) ~ Hm () G ~(Q) ) .

for all v > 7y, where Cy, = Cpy(n, 7, T, Cs.7:0), and Cpy 0 = Cin0(n, 70, C3.7:0,0). Here
v¥3.7:0, C3.7:0, and C3.7.0,0 denote the corresponding constants from Lemma 5.7.

Proof. Let a € N§ with |a| < m and a3 = 0. Lemma 3.4 yields L(Ay, ..., A3, D)% =
fo in H71(Q) with

= 0% A;0°P0u — <a> 0 Do .
22 () >
§=00<B<a 0<p<a

We further obtain from Lemma 2.31 that

6au(0) = 8(0701,Q270)5R3+7m,a0 (07 A07 s 7A37 D7 f7 UO) =:Uo,a-
Finally, Lemma 3.5 shows that

Tr(BO%u) = 0%g — Z (a> tr(8° BO“~Pu) =: gq.
0<B<La B

We conclude that 0%u is a solution of the initial boundary value problem

L(Ao,...,A3,D)v=f,, z€R3, teJ;
Buv=g,, x€dRY, telJ; (3.12)
v(0) =upq, x€R3.

We note that f, is an element of H™~1*/(Q) with

[ fell grnmior @y < W fllap @) + Coamllule,. @ (3.13)

by Lemma 3.4, where C3.4,, = C5.4.,(r,T") denotes the constant from Lemma 3.4.
Lemma 2.33 further yields that ug , belongs to H™~1*/(R%) and

m—1
[uo,all rm-1or ey < 02.33;m,|a|( > ”aff(o)HHm*l*k(Rﬁ_) + Huolle'(Ri)>v (3.14)
k=0
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where C.33.m = C2.33.m(n,70) is the constant from Lemma 2.33. We next estimate
Jo- To that purpose, we pick a multiindex 8 € N§ with 0 < 8 < a and we observe that
9” B belongs to W1>(J x 9R%) and 9% Pu to H'(£2). Hence, tr 9> Pu is an element
of Ey(J x OR3) and therefore Tr(0° BO*~Pu) is contained in Eg(J x OR3). Let £ > 0
be a parameter to be chosen below. Lemma 3.8 applied with weight v thus yields

| tr(0° B9 P u) HQEOW(JXBIR?F) < ‘|B||%/Vm+1~°°(Jx8Ri) ||aa_ﬂu||i?y(J,H1/2(]Ri))

1
2 2 2 1 a—B, 1|2
<drgrylullzm, @) + 75 P 1050%PullZz2 ()
for all v > 0. Consequently, we obtain

1
19all%,  (7xors) < 290, (rxors) +C(m)7’§(“7”u‘|%{1}fta(ﬂ)JrHHu”%-I;"(Q)) (3.15)

for all v > 0, where we also used that the trace operator commutes with tangential
derivatives.

Since 0%u solves the initial boundary value problem (3.12), we can apply esti-
mate (3.9) to 0%u and then insert estimates (3.13) to (3.15) to deduce

||3au||?;(m(sz) + ’Y||3au||2L3(Q)

1
< CO,OHUO,aHiz(RS ) + CO,O||ga||2Lg(J7H1/2(aRs+)) + CO§||fo¢H%3(Q)

(Z ||5k HHm 1-k(R3) + ”uO”Hm(R3 )+Cm0||9||Em +(JXORY)

~ 1rk+1
+ Cnty|[ulltyr, () + Com ;7||U\|Gmw(9 +Co, Hf||§{;n(9)

for all v > ~y, where 'yo(n,r A3) = ¥3.7.0(n, 7, A3) is the corresponding number from
Lemma 3.7 and where C’m70 = Cmo(n,ro,C’g 7.0,0) and Cpn=0Cn (n,r,T",C5.7,0) de-
note constants with the described dependancies which may change from line to line.
Summing over all multiindices o € N§ with a3 = 0 and |a| < m, we thus arrive at

> 10%ullg, ) + Al

v,ta
S\
ag—O

()

(Z 108 £ O gm—s- g + ol ) ) + Comolgls,. (rom)

~ 1r+1
JrC'7rL'f’Y||UHHm @ tCm— 5

IIUHGM(Q) +Cm Hfllir;n(g) (3.16)

for all v > ~9. We fix the constant C~’3_16;m = C~'3_16;m(77, r,T’,C3.7,0) appearing on the
right hand side of (3.16) and we set k = (2C3.16,m)~'. We obtain

> l0%ullg, ) + el @

aGNé
(1320
m—1
~ k ~
S Cg.lﬁ;myo( ||8 ( )HH"’ 1— k(RS + ||u0||Hm(R3 )+C3.16;m,0||g|2Em,.y(J><8R§_)
k=0

v S 1 5 5 1
+ 5”“”%1%&(9) + 03.16;m;(1 +2C316:m) |ullz,, (o) + C3~16;m;‘|f||%1;"(9)

for all v > 79 and the assertion thus follows. O
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Remark 3.10. If m = 1 in the previous lemma, the proof shows that it is enough to
demand that the coefficients belong to W°°(2) and the matrix B to BC]%Q (As). Also

the constants then only depend on the corresponding W1>°(Q)-, L>® (Ri)—7 respectively
W2(J x OR3 )-norms. &

The above procedure only works in tangential directions because differentiation in
the normal direction does not preserve the boundary condition. Since the boundary
matrix As is not invertible, we neither obtain the normal derivative from the equation
itself. Instead, we will use the structure of the Maxwell equations to get an estimate
for the normal derivative.

We consider the initial value problem

L(Ao,...,Ag,D)u:f, JJGR?’, teJ;
u(

3.17
0) = uo, zeR3. (3:17)

In the spirit of Definition 3.1, we define a solution of (3.17) to be a function u €
C(J,L*(RY)) with u(0) = up in L*(R%) and Lu = f in H~'(2). In the iteration and
regularization process it will be important that we do not impose a boundary condition
n (3.17) and the next lemma.

For the formulation of Lemma 3.11 below we also need the following notion. Take
Ay, Ay Az € ngOCH(Q). The definition of this space then implies that there are
functions py; € Fpf (Q) such that

3
A; = A,
=1

_ (w0
M_(O M)’

where 11 denotes the 3 x 3-matrix (;);;, and define

for all j € {1,2,3}. We set

3 3
Div(Ay, As, A5)h = (Z (MTV ), S (MTVh) (M)k)
k=1 k=1

for all h € L*(RY)).

Lemma 3.11. Let T > 0, n,7 > 0, v > 1, and r > 79 > 0. Pick T € (0,7
and set J = (0,T) and Q = J x R}, Take Ay € Fgh(Q), A1, Ay € Fh et (1),
Az € F§l oo (), and D € FP(Q) with

[Aillwrec@) <7 [[Dllwres@) <7

[AiO) @2y <70, [[D(0)]poe(ms) < 7o
for all i € {0,...,3}. Choose f € Go(Q) with Div(A1, A, A3)f € L*(Q) and uy €
HY(RY). Let u solve (3.17) with initial value ug and inhomogeneity f. Assume that
we CHJ,L2R3))NC(J, HL(R3)) N L>(J, H (RY)). Then u belongs to G1(£2) and
there are constants C1,0 = C10(n,7,70) > 1 and Cy = C1(n, 7,7, T") > 1 such that

2
IVul, @) < €T ((Cro+ T (D 105ull%, iy + 112, @) + ol g )
j=0

Ci .
+ 71” DIV(Al,AZ,A?,)f”%g(Q)) (3.18)

If f additionally belongs to H(Q), we get

2
IVal, @) < €T ((Cro+TCO (X 105ul, @) + IFO3ags ) + luol3n s ) )
j=0
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Cly o
@) (3.19)

Finally, if f merely belongs to L?(Q) with Div(Ay, Aa, A3)f € L*(2), we still have
2
IVulz @) < €7 ((Cro+ TC (D 10ull3z @) + 1132 @) + o3 as )
§=0

C .
+ 71H DIV(A17A23A3)f||%?Y(Q)>' (3.20)

Proof. 1) We prepare the main part of the proof by showing that AVu has a weak time
derivative in L*°(J, H ' (R%)), where (Vu)g; = 0;uk, A is a function from W (Q),
and the time derivative is taken componentwise.

To prove this claim, we take a € W1>°(Q) and v € C'(J, L*(R%))NL>(J, H*(RY)).
Let ¢ € H}(RY), ¢ € C°(J), and ¢ € C°(R%). Then ¢t — a(t)p maps J into
H§(RY). Moreover, ap and 8;(ap) belong to L*(2) = L?(J, L*(R%)). Via cutoff and
mollification we deduce that ¢ — a(t)¢ is strongly measurable from J to H'(R?). We
conclude that ap belongs to L>(J, H}(R3)). Analogously, we deduce that d;ay is an
element of L>°(.J, L*(R3)). Using Remark 2.19, we compute

/]Ri (/]a(t)@at¢(t)dt> (z)p(z)dx = /Ri’r /Ja(tax)atw(t)so(x)@(x)dtdx

— _/RiL@ta(t,m)w(t)@(x)ﬁ(x)dx = /]R3+ (—/Jata(t)cpw(t)dt> (2)@(x)dz,

where we used that ¢ € H}(2) and ap € H'(Q2). As C(R3) is dense in L?(R3),
we conclude

/ a(t)pdub(t)dt = — / Bra(t) o (t)dt
J J

Bn L*(R%). Therefore, ap has a weak time derivative in L>°(J, L*(R%.)) and 9;(ayp) =
+a Q.

ance v € C'(J,L*(RY)), the function Vv belongs to C*(J,H *(R%)) and thus
Vv to C(J,H ' (R3)) — L*(J,H *(R%)). Combined with Vv € L>(J, L*(R%)),
ap € L*>(J, Hj(R3)) and 8;(ap) € L>(J,L*(RY)) < L'(J, L*(R%)), we can apply a
variant of Theorem I1.5.12 in [BF13] to deduce that (Vv, a<p>L2(R§r)XL2(Ri) has a weak
time derivative given by

(Vv,a0) 2w )xr2 &) = (0:Vv, 00) g-1(®3 )i w2) + (VU 0100) L2 (m3 ) x 12(RY )-

We then infer

< /J a(t)Vu(t)atw(t)dt,@w

(B2) 3 (R
= [ (9o a0 53 g OO0

= */J ((8th(t), a(t)e)m-1(rs)xmas) + (Vo(t), 3ta(t)<P>L2(Ri)xL2(Ri))w(t)df
== [ (@70 + 0T U0, D1 5 g

- (- /J (aavo(t) + Bta(t)Vv(t))w(t)dt,¢>H71(R1)XH3(R1),
where we used the canonical embedding of L2(R?) into H~!(R?) via

(Ora(t)Vu(t), ) -1 (r3 ) x mp RY) = (Ora(t)Vu(t), ©) r2®3 )xL2(®? )-
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As a result, aVv has the weak time derivative
Ot(aVv) = a0V + 0:aVv

in L°°(J, H~Y(RY)).

IT) For the assertion of the lemma it is enough to show that d;u belongs to C'(J, L*(R%.))
and that inequalities (3.18) to (3.20) hold.

By the definition of the spaces Fg% () and Fg% (€2) there are functions py; €

0,coeff,r

Fgﬁ(ﬂ) for I,5 € {1,2,3} and an index i € {1,2,3} with
lpwis(t, )] > 7 for all (t,z) € Q
such that s
A= Z Aj°
1=1
for all j € {1,2,3}. Moreover,

o 0 —J\ .
Af = (Jz ol) with Jimn = —Eimn (3.21)

for all I,m,n € {1,2,3}, where &;,,,, denotes the Levi-Civita symbol, i.e.,

1 lf (Z)]7k) 6 {(17273)’(2737 ]‘)’ (37172)}7
e =14 —1  if (4,5,k) € {(3,2,1),(2,1,3), (1,3,2)},

0 else.

_ (w0
M_(O M)’

where p denotes the 3 x 3-matrix (p;);;. Applying step I), we can take componentwise
the weak time derivative of MT AyVu and we obtain

We set

H(MT AgVu) = o.M AgVu + MT 9, AgVu + MT Ag0,Vu
= M7 AgVu+ MT,AgVu+ MT AgVou

3
= OMT AgVu + M7 0, AoV + MT AV (45" (£ = 3" A;05u — D))

j=1

3
= M7 AgVu + MT0,A0Vu + MT AV AT (f = > A;05u — Du)

j=1

3 3
+ MOV - M"Y VA;0;u—M"'VDu—M"DVu— M"Y A;Vou  (3.22)

J=1 Jj=1

in L°°(J, H~*(R%)). Here we set

6
(VAGHg)jn = Z O Ag 91
=1

and analogously for A; with j € {1,2,3} and D. We also use the formula

6 6
(VA5 9)ik = (A5 9); = D Ou(Ag o) = Y (OkAg 190 + AstiOkar)

=1 =1
= (VA ')k + (A5 V) s,
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which follows for any RS-valued L?-function g from the Leibniz rule in H~1(£2) for the
product of a Lipschitz-function with an L2-function. We abbreviate

3
A= OMT AgVu + MT0, A0V + MT A,V AT (f = 7 A;05u — Du)
j=1

3
+MTVf - M"Y VA;0u— M"VDu— M"DVu. (3.23)

j=1

We further compute

3 3 3 6
S (MY AVou) = ST M A0,

=1 j=1 G k=11p=1
3 6 3 6
_ T pco _ co
= E E MklAn;lp/“Lnjakajup - E : § :/j‘lkAn;lp/J‘njakajupv
J.k,n=11,p=1 J,k,l,m=1p=1

using that Mj, = 0 for all (I,k) € {4,5,6} x {1,2,3}. Formula (3.21) thus leads to

3 3 3
Z(MTZAjvaju)kk: 3 it 0Dy (3.24)

k=1 j=1 J,k,ln,p=1

Interchanging the indices [ and n as well as k and j, we arrive at

3 3 3
T
Z (M ZAjvaju)kk = . Z 5lnpﬂnj,ulkajakup+3
k=1 Jj=1 J,k,l,n,p=1
3
= - Z Enlpﬂlkunjakajup+3. (325)
7,k,l,n,p=1

Equations (3.24) and (3.25) yield

3 3
> (m” ZAjvaju) =0 (3.26)
k=1 j=1
Analogously, we derive

3 3 3 6
> (MY 4,vop) BRI DED DP [/ SR A X

k=1 7=1 J,kn=11p=1
3 6
_ Cco
= Z Z M43)(k+3) An (14-3)pHng Ok O Up,

because M43y = 0 for all (I,k) € {1,2,3} x {1,2,3}. Exploiting (3.21) again and
arguing as before, we infer

3 3 3
T — . .
Z (M ZA]V3JU> (ke 3)k = — - Z Enlp,ulkumaka]up
k=1 Jj=1 7,k,l,n,p=1
3 3
= - Z 5lnpﬂnjﬂlkajakup = Z Enlpﬂlkﬂnjakajupa
7.k, l,n,p=1 7,k,l,n,p=1
3 3
M"Y 4;90;u) = 0. 3.27
> (MUY Avou) (3:27)

~
Il

1 j=1
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In view of (3.23), equation (3.22) simplifies to

3 3
> (M T ANVu) i =Y A,
k=1 =1
3 3
Z O (MT AV (j3)k = Z A(kt3)k-
=1 =1

An integration in H~!(R?) from 0 to ¢ then leads to the identities

3 3 3 t
D (MT AgVu)(t) = Y (M Ag V)i (0) + Z/o Apr(s)ds
k=1 k=1

k=1
3 3 3 t
D (M AGVu) ez (t) = D (MT AgVar) (1 4.3)5(0) +Z/ Agryayr(s)ds
k=1 k=1 k=10

for all ¢t € J. The integrands on the right-hand sides are also integrable with values in
L?(R%), implying that the integrals exist in L*(R%) and the equalities hold in L*(R3)
for all t € J. We recall that the k-th row respectively the k-th column of a matrix M’
are denoted by M/, respectively M/,. We set

3 2
():Z(M onukk +Z/ Akk ZM AOkaku()
k=1 k=1
3 2
Fy(t) = ) (M AgVu) (eqa) +Z/ Agerayr(s)ds — > (M7 Ag) (1 3).0pult)
k=1 k=1
(3.28)
for all t € J. Moreover, we put
2
(Fi,...,F)" = f =Y A;oju— Du. (3.29)

=0

The function F = (Fi,. .., Fg)” then belongs to C(J, L*(R%)). Introducing the matrix

A~ A3
M= [ (MTAg)s. | € Fo(Q)**,
(MT Ag)s.
we obtain )
MOsu = F. (3.30)

For the convenience of the reader, we note that

0 0 0 0 133 —H23
0 0 0 — 33 0 113
0 0 0 23 —H13 0
y 0 —H Ho3 0 0 0
M= 133 0 —H13 0 0 0 ’
— 23 113 0 0 0 0
ML Ao MEAos MIAous MIAgus MLAos M Ao

T T T T T
Mg Aoyn Mg Aoz Mg Aoz Mg Aoya Mg Aous Mg Aos

where summation over the index [ (from 1 to 6) is implicitly assumed. By hypothesis,
there is an index j € {1,2,3} such that

lujs(t,x)| > 7 (3.31)
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for all (¢,z) € Q. We assume that j = 3. The other cases are treated analogously. We

multiply M with the matrices

tzm 0 0 0 0 00 0
0O —uz 0 0 0 00 0
0 0 1 0 0 0 0 O
0 0 0 —pz 0 000
= . 2
G 0 0 0 0 pzE 000 (3.32)
0 0 0 0 0 1 00
0 0 0 0 0 010
0 0 0 0 0 0 01
and
1 0 0 0 0 0 00
0 1 0 0 0 0 00
H13 —H23 1 0 0 0 00
0 0 0 1 0 0 0 O
Gz = 0 0 0 0 1 000 (3:33)
0 0 0 —p3 23 100
7M£A0;l5 7M£A0;l4 0 7M?,5A0;12 7M??;A0;11 01 0
—Mg;Ao;lg, _MgiAO;M 0 —Mg;Ao;lg _Mg;AO;ll 0 0 1
It follows
00 0 0 1 —puzs o3
00 0 1 0 —uius
0 0 0 0 0 0
X 0 1 —pz3pes 0 0 0
G2G1M = 33
2 1 0 —pggms 0 0 0
0 0 0 0 0 0
0 0 Q33 0 0 Q36
0 0 g3 0 0 Qg6
with the numbers
3 6
sz = figg Y Y M3 Aoujigs = gy M3 AoM.s,
j=11=1
3 6
@36 = MEgl Z Z M:),Ton;Z(j+3)Mj3 = M?:glngAOMﬁa
j=11=1
3 6
a3 = figg > Y Mg Aousigs = pag Md AoM.s,
j=11=1
3 6
g = figy Z Z Mg Ao 3)ks = Haz Mg AgM.e.
j=11=1
Let ¢ € R? with |¢| = 1. We then estimate
€T/~‘L33 (333 a36> g = (O7O7£1a Oa 0552)MTA0M(0a 0)517070a§2)T
63 Q66
> 77|M(0v0v§170707§2)T|2 = 7]|u3|2‘§|2 2 77:“%3 (334)

Due to (3.31) the function us3 does not change its sign so that (3.31) further implies
that

g3 g6

gT (O‘33 0436) 5 > nr
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or

fT (Otgg a36) 5 < —nr,

Qg3 Qg6

Q33 (36
g3 (g6

is either positive or negative definite. Hence, it has an inverse (3 satisfying

i.e., the matrix

1Bl Lo () < C(n, 7).

Gz = (1656 g)

0 H??siuzs
0 33 H13

0

—1
H331M23
M3z 13

Introducing the matrices

and

Gy =

N eNelelBoBoBall S
N eNeBeoNeoNel "
SO OO OO O
SO oo+ OO O
S OO+ O OO O
OO OO oo o
_ o OO oo

we compute

G1G3GG1 M =

[N eNel o Ne NNl

SO OO RO OO

O OO oo oo

S o oo oc o ~OoO

S DODO OO OO

_ OO0 O 00O o oo
1

We further point out that
|G4G3G2Gl () < C(n,7)(1 + ¢o)?

with the constant

.....

Equation (3.30) and (3.38) yield

Mdsu = G4G3GoG4 F.

63

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

Since the matrices G; belong to C(J, L>°(R%)) and F is contained in C(J, L*(R%)),

we infer that dsu is contained in C(J, L*(R3)) and
105u(®) L2 gy < C(n, 7)1+ co)*[|F(H)l| 2 a2

for all t € J. To estimate HF(t)HL?(lRi) we first note that

IF Ol c2qez) < NF, - Fs)T (@)l zqee ) + 1(Fr Fs) T ()2 ee )

(3.40)

(3.41)

2
< Hf(t)Hm(Ri) +co Z ||3ju(t)||L2(Ri) + COHU(t)HB(Ri) + ||(F7aF8)T(t)||L2(R1)

=0
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for all t € J. Applying Minkowski’s inequality, we further deduce

2

H(F7>F8)T(t)||L2(R3+) < C(ro)lluollmrrs ) + o Z [[Oku )|l L2 (ms )
k=1

t
+C(77,7“)/0 (IVuls)lzs) + llw(s)lz2ee) + DV F ()l 2@y + 17 ()l 2rs) ) ds

for all t € J, where we abbreviate Div(Aj, Az, A3) by Div. This estimate, (3.40)
and (3.41), lead to the inequality

V()] p2ws) (3.42)

2
< )1+ o (I (D) 2qay) + o S 10500l e + collu(t) o

§=0
t
+ C(ro)lluoll rr (ms ) +C(n,7’)/0 (IVu(s)l2@s ) + l[u(s)ll2@s)
+ IDiv ()l 2qat) + 17 () 2z ) )ds )
for all t € J. Next we fix a number v > 1. Using Hélder’s inequality, we infer

V()] p2rs)
2

< Cn,7)(1+ co)? <€7t||f\|co,7(ﬂ) + coe* Z 10jullcy..,2) + coe” [lulla,., )
3=0

t 1/2
+ C(ro)uo | g sy + Cn.) ( / e1%ds) " (Ilullzz o + I DV fllzz o) + 1122 )

t
) [ IVl aga )
2

<C(n, 7)1+ 60)3(67t||f”G0,7(Q) + coe* Z 10jullGo., () + co” ull gy . (@)
=0

1 .
+ OOl s + Clnr) =€ (lulzzo) + 1D Fllzcoy + 1130

t
+Cr) [ IVl ogay ds)
t
= 9(0)+ Clnr) [ IVuls) oy ds
0

for all t € J. Since the function ¢ increases in ¢, Gronwall’s inequality yields

2
IVu(t)l| g2z ) < C(n, 7,70) (1 + 00)467t(||f||G0,—y(Q) + l05ullg, @ + Il @
=0
1
Val

2
[Vullg, ) < Cn,7,10)(1+ 00)4(||fHGo,n,(Q) +) N05ullg, @ + Il @
=0
+ ||u0||H1(R3_) +Cn,r)([ullee @) + 1 flleo )
1

VY

+ llwoll s gy + ) —= (el 22 oy + I DV Fllzz oy + 1F a2 o) ) )77,

+ COm, 7)== Div 122y ) <7 (3.43)
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for all t € J. Since ;Aq belongs to L>(), we obtain

t
ol = 400+ [ rdato)as]_ < 1400 o) + TlAolwromco

<rg+Tr.

We argue analogously for A; with j € {1,2,3} and D, which yields ¢ <7 + T'r.
To conclude (3.18), we write u as

u(t) = u(0) + /O Dyu(s)ds

in L?(R%) using that u belongs to C'*(J, L*(R%)). Minkowski’s and Hélder’s inequality
then imply

t
—~t
Jll o0 < 1(0) g +sup (e / 0u(3)]] 2y )

. t ) 1/2 t ) ) 1/2
< ol +sup (e ([ eeas) ([ e 0 R ds) )
o ted 0 0 +

< ! 0
< ”uO”Lz(Ri) + ﬁ” tu||L3(Q)7
1
Il o) < 2ol aqus) + > Tl o) (3.44)

Plugging this inequality into (3.43), the assertion (3.18) follows. If f additionally
belongs to H'()), we argue as in (3.44) for the function f. We infer

1
11, @) < 21 O)12(rs) + ;Hfll%q(m (3.45)
Inserting this estimate into (3.18) and adapting Cy¢ and Cp, the estimate (3.19)
follows.
Now assume that f only belongs to L?(Q2) with Div f € L?(2). Then estimate (3.42)
is still valid for almost all ¢ € J. We square (3.42), multiply with the exponential e_s-,

and integrate from 0 to t. Also applying Holder’s inequality in the second estimate,
we derive

t
—2~s 2
| eI e s

t 2 t
SC(W)(1+CO)6(/O e2w|f(5)||iz(Ri)ds+chO/o 6*278||8ju(5)||iz(Ri)ds
=

t t
+c8/ e‘QWIIU(S)lliaRi)dS+C(ro)/ ™" dsuo| 7 a)
0 0

t s
+C(n,7) / e ( / (IVa(") p2qas ) + (s 2z + 1) 2@y
0 0
. ! ! 2
+ IDiv () p2ns)ds') ds)

2
1
<C(n,7)(1+ 00)6<||f|\2Lg(Q) + g E . ||8ju||%g(m + C%H“Hig(m + 0(7’0);||U0||§11(R3+)
]:

t s s
—2vs 2vs' 3.1 —2~s’ |12 . 12 .
) [ ([ asd) (e Uvu) s, + )l

0
17 () B aqaey + I DIV £ ()32 ga))s')ds)
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2
1
< 01+ e0)® (1132 0y + D 1050l oy + cBllullE o) + Clro)

ol e

=0

1 .
+ 007 r) (Tl oy + T oy + T DI fllE )
1 t S o’
_ —27s (12 l
+C(77’T’T),y/0 /0 e IVu(s )HLQ(Ri)ds ds

for all t € J. Gronwall’s inequality thus yields

t
—27s 2
| eI g

2
< Cnmy10) (14 ¢0)* (I 132y + D 1950l oy + el gy + ol s )07t
7=0

1 . T,r
+C(n, T, T);(THUHQLg(Q) + T||fH%3(Q) + T'|| Div f||%3(9)>€c(n’ e

for all t € J. We insert the time ¢ = T in this estimate and exploit again that
co < 19+ Tr. Moreover, we deduce similar to (3.44) that

t
sz < luoll sy + / |0u(s)llpaes ds (€ T,
T

T t 2
s <2 [ e uolZaydt+2 [ ([ fuls)agug ds)
g 0 + 0 0 +

< 2T/||U0H2L2(R1) + TI||3tU||2Lg(Q)~

We employ this estimate and inequality (3.44) and we adapt C;o and Ci to con-
clude (3.20). O

We can now combine Lemmas 3.7, 3.9, and 3.11 to the following corollary.

Corollary 3.12. Let T' >0, n,7 >0, and r > ro > 0. PickT € (0,T'] and set J =
(0,T) and Q2 = J x RY.. Take Ag € Foh (), A, Ap € FOCEOEH(Q), As € ngoeff,r(Q)’
and D € FgP(Q) with ||Ail|wre) <7, [|D]|wre@) <7, ||Ai(0)||Loo(R§r) < rg, and
[DO)|poe(ms) < ro for all i € {0,...,3}. Choose a function B € B’Cﬂl@vjr (As) with
HB||W2,°0(JX3R1) <rg. Let f € H'(Q), g € E1(J x ORY), and uo € H*(RY). Assume

that the solution u of (3.2) belongs to G1(2) = C*(J,L*(R%))NC(J, H (R%)). Then
there is a number v1 = y1(n, 7,7, T, v3.7.0) > 1 such that
lullZ, @) < (Cio+ TCl)eclT(||f(0)||2L2(Rg) + ||g||1251,7(Jx8Ri) + ||UUH§11(]R3+)>
1
+ C1601T;||f||:;{§(9)7
for all v > v1, where C1 o = C1,0(n, 7,70, C3.70,0) > 1 and C1 = Cy(n, 7,7, T",C3.7,0) >
1. Here the constants v3.7,0, C3.7.0,0, and Cs.7,o are the constants from Lemma 3.7.

Proof. Applying Lemma 3.11, i.e., estimate (3.19), and estimate (3.45) with f replaced
by u, we first deduce that

2
2 2 2 2
lulle, @ < Z 19;ulle, . ) + IullE, . @) + 19sullg, @)
=0

2

T ! ].

(1+7) 21950l 0 + 2Molaas + 1™ iy
<

IN
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2
+(Cho + TCET (S 1050l o + 1O 2agas + ol s
j=0

for all v > 1, where C ; = C] 4(n,7,70) and C1 = Ci(n, 7,7,T") are the corresponding
constants from Lemma 3.11. Remark 3.10 next implies

%, @ < (Cro+ TENT (IFO) ey, + lolisceyy) + Coe®™ 11y
+ (Cro+ TC)T (Lo (I1F O ey, + ||uo||‘ip(m>)

o (1 B + 1, )

for all v > =9, where vo = Y, 7,73.7:0)s C10 Cio(n,70,C3.7,00), and CY

C1 (n,7,C3.7,0) are the correspondmg constants from Remark 3. 10, while the constants

C, = 01(77,7' r,T’,Cs.7,0) and Ch 0= =C 0(n,7,70,C3.7,00) may change from line to
line. Choosing v1 = v1(n, 7,7, T’ ,734770,0) so large that

+

7 = Y0 and Y1 >2(Ch o+ T/C'l)@élT/Cfa
we arrive at
[ull?, .y < (Cro+TCh)e ClT(Hf( )||i2(R§;) + ||9||2E1,7(Jx8R1) + ||U0H%11(R§;))
+ CleCJ;HfH%g(Q)

for all v > ;. O

3.3 Higher order a priori estimates

The a priori estimates of higher order now follow by an iteration process. Performing
this iteration, the operators SRi .m,p Will appear at several places. Since the underlying

spatial domain R‘i is fixed in this section, we suppress it in our notation and only write
Sm,p for S]Ri,m.,p'

Theorem 3.13. Let T" > 0, n,7 > 0, and r > ro > 0. Pick T € (0,T'] and set
J=(0,T), and Q= J xRS Let m € N and m = max{m,3}. Choose Ag € Fy, (),
A1, Ay € FP (), As € FCID (), and D € FP () with

m,coeff m,coeff, T
[AillFm) <70 1DllEs) <)

max{[[4;(0)[| re_, (r3), e ”agAi(O)HHﬁLﬂ'*l(Ri)} <y,

max (| D(0)rg_ e+, _max_ [0/ DO i3} < 19

for alli € {0,...,3}. Take B € BC]%(A;;) with ||B|\Wm+1,oo(JXaRi) < rg. Let f €

H™(Q), g € Ep(J x ORY), and ugp € H™(RY). Assume that the solution u of (3.2)
belongs to G, (). Then there is a number vy = Ym0, 7,7, T, v3.7,:0) > 1 such that

G,y ( B~ (Jx9R3)

) < (Cro +TCh) mClT(Znaﬂ O)3m-1-sgas ) + gl

C
2 o2
+ ”uO”Hm(Ri)) + = 1 ez o

for ally > 7y, where Cr, = Cp(, 7,7, T",C3.70) 2 1, Cro = Cro(0, 7570, C3.7,0,0) =
1, and Cy = Ci(n, 7,7, T",C5.7,0) is the constant from Corollary 8.12. Here the con-
stants v3.7,0, C3.7:0,0, and Cs.7,0 are the constants from Lemma 3.7.
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Proof. We prove the assertion inductively. To this purpose we observe that Corol-
lary 3.12 shows that the assertion holds for m = 1 with the constants 1, C;, and Cy o
from Corollary 3.12. Now assume that m > 2 and that the assertion has been shown
for1<i<m-—1.

Let p € {0,1,2}. As in (3.12) we deduce that J,u solves (3.2) with differential
operator L(Ay,...,As, D), inhomogeneity fi ,, boundary value g1 ,, and initial value
Opug, where

3
Jip=0pf — Z OpAiO;u — Oy Du, (3.46)
=0
91,p = Opg — Tr(9, Bu), (3.47)

8OUO = Sm,1(07 AO; ey A3a Da f7 ’LL()).

Note that fi, belongs to H™~!(Q2) by Lemma 3.4. We further observe that 0,B
is an element of W™ (Q)), while the trace of u is contained in E,,_1(J X 8R3+)
as u € G, (). Consequently, the function gy, belongs to E,,—1(J x OR?}). Since
Ag € FP (), A1, Az, A3 € FY(Q), D € FP(Q), f € H™(Q), and ug € H™(RY),
Lemma 2.33 yields that S,,1(0, Ao, ..., As, D, f,up) is contained in H™!(R3). The
induction hypothesis with [ = m — 1 therefore gives

m—2
9y, e < (Conmr o+ TCoue)e™ T (107 i (0) 3 sy gy (3.48)
7=0

2
7P||H;"*1(Q)

C’m—l m—
+ Hgl’pH%m—Lq(JxaRﬁr) + ||8PU0||§{m71(R3+)> + - el 1)C1THf1

for all v > vp_1.
We next estimate the terms appearing on the right-hand side of (3.48). To that
purpose, let j € {0,...,m —2}. We observe that

||856pf( )HHm 2-5(R3, )<maX{||3j (0 )||Hm 1-3(R3)> ||3j+1 ( )||Hm 2-3(R3, )}

L
S g 10; f (O) | prm—1-1(m3)-

Moreover,

07 (8, A08yu) (0 Z( )ala Ap(0)87 1 u(0)
=0
(

J

>

=0

)ala AO mj-‘rl—l(OvAOa"'7A3aDafau0)'

Since the function 6/0,40(0) belongs to H™~'=2(R%) and Sy, j4+1- to H™IT-1(R?)
by Lemma 2.33, Lemma 2.22 (v) in the case j = m — 2 and Lemma 2.22 (vi) in the
case j < m — 2 show

||8£8pA0(0)Sm,j+l—l(0;AO,“-aA3,D,fau0)|‘Hm—2—j(R3+)
< C10;8p Ao (0) || -2~ 1®2)19m.j+1-1(0, Ao, ..., A3, D, f, o) || prm-—s+1-1(m3 )

g1

< O2.33;m,j—l+1(77a T’O)TO(Z Haff(o)||H’"*1*k(R§r) + ”UO”H’"(Rﬁr))a
k=0

where we also applied Lemma 2.33 in the last line. We thus infer
J

H@f(apAoatu)(O)||Hm727j(Ri) < 0(7777’0)(2 Haff(o)”Hmflfk(Ri) + ||U0||HW(R1)>~
k=0
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Analogously, we deduce

107 (8 Aidi) O)]| -z < Cm, 7o) (Zna’“ ni-ras) + ol nas) ).
k=0

107 (8 Du)(O) | -2 23 < C (1, 70) (Zna’“ Mrns-ces) + lwoll e as))
k=0

for all ¢ € {1,2,3}. In view of (3.46), we arrive at

,_.

m—

tA 1,p Hm=2-3(R%) ) 0 Hm=1-F(R3) oll ™ (R3) .
107 f1p(0)| <C(n,r 107 F(0)]] + [luol| - (3.49)
k=0
Lemma 3.4 next yields
1ol =10y < If L @) + Coamllulla,. @ (3.50)

for all v > 0. The term ||apUOHHm*1(Ri) is dominated by ||u0||Hm(R:jr) in the case
p € {1,2}, whereas in the case p = 0 we use Lemma 2.33 to obtain

H80u0||Hm_1(R§,r) = HSm,l(O,A07... Ag,D f,’u,o HHm—l(RS)

< Cos3m 1 (I F O m—1(z2) + lluollmzs ) (3.51)

with Ca33:m1 = C2.33:m,1(1,70) from Lemma 2.33. To estimate g; , in the norm of
Ep_1(J x ORY), we take a multiindex a € N§ with a3 = 0 and |a| < m — 1. For any
multiindex 8 < « the function 9?9, B then belongs to W1°°(Q) and 9% u to H*(Q).
We infer that tr 0*~Pu is an element of Ey(J x OR3) and therefore Tr(9°9,B0* " u)
is contained in Ey(J x ORY). Lemma 3.8 thus yields

||T1F(aﬂa Bo“ Py )HEOW(JxaR )< ||B||Wm+1oo(J><aR3 [[2h u||L2(JH1/2(8R3))

<2 (Wl (@) + ;nagaa-%nmm)

for all v > 0. Consequently, we obtain

2
llg1.pl Eum—1,4(Jx9R3) (3.52)

< 2H8pg||2Em,1W(J><8Ri) +2 Z [0 Tr(apBu)”i%(J,Hlﬂ(a]RS ))

la|<m—1,a3=0
< Cllgl,, . (sxomt + Cr8 (Vuly, o) + = (Zna S ] ey )

for all v > 0, where we also used that the trace operator commutes with tangential
derivatives.

We insert the estimates (3.49) to (3.52) into (3.48) and combine it with the induction
hypothesis to infer

2
lallZ,, . )+ 2 105ullg,, o)
p=0
2 m—2
< (Cmf1,o+TCm—1)€(m_1)ClTZ(Z (107 1,5 (0)[Fm—2- -iry) t 167 £(0 )||?{m—2—j(n§i))
p=0 j=0

+ ||91,P||]257n,1,7(J><8R3+) + ||g||2Em,1W(J><6]R§’r) + ||3puo||§1m—1(m) + ||u0||i1m—1(m))
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2
Cm—l m—
+ LT (N 2o gy + 1 o o)

Y =0
~ ~ m—1 )
< (Cono + TC)e™ VT (310 FO) s gasy + 012 s
j=0

+ N9l (swome) + Vullirz, o)+ = (Zuaun,{ml ) )

= 3

Cr (m—
+ Te( 1)CIT(||fH§J;n(Q) + Z H@'U”é‘m-m(h) + ||u||2Gm_1,7(Q)))
i=0
m—1
< C~1 Té (m—-1)C1T 8k 0 2 2
< (Cmo+TCr)e > lloFf( Wizm—1-# sy + luollm @2 )
k=0

Com (m—1)C1T)| £112
+ e\ | Fale
)+ (Rl

2 2

+ Hg”Em,,(JxaRi) +llullE, @
2

+ G (Huncm e T Ol )+ 105, o)

p=0

for all v > ~,,_1, where Cm,o = C’mg(n, 7,70, C3.7:0,0) and Cp = Cp(n, 7,7, T, C3.7.0)
denote constants which may change from line to line. Employing estimate (3.11), we
find

2
2 2
lullg,, . @ + Z 0pullz,, . (@)
p=0

,_.

m—

< (Cono + TCr)e™ VN (3 08 OBy gy + 19l (swome)
k=0

Con (m1)C
+ lwol2m sy ) + Te(m DT £

,mn>+ZII8uI

for all v > 7,,,—1. We consequently find a number ¥, = 3, (n, 7,7, 1", ¥3.7.0) such that

+Crn (||u|

mo14() T 105" UHGO () ) (3.53)

2
||U||ém,m(n) + Z ||3pu||ém,1,w(9)

p=0

< (Cmyo + TCp)e™™ I)CIT(Z 10 £(O) | Fm—1- F(R2) +||9||Em7 TxORY)

C

ol e ) + e O o+ Cull Ol @) (859

for all v > 4,,.

It only remains to control the Go (2)-norm of 95*u. To this purpose, we compute

3
5 Lu =057 (3 Axdpu + Du)

m—1 3
_ (mj‘ 1) (Y o300y o,u + Doy )

k=0

m 3
= <mj 1) (D Ak o0y u+ 4D 5 ) + Logu,
k=0
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where we employed Lemma 2.22. We conclude that 8?_111 solves the initial value
problem

Lv = fin3, xeRi, telJ;
v(0) = 95" ug, z € R3;

where frng = 05" f = Yojcm (mj_l)(Zi:o AL 0x05  Tu + 33D O ).
Since

& Ar, BD € G (),
0y, 05w € Gt (m1-5)(Q) = G5(R)
for all k € {0,...,3} and j € {1,...,m — 1}, Lemma 2.22 (ii) yields that
3 AR0KOT ™ u, 93DOY T T u € Graingjm—jy () = G1(Q)

for all k € {0,...,3}, 0 < j <m—1, and v > 0. Hence, f,, 3 belongs to H'(Q).
Moreover, Lemma 2.22 (ii) allows us to estimate

||6§Ak3k8§nfl*ju||cm(9) < ||3§Ak<9k3§nf17jU||Gmm{j,ﬁl,j}77
< Cll4 Akl Gy @ 10605 ulla, (o)

< Cll Akl mn @ 10kull 6,y )5
102D05" ™l (0 < CUDll el 0)

(D)

forall k € {0,...,3},0<j <m—1, and v > 0. We conclude that

3
[ fm.sllm @) < fllmm o) + C\/TT(Z 10kull Gy (0) + HUHGWI,W(Q)),
k=0

2
1 malidis@ < Ol Iy ey + CTr2(ulls, _, @) + 2 |9kl )
+ CTr? |05 ullg, () (3.55)

for all 4 > 0. As 8} Ax(0) is an element of H™~ 1~ (R3) and A5 gpu(0) of HI (R3),
Lemma 2.22 (v) yields

103 A(0)05" "~ O (0) | 2 (rs
< CHagAk(O)”Hﬁl*l*J’(Rﬁr)Hagn_l_jaku(o)HHj(]Rﬁr)
S OHagAk(O” Hﬁ‘*l*j(Ri)(Hag’n_l_jsm,l(oa A07 e 7A37 D7 f7 u0)|‘HJ(Ri)

2
m—1—j
+ > 105" 7 dyuoll s rs )

p=1
< ClAkO)re &) (19m,1(0, Ao, ..., As, D, fruo) | rm-1 w2y + lluoll mm (w2 )
< CCazgimaro([lF(0) ][ grm-1ms) + [luoll arm rs))

for all k € {0,...,3} and j € {1,...,m — 1}, where C2.33.m.1 = C2.33.m,1(n,70) is the
constant from Lemma 2.33. Analogously, we obtain

103 D(0)35" " u(0) 12gs ) < Croluol

Hm™(R3)
for all j € {1,...,m — 1}. We thus infer

1fin 3(0) 22y < CollFO) Bgmms g + ol es ) (3.56)

with a constant Cp = C‘O(n, ro)-
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We recapitulate that the function 95" 'u € G1(Q) solves (3.17) with differential
operator L(Ay, ..., As, D), inhomogeneity f,, 3 € H'(2), and initial value 8;”_1u0 €
H'(R%). So Lemma 3.11 tells us that

||533§n_1u||%:0,7(9)
2
< (Cip+ T01)601T<Z 18,05 ullZ, . 0y + ||fm,3(0)||i2(Ri) + \|3:T71U0||§11(R3))

Jj=0

C
+ —e
Y
for all v > 1. Combined with (3.55) and (3.56) the above inequality implies

||3:TU||?;M(Q)
2

< (Cm,OJFTCm)eClT(Hu”?;m—Lv(Q)JrZHajuHém—l,w(Q)+||f(0)||ilm’1(R3_)
=0

+ Il 2m g ) + 7m<||f||mm 10 ullE, @) (3:57)

for all v > 1. We then use (3.57) to estimate

2
||U||émﬂ(9) < HU”%;T,L,M(Q) + Z ||8ku||%;m,m(g) + Ha?y,nUH%;M(Q)
k=0
- 2 C
< @+ TOT (S 00500 + 0l (o) + 10wl o)

=0

) ) a
+ (Cmyo + TCm)eclT(Hf(O)HiIm_l(Ri) + ||u0||?{m(R1)) + 7||f||§{;n(9)

for all v > 1. Together with (3.54), it follows

m—1
ullZ,, ) < (Cmo+TCm) mclT( 10 £ (O)[Fm 1 r3) T ”g”EmW(deR )
k=0
ol sy ) + = (M iy + 105"l ) (3.58)

for all ¥ > 4,,,. We define Cy, 0 = Cpo(0,7,70,C5.7:0,0)s Cm = Con(, 7,7, T", C3.70),
and TYm = ,YWL(?% 7T, Tlv 73.7;0) by

Crmo =2C358m.0, Cm =2C358m, Ym = max{Ym,2C3.58.:m},

where C358:m.0 = C3.58.m.0(1, 770, C3.7:00) and Czss.m = Ca.s8:m (1, 7,7, T, Cs.7:0)
are the corresponding constants from the right-hand side of (3.58). Consequently, we
have 03.58;m’}/71 < % for all v > v,,, so that we conclude
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m—1
||UH%;”M(Q) < (Cmyo + Tcm)emclT( Z Haff(o)lﬁimflfk(ﬂkﬁr) + ”g”%m,w(JXaRi)
k=0

C
2 “m 2
+ ol s ) + =1 o

for all v > v,,.
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4

Regularity of the solution of the
linearized problem

In this section we establish that for all m € N the solution of (3.2) with data uy €
H™RY), g € Ep(J x ORY), and f € H™() indeed belongs to G, () if data and
coeflicients satisfy the compatibility conditions. At the same time we expand the class
of allowed coefficients from FP(2) to E5, ().

As one might expect, the proofs which lead to this result involve several regular-
ization steps. The idea is, roughly speaking, that a regularized solution of (3.2) still
solves (3.2) with modified data. The a priori estimates from Chapter 3 can then be
applied to this regularized solution and they will eventually lead to convergence of a
sequence of regularized solutions to the original solution in a higher order norm.

However, we cannot simply apply a standard mollifier since convolution in x3-
direction would violate the boundary condition. Analogously, convolution in time
causes serious problems due to the shift of the initial value. In fact, this shift prevents
the convergence of the approximating sequence so that we cannot gain regularity in
this way.

We will therefore use another approach to obtain regularity in time (see Lemma 4.7
below). The regularity in space then follows in two steps. First we use a mollifier in
the spatial tangential variables. Then, having the regularity in all tangential variables,
we apply a mollifier in all space variables and employ the estimates for the solution of
the initial value problem (3.17).

4.1 Regularity in space

In this section we show that regularity of the solution in time implies regularity in
space. The intuitive idea for that purpose is to apply a mollifier in spatial variables
and apply our a priori estimates to the regularized solution. However, since we are
treating a characteristic problem, there are several difficulties. As mentioned in the
introduction, in the noncharacteristic case it is enough to mollify in spatial tangen-
tial variables as every appearing derivative in normal direction can be expressed by
derivatives in tangential directions and lower order terms. The lack of such an explicit
representation makes it necessary to mollify also in the normal direction. It is then
crucial to avoid a loss of regularity across the boundary.

In order to regularize in spatially tangential variables, we introduce a family of norms
which is highly suitable for that task. This family of norms has successfully been
applied to gain regularity in noncharacteristic problems. Dealing with a characteristic
problem, we have to avoid normal derivatives in the arising commutator terms. We
will show that the structure of the variable coefficients Maxwell operator allows us to
do so.
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We start by reducing the question of spatial regularity to the question of regularity
in x1- and zo-direction, cf. Lemma 3.11. To that purpose we apply a mollifier M, in
all spatial directions to a solution of (3.2) with regular data. However, this may lead
to a loss of regularity across the boundary. We therefore shift the complete problem
in negative xs-direction. By means of our a priori estimate from Lemma 3.11 and
commutator estimates from the paradifferential caluculus, we then obtain additional
regularity for the restrictions of u to a family of subsets of R3+. In a second step we
show that this result is enough to infer that the function u has the desired regularity
in x3-direction.

Lemma 4.1. Let n,7 > 0, m € N, and m = max{m,3}. Take Ay € Fgfm(Q),
A, Ay € FPoon(Q), Az € FY ooq (), and D € FP(Q). Pick f € H™(Q), and
ug € H™(RY). Let u be a solution of the linear initial value problem (3.17) with
differential operator L = L(Ay,...,As, D), inhomogeneity f, and initial value ug.
Assume that u belongs to ﬂ;nzl CI(J, H™ I (R3)).

Take k € {1,...,m} and a multiinder o € N§ with |a| = m, ag = 0, and a3z = k.
Suppose that 0°u is contained in Go(SY) for all B € N3 with |3| = m and Bz < k — 1.
Then 0%u is an element of Go(€2).

Proof. 1) We have to start with several preparations. Let p € C2°(R?) be a positive
function with [, p(z)dz = 1 and supp p € B(0,1). We denote the convolution oper-
ator with kernel p. = e 3p(e~1-) by M. for all € > 0, where the convolution is taken
over R3. We further define

E,v(z) =v(z1, 29,23+ 7) (4.1)

for all v € L}, (R3), 7 > 0, and for almost all z € R? x (—7,00). Clearly, E; belongs

loc

to L(W'P(RY), WhP(R? x (—7,00))) and
0%E v = E; 0%

for all @ € N3 with |@| <1,1€Np, 1 <p<oo,and 7 > 0. If v € L}, .(R3), we further
define E v by formula (4.1) for all 7 € R.

Let Zy denote the operator which maps each L} (U)-function to its zero-extension
on R3, where U is a subdomain of R?. In the following it will always be clear to which
domain U we refer so that we will drop the index U. Let v € L*(R%) and ¢ € H}(R3).
Observe that

(B0, V) -1 (=3 ) x Y (B2)

= / v(z1, 22,23 + 0)Y(x)dx = / v(z)Y(x1, 29, 23 — §)dx
&

R2 X (8,00)

= /RS (@) (Zy) (21, 22,23 — 6)dx = <vaE75Z¢>H*1(Ri)><Hé(]R3_)
3

for all > 0. Note moreover that RE_;Z maps H} (Ri) continuously into itself, where

R is the restriction to Ri. We therefore define - with a small abuse of notation - the
map

Es: H'(RY) - H'(RY),
(Esv, ) i1 yxmy @) = (0 E—sZ¢) g1 (rs ) xmyes ) for all ¥ € Hy(R3)

for all § > 0. Since partial derivatives commute with E_sZ on H{}(R3), we deduce
the equality

ang’U = E(;@jv (42)

for all v € L*(R3) and 6 > 0.



4.1 Regularity in space (s

We next take a closer look on the convolution operator M., which is defined for
functions in L} (R3). We want to extend this operator in a sense to functions in

loc
L}, .(R3). To that purpose, let 0 < & < 4. For functions v in L} .(R3) we will employ

the regularization
RM.Es;Zv = (MEE(;Z'U)‘Ri.

Usually, it is clear from the context whether we consider M. FsZv as a function on Ri
or R? and we will not write down the restriction to Ri explicitly in these cases.

It is easy to see that if v has a weak derivative in ]R:j’r, then also M. EsZv has a weak
derivative in R and

6jMEE51) = MEE(;ajv

for all j € {1,2,3}.

We define p by p(z) = p(—z) for all 2 € R®. The convolution operator with kernel
pe is denoted by M, for all € > 0. Let v € L*(R}) and ¢ € HJ(R3). Let 0 < & < 4.
We then compute

<M€E§vvw>H*1(R§_)><Hg(Ri) = /R3 M Esv(x)y(x)dx
+

:/ / pg(x—y)E(;Zv(y)Zzb(x)dydw:/ / pe(y — ) Z(x)dzEs Zv(y)dy
R3 JR3 R3 JR3

= | M.Z¥(y)EsZv(y)dy =/ M.Z(y)v(y + d es)dy
RS R2 % (—6,00)

= /R (]\2/521/1)(3/ —de3)v(y)dy = <v,E75M62¢>H*1(R§_)><H5(R3_)'

3
As above, E_sM.Z maps H§(RY) continuously into itself. Hence, the operator
M.Es: H Y (RY) - HY(RY),
<M6E5U7¢>H*1(]RE’;_)><H3(]R§_) = <vaE75Mszw>H*1(Rﬁ_)xHé(R§_) (4.3)

continuously extends the map M, Es which was initially defined on L?(R%). We deduce
the identity

angEg’U = MsajE(;’U = MEE(;@]-U

by duality for all j € {1,2,3} and v € L*(R3) using that the partial derivative
commutes with M., E_s, and Z on Hj(RY).
We further note that for A € W>(R3) and v € H~*(R}) we have

<(E6A)E6”a¢>H—1(Ri)ng(Ri) = (Esv, (E5A>1/}>H—1(R§_)><H5(Ri)
= (v, ELs Z((Es A))) m- v )xmy ) = (0, AE_s Z0) g-1(r3 ) x 113 (v2)
= <AU7E*5Z"/}>H—1(R3_)><H(}(]R3_) = <E6(Av)a1/)>H—1(R3+)xH3(R3+)
for all ¢ € Hj(R3), i.e.,
(E(;A)E(;U = E(;(Av) (4.4)
in H-1(R3).
II) Let 0 < ¢ < 6. Set &’ = a —e3 € N§ and note that [o/| = m — 1 and
af = k — 1. In particular, 9 u belongs to Gy (©2). Due to the mollifier the function

M_E50* u belongs to C*(J, HY(RY)) <= G1(Q), M_.E50 ug is an element of H' (R3),
L(EsAo,...,EsAs, E(;D)MEE(;aalu is contained in G(f2), and

Div(EsAy, Es Ay, EsAs)L(Es Ay, . .., EsAs, EsD)M.FEs0* u
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in L?(©). We want to apply estimate (3.18) from Lemma 3.11 with differential operator
L(EsAy,...,EsAs, EsD) to M_.Es0* u. To that purpose, we have to deal with the
terms ,

HL(E(;A(), ce E’(;Ag7 E5D)M5E58C’ uHGo,»y(Q)

and
|| DiV(E§A1, E(;Ag, EgAg)L(Eng, e E5A3, E(;D)MEE(;Z?Q u||L%(g2)

for v > 1. We fix such a parameter v and compute
f5F = L(EsA,, ..., EsAs, EsD)M.Es0® u (4.5)
= L(Es Ao, ..., EsAs, EsD)M.Es0® v — M.(L(E5A,, ..., EsAs, EsD)Es0% u)

3 ’ ,
(- 5 (G)rane e 3 ()

7=00<B8<La’ 0<p<La’

3
= (BsAi)M.0; — M.((E5A;)9;) Es0® w + (EsD)M. — M.(EsD))Es0* u
=0

3 ’ ,
DS (C;)aﬁAjajaa’—%— S (%)aﬁDaa’—%),

j=00<B<a’ 0<B<a’

where we exploited the results from step I) and Lemma 3.4. We point out that 0,0% u is
an element of Gip() as u is contained in (2, C7(J, H™~7(R%)). Therefore, 9;E;0% u
and Es5 A9, Es0® u map the compact interval J continuously into L2 (R%), implying
that the functions M.8; Es0% u and ME((E(;AO)@E(;@C“,U) converge to 0, Es0% u re-
spectively (E5Ag)0; Es0% u in Go(€2). We thus obtain that

[(E5 Ao) M8, Es0% u — M.((E5A0)9, Es9* )| ., () — O (4.6)
as ¢ — 0. Analogously, we derive
[(Es D)YM.0%" u — M.(EsD)d ul| g, ) — 0 (4.7)

as € = 0. For the remaining commutator terms we employ estimates for the commuta-
tor of a W1*°_function with a mollifier. Take j € {1,2,3}. To match the assumptions
of these commutator estimates, we now extend the coefficient A; by reflection at 8]1%‘3_

to a function in W>°(R?) which we still denote by A;. We then note - as E; Z9® u(t)
is an element of L?(R3) - that

(EsA;)M.0;Es Z0™ u(t) — M.((EsA;)0; Es Z0% u(t)) (4.8)
defines an element of H ! (R?), whose restriction to R coincides with
(EsA;)M.0; Es0* u(t) — M.((EsA;)0; Es0 u(t))

in H~1(R3) for all ¢ € J. But on R*® we can apply Theorem C.14 of [BGS07|, which
tells us that the difference in (4.8) is contained in L?(IR?). In particular, its restriction
to R% belongs to L*(R3.) and we derive

1(E5A;) M.0; Es0® u(t) — M.((Es A7)0; Es0™ u(®))| s

< |[(EsAj) M0 Es 20 u(t) — M-((Es A;)0; Es Z0* u(t))|| £ (roy

< Ol BsAjllwr.oe () | Es 2% u(t)l| 2 sy

< C |4 llwroo sy 110 u(t) | L2s ), (4.9)
lim I(EsA;)M.0; Es 20 u(t) — M((E5A;)0; Es 20 u(t)) | paus) =0 (4.10)
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from Theorem C.14 in [BGS07| for all ¢ € J. Replacing u(t) by u(t) — u(s) in (4.9) for
t,s € J, the continuity of u on the compact interval J and a standard compactness
argument yield that the convergence in (4.10) is also uniform in ¢, i.e.,

(s A;)M.0; Esd* u — M.((E5A;)9;E50° u) ||y ) — 0 (4.11)

as ¢ — 0. Next we take j = 0 and note that O,u is contained in G,,—1(2) by as-
sumption. Consequently, 9,0% ~Pu is an element of G\p)(2) while 08 Ay belongs to

ém—|ﬂ|(9) — Gpo1-15(Q) for all 3 € Nj with 0 < 8 < o/. Lemma 2.22 (i) thus

shows that
3y (g) 9P 40,0 Pu € Go(Q).
o<p<La’
We deduce
3y (O‘> 9° Do’ ~Pu € Gy ()
0<pB<La’ ﬂ

in the same way. Now take j € {1,2,3}. Then 9°A; belongs to Gy 5(2) and

9;0% ~Pu is an element of G)p-1(2) for all 8 € Nj with 0 < 8 < /. Lemma 2.22 (i)
applies again and it yields that

3
> ¥ (g) 9% 4;0,0° Pu € Go(9).
j=00<B<a’
Since f has a representative in G,,—1(€2), we conclude that the term
' - ' o "B "\ g8 pge’~5
fori= 0o f — < >a A,;8;0% Py — ( >a DO¥ Py
2,22, o) 2
J <pLa 0<B<a
is an element of C(J, L?(R3.)). Since J is compact, we infer as above that
M6E5f(x/ — E5f(x/

in Go(2) as ¢ — 0. Combining this fact with (4.5), (4.6), (4.7), and (4.11), we thus

arrive at

5
|for = Esforllae. ) — 0 (4.12)

as € — 0.
To deal with the term Div(EsA1, EsAs, EsAs)L(EsAo, ..., EsAs, E(;D)MEE(;@O‘/U,
we fix the functions p; € Fgy) () N W0 (RY) with

3
Ay = APy
=1
for all j € {1,2, 3} which exist by the definition of F;

,coeff
We set
- (pn O
a (0 u)

(Esii) "V L(EsAy, . .., EsAs, EsD)M.Es0 u

(9) respectively F5°

,cocf‘f,‘r(Q)'

and compute

3
—( E(;[L)TV(Z(E(;Aj)astE(saa’u) + (Esi) TV ((Es D) M. E59* u)

=0
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3
= (Bsit) " (E5V A;)0; M. Es0® w + (Esfi)" (EsV D) M. E50° u (4.13)
j=0
3
+ Es(i" Ag) VM. E50,0” u + Es(i" D)VM.E;0* u+ > Es(i" A;)V0; M. Es0* u,

j=1
where we again exploited the results from step I). We set

3
A =N (Bsji)" (EsV A;)0; M Es0 u + (Es i) (EsVD)M.Es0* u
§=0
+ Es(i" Ag)VM.Es0,0” u + Es(ji” D)V M.Es0* u
and note that (3.26) and (3.27) show

3

3 (ZEé (A" A VO MoEsd ) =0,

k=1 j=1
3
(ZE5 VO, M. E50° u) —0
- (k+3)k
We thus obtain that
3 3
Div(EsAy, EsAy, EsAs)L(Es Ao, . .., Es As, EsD)M.Es0® u = (Z ASES AR )
k=1 k=1

(4.14)
We rewrite A% in the form

3
Aé,s — Z[Eé(,&TvAj)v Mg]ajE(SaO/u + [E&( TVD) ]Eéaa
J=0

+ [Es (AT Ag), M.]V Es9,0% u + [Es (3T D), M.V E50“ u

3
+ M.Es ( N ATV A;0,0% ut @IV DO u+ 7T AV u + ﬁTDvaa’u).
j=0

We introduce the function

=3 (aﬁ/>3ﬁ(ﬁTAo)V8°"58tu+ > <ﬂ>65( TDywvo~ —F

0<5<O¢’ 0<p<a’
+Z > ( ) (A"VANO* Pou+ ( ) (FTV D)o Py
j=00<B<a’ 0<B<a’

As u and dyu are contained in C'(J, H™ 1(R3)), Lemma 2.22 implies that the function
fa: is an element of L?(2). With this definition at hand, we write A%¢ in the form

3
A =N [Bs(iTVAj), M0 Es0 u + [Es (i V D), Mc] Es0* u
j=0
+ [Es(i" Ao), M]VEg@ta ‘w4 [Es(iT D), M.)VE;0* u

+ 9% M. Ej ( Z TV A;05u + 7V Du + 7 AgVyu + [LTDVU) — M.Esfo
7=0

3
- Z [Es(fi M.)0; Es0° u+ [Es(i"V D), M| Es0® u
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+ [Es(iT Ag), ML)V E50,0* u + [Es(iT D), M.]VE50% u + 8% M.Es(iTV f)
3
— M.Esfor =Y 0% M.Es(ii" A;Vo,u)
j=1
B 3
=t A% =3 0% M.Es(i" A;VOju).

j=1

The cancellation properties of the differential operator established in (3.26) and (3.27)
imply

=
NE
=t
g@r
m
+
&
=
N—

(Z Akk ’ Z A(k+3)k> = (23: ]\2

k=1 k=1
In view of (4.14), we conclude that

Div(Es A1, EsAy, EsAs)L(EsA,, . .., EsAs, EsD)M.Es9® u
3 3
X 9d,e d,e
- (ZAkk’ZA(kJrB)k) (4.15)

k=1 k=1

Since 3,0 u and 9% u belong to C(J, L? (R3)) and VA and VD are contained in
L>(Q), we have

[Es(i7V Ao), ML)y Es0% u + [Es(iT VD), M.)Esd® v — 0 (4.16)
in L?(Q) as ¢ tends to zero. Exploiting that VA;, Ao, D, and /i belong to W>°(Q2)

for j € {1,2,3}, that 9% u and 9,0 u are elements of C (7, L*(R%)), and arguing as
n (4.9) and (4.10), we also infer

3
> [Es (i V A;), M0, Es0™ u+ [Es (i Ao), M.]V E50,0” u
Jj=1

+ [Es(iT D), M.]VE;0% u — 0 (4.17)

in L?(Q2) as e — 0. We recall that f,/ belongs to L?() and g7V f to H™ (). The
definition of A%, (4.15), (4.16), and (4.17) thus imply that

Div(EsAy, EsAs, EsAs)L(Es Ao, . .., Es As, EsD)M.Es0® u (4.18)
3 3
— Eé(Z(fa’ + 0% (B f)) ks Z(fa’ + 0 (ﬂTVf))(k+3)k> =: Es faiv,ar
k=1 k=1

in L2(Q) as ¢ — 0.

We point out that we have shown among other things that fi}a belongs to Go(Q2)
and Div(E(;Al,E(;AQ,E(;A?,)j"i’,6 is contained in L?(Q) for all 0 < ¢ < §. Moreover,
M_.E50* ug € H*(R%) and M_.E50* u belongs to C*(J, L*R%) N C(J,HY(RY)) =
G1(Q) for all 0 < e < 4.

Next take n,7 > 0 with Ay > 7, [[Ai|lw1.~) < 7, and [|[D||y1.00(q) < 7 for all i €
{0,...,3}. Note that we particularly have ||AZ-(0)||L00(R1) <r and ||D(O)\|L00(Ra+) <r
for ¢ € {0,...,3}.

Now let § > 0 and take ns € N with % < 4. Fix a number v > 1 and define the
constant C' = C’'(n,r,T) by

C
C' = (03 1110 F TC31151 + 3;1 1) CaanT (4.19)



82 4 Regularity of the solution of the linearized problem

where 03_11;170 = 03A11;170(’I’},7’) and 03.11;1 = 03_11;1(1’},7’, T) are the corresponding
constants from Lemma 3.11. Observe that MEE(;BO‘lu solves the initial value prob-
lem (3.17) with differential operator L(EsAy, ..., EsAs, EsD), inhomogeneity fi}s and
initial value M, Esuq for each ¢ € (0,9). Moreover,

| Es Aillw. @) <, | EsDllw. ) <,
1EsAi(0)[Leems) <70 [1EsD(0)||poe(rsy <7,

for all 6 > 0 and ¢ € {0,...,3}. Lemma 3.11 thus shows

IV (M1 E50*'u— My Es0* u)||, o)

2
o 5+ 5+
< (S Ny = MO Es0 ull, oy + 1o = Fat 13, ) (4.20)
§=0

. b 5%
+ I Div(Es Ay, Bs Az, EsAs) (£ = for iz (@) + (M2 — M

1
k

)Eéaa,u0||§{l(R§_)>7

for all n,k € N with n,k > ns. We will next show that the right-hand side of (4.20)
converges to 0 as n, k — oo.

As 8jM%E53a/uo = M%Egaj(?”‘/uo for all j € {1,2,3} on Ri and Zajaa’uo €
L?(R3), we infer

M1 Es0% ug — Es0 ug (4.21)

in H'(R3) as n — co. We remark that the translation operator Ej is crucial here
since otherwise we could not commute the derivative with the mollifier in L?(R3). We
highlight this fact only at this place but of course the translation operator is always
essential when we commute mollifier and derivative on the half-space.

Analogously, we have (%—E(;é)o‘/u = E(;ajaa’u on R3+ for all j € {0,1,2,3}. As
E59;0 u belongs to C(J, L*(RY)) for j € {0,1,2}, the set {E520;0% u(t): t € T} is
compact in L? (Ri) Therefore, the functions M 1 E(;ajé)o‘/u converge to Egajé'o‘,u in
L*(R3) uniformly in ¢t € J as n — oo, so that

2

> M1 0;E50% u — 0;E50% ul|g, ) — 0 (4.22)
j=0

as n — o0o.
The same argument shows that

||M; E(;aalu — E(;E)O‘/uHGM(Q) — 0 (4.23)

as n — oo.
The formulas (4.20) to (4.22) as well as (4.12) and (4.18) imply that the sequence
(VM1 Es0% u)p>n, is a Cauchy sequence in Go(£2). In (4.23) we have seen that

(M2 E(;@a/u)HZné converges to Es0%u in Go(2). We conclude that Es0%u belongs
to C(J, H'(R%)) and that

IV M1 Es0 u — VEs;0® ul|g, o) — 0 (4.24)
as n — oo for all § > 0.

As in (4.20), Lemma 3.11 yields with v =1

2
’ ’ 5,%
IVALy Bs0 ulf, oy < O (YoM, B0 ul, o+ M0 gy (4:25)
Jj=0

) 57L o
+ | Div(Es Ay, Bs Az, EsAs) for 12 ) + II1M 1 EsO uo||§{1(R§))v
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for all n € N with n=! < §, where the constant C’ was introduced in (4.19). Recall
that fi’,l/" was defined in (4.5). In (4.24) we have seen that (VM1 Es50% u),, converges
to VE;0* u in Go() as n — oo. In the limit n — oo, the estimate (4.25) thus leads
to
’ 2 ’
IVEs0% ullZ, () < C'(Z 10;Es0% ullZ, () + 1 Es farl Gy 0y + HEéfdiv,a'H%g(Q)
§=0

+'”l;68a,UO”§p(Ri))7 (4.26)

where we also employed (4.12), (4.18), and (4.21) to (4.24).

III) We next show that 0% u(t) is an element of H*(R?}) for all ¢ € J. Note that
we only have to prove that 939 u(t) belongs to L2(R?) for this claim. We abbreviate
R? x (8,00) by R} and denote the restriction operator to R by Rs for all § > 0. In
the next step we show that Rsu(t) belongs to H'(R3) for all § > 0.

Fix § > 0 and t € J. Let ¢ € C°(R}). We compute

J

Rg&a,u(t,m)agcp(x)dx:/ Es0% u(t, )03 Es(z)da

5 R
= - 83E58a/u(t,x)E590(x)dx =- E,5Z83E58a/u(t, x)o(z)de,
R R3
using that Esp € C2°(RY). Tt follows
93Rs0” u(t) = E_s Z05E50” u(t) € L*(R? x (6,0)) (4.27)

as 03 E50% u(t) € L*(R3).
Next pick § > & and p € C° (Rg). We compute

Rg@gR(;@o‘/u(t,x)go(x)dx = d3R50™ ult, x)Zp(z)dx
R3 R3
5 5

=— | Rs0¥u(t,z)Zdsp(zx)dx = — Rg@a,u(t,x)aggo(x)dx
R RS

= 83R38a/u(t,x)ap(x)dm,
R
B
where we exploited that supp(y) € R% Since ¢ € C° (Rg) was arbitrary, we conclude
83Rg<9a/u(t) = 93R50* u(t) on Rg. In particular, we can define the function v(t) €
L},.(R%) by setting

loc
v(t,x) = 93Rs0% u(t,x) for all z € R? and § > 0.

Take ¢ € C(R%). Fix a number 7 > 0 with dist(supp(p),0RY) > 1, ie.,
supp(p) € R3. We then deduce

8"‘,u(t,x)83<p(a:)dx = RT(‘)O‘,u(t,x)ayp(x)dx =— 93 R0 u(t, x)p(x)dx
RS R3 R3

= —/ v(t, x)e(x)dr = —/ v(t, z)p(x)dx.
R2 R
This means that 930 u(t) = v(t) € L}, .(R%).
We further note that ZdsRs0 u(t) converges pointwise almost everywhere on R

to v(t) = A58 u(t) as & — 0. Using (4.27), we further infer

120 R0 u(t) 25 ) = / B s Z03E50° u(t, z)2dz — / 105 F50° u(t, z)[2de
+ Rg R3

+
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= |03 Es0* u(t)HiQ(Ri). (4.28)
Let (8,,)n be a null-sequence. Fatou’s lemma, (4.28), and (4.26) then imply

/ |838a/u(t,x)|2dx:/ lim inf | Zd3Rs, 8% u(t, z)|dx
R? R

3 M—0o0
+

n—oo

< liminf |Z85R5, 0 u(t, x)|*dx = lim inf ||83E5n8a/u(t)||%2(R3 )
]R3+ n—oo +

29T 1: - o 12
< e liminf [V Es, 0% ullg, | (o)

2
< Cl@sz(Z 10;0% U||2GM(Q) + ||fa’||%;oﬂ(sz) + Hfdiv,a/”%g(n) + [|o* uO”iﬂ(Ri))
=0

= K2 < o0,

where we used that 9;0%u,d%u € C(J,L*(R3)) for j € {0,1,2}, fur € Go(),
faiv.ar € L2(€), and 9% ug € H'(R%). We conclude that 930 u(t) belongs to L*(R%)
with (850 u(t)]|p2(gg) < Ko for all t € J.

We further point out that Rsd30% u(t) = Rsv(t) = d3Rs0* u(t). This fact implies
that

|Z83Rs0” u(t)| < |050% u(t)]

on R, As Z93Rs;0% u(t) tends to 830 u(t) pointwise almost everywhere on R%, the
dominated convergence theorem shows that

Z03R50% u(t) —s 050% u(t)

in L2(R3) as § — 0.

Since 95 E5Z0* u belongs to C(J, L2 (R3))) for all § > 0, one can argue as in (4.28) to
deduce that Zd3 Rs0* u is also continuous on .J with values in L?(R3 ) and thus strongly
measurable. Hence, 830% u is the pointwise limit of strongly measurable functions and
therefore itself strongly measurable on J with values in L?(R3). As a result, ;0% u
and thus V9* u belong to L®(.J, L>(R3.)). We then obtain via Lemma 3.11 that 0% u
is contained in C(J, H*(RY)). O

The regularization in spatially tangential variables below will be performed in two
steps. In a first one, regularity is only obtained in L?(Q2) for purely tangential deriva-
tives. It is important to note that the techniques from the proof of Lemma 4.1 imply
that in this case all derivatives up to highest order belong to L?(), i.e., that the
solution is contained in H™ (). This result then allows us to infer that all tangential
derivatives up to highest order are contained in Go(2).

Corollary 4.2. Let n,7 > 0, m € N, and m = max{m,3}. Take Ay € F;En(Q),
Ay, Ay € FP (), A3 € FP (), and D € F;’(Q). Pick f € H™(Q),

m,coeff m,coeff, T
and ug € H™(R3). Let u be a solution of (3.17) with differential operator L
L(Ay,...,As, D), inhomogeneity f, and initial value ug. Assume that u belongs to
ﬂ;.n:l CI(J,H™ I (R3)).
Take k € {1,...,m} and a multiindex o € N§ with |a| =m, ag =0, and az = k.

Suppose that Pu is contained in L?(Q) for all B € N§ with |3] = m and B3 < k — 1.
Then 0%u is an element of L*(Q).

Proof. We only have to make small adaptions to the proof of Lemma 4.1. In step II) of
that proof we replace the a priori estimate (3.18) from Lemma 3.11 by estimate (3.20).
The arguments from step IT) then yield that E;0% u is an element of L2(J, H*(R3)).
Integrating over the time-space domain in step III) of the proof of Lemma 4.1, we
derive that 9% u belongs to L?(J, H'(RY)). O
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For the regularization in spatial tangential variables, we first introduce the family
of weighted norms

oy opy = [ [+ I 1067 (R € o) Pddoa (420
+

for all s € R and § > 0, where F5 denotes the Fourier transform in x1- and xs-direction

and v belongs to H¢,(RY), see Section 2.4 in [Hoe76]. As in the unweighted case we

have of course the identity

2
ol s ) = Mol ey + D0 105l o) (4.30)
j=1

for all s € R and § > 0. We further note that the definition directly implies

1ol ¢

mé

) < [0l e es )

for all v € Hi,'(R3), s € R, and § > 0.

We further take a function x € C2°(R?) such that Fox (&) = O(|¢|™*!) as ¢ — 0 and
Fax(t€) = 0 for all t € R implies £ = 0, cf. [Hoe76]. As usual we set y.(z) = e~ 2x(z/e)
for all x € R? and ¢ > 0 and denote the convolution in spatial tangential variables
with x. by Jg, i.e.,

Jou(x) = Xe *a v(x) = /2 x(y)v(zr —y1, 22 — Y2, x3)dy
R

for all v € L?(R3).

One of the advantages to work with the weighted norms from (4.29) is that one can
reduce the task of showing that a function v from Hg, (R3) belongs to Hi'(R2) to
finding a uniform bound in § > 0 for the Hy, ;(R% )-norms. The following properties of
this family of weighted norms can be found in (2.4.4), Theorem 2.4.1, Theorem 2.4.2,
Theorem 2.4.5, and Theorem 2.4.6 in [Hoe76].

Lemma 4.3. Let s € [0,m], v € Hi, '(R3), and let A € C®(R3) be constant outside
of a compact subset of RY.

(i) Assume that there is a constant C, independent of §, such that
1ol vy < ©
for all 9 > 0 in a neighborhood of 0. Then v belongs to Hfa(Ri)

(i) There exist constants ¢ and C, independent of § and v, such that

S— 62
e ] oy /||Jv||L2(R3)5 (14 ) de
< Clol s as,

for all § € (0,1).

(iii) There is a constant C, independent of 6 and v, such that

os_ 62\ 1
/ [ATw = Jo(A0) g e (14 5) T de < Cllol s

for all 6 € (0,1).
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We note that Hormander states the commutator estimate only for coefficients from
the Schwartz space. The proof of Theorem 2.4.2 in [Hoe76] however also works for
smooth coefficients which are constant outside of a compact set.

In order to prove regularity in the spatially tangential variables, we will derive a uni-
form bound in ¢ for the norm Hu||H£;Tsl(Ri) of the solution w. In view of Lemma 4.3 (ii),

we study the initial boundary value problem solved by J.u and apply our a priori es-
timates to it. Since J; only mollifies in z1- and zo-direction, we experience a loss of
derivatives in the commutator terms involving a derivative in normal direction. It is
unclear how to avoid this loss. To overcome this problem, we therefore transform the
initial value problem (3.2) to one with a constant boundary matrix. In this modified
problem no commutator terms involving a derivative in zg-direction appear. More-
over, regularity of the solution of the modified problem transfers to the solution of the
original problem.

Lemma 4.4. Let n,7 > 0, m € N, m = max{m,3}, T > 0, J = (0,T), and Q =
J x RY. Take coefficients Ag € Fg (Q), A1, Az € FP  ¢(Q), A3 € F5) ooq - (Q),

,coeff

D € FP(Q) and B € BC]% (A3). We further assume that these coefficients and a
function M as in the definition of BC]I”%r (A3) belong to C>=(Q). Let u be the weak
solution of (3.2) with differential operator L(Ayg, ..., As, D), and data f € HX(Q), g €
En(J x 0RY), and ug € HZ(RY). Suppose that u belongs to ﬂ;nzl CI(J,H™ I (R3)).
Pick a multiindez o € N§ with |a| = m and oy = a3 = 0. Then 0%u is an element of
C(J,L*(RY)).

Proof. In this proof it is crucial to avoid normal derivatives. We will therefore not study
the differential operator L = L(Ay,...,As, D) but instead a suitably transformed
operator L = L([lo, oo, A, D)

I) The definition of FZP () respectively F.P o () yields functions p;; €

Fr%p1(9) N WmHLoo(Q) for i, j € {1,2,3} such that

3
Ay = Auy
i=1
for all j € {1,2,3} and there is an index k € {1, 2,3} such that

lpurs| > 7

on Ri’_. We assume that k£ = 3 and that uss > 7 on Ri. The other cases are treated
analogously. We introduce the matrices

A 1 1 0 w3 R 0 M3z —H23
G, = 0 1 jpos and A3z = | —pus3 0 wiz | - (4.31)
VI3 \0 0 pgs p23 —p1z 0
Note that
- 0 1 0 0 A
GTA3G, = (-1 0 0] and A3:< i 03>. (4.32)
0 0 O T8
Setting

we thus obtain

0 GT A3G, p co
GT A5G, = (éTAgé r 03 ) = A3 = AP, (4.33)
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We point out that As is constant. Moreover, both G, and its inverse

X 10 —papgs
Gol=pas [0 1 —pospzy
00  pgy
belong to W +1:°(Q)). Hence, the same is true for G, and G, !. In particular, if we
show that 0%(G; "u) belongs to Go(Q), it follows that also 9*u is contained in G ()
as we already know that u is an element of (2, C7(J, H™ 7 (R2)).
IT) Motivated by step I), we will study the regularity properties of the function
@ = G-'u. To that purpose, set
~ ~ 3 ~ ~
A; =GV A;G,, D=GIDG,-> GIA;G.0;G;'G,, B=BG,, f=G]f,
j=1
iy = G lug, C=0CG,, M=MG;T,

for j € {0,...,3}, where C € W™TL.0(R3)2%6 and M € W™ H1°(R3)2%6 are the
matrices which satisfy

Ay = %(CTB n BTC) and B = MAs.

Recall that they exist since B is contained in IS’CI%r (As3). Observe that the matrices A;
are symmetric for i € {0,...,3}, A € F5P5(Q) for a number 7 > 0, A; e WitLo(RY)
forall j € {1,2,3}, D € F*(Q), B,C,M € WtL>(R%), f € H™(Q), @iy € H™(R?),
and @ € (V2 C7(J, H™ I (R3)). All coefficients are constant outside of a compact
set and belong to C*°(2). Furthermore, we have

MAs = MG:TGT A5G, = M AsG, = BG, = B,
1 AT 73 BT A _1 T (AT T _ 3
2(0 B+B C)—QGT (c B+B C)Gr_Ag,

so that B is contained in BCE{% (A3). The tupel (L(Ay,...,As, D), B) thus satisfies
the assumptions of Lemma 3.7. In the following we will abbreviate the differential
operator L(Ao,...,As, D) by L. We next compute

3 3 3
Li=Y A;0ji+ Dii=>Y» GFA;G,G'ou+Y GIA;G,0,G M
§=0 j=0 j=1
3
+GIDG, G 'u =Y GFA;G.0;G; ' G, G M
j=1
=Glr=1.
tr(Bd) = tr(BG, G, 'u) = tr(Bu) =

Since @(0) = G 'u(0) = g, the function @ solves the linear initial boundary value
problem
- 3 .
I/u:f7 $€R+, tEJ,
Bi = g, zedRy, telJ; (4.34)
i(0) = tg, x€R3.
At the end of this step we point out that the differential operator L has the big
advantage to possess the boundary matrix As. This fact will be exploited several
times in the following.

I1I) Note that for the assertion of the lemma it is enough to show that @ is contained
in C(J, HZ(R3)). This will be established in two steps. First we will show that @ is
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an element of L?(J, H{*(R%)). To that purpose we will apply Lemma 4.3 and the a
priori estimates from Lemma 3.7.

Fix a parameter § € (0,1). Let 7 > 0. The generic constants appearing in the
following will all be indpendent of § and . We further note that Lemma 4.3 will
be used in almost every step in the following so that we will not cite it every time.
Applying the differential operator L to J.@, we obtain

Li.a=J.f+ Z iy J)0ja+ [D, J.]a (4.35)

for all € € (0,1). Lemma 4.3 allows us to estimate

27t . TN 2m—1 2\~
[ [ A T30 0 By 2 (14 5 ) e

~112 ~ 112
< Cllallys (g prmsr @y T CNOT: g2 es )
< C||f‘|\ig(J,H:;;1<R-1)) + C||8ta||§,;n,1(m (4.36)

for all j € {0,1,2}. We argue analogously for the commutator [D,.J.]@. In particular,
LJ.1 is an element of L?(Q). Identity (4.35) further implies that A3ds.J.@ belongs to
L?(Q) so that A3J.4 is an element of L?(J, H'(R?)). We infer that the trace of BJ.4
is contained in L?(J, HY/2(9R%)). Finally J.i is an element of L2(R3) so that we
can apply the a priori estimate from Lemma 3.7 to the function J.4. Before doing so,
we use Lemma 4.3 to derive

—2vt ~ 112
sup e AN s agy + MMz

-1 —2yt )~ 11512
<c ilelge v Hu(t)||Hm,1(Rs)+c 'y||uHHm71(Q)

62
+67131€11])e /||Ju ||L2R3 gm2m= 1(1+ ) de

—om— 6
+c / /HJU HLZ(JRS)62 1<1+€2) de

< CHu“Gm,LW(Q) + O’)/||U||H1{n71(9)
' 2 2 2m—1 0%\~
+C / (1l @) + N Jellfa@ )2 (1+ 5) de (4.37)

for all v > 0. The a priori estimates from Lemma 3.7 now show that there is a constant
Cy and a number 7y > 0 such that

||Jsﬂ|‘%‘o,w(ﬂ) + 7||Jsﬁ||2Lg(sz) < C(]||J€'L~L()||2L2(Ri) + CO||BJaﬁ||%g(J,H1/2(aRi))
Co 7, -
+ 7||LJEUH%?Y(Q) (4.38)
for all v > 7. Fix such a parameter v in the following. We next treat the terms

appearing in (4.38).
Applying identity (4.35), Fubini’s theorem and estimate (4.36), we infer

VBl —2m—1 6%y 1
HLJE“”L%(Q)6 (1-1-;2) de
0
1 B 2 3
< C’/O <|\Jsf||%g(9) JrZH[Aj,Js]GJ-aH%%(Q)
=0

D)2 (14 5) e
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—o [ [ (1nf MWS+ZNAWJ 01 ey)

D, T 1a(#)]12 —2m—1 62\ 1
D, O s ) (14 55) e
< CHf”Lz (LH 1(]R3 + CH&H%%(J,H::TSI(Ri)) 4 C||3t@||§[;n71(9)
K1+C||u||L2(JHm 1(R+))’ (439)

where K7 < co and we once again employed Lemma 4.3 in the penultimate line.
IV) In this step we will treat the term

L 52 1
/0 ||BJeﬂHQEO,W(JxaRi)EiZmil (1 + ;2) de
appearing in (4.37) due to (4.38). To that purpose, we first rewrite BJ.4 as
BJ.i = [B, J.)i+ J.(Bu) = B, J.]Ji+ J.§ (4.40)

for all e > 0. We will first treat the commutator. Lemma 3.8 with weight x = 1 yields

2

I[B, Js]ﬁHQEM(JxaRi) < CZ 19;([B, Js]ﬁ)H%g(Q) + ||33([B,Js]ﬁ)||2Lg(Q)
=1

+C\|[B>Je]ﬁ||ig(n)
2
Z@aBprmHMwap@+ﬂwJMmm

+C|[0sB, Je]aHQLg(Q) +C|[B, Je]33ﬂ||%g(n) (4.41)

for all € > 0. Since ;B is an element of C°°(£2) which is constant outside of a compact
set, Lemma 4.3 (iii) and Fubini’s theorem yield

1 0B J1all2, o g2m—1 N
0 ”[ J aJE]u”L%(Q)E <1+?) <

2+t ! 5 ~ 2 2m—1 5%\ !
:/e— 7 / 11058, JLJa(0) |32 s =~ (14 55)  de

<c/*%wiumzw

< CHUHH'_""*l(Q)?

LA 2 2m—1 5%\t 2
/0 1B, Tl sz > (14 5)  de < Cllldns g (4.42)

for all j € {1,2,3}. Analogously, using that B itself is smooth and constant outside of
a compact set, we derive

IR -
/ A (R ) de
—27t)19. 4 )
< C’/Je 10501 2 g

<C [ O gy 8t = Cl i (4.43)

for j € {1,2}, where we also exploited identity (4.30). It is a bit more subtle to treat
this term for j = 3. We recall that there is a matrix M € C°°(Q2) constant outside of
a compact set such that B = M A3. We then infer

(B, J.|0si = [M, J.)|A30s0 (4.44)



90 4 Regularity of the solution of the linearized problem

for all € > 0, using that Ay is constant. For the commutator, Lemma 4.3 and equa-
tion (4.44) now yield

52
/ M, J]A383u||L2 @& " 1(1+ ) de

< C||A383u )HLZ(JH"L(SQ(R ))

< C”f”Lz(JHm Z(RS )) +CZ||A a 'U’HLQ(JI{"l 2(R3 )) +C||Da||L2(JHm5 (]R

< O +C||atu|\Hm vy T Ol gy + Clll s 5 s as)

= Ky + OHU”Lz(J HY, ;(R2))’ (4.45)

where Ky < o0.
Combining (4.41), (4.42), (4.43), and (4.45), we arrive at

LA 2 2m—1 8%\ 1
/O||[B,J5]u||EM(JXaRi)5* m(1+ %) e (4.46)

S C||a||2H;n—1(Q) + CK2 + C||UHL2 (J Hm 1(R3 )) K?, + CHU||L2 (J Hm 1(R3 ))7

where K3 < oo as 4 € H™1(Q).
With this estimate we now control the first summand in (4.40). In order to control
the term

! 2m—1 5%\ 1
/ ||Jsg||Eo,.y(J><BRi)57 " <1+7) de

_ Com_ d
:/ 27t/ ||Jag )||H1/2 8]R3) 2 1<1+

we note that the proof of Lemma 4.3 (ii), see Theorems 2.4.5 and 2.4.1 in Chapter II
of [Hoe76], shows that

2
) dedt, (4.47)

1 2 —
5 1
2 —2m—1 2
/0 [0l /2 (oms )€ (1 + 52) de < C“””H;"*l/?(ami)

for all v € HY/2(0R3) and & € (0,1). Consequently,

/ e ! /1 I Jeg()I7 a2l (1 + f52)71d5dt
S 0 € H1/2(9R3) 22

<C [ e g2 s , . dt

= /]e ||g( )HH(S /2(6Ri)

<C /J e gl Fmsr/20rs)dt < CllgllT,,  (sxoms ) (4.48)

This inequality in combination with (4.40) and (4.46) finally yields

- 2 2m—1 6%y 1
/||BJ5u||EM(JXaR3)€_ m (14 G) e

< C'||9||Em S(JxOR3) + CK3 +C”u”p JH SN (RY))

= K4+ Clil%, (4.49)

(JHDS (@)

where as usual K < co.
At the end of this step we also note that

1 2
) o 5 )
/O I etolaga e 1<1+€2) e < Ol s, < Cllolm ) (4:50)
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V) We return to estimate (4.37). Inserting (4.38) into this inequality, we first obtain
that

sup e 7" |[a(t)
ted

< Clalg

~112
”Hm 1(]R3 +7||U||L_2y(JHm 1(]R ))

m—1,v

@ t CV||U||2H_"Y"*1(Q)
1
+ C/o <||Jsa0||%2(R1) + HBJEQH%?Y(J,HU%E)]R?'_))

| —2m—1 5%\ 1
+ ;HLJEUHL?Y(Q)>€ (1 + €2> di‘:. (451)

Next the bounds (4.39), (4.49), and (4.50) yield

—2vt
sup e a(t Mo —s gy + VT2 (5 et g

CK;

< Cllil, ) + CrllallZ s, +c||ao||%m<ﬁi> +CKy+

+ C(l + )||UHL2(JH{;51(R )

< Ko+ 0(1 + 7) a2, (4.52)

(LHT S (RE))

where Kj is a finite constant. We fix the generic constant C' = C} 52 on the right-hand
side of (4.52) and pick a number 7y > 5o with Cyz2(1 + 2) < 7. Hence,

< K. (4.53)

—2vt ||~ 2
31615)6 2l ”u(t)HHt’:;l(Ri) + 5 ||uHL2(JH7”51(R3 ) =

Since 6 € (0,1) was arbitrary, we can let § to 0 in (4.53). By Lemma 4.3 (i) we
thus infer that @(t) belongs to H(R3) for all t € J and that @ is contained in
L2(J, HM(RY)) N L>°(J, H{Z(R%)). The fact that G, is an element of W™T1:>°(R?)
and v = G, finally implies that 9°u is contained in L?(f) for all 8 € N3 with |3| = m
and 60 = ,83 = 0.

VI) Applying Corollary 4.2 inductively, we infer that « and thus also @ is an element
of H™ (). To establish that @ belongs to G,,(Q2), we apply Lemma 3.7 again.

Fix a multiindex o € N§ with |o| = m and ap = a3 = 0. Since @ is a solution
of (4.34), the proof of Lemma 3.4 implies that

2
Lora=0"F-Y (a) o' ;00 Pou— Y (O‘> 98 DO P = f.,

j=0 B 0<p<La ﬂ
where fa belongs to L?(€)). Lemma 3.5 then yields that the function g, defined by

Jo =09 — <O‘) tr(0° Bo“~"a)

0<B<a B

belongs to L2(.J, H/? (E?Ri)) and Tr(Bao‘ﬂ) = §o. Next consider the function J1 9%,
which belongs to Go(£2). As in (4.35) we compute

2
LJ10%i=Jsfo+ > [A;,]1]0;0%0
=0

for all n € N. As f, is an element of L2(Q), we have

J1 fo — fa (4.54)
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in L?(Q) as n — oco. Arguing as in (4.9) and (4.10), we further derive

2
> 14, J1]0;0% — 0 (4.55)

§=0
in L2(2) as n — oo since @ belongs to H™({2). Similarly, we have
BJ10%i = J1ga + [B, J1]0%.
Differentiating the commutator further yields
O([B, J110%0) = [0k B, J1]0%0 + (B, J1]0x0%

in L?(Q) for all k € {1,2,3}, where we used |a| > 1 and Theorem C.14 from [BGS07]
again. The arguments from (4.9) and (4.10) therefore again show that

On([B, J1]0%0) — 0

in L?(Q) as n — oo for all k € {1,2,3}. As j, is contained in Ey(J x ORY), we
conclude that R
BJ10%1 — §a (4.56)

in Eo(J x ORY) as n — co. Since 49 € H™(R3), the functions J1 84 tend to 9*ag

in L*(R3) as n — oo. We now apply the a priori estimate from Lemma 3.7. This
lemma gives a constant Cy and a number v > 0 such that

||J71130‘~ — J%8Qﬂ||éw(m < Oo||J%8°‘ﬁO - J%()aﬂolliz(m)
_ _ 1 . _
o~ a~ |12 o~ a~112
+Co||BJ%8 —BJ%6 u||EM(JXaR3+)+;HLJ%8 —LJ%Q uHL%(Q)

for all n,k € N. We infer from (4.54), (4.55), and (4.56) that (J10%u), is a Cauchy
sequence in Go(€2). As (J19%%), converges to 0%a in L3(), we obtain that 9% is
an element of Go(Q). Using again that G, belongs to W™*1°°(Q) and that u = G,
we arrive at 0%u € Go(£2). O

Lemma 4.4 and an inductive application of Lemma 4.1 now yields the following
corollary.

Corollary 4.5. Let n,7 > 0, m € N, m = max{m,3}, T > 0, J = (0,T), and
Q=Jx R:j_ Take Ay € F;LITTI(Q)’ A, Ay € P (Q), As € F’rc"np,coeff,*r(Q)7 D e

m,coeff

FP(Q), and B € l?)'C]gLs+ (A3). We further assume that these coefficients and a function
M as in the definition of BCH’%r (As) belong to C*°(Q2). Pick data f € H™(Q), g €
En(Jx0R2), and ug € H™(RY) and assume that the solution u of (3.2) is contained
in ﬂ;n:l CI(J,H™ I (R3)). Then u belongs to G, ().

In particular, in the special case m = 1 we see that spatial regularity follows from
regularity in time if the coefficients are smooth. The same statement is true in for
m > 1, as we show via an iterative scheme in the next sections. Hence, the main task
that remains is to derive regularity in time when the data is regular.

We finish this section with a remark concerning the constants in our a priori esti-
mates.

Remark 4.6. If Az is an element of F.” ¢ (Q), we can study the transformed initial
boundary value problem also when deriving the a priori estimates in tangential direc-
tions. We then see that the corresponding constants do no longer depend on Ajg itself,
but only on the Fj(2)-norm of it and on the parameter 7, cf. Lemma 3.9. In view
of the dependancies of the constants in Lemma 3.11 and Theorem 3.13, we conclude
that the constants in our a priori estimates do not depend on Az but only on its norm
and the parameter 7 if A3 is an element of FP ¢ ().
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4.2 Regularity in time

In this section we lay the foundation for the differentiability theorem. In a first step
we show how regularity of the coefficients and the data in combination with the com-
patibility conditions imply that the solution of (3.2) belongs to C*(J,L*(R%)). In
combination with Corollary 4.5 we then set up an iteration scheme to deduce regular-
ity of higher order. This iteration process however requires additional regularity for
the coefficient Ap, namely that not only Ag but also 9; Ay belongs to F,, (). The proof
of the differentiability theorem has to overcome this loss of regularity, which needs a
series of additional arguments. We therefore postpone this proof to the next section.

We further note that our approach requires the coefficients in front of the spatial
derivatives and the matrix B to be time independent. In our applications to the
quasilinear Maxwell system (1.6) the corresponding linearized and localized problem
possesses this property. We will thus assume the time independence of these coefficients
from now on.

The first lemma of this section is the key step to obtain regularity in time. We
study the initial boundary value problem which is solved by dyu if the function w is
contained in C'*(J, L?(R%)). The solution v of this problem is a candidate for the time
derivative of u. The compatibility conditions then allow us to identify the function
w(t) = fot v(s)ds + u(tp) with u via the uniqueness result for solutions of the original
initial boundary value problem.

However, the initial boundary value problem solved by v is not of the form (3.2) since
it contains the primitive of v. We therefore first have to employ a fixed point argument
to solve this problem locally and then we need to exploit the a priori estimates to extend
this local solution to the whole interval.

Lemma 4.7. LetT >0, J = (0,T), Q= J xR3, and n,7 > 0. Take coefficients Ay €
F5P(Q), A1, Ay € F5% 4(Q), As € F5% 4 .(Q), D € F5?(Q), and B € Bcggi (As)
such that Ay, As, Az, and B are independent of time. Choose data ug € Hl(R‘j_),
g € E1(Jx9R3), and f € H'(Q). Assume that the tupel (0, Ao, . . . ,Ag,P,B,f,g,uo)
fulfills the compatibility conditions (2.37) of order | = 1. Let u € C(J,L*(R%)) be
the weak solution of (3.2) with differential operator L(Ay, ..., As, D), inhomogeneity
[, boundary value g, and initial value ug. Assume that w € C*(J', L*(R3.)) implies
uw € Gi(J' xRY) for every open interval J' C J. Then u belongs to G1(Q).

Proof. Take r > 0 such that
[Aillpy) <70 ID|lpy) <,y

maX{HAi(t)HFg(Riy 112;72(2 HagAi(t)HHz*j(Ri)} <r,
maX{HD(t)HFg(Ri)u ax, ||8gD(t)HH2—J‘(R§_)} <r (4.57)

for all t € J and i € {0,...,3}. Recall that such a number exists due to Sobolev’s
embedding. Let v = ~v(n, 7,7, T) be defined by

v = max{y3.7,0,¥3.13:1} > 1,

where v3.7.0 = v3.7.0(n, 7,7) and y3.13.1 = ¥3.13;1(n, 7,7, T') are the corresponding con-
stants from Lemma 3.7 and Theorem 3.13 respectively, see also Remark 4.6. We further
introduce the constant Cy = Cy(n, 7,7, T) by

Cy 130T
Co = max{C3.7,0,0,C3.7:0,1, C3.7:0, C3.13;1, (C3.13;1,0 + TCs.13;1)e 71317 Ca33.1 1} > 1,

where again C3.7,00 = C3.7,0,0(n, 7, 7), C3.7.0 = C3.7:0(n, 7, 7), C3.1301 = C3.131(n, 7,7, 1),
and Cy.33.1,1 = C2.33.1,1(n, 7,7) are the corresponding constants from Lemma 3.7, The-
orem 3.13, and Lemma 2.33 respectively. Here we again made use of Remark 4.6.
Finally, we set

Ry = Coe™ (|| f11Z, .0 + ||f||§1§(9) + HQH%EM(JxaRi) + ”uOH?{l(Ri))'
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I) Let to € J and u(ty) € H'(RY) with [lu(to)||7: gs ) < R1. We show that there
+
exists a time step T, > 0 such that there is a function v € C([to, T"], L*(R3.)) with

t
L(Ao,...7A3,8tA0+D)U:8tf—8tD(/ U(S)dS—'—U(to)), $€Ri, tGJ/;

to
Bv = 9,9, xE&Ri, teJ';
U(tO) :Sl,l(tO7A0a"'7A3aDaf?u(tO))’ Z‘ERi,

(4.58)
where we define 7" := min{tg + 75,7} and J' := (9, T’). Recall that the function
S1.1(to, Ao, - .., As, D, f,u(to)) belongs to L?(R3) by Lemma 2.33.

Take a number Ts € (0,7T) to be fixed below and define J’ and T” as above. We
further set Q' = J' x R3. Let w € C(J’, L*(R3)). Note that §; Ay + D and 8, D still
belong to L*°(2). Hence the problem

t
L(AO,...,Ag,atAo—i—D)vzatf—atD</ w(s)ds+u(t0)), reRY,  tel

to
Buv = 0,9, zedR3, telJ:

v(tO) :Sl,l(thA07"'3A37Daf7u(t0))’ xERi7
has a unique solution ®(w) in C(J’, L*(R%)) by Lemma 3.7. We next define
Br ={ve C(J, L*(R})): [lvllg, @) < R}, (4.59)

where R > 0 will be fixed below. Equipped with the metric induced by the Gg ~(£2)-
norm this is a complete metric space. Let w € Br. Employing Holder’s and Minkowski’s
inequality, Lemma 3.7, and the bound

111t Ao, A, D, (b)) agas < 2C3 5501 (1(t0) ey + utto) )
< 2Co Ry

from Lemma 2.33, we estimate

t

2
2@, @) < Co0rf =D [ wis)ds ~aDutw)| ,
t() ol

+ OO||5t9||129M(J/XaRi) + Co|S1,1(to, Ao, - - ., A3, D, fau(to))HQLz(Ri)

< 2G| D7 ()

t 2
2
/to w(s)ds + u(to)HL%(Q,) +2C0 3 (<2 )

+ CO||g||?31,»y(J’><8R§_) + QCgRl

T’ t 2
§ 2007’2/t e_Q’Yt( ||w(s)||L2(]Ri)d8+ ||u(t0)HL2(R3_)> dt+2(1 -l—Co)Rl

0 to

< ACer* Tyllwlg, . oy +4Co(1 +1°Ts) Ry (4.60)

Here we have used

T t 2
e 2t / w(s)|| 23 ds) dt
| e (1l ds)

T’ t 2
< sup e O [ ([ ernas)
teJ’ 7 Jt

to

1 T
= Z sup |le tw(@)|? / 1—eY(to=t))2qy
~ te})/ | ( )||L2(1R1) o ( )

1
<= —t 2 I < 2 ) _
=5 tsél})/ lle w(t)HL?(]Ri)(T to) < TS”wHGOW(Q ) (4.61)
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where the last step is true as v > 1 and 77 — ¢y < Ty. We now set
= (12CoRy)'/?

n (4.59) and choose T € (0,T) so small that

—_

4Cyr*T, < —.

[\

We point out that T is independent of 5. Using (4.59), Cp > 1, and this choice of R
and T, we obtain from (4.60)

R* R?
IO, @) < 5 + 5 = B

for all w € Bpg, i.e., ®(Bgr) C Bgr. Moreover, replacing w by w; — wy in (4.61), we
infer via Lemma 3.7
t 2

[ @(ws) = ®(w2)%, (@) < Col[aiD [ (wils) - wa(s))ds|

to

L2(2)

< COHatD”LOO(Q/)TS”wl - w2||GU,7(Q/) < COTQTusl - U’ZH%:M(Q/)
l[wr —wallZ,

for all wy,wy € Br. The contraction mapping principle thus gives a unique v € Bp
with ®(v) = v on J', i.e., v is the asserted solution of (4.58).
IT) In this step we assume that u(to) belongs to H'(R3) with Hu(to)HHl(R3 <R

and that (to, Ao,...,As, D, f,g,u(ty)) fulfills the compatibility conditions (2 37) of
order one; i.e., tr(Bu(tg)) = g(to)-

Let J' be defined as in step I) and let v be the solution of (4.58) constructed in
step I). We first show that Agv has a weak time derivative in H~*(R%) on J’. Let
Y € Hj(R3) and take ¢ € C°(to,T"). Abbreviating

f=0f— &gD(/tv(s)ds + u(to)),

to

we compute

(] awtontrs @arv) = [ (o000 O, )2y
g LR xHI(RE) S
:/ <A0(t)v(t)7@/(t)¢>L2(R 3 )xL2(RY)dt
= /,<v(t)vat Aoprp)(t Z L2(R )XLQ(RB)dt

= [ (@10 + DO o010 s e

3
[ 00~ 30 A0 s e
+ [ DOV 000 s e

3
= //<*f(t)aSﬁ(t)WL?(Ri)xL?(Ri)dtJF/ Z (A;050(t), o(0)) -1 (r3 ) x Y (vY ) A

+ [ DO, O am szisy)
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= <— /J, (f(t) — jzi;Ajﬁjv(t) — D(t)v(t))gp(t)dt,¢> )

H-1(R3)x H} (R3)

where we used (4.58). We conclude that

| e @i =~ | (70~ 30 40,00 = DE))eltyi

in H'(R%); i.e., Agv has a weak time derivative in L?(J’, H'(R3)) and
3
Ot(Agv) = Z ;0;v — Dv.

In particular, Proposition II1.5.11 in [BF13] yields

t

(Agv)(t) — (Agv)(te) = [ O(Agv)(s)ds

to

for all t € J'. We set

w(t) = u(to) —|—/ v(s)ds

to

for all t € J'. Observe that w belongs to C*(J’, L(RY)), w(to) = u(t), and that the
above formulas and (2.36) yield

3
L(Ao, ... Ag, Dyw(t) = (Agv)(t /(ZA@U ))ds+ 3" Adjulto) + (Dw) (1)

j=1

t 3
:/ (01 (Aov)( +ZAav ))ds + (Dw)(1) + (Agv) (fo) + 3 A;05u(to)

to Jj=1

= / (f(s) = (Dv)(s))ds + (Dw)(t) + Ao(to)S1,1(to, Ao, - - -, Az, D, fu(to))

to ,
+ Aj()ju(to)
_ / (O (s) — (B Dw + DOw)(s))ds + (Dw)(t) + f(te) — (Du) (ko)

to

= f(t) = f(to) + (Dw)(to) + f(to) — (Dw)(to) = f(t)

for all t € J'. In particular, L(Ay, ..., As, D)w belongs to L?(£).

To compute the trace of Bw on I" = J’' x 9R3., we stress that Tr(Bv) = d,g on I/
by (4.58). Since (to, Ao, ..., As, D, f,g,u(to)) fulfills the compatibility conditions of
order one, Corollary 2.18 (iii) and Remark 2.17 then yield

Tr(Bw) = Tr (B /t v(s)ds + Bu(to)) = Tv(BIov) + Tr(Buf(to))

to

= It Tr(Bv) + tr(Bu(ty)) / deg(s)ds + g(to) = g(t)

for all t € J’, where we also exploited that I/ is linear and that g has a con-
tinuous representative in HY/2(9R3) as 0,9 € L2(J',H'/?(0R3)). The function
w € CY(J',L*(R%)) consequently solves (3.2) on € with initial value u(ty) at ini-
tial time to. As H~'/2(I") continuously imbeds into H~'/2(T"), also the trace of Bu
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on I'" equals g. Therefore, the function u also solves (3.2) on €' with initial value
u(to) in to. The uniqueness statement in Lemma 3.7 thus yields v = w on Q. We
conclude that u is an element of C*(J’, L*(R%)). The assumptions therefore tell us
that u belongs to G1(Q').

ITI) We next consider ¢ty = 0. Since u(0) = uo € H*(R%), ”“0”%1(]1{1) < Ry,

and (0, A, ..., As, D, B, f, g,ug) fulfills the compatibility conditions of first order by
assumption, step II) shows that u belongs to G1((0,7p) x R3), where we set Ty =
min{T,, T}. If To = T we are done. Otherwise, we apply Theorem 3.13 to obtain

‘ ot 2 < 2 2 2
teb[gl;g] le U(t)”Hl(Ri) < Colllfllg,,, @ + HUOHHI(Ri) + ||g||EM(JxaR§;)

1
+ §||f\|%q(9))
S 6727TR1.

We conclude that ||u(T0)||§{1(R3) < Ry. Moreover, (Ty, Ao, ..., As, D, B, f,g,u(Tp))
+
fulfills the compatibility conditions of first order by Lemma 2.31, i.e.,

Tr BS1,0(To, Ao, - .-, A3, D, f,u(Tp)) = g(Tv),

since u is a solution in G1(J’ x R%). We can therefore apply step II) with tq = Tj.
We see that u belongs to G1((To,T1) x RY), with 7} = min{T, T, + T,}. Since

Osuyjo,15)(To) = S1,1(To, Ao, ..., A3, D, f,u(Tv)) = Owurry, 1,1 (To),

we infer u € G1((0,71) x R%). In this way we iterate. Since the time step 7 does not
depend on ty, we are done after finitely many steps. We conclude that u is an element
of G1((0,T) x Ri) O

The previous result allows us to obtain iteratively higher order regularity via the
“differentiated problem”

L(Ao,...,Ag,atA0+D)atu:atffatDu, ZL'G]RB, tGJ;
Boyu = Gtg, S aRi, teJ,;

atu(o) :Sm+1,1(07A07'"7A37D7f7u0)7 {EERi
(4.62)
However, if we want to apply regularity results of order m to (4.62), we have to make
sure that the tupel

(OaAOa .. '7A3aatA(] + DvBafv atgvs’m+1,1(07A07 e 7A37-D7f7 U()))

fulfills the compatibility conditions of order m.

We point out that this approach requires an extra regularity assumption on the
coefficient Ag. The definition of the compatibility conditions respectively the opera-
tors Sy, p require the zeroth order coefficient to belong to Fi;(Q2). The differentiated
problem (4.62) contains 9;Ag in this coefficient. But 0; Ay need not be an element
of Fiz () if Ag belongs to Fiax{m41,33(2)! We will therefore require that d; Ao is an
element of Fi7(£2) in the rest of this section and derive the regularity result under
this assumption. We will demonstrate in Section 4.3 how to remove this additional
smoothness assumption.

It might be possible to avoid this extra assumption on 9y Ag if one works with differ-
ent spaces for the zeroth and first order coefficients. However, we do not think that this
procedure leads to a simplification in the big picture as all the estimates in Section 2.2
and Chapter 3 become even lengthier. Moreover, in view of our nonlinear problem it
is natural to use the same function space for the zeroth and first order coefficients. Fi-
nally, in view of the assumptions of Lemma 4.3, an additional approximation argument
is needed anyway.
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Lemma 4.8. Let J C R be an interval, m € N, and m = max{m,3}. Take Ay €
Fr(r?;x{mﬂ,:a},n(g) with O, Ag € F;P(Q) and D € Fmax{m+1 5 (). Let Ay, Az, A3 €

F;pax{mﬂ d}(Q) and B € BCg:X{m+173}(A3) be time independent. Choose to € J,
’ +

ug € H"(R2), g € Epy1(J x ORY), and f € H™(Q). Assume that the tupel

(to, Ao, ..., A3z, D, f,g,u0) fulfills the linear compatibility conditions (2.37) of order

m+41, i.e.,
Tr(BSm-‘rl,p(thAOa .. 'aA3aDafa UQ)) = 6tpg(t0) fOT’ 0 < p <m.

Assume that u € G, () solves the initial boundary value problem (3.2) with differential
operator L(Ay,...,As, D), inhomogeneity f, boundary value g, and initial value ug.

We set uy = Spy1.1(to, Ao, - .., As, D, fyuo) and f1 = Oy f — 0y Du. Then the tupel
(to, Ao, ..., A3, 0040+ D, B, f1,0:g,u1)
fulfills the linear compatibility conditions (2.37) of order m, i.e.,
Tr(BS, p(to, Ao, - - ., Az, 8 Ao + D, fr,u1)) = O g(te) for0<p<m—1.

Proof. Without loss of generality let to = 0. Note that u; € H™(R}) by Lemma 2.33,
that d,g € E,,(J x ORY), and that f; € H™(Q2) by Lemma 2.22, as 9,D belongs to
émax{m,Q}(Q)' Since also 9;Ag + D is an element of F;”(£2), we infer that the function
Spp(0, Ao, ..., As,0:Ag + D, f1,u1) is well-defined and that it belongs to Hm*p(Ra’_)
for 0 < p < m from Lemma 2.33.

Observe that it is enough to show

S’m+1,l+1(07 A07 ceey A37 D7 f7 U()) = Sm,l(07 A07 sy A37 atAO + D7 fl?ul) (463)

for0<i<m-—1.
Recall that 0Yu(0) = S, (0, Ao, ..., A3, D, f,up) for all 0 < p < m by Lemma 2.31
because u € G,,(2) solves (3.2). By definition,

Sm+1,1(0;A07"' ,Ag,D,f,’LLo) =u; = Sm,O(O7AOa-- -7A3a8tAO +D7f17u1)-

Now assume that (4.63) is true for 0 <! < p—1 for some 1 < p < m—1. Using (2.36),

the induction hypothesis, and the convention (Z) =0 for k > n, we compute

Ao(0) Smp(0, Ao, ..., Az, 0 Ag + D, f1,u1)
3

_8p 1f1 ZAja]Smp 1 0 A07~~';A3aatA0+val7u1)
j=1

p—1

1
Z (p )5‘ Ao mp 1(0 AO,...,Ag,ﬁtA0+D,f1,u1)
=1

p—1
1
(p )a 6tA0+D (O)Sm,p—l—l(07A07"'7A378tA0+D7f1?u1)
=0

p—1
=a7f(0) =) ( >a§+1D(0)af“u(0)
=0
3
- ZA i0j Sm+1p(0 AOa"'aA?nDafauO)
Jj=1
p—1 1
- Z <p I )aéAO(O)Sm—&-l,p—&-l—l(Ov AOa s 7A3a Da fa UO)
=1
p—1

—1
- Z (p I )(a£+1AO + ail:D)(O)SWH»l,pfl(OaAOv e 7A37 D7 fv UO)
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3
= 8ff(0) - ZAjajSm+1,p(O7A07 .. '7A37Da fa Uo)
=1

—1
((p l ) + <Zl)_ 1)>81A0( ) 7n+1,p+1—l(07A07"'7A37D7f7u0)

((p;1> + (Zl) 1))51 (0)Smt1,p-1(0, Ao, - .., A3, D, f, uo)

- D(O)Sm-Fl,p(O’A(h cee 7A37 D7 f7 UO)
3
= 8ff(0) - ZAjajSm-‘rl,p(Oa A07 R A37Da fa UO)
j=1
P
Z ( >8ZAO m-‘rl,p-‘rl—l(OaAOv"'5A37D7f7u0)

=1

p
Z( ) m+1,p—l(0aAOa-~-aA3aDaf7u0)

1=0
= AO(O) m+1,p+1(07 Ao, R ASa Da fa UO)'

By induction, we conclude that
Sm,p(oa AOa ey A3a atAO + Da fla ul) = Sm+l,p+l(07 AOa ey A3a Dv fa UO)
for all p € {0,...,m — 1}. The assertion thus follows. O

Corollary 4.5, Lemma 4.7, and Lemma 4.8 now allow us to set up an iteration
scheme which yields the required regularity result in higher order if we assume that
the coefficients are smooth. We will remove this extra condition in the next section.

Proposition 4.9. Letn,7 >0, m € N, and m = max{m,3}. PickT > 0 and set J =
(0,T) and 2 = JxRZ.. Choose coefficients Ag € F2Y (Q) with 0, Ag € Fmax{m 13} (),

Ay, Ay € FP  +(Q), A3 € FP (), D € F;’(Q), and B € BCR+(A3). Assume

m,coeff m,coeff, T
that these coefficients are contained in C*(Q) and that Ay, As, Az, and B are time
independent. Take data f € H™(Q), g € Ey,(J x ORY), and ug € H™(R3) such that
the tupel (0, Ag,...,As, D, B, f,g,uq) satisfies the compatibility conditions (2.37) of
order m, i.e.,

Tr(BSym (0, Ao, . .., Az, D, f,up)) = dLg(0)  for 0 <1< m—1.

Let u be the weak solution of (3.2) with differential operator L(Ao, ..., As, D), inho-
mogeneity f, boundary value g, and initial value ug. Then u belongs to G, (£2).

Proof. The assertion is true for m = 1 by Lemma 4.7 and Corollary 4.5. Now assume
that we have shown the assertion for a number m € N. Let all the conditions be
fulfilled for m + 1. By the induction hypothesis, the weak solution u of (3.2) belongs
to G (). Moreover, dyu solves (4.62), i.e

L(AO,...,Ag,atAO+D)8tu:0tf—8tDu, ZL‘ER?H teJ;
Boyu = 0, xE@Ri, teJ;

6{&(0) = Sm+171(0, Ao, A ,Ag, l)7 f, UQ), xr € R:j_
We again write uy for Sp,41,1(0, Ao, ..., As, D, f,up) and f; for O,f — 0, Du. Then
uy is contained in H™(R3) by Lemma 2.33 and d,g belongs to E,,(J x dR3). Since
0D € Graxfm,2}(R) and v € G, (), Lemma 2.22 (ii) implies that f; belongs to

H™(Q). Lemma 4.8 further shows that (0, Ao, ..., A3, 0; Ao + D, f1,0g, u1) fulfills the
compatibility conditions (2.37) of order m. Finally, we have Ay € F’ () N C*(Q)
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with 8;Ag € FP(Q) and 9,4+ D € FP(2)NC>(Q) so that the induction hypothesis
yields that 0;u is an element of G, (Q2), implying that u € ﬂ;n:tl CI(J, H™ 11 (R3)).
By Corollary 4.5, u then belongs to Gp41(9). O

4.3 The differentiability theorem

The previous result yields the required amount of regularity for a solution under the
assumption of additional regularity of the coefficients. Note that this assumption is
indeed necessary to make our regularizing procedure work in higher order.

To get rid of the assumption that the coefficients are smooth, at least for all but
As, we will approximate A; by a smoother family {A; . }c>o for i € {0,1,2} and D by
{D:}c>0, hoping that the corresponding solutions u. converge in such a sense to the
original soution u that the regularity of u. can be transferred to u.

The first result is once more concerned with the compatibility conditions. If we ap-
proximate the coefficients A; and D by families of smoother ones {4, . }- and {D, }. and
consider problem (3.2) with A, replaced by A; . and D replaced by D, for i € {0, 1, 2},
the tupels (0, Ag ¢, A1, Asc, A3, De, B, f, g, up) will not satisfy the compatibility con-
ditions. However, these conditions are necessary for the corresponding solution wu.
to belong to G,,(2). To overcome this problem, we construct a family of initial val-
ues {upeteso In H"L(Ri) such that ug. — ug in Hm(Ri) as € — 0 and the tupels
(0, A0, A1 ¢, A2, A3, D,, B, f, g,uq ) fulfill the compatibility conditions for all ¢ > 0.

To that purpose, we derive a semi-explicit representation of the operators SR?JL mps
which allows us to isolate the normal derivatives of ug. An extension theorem then
yields functions ug . with the desired properties.

As we are only working on the half-space in this section, we drop the underlying

domain R3 in the notation of the operators S]R3+ .m,p in the following.
Lemma 4.10. Let n,7 > 0, m € N, and m = max{m,3}. Take coefficients Ay €
FiP (), Ay, Ay € FP o q(Q), A3 € FPq.(Q), D € FP(Q), and B € Bcga+ (As)
and data f € H™(Q), g € Ep(J x ORY), and ug € H™(R?) which fulfill the compati-
bility conditions (2.37) of order m in tg € J, i.e.,

’I‘r.B;S’»n-L’l(t(),A()7 e ,A37D7f, UO) = (Q)ég(to) fOT 0 S l S m — 1.

We suppose that Ay, Ao, and Az are time independent. Let {A; :}e>0 and {De}eso
be the families of functions provided by Lemma 2.21 for A; and D respectively for
i €{0,1,2}. Then there exists a number g9 > 0 and a family {uo - fo<c<e, in H™(RY)
such that the compatibility conditions for (to, Ao, A1,e, Ao.e, Az, De, B, f, g,u0.c) hold;
i.e.,

Tt BSyn 1(to, Aoe, A1, Aa, Az, De, fouo ) = 0g(to) for 0<1<m—1,
and ug,e — Ug N Hm(Ri) as e — 0.

Proof. Without loss of generality we assume ¢y = 0. Note that A; . and A, . are still
time independent for all ¢ > 0. We set ug. = uo + h. and look for h. € Hm(]Ri)
with h. — 0 in H™(R%) such that the compatibility conditions are fulfilled. In view
of Definition 2.16 and since B = M As, it is sufficient for that purpose to find k. with

ASSm,p(O7AO,E; A1,€7 A2,€a A37 D67 f> ug + ha) = ASSm,p(Oa A07 ceey A37 D7 fa U())

foral0<p<m-—1on GRi. To simplify the notation, we will drop the dependancy
of the operators on Az and f in the following since they remain fixed throughout the
proof.

I) Let k € {0,...,m—1} and {A.}.50 € H*(R}) with A, — A in H*(R3 ) ase — 0.
We show that Ay -(0)7'A. — Ag(0)7*A in H*(RY) as € — 0.
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Recall from Lemma 2.21 that Ag.(0) converges to Ap(0) in FSL 1(R3) so that

Lemma 2.23 yields that there exists a constant C; with ||Ag.(0)~ HF%A(RL@;) <y
and Ao (0)™1 — Ap(0)~! in F2_(R3) as e — 0. Lemma 2.22 (vii) then shows that

HAO-,E(O)_lAE_AO(O)_lAHHk(RE’;_) < C[|A,(0)7" = Ag(0)~H o @) Al g
+C|A0(0) ™| o _ @) 1Ae = Al gy — 0 (4.64)

ase — 0.

IT) In this step we assume that ug. — uo in H™(R%) as e — 0. We then prove
that Smyp(O, A0,€7 Al,sa AQ,E, D., ’LL()_’S) tends to Smyp(O, A, Ay, AQ, D, UO) in Hmip(Ri)
ase > 0for0<p<m-—1.

To that purpose, we first abbreviate

ngp = Sm,p(07 AOa Ala A2a D, UO) and an,p = Sm,p(oa AO,sa A1,67 A2,s7 Dsa uO,s)

for all € > 0. Since S5, ; = ug, converges to ug = Sy, o in H™(R3) the assertion
is clear for p = 0. Next assume that the assertion is true for 0 < p < k and some
k € {0,...,m —2}. We establish that S;, .., — S, .., in H"*"1(R%). Due to
step 1) it suffices to show that

k

k
k
ZAjga SE. i+ A305S5 k+z< )81A05 fn,k,H_lJrZ(l)aéDs(O) A

J=1
3

— ) 4;0;85, k+Z( )alAO SO 1 Z+Z< ) 0)S2, , (4.65)
j=1

in H™*"1(R%) as e — 0.

The induction hypothesis yields that S7, , converges to S0  in H™ k(R3) Since
the coefficients A; . and Ay . converge to A1 respectively A2 in F~ 1(R3) and As
belongs to F,_;(R%), Lemma 2.22 (vii) implies that the first three summands on the
left-hand side of (4.65) converge to Zj’:l Ajajs;'n,k in H™ " 1(R3).

Let I € {1,...,k}. The induction hypothesis also yields that

€ 0
Sm,k+1—l Sm,k-i—l—l

in Hm=F=1H(R3) — H™~*(R3) as ¢ — 0. On the other hand, 9} Ay -(0) converges to
It Ao(0) in H™~'=1(R3) — H™~*~1(R3) by Lemma 2.21. Using Lemma 2.22 (vi) and
arguing as in (4.64), we conclude that 9 Ao <(0)S, ,,,_, converges to 9} Ag(0)SY, 11,
in H™~*~1(R%). Analogously, we treat the terms in the third sum of (4.65). The claim
thus follows.

IIT) The definition of the operators S, ; was given inductively. In principle, it is
possible to derive an explicit representation of S,, . However, this would lead to
unhandy expressions for the coefficients in front of the derivatives of ug and f. We are
therefore satisfied with an “intermediate” result as we only need to know the regularity
of these coefficients in the following. Take r > 0 such that

max{”A ( )HFO RS) 1<Ilnax Ha A ( )||Hﬁw,—l—1(Ri): xS {0, .. ,3}} S r,

max{||D(0)| rg

l
51 @), MAX 10 D(0) || 12y } < 7.

We claim that

Sk (0, Ao, A1, Ay, D, ug) = > AR(0, Ag, A1, As, D)0 ug

aGNS
la| <k
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> AL(0, Ag, Ay, Az, D)I £(0) (4.66)

BENG
|B|<k—1

for 0 < k < m and certain functions

HH(RS) + FY_, (RY), for [a] <k — 1;
F) L (R3), for |a| = k;

HMRY) + F_1(RY), for |B| <k —2
F%fl(Rﬁ_), for |8 =k —1;

Ag(OaA07A17A2aD) S {

Ag(OaAOaA17A27D) S { (467)
for k € {0,...,m — 1} and multi-indices « € N3 and 3 € N§, which have the addi-
tional property that A,(CO’O’k)(O, Ao, A1, Az, D) = (—Ap(0) "1 A3(0))* for 0 < k <m —1.

Moreover, we have

IAR (0, Ao, Av, Az, D) vz 4o ey < Cry i o <k — 15
1A% (0, Ao, A1, A2, D)o w3) < Ch, if |o = k;

| AL(0, Ao, Ar, A2 D)l prm-v-1mt )i pn_ mey < Cho i |B] < k-2 (4.68)
| AL(0, Ao, Ay, A, D)l po_ gy < Ci if 18] =k — 1;

where Cy, = Ci(n,r) for k, a and § as above.

In the proof of this claim we use the following conventions. Throughout, « represents
a multi-index in N§ and 3 a multi-index in N§. Moreover, as Ao, A1, Az, D, and ug
are fixed in this proof, we omit also these arguments of Sy, i, Af, and Ai .

(0,0,0)

Observe that Sy, o = ug is of the claimed form with A; = I. Furthermore,

3
AO(O)SmJ = f(O) - ZAjajUQ - D(O)UO
j=1

is of the form (4.66) with A{**% = —4,(0)=2D(0) € FY_,(R3), A5 = —4,(0)~14, €
F)_,(R3), and AP0 — Aj0) e FO_ 1(R%). Note that the coefficients AL00)
and A (0:0.1) are of the form A(O 0.0) = (=A0(0)71A3)° and Ago,o,l) = (=Ap(0)"1A3)L.
This shows (4.67) for the mdlces k=0and k£ = 1. Lemma 2.23 and Lemma 2.22
further imply that also (4.68) is true for these indices.

We next assume that the claims have been shown for all indices 0 < [ < k for a
number k € {1,...,m — 1}. Starting from (2.36), we then compute

Ap(0)Sm k+1

3
Z 05| 3 Aporuo+ > Al ()]
=1 lal<k |BI<k—1
k
Z<>3ZA0 0) Z Aj120%uo + Z A£+1—laﬁf(0)}
1=1 o] <ht1—1 1BI<k—1
() Z A 0w+ Y A aﬂf(O)}

\a|<k l 1BI<k—1—1
3

Z AjO5ARD g — D Y AjARO g (4.69)
a|<k

i=1lal<k

k
k k
(})otanoaz, -3 5 (§)apoaz o

1=0 |a|<k—I

M- nmw “Mw

l

1 |a|<k+1-1
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3 3

+OFFO0) =D Y A;0,A00°£(0) Z AjAfaﬁ+€jf(o)
<

J=11B|<k-1 J=18I<
k k I
3 Y (§)otaaz, o - ¥ (i) oaz o
=1 |8|<k—l 1=0 |8|<k—
Here, the formula
0j(AL0%ug) = 0; AL ug + Af 9Ty

follows from Lemma 2.22, as A? € H™*(R3) + F2_(R3) and 0%ug € H™FT1(R3)
in the case |a| < k—1 and A € F2_,(R}) and 0% € H™ *(RY) if |a| = k.
Analogously, one infers

0;(AR9°£(0)) = 9;A70° £(0) + AJ 0P £(0)

for |8] < k — 1. In the following we use Lemma 2.22 several times without further
reference.
We first point out that 9**¢ with |o| = k and j € {1,2,3} are the only derivatives

of order k+1 in (4.69). Moreover, the coefficients AZ‘L’ = —A40(0)"14; A% belong to

FJ_(R3) for all a with |a| = k. Consequently, A, | is an element of F0 1(R3) for
all a with |a| = k+ 1. Lemma 2.23 and the induction hypothesis further yield that

AR 1llro w2y < Ca2s(n,r)r - Ci(n,r).
Moreover,

AT = —A0(0) A ALY = (—Ag(0) T Az

We further deduce that
A;0;AY € H™FH(R3)  and  A;AY € H™FHR3) + FY_,(R3) (4.70)

since A} € H"*(R3) + F2_,(R}) and A; € F2_,(R3). The induction hypothesis
yields

1405 A% || rn—s-1(rey < C(OAR N ra—rre )+

m—1(R

%) < ék(ﬁﬂ")a
”AjA?||H’7L*k*1(R§r)+FgL71(Ri) <CO(r )HAk”H’" k(RE)+FY _ (R3) < C’k(ﬂﬂ’)v
for j € {1,2,3}. Now take [ € {1,...,k} and a € N} with |a|] < k+ 1 — 1. Then
9} Ao(0) is contained in H™'=HR}) — H™ " 1(R%) and A, |, in H™F~1H(R3)
so that Lemma 2.22 (vi) and (vii) imply
Ot Ag(0)AY € H™ FH(R3) (4.71)

and

10§ A0 (0) AR 1 il 1 m3) < CllOFAO) | rm—1-1 (g3 [ ARt [l rm 11 g3 )

< Cr- Cry1-1(n, 7).
The same argument shows that
O, D(0)AY_, € H™FH(RY) + Fp_1(RY) (4.72)
and

10D (0) ARl -1 vy 4 p0,_ (3 < Cr - Croma(,7) (4.73)
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for |a| < k—1land! € {1,...,k}. The identities (4.72) and (4.73) are also true for
|a| < kand l = 0 as D(0) belongs to Fo,_;(R3) and A , to H™ *{(R3)+F2 | (R3).

Since Ag(0)~! is an element of F2_,(R}) and the coefficients Af , are linear
combinations of the products of Ag(0)~! with terms appearing in (4.70) to (4.72),
Lemma 2.22 yields that A{,, belongs to H™ " 1(R3) + F2_,(R%) for all « € N}
with |a| < k. The estimates for the corresponding terms and Lemma 2.23 then imply
that also (4.68) is true for k + 1.

The assertion for the coefficients A’g follows analogously. This finishes the proof of
the claim.

Rearranging (4.69) we can now write the operators S, ;, as

p—1

Smp(0, Ag, A1, Ao, D ug) = (—Ag(0) 1 A3)P0ug + Z Cpp—i(0, Ag, A1, A, D)ug
=0
+Bp(07A07A17A27D)f(0)7 (474)

where

Cpp—j(0, Ag, A1, Az, D) = Z Ag(oaAO,A1,A27D)3(Q1’0‘2’0)’

aGNg
la|<p,az=j

Bp(0, Ao, A1, A2, D) f = Z AP(0, Ag, Ay, A, D)0 f(0)
BENG
[B]<p—1
forall j € {0,...,p—1},pe{l,...,m—1} and f € H™(Q). Observe that C}, ,_; is a
differential operator which only involves tangential derivatives up to order p — j. The
regularity of the coefficients stated in (4.67) and Lemma 2.22 further show that Cy, ,_;
maps H™ 7 (R%) into H™ P(R3) for all j € {0,...,p—1} and p € {1,...,m — 1}.
Lemma 2.22 and (4.68) moreover yield a constant Ry, ,—; = Ry, ,—;(n, ) such that

HCIJ,IJ*j (0’ Ao, Ar, Az, D)”HH"’"”(R’i) < R@P*j(nﬁ T)Hvlle—J'(Ri) (4-75)

forallve H™J(R3), j €{0,...,p—1},and pe {1,...,m — 1}.

Similarly, B, is a differential operator of order p — 1 and (4.67) combined with
Lemma 2.22 shows that B, maps H™(Q) into H™ P(R%).

IV) Let h € H™(RY). We compute

Sm,p(07 A0,57 Al,s» A2,Ea D, ,ug + h) = (7A0,5(0)71A3)p8§(u0 + h)
p—1
+ Z Cp,p—j (07 AO,&, A1,57 A2,Ea Da)az]a (UO + h) + Bp(07 AO,Ea A1,67 AQ,E) De)f
j=0
= Sm,p(oa A0,€7 A1,€7 A2,57 D€7 uO) + (_AO,E(O)_1A3>pa§h
p—1 _
+ ZCP’P—j(OvAO,saAl,EaA2,57D5)8§h~ (476)
7=0

Set a§ = 0. Then af € H™(R3)® and
Sm,0(0,Ag, A1, A2, D, ug) — Sim0(0, Age, Are, Ao ey Deyug) = ug — up = 0 = ag.

Let k € {0,...,m —2}. Assume that we have constructed functions af, € H™ 7 (R} )°
such that

A3 ((_AO,E(O)_1A3);DG;) = AS (Sm,p(07 AOv Ah A27 D7 UO) - Sm,p(oa AO,E; A1,€7 A2,57 Da7 UO))

p—1
— A3(ZC’pvp_j((),A075,A175,A2,5,D5)a§>, (477)

=0
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a5 — 0 in H" PR} )% ase -0
for every p € {0,...,k}. Then the functions
k
Z Ck+1,k+1—j (07 AO,sa Al,sa A2,67 Df—:)a;
=0
and
S k+1(0, Ag, A1, Aa, Do) — Smk+1(0, Ao e, Ate, Ao.e, Doy ug)

belong to H™*~1(R3). Since Ag. > 7, 10%Ai e (0)] L2(ra ) < 7 for all i € {0,1,2},
and [|0°De(0)|| g2z ) < 7 for all a € N with |a] < — 1 and £ > 0 by Lemma 2.21,
estimate (4.75) and the induction hypothesis yield

k
€
HE Crt1k+1-5(0, Ao e, Ar e, Az e, De)asj s
=0 Hm=EH(RY)

k

< ZRk+1,k+1—j(na T)”a;”Hm*j(]Ri) —0
j=0

as € — 0. Moreover, step II) shows that also
“Sm7k+1(03 A07 A17 A2a D7 U'O) - Sm7k+1(07 A0,€7 A17E’ A27Ea DE? UO) ‘|Hm*k*1(R§r) —0

as € — 0. Lemma 4.11 below thus gives a number gy > 0 and functions aj,, €
H™=F=1(R3 )6 such that

Az ((—40,:(0) " 43)" af )

— A (S k10, Ao, Av, Az, Dy o) = Sy 1 (0, Ao, Av e, Az.e, Doy o)

k
— A3 ( D Crirkr1—4(0, Age, Ar e, Ag e, Da)ai),
=0

aiyr — 0 in H™"*YR3)% ase — 0.

for all € € (0,e0). The induction is thus finished.
We next define

by :=a5(-,0) € H™ P77 (9R3)

for 0 < p < m — 1. Since the trace operator from H™ ?(R%) into H™ P~ (JRY) is

continuous, we infer that b, — 0 in H™P~3 (OR3) as € — 0. Theorem 2.5.7 in [HoeT76]
now yields functions h. € H™(R3) with

Ohe(-,0) = b5 on ORY

for 0 <p<m—1and e € (0,e9), which satisfy he — 0 in Hm(Ri) as ¢ — 0.
We set up. = ug + he for all € > 0. Then ug,. tends to up in Hm(Ri). The
equations (4.76) and (4.77) yield

(A3Sm7p(03 AO,E7 A1,87 AQ,E) DEa U’O,E)) ('7 0)
- (Assm,pm, Agz, Are, Ag o, D ug) + As(—Ag - (0) "L Ag)POL he

p—1
+ AB Z Cp,p—j (07 A0,67 Al,s; AQ,sa Ds)aghs) (’7 0)

=0
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= tI‘(ASSm,p(Oa AO,67 Al,s; A2,€a Dev uO)) + tr(AB(_AO,E (0)71A3)p>b;
p—1
+ Z tr(A3Cp,p—j(0, Ao, A e, A2.c, De))b5
§=0
= (ASSm,p(()? A07 A17 AQa Da UO)) ('7 O)

for 0 <p <m — 1. Since (0, Ao, ..., As, D, B, f, g, up) fulfills the compatibility condi-
tions (2.37) of order m and B = M A3, we conclude that

Tr(BSm,p(Oa AO,E) Al,aa A2,67 D€7 UO,E)) =M Tr(A3Sm,p(07 A0,€7 Al,a» A2,€7 D€7 UO,E))
= MTr(ASSm,p(Oa A07A17A27 DaUO)) = Tr(BSm,p(OvAOaAla AQa Dauﬂ)) = 8fg(0),

i.e., the tupels (0, Ao, A1, A2, A3, D., B, f,g,u0,) fulfill the compatibility condi-
tions (2.37) of order m for all € € (0, ). O

In the previous proof we used that we can continuously invert (—Ag(0)~1A3)? on
the range of Az in a certain sense. The next lemma provides the precise statement.
The proof relies on the structure of the matrix As which allows us to transform it
globally into its Gaussian normal form.

Lemma 4.11. Let m € N with m > 3 and n,7 > 0. Take Ay € Fry6,(Q) and
Az € Fﬁf’coeHJ(Q). Pick k €¢ N with k < m —1 and p € Ny. Choose r > 0 such
that HAO(O)HF&A(R%, lA3(0)]] 7o ®) <7 Take an approzimating family {Apc}eso

m—1
provided by Lemma 2.21. Let {vo.}es0 be a family of functions in H*(R3)S. Then
there exists a number g > 0 and a family of functions {vy . toce<z, in H*(RY)® such
that

A3(0)(Ao,c(0)~" A3(0))Pvp.c = A3(0)vo e
for all e € (0,e0) and a constant C = C(n,T,r) such that
va,sHHk(Ri) < C||U07a||Hk-(R1)
for all e € (0,¢9).

Proof. 1) Since Aj belongs to F.P (Q2), there are functions p1, p2, 3 € Fyp ()

,coeff, T
such that s
1= 3,
j=1
and an index i € {1,2,3} with
il > 7 (4.78)

on 2. Without loss of generality we assume that ¢ = 3. The other cases are treated
analogously. Note that also

[l12(0)]

FO_ (R3) < Cr. (4.79)
Due to the properties of the approximating family, we find an 9 > 0 such that
||A0,e(0)||F3171(R§’r) <2r (4.80)

for all € € (0,¢ep).
IT) We introduce the matrices
. 0 pg  —pe A 0 -1 m R 1 0 0
Ag=|—-ps 0 |, Gr=p3' |1 0 p], G=[0 1 0
p2 —p1 0 0 0 ps [CR AT
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Note that

o = O
o
)
]
(oW
N
;g
|

T\
, ©

b
w
N———

Setting

we thus infer

0 0 0100
0 0 0010
o o 000 0| ¢
GAsG = "1 0 0 0 o ol =A% (4.81)
0 -1 00 00
0 0 00 00

where Gy and G, belong to F,.’s(2) by (4.78) and Lemma 2.23. Moreover, we introduce
the invertible matrix

000 -1 0 O 1 0 0 0 0 0

00 0 0 -1 0 01 0 0 0 O

oo 1 0 o0 o0 b o |00 000 0

Go=11 00 0 o of sothat A:=A7G =1, 4 ¢ 1 ¢ ¢

01 0 O 0 O 00 0 0 1 0

00 0 O 0 1 0O 0 0 0 0 O

Due to (4.78) and (4.79), we further obtain a constant C; = C;(7,r) such that
G- (O)lre,_ @) + 1GLO)lro_ m2) + IGH(O0) ko (r2) < Ch, (4.82)

where we also exploited that

- 0 ps —pe . A-1
G, =\|-us 0 m and G = ( r . 1)
0 0 1 0 G

IIT) We next want to show that the matrix

0. = Gl;3~A0,sGr;-3 Gl;3-A0,sGr;-6
c Gl;6~A0,8Gr;-3 Gl;G-AO,EG'r‘;-G

is either uniformly positive or uniformly negative definite on 2 for every € > 0. As us
is continuous and satisfies (4.78), we first observe that us does not change sign on
and without loss of generality we assume that us3 is positive on 2. Next take £ € R?
with |£] = 1. We then compute

§70.€ = i3 ((6211,0) Ao (€111, 0) + (0, €211)) + (0, €210)" Ao e ((€112,0) + (0, &21)) )

_ 1
=z (G, op) Ao e (G, o) > mnlu\z > T
for all ¢ > 0. Here we also used that Ao is contained in FPs () for all € > 0 by
Lemma 2.21. Consequently, the matrix O, is uniformly positive definite on {2 and in
combination with Lemma 2.22 we infer that ©. belongs to Fy;’,, () for all ¢ > 0. In
particular, ©. has an inverse with

”@s_l(O)HFgl_l(Ri) < C3(n,,7) (4.83)
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for all € € (0,e9) by Lemma 2.23, Lemma 2.22, (4.82), and (4.80).
IV) Let wo € H*(R3)®. Due to step III) we can define scalar functions hy . and ha .
by
(1,5 h2,e) = =0 (0)(G1(0)Ao.c (0)wo) 3.6),

where we denote for any vector ¢ from R® by ((3,6) the two-dimensional vector ({3, (s)-
Note that

1(P1,es hoe)ll sy < Caln, ) [woll s (4.84)
for all € € (0,e9) by Lemma 2.22, (4.80), (4.82), and (4.83). We next set

0.c = Gi(0)(~A0.:(0))Gr (0) (G (O)wn + hces + hace),
wl,e = GT(O)Gpr,a (485)
for all € € (0,e9). We once more obtain a constant Cy(n, 7,r) such that
||ﬁ)1,s||Hk(1R1) < Cu(n,, 7")||w0||Hk(1Ri)

for all € € (0,e0) due to Lemma 2.22, (4.80), (4.82), and (4.84). We further point out
that the construction of hy ¢, ho ., and wo . yields

(@O,E)(S,G) = (Gl(o)(_AO,E(O))wo)(3,6) - 98(0)(}7’1757 hQ,e) =0 (4'86)
for all € € (0,29). We can thus compute
A3(0)(—A0,:(0) " A3(0)) 1

= Gl(0)_1A§GT(0)_1(_AO,E(O)_I)Gl(o)_lAgGr(O)_lwl,s
= Gl(o)ilAgGr(O)il(_AO,E(0)71)Gl(0)71A§w0,€

for all € € (0,&¢). Using that
Ao . = 1ig.c (4.87)

due to (4.86), we further deduce
A3(0)(— Ao, (0) 1 A3(0))n
= Gi(0) T AF G (0) 71 (= Ao £ (0) T G1(0) e e
= G1(0)" P A G, (0) " wo + G1(0) T AS (hy ces + haceg) = As(0)wo

for all € € (0,609). To sum up, we have shown that for each wy € H¥(R3)S and
£ € (0,e0), there is a function w. € H*(R3 )% such that

A3(0)(=Ag - (0) 1 43(0))w. = Azwp. (4.88)

Moreover, there is a constant Cry = Cry (), 7,7), in particular independent of ¢, such
that

[wel ez y < Crvllwoll gre e ) (4.89)
for all € € (0,¢&p).
V) To show the actual assertion, we proceed inductively. We claim that for all
p € Ny and € € (0,£0) there is an operator T, .: H*(R3)® — H*(R3 )% such that
A3(0)(—Ap.e(0)"1A3(0))PT),  (w) = A3(0)w (4.90)
for all w € H*(R3)® and there is a constant Cj, = Cp(n, 7,7) such that

1Tp.e(W)llzr@s) < Cpllwlasmy)- (4.91)



4.3 The differentiability theorem 109

Note that there is nothing to show in the case p = 0. Now assume that we have proven
the claim for a number p € Ny. Fix € € (0,¢9) and w € H*(R3)S. Step IV) applied
with wg = w yields a function Wp41,c € Hk (JR?’F)6 with

A3(0)(—Apc(0) "t A3(0))d, - = Az(0)w (4.92)

and
[@p.ell ez y < Crv(n, 7, ) [[wl prers ) (4.93)

We now define T, 41 -(w) = T, -(Wp,). Then T, 41 -(w) is contained in H*(R3 )5 and
we compute

A3(0)(=Agc(0) 1 A3(0))P T T 11 e (w)
= A3 (O)(_AO,E (0)71)143 (0)(_A0,5 (0)71A3 (0))pr,s (wp,e)
= A3(0)(—A0,(0)"") A3(0)ip . = A3(0)w,

where we employed the induction hypothesis (4.90) and (4.92). Combining (4.91)
with (4.93), we further obtain

1 Tp41.e (W)l sy = 1Tp,e(Dpe) L) < Cpllbpellirews) < CpCrv llwll e )

As C), and Cry only depend on 7, 7, and r, the claim now follows by induction.
The assertion of the lemma is finally proven by setting v, = T,.(vo,) for all
e € (0,e9). O

We can now establish the differentiability theorem for coefficients constant outside
of a compact set. We will show that if A3 is smooth and the other coefficients and the
data are regular of order max{m, 3} respectively m and if they fulfill the compatibility
conditions of order m, then the corresponding solution of (3.2) belongs to G,,. To
prove this statement we only have to get rid of the additional regularity assumptions
on the coefficients Ag, A1, Ao, and D in Proposition 4.9. We will therefore approximate
the coefficients by the smoother ones from Lemma 2.21 and the initial value by the
functions provided by Lemma 4.10. The corresponding solutions u. belong to G,,(2)
by Proposition 4.9. The key point of the proof is then to show that u. tends to u and
that the G,,-regularity of u. passes to the limit u.

Theorem 4.12. Let n,7 > 0, m € N, m = max{m,3}, T > 0, J = (0,T), and
Q= JxR3. Take coefficients Ay € F2P (), A1, As € FRP L ooq(Q), As € FSY (Q),

m,coeff m,coeff, 7

D e FP(Q), and B € IS’C%+ (A3). Suppose that Ay, As, As, and B are independent of
time and that Az and a function M as in the definition of BC]}% (A3) belong to C>=(Q).

Choose data f € H™(Y), g € Ep(J x ORY), and ug € H™(R3) such that the tupel
(0, Ao, ..., A3, D, B, f,g,uq) satisfies the compatibility conditions (2.37) of order m.
Then the weak solution u of (3.2) belongs to G, ().

Proof. T) Let {A; ¢ }e>0 and {D.}.>0 be the families of functions given by Lemma 2.21
for A; and D respectively for i € {0,1,2}. In particular, the coefficients Ag ., A1 .,
As., and D, belong to C*(Q2) and 0;Ap. is contained in Fy () for each £ > 0.
Lemma 4.10 provides a parameter €9 > 0 and a family {ugc}ocece, € H™ (Ri) such
that (0, Aoe, A1e, A2, As, D, B, f,g,up ) fulfill the compatibility conditions (2.37)
of order m for all € € (0,g9) and ug — up in Hm(Ri) as € — 0. Let u. denote
the weak solution of (3.2) with differential operator L(Ag., A1, Az, As, De) and
inhomogeneity f, boundary value g, and initial value wg. for each ¢ € (0,¢9). By
Proposition 4.9, the function u. belongs to G,,(Q2) for all € € (0,e9). Let » > 0 such
that

lAillF, ) <7 and  ||D|p, @) <7
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for all ¢ € {0,...,3}. Due to Lemma 2.21 we then also have

HALE”Fm(Q) S CT and HDEHFm(Q) S O’r’
for all ¢ € (0,e9) and i € {0,1,2}. Theorem 3.13 then yields a constant C' =
C(n,7,7,T) and a number v = v(n, 7,r,T) such that

m—1

||Us|\émﬁ(9) < C( Z ||5gf(0)||§1m71—j(11«1) + ||9||?3m,7(JxaR1) + ”UO,s”?ﬁlm(Rﬁ_)
=0

1 2
+ g o) (4.94)

for all € € (0,e0). Let (g,) be a sequence of positive numbers converging to zero.
Then (4.94) and ug. — ug in H™(RY) as € — 0 yield that (0%u.,) is bounded in
L>=(J,L*(R%)) = (L'(J, L*(RY)))* for each o € N§ with || < m. Since L*(J, L?(R3))
is separable, the Banach-Alaoglu theorem gives a o*-convergent subsequence. Taking
iteratively subsequences for each a € N} with |a| < m, we obtain a subsequence,
denoted by (u,,), such that the o*-limit u,, of 0%u,, exists for all « € N3 with |a| < m.
Lemma 3.7 and Lemma 2.21 imply that

ltn — llcy, (@) < CUL(Ao, .. As, DYun — Fl2, 0 + 0.0 — woll3aes )

2
< O3 114i = il oy l0stnl1Z, )
1=0

+ 1D = Dallf sy lunliZ, 2 + ltt0.n = w03z ) — 0
as n — 0o, where we also exploited that f = L(Aon, A1,n, A2n, Az, Dp)tn, (4.94), and

that (uo,n)n is bounded in H™(R3). Consequently, u is equal to 1(0,0,0,0)- Looking at
the distributional derivative, we further deduce

(0, 0%u) = (~1)/*10%p, u) = (~1)°! Tim (9%, un) = (9, ua)

n—roo

for all ¢ € C°(2). We conclude that 0%u € L>(J,L*(R3)) for all a € N with
lof < m;ie., u€ Gp(Q). It remains to remove the tilde here. To this purpose we will
apply Lemma 4.7 to 07" 'u and then iteratively Corollary 4.5 to 9] u.
IT) Let 0 < j < m —1. Lemma 3.4 for m — 1, Corollary 2.18, and Lemma 2.31 show
that 8/u solves the initial value problem,
L(Ao,...,As,D)du = fj, reRy,  telJ;
Bolu = dlg, redR3, teJ;
Bfu(O) :Smyj(O,Ao,...,Ag,D,f,Uo), ZL’GRi,

where

7 .
fi=0r=> G) (8éAoai“*lu + aiDag*lu).
=1

Observe that the proof of Lemma 3.4 implies that f; belongs to H™ ().

IIT) To apply Lemma 4.7, we show that the tupel (0, Ao, ... ,Ag,D,B,fj,agg,ué)
fulfills the compatibility conditions (2.37) of order m — j, where we abbreviate the
function S, ;(0, Ao, ..., A3, D, f,ug) by w for all 0 < j < m.

Let mq1, mo € Ng with mo < my and my + mo < m — 1. We claim that

SnL—ml,an (07 AOa v 7A3a Da fml ) Ug”) = S?n,ml—i-mg (07 A07 .. 7A37 D7 f7 UO)' (495)
Note that this identity implies that

BSM—m1,Tn2(O7A07 cee 7A37D7fm1ﬂu6n1) = BSm7m1+m2(OvAOa cee 7A33Daf7 ’U,())
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= 07" g(0) = 9, (97 9)(0)

on BRi for all me < m — m; — 1, as the tupel (0, Ao,...,As, D, B, f,g,up) fulfills
the compatibility conditions of order m by assumption. We infer that (4.95) im-
plies that the tupel (0, Ao, ..., As, D, B, fm,, 07 g, ug*) fulfills the compatibility con-
ditions (2.37) of order m — m;.

Fix m; € Ny with m; < m—1. We show (4.95) for all ms € Ny with my+my < m—1
by induction. For ms = 0 we have

Sm—m1,0(07A07 e 7A37D7fm13u6n1) = ugn = Sm7m1 (OvAOa s 7A33D7f7 UO)'

In the case m; = m —1 there is nothing left to show so let m; < m—2 in the following.
Again there is nothing to show if mo = 0 so we take mo > 1. Assume that we have
shown (4.95) for all (mq,7) with 0 < j < mg — 1. Observe that m; +1 < m — 1 here.
Using (2.36), the fact that u is contained in G,,—1(€2), Lemma 2.31, the definition of

fm, and u('t, and the induction hypothesis, we then compute

AO(O)Smfmhmg (07 Ao, . 7143, D7 fml 5 ’U,gll)

3
:8{"2_1fm1(0) _ZAjajSmfmhmgfl(OaAOa~‘~1A3aDa fmlvugnl)
j=1
mao—1
mg — 1 0
— Z ( 21 >8£A0(0)5m—m17m2—l(0;AO,"'5A37D?fm1’u01)
=1
mo—1
mg — 1 0
— Z ( 21 >8£D(0)Sm—m1,m2—l—l(07AO7-'~7A37D7fm17u0 1)
=0

=Tl E(0) — 9719 (AoOyu + Du) — Agd™ T u — DO ) (0)

3
— ZAjajSm,mlerz,l(o, Ao, ey Ag, D, f, Uo)

j=1

mo—1
me — 1
o Z ( 2l >aiAO(O)Sm,ml+m2—l(OvAOa-~-7A3’D’f’u0)

mo—1
me — 1
- Z ( 2l >8£D(O)Sm,M1+m2—l—1(OaAO;'"3A35Dafau0)

= oy tmaTlf(0) — ot (Agdyu + Du)(0)
3
- ZAjajSm,m1+mz—1(0a Ao, ..., A3, D, f, UO)

j=1

mo—1
mo — 1
- Z ( 2l aiAO(O)Sm,m1+m27l(07A07~'~7A37D7f7u0)

mz—l

me — 1

_ Z ( 2l )&{D(O)Sm,m1+m2l1(0’A0""’A3’D’f’UO)
mo — 1

+ Z ( 2l )aéAO(O)Sm,M1+m2l(07A07"'7A37D7f7u0)
mo — 1

+ Z ( 21 >6£D(0)Sm,m1+m2l1(07A0""’A3’D’ f’UO)

3
=0T F(0) = > A0 Smmy 4ma-1(0, A, ..., As, D, f,u)

j=1
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mi+mo—1 my + mo — 1
. Z ( 1 l 2 >8£A0(0)aznl +77L2—lu(0)
=0

mi+mo—1 my+m _1
_ ( ! 12 )agp(O)a?'l*m'?‘l‘lu(O)
=0
+AO(O)Sm,m1+m2(O7A07"'7A37D7f7u0)
3
=0T (0) = A0 Smy4ma—1(0, Ao, .. As, D, f,ug)

Jj=1

matma—l miq —+ mo — 1
= (M T A AOSmat0 An 2.D. S
=1

mi+ma—1 my +msy — 1
- Z ( l >aiD(O)Smﬂnl"r"W—l—l(0’AOa"'aA3aDa fa UO)
=0

= A0(0)5m7m1+m2 (07A07 v 7A37 D7 fv U0)7

finishing the proof of the claim.

IV) Lemma 3.4 and step IT) applied with j = m—1 show that 9"~ u solves (3.2) with
inhomogeneity fn,,—1 € H'(Q), boundary value 9" 'g € E;(Jx9R3 ), and initial value
ult e H'(R%). By step III), the tupel (0, Ag,..., A3, D, B, frn_1,07" *g,ug™")
fulfills the compatibility conditions (2.37) of order 1. Next take an open subinterval
J'" of J. Assume that 9;" 'u belongs to C'(J’, L2(R%)). Arguing as in step VI) of
the proof of Lemma 4.4, we infer that 9;" 'u is an element of C(J/, HL (R%)). (Note
that the smoothness of the coefficients is not used in that step and that step II) of the
same proof shows that we can assume without loss of generality that As is constant.)
Lemma 4.1 then implies that 9;" 'u is contained in G1(J’ x R%). Lemma 4.7 thus
yields that 9;"'u belongs to C1(J, L3(R%)); i.e., u € C™(J, L3(R%)). The previous
arguments applied with J’ = J now imply that 07" u is an element of G;(f).

Next assume that we have proven that 07" *u is an element of G () for some
ke {1,...,m—1}. Then 9" " 'u belongs to

k k+1
ﬂ ClJrl(j’ kal(Ri)) _ ﬂ Cl(j, Hk+17l(Ri)).
=0 =1

Observe that 87" *~1u solves (3.2) with inhomogeneity fo,_x_1 € H*t(Q), bound-
ary value 0" ""'g € Ej11(J x OR%), and initial value uf' ¥~ € H*(R%) by
Lemma 3.4 and step II). Arguing as before, i.e., applying step VI) from the proof of
Lemma 4.4 to derive that 8;" % 'u € C(J, HE™ (R?)) and then Lemma 4.1 to obtain
that 9" " 'u € C(J, H**1(R3)), we conclude that 9;" "~ 'u is contained in Gj11().

By induction we arrive at 9" *u € G1(Q) for all k € {0,...,m}. With k = m we
finally obtain u € G,,, (). O

The main theorem of this section tells us that the results from Chapter 3 and
Theorem 4.12 are still true if we replace the coefficients Ag and D from FP(Q) with
coefficients from Ff,(Q).

The key observation is that the restriction to coefficients which are constant outside
some compact set was only necessary to use the results from [Ell12]. Once one has
established Lemma 3.7 with coefficients from F¢,(Q2), the results from Chapter 3 and
Chapter 4 also follow for these coefficients.

Theorem 4.13. Let n,7 > 0, m € Ny, and m = max{m,3}. Choose to € R, T' > tg,
and T € (tg,T"). Set J = (to,T) and Q@ = J x R3. Take coefficients Ay € FE, (),
A, As € F%%COEH(Q), As € FT%ITCOGEJ(Q), D € F5(9Q), and B € BCE{%+ (A3). Suppose

that A1, As, Az, and B are independent of time and that As and a function M
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as in the definition of BC]% (A3) belong to C>=(Q). Choose data f € H™(Q), g €
En(J x OR3), and uy € H™(R3) such that the tupel (to, Ao, ..., As, D, B, f,g,uo)
fulfills the compatibility conditions (2.37) of order m. We further assume that there
are functions G € WTL(R3)2%2 and G% € WTLoo(R3)5%6 such that Gy BG%
has Gaussian normal form.

Then the linear initial boundary value problem (3.2) has a unique weak solution u
in G (). Moreover, the statements of Lemma 3.11 and Theorem 3.13 are also true
in this case.

Proof. Without loss of generality, we assume that ¢ty = 0 in this proof. The key step
is to show the assertion for m = 0, i.e., Lemma 3.7 with coefficients Ay € Fg‘fn(ﬂ)
and D € F5(Q). So assume that m = 0 and observe that there are no compatibility
conditions in that case. We will show the assertion by approximation. To that purpose,
we provide two approximation results.

I) We claim that there are sequences (f,), in H*(Q), (¢)n in E1(J x OR3), and
(to,n)n in H'(R3) such that the sequence (f,), converges to f in L?(€2), (gn)n to g in
L2(J,HY2(R3)), and (ug,)n to ug in L2(R%) as n — oo, and that there is a constant
Cl with

Ifallmi@) < Crony lgnlleyrxors) < Ciony luomlla@s) < Crn® (4.96)

for all n € N.
To prove this claim we take a function ¢, € C2°(R) with 0 < ¢, <1 and

3
on(x3) =0 for x5 < v lonllze ey < Cn?

on(x3) =1 for x3 > I

VR
n4

for every n € N. Observe that ¢,, tends pointwise to 1 on R so that the theorem of
dominated convergence implies that ¢, ug and ¢, f converge to ug in L? (Ri) respec-
tively f in L?(2) as n — oco. Let p be a positive function in C2°(R) with integral 1
such that

1 on B(0,1);
p= c
0 on B(0,2)“.

We extend the function g by 0 outside of J x B]Ri, pnuo by 0 outside of R‘i and @, f
by 0 outside of 2. We then set

p1.nlty 21,2, 5) = np(nt) plnay) pl(nza) plnzs),
pg,n(t7 Ty, 1‘2) = nSp(nt) p(nxl) p(nxg),

po.n (@1, 2, 23) = n®p(nay) p(naz) p(n'as)
for all n € N and ¢, x1, x2, z3 € R. Next define
fn=ptn*f, Gn=pgn*g, and g, = pon* (¢nio),

for all n € N. We remark that for the definition of g, we convolve over ¢, x1, and
xo while for g, we take the convolution in x;-, x3-, and xz-direction. Hence, the
functions f,, belong to H*(RxR?), g,, to H*(Rx9R3), and o, to H*(R?). Moreover,

1000/l 23 ) < 11(8jP0,0) * (0ntto)llz2(rey < n(I300;p] L1 (ws)lluoll L2 r2 )

for all n € N and j € {1,2,3}, where we used Young’s inequality. We conclude that
there is a constant C] such that

[[to.nll 7 ms ) < cin* (4.97)

for all n € N. Analogously, one shows || f,||z1(q) < Cin and ||gn||Hz(]RX3Ri) < Cin?.
Exploiting that g is an element of Ey(.J x 9R3), one also obtains ||gn||El(JXaRi) < Cin.
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Moreover, the function ¢, ug is supported in the set {x € R3: 23 > 3/n*} and po,, in
{z € R3: x3 < 1/n*}. Consequently, p, * (p,uo) is supported in {x € R3: x3 > 2/n*}.
We thus obtain

tr dig.p, = g+ 0) = 0 (4.98)

for all n € N. The regularity assumptions on f, g, and ug also yield that
ao,n — Ug in LZ(Ri),
gn — g in Eo(J x 0RY), (4.99)
fo—1f in L*(Q).
We now define the function h,, by (ﬁn)l = (GLgy); for i € {1,2} and (izn)l = 0 for
i €{3,...,6}. Setting h,, = G%h,, this construction gives
Bhy, = gn (4.100)

for all n € N. As G} and G% are contained in W™ *1°°(R% ), we infer that

||h”HH1(JXaRi) < CHgn”Hl(JxaRi) < Chn,
”h”HHQ(JXaRi) < C”gn”H?(Jxa]Rﬁr) < Cn?

for all n € N. In particular, Sobolev’s embedding shows that

2
1
11 = )P (Ol a1 g2 ) < C(1+12) 1R (0)] L2 (o2 ) + ¢ > 1105hn (0)] 2 oms

j=1
< On®||hal g2 xomz ) < Cn'* (4.101)

and
1
12 = n)hn(0)lL2ra) = 11 = @nllL2®,) [1An(0)]| L2 (ore ) < Cﬁllhn”Hl(JxaRi)

1
<C- (4.102)
n
for all n € N. Finally, we set

Ug,n = 710,11 + (1 - Qpn)hn(o)

for all n € N. This sequence converges to ug in L2(Ri) as n tends to infinity due
to (4.99) and (4.102) and it satisfies (4.96) because of (4.97) and (4.101). We finish
this step by noting that our construction also yields

Bug,u = Bhn(0) = ga(0) (4.103)

on OR3 since trag, =0, ¢,(0) = 0, and Bh,, = g, by (4.100).
II) Let W € F§(€). We will show that there exists a sequence (W,,),, in F57(Q) and
a constant Cy > 1 such that

[Wallw= @) < Col[Wlw= (o),
W — WL () — 0,
10;Wy — W || L2y Lo (0) — 0, (4.104)

for all j € {0,...,3} and n € N respectively as n — oo. Moreover, if W € F5, (Q2), we
can choose the functions W), in such a way that W, belongs to F3" () for all n € N.

Since W belongs to F¥(£2), there exists a matrix w with W (¢, z) — w as |(t, z)| — oo.
Let p € C®(R*) with 0 < p <1, p=10n B(0,1) and ¢ = 0 on B(0,2)°. We define
©n = p(-/n) and then set

Wn =W+ (1 — ¢p)w
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for each n € N. Because ¢, belongs to C°(R?), the functions W,, are contained in
F5(Q) for each n € N. Moreover, for (¢,z) € Q\supp ¢, we have W, (¢, z) = w. Hence,
W, € F5P(Q) for all n € N. We further deduce

ajWn = j‘PnW + (PnajW - 8j()0nw (4-105)

for allm € Nand j € {0,...,3}. As 90, (t,x) = 1(9;0)(t/n,z/n) for all (t,z) €
and n € N, the first summand and the third summand on the right-hand side of (4.105)
converge to zero in L>°(2). The theorem of dominated convergence shows that the
second summand in (4.105) tends to 9;W in L?*(©2). We conclude that the third
statement in (4.104) is true. Moreover, the functions 0;W,, tend to 0;W pointwise
almost everywhere.

The identity (4.105) additionally implies that

10;WallLe () < 2[1050l L @) WL @) + @l Lo @) W lwr.e ()

for all n € N and j € {0,...,3}. We infer that there is a constant Cy such that
HWn||W1,oc(Q) < CQHWleoo(Q) for all n € N.
In order to prove the remaining assertion in (4.104), we ‘take an £ > 0. By the
definition of F§(Q2) we can then find a compact subset €' of Q such that
€

W(t,z) —w| < —F———
L+ ([l ()

for all (t,z) € 2\ Q. Fix an index ng € N such that 1 (¢,z) € B(0,1) for all (¢,z) €
and n > ng. Using that ¢ =1 on B(0,1) and thus ¢, —1 =0 on @ for all n > ng, we
infer that

Wy = WllLe@) = [(n — DWW —w)||L(q)
< (n = D)W —w)| oy + [[(0n — D)W —w)]| Lo 1)

< (L4 lpllee@) sup [W(tz)—w|<e
(t,x)eQ\Q

for all n > ny. Hence, the functions W,, converge to W in L>°(Q2) as n — oo.
Finally, assume that W is contained in F¥, (). Let £ € R® with [£] = 1. Due to
the definition of Fy, (€2) we have

W (t,2)6 > 1
for all (¢,x) € 2. Letting |(¢,z)| — oo, we then obtain
ghwe > 1.
We thus infer
ETWa€ = on€" WE+ (1= 9n)€ wE > g + (1= on)y =,

ie., W, € F3h(Q) for all n € N.

IIT) We fix three sequences (fn)n, (gn)n, and (4o n)n as constructed in step I). We
then choose two sequences (Ao, ), in F3' (Q) and (D), in F3”(Q) as in step II) for
Ap respectively D which have the additional property that

1 1
HAO,n — A()HLeo(Q) S ﬁ and ||Dn — DHLoo(Q) S E (4106)
for all n € N.
Take r > 0 with [|A;[[y1.(0) < C3 'r and || D||wr.(q) < Cy 'rforalli € {0,...,3}.
Due to (4.104) we then also have [|Agy|lwi.c@) < 7 and [|[Dy|lwie) < r for all
n € N. We define the constant C3 by

Cs(n,r) = max{Cs.7,0,0(n,7), C3.7:0(1,7), C3.9,1,0(1,7), C3.9;1(1,7) }
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and ~ by

7(7% T) = maX{’Y?).'T;O(nv T)a 73.9;0 (777 T)} 2 17

where C3.7,0,0, C3.7,0, C3.9;1,0, C3.9;1, ¥3.7;0, and 73.9,0 are the corresponding constants
from Lemma 3.7 respectively Lemma 3.9, see also Remark 4.6. Sobolev’s embedding
further gives a constant Cy = C4(T) such that sup,c; ||v(t)HL2(R3+) < Cyl|v|| g () for

all v € HY(Q).

We point out that because of (4.103) the tupel (0, Ao.n, A1, A2, A3, Dy, fr; Gn, Uo.n)
fulfills the compatibility conditions (2.37) of order 1. Theorem 4.12 thus shows that the
unique weak solution u,, of the initial boundary value problem (3.2) with differential
operator L(Agn, A1, A2, A3, D,,), inhomogeneity f,, boundary value g,, and initial
value ug,, belongs to G1(2) for all n € N. Applying the a priori estimate from
Lemma 3.7 respectively Lemma 3.9 and Remark 3.10, we further obtain

HunH%g(Q) < CS(anHQLg(Q) + ||gn|ﬁ50ﬁ(<]xauz§r) + ||U0,nHQL2(Ri)) <G,
||3tUnH%3(Q) < C3(an(0)||%2(Ri) + ||U0,n||§{1(R3+) + ||9n||?51,7(JxaR1) + ||an%I§(Q))
< Cs(1+ CZ)(HUO,nH?{l(Ri) + HgnHQEm(JxaRi) + ||fn||%11(9))
< 3CTC3(1 4 CF)n® (4.107)

for all n € N, where the bound Cj is due to the convergence properties of (fn)n, (gn)n,
and (uo,n)n stated in step I). In the last step we also employed (4.96). Now take k,n €
N with k& > n. Using the linearity of the differential operator L(Ag x, A1, A2, Az, Dy),
we deduce that uy — u, solves (3.2) for L(Ag x, A1, Aa, A3, D) with inhomogeneity

fk - fn + (AO,n - AO,k)atun + (Dn - Dk)un;

boundary value g — g, and initial value wpr — uo,,. The a priori estimate from
Lemma 3.7, (4.106), and (4.107) thus yield

2 2T 2
SUp [k () = tn(®)[12ag) < €l = unll, o)
< C3€2FYT<||fk - fn + (AO,n - AO,k)atun + (Dn - Dk)un“QLZ{(Q)
2 2
+ gk — gnHEM(JxaRﬁr) + [Juo,e — UO,nHLz(Ri))
< O, 1) (1 = Falldaca) + 140, = Aokl oy 1m0y

+ [ Dn — Dk”QLW(Q)Hun”%?(Q) + llgr — gn”QEOW(JxaRi) + [Juo.e — UO,nH;(Ri))

n® 1
<C(n,r, T)(ka - anQLz(Q) togtogt llgr — gn||2E‘0W(J><6]Ri)
+ [luo,k — uo,nllimi)). (4.108)

Since (fn)n tends to f in L?(Q), (gn)n to g in Eog(J x ORY), and (uo,)n to ug in
L*(R%), we conclude that (uy), is a Cauchy sequence in C(J, L*(R%)). Hence, this
sequence converges to a function u in C(J, L?(R3)).

We next show that the function w is a weak solution of (3.2) with differential operator
L(Ay,...,As, D), inhomogeneity f, boundary value g, and initial value ug in the sense
of Definition 3.1. To that purpose, we note that the definition of the functions wu,
yields

(frs @) 2@)xr2(@) = (L(Aon, A1, Aa, Ag, Dip)un, ©) g-1()x H ()1

ie.,
/ fn-pd(t,z) = / Uy, - L(Ag ., A1, Az, A3, Dy) o d(t, ) (4.109)
Q Q
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3
- /Q - Oy(Aon?) d(t,x)—; /Q un - 05 (A;0) d(t, ) + /Q wp - DT d(t, )

for all ¢ € H}(Q)®. Fix such a function ¢. Since (f,) and (u,), converge to f
respectively u in L?(€2), we infer

/an-sod<t,:c)—>/f-sod(t,x),

as n — 00. As (0;Agn)n is bounded in L>(Q) and converges pointwise to 0; Ay by
construction, the theorem of dominated convergence yields that 0; Ay ¢ converges to
O Ao in L2(Q) as n — oo. The convergence of (Ag,)n and (Dy,), to Ag respectively
D in L°°(Q) implies that also (Ao n0:¢)n and (D), tend to Agdsp respectively Dy
in L?(Q). Letting n — oo in (4.109), we thus obtain

JREZCOR Z/ua Aspdtt.a)+ [ DT,

We conclude that

(L(Ao, ..., A3, D)u, o) p-1()x i) = (fr @) 2= 12(9) (4.110)
for all ¢ € H}(Q)S.

Next let i € {1,...,6} and define the functions ¢’, and ¢* by
q; = ((AO,nun)ia (Arun)i, (Agun)i,s (A3un)i)T7
"= ((Aou);, (Aru);, (A2u);, (Agu);)”
for all n € N. Since (A ) tends to Ag in L>(Q2) and (u,)n to u in L*(Q), we deduce
that
¢ —q (4.111)

in L?(Q) as n — oo. On the other hand, we have

3 3
divigl, = (B(Aomtun) + D 05(Ajun)) = (fu+ Dronttn + > 0 Ajun — Do)
j=1 ‘ j=1 ‘
for all n € N. The same arguments as above show that (D,u,), converges to Du in
L?(Q2) as n — co. Moreover, we can estimate

[0t Aot — 0r Aoull 220y < 1|0¢Aon (un — u)||L2() + [(OcAom — OrAo)ull12(0)
(4.112)

for all n € N. Because (9, Ay ) is bounded in L>*(), the convergence of (uy), to u
yields that the first summand on the right-hand side in (4.112) tends to 0. As (9, Ao n)n
furthermore tends pointwise almost everywhere to 0;Ag the theorem of dominated
convergence shows that also the second one tends to 0. Using that (f,,), converges to
fin L?3(Q)) as n — oo, we arrive at

3
div q; :(fn + Ot Ao iy + Z 0 Ajuy, — Dnun)i
=1

3
— (f +0Aou+ " 9;A5u — Du)

j=1

%
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in L?(Q) as n — co. Employing the product rule in H~1(Q) and (4.110), we further
infer

3 3
dive q' = 0y Agu + Agdyu + Y (0 Aju+ A;jdju) = f+ Y 0;A;u— Du

Jj=1 Jj=0

in H~1(Q). Hence, div; ¢, and div; ¢* belong to L?(Q) and (div¢ ¢',),, tends to div; ¢
as n — oo in L?(Q2). Combined with (4.111), this means that (¢’,), converges to ¢* in
H(div¢, Q) as n — oo. In particular, we see that (Asu); belongs to H(divs, )3 and
that (Asu,); tends to (Asu); in H(dive, Q)3. Since the trace operator Tr is continuous

from H(divy, Q)3 to Ho_l/Q(F) by Lemma 2.5, we obtain

Tr(Asuy,); — Tr(Asu);

in Hy'/*(T") as n — oo, where T' = (0,T) x ORZ.. We point out that Tr(Bu,) = g,
for all n € N as the functions u,, are solutions of (3.2). Using Definition 2.15 and
Definition 2.16, we arrive at

Tr(Bu) = M - Tr(Asu) = M - (Tr(Asu)q, ..., Tr(Asu)g)
=M - lim (Tr(Asun),. .., Tr(Asuy)e) = lim M - Tr(Asuy,)

n—oo n—oo

= lim Tr(Bu,)= lim g, =g,
n—oo n—oo

where the limits are taken in H~'/2(T') and where we used that g, converges to g in
L2(J, HY?(0R3)) — H~1/2(J x 9R%) by step I). B
Finally, we exploit that (u,), converges to u in C(J, L*(R%)). This implies

u(0) = nh_)rréo un (0) = nh—>Holo Ug,p = U,

where the limits are taken in L?(R3). We conclude that the function u solves (3.2)
with differential operator L(Ay, ..., As, D), inhomogeneity f, boundary value g, and
initial value ug in the sense of Definition 3.1.

IV) Let ag denote the limit of Ay at infinity. Then |ag| < ||A0(0)\|Loc(R3+). Take a
radius ro > 0 such that ||A0(0)||Lm(Ri) < rg and HB||W1,O°(]R1) < rg. The construction
of the functions A, in step II) then implies that

[A0n (0l ®3) <70

for all n € N. The properties of the approximating sequences in (4.104) further yield
that

[Aonllwie@ <7 and  [[Dplpe@) <7

for all n € N and the radius r > rq fixed at the beginning of step III). Lemma 3.7 and
Remark 4.6 then show that

||Un||%;o,v(sz) + ’YHUn”%g(Q) < C3~7;0,0(777TO)(||u0,n||2L2(]Ri) + ||9n||2EM(JxaR1))
+ Caraln )2l oy
for all v > ~y3.7.0(n,r) and n € N. Letting n — oo, we obtain
lullZ, o) +lullZz @) < Camoo(mro)(luolZas ) + I9lE,  (rxors))

1
+ 03‘7;0(777 r);”f”%%(ﬂ)
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for all v > ~3.7.0(n, 7). This is the estimate from Lemma 3.7 for u with constants of
the same form as the ones in Lemma 3.7.

V) To show that w is the unique solution of the problem, it is enough to prove that
problem (3.2) with homogeneous boundary and inital conditions and vanishing inho-
mogeneity has only the trivial solution. We note that this fact would be a consequence
of the a priori estimate from step IV) if we already knew that they were true for every
solution of (3.2) with differential operator L(Ay, ..., As, D). However, in step IV) we
have proven these estimates only for the function u. Therefore, another approximation
argument is needed.

So let v € C(J, L*(R%)) be a solution of (3.2) with inhomogeneity f = 0, boundary
value g = 0, and initial value vg = 0. We extend v by zero on (—oc, 0) and continuously
to the right such that v(¢t) = 0 for ¢ > 7" and some 7' > T. Then v belongs to
C(R,L*(R3)) N L?(2). We further set Ay(t) = Ag(0) for ¢ € (—00,0) and Ay(t) =
Ao(T) for t € (T,00). Then Ag is an element of Wh>°(R x R3). Analogously, we
extend D to R x Ri.

Let 6 > 0 and ¢ € (0,0). We define 757(t) = r(t — ) for all t € R and r €
L},.(R x RY). We further write Ao s respectively Ds for 75Ag respectively 75D. Let
p1 be the kernel of a standard mollifier over R, ie., py € CP(R) with 0 < p; < 1,
suppp1 C B(0,1), and p; has integral one. Let p1. = e 'pi(e71) and Jor(t) =
Jg pre(t—s)r(s)ds for all t € R, 7 € L}, (R x R3), and £ > 0. Let (A ), and (D)),
be two sequences as in step II) for Ay s and Dj respectively. We point out that

A o llwroe () < CallAosllwe@) < CallAollwe@) <7,
DS e () < C2||Dsll oo () < Cal|Dl|p(o) < 1,
”Ag,n(O)HLW(RE’r) <[ A0s(0)lz=@s) = [[A0(0)ll 2o ®3) <70

for all n € N. We further observe that J.7sv is an element of C*(R, L?(R%)) and

L(A] ., A1, A, A3, D0) Jersv = (A, — Aos)OyJesv + (DY — D) Jersv
+ L(Ag 5, A1, Ag, Az, D) JT50

= (A5, — Ao,s)0JoTsv + (DY — D°)Jo750 + Ao 5 Je0msv — J-(Ag 50,75v)
+ DsJomsv — Jo(Ds750) 4 Jo (L(Ao,s, A1, Az, Az, Ds)Tsv)

= (Ag,n — Ao,5)0¢ JTsv + (Di - Dé)JET(g’U + Ay 5J:0im5v — Je(Ag 504 T50)
+ D5 J.750 — Jo(DsTsv) = fr.e.5,

on () for all n € N, where we used that
L<AO,53A17A2aA3,D5)T5’U = T§L(AQ, s ,A3,D)’U =0

on . Theorem C.14 in [BGS07| implies that f,.s belongs to L*(2). Moreover,
Jemsv(0) = 0 and from Corollary 2.12 we deduce that also Tr(BJ.75v) = 0. We
conclude that J.75v solves (3.2) with differential operator L(AJ ,,, A1, Ay, A3, D)), in-
homogeneity f, s, boundary value 0, and initial value 0 for all n € N and € € (0, 9).
Lemma 3.7 thus shows that

17em5011Z, @) < Camo(m )| fnesliz @

for alln € N, ¢ € (0,0), and a fixed number v > 73.7,0(n, 7). Using the definition of
frn,e,5, we obtain a constant C' = C(n,r) such that
1 Je50]Z 0
< C”Ag,n - A0,6||2Loo(9)||3tJeT<SU||2Lg(Q) + CHDg - D6\|%M(Q)||Ja7'6“||ig(ﬂ)
+ C|| Ao 5J:0,Tsv — JE(AO,(;atT(;U)HQL%(Q) + C||DsJ.1sv — JE(D(;T(;U)HQL%(Q)
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for all n € N and ¢ € (0,6). In the limit n — oo, we thus obtain

[BAT P
< Cl|Ao,5J0 50 — JE(A0758tT5v)||2L%(Q) + C||DsJesv — JE(D(;T(;’U)”QL%(Q) (4.113)

for all € € (0,4), since (A3 ,,)n and (D), converge to Ag s respectively Dy in L>(€2).
Using Fubini’s theorem, we can write

| A0,5J=0m50 — J(Ao,50m50) 1720y

= /]R3 |140,5(-, ) JeOsv(-, z) — JE(AO’(;(-,x)@tTgv(-,x))||%2(07T)dac.

+

Since Ag,s(x) is Lipschitz-continuous on R, Theorem C.14 from [BGS07| shows that

| Ao,5(-, x) JeOrtsv(-, ) — Je(Ao,5(-, 2)0emsv(-, x)) || L2(0,7) — O as e — 0,
| A0,5(-; ) JeOrsv (-, w) — Jo(Ao,5(+, 2)OeTsv(-, @) |l 2(0,1)
< OllAos () [wreem)llTsv(, 2) [ 22R) < CrllTsv(-, )| L2 (R) for all e > 0

for almost all z € Ri. The theorem of dominated convergence then yields that
| A0,5J=0m50 — Jo(A0,50im50) |72 — O
as € — 0. Similarly, we deduce
| DsJoTsv — Je(DsTs50) || L2(0) — 0

ase — 0. As 750 is an element of C(R, L?(R3))), we further obtain that J.7sv converges
to 75v in C(J, L*(RY)) as € — 0. Letting € to 0 in (4.113), we thus arrive at

||76UH2GM(Q) = 0.

for each § > 0. Now let t € (0,T). Then there is a number § > 0 such that t + ¢ < T
We obtain

v(t) = 1sv(t+96) = 0.

Hence, v =0 on (0,7) and by continuity then also on [0, T].

We conclude that the initial boundary value problem (3.2) with differential operator
L(Ay,...,As, D), inhomogeneity f € L?(Q), boundary value g, and initial value ug €
L*(R3) has a unique solution in C(J, L?(R3)) for which estimate (3.9) is true with
constants of the same form as in Lemma 3.7. We have thus shown Lemma 3.7 with
a coefficient Ay from Fyg,(Q2) and a coefficient D from F5(Q2). Since we used the
assumption that the coefficients are constant outside some compact set only to apply
Lemma 3.7, we can now replace it by the assumption that the coefficients converge as
|(t,z)] = oo in all results of Chapter 3 and Chapter 4. The assertion of the theorem
then follows from the corresponding results in these sections. O
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Localization

In this part we want to perform the localization procedure for Maxwell’s equations.
Our goal is to transfer the local wellposedness theory from the half-space to domains.
We study the linear initial boundary value problem

3
AoatquZA;OajUwLDu:f, x €@, teJ,

=1 (5.1)
Bu = g, x €0G, teJd;

u(0) = uo, z € G,

and derive a wellposedness theory corresponding to the one on the half-space from
Chapters 3 and 4. The idea is to use local charts in order to transfer the results from
the half-space to the domain.

In the localization argument we need an additional property of the covering of the
boundary. On each chart we want to find one component of the unit normal vector of
the boundary which is uniformly bounded from below. The next lemma shows that
this can be achieved by a refinement of the covering.

Lemma 5.1. Let m € N, m > 2. Let G C R? satisfy the uniform C™-reqularity
condition. Then there exists a locally finite open cover (U;);en and corresponding
functions ¢; € C™(U;) which are bijections onto an open set V; C B(0,1) such that
Vi = ;1 € C™(V;) for alli € N and the following conditions are satisfied.

(i) There is a natural number N such that for all A C N with |A] > N we have
Miea Ui = 0.

(i) For each i € N we have ¢;(U; NG) = {y € V;: ya >0} = VT
(iii) There is a constant My > 0 such that
|0%pi i (z)] < My for all x € Uy,
0% ()| <My forally eV, (5.2)
forallje{l,...,d}, i €N, and o € Nd with 0 < |a| < m.

(iv) There exists a number T > 0 such that for all i € N there is an indexr j €
{1,...,d} such that
10;0ia(x)] > T (5.3)

for all x € U;.

Proof. Let (Ui)ieN, (@i)ien, and (zﬁi)ieN be the covering respectively the corresponding
transformations from Definition 2.24. The chain rule then implies that

Lixa = (V@i 097))(x) = V@i(1hi(x)) - Vibi()
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for all x € B(0,1), i.e

1= |V@ia(i()) - datbi(e)] < Mi|Via(d(x))l

for all x € B(0, 1) and hence
1

3. >
|v¢l7d(m)| - ‘2\4'1
for all z € U; and i € N. Consequently, there is a number 7 > 0 such that for all : € N
and x € OG NU; there is an index j € {1,...,d} such that

|0;¢i,a(x)| = 27.
We pick such an index and denote it by j(x,i). We define the domains
Upi=1{y €U;: 10j(2,)Pi,a(y)| > 7 and Iy € C([0, 1], U;) with 7(0) = z,7(1) = y}

for every 2 € 3G N U; and i € N. The set B(0,n) N dG is compact for all n € N and
the system )
{(Upi: 1€ 0GNT;,i € N}

forms an open cover of it for all n € N. Hence, there are a number K(n) € N and

finitely many points @y 1, ..., %y k(n) € OG and indices in,1,. .., ipn, K (n) Such that
K(n)
E(Ov ’I”L) noG - U an,kvin,k
k=1

for all n € N. We set

Vxn,kvin,k = Pink (an,k7irz,k) - B(Ov l)a P krine — 9017; kU,
wmn,kvin,k djzn k\V

Ty, koo, k

7
Ty koo, k

for all k € {1,...,K(n)} and n € N. Then the system

{(Uﬂcn,k,in.kvVxn,k,in.k?@xn,k,in.k?wwn,k,in,k): ke {17 ER 7K(n)}v ne N}

is countable and we fix an enumeration (U;, Vi, @i, 1;)ien of it. Observe that

oG =) BOn)nocc | U Ve pine = J Ui
neN neN k=1 i€N

i.e., (Ui)ien is an open cover of OG. Moreover, we have V; = ¢, (U;), v; € C™(U;, V;),
and ¥; = <p;1 for all ¢ € N. By construction, these objects satisfy conditions (ii), (iii),
and (iv).

By Definition 2.24 there is a number N such that for all A € N with [A| > N the
intersection ;. U. U, is empty. We claim that (i) holds with N = Nd —d + 1. To see

this assertion we assume that there was a subset A of N with |[A| > Nd — d + 1 and

() U # 0. (5.4)

leA

By construction, for all [ € A there exist numbers n; € N and k; € {1,..., K(n;)} such
that Uy = Us,, 4 in, s - 10 particular, (e, Ui, ,, is not empty. Since the intersection
of N or more of the sets U; is empty, we obtain a set A C N with |[A| < N — 1
and i,, 5, € A for all I € A. The pigeon hole principle thus yields an index i € A
and a subset A’ of A with [A’| > d + 1 such that i,, = 4 for all | € A’. The
pigeon hole principle now tells us that there are two indices p and ¢ in A’ such that
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I (@ny k1) = J(Tny kg 7). However, the definition of the sets U, ; and (5.4) then imply
that
U.

Lnp,kpslnp.kp — ~ Tnp.kpslnp.kp

uu,

Tng,kgrlng,kq — ~ Tng,kgrlng,kq"

This means that two of the sets (U;);en are identical in contradiction to the construc-
tion. ]

Remark 5.2. If G is a domain as in Definition 2.24 or Lemma 5.1, the boundary of G
can be descibed as a union of level sets of the functions ¢; 4 in the sense that

oGNU; = {x S R?: gpi)d(x) = 0}

We particularly obtain that for all x € OG the vector Vo, 4(x) is normal to the
boundary dG in x. <&

In the following we will restrict ourselves to the case d = 3 since the problem we are
considering is posed on domains in R3.

Let J C R be an open interval. In a nutshell, the idea of a localization is to transform
the problem via local coordinate charts into problems on the half-space respectively
full space. We will thus rely on the wellposedness results for the initial value problem

3
Apdyu+ > A;0;u+ Du = f, reR®  tel;

= (55)
u(0) = uyg, r € R?
on the full space and of the initial boundary value problem
3
Ao(?tquZAj@jquDu:f, z eR3, teJ;
=t , (5.6)
Bu =g, redRy, telJ;
u(0) = wo, z € RY;

on the half-space. The local wellposedness theory for the initial boundary value prob-
lem on the half-space has been developped in Chapter 3 and Chapter 4. However, we
have not addressed the full space case yet. The initial value problem on the full space
is of course easier to treat as all the problems posed by the characteristic boundary
disappear.

Theorem 5.3. Let T' > 0, n > 0, and v > ro > 0. LetTG(OT’],J (0,T7), and
QO =JxR3 Letm e Ny andm—max{m 3}. Let Ay € F, (Q), A17A2,A36

" N m 6,m
Fy, 6(Q2) symmetric and D € Fy, 6(Q) with
[Aillpp @) <70 1Plp, @ <7
max{(14:00) |5, oy, 107 AiO)llgns-s s} < 7o,
ma(|DO) 5, sy, om0 D0O) -+ sy} < 7o

for alli € {0,...,3}. Let f € H™(Q) and uo € H™(R?). Then the initial value
problem (5.5) has a unique solution u in G, () and there are constants Cp, =
Cro(n,r, T") > 1, Cpo = Crno(ny10) > 1, and Yo = ym (9,7, T") > 1 such that

m—1

lul, @y < (Como + TC)E™ T (32 108 £(0) 3im-1-s sy + o Fm e )
j=0

Cm m
+ 7 ClT”f”HnL(Q)

for all v > ~p,.
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Proof. An inspection of the proof of Theorem 2.8 in [BGS07] shows that the assertion
of the theorem is true in the case m = 0. From here we proceed as in Chapter 3 and
Chapter 4. We note that the proofs only simplify as all spatial directions can now be
treated by the methods we used for the spatially tangential variables in the half-space
case. O

We need a further assumption on the domains we are able to treat. Besides the
properties that come with the uniform C"™-boundary, we will need several sequences
of functions with special features. We refer to the discussion in front of Theorem 5.6
and its proof for a motivation of the following definition.

Definition 5.4. Let m € N with m > 2 and G C R? be a domain which satisfies the
uniform C™-regularity condition. We say that the domain G has a tame uniform C™-
boundary if there exists an open cover (U;);en of G, corresponding functions (¢;)ien,
and open sets (V;)ien as in Lemma 5.1 which have the following additional properties,
where Uy = G, pg =idg, and V) = G.

(i) There is a smooth partition of unity (6;):en, subordinate to (U;);en, and a con-
stant My > 0 such that
090 ()| < My

for all o € N3 with |a| <m, x € U;, and i € Ny.

(i) There is a sequence of functions (0;)ien, and a constant Mz > 0 with o; €
CSO(UZ); 0<0; <1,
;=1 on suppb;,

and
|0%;(z)| < M3

for all o € N3 with |a| <m, x € U;, and i € Ny.

(i11) There is a sequence of functions (w;)ien, with w; € C°(V;) for all i € Ny such
that 0 < w; <1,

w; =1 on K; = p;(suppo;)

for alli e N and
|0%wi ()| < My

for all « € N3 with |o| <m, z € V; and i € Np.

We say that the domain G has a tame uniform C™-boundary with finitely many charts
if the above holds with N replaced by a finite index set N C N.

This definition is tailored for the localization argument. However, it looks a bit
unhandy. To fill this definition with life we thus give two basic examples.

FEzample 5.5. Let G C R? be a domain.

(i) Let m > 2 and let G satisfy the uniform C™-regularity condition. If 0G is
compact, then G has a tame uniform C™-boundary with finitely many charts.

(ii) The half-space G = ]R:j’r has a tame uniform C™-boundary with finitely many
charts for all m > 2.

Part (i) of the above example particularly shows that the definition of a tame uniform
C™-boundary shows an effect only if the boundary of G is unbounded.

We are now ready to prove existence, uniqueness, and a priori estimates of solutions
of the Maxwell system (5.1). The proof relies on a localization procedure and the
corresponding theorems on the full space and the half-space. Although the underlying
idea is intuitive, the realization is technically quite involved and lengthy so that we
want to outline its idea.
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Given a C™*2-domain with charts (U;, ;)ien, we set Uy = G and obtain the covering
G C UieN0 U;. We choose a smooth partition of unity (6;);cn, subordinate to (U;)ien,-
Then we study the full space problem solved by 8yu and the half space problems solved
by ®;(0;u) with suitably transformed coefficients, where ®; denotes the composition
with the inverse of ;. The philosophy is that the arising “error terms” are of lower
order and can be treated as a perturbation.

Following this strategy, the first question one has to answer is whether one can ex-
tend the coefficients to the full space respectively the transformed coefficients to the
half-space such that the extended coefficients fulfill the assumptions of Theorem 5.3
respectively Theorem 4.13. It will be answered in step I) below. Moreover, we will
need that the transformed coeffecients and data (which also involve the error terms)
fulfill the compatibility conditions in order to solve the half-space problems. We will
see in steps II) and III) that the compatibility conditions on the domain imply that
the compatibility conditions for the transformed half-space problems are fulfilled. Ap-
plying Theorem 5.3 to fyu and Theorem 4.13 to ®;(6;u), we then derive the a priori
estimates and thus uniqueness for (5.1) in step IV).

At this point it seems that the existence of solutions of (5.1) is straightforward to
obtain. One solves the full space problem and the half-space problems derived in the
steps before, applies ®; ! to the half space solutions, and sums up. However, there are
two problems. First of all, as long as we do not know that a solution of (5.1) exists, it is
not clear that the solutions of the half space problems have compact support in ¢;(U;),
which means that the sum over all half-space solutions and the full space solution may
not yield a G,,-function. We have to localize once again, which in turn leads to further
error terms. We will deal with them by using a fixed point argument to find a suitable
inhomogeneity which neutralizes these additional error terms. The second problem is
that in the transformed half-space problems and the full space problem error terms
involving 0;60,u appear. These cannot be expressed in the terms of #;u, which means
that the inhomogeneities involve the solution wu itself. Therefore, another fixed point
argument is necessary to derive the existence of a solution of (5.1).

Theorem 5.6. Let T' >0, n > 0, m € N, and m = max{m,3}. Pick T € (0,T'] and
set J = (0,T). Take a domain G C R which has a tame uniform C™2-boundary.
Choose coefficients Ag € FS, ¢, (J x G), D € Fg 4(J x G), and

0 v3(x) —wa(x) 0 0 O
B(t,z) = | —v3(x) 0 vifz) 0 0 O (5.7)
vo(z) —11(x) 0 0 00

for all x € OG, where v(x) denotes the outer unit normal on OG in x. Take radii
r > 1y > 0 such that

Aol ixay <70 IDllFnxa) <

maX{HAo(O)HFﬁl,l(@v 1<1jn<z%<_1 ||5ng(0)HHﬁz—j71(G)} < 7o,

max{[| D)z, ), max 107 D(O)|| r—s-1() } < 7o

1< <~

Let f € H™"(Jx@G), g € Epn(Jx0G), and ug € H™(G) such that the linear compatibil-
ity conditions for the tupel (0, Ag, AS°, AS°, AS°, D, B, f, g,uo) of order m are fulfilled.
Then the initial boundary value problem

3
A+ ACOu+Du=f  z€G, tel;
j=1
Bu =g, x€0G, telJ;
u(0) = uyg, z € G;

has a unique solution u belonging to G, (J X G). Moreover, there are constants Cy, =
Cr(n,r, T",G) > 1, Crno = Crao(n,70,G) > 1, and vy, = ym(n, 7, T",G) > 1 such
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that
m—1
luli,, sxc) < (Cmo+TCw)e™ T (32 108 FO)3rm-s-5 6y + 9%, . o6
=0
ol ) + Cone™ T2 e v (5.8)

for all v > ~vp,.
Proof. In the following we denote the standard trace operator mapping H'(G) to
H'/2(G) by trape and the trace operator mapping H*(RY) to H/? (OR%) by trora -
Fix a covering (U;)ien,, & sequence of sets (V;)ien,, and sequences of functions
(@i)ieNog, (0i)ieno, (0i)ieng, and (w;)ien, as in Definition 5.4 for the tame uniform
C™*+2_boundary of G.
I) As described in the outline of the localization procedure, we first have to extend
the coefficients and the data to the half space after straightening a part of the boundary.
To that purpose we abbreviate the inverse of ¢; by 1, i.e.,

it Vi = Ui, w0 @; ()
and we introduce the operators
®;: L2(U;) — LA(V;), v voy;
o1 LA(V;) — LA(U;), v wvow (5.9)

for all i € Ng. With a slight abuse of notation we also denote the composition with v,
on L?(J x V;) and H™'(J x V;) by ®; and analogously for ®; . For v € L?(J x V;1)
we then define the differential operator

3
Ao = @; (400, + Y A°0; + D) ;!

Jj=1

3
= 0;(Agd o pi + Y AP0, (vo i) + Duo )

j=1
3 3
=®; A0 0v + CI)Z‘< Z A;O(P;l@lv aj‘ﬂi,l) +®;Dv
j=11=1
3
— ;A D + Z (D A @iy010) 00 + @i D, (5.10)
=1 j=1

where ¢;; denotes the [-th component of ¢; for all i € N. We therefore set
~ ~ 3 ~
Al = 0,4y, Al = @i(ZA?ajw), D'=®,D
j=1

on V;* for all i € N and | € {1,2,3}. Moreover, we define A} = &4y = Ay and
D° = &,D = D on U,.

In the following we will always identify functions, that are only defined on a subset
of some underlying domain, with their zero extension to that domain. Lemma 5.1 and
the assumptions yield a number z(i) € {1, 2,3} such that

0.iypisl > T onU; (5.11)

for all « € N. Reducing the size of 7 if necessary, we can assume that 7 is contained in
(0,1). We pick a point y; € V; for each ¢ € N and set

Al = w; AL+ (1 —wy)n, (i € Np), (5.12)
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9.3 #i, ,
) G o (DA, EN), (5.13)

D' =w; D', (i eNy), (5.14)

for all j € {1,2,3}. The differential operator A* extends in a natural way to a differ-
ential operator on Ri by setting

3
Ay = Aé@tv + Z Aéﬁjv + D'
j=1
for all v € L?(J x R ) and i € N.

We recall from Remark 5.2 that V; 3 is normal to the boundary 0G. Hence, there
is a number x;(z) € R such that

Vpis(r) = ki(z)v(z)

for allz € 0GNU; and i € N. In particular, k; = Vp; 3-v belongs to C™ (G NU;, R)
for all ¢ € N.
We now set

i az(l ©i.3
B' = w;®;(k;B) + (1 — w; iy 2(i
(RiB) + (1 =) 0 00 B,
on R?, where
0O 0 0 0 0 O 00 —1 0 0 O
B=(0 0 1 0 0 0}, B=100 0 0 0 O],
0 -1 0 0 0 O 10 0 0 0 O
0O 1.0 0 0 O
B=[-1 0 0 0 0 0
0O 0 00 0O
Define the function b, ;) : R3 = R by
bo(i) = wi®i0.iypiz + (1 — wi)m(%(yi))-
|3z(i)90i,3|

Since 0,(;)pi,3 does not change signs on Uj, estimate (5.11) implies the lower bound

az(z ¥i,3
bo(iy| = |wi®i0ziypis + (1 —wi) o (Yilwi
L¥01 (i)Pis T ( )|az()%3|( (vi)

= wi|®i0. )izl + (1 —w) 21w +1—wi=1-(1—-T)w; > 7 (5.15)

on R? as 7 € (0,1). Consequently, the functions b.¢) and b;é) belong to Cm“(@)

and their restrictions to OR3 are elements of C™ "1 (9R3).
If z(i) = 3, we introduce the function

‘ byt 0 0
Ry = by? 0o byt 0
O, (01 3)bs " wi®i(Oag;3)by ™ 1

and compute that

0 1 —wi<I>i (82<pi’3)b§1 0 0 O .
RiB =b/? (-1 0 w®i(digiz)bs' 0 0 0] =B}
0 O 0 0 0 O
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on OR3. We finally set

; 0 b/% —wi®i(Oapis)bs’? 0 0 0
By = 1/2 —1/2 (5.16)
—b3 0 wiq)i(algﬁi,g)bg 0 0 O

and

Cé —9 (0 0 0 —b:lg/2 0 wi¢i81¢1,3b31/2>

0 0 O 0 —bé/Q wiq)iaztpi)g,b;l/Z
(0 0 0 —b;t/? 0 0
Mi— 3 5.17
s <0 00 0 —b;7* 0 (5:17)

on OR3. In the case z(i) = 2 respectively z(i) = 1 we define

byt 0 0
i 11/2 -1 -1
Ry =07 | wi®i(O10i3)by 1 wi®i(T3004,3)by

0 0 by

respectively

L, 1 wi®i(0api )by " wi®i(Ds43)b; "

R =b/"1{0 byt 0

0 0 bt

As above, we obtain

o
o
o

o 1/ 0 wi@i(83<pi73)b2_1 -1
RiB =0" [0 0 0
1 —w®(dpiz)byt 0

o o
o o
==
Il
R

respectively

0 0
RiB' =0 [ —wi®:i(Bspia)bi ' 0
wi®i(Dapi )by —1

o
=
=
Il
A

0
1
0

o
o
=]

on R3. In the case z(i) = 2 we thus set
i 0 Wiq)i(83<pi73)b2_1/2 —bé/Q 0O 0 0
By = 1/2 —-1/2 )
b, —w;®;(01i,3)by 0 0 00

ci_of0 00 —by? wi®i(Drpia)by 20
2 000 O Wz‘q)i(a?;@iﬁ)b;l/Q —b;/Q ’

. (o0 o0 =" 0 o0
M, = —1/2 | >
000 0 0 —b

while in the case z(i) = 1 we take

i _Wicbi(aS@i,B)b;l/Q 0 bi/z 0 00
By = —1/2 1/2 )
wi@i(agwiﬁg)bl _bl 0 0 0 O
i 0 0 O wi<I>,» (82% 3)b;1/2 —b}/z 0
=2 T2 12 |
0 0 O wi@i(f)gcpiyg)bl 0 7b1
. (o000 -7 0
My = —1/2
0 0 0 O 0 —b;
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To simplify the notation, we will write B?, B?, C*, M, and R’ in the following with a
slight abuse of notation. We point out that the functlons B', C', M*, and R’ belong
to C™+1(R3) and their restrictions to R3 to Cm+1(R3 )- The rank of B? and C? is

identically 2 on R3 and R(z) is invertible for all z € R3. The inverse of R’ is as
regular as R’ itself. We also have conservative boundary conditions on Riv ie.,

Re((C')T Bi) = %(ci)TBi + %(Bi)TCi _y (5.18)

and ' o
B' = M*'Aj

on @ for all i € N. We conclude that B belongs to ZS’C]%r (As) for all ¢ € N. Moreover,

3
i co 82 i)$i,3
A =i (3 AP 0s) + (1 - e E o i) A,
=1 z i
= w; Z Ac(’@ aj(Pz 3+ bz(’L)Az(z)
J#=(1)

Since |b,(;)| > 7 on R3 by (5.15), we infer that A} is an element of FL coert - () for
all i € N.
The construction of the coefficients further implies that A} € FSF

m,n
F e () for j € {1,2}, and D' e FP(Q).

We next fix a constant M, as in Lemma 5.1 and constants My, M3, and M, as in
Definition 5.4 for the tame uniform C™*2-boundary of G. The construction of our

extended coefficients then shows that

(Q), At €

J

1461l () < C(My, M) || Aol 5, (%)
max{[| A5 (0)l| ro_ &3), | Jnax 167 A ( Ol grm—i-1(r2 ) }
< O(My, My) max{[| 4o (0)|[ o _, c)» | e Hf) ' Ao(0) || rm—i-1(cy s
1A% 7, () < C(My, My),
1D*(| 7 (02) < C(MlaM4)HD||Fm(J><G)a
max{||D*(0) p

S 1 (R3)r ) maX HOp’gDi(O)HHﬁwfl(Ri)}

< C(My, My) maX{HD( )”Fg_l(G)a | max 107 D(0)|| rn—i-1.y }

| B ||wrm+1.00(0) < C(My, My, 7)|| Bllwm+1.00(1x6) (5.19)

for all j € {1,2,3}, where we used |Bj°| < C|B(x)| for all z € G, j € {1,2,3}. We
point out that the right-hand sides of these estimates are independent of i so that we
find constants R = R(M,r) and Ry = Ro(M,rg) with

HAO Fr(2) S Ra
max{[|45(0)|l o RY), MAX ot AG(0) | 51 (g3 )} < Ro, (5.20)
14511, ) < R, (5.21)
1D |5, ) < R,
max{||D* ( Nre (e 1), max 18] D*(0) | gy~ (r2) } < Ro, (5.22)

for all ¢ € N, where we set M = max;—1,.. 4 M;.

IT) As outlined above, we will determine the initial value problem respectively the
initial boundary value problem solved by ®;(6;u) on J x R? respectively J x R3
and apply Theorem 5.3 respectively Theorem 4.13 to it. In the derivation of the a
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priori estimates and the verification of the compatibility conditions in the existence
part we then need to know how the operators Sg m,,, and SRi .m,p are related when
we insert the coefficients from step I) and suitably adapted data into S]Rgr mp- BY
“suitably adapted” we mean that we take care of the perturbation terms arising from
the localization procedure. Motivated by step IV) below we therefore define

3
Filh,v) = ®;(0:h) + q»i(ZA;Oajaw) for all v € G (J x G),h € H™(J x G),
j=1
9" = ((trors R")®;(trac(0:)kig)) ,s)»
u6 = q)i(ein), (523)

for all 7 € Ny respectively i € N, where (i) denotes the 2-tuple obtained by removing
(i) from (1,2, 3) and ®; the composition operator with the restriction of v; to U; NAG.
Note that fi(h,v) belongs to H™(J x R?) for all v € G,,(J x G) and h € H™(J x G),
g" to By (J x ORY), and uj) to H™(R3) for all i € N.

Let v € G, (J X G) be a function with 87v(0) = S m,p(0, Ao, AS°, ASC, A, D, f, uo)
for all p € {0,...,m — 1}, where the operators Sg,m,, have been introduced in Defini-
tion 2.29. We abbreviate

St = SRi’m,p(o,Az‘)? L AL DY), ub), (5.24)
Sm,p = SG,m,p(Oa AOa A({Oa Agoa Agoa Da fa uO)

for all p € {0,...,m} and ¢ € N. Observe that an,p and Sy, , are well-defined due to
the regularity of the coefficients and the data. Fix an index ¢ € N. We claim that

Sty =®i(0;Smp) (5.25)

for all p € {0,...,m}.
To show this assertion, we first note that

S0 = ub = 0;(0iuo) = ;(0;Sm.0).

Next we assume that we have shown (5.25) for all [ € {0,...,p — 1} for some p €
{1,...,m}. The definition of the operators SRi,m,p then yield

=1

3 p—1
i L0)~ —1pi i i p—1 i i
Sm,p = AO(O) ! [af 1f (f,v)(O) - ZAjajSm,p—l - Z < 1 >8éAO(O) m,p—1
j=1

Pl . _
X (M) i, (5.26)
=0

The induction hypothesis implies that supp S? supp ®;(0;Sm.p) C supp ®,;0; C

m,p—1 =
K; for alll € {1,...,p} and thus
AL0;Sk, 1 = AL0;®(0;Sm p-1)

for all j € {1,2,3}, as w; = 1 on K;. Because of

3
0;(®i(0iSmp-1)) = (V(0:Smp-1)) 0 thi Ojthi = Y ®i(01(0iSm p—1)) Djtbi,
=1
we obtain

3 3

AL0;Sh = Z A5 010 Z ©;01(05Sm.p—1)05%i
k=1 =1
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3
= Z APLD®;01(0; S, p—1)PiOkpi; 0515
k=1

for all j € {1,2,3}. We observe that

3
O = (Isxz)ie = (Vidy,)ie = (V(¥s 0 )ik = Z‘I’;lajlﬁi,z Oki g,

J=1
3
o = Z Q;0kpi,j Ojtin (5.27)
j=1
on V; for all k,1 € {1,2,3}. We thus infer
3 ] 3
> AL Sy =Y APD0(0:Smp—1)Pidkipi; Ot
j=1 7.k, 0=1
3 3
= > AP0 (0:Smp—1)01k = > AFD;i0k(0:Sm.p—1)- (5.28)
k,l=1 k=1

Since the support of every term in the brackets on the right hand side of (5.26) is
contained in K; and w; = 1 on K, the induction hypothesis further yields

3 3

S, = ®;Ag(0)"" (<I>i(0ic’)§H £(0)) + @, ( 3 AL0;0,00 0(0) — A;Oaj(eismyp,l))
j=1 j=1
Ly p—1 Ly p—1
X (77 )02 0i8 ) - 3 (7 ) (DO 805 10)
=1 =0

3 p—1
_ -1
— 3, [eiAO(O)‘l (af LP0) =Y AP0y — > (p )ang(o)sm,p_l

, l
j=1 =1

-1
(pl )8§D(O)Sm,pll},

p—1
=0
= (I)i (aiSm,p)a

where we also employed that OF 711}(0) = Sm,p—1. By induction, we conclude that
Sty = ®i(0:Smp)
for all p € {0,...,m}. In the same way, but easier, we also obtain
SRsym’p(O,AO,AEO,AEO,A?’,D,fo(f, v),u)) = 00Sm.p (5.29)

for all p € {0,...,m}.

II1) In this step we show that the tuple (0, AY, ..., AL, D' B, fi(f,v), g% ub) fulfills
the linear compatibility conditions of order m, where v is any function in G,,(J x G)
with 87v(0) = Sp,p for all p € {0,...,m — 1}. To that purpose we exploit that the
tuple (0, Ag, AS°, AS°, AS°, D, B, f, g,up) fulfills the compatibility conditions of order
m on G by assumption, which means that

Btrog Sm,p = trog(BSm,p) = 07 9(0)

for all p € {0,...,m—1}. Recall that Sy, , and S}, , are elements of H™ ?(G) respec-
tively H™ P(R%). Fix a number p € {0,...,m — 1}. The trace operator commutes
with multiplication by C2°-functions and the composition with diffeomorphisms, which
allows us to infer

Bf(ci)l(trag(&)mg))(()) = él(trag(&)nlafg(O)) = &%(Fu‘lB trag(&) tI‘aG Smﬁﬂ)
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= trops B'®i trog(0iSm.p) = trozs B trops (®:(0:Sm,p)) = trops (B'S, ,)-
Multiplying this equation with the trace of R?, we arrive at

trops (R') trops (B'Sy, ) = OF (trops (R')®;(trac(0;)ig))(0).- (5.30)

m,p

The z(7)-th coordinate on the left-hand side is zero, so that the same must hold for
the right-hand side. Equation (5.30) is thus equivalent to

tras (BUSE, ) = OF (trgms (R)®:(trac (0:):9))a(s)(0) = 074" (0).

IV) Let u be a solution in G,,,(J x G) of (5.1) with inhomgeneity f, boundary value
g, and initial value ug. In this step we derive a priori estimates for u by applying
the a priori estimates from Theorem 5.3 respectively Theorem 4.13 to fgu respectively
®;(0;u) for i € N. To that purpose, we first note that the uniform boundedness of the
functions ¢;, ¥;, and 6; in C™*+2 implies that

U € G (J X G) <= Ogu € G (J x R?) and ®;(0;u) € G (J x Ri) for allz € N,

feH™(JxG)+0gf € H"(J x R*) and ®;(0;u) € H™(J x RY) for all i € N,

g € Enn(J x 0G) < ®;(0;9) € Ep,(J x ORY) for all i € N.

Fix an index ¢ € N. Since supp ®;(6;u) C supp ®,0;, C K, the definition of the
extended coefficients and (5.10) imply

3
j=1

3 3
— 0 (AoD1(05u) + > AT0;(05u) + D(Oi) ) = @4(0:) + @i ( Y AP D,0,u)

Jj=1 Jj=1

on J x Ri. We further know that Tr(Bu) = g on J x 0G. Employing again that the
trace operator commutes with the multiplication of C2°-functions and the composition
with diffeomorphisms, a similar computation as in step II) shows that

Tr s oms (B'®i(0:u) = Tr gy oms (Pi(0iri Bu)) = &; Try o (0ir: Bu)
= ®;(tra(0:)ks Trag(Bu)) = ®;(trag(0:)kig),

where we also used that B = &;(k;B) on K; N OR%.. Multiplying this equation with
the trace of R* and removing the z(i)-th component of the result, we obtain

Trops (B'u) = Trozs (R'B'®s(0i) )a(i) = (trops (R)®i(troc(0:)ri9))ae) = 9"
We further note that g* is an element of E,,(J x OR%) and
||gi||Em,7(J><8R§r) < C(My, 1) trac(9:)9lE,, ., (7xoc) (5.32)
for all v > 0. We conclude that the function ®;(6;u) is a Gy, (J x R%)-solution of the

initial boundary value problem

3
Apow+ Y Aidju+Div=fi(fu), weRY, tel;

= o , (5.33)
7 2 .
B'v =g, zedRy, telJ;

v(0) = up, z e RY.

In the following it will be convenient to abbreviate U; N G by G; for all i € Nj.
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In order to apply Theorem 4.13, we need that the boundary matrix A3 and a function
M as in the definition of IS’CI%r (A3) belong to C*°(2). To that purpose, we transform

the initial boundary value problem to an equivalent one as described in the first two
steps of the proof of Lemma 4.4 for z(i) = 3. The keypoint is that this procedure
not only yields transformed coefficients A; and A, that belong to F° () and

Az = AS°, but also the matrix M arising as the transform of Mé( 0 is constant. To see

this claim, we recall that M is given by MiG, T, where

G:T 0
=T __ r R
G = ( 0 G‘T)’

) 1 0 0
G:T = 0 1 0|,
*wi@i(altpi,:s)bgl *wiq’z‘(32901‘,3)b§1 bgl

. (o0 0 —b;Y* 0 0
Mz = —1/2 :
000 0 —b 0

We thus obtain

0 00 0 —-120

Moreover, it is straightforward to show that the compatibility conditions of order m
for the original problem are fulfilled if and only if they are true for the transformed
coefficients and data. Consequently, we can apply Theorem 4.13 to this transformed
problem and then obtain a solution of the same regularity of the origianl problem via
the inverse transform. Also the a priori estimates carry over to the original problem
with an additional constant C' (M7, 7). In order to simplify the notation, we suppress
this transform in the following but assume that the matrices A% and M ’( ) are constant.

Theorem 4.13 in combination with (5.32) thus yields
i (G:u)llZ,. ()

M= MGT = (000—100)
3

m—1

< (C113,m.0 +TC4.13,m)€mC4'13’1T( Z 10 £ (f, u)(O)HiImflfj(Ri)+ ||9i||129m,7(JxaRi)
=0

+1940000) B ) + Carsme™ T L 0l

H

< 4(Cu13,m,0 + TCx.13,m) mC“SlT( 1@ (0,07 f( (O Fm—i— i(R3)
7=0

m—1 3 )
+ 0D 1AL (9k:0] u(0 ))H?pnﬂ—j(u@i)‘i‘ ||92||2Em,7(JxaR8+») + ||¢’i(9iuo)||§pn(m)>

§=0 k=1

404413,771 mCa131T 2 : co 2
4+ ————=e" 15 (||‘I>i(9'f)||Hm @) T Z | A% ‘I"(ake’“)HHm(Q))

v k=1 !

,_.

< O(M1)(Caa3,mo0 +TCua3.m) mc4131T( 10:07 £(0)[|21m—1- i(Gy)

7=0
m—1 3
+ Z ||ak‘9i5m,j||§1m—1—](ci) + || troc ‘91‘9”?3%7(“6(;) + |\9iuo||§1m(c,-,))
j=0 k=1
o 3
4.13,m m
+ O (M, 7)%6 C4'13’1T(|‘0if||2H;ﬂ(J><qu) + Z ||3kaiu|@1;nuxai)> (5.34)
k=1

for all v > ~4.13,m. Here we also exploited 8gu(0) =S, forall j € {0,...,m — 1},
and where Cy13m = C113.m (1,7, R, T"), Ca13,m.0 = Ca.13,m,0(n, T, Ro), and Ya.13.m =
va13,m(n, 7, R, T") are the corresponding constants from Theorem 4.13.
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Using that supp 8pu C supp 0y, we compute

3 3
AQOr(Bou) + >~ AS0;(0ou) + D°(Bou) = bof + Y AS°0;00u (5.35)

j=1 =1

on J x R3. We conclude that fgu is a G, (J x R?)-solution of the initial value problem

3 3
AQopo + Y AL+ DO =00f + > ACd;b0u, wER®,  teJ;

=~ = (5.36)
v(0) = Oouy, r € R3.
Theorem 5.3 and a computation as in (5.34) thus shows
16oullZ,. o)
m—1
< C(Cs.3,m,0+TCs.3m) mc"“T( 10007 £(0) |21 i(Go)
=0
m—1 3
)0 110k00Sm. il Frm-1-3 (o) + HQOUOHEm(GO)) (5.37)
7=0 k=1

3
Cs3m
n CTemCS.a,lT <||90f\@m(JXGO) + Z ||ak90qu%I§"'(J><Go))
k=1

for all v > ~53, where Cs53.m = C53m(n, R, T"), C53m0 = Cs.3,m,0(n, Ro), and
Y5.3,m = V5.3,m (1, R,T") are the corresponding constants from Theorem 5.3.

The monotone convergence theorem, the local finiteness of the covering (U;)ieng,
and (2.35) imply that

Z ||0iu0||%_[7n( Z/ Z |aa 0 'LLO |2d[L'

lal<m
£ 5 (onorsors
< C(m. My) Z/ S ()]0 uo(a) Pds

\a|<m

mMg/ 3 ZXU )10%uo () [2da

|a|<m =0

C(m, My, N > 10%uo(x)Pdz = C(m, My, N)[uo|3m c)- (5.38)
G
|la|]<m

Analogously, we obtain

8
3
S

S S 10027 O0) s sy < Clom, Moy N) S04 50) s,

i=0 7=0 7=0
co 3 m-—1 m—1
> 10k0:.Sim 3 [3m1-scy < Clm, Mo, NY S S illrm 15
i=0 k=1 j=0 =0

Z ||0if||§{;n(ngi) < C(myM%N)Hf”%{;"(JxG)?
i=0

co 3
Z Z ”akeiuniﬂy’l(]xGi) < C(m, M, N)H“H?{y(]xc)»
=0 k=1



135

D g%, (sxoryy < Clm My, M2, 7)llgllE, . (sxoc) (5.39)

i=1

for all v > 0, employing also (5.32). We set C}, = max{C5.3 m,Ca13m} and C;
maX{C5_37m70,C4.137m,0}. Equations (534) to (539) then y1eld

Gm,~ J><G)
<CN ZH@ ullg,, . (rxay) < C(N, My) ZH‘D O:wllz,. o
=0 1=0
00 m—1
< C(N, My, 7)(Chg + TCH)E T [ 32 (2 10:0 FO) 151
=0 7=0
3 oo
+ Z 10803 m || Frm—1-3(c) + HeinH%Im(Gi)) + Z | traG(9i>g||2Em,7(JX6G)}
k=1 =1
+ Cm, N, My) SmemetT (Zne He e+ 305 1060l )

=0 k=1

< C(m, N, My, My, 7)(Ch g + TC)e 4T (ZH@“ (O)Fm-1-5()

m—1
+ > NSmjllim-1-scy + lal%,. . (xoc) + HUOH%V"(G))
=0
Cm m
+ C(m, N, My, My)—" ) a T(||f||§1;n(JxG) + ||“||%1;n(1xc))) (5.40)

for all v > max{"s.3,m,V4.13,m }.- Applying Lemma 2.33, which tells us that

p—1

S pll -Gy < Cos.mp(n 7o) ( 3210 F(O)lsrm-1-506) + o 1))
j=0

for all p € {0,...,m}. Choosing v, = Vi (n, 7, N, My, Mo, r, T") large enough, we thus
arrive at

H

m—

lul, . (x) < (Cmo + TC)E™ T (310 FOm-s5cy + gl rxo0)
7=0

m 1
+ ol )) + One™ T~ lm )

for all v > 4,,,. Employing that R = R(M,r) and Ry = Ro(M,ro), we also deduce
that the constants C,, ¢ and C,, are of the claimed form. We have thus shown the a
priori estimates (5.8), which imply uniqueness of the G,,,(J x G)-solution of (5.1).
V) We introduce the spaces
Grniv(J % G) = {v € Gn(J x G): B}v(0) = Spyjy j €{0,...,m —1}},
m(JxG)={feH™(JxG):d]f(0)=0]f(0),5€{0,...,m—1}}.
We point out that Gm jiv(J X @) is nonempty by Lemma 2.34 and H[} ((J x G) is

nonempty as f € H (J x (). Because the time derivatives up to order m — 1 in 0
of functions from H1v f(J x G) respectively Gy, iv(J x G) coincide, we obtain

S]Ri,m,p(ovA%)a T 7A§a Div fz(fv’[))auz)) = S]Ri,m,p(ovA(i% e 7A§7Di7 fl(fa U)a u:))
=50, (5.41)
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for all f € H ;(J x G), 0,0 € Gmiv(J x G), p € {0,...,m}, and i € N, cf. (5.24).
Hence, step III) implies that the tuple (0, A}, .. Ag, D' B, fi(f,v), ¢, u}) fulfills the
compatibility conditions of order m for all f € HiY 1(J % G) v € Guiv(J X @), and
1 € N. As explained in step IV), we can thus apply Theorem 4.13 which shows that
the initial boundary value problem

3
Ag@tw+ZA§»6jw+Diw:fi(f,v), zeR3, teJ,
=t , } , (5.42)
B'w = g¢*, redRy, teld;
w(0) = uf, z € RY;

has a unique solution U*(f,v) in G,,(R) for all f € H f(J xG), v e Gniv(J xG),

and i € N. Moreover, Theorem 5.3 gives a solution U°(f,v) in G, (J x R3) of the
initial value problem

3
AQoyw + Y A w+ Dow = fO(f,v),  xeR  tel;
= (5.43)
w(0) = uf, r € R3;

for all such f and v. We claim that there exists a function f* = f*(v) in H{\’},f(g] x G)
such that

£ +ZZAC°@ o T UN(fF ) = f (5.44)
=0 j=1

for all v € Gy, iv(J X G). To prove this claim we define the operator
\I/U: 1vf(JXG)_) 1vf(JXG)

frf- ZZACOaaz CU(fov)

=0 j=1
for every v € G iv(J x G). We fix such a function v. The operator ¥, maps into
H™(J x @) since ®; * maps the H™(Q)-function U*(f,v) into H™(J x U;), d;0; has
compact support in U;, and the covering (U;);en, is locally finite. We further compute

Op,(f)(0) = a7 f(0) ZZACO@ i@ OpU’ (f,0)(0)

1031

=97 f(0) ZZA“’a 0:%; " Sg3 1 p(0, Abs -, Ay, DY, f1(f, ), up)

7,()]1

=07 f(0) Z Z AP00:07 S,

7.0]1

= 0P f(0) ZZACO@ 0i®;7 1D, (0:S,m )
=0 j=1

co 3

=00f(0) =D Y AX0;0:0,S,, = 07 f(0)

=0 j=1

for all p € {0,.. —1}and f € H v (J x G), where we used (5.41), (5.25), and
that o; equals 1 on the support of 6; for all i« € N. We deduce that ¥, indeed maps
H{} (J x G) into itself. Theorems 5.3 and 4.13 imply next

190(F1) = o)l ey < CON M) SR U (fr,0) = 87U (o, 0) e i

=0
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< OV, M, Mo) (JU°(f1, ) = U (F20) g sy + D0 WA (130 = U () )

=1

1 o0
< C(m,n,7,N,M,r, T'); D 1®i(0i(fr — fz))H%I;n(Q)
1
Sc(mﬂan’N7M7r’T/);Hf17f2||%1;"(J><G) (5.45)

for all v > max{vs.3,m,Va.13,m }» employing (5.39) in the last step. We set

7" = max{7s.3,m, V4.13,m, 4C5.45 },

where Cjs 45 denotes the constant on the right-hand side of (5.45). This estimate then
leads to the bound

1
Vo (f1) = Uolf)llmrxe) < 5l = follan(rxa) (5.46)

for all v > ~v*. Fixing a parameter v > v*, we conclude that ¥, is a strictly con-
tractive self-mapping from (H7 ;(J X G), || - [[im(sxq)) into itself. Since the latter
space is complete, Banach’s fixed point theorem yields a unique function f* = f*(v)
in H{} ;(J x G) satisfying equation (5.44).

We next define the operator

S: Gm7iV(J X G) — Gm iv(J X G)
v ZOZ U (v), ).

We first check that S indeed maps into G, iv(J x G). Since U (f*(v),v) is an element
of G (), the function ®; U (f*(v),v) belongs to Gp,(J x G;). Exploiting that o;
has compact support in U; and the covering (U;);en, is locally finite, we infer that
S(v) belongs to G, (J x G) for all v € Gy, iv(J x G). We further note that in analogy
o (5.41) we have

Sgs m.p(0, AY, A®, A, AP, DO, fO(f, ), ul)
:Sngm,p(o,A , AT, A5, §°,D°,f0(f7v),u8) (5.47)

forall f € H? ((JxG), ¥ € Gy (JxG), and p € {0,...,m}. As f*(v) € H? ,(JxG),
we now combine the formulas (5.41) and (5.47) with (5. 25) and (5.29), as wellas o; = 1
on supp #; for all i € Ny, and compute

9¢S(v)(0) :an OOPU (f* (v),0)(0)

:UOSR3mp(0 A CO CO DO fo(f ( ) v)’ug)

+ Zaiq);lsRi,m,p(07Aéa A é,Di7fi(f*(U)7U),U6)
i=1
7aooosm,,+zaz 1D (0;S,,,) = Zas p =
=1

for all p € {0,...,m} and v € G, iv(J X G). As a consequence, S(v) is an element of
Grmiv(J x G) for all v € Gy iv(J X G) as asserted.

We want to show that S has a fixed point in G, ;v(J X G). Observe that it only
remains to prove that S is a strict contraction in order to apply Banach’s fixed point
theorem. So let v1,v2 € Gy iv(J x G). We first note that

8} f*(v1)(0) = 8] £(0) = 8] f*(v2)(0) (5.48)
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forall j € {0,...,m—1} as both f*(v1) and f*(v2) belong to H[! (J x G). Exploiting
that f*(vg) is a fixed point of ¥,, for k = 1,2, and estimate (5.46), we further derive
1 (v1) = f* )l (rxa) = Yo, (f(01) = Yoo (f*(02)) | 20 (12 )
S W, (f* (1)) = Yo, (F (02)) lEg (13 6) + [ W0, (F(02)) = W (7 (02) | (12 )

< 1||f*(111) = [T ) lmmrxay + W0, (7 (v2)) = Woo (" (v2)) |z (7% ) (5.49)

for all v > ~*. The definition of the operator ¥,,, Theorems 5.3 and 4.13, and
formulas (5.23) and (5.39) yield

W0, (F(v2)) = W (f* ()1 (s x)

< O(N,My) Y 197U (f (v2),01) = 7 U (7 (v2), v2) | Fam (¢ n)

=0
< C(N, My, M3)|U°(f*(va), v1) — uo(f*(v2)7v2)||%{,7'(JxR3)

+ O(N, My, My) ) U (f* (v2), 01) = U (f* (02), 02) 310 ()

i=1

< Clm,n, 7, N, M, 7, T') = ZHZAC%? e —Uz)H

m
10]1 Hm(IxG;)

S C(m,?],T,N, M,T',T/);H’Ul —’1)2‘ %’IZ{"(JXG) (550)
for all v > ~*. We set v** = max{~y*,8C5 50} and insert (5.50) into (5.49), where Cj 59
denotes the constant on the right-hand side of (5.50). We then arrive at

* * 1
1f*(v1) = f (U2)||HW(J><G) < §||U1 - U2||Hm(J><G) (5.51)

for all v > ~v**

After these preparations, we can now estimate the difference of S(vy) and S(vs).
Applying the a priori estimates from Theorem 5.3 respectively Theorem 4.13 once
more and recalling that v; and vg belong to Gy iv(J X G), we infer

IS(v1) = S(2)lI5,.. ., (1xc)

< C(N, My, M) (f*(v1),v1) = U (f* (v2), v2) [1m (s

+ O(N, My, M) Y |l (f* (v1),01) = U (f*(w2), v2) 77 (7xm2)

=1

< Clomnr N M T (10 0, 01) = S0 (02), ) s

+Z‘|fi<f*<vl)avl) — 1 (f* (), v2)||Hm(J><]R ))

1 .
< Clmom, N, M )2 5 (10057 () = £ @) g i
=0

S a0

< C(m,n,7,N,Mr,T') (||f (v1) — f*(v2)|‘%{1’n(J><G) + v — U2||i1;n(]xc))

< C(m? nT, N, M,r, T/); : §||U1 - ’1)2| ém,—y(JXG) (552)
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for all v > +**, where we used again (5.23), (5.39), and (5.48). We finally set vs =
max{y**,6C5 52}, for the constant C5 52 on the right-hand side of (5.52). It follows

[S(v1) = S(v2)lla,, ., (1xa) < *||U1 = v2/[G - (TxG)

for all v > «vs. Banach’s fixed point theorem thus yields a unique fixed point u of S
in ijv(k] X G)

VI) We claim that the fixed point u of S is a solution of (5.1). To verify this
assertion, we first compute

3 3
Lu = Agdyu+ Y ALOju+ Du = A0 S(u) + Y A5°9;S(u) + DS(u)

j=1 j=1
e 3
o (Aodh®7 U (F* (), ) + D7 AP0, 07U (F (). ) + DU (F(w), w)
i=0 j=1
+ ZZACO@ oi®; U (f* (u),u)
=0 j=1

on J x G. Recall from (5.10) that

ZACOE)(D vacb (ALo,v) (ZA’@@)

on suppo; for all v € L?(V;). Since also Ay = q)i_lA% and D = <I>i_1Di on supp o;
for all i € Ny, the very definition of the functions U*(f*(u),u) and (5.23) imply the
equality

3
Lufzm (Afatw(f ),u)+ZA;ajw(f*(u),u)+Diui(f*(u),u))

j=1
+ Z Z A50;0:97 U (f* (u), u)
i=0 j=1
_Zol 0 33 A8 U )
1=0 j=1
:Zaﬂif +ZZUZA°°86u+ZZAC°8 o @ U (u), u).
=0 =0 j=1 =0 j=1

Employing that o; equals 1 on the support of 8;, that ; is a partition of unity, and
the defining property of f*(u), i.e. (5.44), we deduce

=3 00 0+ 3 S AP0+ 3 S A0, U ) )
=0

=0 j=1 1=0 j=1

oo 3
u)+ Y3 AP0 @7 U (f (u),u) = .

i=0 j=1

Since the covering (U;);en, is locally finite and the trace operator commutes with
C2°-functions, we can compute

Trsxo6(Bu) = Tryxoc(BS(w)) = Trxoa (B i 0@ U (f* (), w) )
i=1
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= Ztrac 0i Tryxoc(BO; U (f*(u),w))

i=1

= ZtraG o)k P Tryvoc (CI);1(Wiq)i(“iB)ui<f*(u)’u)))7

where we used that @jlwi = 1 on suppo;. The identity B = w;®;(k;B) on supp o;
and the definition of B, cf. (5.16), then yield

Tryxoc(Bu) Ztrac oi)k TerdG( YBIU(f* (w), U)))

= ZtraG(Ui)’@fl‘i’flTfJxRi((Ri)_léiUi(f*(u),U))~

i=1

Since U*(f*(u),u) solves the initial boundary value problem (5.42) with the boundary
value ¢° defined in (5.23) for every i € N, we arrive at

Tryxoc(Bu) ZtraG oi)k; ' (trRi((Ri)il)gi(i)ao)
=3 tra (o) b (‘g ((RY)™) trgg (RD®i(trac(0)ri9))
i=1

o0
Z roc(oi0 Q—Ztrac (0i)g =g,
i=1 i=1

where ¢’ denotes the vector we get by adding a zero in the z(¢)-th component of

) z(i)—0
g'. Finally, we have

u(0) = Zal _11/11 Za,@ ul = Zaﬂl’ D, (0;up)
= Zmﬂiuo = Zeiuo = up,
i=0 i=0

where we employed that U°(f*(u),u) solves (5.43) with initial value u$ and that
UH(f*(u),u) solves (5.42) with initial value uj for all i € N. We conclude that u
is a solution of (5.1) in Gy, (J X G). O

The above theorem provides a satisfying wellposedness theory for the linear initial
boundary value problem (5.1). It also allows us to prove the uniqueness and local ex-
istence of solutions of the nonlinear Maxwell system (1.6) in Section 7.2. However, the
derivation of more sophisticated properties of solutions, both in the linear and the non-
linear case, often require to return to the half-space, see Theorem 6.1, Proposition 7.20,
and Lemma 7.22. We thus summarize the definition of the localized coefficients and
the localized data for later reference.

Definition 5.7. Let T > 0, n > 0, m € N, and set m = max{m, 3} and J = (0,T).
Take a domain G C R? which has a tame uniform C™*2-boundary. Choose coefficients
Ao € Ff,5,(J xG), D€ Fg, (J x G), and B as defined in (5.7). Choose functions
veGn (JXG) hEHm(JxG) g € En(J x 0G), and ugp € H™(G).

Fiz a covering (U;)ien,, a sequence of sets (Vi)ien,, and sequences of functions
(pi)ieNg, (0i)ieny, (0i)ieny, and (wi)ien, as in Definition 5.4 for the tame uniform
C™*2_boundary of G. We set ®;: L*(U;) — L*(Vi),w +— wo ;' for all i € N.

We then define the localized coefficients

Al = Ai(Aym), Al Di=Di(D), B
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as in (5.12) to (5.14) and (5.16) and the localized data
fr=fho), g'9),  uhluo)
as in (5.23) for all i € Ny respectively i € N.
Step IV) of the proof of Theorem 5.6 then immediately yields the following corollary.

Corollary 5.8. In the framework of Definition 5.7, assume that a function u €
G (J X G) solves the linear initial boundary value problem (5.1) with inhomogene-
ity f € H™(J x G), boundary value g € E,(J x 0G), and initial value ug € H™(G).
Then the function ®;(0;u) := (§;u) o p; ' solves the linear initial boundary value prob-
lem
. 3 . . .
A+ Aldju+ D= fi(fu), zeRY, tel;
j=1
Biv = ¢, xeaRf’r, teJ;
v(0) = uf), z €R3;
for all i € N and the function Oyu solves the linear initial value problem
3
AJow + > A9+ D = fO(f,u), TR, tel;

j=1
v(0) = u, r € R3.
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Finite propagation speed

One of the unifying features of hyperbolic partial differential equations is the finite
propagation speed. This means that initial disturbances travel with finite speed, see
Theorem 6.1 and Corollary 6.2 for the precise statements. There are several ideas to
prove the finite propagation speed property. In [Eval0] the rate of change of local
energies is used, whereas [BCD11] relies on weighted energy estimates. In [BGS07] so
called characteristic cones are exploited. While the aforementioned sources work on
the full space, mixed problems are treated in [CP82] assuming the uniform Lopatinski
condition.

We will follow the approach of [BCD11]. As it turns out, the technique of weighted
energy estimates is quite flexible and well adaptable to our setting. We provide two
equivalent versions of the finite propagation speed property, one formulated for the
backward light cone and the other for the forward one. We start with the backward
version, which states that the solution is equal to zero on a backward light cone if the
data vanish on it. We further express the upper bound for the propagation speed in
terms of the coefficients.

As announced, the proof relies on a weighted energy estimate with a parameter
dependent weight that blows up on the backward light cone as the parameter tends
to infinity. Since the data vanish we can bound the weighted solution independent of
the parameter which implies that the solution has to be zero on the cone.

Theorem 6.1. Let m € N, /. = max{m, 3}, and G be a tame uniform C™2-domain.
PickT > 0 and set J = (0,T). Take a parameter n and coefficients Ay € Fn%)n(J xG),
D e F5(J x G), and

0 v3(x) —wa(x) 0 0 O
B(z) = | —v3(x) 0 vifz) 0 0 0],
va(z) —1(x) 0 0 00

where v denotes the unit outer normal vector of 0G. Fix a covering (U;)ien, of G and
corresponding diffeomorphisms (p;)ien, as in Definition 5.4. Let M be a bound for
the derivatives of the functions (p;)ien, as in Lemma 5.1 (cf. Definition 5.4). Set
9M?
Co = .
n

Take R > 0 and xo € G. We define the backward cone C by

C={(t,x) € T xR3: |z — 29| < R— Cyt}.
Let f € H™(J x G), g € E\,(J x 0G), and uwy € H™(G) satisfy

f=0 onCN(J xG),
g=0 on CN(J x 0G),
ug =0 on CtzomG,
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where Ci—q is defined by Ci—o = {x € R3: (0,z) € C}. Suppose that the tuple
(0, Ag, AS°, A, AS°, D, B, f, g,uo) fulfills the linear compatibility conditions (2.37) of
order m. Then the unique solution u € G, (J X G) of the linear initial boundary value
problem (5.1) with inhomogeneity f, boundary value g, and initial value uy vanishes
on the cone C, i.e.,

u(t,x) =0 for almost all (t,z) € CN(J x G).

Proof. 1) Let € > 0 and set K = C’O_l. In the main part of the proof we will need a
function ¢ € C*°(R3) with

— 2+ K(R— |z —x0]) <(x) < —e+ K(R— |x —x0|) forallz eR*  (6.1)
VY] oo 3y < K.

For the sake of completeness, we show in this first step that such a function exists. To
that purpose, we set

plr) =~ + K(R~ )

for all 7 € R. Let p be the kernel of a standard mollifier over R. Since ¢ is globally
Lipschitz continuous with Lipschitz constant K, we obtain

o5 (r) = (1) < [ ps(@)le(r = ) = p(rldo < K [ ps(ololdo
R R
< K5/R5_lp(%) ‘%‘da = K(S/Rp(aﬂa\da —0

uniformly in 7 as § — 0. Exploiting that ¢ is weakly differentiable with weak derivative
O0-p(T) = —K sgn(r), we further deduce that

(0352 (7)) = | [ ps(o)orstr = )| < i€ [ paforir = &

for all 7 € R. Choosing 6 > 0 small enough, we thus obtain a function ¢ = ps * ¢ €
C*°(R) such that

—gs—i—K(R—M) <P(r) < —e+ K(R—|7|) forall T €R,

€'l @) < K.

Next take 6 € (0, (3K) " 'e). We set
() = ¢(\/8 + o — wo?)
for all z € R3. We then obtain that v belongs to C>°(R?) and satisfies the inequalities

C %+ K(R— |z — mo]) < —gs—i—K(R— 5+ la - wol) < (),

o) < e+ K(R= /824 |o - wof2) < —e + K(R— |z - wo])

for all z € R? and

0, (x) = ¢’(\/52 +lz— mﬂﬂ, for all = € R, j € {1,2,3},
\/02 + |x — xo|?

Consequently, 1 has all the claimed properties.

Vb oo (ray < K.
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IT) Fix € > 0. Take the function ¢ = 1. from step I) and set
U(t,z) = —t+(x)

for all t € R, = € R3. Note that ¥ belongs to C>(J x R3).

We next want to derive a weighted energy inequality for u. To that purpose, we have
to return to the half-space again. Since G has a uniform C™+2 domain there are charts
(U;)ien, which form an open cover of G, corresponding diffeomorphisms (p;)ien,, a
partition of unity (6;);en, subordinate to (U;);en,, and a family of functions (w;)ien,
as in Definition 5.7. Take the operators ®; and the localized coefficients and data

A6:A6(A07n), A;a Di:Di(D)v Bia
fz:fl(fvu% gz:gz(g)7 ’U,BZ’LL(Z)(’U,())

from Definition 5.7 for all ¢ € N respectively i € Ny. Corollary 5.8 then shows that the
localized functions u’ := ®;(#;u) solve the linear initial boundary value problem

3
Ao+ Ao’ + D' = f1,  zeRY,  tel;

g o (6.3)
B'u' = ¢, me@Ri, teJ;

u'(0) = uf, z € R3;
for all 7+ € N and the linear intial value problem
Apopu’ +) " Alojut + D'l = f1, 2 €R, tel;

j=1
u'(0) =up,  xeR?

in the case ¢ = 0, where we set A? = A§° for j € {1,2,3}. We next define

i = w; - Py
for all i € Ng. These functions belong to C™2(IR3) for all i € Ny, where we identify
a compactly supported function with its zero extension. Set

Ui(t,x) = —t + i(x)

for all (t,7) € R x R3 and i € Ny. Observe that the functions ¥; belong to the space

C™T2(J x R3) for all i € N and Uy, is contained in C™"2(J x R?). We introduce the
functions

v TV, 1 v TV, pi i TttrW; 1 [ _ 79,;(0,),,1
ur=e" ', fr=eif" gr=e gt b =eVi0yd

for each 7 > 0 and 7 € N respectively ¢ € Ng. We further note that
|0j¢i(z)| < KM (6.5)
‘ajakd)z(w” < C(K7 M7 E)
for all € supp ®,0; and j,k € {0,...,3}. We drop the dependancy on K and M

in the following as they remain fixed throughout the proof. Consequently, there is a
constant C' = C(7,¢) such that

3 3
eT\I’i(t,HJ) + Z |8j€7-\1/(t,:c)| + Z |8jake7—\ll(t,x)‘ <C
j=0 J,k=0

for all (t,z) € J x supp ®;0; and 7 > 0. We thus infer that u! belongs to G1(Q), % to
HY (), gt to Ey(J x ORY), and uf , to H*(R3) for all 7 > 0.
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With this amount of regularity we can compute

3
AjOpul = Abe™ 0’ — T ATV int = TV (fl - E ALOju' — Dlul) — TAyu;

j=1
3 3
— Z Aéajui +7 Z 8jz/JieT\I"'A§ui — D'l — TALul,
j=1 j=1
3 3
Ayt + Y Aldjul + D'l = fi — T(Ag -3 aj¢A;)u3 (6.6)
j=1 i=1

for all 7 > 0 and 7 € Ng. Moreover, we have
ul (0) = eV (0) = ™10yl = uO .
for all i € Ny and
tr Biul = tr(e"ViBiu') = ™" Vi Tr(Biu') = 7" Vigl = gt (6.7)

by Corollary 2.18 (iv) for all 7 > 0 and ¢ € N.
Next fix ¢ € N. We note that (A5€,&)rexre < 3M|E]? for all j € {1,2,3} as the
spectral norm of the matrices AS° equals 1 by Remark 3.6 and the fact that A$° is

symmetric for all j € {1,2,3}. We thus deduce that A} — Z?Zl dji A} is positive
semidefinite on .J x supp ®;6; since

3

3
(A6 =D awiai)ee) | = mlel = Y 10silloqes) 143 (€
j=1

j=1

3
> nle® — KMIEP Y A5l =) = nl€]* = OKMPIE = nlé]* — nK Colé|* =0
j=1
on J x supp ®;0; for ¢ € RS. Here we used (6.5), the definition of Cp, and that
K = Cy!'. Identity (6.6) in combination with this estimate then yields
O (Ajul,u T>L2(R )X L2(RY)

<5t oum 7—>L2(R3)><L2(]R3) +2<A08tuT,u >L2(]R3)><L2(R )

= (AUl 1) paat 12 1) 2<fi—ZA18u _ Diytui

(4= A

3

< (D Aus, T>L2(R3)><L2(]R3) - 22 (A%0; U, Uy ) L2 (RS ) < L2 (RE )
Jj=1

>L2(Ri)xL2(R3+)

— 2(D'ur, uy) 23 ) xr2®2) + 2(f1 W) L2 (3 )k L2 ®3)
for almost all ¢t € J and for all 7 > 0. Hence,
77|\Ui(t)||2L2(R§r) < <Aouw 7->L2(]R3)><L2(]R )

= (Aj(0)ul(0),ul (0)) 2 (e )xL2(Rd)+/ A (Ajul,u T>L2(R yx L2 (&2 ) (8)ds

< NAdl| o b B + (10 AY] o) + 20D (o) / et ()13 s s
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3 t
) I REHEL O RO P
Jj=1

t
+2/0 17 ()2 1us ()]l L2 my ) ds (6.8)

for all t € J and 7 > 0. Since ul € G1(Q), the symmetry of the matrices A} and
integration by parts further imply

<A§‘8juivui>L2(Ri)xL2(Ri)
= <8J(A§Ui),Ui)m(m)xm(n@i) - <5jA§Uivui>L2(Ri)xL2(Ri)
= —<A§‘8jui,Ui)m(m)xm(n@i) - <8jA§‘uivui>L2(R§’r)><L2(]R3+)a
(AL ) ot e a) = — (05 A ) et (et (6.9)
on J for j € {1,2} and
<A§83Ui,ui>L2(Ri)xL2(R§r)
= (03(Ajur), up) L2m3 ) <22 (22) — (O3 A5UL, U3) L2(R3 ) L2 ®3)

= —(ALBsul, ul) oz ) + | tr(Akul)(0) tr(ul)(0)do
+ + BRi
- <33A§Ui7Ui>L2(R1)xL2(Ri),

<A§33Ui: Ui>L2(R1)xL2(Ri) = —5@3143“77 Ui>L2(R3+)xL2(R1)

L i i
+ 3 /8]R3+ tr(Aju;) (o) tr(us)(o)do (6.10)

on J for all 7 > 0. We take a constant Cy independent of ¢ such that
1/, . 1
7(2 A% w1 @) + 2D Lo () + *) < (.
= "
Inserting (6.9) and (6.10) into (6.8), we derive
77||Ui(t)HiZ(R3+)

t
<0 Cullugr 172 rs ) + (10:AG ]2 (@) + 2|\DZ\|L00(Q))/O iz ()72 g3y ds
D3 | A 5. 3D e e s
2

i Lt i i
+n||f7||%2(9)+5/0 ||UT(5)||:22(R1)d5*<tr(A3UT)atruﬁL?(n)xL?(n)

t
< nClHU’B,THiQ(Ri) +ll 71172 + ’701/0 |\U?(5)H%2(R1)ds
— (tr(Aéui),trui)Lz(pt)XLz(pt) (6.11)

for all t € J and 7 > 0, where we denote (0,¢) x OR3 by I'y. In order to estimate the
last term in (6.11), we recall that the boundary matrix A3 decomposes as

i i iy _ Lo i Loni i
Ay = Re((CA3)TB )= i(CAB)TB + 5(3 )T(CAg)v

where CY is an element of (W™1>°(9R3 ))?*% which has a limit as |(¢,z)] — oo as
B’ belongs to B(Zﬁgg+ (A3). Employing (6.7), Corollary 2.18 (iv), and that u® belongs to
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G1(9), we thus infer

(tr(ALul), tr ui)Lz(pt)XLz(pt) = <Cg3 tru’, B’ tr U;L-.>L2(Ft)><L2(Ft)

= (Cly, trul, gb)paryxrar,) = (€7 V0, trul,e™ " Yigh) o po(ry)

= (Ch, tru’, g5, ) L2ry)yxr2(ry) < IIC4, tru || 2oy lgb, L2 () (6.12)
< Ol trvt| 2oy llgse 2 ryy < CHuiHHl((o,t)xRi)\\9§T|\L2(Ft) < Ol g @) llg5- 2y

forall ¢ € J and 7 > 0, where I" denotes J x OR?. as usual. We point out that [|u’|| 1 (q)
is finite by Lemma 3.11. Estimates (6.12) and (6.11) finally lead to

7 [ 7 C i i
e i A ) PR A s

t
G [ b6 ey ds
0 L&)

for all ¢t € J and 7 > 0 so that Gronwall’s lemma implies

i c % i
R Fad e P N )

(6.13)

sup [lut (01132 sy < (il
teJ +

for all 7 > 0. Using that [[®;v| g1(v,) and [[v]|g1(y,) define equivalent norms (with
equivalence constants independent of i), see Theorem 1.1.7 in [Mazl1], and applying
Young’s inequality, we arrive at

, , . c .
sup Hulf(t)HQL?(Rﬁr) < (Cluu(z),T”i?(Ri) + 120 + gHquHl(JXG)Hg%THLZ(F))eClT

< 01, G) (b W3aqer ) + 1£2 1) + —0ulis sy + oo Moy ) €T (6:14)

for all 7 > 0. Analogously, but easier as we do not have to deal with the integral over
the boundary, we obtain

sup 020 B ey < (11 Bocuy + 120 By ) (615)

for all 7 > 0.
We can now recompose estimates (6.14) and (6.15) to the desired weighted energy
estimate on the domain G. We argue as in (5.38) to (5.40) in order to derive

(oo} oo
sup HeT‘Ij(t)U(t)||2L2(G) < C(G) Z le™ |Gy (rxcy < C(G) Z 431G
=0 =0
. i 1 - '
<Cn,G) Z(HUO,T||2L2(R3 172 ) + = 105ullFn (rxa)) + ZTH957||2L2(F) et
+) T
i=0 i=1

T . T 1
< C,6) (e oz ey + €™ Flereay + —lulldn e

+ e g3 o (6.16)

for all 7 > 0.

IIT) In this step we show that the weighted energy estimate (6.16) leads to the
convergence of sup,¢ s [|ur(t)[|z2(c) to 0 as 7 — oo, which in turn implies that u has
to vanish on the cone C.

Take (s,x) € J x G such that (s,z) is not contained in C. Then |z — x| > R — Cys
which is equivalent to

1
75+K(Rf|xfxo|):—5+6(R—|x—z0\)SO.
0
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In particular, we obtain
—s+¢Y@)<—s—ec+ K(R— |z —x]) < —¢

and hence
eTY(8m) — oT(=s+9(2) < o—7e

for all 7 > 0. On the other hand, by assumption we have f(s,z) = 0 for almost all
(s,z) € C, g(s,z) = 0 for almost all (s,z) € CN (J x 9G), and ug(x) = 0 for almost
all x € C;—o N G. We conclude that

|fr(s,2)] < |f(s,x)| for all 7 >0 and |[f,(s,x2)] — 0as T — o0

for almost all (s,z) € J x G. Lebesgue’s dominated convergence theorem therefore
yields
[ frllr2(rxe) — 0O

as 7 — 0o. Analogously, we deduce that
T”QQTHL?(JxaG) — 0 and ||UO,T||L2(G) —0
as 7 — 0o. The weighted energy estimate (6.16) thus gives

sup [|ur (t)[|72(qy) — 0
teJ

as 7 — oo. In particular, there is a constant Cy > 0 independent of 7 such that

sup [|ur (8)[|72 () < Ca (6.17)
teJ

for all 7 > 0.
Now take a point (¢, z) from Cs., where the reduced cones Cs are defined by

Cs = {(t,x) € T x R®: |z — x| < R — Cot — Cy6}
for all 6 > 0. Then
3e < CLO(R—|$—$0D—t=K(R—Iw—xo\)—t§ —t+ () + 26 = U(t, ) + 2,
e < U(t,x).

Consequently, we infer

| uttoPasde < e [ Ot o)Pdrdt < e sup fur (1) ey
Cos teJ +

C3E

S CQT(:’_QET

for all 7 > 0, where we also employed (6.17). Letting 7 — oo, we obtain

/ lu(t, x)|*dxdt = 0
CSE

and thus |u(t, z)| = 0 for almost all (¢,z) € Cs..
Finally, we take a sequence (g,,), in (0,1) with €, — 0 as n — oo. Since u(t,z) =0
for almost all (¢,z) € Cs,, for all n € N, we conclude that

u(t,z) =0 for almost all (t,z) € U Cse, =C. O
neN

We also formulate the finite propagation speed property using the forward light
cone, cf. [BCD11]. This version shows that if the data is supported on a forward light
cone, then also the solution is supported in this cone.
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Corollary 6.2. Let m € N, m = max{m, 3}, and G be a tame uniform Cm+2 domain.
PickT >0 and set J = (0,T). Take a parameter n and coefficients Ag € Ff, , (J x G),
D e F5(J xQG), and

0 v3(x)  —wa(x) 0 0 O
B(z) = | —v3(x) 0 vifek) 0 0 0},
vo(z) —uni(x) 0 00 0

where v denotes the unit outer normal vector of 0G. Fix a covering (U;)ien, of G and
corresponding diffeomorphisms (p;)ien, as in Definition 5.4. Let M be a bound for
the derivatives of the functions (p;)ien, as in Lemma 5.1 (cf. Definition 5.4). Set

9M?
.

Co =

Let R >0 and xg € G. We define the forward cone K by
K={(tz)eJ xR |z —x5| <R+ Cyt}.
Let f € H™(J x G), g € Ep(J x 0G), and ug € H™(G) such that

f=0 on (J x G)\ K,
g=0 on (J x 0G)\ K,
uO:O OTLG\ICt:(),

where Ki—o is defined by Ki—g = {x € R3: (0,2) € K}. Suppose that the tuple
(0, Ag, AS°, A, AS°, D, B, f, g,uo) fulfills the linear compatibility conditions (2.37) of
order m. Then the unique solution u € G, (J X G) of the linear initial boundary value
problem (5.1) with inhomogeneity f, boundary value g, and initial value ug is supported
in the cone IC, i.e.,

u(t,z) =0 for almost all (t,z) € (J x G)\ K.

Proof. We argue by contradiction and assume that u does not vanish on (J x G) \ K,
i.e., there is a subset M; C (J xG)\ K of positive measure such that u is not identically
0 on M;. Since

(I x )\ K= J{t,z) € (J x G)\ K: dist((t,x),0K) > 5},

6>0

we particularly find a set My of positive measure and a parameter § > 0 such that
My C (J x G)\ (K + B(0,6)) and u does not vanish identically on Ms. Employing
that J x G C UneN[n,T— 1] x B(xo,n), we obtain an index N € N with N > R and
aset M C ([%,T— %] x B(zo, N))N((J x G)\ (K+ B(0,6)) such that M has positive
measure and u(t7 x) # 0 for almost all (¢,z) € M.

We define the family of backward cones

C:E/,R/ = {(t,x) S j X RS: |x — x/‘ < R/ — C()t}
for all 2’ € R® and R’ > 0 and consider the system
A= {Co n_pr: |7 — 20| = N}.

We claim that 2 forms an open covering of ([, T — %] x B(zo,N)) \ (K + B(0,6)).
To see this assertion, take (¢,z) € ([, T — 7] % B(xo, N))\ (K+ B(0,6)) and set

N
|z — o]

(z — xp).

iz':l'0+
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Using that = € B(xo, N) and (¢,z) € (R x R3)\ (K + B(0,)), we derive
|t —Z| =||z —x0| = N| =N — |z —z9] < N — (R+ Cot) = N — R — Cyt,

ie., (t,x) € Cz N—Rr- As | — x| = N, the cone Cz n_r belongs to 2 and the claim
follows.

The compactness of ([+,T — 7] x B(zo, N))\ (K+ B(0,0)) then yields finitely many
points x1,..., &, such that |x; — zo| = N for all i € {1,...,m} and {Cp, N—r: 1 €
{1,...,m}} covers ([+,T — %] x B(zo,N)) \ (K + B(0,6)). Since M is a subset of
([%,T — %] x B(zo,N)) \ (K + B(0,6)), there is an index € {1,...,m} such that
M N Cy, n—g has positive measure. However, for (¢,z) € Cy, y—r we have

|x —xo| > |21 — x| — |z — 21| =N — |z —21] > N — (N — R— Cot) = R+ Cot,

i.e., (t,x) belongs to (J x R?)\ K. We conclude that f vanishes on Cy, n—r N (J x G),
gon Cyy N—rN(J x0G), and ug on Ci—p.;, N~ r NG. Theorem 6.1 thus shows that the
solution w vanishes on Cy, n—rN(J X G), L.e., u(t, z) = 0 for almost all (¢, z) € Cy, N—R-
This contradicts u(t, z) # 0 for almost all (¢,z) € MNC,, n—g as this set has positive
measure. O






7

Local wellposedness of the
nonlinear system

In this chapter we finally turn to the main subject of this work, the local wellposedness
of the nonlinear Maxwell system (1.6). The construction of a solution of (1.6) is the
first key step in this direction. We see in section 7.2 that the results from Chapter 3
and Chapter 4 allow us to apply a fixed point argument that yields the existence of
such a solution.

However, we recall that the constants in the a priori estimates depend on the coef-
ficients which take the form x(u) in the quasilinear setting. We have to control the
appearing norms of y(u) in terms of u to make the fixed point argument work. There-
fore, we need a higher order chain rule and corresponding estimates. We provide this
rather technical material in section 7.1.

In subsection 7.3 we prove a refined estimate of solutions to (1.6), which allows us to
provide a blow-up criterion which only depends on the Lipschitz-norm of the solution.
This criterion also leads to a satisfactory regularity theory in our setting. We then
deal with estimates of the difference of two solutions of (1.6). These estimates are the
crucial tool to prove that the solutions of (1.6) depend continuously on the data.

7.1 Material laws

In the study of quasilinear problems one often has to control compositions 6(v) in
higher regularity in terms of v. It is thus natural to consider a higher order chain
rule. This so called Fai di Bruno’s formula is therefore widespread in the literature,
see e.g. [BGS07], [BCD11]. However, this formula is usually merely stated for smooth
functions. Moreover, we are not only interested in the formula itself but also in cor-
responding estimates of the F,,,(Q2)-norm of #(v) in terms of the G,,(2)-norm of v.
For the convenience of the reader we therefore provide detailed proofs of these results.
Finally, we also show bounds for the differences 6(vy) — 0(v3), which are crucial to
establish the contractivity of a certain fixed point operator and the continuous depen-
dence.

We start with the higher order chain rule for functions 6(v) and estimates for their
F,,(Q)-norm. The proof is a standard iterative application of the chain and product
rule combined with Lemma 2.22. We further give the proof for the slightly more
general case that the functions take values in R instead of RS.

Throughout this section let G be a domain in R? with a uniformly C2?-boundary,
U C R™ be a convex domain, J be an open interval, and 2 = J x G. Moreover, we
denote the image of a function v by imwv.

Lemma 7.1. Let m,n € N and m = max{m,3}. Let Uy be a compact subset of U.
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(i) Let 6 € C™(U,R). For each v € G (Q) with imv C U the function §(v) belongs
to the function space F,(Q). For li,...,l; € {1,...,n}, 7,...,7; € N§ with
vil < m, 1 < j < |al, and a € N} with 1 < |a] < m there exist constants
Cla,j,li, ..., lj, v, ..., y;) such that

80‘9(1))— Z Z Z Caj,ll,...,lj,fyl,...,yj)

1<j<el y,.,7, ENG\{O} biseslyi=
vi=a

J

@, o0 [[0n, (71)

i=1

for allv € Gz (Q) with imv C U and o € N} with 0 < |a| < m. Moreover, there
exists a constant C (0, m,n, R,U) such that

10(0)ll7,, 2 < C(0,m, 1, R, U1 + [0l (0)™ ™ 0l () (7.2)
for all v e Gx(Q) with vl (@) < R and imv C U;.

(ii) Let € C™ YU, R). For allv € H™ Y(G) with imv C U the composition O(v)
belongs to FS_1(G). We further have that

n

aae(v)_ Z Z Z a]ylla~~~alja7la"'77j)

1<5<]a] ~q, v €NSN{O} l15e-li=1
Yi=o

(01, -+ 01,0) Ha%vz (7.3)

for allv € H™1(Q) and a € N} with 0 < |a| < m — 1, and the constants
CO(OL,j,ll, s alj7’71a s 7FYJ) = O((0,0{l,OQ,O[g),j,ll, s 7lj7717 s arYj)
from (i). There further exists a constant Cy(6, m,n, Ry,U1) such that

10(o)ll o, (@) < Co(8,m, 1, Ro, U )(1 + [0l gra-1(c))™ " (7.4)

for allv € H™Y(G) with ||v| p(q) < Ro and imv C Us.

(iii) Assume additionally that m > 2. Let 6 € C™(U,R) and ro > 0. Then there is a
constant C(0, m,n,ro,Uy) such that

1676(0)(0) | rrm -1

< C(0,m,n,ro,Us)(1 + Juax. 1080 ()| grm—1-1c))™ " Juax. 1830(0) | m-t-1(cy

forallj € {1,...,m—1} and v € G (Q) with imv C U, v(0)|| Lo ey < 10 and
imv(0) C U;.

Proof. (1) We show the assertion by induction with respect to m. So let m = 1. Since
v € Gn(Q) = H3(Q) — L®(Q) we find a sequence (vg)y in C°(Q) such that vy — v
in H3(Q), Jvgllpe(@) < 2|[v]lL=(q), and vy — v pointwise almost everywhere. We
further infer that im v is a compact subset of /. We can thus choose a compact subset
Uy of U such that, after adapting (vg )y if necessary, imvy C Uy and imv C Uy for all
keN. Let j € {0,1,2,3} and l; € {1,...,n}. We then estimate

16Cvr) = ()L~ (@) < max |6"(2)] ok = iz~ — 0,
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/ 1(00,6)(0k) 05010, — (00,6)(0) D50, [2da
Q
<2 / 101, 00) ? [By010, — Dyun,[Pda + 2 / 101, 6(01) — 01,6(0) 2 |0y01, PP
Q Q

< Cmax [0/ (2) 0500 — D0l 3a(0y + C / 101, 008) — D1, 00)| 901, 2
T 2 O
—0

as k — oo. Here we used that 0,0 is continuous so that 9;, 6(vy) converges pointwise

almost everywhere to 9;,0(v). The theorem of dominated convergence with majorant

C maxgey, |0 (z)|?|0;v1, |* thus gives the above convergence of the second integral.
The first order weak derivatives of 6(v) hence exist and are given by

n

0;0(v) =Y _(91,0)(v)dju,

l1=1

for j € {0,...,3}. This fact shows (7.1) for m = 1. Moreover, for functions v with
imv C Uy, we infer

16(0)l] o= (2) < max[0(x)],
19;8(0)ll = (0) = C(n) max |6 ()] 00l () < C(n, 8, L) [Vl (@),

19;8(0)ll (e < C(n) max |8 (@) 185vllco@y < O, 6,U) [Ivlla (s

Hence, 6(v) belongs to F;(€2) and estimate (7.2) has been proved for m = 1.

Now assume that the assertion holds for all £ € {1,...,m} and some m € N. We
will establish that the assertion is also valid for m + 1.

To that purpose, let § € C™T1(R™, R) and take v € émax{m+173}(9) with imv C U.
Observe that formula (7.1) holds for all a € N§ with |a| < m by the induction hypothe-
sis. Therefore, take o € N§ with || = m+1. Choose a unit vector e;, € N§ such that «
decomposes as a = o’ + e, with o/ € N3 and |o/| < m. Since dyv € émax{m72}(Q) and
(01,0)(v) € F,,(Q) by the induction hypothesis for all I; € {1,...,n}, Lemma 2.22 (ii)
yields that 90(v) = 3= _,(01,0)(v)dxvi, belongs to Gm (). The induction hypothesis
implies the identities

n

8a9(v) :60/ Z (alerlo)(v)akvlerl

lm+1:1
- > ¥ (4)P 00w o,
Im+1=1 <o’
n o n
= Z Z <ﬁ>( Z Z Z C(ﬂajallv"'aljv'-yh“-af}/j)
Im+1=10<8<a’ 1<G<IBl A1 yeeeyy; ENGA{O} L1 sl =1
S vi=p
J
. (8lj cee 8118%“0) (U) H 8“1}51)6”‘*&)%“
=1
+ Z (8lm+19)(v)aavlm+1' (7.5)
Imy1=1
Fix a multiindex 0 < 8 < o/, a number j € {1,...,[B]}, and l1,...,l; € {1,...,n},

lm+1 €{1,...,n}, and 71,...,7; € N3 \ {0} with }~7_, v; = 3. We then observe that

(llv"'7ljalm,+1;’yla"'7’yjaa7ﬂ) EIOH
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where I, is defined by

Oé

U { U i) U U € {1, md oy € NE {03,
J
> v =af
=1

As also (ly41,a) € I, formula (7.1) follows for « by rearranging (7.5).
The induction hypothesis further says that 6(v) € F,,(Q) and

10(0)lI £, ) < C(O0,m, 1, R, UL+ [0l G (2)™ ™ IVl G

for all v € G5, (Q) with lv]| Lo (@) £ R and imv C Uj.

It remains to show that %A(v) € Go(Q) for all o € N} with |a| = m + 1 and to
estimate these derivatives. To this purpose fix an index a and a function v as above.
Take j € {1,...,m+1} and 71,...,7; € N3 \ {0} with Zzzl’h‘ =a.

We start with the case m = 1. Here we have v € G3() and thus

J

H Zn: @, 0,0)(v) [T 07w,

li,elj=1 i=1

n i
<C Y @y 0,0) ()l [T 107
> i=1

Go(Q)

(@)

<0 Y max|@y, - 0,0) @)1+ [Vl g @) 10l @
l

xeU;

where the first estimate is trivial if j = 1 and it follows from Lemma 2.22 (ii) if j = 2,
since 3 — |y;| > 2 for at least one ¢ € {1, j}.

In the case m > 2 there is at most one multiindex v; with |y;| > m appearing in the
formula (7.1). Otherwise we would have

j
m+1=|a|=2|%\22m2m+2,
i=1

a cqntradiction. For :che multiindices 7; with |v;| < m — 1 the function 97 v;, belongs
to Gryg1—-), (2) = G2(£2). A successive application of Lemma 2.22 (i) thus yields

D OROSTYIE))

Iiyenly=1

J
<C Z Ay - 0,0) (V)| L= () H |07
i=1

I, ,_1

Go(Q)

G111 ()

<C Z max [(9y; -+ 0, 0) (@) (1 + [[vllGys (@)™ (0]l Gnia ()

zeU-
Ly y=1" "

We now take the Go(€2)-norm of #*(v) in (7.1), combine the above estimates and
take the maximum of all involved constants. It follows

10%v]|Goay < C(1+ |lv]

Grl)ax{7n+1,3}(9))m“v| Gax{m+1,3} ()

for all v € émax{erLS}(Q) with [[v]| (@) < R and imv C U, where the constant C
depends on 6, m, n, R, and U;. We conclude that 6(v) belongs to F,,11(2) and (7.2)
holds for m + 1.
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(ii) The proof works in the same way as in (i). The asserted coincidence of the
constants is clear in the case || = 1 and then follows for the higher order ones by
induction due to (7.5).

(iii) This part follows from part (i) and the techniques used there. However, since

the details are not the same, we present them. Take v € Gz () with imv C U,
lv(0)||zos (@) < 70, and imv(0) C U,. Part (i) shows that

n

a0(w)(0)= > > > C((,0,0,0), By 0y, Ly k)

1<k<j~q,. 7,),keNo\{()}ll,.A.,lk:l
E'Yi:(jaovoao)

k
(B, - 0,0)(v(0)) [[ (@ wn,)
=1

for all j € {1,...,m — 1}. Observe that div;, belongs to G1() — Go(Q) for all
appearing 7; and [; so that the point-evaluation in zero is well-defined.
We start with m = 2. Then 9;(6(v))(0) = >_;' _; 8,0(v(0))d;v1, (0) and we can thus

estimate

10:6(v)(0)[|z2(c) < Z 101, 0(v(0))[| o= () |0¢v(0) || 2 ()

=1

< C(0,n,U)|00(0)| 2(c)-

It remains to consider the case m > 3. To that purpose, we take j € {1,...,m—1},
ke {17"'7j}7 117"'alk € {1,...,71}, Vs Mk € Ng\{O} with Zf:l’)/i = (]703070)

We first note that v(0) € H™~}(G) and 9, ... 9,0 € C™ #(R",R) so that part (ii)
yields 9, ...0,0(v(0)) € F°_,(G). Moreover, the function 87 v(0) is an element of
H™=l=1(@Q) s H™I=YQ) for all i € {1,...,k}.

Take v, € N§ with |v,| = maxi<;< [vi|. If |75 > 2, we derive from the inequality

il + 1l <j<m—1

that m—1—|v;| > 2foralli € {1,...,k}\{p}. Therefore, we can apply Lemma 2.22 (vi)
repeatedly and thus estimate

k k
Vi Vi
it vzi<o>umlmsuga S

Huaw M- < Cm) max oor O) sy (76)

Next, let maxy<;<g |7:| < 1. It follows that |v;| =1 for all i € {1,...,k} and hence

k=j. If m > 4, we infer m —1—|v;| > 2 so that Lemma 2.22 (vi) again yields (7.6). If
m = 3 and j = 1, the estimate in (7.6) trivially holds. If m = 3 and j = 2, we obtain

k
| TTov o], ) = 1900 0800 0)]122(6) < 19001, 156 |00 sy
! 2 ! j
< C”atU(O)HHl(G) < Clngl?gj ||6tv(0)|\fquH(G)~

So (7.6) has been established in all cases.
If £ <m —2, Lemma 2.22 (vii), (7.6) and part (ii) then imply

E?r

. 0.0 Gl H
H( b b 121 o) Hm=1-3(G)
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HHm—l—j (@)

k
< Cm)(@n, -+ O @O x| [T 0(0)
i=1

Cmll @ -+~ 0u0)(wO)llry_, (o) mmax, [N U] | ——

< C(0,m,n, 10, Us ) (L + [[0(0)|| grm—r ()™ klrglaéc 1080 (O) | Fm—1-1(cr)

< C(0,m,n,ro,Us)(1 + Ofglang ||3§U(0)|\Hmfw(c))m ! OIEZa<X 1;(0 N em=1-1(G)-

In the case k = m — 1, we also have j = m — 1 and therefore

k
O 0.0 (& H
oo, n 0l
k
— @, 8,0 (@ \
H e th 1:[1 12(G)

< @+ 0 (0 (O) |1~ _H(aw)(m]

L*(G)

< C(0,m,n,ro,Us)(1 + e 1830 (0) || 1)) ™ nax, 1880 (0) | rm—1-1(cr)

by (7.6). O
We next establish analogous estimates for differences 0(v1) — 6(v2).

Corollary 7.2. Let m € N, m = max{m,3}, and v > 0. Let § € C™ Y(U,R) and
R > 0.

(i) Let vi, vz € Ga1(Q) with ||v1] (o), lv2ll L= (), lVillGn . (9): [V2llGa @) < R,
and imvy,imve C Uy. Then there ezists a constant C = C(0,m,n, R,U1) such
that

10%0(01)) (1) = (0*0(v2))(5)ll 2y < C Y [19%01(t) = 0% va(s) | 12 ()

BENG
0<|B|<m—1

(7.7)

for almost all t € J and almost all s € J if a € N‘é with 0 < |a| < m — 2. In the
case || =m — 1 and m > 1 we have the estimate

@00 - @ 0N <C 3 10700 - 0 lac)
o<lBiem—1
+C Z 101y + -+ 01, 0)(v1(t) — (O, - 01, 0) (v2(8))]| Lo ()

l1yeelm—1=1

(7.8)

for almost all t € J and almost all s € J. If § additionally belongs to C™(U,R),
the estimate (7.7) is true for almost all t € J and almost all s € J in the case
la] =m —1. Finally, if ag = 0, it is enough to sum in (7.7) and (7.8) over those
multisndices B with By = 0.

(ii) Let v1,v5 € G(Q) with |[v1]|pe (g 02l (@), [01ll6_i @) 026 _i @) < R,
imvy,imvy C Uy, and 6 € C™U,R). Then the difference (vy) — 6(vs) belongs to
G (Q) and there exists a constant C' = C(6, m,n, R,Uy) such that
[0(v1) = 0(v2)llG s 2) < Cllor — v2llG 1 @)

for all v > 0.
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(i) Let vi,v2 € H™(G) with |1l Lo 6y, [[v2ll < (6 101l am-1(ays [v2] am-1(ay < R,
imvy,imwvy C Uy, and 0 € C™(U,R). Then the difference 0(v1) — 0(v2) is an
element of H™(G) and there is a constant C' = C (0, m,n, R,Uy) such that

[0(v1) = O(v2)llrm-1(c) < Cllvr — val[gm-1(c).-

Proof. (i) Let vy,vq € Gﬁ«,(Q) with [lv1]|Lee (), [|v2]l Lo (@) £ R, and imwvy,imvy C U .
We first note that there is nothing to show in the case m = 1. So we assume m > 2 in
the following. Observe that in the case |a| = 0 the estimate (7.7) is a consequence of
the mean value theorem and Sobolev’s embedding. If |a| > 1, Lemma 7.1 implies the
formula

0%0(v1)(t) — 0“0(v2)(s)

Z Z Z C(a,j,ll,...,lj,fyh...,yj)

1<j<]al vq,...,7; ENG\{0} l1,--, b5 =1
> vi=a

(@, 0,0) 1 () [T 0 010,(0) = (@1, - 0,0)(v2(5)) [] 02 (5))
i=1 =1

= Z Z Z C(a7j7l17~-'7lj3717"‘77j)

1<j<]al yq,...,v; ENG\{O} L1seenl=1

o vi=a
: [((azj o 0,0) (1 (1) — (B ---8119)(112(8))) Haw17li<t) (7.9)
J k—1 J
+ ) (@10, 0)(v2)(s) [] 07 w2, (5) - (07014, (1) — 0020, (5)) [] 3”iv1,zi(t)]
k=1 =1 i=k+1

for all @ € N} with 1 <|a| <m — 1 and almost all t € J and almost all s € J.
We now take o € N with 1 < l|a| <m—1,j€{1,...,|al}, m,..., € N§\ {0}
with >/, v = a, and ly,...,l; € {1,...,n}. Observe that |y;| <m—1for1 <i <j.
I) Let w; € H? '=1l(GQ) for all i € {1,...,5}. We first claim that there is a
constant C'(m) such that

J
| TTw
i=1

Without loss of generality we assume that |y;| = maxi<;<; |7;|. We then estimate

e

using Lemma 2.22 (v). Observe that w; € H™ '~1l(GQ) — HMI(G) for all i €
{1,...,7 — 1} since |vi| + |vj] < Jof <m—1for 1 <i < j—1. In the case |y;| > 2,
inequality (7.11) and a successive application of Lemma 2.22 (vi) thus yield

J
| TT e
i=1

Next assume that |y;] < 1. In the case j = 1 the estimate (7.10) trivially holds,
while in the case j = 2 this inequality follows from (7.11) and |y2] < m — 1 — |y].
If j > 3 we deduce from m — 1 > j that m > 4. Exploiting that |y;| < |y;] <1

J
e = C(Tn)i];[1 [will grm-2-131 @)- (7.10)

(7.11)

j—1
< CH w;
12(G) 1;[1

Hhila) ij HHThilihﬂ(G)

J
<C 7 m—1—|v; .
126 = (m)g\lw | -1 (@)
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for 1 < i < j— 1, we infer that w; belongs to H™ 1~1%l(G) — H™ 2(G). We can
therefore again successively apply Lemma 2.22 (vi) and derive from (7.11) that

J
1L
i=1

We have thus shown (7.10).
IT) We now fix two representatives of v; and v, still denoted by v1 and vy and two
corresponding nullsets N1, Ny C J such that v; and vs satisfy
0%ui(t) € H™7141(@),  0%ns(s) € H™1ON(@),

10%01 ()| gm-1-181(6) < 01llgmr@)s 10%02() | m-1-1a1G) < [v2llam_ @)
lv(t)| < R, |u(s)| <R, imo(t) CU;, imo(s)CU;

LZ(G) H [Jwi |l gm—1- vil(G)-

and (7.9) for all t € J\ Ni,s € J\ No and & € N§ with |&| < m — 1. Step I) then
shows

(@ 0,001 (1) = (@ - +-01,0)(va(s)) ) Ha% ()]

< (@, - 0, 0) (01 (1)) = (B, -+~ 0,0) (va(s) L= (c HHW 0l

L*(G)

L2(G)

< Cm)|[(; -+ 0, 0)(v1(t)) = (B, -+ - 01,0) (v2(8))l| L= () H 107 01 ()| grm=1-101 ()

i=1

< C(Q, m,n, R)H(al] T 8119)(7}1 (t)) - (alj e 8110)(v2(s))||L°°(G)

and
H(a -0,,6) Hamm (0 vry, () — O gy, (s H &y ‘LQ(@
i=k+1
< C(m) max|(9, -~ 9, 0)(2)] H 107 v2,1, ()| frm—1-13:1 ()
i
0701, (8) = 0 a1, ()| ga-1-ti oy + [ 107 008 ()l rm—1-1a1
i=k+1

< C(0,m,n, R,U1)||[07v1(t) — 0™ v2 ()|l grm—1-11 ()

forallt € J\Ny, s € J\Na,and k € {1,...,j}. We insert these estimates into (7.9) and
take the maximum of all involved constants, obtaining inequality (7.8). If |a] < m —2
or 6 belongs to C™ (U, R), we exploit that

(0, -+ 01, 0) (01 () — (D, -+ - O, 0) (v2(8)) || L= ()
< max (D, -+ - 01,0) ()| [[v1 () — va(8)]| Lo (@) < C(O, m,m, Un)|[vr (1) — va(s) | 2

for allt € J\ Ny and s € J\ Ng, which yields (7.7). Finally, we note that 7, ¢ = 0 for
all i € {1,...5} if ap = 0, implying the final assertion.
(i) Take v > 0. We observe that

16(v1(£)) = O(va(t))llL2(c) < max 16" (@) [[o1(£) = v2(B)l L2 (7.12)

for almost all ¢t € J. We further employ estimate (7.7) with s = ¢, multiply with e,
and take the essential supremum and the maximum over all multiindices o € N§ with
|a] < m — 1. In this way we derive assertion (ii).

(i) We set 01(t) = v; and 02(t) = ve for all t € J. Applying part (i) with s = ¢
and (7.12) to 07 and 0y yields the claim. O
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7.2 Local existence

In this section we construct solutions of the nonlinear initial boundary value prob-
lem (1.6) with material laws x and o that are C™ with m > 3 and where x is positive
definite. We will see that, similar to the linear problem, an H™-solution of (1.6) has
to fulfill certain compatibility conditions. We will also provide a variant where x only
needs to be locally positive definite. Having constructed a local solution on a small
time interval, we use standard techniques to extend it to a maximal solution. More-
over, we provide a first blow-up condition in the H™(G)-norm, which follows from the
fixed point argument.

Throughout this section we use the following assumptions. For a given integer m the
set G denotes a subdomain of R? which fulfills the uniform C™%2 regularity condition,
where m = max{m, 3}. Moreover, U denotes a convex subdomain of R°.

We first prove that solutions of (1.6) are unique. By a solution of the nonlinear
problem (1.6) we mean a function u which belongs to ;L CI(I,H™I(G)) with
imu(t) C U for all ¢ € I which solves (1.6), where im u(¢) means the image of u(t),
I C R is an interval with ¢ty € I, and m is an integer with m > 3. The proof relies on
the basic L2-a priori estimate and Corollary 7.2.

Lemma 7.3. Letto € R,T > 0, and J = (to,to +T). Let m € N with m > 3. Take
X,0 € C™(U,R*®) and (1,¢z € Fy, 6(J x G). Set x = (1X and 0 = (26 and suppose
that x is symmetric and uniformly positive definite. Choose data f € H™(J x G),
g € En(J x 0G), and ug € H™(G). Let uy and uz be two solutions in Gy, (J x G)
of (1.6) with inhomogeneity f, boundary value g, and initial value ug at initial time
tg. Then u; = us.

Proof. Set
K ={Ty € J: u1 = uy on [to, To|}.

This set is nonempty since u1(tg) = ug = u2(tp). Let 71 = sup K. The continuity of
uy and wus implies that the two functions coincide on [tg, T1].

Since uy and ug are solutions of (1.6) and belong to G, (J x G), there is a compact
subset Uy C U such that imuq,imus C U;. We now assume that T is not equal to T
We then take a time T, € (T, T] to be fixed below and we set J,, = [T1,T,]. We ob-
serve that w1 and ugy are both solutions of (1.6) in G,,,(J, X G) with inhomogeneity f,
boundary value g, and initial value u1 (71) = u2(T}). In particular, both functions solve
the linear initial boundary value problem (3.2) with data f, g, and u;(73) and differen-
tial operator L(x(uy), A°, AS°, A, o(uy)) respectively L(x(us), AS°, ASC, AS°, o(us)).
We abbreviate these operators by L(x(u1),o(u1)) and L(x(u2),o(uz)) in the following.
Lemma 7.1, Lemma 2.22; and Sobolev’s embedding yield that x(uy), x(us2), o(u1), and
o(ug) are elements of F5(J x G). Choose a radius r > 0 such that

max{||u1lla,, (7xa), [v2lla,. (xa), Gl mrxays Gl e} <7
Lemma 7.1 and Lemma 2.22 provide a radius R = R(x, o,r,U;) such that the bounds
max{||x(u1)||r;(sxc)s lo(w)llr ey} < R,
max{||x(u1(T1))l ro () nax, 10! x(u1) (T )| gm-1-3 ()} < R,

max{llo (us (Th)) | rg ) max, 1070 (ur) (TV) | srm-1-3(c)} < R

hold true, where U, is a compact subset of U with im uq(t),imus(t) C U, for allt € J,,.
We further recall that y(u1) is symmetric and uniformly positive definite. Therefore,
Theorem 5.6 for the differential operator L(x(uy), AS°, AS°, AS°, 0(u1)) can be applied
to ur — ug. We take n = n(x) > 0 such that x > 1 and set v = 75.6,0(n, R), where
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vs5.6,0 denotes the corresponding constant from Theorem 5.6. Theorem 5.6 and its
proof, Lemma 2.22; and Corollary 7.2 (ii) then show that

lur = uall@, . (1 x)
< Cs.6(n, R, T, G)II(L(x(u1), 0/ (ur))ur = LOx(ur), o (ur))uz)llzz (5, <)
= C(x, 0, T, G)||f = x(u1)Dpuz — o(ur)uz + x(u2)puz + o (uz)uz = flI12 (s, )
< C(x, 0,7, T, G) Ty = T)||0rus|| 7 1, oy IX (1) = x(u2) 1, A (JuxG)

+ OO0 0,1, T,G)(Ty = T1)ual e (5, ) 10 (1) = 0 (u2) [, (7. %)
< O(x, 0,1, T, G U)(18sual 3, 5, ¢y + Nu2llE, (0 xey) (T — T1)|lu

where Cj5 ¢ is the corresponding constant from Theorem 5.6. Fixing the generic con-
stant in the last line of the above estimate, we choose T, so small that

2
ur — U2||g, (g, x @)

Clx,o,nT,G Ul)(”‘?tWHGZ(J xG) T ||U2||G2 Ju XG))(T )<

N)M—l

Hence,

lur —uz2llay . (1.xa) =0,

implying u; = us on [T1,Ty] and thus on [tg, T),]. This result contradicts the definition
of T7. We conclude that 77 =T, i.e., u1 = ug on J. O

We have now collected all the tools to prove the local existence theorem. However,
before doing so, we take a more precise look on the compatibility conditions. Recall
that the definition of the operators S, in (2.36) depends on time derivatives of
x(u) and o(u) in to, where u is an element of G,,(.J x G). However, we would like to
formulate the definition of Sg ., independently of u as we are going to vary w in our
fixed point argument. Lemma 7.1 fortunately shows that the time derivatives of x(u),
respectively o(u), in to only depend on , respectively o, and time derivatives of u at
to.

Definition 7.4. Let J C R be an open interval, m € N, (1,2 € Ff, 6(J x G) be time

independent, and X,5 € C™(U,R%*6). Set x = (1X, 0 = (25, and assume that x is
symmetric and uniformly positive definite. We then define the operators

SxoGamp: J x H™ M3 (] @) x Hmm2H(G 1Y) — H™(G)

by Sy.,o,c,m,0(to, fru0) = uo and then inductively

3
Sx,U,G,m,p(t07 .f7 UO) = X(UO)_I (65_1f(t0) - Z A;’Oajs ,U,G,m,p—l(th fv U’O) (713)
j=1
p—1

Z( )Ml to, [ “0) X,U,G,m,p—l(thf’ UO)
-

< )MQ thfaUO) XU’,G,m,pflfl(t()vf,uO)))
=0
n

=y > > C ((9,0,0,0), 5,11,y Lo V1,3 75) (7.14)

1<j<p~,.. ﬁjeNé\{O}ll» A=
2= 7vi=(p,0,0,0)

J
-G (0, -+ - O, O ) (o) H Sy.o.cm v (to, fru0)1,
i=1
for 1 <p<m, ke {l1,2}, where 01 = X, 02 = 5, MY = 6(uo), and C is the constant
from Lemma 7.1. By H™>{m:2} (G, 1) we mean those functions ug € H™>{m:2}(Q)
with imug C U.
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We will show in Lemma 7.7 below that the range of Sy o G,m,p is indeed contained
in H™ P(G). Before doing so, we note that the operators Sy ».G,m,p are the right
objects in order to handle higher order time derivatives of solutions of the nonlinear
problem (1.6).

Lemma 7.5. Let J C R be an open interval, to € J, m € N, (1,( € Fg6(J x G)
be time independent, and X,6 € C™(U,R5%®). Set x = (1%, 0 = (26, and assume
that x is symmetric and uniformly positive definite. Choose B € W™HLo°(J x G),
fe H™JxG), g € En(J x9G), and ug € H™(G) with imug C U. Assume that
problem (1.6) has a solution w which belongs to Gy, (J x G). Then

Ru(t) = Sy.0.c.m,j(t, (b)) (7.15)
forallt € J and j € {0,...,m}.
Proof. The assertion follows inductively by differentiation of (1.6) and Lemma 7.1. O

We remark that the operators Sy - ¢ m,; and Lemma 7.5 are the nonlinear analogues
to the linear operators Sg,m,; and Lemma 2.31.

Motivated by the previous result and in analogy to Definition 2.32 in the linear case
we introduce the following notion.

Definition 7.6. Let J C R be an open interval, to € J, m,k €N, (1,( € F,‘jw(Jx G)
be time independent, and ¥,6 € C™(U,R*6). Set x = (1X, 0 = (25, and assume
that x is symmetric and uniformly positive definite. Choose B € W™+1:0(J x G)F*6,
feH™Jx@), g€ E,(Jx0G)F, and uy € H™(G)S.

We say that the tuple (x,o,to, B, f,g,uo) satisfies the nonlinear compatibility con-
ditions of order m if imuy C U and

troc (BSy,o,c,m.p(to, fruo)) = 07 g(to) for0<p<m—1. (7.16)

In the next lemma we collect several crucial properties of the operators Sy s c m,p-

Lemma 7.7. Let J C R be an open interval, ty € J, m € N, and m = max{m, 3}.
Take time independent (1,2 € Fy6(J x G) and X,6 € C™(U,R*6). Set x = (1%,
o = (20, and assume that X is symmetric and uniformly positive definite. Choose data
f,f € H"(J x G) and ug, iy € H™(G) such that imug and im g is contained in U.
Take r > 0 such that

m—

S 10 fto) lrm-s-1(c) + ol g ) < 7

—

<
I
=)

3
L

107 f (to) | zrm—i-1(cy + o]l g (cy < 7

I
o

J
Then the function Sy o.c.mp(to, f,uo) belongs to H™ P(G) and there is a constant
Cy = Ci(x, 0,m,r,Uy) such that

m—1

[15x,0,G,m,p(tos £, u0) | Hm—r(c) < Cl( Z 18] £ (t0) | zrm—s-1(c) + ||Uo||Hm(G)>
7=0

for all p € {0,...,m}, where Uy is a compact subset of U such that imug C U .
Moreover, there is a constant Cy = Co(x, 0, m,r,Us) with

HS 7U,G7map(t07 f7 UQ) - SX7U,G7m,P(t07 f? aO)”H"”*T’(G)

m—1
< Co( Y 1971 (to) = % Flto)lm-s-1(a) + lluo — ol
j=0

for allp € {0,...,m}, where Us is a compact subset of U such that imug,im Gy C Us.
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Proof. As the data f, f, ug, Ug, and tg are fixed in this proof, we abbreviate the oper-
ators Sy o.c,m.p(to, f,u0) and Sy o.c,m.p(to, f, Up) by Sy,o.c,m,p respectively Sx o.Gym.p
forallp € {0,...,m}. Analogously, we write M} and M} for the operators M}, (to, f,uo)
and ML (to, f, o) from (7.14) for all (I,k) € {17 . 7m} x {1,2} U{(0,2)}.

We prove the assertion by induction with respect to p. Clearly, the claim is true for
p = 0. Now assume that the assertion has been shown for all p’ € {0,...,p — 1} for
some p € {1,...,m}.

I) We first assume that m > 3 and thusm =m. Letl € {1,...,p—1},j € {1,...,1}.
Take ky,...,k; € {1,...,1} with 37_, k; = I. Let vo € H™"7-1(Q), v; € H™ ¥ (G)
fori € {1,...,5}, and v;11 € H™PT(QG).

Let us first consider the case p < m — 1. Here we have

J
(m—j—1)+Z(m—ki)+(m—p+l):m—j—1+mj—l+m—p+l

i=1
=mj—j+2m—p—1>mj—j+3. (7.17)

If two of the above terms in paranthesis were strictly smaller than 2, we would obtain
J
(m—j—1)+> (m—k)+(m-p+1)<2+jm—1)=mj—j+2
i=1

and thus a contradiction to (7.17). Therefore, at most one summand in (7.17) is strictly

smaller than 2 and we can successively apply Lemma 2.22 (vi) to the product Hl o Vi
It hence belongs to H™P(G) and satisfies

j+1
ne
i=0 H

Now assume that p = m. In this case we infer

i
o= Clivoll gm-s-vy [T lvill erm-re ey v sa | m-vsi(cy- (7.18)
=1

J
(m—j—1)+Y (m—k)+(m—-p+l)=mj—j+m—1
1=1
>mj—j+ 2. (7.19)

If three of the above summands were strictly smaller than 2, it would follow

J
(m—j—1)+> (m—k)+(m—p+1) <3+ (G —-1)(m—1)=mj—j—m+4
=1

which contradicts inequality (7.19). So at most two summands in (7.19) are strictly
smaller than 2. If one of them was 0, we would get

J

(m=j—1)+> (m—ki)+(m-p+1) <1+j(m—1)=mj—j+]1,

i=1

again a contradiction to (7.19). We conclude that if two summands n; and ng in (7.19)
are strictly smaller than 2, then they are equal to 1 and so H™(G) = H™(G) =
HY(G) — L*(G). Hélder’s inequality and Lemma 2.22 (vi) then yield that [[/*] v;
belongs to L?(G) and that this product fulfills (7.18) with p = m. If less than two
summands in (7.19) are strictly less than 2, we obtain from Lemma 2.22 (vi) again
that []?%, v; belongs to L?(G) and that the estimate (7.18) holds.

Let 6, = x and 03 = . Take an index k € {1,2}, I1,...,l; € {1,...,n}, and
Y,-..,7 € N§\ {0} with Zt 1% = (1,0,0,0). Then the function J;; ... 0,0 is an
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element of C"7 (U, R%*%) and Lemma 7.1 (i) implies that (3, .. .9y, 0x)(uo) belongs
to H™ J(@). Lemma 2.22 (vii), estimate (7.18), Lemma 7.1 (ii), Corollary 7.2 (iii),
and the induction hypothesis thus yield
J
HCk(alj .01, 0) (uo) 21;[1 Sy,0,Gmu il SX,J,G,m,pszfkHHWP(G)
J
< Cll¢kllpo ) 1D, - - 01,0k) (Wo) | rm—s=1(G) [ [ IS0 Lszm =141

m—1
i=1

N1Sx.0.G.mp—1+1—k | Hm—rt1(c)
m—1

< C oy m ) (S 1071 00) i1 + ol ) )

Jj=0

and

J
HCk(alj -0, 0k) (uo) H Sy.0.Gmilvilils Sx.0,Gmp—1+1—k
i=1

J
— k(0 - .. O, 0k) (o) Zl:[l Sy,o,Gm il Sx’gyc’m’p7l+17k)HHm’_p(G)

< ClCkllre_ ()l - - - O, 0k)(uo) — (s - .. 01, Ox) (o) | rm—i-1(c)

J

T IS x| 161 () 1950, omop— 11—k | =22
i=1
J q—1 ~
+ClICkllro @) DM@, - 00, 0k) (o) | i1 (@) [ [ 1Sx.0. Gt rm—11 ()
=1

q=1
) ||SX’67G’mylvq\ - SXQG,G,mylvq\HH’"*‘“/(J'(G)

J

1T 1Sxe.cmivi

1=q+1

a1 (@) |1 9x.0.6m p-t+1-k | =1 ()

j
+CllSk o ) 1D, - - 01,0k (o) | mrm-s=1 Gy [ [ 19 Gomval lirm—12:1 ()
=1

. HSX,J,G,m,p—lJrl—k - SX’U’G,m’p7l+17k||H7n7p+l(G)

m—1
< Clx oum, . a) (D 1107 £(t0) = 0 F(to) lgm -3y + 1o = ol ()~ (7.20)
j=0

In view of the definitions, we have shown the estimates

1M S0, p-t 1kl m=r(c)
m—1 )
< Ccoum, ) (X2 10 £ (to)llm-s-1c) + luollamicr ).

Jj=0

(7.21)

M}, Sy0,Gomp—i1—k — M, Sy 0.Gomp—i1—k || 5rm-r(c)

m—1
< C’(de,mﬂ“’%)( > 0 F(to) = 0 F(to)larm—s-1) + lluo — ﬂoHHm(G))- (7.22)
3=0

It remains to look at the case [ = 0 and &k = 2. As above we derive

M3 Sy 0.G.mp—1llerm—>(cy < Cllo(uo)ll o, ()| Sx.0.6.mp-1llEm—r(c)
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m—1

< C(X707m,7",u1)( 10 F o)l mm-—s-1(e) + HuoHch)) (7.23)
=0

and

HMSSX,QG,WLP—l - MS SX,07G7W7P—1 ”H’”*P(G)

< llo(uo) — o (o) zm-1)llSx.0.0.mp—1llrm—r1my)

+llo(@o)llre_ (@)l9%.0.cmp—1 = Sxo.6mp—tllmm-rir(c)
m—1
< C(X,Cﬁmm%)( > 107 £(to) = 3 F(to) lm—s-1c) + lluo — ﬁolle(c)) (7.24)
=0

using Lemma 2.22 (vi) and (vii), Lemma 7.1 (ii), Corollary 7.2 (iii), and the induction
hypothesis.

II) Since X is an element of C™(U,R5%®), Lemma 2.23, Lemma 2.22 (vii), and
Lemma 7.1 (ii) show that x~*(ug) belongs to F° _;(G) and that we can estimate

|‘X_1(UO)|‘F3_1(G) < C(x,m,r,Uy). Lemma 2.23, Lemma 2.22 (vi), the induction
hypothesis, (7.21), and (7.23) thus yield

HS 7U,G7m,p||H7n—p(G)

3
— —1
<Clx 1(UO)HFSL_1(G)(H6£ Fto) lm—rc) + Y 10;Sx.0.c.mp—1lHm-r(c)
j=1
2 p—1
+ ZZ HM]lc Sx,o’,m,pfl+17k||Hm—P(G) + ||-Z\4§J Sx,J,G,m,pflnHm—P(G))
k=11=1
m—1 ]
< COuom, ) (D210 F o)l i1 + luoll ey )
=0

for 1 < p < m. This estimate trivially holds in the case p = 0. Corollary 7.2 (iii)
together with Lemma 2.23 and Lemma 2.22 (vii) further shows that

X~ (uo) = x ™ (@) | rm-1(c) < Clx, mym,Us)|luo — Tio|| grm—1(c)-

Combining this estimate with the induction hypothesis and (7.21) to (7.24) and (7.13),
we deduce

HSX%G;WP - SX,mG,mmHHm*P(G)
< O(X,O’,m,T,Z/[Q)HUO — lNL()HHmfl(G)

+ ot m, ) (108" f (ko) = 0 F(to) |-
3

+ D 10i8x.0.6mp-1 = 918x.0.GmptlHm-r(c)
j=1
2 p—1
+ Z Z HMIlc Sx.0.Gmp—i+1-k — Mllc SX,U,Gym,p—Hl—kHHM*IJ(G)
k=11=1

+ ||M20 Sx.0.Gm,p—1 — MS §X7U,G7m,p—1||H”"*P(G))
m—1
< C(Xvo—vm??n?uZ)( Z 10 f(to) — 9] f (to) | zrm-i-1(cy + lluo — ﬂ()HHm(G)>~
§=0

The induction hypothesis is thus also true for the index p. By induction, the assertion
now follows for m > 3.

In the case m € {1,2} the claim is shown by the same arguments, using that the
data belong to H™(J x G) respectively H™(G). O
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Lemma 7.8. Let J C R be an open interval, tg € J, and m € N with m > 3.
Take time independent (1,2 € Fy, 6(J x G) and X,6 € Cm(Z/I,RGXG). Set x = (1X,
o = (26 and assume that x is symmetric and uniformly positive definite. Choose data
f e H"(J x G) and ug € H™(G) such that imug s contained in U. Let r > 0.
Assume that f and ug satisfy

max_{[|0]f(to) | rm-3-2(c)} <7,

e <
luoll g (cy < 7 o

Iflle,
(i) Let it € G (J x G) with du(ty) = Sy.0.c.m.p(tos fru0) for 0 <p <m —1. Then
Sa,m.p(to, x(), AT, A5, A5, 0(@), f,u0) = Sx.0.¢.mp(to, f,u0) (7.25)
for allp € {0,...,m}.
(i1) There is a constant C(x, o, m,r,U1) > 0 and a function u in G, (J x G) with
Ot ulto) = Sy.o.cm.p(to, f,u0)

for allp € {0,...,m} and

mo1(7xG) ST | fllEmxe) S

3

lulla,.(1xc) < Clx,o,m,r Ul)( 187 £ (to) | srm—i-1.(cy + ||U0||Hm(c))-
J

I§
<

Here U, denotes a compact subset of U with imug C U; .

Proof. (i) Assertion (i) follows by induction from the definition of the operators Sg m
n (2.36), Lemma 7.1, and the definition of Sy » g mp in (7.13).
(ii) The assertion is a direct consequence of Lemma 2.34 and Lemma 7.7. O

Lemma 7.8 in particular shows, that for any @& € G,,(J x G) with &a(0) =
Sy 0.G.m,j(to, f,uo) forall j € {0,..., m—1}, the linear compatibility conditions (2.37)
for the tuple (to, x(@), AS°, AS°, AS°, o (1), B, f, g, up) are fulfilled if (x, o, to, B, f, g, uo)
fulfills the nonlinear compatibility conditions (7.16).

In Lemma 2.31 we have seen that the linear compatibility conditions (2.37) are a
necessary condition for the existence of a G, (J x G)-solution of (3.2). Analogously,
the nonliner compatibility conditions are necessary for the existence of a G, (J x G)-
solution of (1.6). For later reference, we formulate this fact as a lemma.

Lemma 7.9. Let J C R be an open interval, ty € J and m € N with m > 3.
Take time independent 1, € Ff, ¢(J x G) and x,6 € C™(U,R%*%). Set x = (1X,
o = (20 and assume that x is symmetric and uniformly positive definite. Choose data
fe HY(JxG), g € En(J x0G), and ug € H™(G) such that imug is contained in
U. Take B € WmTh(Q). Assume that there exists a Gy, (J x G)-solution u of (1.6)
with inhomogeneity f, boundary value g, and initial value ug at tg. Then

tra(BSy,o.cmp(t fu(t)) = 07 g(t)

foralltejand()gpgm—l.

Proof. Recall that trg denotes the usual trace operator from H*(G) to H*~/2(dQ)
for all k € N and (Try yxgu)(t) = trgu(t) for all t € J and u € C(J, H(Q)), cf.
Remark 2.17.

The definition of a solution yields that g = Try, s« (Bu) and hence

g(t) = Trl,JXG(Bu) (t) = trg B trg u(t) = trg Btr Sx,o’,G,m,O(ta fa u(t))

for all t € J.
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Next, fix an index p € {1,...,m — 1}. Then 0”u still belongs to G1(J x G). As
time derivatives commute with trgg for smooth functions, this property extends to u
for up to m — 1 time derivatives. Hence,

OFg(t) = 07 troc(Bu(t)) = troc(Bofu(t)) = Tr1yxc (B u)(t),
where we used that 9Yu € G1(J x G). We infer that
0t g(t) = Tr1 sxa(BOfu)(t) = Btrag(9u(t)) = Btr Sy o.c.mp(t, fu(t))
for all t € J, inserting that by Lemma 7.5 and assumption
O u(t) = Sy.o.6mp(ts fu(t)). H

Finally, we can combine all the preparations and prove the desired local existence
result. We apply Banach’s fixed point argument. In order to show the self-mapping
and the contraction property, we heavily rely on our a priori estimates. We further
point out that the special structure of the constants we derived in Chapter 3 is crucial
for the self-mapping property.

Theorem 7.10. Lettyo € R, T > 0, J = (to,to + T), and m € N with m > 3. Take
time independent (1,2 € Fy, 6(J x G) and x,6 € C™(U,R°*C). Set x = (1X, 0 = (20
and assume that x is symmetric and uniformly positive definite. Let

0 vs(x) —wva(xr) 0 0 0O
B(z) = | —v3(x) 0 vi(z) 0 0 0},
va(x)  —1v1(x) 0 0 00

where v denotes the unit outer normal vector of 0G. Choose data f € H™(J xG), g €
E,.(J x 0G), and ug € H™(G) with imug C U such that the tuple (x,0,to, B, f, g, uo)
fulfills the nonlinear compatibility conditions (7.16) of order m. Choose a radius r > 0
with

m—1 )

Z 107 f (t) Fzrm—1-3 ¢y + 911 %,, 7o) + w0l Fm @y + [ Fzrmrxa) <2

j=0

Gl e, (rxa) + 1l E (rxay ST
Take a number k > 0 such that

dist({uo(x): = € G},0U) > k.

Then there exists a time 7 = 7(x,0,m,T,r,k) > 0 such that the nonlinear initial
boundary value problem (1.6) with inhomogeneity f, boundary value g, and initial
value ug has a unique solution u on [to,to + 7] which belongs to Gy, (J; x G), where
Jr = (to,to + 7).

Proof. Without loss of generality we assume tg = 0. If f =0, g = 0, and ug = 0,
then v = 0 is a G, (J x G)-solution of (1.6) and it is unique by Lemma 7.3. So in the
following we assume || f||gmrxa) + 9||E,.(7x06) + |[uollam @) > 0. Recall that the
map Sy o,G,m,p was defined in (7.13) for 0 < p < m. Let 7 € (0,T]. We set J, = (0,7)
and

U, = {y €eU: dist(y,0U) > Kk} N Bacg,,r(0),

where Cs,p, denotes the constant for the Sobolev embedding from H?(G) into L= (G).
Then U, is compact and im ug is contained in U,.
I) Let R > 0. We set

BR(JT) = {U (S ém(JT X G) ||U‘ G (Jr X Q) < fi7 ||11 — U;OHLOO(L]TXG) < K‘,/2
]v(0) = Sy.0.c.m.; (0, foug) for 0 < j <m—1,}
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and equip it with the metric d(vi,v2) = [lv1 — vallq,,_, (s, x). We first show that
Bg(J;) is a complete metric space. Recall that G’m(JT X () is continuously embedded
in Gpm-1(J; x G) so that Br(J;) is well defined. Moreover, Lemma 7.8 (ii) shows
that there is a radius Rz g (X, 0, m,r,U.) such that Br(J;) is nonempty for all
R > Cr g0y (X, 0,m, 1, Uy ) - (m + 1)r.

Let (vn)n be a Cauchy sequence in (Bgr(Jr),d). The functions v, then tend to
v in Gp_1(Jr x G) as n — oo, and hence v satisfies 87v(0) = Sy o.c,m,; (0, f,u0)
for 0 < j < m—1and |[v]g, ,.xe) < R Let o € Nj with |a] = m. The
sequence (0%v,,), is bounded in L*°(J,, L*(G)) = (L'(J,,L*(G)))*. The Banach-
Alaoglu Theorem thus gives a o*-convergent subsequence which we again denote by
(0%p)p. Tts o*-limit in L>°(J,, L?(Q)) is denoted by v,. Let ¢ € C°(J, x G). The
above convergence results then imply

(,va) = Tim (i2,0%0,) = (=) lim (9%,v,) = (~1)*1(0%p, v) = (i5,0™0)

n—o0
so that 9% = v, € L>®(J,, L*(G)). In particular, v belongs to G, (.J,; x G) and

0%Vl o (rxcy = 10%0]| Loe (1, 22(c)) = VallLo (1, L2(c)) < R

for all o € N} with |a| = m. Finally, as m > 3, we infer

[0 —=wolle (1, xe) S v = vnllL=(, x6) + lon = woll L= (1, xc)
S C’Sol[)”y - UTL”Gz(JTXG) tK—K

as n — 0o, where such a constant Cgy, exists due to Sobolev’s embedding. We conclude
that v again belongs to Bgr(J:).

IT) Let @ € Br(J;). Take n = n(x) > 0 such that x > n. Then x (@) is contained in
Fy, ,(JxG) and o(1) is an element of Fy7, (J x G) by Lemma 7.1 and Sobolev’s embed-
ding. Lemma 7.8 (i) and the assumption that (x, o,to, B, f, g, uo) is compatible imply
that the tuple (x (@), AS°, AS°, AS°, o (i), B, f, g, up) fulfills the linear compatibility con-
ditions (2.37). By Theorem 5.6 the linear initial boundary value problem (3.2) with
differential operator L(x (@), AJ°, AS®, A, o(4)), inhomogeneity f, boundary value g,
and initial value ug has a solution in G,,(J; x G) which we denote by ®(%). One thus
defines a mapping ® from Bg(J;) to G, (Jr x G). We want to prove that ® also maps
Bpg(J;) into Bgr(J;) for a suitable radius R and a sufficiently small time interval J;.

For this purpose take numbers 7 € (0,7] and R > C753:4)(x,0,m,T,r)(m + 1)r
which will be fixed below. Let & € Br(J;). We first note that there is a constant
Cr.7(x,0,m,r,U,) such that

||SX70'7GJVL7;D(O7 f’ u0)|‘H"L*P(Ri) < C7.7(X7 g, m,r, u}@)

for all p € {0,...,m} due to Lemma 7.7. Lemma 7.1 (ii) and Lemma 2.22 (vii) further
provide a constant C7 j(;;) such that

Ix(@)(0) | 7

m—1

(@) — ||X(u0)||F7?171(G) < 0741(721’)(X7m767r7un)7

Note that im @ is contained in the compact set
U, =U. +B(0,r/2) CU

as 4 € Bg(J;). Part (iii) of Lemma 7.1 once more combined with Lemma 2.22 (vii)
yields

100X (@) (0) | zrm—1-1(G) < Cr.1¢2i0) (O, M, 6,7, U ) (1 + Jnax 10F6(0) || grm-r—1(c))™

= C7.13i10) (X, m, 6,7, U ) (1 + Jnax 19x.0.G.m.k (0, £ u0) || rm—r-1(c))™
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< O?.l(iii)(Xa m, 6,7, Z’lfi)(l + 07-7(X7 g, m,r, uﬁ))m7
Haéo—(a)(o)||Hm*l*1(G) < C’?.l(iii) (07 m, 67 T, uli)(l + C7.7(Xa o, m,r, uﬁ))m

foralll € {1,...,m — 1}. We thus find a radius ro = ro(x, o, m,r, k) such that

max{[|x(@)(0)lry_, @), max [9;x(@)(0)]rm-1-1)} < 7o,

1<i<m—
max{[|o(@)(0)l| s, _, (). | max 1040 () (0) || grm—1-1(c} < 7o (7.26)

As 4 belongs to Br(J;), Lemma 7.1 (i) gives

HX(’&’)HFm(JXG) < C7.1(i)(X7ma 67R7Z/~[K)(1 + R)ma
llo(@)lF,,(rxa) < Craa(o,m, 6,R,U.)(1+ R)™.

We thus obtain a radius Ry = Ry(x, 0, m, R, k) with
Ix(@) £, (7xa) < Ra and lo(@)| k. rxa) < Ra. (7.27)
We next define the constant C,, o = Cp, 0(x, 0,7, k) by
Cmo(x; 0,1, k) = Cs.6,m,0(n(X); To(X; 0, m, 7, K)), (7.28)

where C56.m,0 denotes the constant C,, ¢ from Theorem 5.6. We will suppress the
dependance of the constants on the domain G as G remains fixed. We set the radius
R = R(x,0,m,r, k) for Bg(J;) to be

R(x,0,m,r, k) = max {4 \/ Cm,o(x, 0,7, 8) 1, Cr 8¢5y (X, 0, m, Uy ) (m + 1)1 + 1}.

(7.29)

We further introduce the constants v, = v (x, 0, 1,7, k) and C,, = Cp,(x,0,T, 7, K)
by

Ym = TYm (X7 ag, Tv r, "{) = 75.6,m (n(X)v Rl (Xa o,m, R(Xa o,m,r, H))? T)7 (730)
Cm: = Om (X’ a, T7 T) = C5-6,7n(77(x)7 Rl (X7 a,m, R(Xa a,m,r, K/))a T)7 (731)

where v5.6,m and Cs 6., denote the corresponding constants from Theorem 5.6. Let
C7.2(ii) (97 m, 67 Ra Z/?m)

denote the corresponding constant from Corollary 7.2 (ii) for all § € C™ (U, R6*®).
With these constants at hand we define the parameter v = v(x,o,m,T,r, ) and
the time step 7 = 7(x, 0, m, T, 7, k) by

~ = max {’ym, C,;}Ocm}, (7.32)
7 = min {T, (27 +mCs6.1) 'log2, Cp ' Crno, (CsobR) Lk, (7.33)
[32T2RQCM,OC§.22(C$.2(ii)(X? m, 6, R, dﬁ) + C?Q(ii)(o’ m, 6, Rﬂn))]’l}v

where Cs 99 and C51 denote the corresponding constants from Lemma 2.22 and
Theorem 5.6 respectively. Observe that v and 7 actually only depend on x, o, m, T,
r, and k as Cp, 0, Cy,, and R only depend on these quantities (see (7.28) to (7.31)).
For later reference we note that the choice of v and 7 implies

Y Z Ym; (7.34)

& < o (7.35)
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r<T, (7.36)

2y +mCs61) T <log2, (7.37)

C’mT < Cm,07 (738)

Csob RT < K, (7.39)
~ 1

407":0051.220'?.2(1'7;) (97 m, 67 RauK)T2R2 T < gv 0 e {)2, 5’} (740)

IIT) Recall that & € Br(J;) and that ®(u) denotes the G,,(J x G)-solution of (3.2)
with differential operator L(x (i), A°, AS°, AS?, o(1@)), inhomogeneity f, boundary value
g, and initial value ug. We want to bound ® (@) by means of Theorem 5.6. In view
of the estimates (7.26) and (7.27), the definitions of Ci, 0, Ym, and C,, in (7.28),
(7.30), and (7.31), respectively, fit to the assertion of Theorem 5.6. Using also (7.34)
and (7.36), we arrive at the inequality

1R, (s, xc) < €7 2(@)]E

Gy (17X G)

Gm

,_.

m—
< (Cmo + TCm)e(27+m05.6,1)7'< 187 £(0)12ms— ()
7=0

Om e(2'y+mC1 )T

2 2 2
+ 9l (rxoc) + lwollmey ) + 7 1 ez (7 x )

Observe that

1 V(s xcy S W NErm s xay S M NEmernay <7

and analogously ||g||2Em,7(J><aG) < r%. Employing (7.35), (7.38), (7.37), and (7.29), we
then deduce

1R(E,. (7. xc) < (Cmo + Crm0)e %21 + Cpp €' %1% = 6C o1 < R?,
I®(@)lla,, (7. xa) < R
Since ® (i) belongs to G, (J X G), Lemma 2.31 shows that
af(D(A)( ) Sa m,p(o X( ) Ai()?AgO?AgO? ( )afv UO)

for all p € {0,...,m}. On the other hand, as an element of Bg(J;), the function @
satisfies 0V 4(0) = Sy,0.m.p(0, f,ug) for all p € {0,...,m — 1}. Lemma 7.8 (i) thus
yields

85(1)(A)( ) Sa m,p(o X( ) AgoaAgovAgoa (ﬁ)vauo) - Snyfvm,P(vavuo)

for all p € {0,...,m —1}.
We further estimate

(i) = ol 5.x) = 2@ - H
@) — uoll L=, xc) () /@ s)ds — ug L (%)
t
|| [ a,®@)(s)a H < Cso / P d
| ) ow@ens], ., < Com s [ 1000 eyt

< CsobT |02 (0)]| Gy (7, xa) < CsobTR < K

for all 4 € Bgr(J;), where we used that ®(%)(0) = ug for & € Br(J;) and (7.39). We
conclude that ®(@) belongs to Br(J;), i.e., ® maps Br(J;) into itself.

IV) Let 11,72 € Br(J;). Since the functlons x(4;) and o(4;) belong to Fy,(J; x G)
for ¢ € {1,2}, Lemma 2.22 implies that x(@;)0;®(i2) and o(4;)®P(is) are elements of
Gm-1(Jr x G) = H™ 1(J, x G) for i € {1,2}. The function ®(iiy) thus fulfills

L(X(al)a A(1:Oa Ago’ Agoa U(ﬁl))@(ﬁz)
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= x(01)0;®(d2) + 0 (1) P(t) — x(1i2) 0, P(U2) — o (i) P(t2)
+ L(x(d2), AT, A%, A5, 0 (i12)) B (2)
= (x(@1) = x(82))0,®(t2) + (0(@1) — o(ti2))P(th2) + f
and this function belongs to Gy_1(Jr X G) < H™ 1(J, x G). We further stress that
®(111)(0) = ug = P(2)(0).
As in step III), (7.26), (7.27), (7.28), (7.30), (7.31), (7.34), and (7.36) allow us to

apply Theorem 5.6 on J; x G with differential operator L(x (1), AJ°, A, A, o(41))
and parameter v to obtain

1@ (i) — @(a2)lIE,,_, (s, xc) < 627TH‘I’(%) = Ol _, (s xc)

< (Cm,O + TC (2'y+m01 T Z Haj f Lq) ))(O)H?JM*Q*J(G)
7=0

Cm m T
+76(27+ Ch) IIf — L®(a )”H"’ Y(I,xG)

= (Ciny0 + 7C )eB1HmeT Z 167 (x (1) — x(@2))0, 2 (1i2)) (0)

+ 0] ((o(i11) = 9(22))(2)) (0) [ -5 ()
C

+ ST () — x(22))00b(an) + (0(1) = (@) V().
Lemma 2.22, Lemma 7.1, and

041 (0) = Sy,om. (0, f,u0) = B}z (0)
for all l € {0,...,m — 1} imply that

0] (x(iin) — x(112)) 9, (i12)) (0) = 0,
9 ((o(1) — o(i2))®(12))(0) = 0
forall j € {0,...,m—2}. Employing (7.37) and the triangle inequality, we then deduce
1

I08) = NG 550) £ 4 () =X @A)
1 .
+4Cm;|\(a(u1)*0( )) ( )HH’” YJ-xG)
en (7.41)

Before going on, we point out that we know from step II) that ®(ds) is an element of
Bgr(J;) and hence

10:®(02) |G,y (1, xc) < (1 R(U2) |G, (7, x0) < R- (7.42)

We now treat the first summand. Lemma 2.22, (7.42), and Corollary 7.2 (ii) show that
I < 40, Zrl(x(i) = X(@) 2@, 7,6
<40 2T CEml(i) = X, 0,410, (5,06
= 4Cm%051.227"203.2(n) (x,m, 6, Rvaf@)R2T||a1 - ﬁ2||:g;m71,w(JT><G)'

Exploiting (7.35) and (7.40), we finally arrive at

L < 4Cmyoc§.2203.2(ii) ()Zv m, 6, R)TQRQTH’[“ - r&2||é‘m,1ﬁ(JT><G)
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<

1, .
1 (JexG) < gHul —dallZ,. (7 xa): (7.43)

(|1 — ol

ool —

Analogously, we obtain

.. .
Ir < gl — ol G2 (1, G- (7.44)

Estimates (7.41), (7.43), and (7.44) imply

[®(i1) = D(a) |G, (7 xa) < LR G 1 (2 X G

. . 1, . .
[®(a1) — (d2)lc,, (1. xa) < §||U1 —U2|lGy i (JrxG)-

We conclude that ® is a strict contraction on Bg(J;).

V) So step I) and (7.29) show that (Bgr(J:),d) is a nonempty, complete metric
space. Steps III) and IV) yield that ® is a strict contractive selfmapping on Br(J;).
Banach'’s fixed point theorem thus gives a fixed point v € Bgr(J;), i.e., ®(u) = u. By
definition of ®, this means that u is a solution of the initial boundary value problem

3
XWou+> Ajdjutouu=f, z€G, te;
j=1
Bu =g, r€IG, ted;
u(0) =ug, x€G;

i.e., the function u € Br(J) C G, (J xG) is a solution of the nonlinear initial boundary
value problem (1.6). Lemma 7.3 shows that u is the unique solution of (1.6) on
[0, T]. O

We want to point out that in the important special case where U = RS the assump-
tion on the range of ug in Theorem 7.10 and the results before is empty, i.e., there is
no assumption on the range of the initial value. The same is true for the results that
will follow although we will not stress this observation every time. However, at least
for our main result of this section, we want to state this special case explicitly.

Theorem 7.11. Lettyo € R, T > 0, J = (to,to + T), and m € N with m > 3. Take
time independent (1, (s € Fy, 6(JxG) and X,6 € C"™ (RS, RO*C). Set x = (1X, 0 = (20
and assume that x is symmetric and uniformly positive definite. Let

0 vs(z) —wvo(x) 0 0 O
B(z) = | —v3(x) 0 vifz) 0 0 0],
v(z) —n(z) 0 000

where v denotes the unit outer normal vector of G. Choose data f € H™(J x G), g €
E,.(J x 0G), and ug € H™(G) with imug C U such that the tuple (x,o,to, B, f, g, uo)
fulfills the nonlinear compatibility conditions (7.16) of order m. Choose a radius r > 0
with

m—1

> 187 F (o) 315 + gl

=0

2Em(JxaG) + ||U0||%{m(c;) + Hf”?ﬁlm(JxG) <r?

1G5, rxa) + 112l F (rxay ST

Then there exists a time T = 7(x,0,m,T,r) > 0 such that the nonlinear initial
boundary value problem (1.6) with inhomogeneity f, boundary value g, and initial
value ug has a unique solution w on [to,to + 7] which belongs to Gy, (J; x G), where
Jr = (to,to + 7).
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Remark 7.12. Let tg € R, T > 0 and J = (=T + tg,ty). Let m > 3 and x, o, B, uo,
and  as in Theorem 7.10. Let f € H™(J x G) and g € E,,,(J x G). Assume that the
tuple (x, o, to, B, f, g, up) fulfills the nonlinear compatibility conditions (7.16). Take a
radius 7 > 0 as in Theorem 7.10. Let 7 = 7(x, —o, m, T, r, k) from Theorem 7.10. We
want to show that the problem

3

X(W)du+ Y A;jdju+o(u)u = f, zeR3,  tel
j=1
Bu =gy, xe@Ri teJ;
u(to) = up, z €R3;

has a unique solution on [—7 + g, to]. To that purpose, we introduce J = (to,to +7),
A; = —Aj for j € {1,2,3}, 6 = —0, and we set f(t) = —f(2to —t) and §(t) =

g(2to —t) for almost all £ € J. Observe that f belongs to the space H™(J x G) with
[fllmrxcy = [fll gmxay < mand [0 f(to)| zm-1-i() = 107 f(to) |l rm-1-i(c) for all
j€10,...,m—1}, and ||g||g,.7x0c) = 9]l E,,(7x0c)- We want to apply Theorem 7.10
to the system

3
X (v)Opv + Zfljajv +6(v)v = f, z € R3, teJ;
=1 i , (7.45)
Bv =g, redRy, telJ;
’U(to) = Up, S Ri

Since & belongs to C™ (U, R*%) and the coefficients Ay, A, and A5 have the needed
structure, it only remains to check that the tuple (x, &,to, B, f, g, uo) fulfills the com-
patibility conditions (7.16) of order m for the coefficients Ay, Ay, and Aj.

Let Sx &.G,m,p denote the operators from (7.13) associated to the coefficients Al,
Ag, and As. Similarly, we write M? and M? for the operators from (7.14) associated
to war m,p and ¢ in the case Mp We will show that

Sx,&,m,p(t07 f~a UO) = (_1)p‘sx,a,m,p(t03 fa uO) (746>

for all p € {0,...,m}. This assertion is clearly true in the case p = 0. Assuming that
we have shown (7.46) for all j € {0,...,p — 1} and some p € {1,...,m}, we compute

3
X(UO)Sx,&,m,p(t07fau0) ap 1 Z S X,0,m,p— 1(t0,f,U0)

p—1

Z( ) thf)“O) X,0,m,p— l(to,f,UO)

o

- (pl ) L(to, fru0)Sy.6.mp1-1(to, fyuo)
=0

= (71)paff(t0) - (71) ' (71)p71Aj6jsx,o,m,p—l(t()a fa UO)

-

Il
—

J

p—1 _
- (p I 1)(1)1Mf(to,f, o) (—=1)P 'Sy o mp—1(tos fo u0)
=1

p—1
—1
- Z (p l ) (_1)l+1M£(t0’ f’ UO)(_l)p_l_lSXﬁ'vm;P*lfl(t07 f7 Uo)
=0

= (*1)pSX7a,m,p(th fv U’O)'
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By induction, we obtain (7.46) for all p € {0,...,m}. Hence,
ﬂ(ng,&,m,p(t07 fv uO)) = (_1)11 ’I\I'(Bsx,a,m,p(t()v f7 UQ)) = (_1)11859(750) = afg(t())

for all p € {0,...,m — 1} as the tuple (x, 0,0, B, f, g, uo) fulfills the nonlinear com-
patibility conditions (7.16) of order m by assumption. We conclude that also the tuple
(x,0,t0, B, f,g,uo) fulfills the compatibility conditions (7.16) of order m with coef-
ficients fll, Ag, and ;13. Theorem 7.10 thus gives a unique solution v of (7.45) on
[to, to + 7], which belongs to G, ((to,to + 7) x G).

We now set u(t) = v(2tg —t) for all ¢ € [—7 +¢g,to]. Then the function u belongs to
G ((—T 410, t0) X G), u(to) = v(to) = up and Bu = g on (—7+1o,to) X OG. Moreover,
we infer

0)dyul) +2A D,u(t) + o (u(t)u(t)

=~ (x(v(2to — 1)0(2to — 1) 0(2to — t) + 5(0(2t — 1)v(2to — 1))

IIMw

—f(2to —t) = f(t)

for all t € [—7 + tg,to]. Consequently, the function u is a Gy,-solution of (7.12) on
[—T + to, to].

A similar argument yields the uniqueness of the solution of (7.12). This means that
we obtain a solution not only for times ¢t > ty but also for times ¢ < ;. Via the same
construction, the a priori estimates from Chapter 5 carry over to negative times. <

Below we will construct a maximally defined solution. To this purpose, we need the
following lemma on the concatenation of solutions.

Lemma 7.13. Let m € N with m > 3. Pick intervals J; = (to,t1), Jo = (t1,t2), and
J = (to,t2). Take time independent (1,(o € Ff, ¢(J x G) and x,6 € C™(U,R%*Y).
Set x = (1X, 0 = (20 and assume that x is symmetric and uniformly positive definite.
Choose f € H™(J x G) and g € E,,(J x 0G) and set fr = fi5,, fo = fin, 91 =915,
and g2 = g|1,- Let ug,uy € H™(G). Assume that there are v; € Gy, (J; X G) which are
solutions of (1.6) with data f;, g;, and v;(ti—1) = u;—1 for i € {1,2} and v1(t1) = u;.
Then the function

() forte Jy,
w(t) = {vg(t) fort e Js,

is a G (J X G)-solution of (1.6) with inhomogeneity f, boundary value g, and initial
value w(0) = ug.

Proof. Since v; € Gy, (J; x G) for i € {1,2}, we only have to show that Ay (ty) =
v (t1) for j € {0,...,m} to establish that w is an element of G,,(J X G). But this
follows easily from (7.15) in Lemma 7.5, as this identity tells us that

0v1(t1) = Sy.rcamj(t1, [, 01(81)) = Sy (fv2(t1), t1) = O va(t1)

for j € {0,...,m}, where we also applied Lemma 7.5. So w € G,,,(J x G) and clearly
w(0) = ug. Furthermore, Lw exists in a strong sense, that means the differential
operators can be applied pointwise in time (cf. Remark 2.17), and by assumption we
have Lw = f; on J; and Lw = f, on J;. We conclude that Lw = f in L?(J x G).
Since v1 and vg solve (1.6) in G1(J; x G), Remark 2.17 transferred to domains yields
the boundary condition

Try (Bw)(t) = tr(Bw(t)) = tr(Bv;(t)) = Tr1(Bv;)(t) = gi(t)

for t € J; and i € {1,2}, as Tr;(Bv;) = Tr(Bv;) = g;. Consequently, Tr;(Bw) = g in
C(J, HY?(dG)) and thus Tr(Bw) = g in H~'/2(J x G) by Remark 2.17 on domains
again. So the function w has all the properties of a G,,-solution of (1.6). O
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We also underline that the restriction of a G,,(J x G)-solution on any subinterval
K of J is again a solution.

Lemma 7.14. Let J C R be an open interval, tg € J, and m € N with m > 3.
Take time independent 1,z € Ff, 4(J x G) and x,6 € C™(U,R*C). Set x = (1X,
o = (20 and assume that x is symmetric and uniformly positive definite. Choose data
fe H™Jx @), g€ E,(Jx90G), and ug € H™(G) and assume that problem (1.6)
has a solution u in Gu(J x G). Assume that I is an open subinterval of J and that
so € I. Then ur is a solution of (1.6) on I with inhomogeneity f;, boundary value
gi1, and initial value u(so) at so.

Proof. Clearly, u;; € Gy, (I x G) and u|;(so) = u(so). Since the differential operator
can be applied pointwise in ¢, we also obtain (Lu;)(t) = (Lu)(t) for all t € I and
thus Luj; = f;; in L?(I x G). Due to Remark 2.17 transferred to domains, the trace
Tr(Bu) is equal to Tri(Bu) so that we deduce

9(t) = Try (Bu)(t) = tr(Bu(t))

for all t € J, in particular Try(Bur) = g(t) in C(I, H/?(8G)). We conclude the
identity Tr(Buj;) = g in H=Y/*(T';), where I'; = I x 0G. O

Definition 7.15. Let tg € R and m € N with m > 3. Take time independent (1,(s €
Fg (R x G) and x,6 € C™U,R*6). Set x = (1X, 0 = (26 and assume that X
is symmetric and uniformly positive definite. Choose data f € H™((T1,Te) x G),
g € En((Th,T2) X G), and ugp € H™(QG) for all Ty, To € R with Ty < Ty and define B
as in Theorem 7.10. We define

Ty (m,to, f,g,up) = sup{T > to: 3Gy, -solution of (1.6) on [to, 7]},
T_(m,to, f,g,up) = inf{r < to: 3G, -solution of (1.6) on [1,%o]}.

The interval (T—(m,to, f,g,uo), T+ (m, to, f,g,u0)) = Imaz(m, to, f, g,u0) is called the
maximal interval of existence.

The next lemma justifies the name “maximal interval of existence”. It states that
there is a unique G,,-solution of (1.6) on I,,4, which cannot be extended beyond this
interval.

Proposition 7.16. Let tg € R and m € N with m > 3. Take time independent
(1,G2 € Ff 6(R x G) and x,6 € C™(U,R%*C). Set x = (1X, 0 = (26 and assume
that x is symmetric and uniformly positive definite. Choose data f € H™((Ty,Ts) %
G), g € En((T1,T) x G), and ug € H™(Q) for all T1,To € R with Th < T and
define B as in Theorem 7.10. Assume that the tuple (x,o,to, B, f,g,uq) fulfills the
compatibility conditions (7.16) of order m. Then there exists a unique mazimal solution
u € N7y O (Imaz, H™7(G)) of (1.6) on Ipae which cannot be extended beyond this
interval.

Proof. For simplicity, we abbreviate Ty = T\ (m, to, f, g,u0), T— = T—(m, to, f, g, uo),
and Lnar = Imae(m, to, f,9,u0). Note that we have T, > t3 by Theorem 7.10 and
T_ < tg by Remark 7.12. Take times 71,70 € [0 With

T,<T1<t0<T2<T+.

The definition of the maximal interval of existence and Lemmas 7.13 and 7.14 yield a
Gm-solution v of (1.6) on [r1,72]. We set u = v on [r1, 72]. Because of Lemma 7.3, we
obtain an extension of u if we decrease 7 and increase 7o within I,,,,. This construc-
tion thus yields a function v on I,,,,,. Moreover, u belongs to ﬂ;.nzo C¥(Laz, H" 7 (G)).
Since the differential operator and the trace can be evaluated pointwise in ¢, we con-
clude that u is a G,,-solution of (1.6) on ;4.
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Now let J’' be an interval with I,,,, C J’ such that there exists a function v €
Nj=o CI(J',H™I(G)) of (1.6) on J'. The definition of I, already gives J' C
[IT_,T4]. If Ty € J', then v belongs to Gp,((to,T+) X G) and the closure of the
range of v(T) has positive distance to OU. Lemma 7.9 further shows that the tuple
(x,0, T4, B, f,g,v(T4)) fulfills the compatibility conditions (7.16) of order m. The-
orem 7.10 thus gives a solution v’ on [T, 7], where 7 > 0. The concatenation of v
and v’ at Ty is again a solution by Lemma 7.13, contradicting the definition of T .
So T, does not belong to J'. Analogously, we deduce that T_ is not contained in J’,
implying that J' = I,,45.

The uniqueness of the solution on I,,,, follows from Lemma 7.3. L]

As usual the fixed point argument from Theorem 7.10 also yields a blow-up criterion.
As long as the H™(G)-norm of the solution remains bounded, we can extend the
solution. Therefore this norm has to blow up at the maximal existence time if this
time is finite.

Lemma 7.17. Let ty € R and m € N with m > 3. Take time independent (1,(s €
Ff 6(R x G) and x,6 € C™(U,R*®). Set x = (1X, 0 = (26 and assume that x
is symmetric and uniformly positive definite. Choose data f € H™((T1,T) x G),
g € E,(T1,T2) x G), and ug € H™(G) for all Ty, To € R with Ty < Ty and define
B as in Theorem 7.10. Assume that the tuple (x,o,to, B, f,g,uo) fulfills the com-
patibility conditions (7.16) of order m. Let u be the mazimal solution of (1.6) on
Iz provided by Proposition 7.16. If Ty = Ty (m,to, f,g,u0) < 00, then one of the
following alternatives

(i) liminf, ~7, dist({u(t,z): € G},0U) =0,
(i) Timg o, ([u(E)| g sy = 00
occurs. The analogous result is true for T_(m,to, f, g,up).

Proof. Let Ty < oo and assume that alternative (i) does not hold. This means that
there exists £ > 0 such that

dist({u(t,z): x € G},0U) > K

for all t € (to, T+). Assume that there exists a sequence (t,),, converging from below
to the maximal existence time T} such that R := sup,cy [[u(tn)|| grm (3 ) is finite. Fix
a time 7" > Ty and take a radius r > R with ||f||gm (@, 1)xe) < 7. Then pick an
index N € N such that

tv + 70, 0,m, T —to,r k) > T4,

with 7 = 7(x, 0, m, T’ —tg,r, k) from Theorem 7.10. Lemma 7.9 tells us that the tuple
(x,0,tn, B, f,g,u(ty)) fulfills the compatibility conditions (7.16). Since the distance
between imu(ty) and OU is larger or equal than k, Theorem 7.10 thus gives a G,,-
solution v of (1.6) with inhomogeneity f, boundary value g, and initial value u(ty) at
ty on [ty,tn+7]. Setting w(t) := u(t) if ¢t € [to, tn] and w(t) :=v(t) if t € [tn,tn+7],
we obtain a G,-solution of (1.6) with data f, g, and ug on [tg, ¢y + 7] by Lemma 7.13.
This contradicts the definition of Ty since ¢y +7 > T'y. The assertion for T_ is proven
analogously. O

This criterion is a direct consequence of the construction of the solution in Theo-
rem 7.10. It will be one of the main topics of the following section to improve this
result.

Remark 7.18. We want to finish this section with a remark concerning the assumptions
on x and o. In fact, we can treat more general material laws than stated so far.
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(i) In the definitions and results of this section we assumed that the functions ¢; and
¢ belong to F,,(J x G). The reason for this assumption was that we applied the
bilinear estimates from Lemma 2.22 applied to (7 x(v) respectively (20(v) for a func-
tion v from G,,(J x G). However, the function spaces F,,(J x G) and accordingly
Lemma 2.22 were tailored for functions of the form 6(v), where 6 is a C™-function
and v a G,,-function, which do not have better regularity respectively integrability
properties than belonging to F,,,(J x G). For the estimates of Lemma 2.22 respec-
tively the a priori estimates and the linear theorey in Chapters 3 to 5 we could
have allowed coefficients Ag respectively D in F,,(J x G) +W™>(J x G). Observe
that the estimates for products involving a factor from W >°(J x G) are easier as
we do not need any Sobolev embedding here. While we did not work this out in
Chapters 3 to 5 for the sake of the clarity of the arguments, this observation allows
us to treat time independent functions ¢; and (3 from F,,(J x G) + W™>(G). In
fact, we are mainly interested in ¢; and (o from W °°(G) as we think that this is
the natural assumption for applications.

(ii) We further note that the variables x and o appear linearly in problem (1.6) and
consequently in the results of this section. Due to the triangle inequality, we can
therefore also treat material laws x and o which are linear combinations of the
functions we used so far. To make this statement more precise, we introduce

ML™MGU) :={0: GxU RN EN,(1,...,¢ € FS 4(G) + W™ (G)*C,
!
01,...,0, € C™(U,R®) such that 6 =Y ;0;},
j=1
MLI(GU) : = {0 € ML (G,U)|0 is uniformly positive definite on G x U}

for all m € N. Here Fy, 5(G) is defined in analogy to Fy, 6(J x G) and W[*>°(G)
denotes the space of those functions in W™ (G) which have a limit as |z| — co.
If we replace the assumptions on x and ¢ in the definitions and assumptions of
this section by x € MLy (G,U) respectively o € ML™(G,U), we obtain the same
results.

7.3 Local wellposedness

In this section we continue our investigation of the nonliear system (1.6). While we
concentrated on existence and uniqueness of a solution in the previous section, we
complete here the local wellposedness theory of (1.6) by providing a refined blow-up
criterion and showing the continuous dependance of solutions on their data.

Our first goal is to sharpen the blow-up criterion from Lemma 7.17, which depends on
the H™ (Ri)—norm of the solution. There are several examples of quasilinear systems,
both on the full space and on domains, where the blow-up condition is given in terms of
the Lipschitz-norm of the solution, see e.g. [Maj84], [BGS07], [LMSTYZ01], [BCD11],
[KP83], [Kla80], and [BKMS84|. Indeed we show that the limes superior of the spatial
Lipschitz-norm of a solution of (1.6) has to blow up in finite time if the solution does
not exist globally.

The second main topic of this section is the continuous dependance of the solutions
of (1.6) on the data. We explain this notion in detail in Theorem 7.23 below. However,
we already remark that, due to the quasilinear nature of (1.6) and the associated loss of
regularity in H™(G), we cannot expect anything better than continuous dependance,
cf. [BCD11], [MMT12|, and [IT17].

Throughout this section we use the following assumptions. For a given integer m the
set G denotes a subdomain of R? which fulfills the uniform C™%2 regularity condition,
where m = max{m, 3}. Moreover, U denotes a convex subdomain of R°.

The refinement of the blow-up criterion relies on an improved “a posteriori estimate”
of the solution of (1.6) based on Moser type calculus inequalities. These inequali-
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ties, which were introduced by Moser in [Mos66], follow from the combination of the
Gagliardo-Nirenberg estimates (see [Nir59|) with Holder’s inequality and allow to treat
products of derivatives of a function effectively. Therefore, they have proven to be a
powerful tool in the analysis of nonlinear partial differential equations.

As these Moser type inequalities are usually stated on the whole space or the torus
(see e.g. [Maj84] and [KMS81]), while we need them on domains (which are bounded in
at least one coordinate direction), we provide a full proof of the version we will apply
later for the convenience of the reader.

Lemma 7.19. Let T >0, J = (0,T), and n € Ny.
(i) Let v,w € L>®(J x G)NH"(J x G). We then have

0% a&wHLQ(JXG) < C<||U||L°°(J><G)||wHH"(J><G) + ||w||L°°(J><G)||UHH”(J><G))

for all a,& € N§ with |a| € {0,...,n} and |&| =n — |af.

(ii) Letn € N and v,w € WL (J x G) such that all derivatives of v and w with order
between 1 and n belong to L*(J x G). We then have

3
[0°0 0% wll2(rxc) < C IVl ey D101

Jj=0

3
T Py sy I ey
§=0

for all a, & € N§ with |a| € {1,...,n} and |&] =n+1 — |a].

(iii) Letn € N and 0 € C™(U,R®*Y). Letv e @max{n’g}(J x G) such that there exists
a compact subset Uy of U such that imv CU;. Take R > 0 with ||[v]|p~sxa) < R.
Then there is a constant C = C(0,n, R,U;) with

10%0(0)[|L2(sxcy < Cllvllgienrxa)
for all a € N§ \ {0} with |a| < n.

Proof. Due to their importance in the proof of this lemma, we recall a special case of
the Gagliardo-Nirenberg estimates. Let n € N and let u € L>°(R*) with all n-th order
derivatives in L?(R?%). Then

foY 1—1 l
10| pn /1 ey < Cllul gy > 1070l fatpa, (7.47)
BENS
|B|=n

for all @ € N} with |a] = [ and | € {1,...,n}, see |[Nir59]. Let E denote Stein’s
extension operator, see Theorem VI.3.5 in [Ste70]. Observe that the domain J x G
satisfies the minimal smoothness condition which is required for the existence of Stein’s
extension operator. For a function v € L*(J x G) N H™(J x G) we then obtain

1-1/n l/n
10°0]| Lan/1(sxcy < 0% (B0)l| ansigay < ClE0| Ly D 107 (B0)|| Yt

BENG
|B]=n

1-1l/n l/n
< Clollp ey Il oxe (7.48)

for all @ € N§ with |a| =1 and [ € {1,...,n}.
(i) The assertion is clear if n = 0, if || = 0, or if |a] = n. So assume that n > 2 and

la] € {1,...,n — 1} in the following. Employing Holder’s inequality, the Gagliardo-
Nirenberg estimate in (7.48), and Young’s inequality, we then derive

10%0 0%w|| 2wy S 100l ponsict sy 10w L2nsial ()
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1— 1—|& o
< Ol Il ey - ol Y oo I

1- \al/n(| )Ia\/n

< O([lvllzerxayllwll mnrxa)) |w| Lo (rxa [Vl En(1x @)

< (1= ) ol perxey lulln(rxa) + Slwl e e 0l oxa) )
< C(Iolralwl (e + lwllixxallellmnxa) ).

(ii) There is nothing to show if |a| = 1 or if || = n. It thus only remains to consider
n >3 and a,& € N§ with || =n+1— |a| and |a| € {2,...,n — 1}. Then there exist
k. ke {0,...,3} and o/, &’ € Njj such that & = o/ + e; and & = & + e;. Moreover,
o] € {1,...,n—2} and

&' =|a|l—1=n+1—|aj-1=n—|aj=n—(ld|+1)=n—-1—|d]
Applying (i) with parameter n — 1 to dyv and d;w, we infer
100 0%w|| L2y x ) = |0% Bv 0% Dwl| 12 sxcr)
< C(||3kv||Loo(JxG)||5;;w||Hn—1(JxG) + Ha;;wHLw(JxG)||ak®||Hn—1(JxG)>
3 3
< C(HVWHLm(ch) > oswllae-1xa) + IVewlpexe) Y Hajv|‘H”*1(J><G)>-
Jj=0 j=0

iii) Let a € with |a| < n. Since v € Guaxins X with imv C U,
iii) L Ng‘ 0 ith Si G {n,3} Jx G h u
Lemma 7.1 yields

6

aag(,u): Z Z Z C(Ot,j,ll,...,lj,")q,...,’)/j)

1<i<]al 1, ENGA\{O} 150l =1
Vi=a

j
PR 8119)(1}) H 87"’11”.
i=1

Taking the L?(J x G)-norm, we deduce

6 J
10%0(v)|| L2 (sx ) < C(0,n, R, Uy) Z Z Z HHmi%

1<5<]al ~q,.. ,WJGNE‘)\{O} li,nlj=1 i=1 L2(IxG)
Vi=o
(7.49)
as imv C Uy. Take j € {1,...,]|al}, v1,...,7; € NA\ {0} with S7_ 17 = a, and
b,....; e{l,...,6}. Setp;, = |‘ II for all ¢ € {1,...,7} and note that ZZ 12p = %

Holder’s inequality and the Gagliardo-Nirenberg estimate (7.48) thus imply

H Ha%

J J
< [T v llee: rxay = TN vl p2ioiion (xe
=1

i=1

J
1 il /| il/ |l
< T (Cllon 2 o N ) < CIIE ey 0l 1o (-
=1

L2(JxG)

Inserting this estimate into (7.49), we obtain the assertion. O

The next proposition is the key step for the improvement of the blow-up condition.
Roughly speaking, it tells us that we control the H™(R3 )-norm of a solution of (1.6)
as soon as we control its spatial Lipschitz norm. Its proof relies on the Moser type
inequalities from Lemma 7.19. They allow us to estimate products of derivatives of
the solution u - which are of the type we already encountered in Chapter 3 - by the
product of the spatial Lipschitz norm of u and a L?-based Sobolev norm. Gronwall’s
lemma and an induction process as in Chapter 3 then yield the assertion.
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Proposition 7.20. Let m € N with m > 3 and tg € R. Take functions x €
MLI(G,U) and 0 € ML (G, U). Let

0 vs(z) —wvo(x) 0 0 O
B(z) = [ —v3(x) 0 vi(z) 0 0 0],
v(x) —n(x) 0 000

where v denotes the unit outer normal vector of OG. Choose data vy € H™(G),
g € E,((-T,T) x 0G), and f € H™(-T,T) x G) for all T > 0 such that the
tuple (x, o, to, B, f,g,u0) fulfills the compatibility conditions (7.16) of order m. Let u
denote the mazimal solution of (1.6) provided by Proposition 7.16 and Remark 7.18
on (T-,T}). We set

w(T) = sup |u(t)llwr.(q)
te(t07T)

for every T € (to,T4). We further take r > 0 with

3

107 £ (to) | zrm—i-1(@) + 191l B (1o, 74y x0G) + 0]l zrm @y + 1F L rm (0.7 ) x ) < 7

J

We set T* =Ty if Ty < oo and take any T* > 0 if Ty = oo. Let wg > 0 and let Uy be
a compact subset of U.
Then there exists a constant C' = C(x, o, m,r,wo,Ur, G, T* —ty) such that

Il
<

m—1
el ((tomyx @) < C( Z 107 f (¢ I3rm-1-3(cy + w0l Frm(cy + 19115, ((t0,7)x06)
=0

+ ”fH%{m((to,T)xG))

for all T € (to, T*) which have the property that w(T) < wo and imu(t) C U, for all
t € [to, T]. The analogous result is true on (T, tp).

Proof. Without loss of generality we assume tg = 0. We further suppose that y = (1x
and 0 = (26 where (1,(2 € Fy;, 4(J x G) are time-independent and X and & belong to
C™(U,R%*%). The general case then follows as described in Remark 7.18.

Let wg > 0 and U, be a compact subset of U. If w(T') > wq or if the set {u(t, z): (t,x) €
[to, T] x G} is not contained in U; for all T' € (0,T*), there is nothing to prove. Oth-
erwise we fix 77 € (0,T%*) with w(T') < wo and imwu(t) C U for all t € [ty,T’]. Let
T € (0,7"] be arbitrary and denote (0,7) x R3 by Q. Note that w(T) < w(T") < wo
and imu(t) C U, for all t € [ty, T).

We pick a number n = n(x) > 0 such that x > 7. Consequently, there is a constant
C with

XM <

s[Q

for all £ € RS. Since the function u solves (1.6), we infer

3
0]l oo () < X (W) fll e ) + D I (W) ASCO5u oo () + X (o (w)u| L= (o)
j=1

3
C
< —_— ) 1 [eS] 5]
< n(\IfIIL @+ l9jull (@) +max|o(©)||ul L (Q))

Jj=1

< Cn 0.t (|l + 3(T) + (1)),
lullwiee ) < 10sullLoe ) +4w(T) < Cr.50(x; 0,7, wo,Un). (7.50)
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In the following we will frequently apply (7.50) without further reference.

I) In a first step we localize the problem and transform it to the half-space as in
Chapter 5. We therefore choose a covering (U;)ien,, a sequence of sets (V;)en,, and
sequences of functions (p;)ieny, (0i)iengs (04)ieng, and (w;)ien, as in Definition 5.4
for the tame uniform C™*2-boundary of G. Take the operators ®; and the localized
coefficients and data

Ay = Ay(x(u),m), A}, D'=D'(o(u), B,
fi:fi(f7u)7 gi:gi(g)7 6 uO(U‘O)

from Definition 5.7 for all i € N respectively i € Ng. We further abbreviate u’ =
®;(6;u) in the following.

Corollary 5.8 shows that the function ®;(6;u) solves the initial boundary value prob-
lem

L(A(Z)7"'7A§7DZ)U:fz(f7u)7 z€R37 te (O’T);
B'v = ¢', z € OR3, te(0,T); (7.51)
U(O) = uév S R-i,-;

for all 7 € N and the initial value problem

(7.52)
T € Rﬁ_;

(0)

{(AS,A?,A?,A;,%DOM fO>fou), xeR:,  te(0,T);

in the case ¢ = 0. Set

fi= o f - Y (g)aff@i( oo -3 3 ()85,4’ po—y

0<pB<La 7=10<8<

-y (g) 3%, (0(u))9* P

0<B<a

g =0%" — Z (Z) tr(8° B'o“~Put) (7.53)

0<B<L

for all i € Ny respectively i € N and a € N§ with |a| < m.
Lemma 3.5 and Lemma 3.4 thus show that 0%®;(6;u) solves the linear initial value
problem

{L(A@,...,Ag,pi)vz i zeRy,  te(0,T);
v

7.54
(0) = a(o’al7a2’a3)(I)i(gisx,a,G,m,j(Oa f, UO))7 HAIS Ri—v ( )

for all & € N} with |a| < m and moreover, if additionally as = 0, it solves the linear
initial boundary value problem

L(A{, ..., AL, Do = fi, zeR3, t € (0,7);
Biv =g, r€dR3,  te(0,T); (7.55)
’U(O) = 8(0’a1’aQ’O)q)i(eiSX,mG,mJ(O, f, UO))7 T € Ri
Here we already used that w; = 1 on the support of ®;0; for all i € Ny and that
0/u'(0) = ;(0;0/u(0)) = ®:(0:Sy,0,G,m5(0; f, u0))

for all j € {0,...,m} by Lemma 7.5.
IT) We will show inductively that there are constants Cy, =Cy(x, o, m, r,wo, U1, G, T*)
such that

k

\\aauilléo(m < Ck(z [9:(0:Sx,0,G,m,; (0, [, Uo)”%k—j(mi) + H9i||2Ek (JxORY)
j=0
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ey + D (A @y + 15 w) + D 175132
GENS GENG
|&|<m—1 la|<m

(7.56)

for all @ € N} with |a| =k, k € {0,...,m}, and i € N.
Applying Lemma 7.1 (i) and (iii) and exploiting Definition 5.7, we obtain a radius
R1 = Rl(X, a,r, wo,ul, G) with

lIx () w100 () + HA lwie ) < Ri(x,o,r,wo,Us, G),
llo(w)[lwr. (@) + 1D lwr.= (@) < Ralx, 0,7, wo, U, G),
X (u(0)) || poe ms) < géaXIX( )| < Ri(x,0,7m,w0,Un, G),
||U(u(0))||L°°(]R )<max|0( )| < Ri(x,0,7,w0,Us, G),

3

Z ”A;‘”Wm“vw(]Ri_) + HBiHWerl‘w(Ri) < Ry(x,0,m,w0,U1, G),
=1

¢l B o xay + G2 By (o x ey < RalX, 0,7, wo, U, G).

Set Y0 = Y0(x, 0,7, w0, U1, G) = v3.7,0(n(X), Ri(X, 0,7, w0, U1, G)) > 1, where v3.7,0
is the corresponding constant from Lemma 3.7. As u* solves (7.51), Lemma 3.7 yields

u' (|G < €277 s(upT) e~ ul (¢ )||2Lz(Ri)

< Car0(n BT (JlublZacus) + 19713, noms) )
1
+ Caz.0(n, R)ETT —|f(f,u)l72 (g
'YO Y0
< Co(Ilubl3aqgs ) + 97 1Z, (s xoms) + 17 CF ) 3oy )

where Cy = Co(x, 0,7, wo, U1, G,T*) and Cs.7,0,0 respectively Cz 7o denote the cor-
responding constants from Lemma 3.7. This inequality shows the claim (7.56) for
k=0.

Let k € {1,...,m} and assume that (7.56) has been shown for all j € {0,...,k—1}.
We first claim that there are constants Cj o = Ck o (X, 0, m,7,wo,Us, G, T*) such that

k
Haauzﬂéo(ﬂ) < Ck,a(z [193(6:Sx,0,Gm,; (05 f Uo)H?qk—j(Ri) + ||gZ||2Ek(J><8Ri)

=0
ey + Y. (15O 2y + 13l ) + D2 17510

&ENg &€eNg

|a|<m—1 |&|<m

(7.57)

for all @ € N3 with |a| = k. We show (7.57) by another induction, this time with
respect to as.

Let o € N§ with |a] = k and a3 = 0. In step I) we have seen that 9%u® solves the
initial boundary value problem (7.55). Hence, Lemma 3.7 yields

||8au\|G Q) <e?T sup [le7 0% ()”%2(]11{3)
te(0,T) +

< C370.0(n, Ry)e”™" (Ha(om’()Q’O)ataO ‘(0 )||L2(R3 +llgallE, 2o (J X ORE. ))
290T 02
+ Cs.7,0(n, R1)e™™ %Hfa”Lgo(Q)

< Caro0(, R ™ (10461800 01 F500) a-ao ity + 19713, s coms))
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+ 03.770(777 R1)62’YOT* ||fé¢||%2(ﬂ) + O(X7 a,r, (.L)(),Z/{l, G)”ulH?{m(Q)v

where we applied Lemma 3.5. We conclude that assertion (7.56) is valid for all multi-
indices a with |a] = k and a3 = 0.

Now, assume that there is a number | € {1,...,k} such that (7.57) is true for all
a € N} with |a| = k and a3 € {0,...,1—1}.

Take o € N§ with |a| = k and a3 = [. The multi-index o/ = a — ‘3 belongs to Ng
and satisfies |a’| = k—1<m—1. Due to step I), we know that 8 v’ solves the 1n1t1al
value problem (7.54) with right-hand side f!, and initial value

8(O,a1,a2,a3—1)¢)i (ei‘s’x,a,G,m,ao (07 f7 UO))

As |o/| < m — 1, the function f!, belongs to H'(Q) by Lemma 3.4, the derivative of
the higher order initial value 8(0""1’“270‘3_1)@(GiSX,mg}mﬂo (0, f,up)) to Hl(Ri) by
Lemma 7.7, and 9% u’ to G1(€2). Moreover, A} and D' are elements of W1 (Q), A}
is uniformly positive definite, A; and As belong to FI'° () and A3 to F'.° Q).

m,coeff m,coeff, T

We can therefore apply Lemma 3.11. We choose v = 1 to infer

||8aui|‘%}0(ﬂ Ha?)aa zHGO(Q ZTHvaa ZHGOl ()

< T ((Cro+ m)(Z 10,07 w Ny s + £ (O) e )

=0

+ (Cr0+ Tcl)||8(0’a1’0‘2’(13_1)‘I’i(eisx,ffﬁxm,ao O, f, uO))Hifl(Ri) +Cullfe H?{}(Q))
2
< €N ((Cro+ T 00 (X 100 ' iy + £ O ey )
j=0

+ Cull i By + (Cro + T C) [i(0iSy. 6o 0 F w0)) s o ) (7:59)
where

Ci0 = Cio(x,0,7wo, U, G) = Cs.11,1,0(n(x), Ri(x, 0, 7,w0, U1, G)),
Ci = Ci(x, 0,1 wo, U, G, T*) = C3.01,1(n(x), Ri(x, 0,1, wo, Ur, G), T™).

Inserting the induction hypothesis for \|ajaa’ui||go(m, we obtain (7.57) for all a € N§
with |a] = k and a3 = [. By induction, we therefore infer that (7.57) is valid for all
multiindices o € N} with || = k. Our first induction thus shows that (7.56) is true
for all @ € N} with |a| < m.

We now sum over all multiindices with |«| < m, which yields

> 10U Gy ) < Cm(z ®:(0:Sy.0.G.m,5 (0, f, Uo))H%{m—j(Ri) + ||gi||2Em(J><8Ri)

aeNé Jj=0
la|<m

ey + Y. (15O + 1faln@) + D Iflm).  (7:59)

aEN aENG
|&|<m—1 |&|<m

where

Om(X,O',T,UJo,ul,G,T*): Z C\a|,a(X7gamaTaw07Z/{1aGaT*)'

aeNé
la|<m

We obtain the estimate corresponding to (7.59) for i = 0 by the same methods.
III) We now turn to the estimate of [|0%ul|,, (sxq)- To that purpose we first note
that ®; maps H™(U;) continuously into Hm(V) see e.g. [Maz11] Theorem 1.1.7, and
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since all derivatives of the functions ¢; and ¥; up to order m+2 are uniformly bounded,
we also obtain

1@l viy < Cllvllmw,)  and (1@ wllamw,y < Clwllamwv,
for all v € H™(U;), w € H™(V;) and i € Ny. Employing that (6;);en, is a partition of

unity and that the covering (U;);en of OG is locally finite, we thus deduce

[ullZ,. (7xa) < C(G) Z 1012, (xa) < C(G) ZZ ”ag(eiu)||2L°°(J,Hm*j(Ui))

i=0 i=0 j=0
ZZH‘W‘P O;u) ||Loo(JHm i(Vi)) Z Z Haaul”c;o
=0 j=0 =0 ozeN4

\alﬁm

(7.60)

In view of estimate (7.59), we proceed by estimating the terms on the right-hand side
of (7.59). First we note that we infer as in Chapter 5, see (5.39), that

Z HQiH?;m(JxaRi) < C<G)||gl|2Em(J><0G)‘ (7.61)
i=1

Arguing as in (5.38), we further derive

oo m

DD 1®i(0:Sx.0.c.m. 5 0, 1, o)) | s (rs )

i=0 ;=0

@)Y D 10:Sx,0.6,m.5 (0, fr10) | Frm—s ()

=0 j=0
< C(G)D 180G (0, fru0) 13
j=0

< C(x,0,m,1,Uh, G (Zna? 0)Fm-1-3 6 + ol ()

>l @) < C@)ullrmsxe)- (7.62)
=0

It remains to estimate the terms involving fi. We start with the L?(2)-norms. So
take a multi-index o € N§ with |a| < m. Then

105 () B2y < £ (F ) gy < CLG) 6

’HW(JXG)

ZHa“ P wlliz @) < CONFEmxe) + C@ulfmx e

(7.63)

Next take 3 € N§ with 0 < 8 < a. We compute
D DI () L X e O R ()
0<p’'<pB

Fix 8’ € N§ with 0 < 8/ < 3. Since u € H™(J x () can be approximated by smooth
functions in this space, formula (7.1) extends to the composition with x(u), see also
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Theorem 1.1.7 in [Maz11]|. Exploiting once again that all derivatives of the functions
1; are uniformly bounded for all i € N, we thus obtain

107 ®:(¢)" 7 @i (X ()20’ 120 (7.65)
<@ ) > > 12i(0% GO% (1) 0,07 (B;u) || 20
a1€EN; a2€N; a3€N;

0<|a1|<|B| 0<G2|<|B—pB'| 0<|as|<|a—p]

Employing the arguments from (5.38) once again, we derive
D107 240" @i(j(u) 00" [F
i=0

<Cm,G)Y . Y > > 10MGa% X (w)90% (0i) |72 )
i=0

i=0  &;€N; a2€N} az€Ng
0<|a:1|<|B| 0<]az|<|B—p"| 0<|as|<|a—p]

<C(m, @) Y > Yo 19MGo% R (wd0% uls ). (7.66)
&1EN &2 €N a3€END

0<[a1|<|8'| 0<|G2|<[B—p'| 0<|as|<|a—p]

Fix multiindices a1, &g, and a3 as above. We distinguish several cases. First consider
the case 8’ = 5. We then have

0% G (w)0:0% ul| L2 (sxcy < COx U0 100 | L2y ¢ ) (7.67)
If |8] < m — 2, we estimate

0% 00 ull 2 s xy < 197 Gall o 100 2

< OlGullmxe10:0%ul| L2 (1<)

by Sobolev’s embedding. If |3| > m — 1, Sobolev’s embedding and Hdélder’s inequality
imply

0% ¢10,0% ul| 12(7xq) < C|lO (1|

=181 100 ull L2 (g, pr1142-m ()

< Oz, (rxaylull zmrxay-
Combining the last two estimates with (7.67), we obtain
1094 ¢10%2 X (w) 2 0% ul| L2 (s xcry < COG U [l rm (s xcry (7.68)
in the case 8’ = . Next suppose that 5’ < 8. If || < m — 2, we deduce
0% ¢10% X (W) 0% ul 12 (7x ) < €1l R (7xe) 102X (1) 0,0 ul| L2 x ) -
If &z > 0, Lemma 7.19 (ii), Lemma 7.1 (i), and Lemma 7.19 (iii) imply
10%2 X (1) 9: 0™ ul| L2 (1<)

< C(IVx@) = rxayll a1 ¢

3
+ IVl ey IONOKE ior-1-1sxc )
=0
< C(X,Jvrvw()vulvG)HUHH‘O“(JXG)' (769)

In the case &z = 0 this estimate clearly also holds. If |5’| = m — 1, we use Sobolev’s
embedding and Holder’s inequality as above to derive

1071 10% X (W) D 0% ull L2 (1<) < ClO™ il () lO* X (W) 8 0™ ull 12 (g 11
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3
< ClGlF.rxa (||5d2>2(u)3t3d3u||L2(ch;) + ) 110k0%2 X (u)2:0%ul| 125 x )

k=1

+ Z 0% x( 3k3taa3u||L2(JxG)>

The first term on the right-hand side above has already been treated in (7.69). For the
second sum and the third one if & > 0 we again apply Lemma 7.19 (ii), Lemma 7.1 (i),
and Lemma 7.19 (iii) to deduce

3 3
D 10k0% %(w)0:0% ul L2 (xcy + Y 0% %(w) kD10 ul| 125 x )
k=1 k=1
< C(IVx@ = e el grerss-191(sxc)
3
+ IVl e (e DO iot-11xc) )
j=0

S C(X707 T, w07u1, G)||u||Hm(Q)

This estimate is again clear if &s = 0. To sum up, we have shown that

Z Z Z 0% G10% X (1) D 0™ ul| L2 (s x )

&1 €N G2€N} &3 €N
0<|@1]<|B’| 0<]az|<|B—p"| 0<|&s|<[a—pB|

< C(X, a,r, OJ07Z/{1, G)Hu”Hm(Jva)

for all multiindices 0 < 8’ < 8. In view of (7.64) to (7.66) we arrive at

ZH@[B‘D u)) 0,0 U (|72 ) < Cx, 0,7, wo, Us, Al Fm (s (7.70)

=0

forallﬂENéWith0<ﬁ§aanda€NéWith la] < m.
Analogously, we can estimate

Z 10°®;(0(u))0*Pu|| 720y < Cx, 0,7, w0, Us, B[l Fm (s x) (7.71)

for all 8 € N with 0 < 8 < « and a € N} with |a| < m. Employing that the
coefficients A% have a uniform W™ (R%) bound for i € Ny and j € {1,2,3} and
arguing as above, we also obtain

co 3
DD 1107450,0% |72y < C(Ry, )l Frm sy (7.72)

i=0 j=1

Combining (7.63) and (7.70) to (7.72), we finally arrive at

Z ”féH%Z(Q) < C(X,O’, rvw()vulvG)(Hf”ilm(JxG) + HUH?LIW(JXG))' (773)
=0

Next, we want to estimate | fi]|g1(q) for o € N§ with |o] < m — 1. Fix such a
multi-index a. Let k € {0,...,3} and set a¥ = a + e;. In the proof of Lemma 3.4, to
be more precise in (3.6), we have seen that f2, = f. ,, where f ; is defined by

3
fhk = 0Ll — ®i(x(1))0,0%u" — ZakA;lajaa C— 0@ (0 (u))0%ul.

j=1
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We can therefore estimate

3
10k fill 2oy < I1fiellzai) + 10k®s (X (1) 00w | L2y + D |0k AG0;0%U" || L2

Jj=1

1061 (0 ()0 w120

The first term on the right-hand side can be estimated by (7.73), the second and the
last one by (7.70) respectively (7.71). For the remaining sum we again use that the
coeflicients A;'- have a uniform bound in W'>°(R?) before we argue as in (7.62). We
thus deduce

Z Hakfciy”%P(Q) < C(X7(77 T7w07ul7G)<||f||%Im(J><G) + ||u||?{m(J><G)>7
=0

which leads to

o0
SOl @
1=0 7

oo 3
)= D7 (170 + X2 10 Fi ) (7.74)
=0 k=0
<o U, G 2 2
<O 0,1 w0, U, G) (1 l5rm (rxay + 1ullzrm gxay )-

It remains to estimate || f§(0)[|2(as) for o € N with |a] < m — 1. Fix such a
multi-index . The definition of f% in (7.53) shows that

Fi0) = 0 F (f)0) — 3 (g)w%i(x(u))aaaW‘)(m

0<B<La

>y <g)3ﬁA§6j8”ui<0>— > <g><8%i(a<u)>aaw>(o>.

j=10<p<a 0<p<a

We have to estimate the appearing terms. As ®;(x(u)) and ®;(o(u)) belong to F, ()
by Lemma 7.1 (i) and Lemma 2.22, the derivatives 8°®;(x(u)) and 9°®;(o(u)) are
elements of G,,_|/(€2) and their time traces 9°®;(x(u))(0) and 0°®;(o(u))(0) belong
to H™IAI=1(R3) for all B € N§ with 0 < || < m — 1 and i € Ng. Moreover, since
Fi(f,u) € H™(Q) and v’ € G,,(Q) we obtain the relations

0" f'(f,u)(0) € H™IITHRY) — L2(RY),

9,077 P’ (0) € H™1IFIBI=L (RS ) <y HIB(RE),

9 Pui(0) e Hm—\al-&-lﬁ\(Ri) SN Hlﬁ‘(Ri),

for all B € N} with 8 < a. We set k = |a| < m — 1. Also employing Lemma 7.5, we
estimate

10°F*(f, w) ()| 2 ryy < max [|®i(0:0; f(O) v ry)

3
+C z; Juax [9:(950:Sx.0,6.k,0(0, f, w0)) | -1 (s ).
J:

Haté)a—ﬁui(O)HHw(Ri) <  Jhax [@:(0:Sy.0.6.k+1,1(0, f o)) || reea—r g2 )

a—L3, 1
10°= P (O)ll o1 ) < gax |S.o.c.0.0(0, fu0) | -t ws)-

In particular, the arguments from (7.64) to (7.66) allow us to estimate

Z ||aafi(fa U)(O)H%?(Ri)
i=0
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e} 3
< C(m,G) Z (012?<Xk 1050 £ (O) 131 () + Zorglag(k 1030:5x,0,¢:,k,(0, f, UO)H%{k—l(g))
=0 - j=1 -
< O(m.G)( max 1947 O3 oy + g0 155060, F o) [3rcr )
m—1
< 6 0em, 1,0,Us, G (D2 100 O) ooy + ol ) (7.75)
j=0

Since ¥ and & belong to C™(U,R6*%), Lemma 7.1 (ii) and (iii) imply that the
function 7" (u)(0) belongs to H™~BI=1+15"l(G) and
1992 X () (0| 151141671

<C 6,7)(1 S o cmi(0, 1, et )™
< Cralx,m,6,7)( +O§l§1§>§m,|” xo0,Gom (0 o) | rm—1-1 (r2))

S O(X7 07 m7 T7u1)7
HadQ&(u)(O)HHm*‘B‘*l(G) S C(X’Ua m,T, ul)
for all Gy € N§ with |as| < |8 — /| and f/,3 € N§ with 0 < <PBand0< B <
«, where we used Lemma 7.5 and Lemma 7.7. We remark that 0“:(, belongs to
Fp(J x G) if & = 0 and to H™1F'1(GQ) if &; > 0 for k' € {1,2} and &; € Nj with
|é&1] < |B'|. Since max{m — |B'|,m —|B|+ || —1} > 2 for all 0 < ' < 3, Lemma 2.22
thus yields that
10 G102 X (u)(0) | prm—151-1 ()
< OlGi Frxe 1072 X (u)(0)]

Arguing analogously for o, we arrive at

||8&1C18d2§€(u)(0)||Hm*“3‘*1 G < C(X7U,mar7ul)7
(@)
101206 (u)(0) || gm—181-1 (@) < C(x, 0,m, 7, Un)
for all &y, ap € N§ with |a1| < 8] and |as| < |8—0'], where 8/, 8 € Ng with0 < 8/ < 3

and 0 < 8 < «. Arguing as in (7.64) to (7.66) and employing Lemma 7.7, we thus
obtain

Hm*\ﬂ\*lHB’I(G) S C<X7 o,m,r, ul)

Znaﬁ@ )00 (0) |22 as

< C(Xa@mﬂ%wo?uhG) | dnax 1Sx.0,G.m,0(0, £, u0) [ Frm-1(cs)

< Clx, om0, U, G (Z 102 FO) 156 + luolEmey) - (7.76)
Analogously, one infers

Zna% DOt (0)]32a

< Clx om0, U, G (Z 102 FO) 156 + luolEmey) - (7.77)

We also note that
||85A§8j8afﬁui(0) ”LZ(R?#) < C’(’I"7 G) ||8j8“’ﬁ¢i (qu) (0) HLZ(]Ri)
<CrG) Y, [9%0a)(0)] )

&eNg
|&|<|e]—[B]+1
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< C(mv T, G) or<nf?§n HoiSX,UVG,mJ((L I UO) HH’”‘I(G) (778)

for all i+ € Ny. The combination of (7.75) to (7.78) together with Lemma 7.7 thus
yields

,_.

m—

ZHf HL2(JR3 < C(x,0,m,r,wo,Us,G ( [ O)][ - (ry) + HUO\HwL(M )
1=0
(7.79)
We now insert (7.61) to (7.62) and (7.59) into (7.60) which leads to
m—1
[ull,sxe) < Cm (Z 18] O Frm-1-16y + w0l Frm () + 1911 %, 7xa) (7.80)
7=0

+ [l (e +Z > (IO + 1) + > D 1filew)

=0  aeNg 1=0 GeNg
|o¢\<m 1 |&|<m

for a constant C/, = C! (x,0,m,r,wo, U, G,T*). Estimates (7.73), (7.74), and (7.79)
thus finally yield

||u||ém(J><G) < C:n( Z ||3] ||Hm 1-iq) T ||U0||Hm(G + ||9||E (JxOG)

+ 1 rm sy + NelEm (sxi) (7.81)

for a constant C}, = C} (x, 0, m,r,wo, U, G, T%).
Recall that the time T' € (0,7"] was arbitrary. The above estimate thus implies that

D 0% u®lize) < Y2 10%ullZ,o0.0xa)

aENg a€ENG
|a]<m la|<m
m—1
< Cru( 10 PO rm--s(6) + Ilm ey + 1913, 0000 + 1 B o.1xc)
7=0
X 1)
ozEN4
|a\<m

for all ¢ € [0,7"]. Since the maps ¢ = || fll}m (o) and t = |gl%
monotonically increasing, Gronwall’s inequality leads to

2 ((0,t)x0G) 8T

> ||aau<t>||i2<g>sc;n(2\\af 0)ll3r-1-5 ) + luolFrn e

aGNé
la|<m

+ gl 0. x00) + |\f||%,m((o,t>xc>)ecmt (7.82)

for all t € [0,7"]. Defining C,, = Cyn(x, 0, m,r,wo,Us, T*) := C! =T and taking
again a fixed time T € (0,7"], we particularly obtain

Y l%u®)lia

a€EN
\oz|<m

(Znaﬂ 0)3m-1-s6) + llwollzm ) + 1911, 0.y x0@) + 1 Im(0.ryxc) )

for all t € [0,T]. We conclude that the assertion of the proposition is valid. O
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We point out that the above proof only leads to improved estimates of the nonlinear
problem since we need to know that Ag = x(u) for the solution w.

We already mention that Proposition 7.20 in combination with Lemma 7.17 easily
implies that the spatial Lipschitz norm of the solution has to blow up if the solution
does not exist globally. However, we postpone the precise statement and the proof of
this fact to Theorem 7.23 below where we formulate a complete local wellposedness
theory also including the continuous dependance on the data. The following two results
prepare the proof of the latter.

The difficulty in the investigation of continuous dependance arises from the loss of
derivatives we experience because of the quasilinear nature of the system (1.6). By
loss of derivatives we mean that if we compare two solutions to different data and look
at the initial boundary value problem (3.2) solved by their difference, the right-hand
side is less smooth than the solutions. It is therefore crucial to overcome this loss of
regularity.

A first step in this direction is the following lemma. It is concerned with a se-
quence of linear initial boundary value problems and could have already been proven
in Chapter 4. A similar result in the full space case can be found in Lemma 4.26
in [BCD11].

We return to the half-space and consider a sequence of coefficients (A,, Dy )nen,
which is bounded in W*°(Q) and converges in L>(£2). We show that the corre-
sponding sequence of solutions (u,) of (3.2) with fixed inhomogeneity f € L2(1Q),
boundary value g € L%(J, H/2(R?)), and initial value ug € L*(R3) has a limit in
Go(©2). The key observation in the proof is that due to the boundedness of the co-
efficients in W1°°(£2), the a priori estimates from Theorem 4.13 hold uniformly in
n. Approximating f, g, and ug by smoother data (f;, g;,uo,;);jen, the corresponding
smoother solutions u/, then tend to u,, uniformly in n.

We further note that it is favourable to work on the L2-level here as we do not have
to deal with compatibility conditions in that regularity regime. Moreover, it is easy
to approximate data in L? by smoother ones which are also compatible since C2° is
dense in L2.

Lemma 7.21. Let J C R be an open and bounded interval, ty € J, and Q =
J xR3. Let n,7 > 0. Take coefficients Agn, Ay € F5,(Q), A1, Ay € ngoeH(Q),
Az € F3% oq..(Q), and Dy, D € F5(Q) for all n € N such that (Aon)n and (Dp)n

are bounded in W1>°(Q)) and converge to Ay respectively D in L>(). Pick B €
BC]?@+ (A3). Suppose that Ay, As, Az, and B are independent of time and that As

and a function M as in the definition of BC%i (A3) belong to C>(Q). We further as-

sume that there are functions G, € W4 (R3)2%2 and G% € W**°(R3.)%%6 such that
G5 BG% has Gaussian normal form. Choose data ug € L*(R3)), g € Eo(Jx9R3), and
f € L*9). Letu, denote the weak solution of the linear initial boundary value prob-
lem (3.2) with differential operator L(Aon, A1, A2, As, Dy,), inhomogeneity f, bound-
ary value g, and initial value ug for all n € N and u the weak solution of (3.2) with
differential operator L(Ay, ..., As, D), inhomogeneity f, boundary value g, and initial
value ug (see Theorem 4.13). Then (un)n converges to u in Go(Q2).

Proof. Without loss of generality we assume that J = (0,7") for some 7' > 0 and
to =0. Set AO,O = AO and DO = D. Take r > 0 with ||A07n||W1,oo(Q)’ HDnHWloo(Q) <r
for all n € Nj.

I) We first assume that ug belongs to H*(R%), g to E1(J x 0R3), f to H'(Q),
and that the tuples (0, Ao, A1, A2, A3, B, Dy, f, g,up) fulfill the linear compatibility

conditions (2.37) of first order for each n € Ny. The solutions u, and u are then
contained in G1(€2) by Theorem 4.13. The difference u,, — u further solves the linear
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initial boundary value problem

L(AO,TL7A13A27A3)DH)(UTL_u):fn) ‘TERi’ t€J7
B(u, —u) =0, zedRy, tel;
(un, — u)(0) =0, zeR3;

where f, = (Ao — Ao n)0iu+ (D — Dy,)u for all n € N. As w is an element of G1((2),
the right-hand side of the differential equation above belongs to L?(£2). Theorem 4.13
thus provides constants v = y3.7,0(n,7) and Cy = Cs.7,0(n, r) such that

[un = ullEy @) < € llun = ullg, @) < Coe® (Ao = Aon)dpu + (D = Dn)uliz q)

< 200" (|| Aon — Aoll7s (o |9¢ull?z () + 1 Dn = Dl (@ llullZ2 o))

for all n € N. Since Ay, = Ap and D,, — D in L*°(), we conclude that the functions
u, tend to u in Go(Q) as n — co.

IT) We now come to the general case where ug belongs to L?(R3.), g to Eo(J x 9R3),
and f to L?(Q). We recall that step I) of the proof of Theorem 4.13 shows that
there are sequences of initial values (ug;); in H*(R}) converging to up in L?(R3),
of boundary values (g;); in E1(J x OR3) converging to g in Ey(J x ORY), and
of inhomogeneities (f;); in H'(Q) converging to f in L?*(Q) such that the tuples
(0, Ao,n, A1, Az, A3, Dy, B, fj,gj, uo,;) fulfill the linear compatibility conditions (2.37)
of order 1 for all n,j € N.

Let the function u}, denote the weak solution of (3.2) with differential operator
L(Agn, A1, A, As, D,,), inhomogeneity f;, boundary value g;, and initial value wy j,
as well as u/ the weak solution of (3.2) with differential operator L(Aq, ..., As, D),
inhomogeneity f;, boundary value g;, and initial value ug ; for all n,j € N. These
solutions exist in G1(Q) by Theorem 4.13. Observe that u}, — u,, solves (3.2) with
differential operator L(Ag ., A1, A2, As, Dy,), inhomogeneity f; — f, boundary value
g; — ¢, and initial value wug; — ug, and u? — u solves (3.2) with differential operator
L(Ap, Ay, A, As, D), inhomogeneity f; — f, boundary value g; — g, and initial value
ug,; — up. The a priori estimate in Theorem 4.13 thus shows

luf, = wnl|Ey ) < €77 lluf, — ualls, (@) (7.83)

< Co 62AYT(H“O,J‘ - UOHQLz(Ri) +llgj — gHQEOW(JxaRi) +1f5 - f||2Lg(Q))7

o — gy ) < €Tl —ullg, @) (7.84)
< Co 62"’T<||Uo,j - uO”%ﬁ(Ri) +llgi — g||2EOW(J><B]R3) +11f5 = f||%3(9))

for all n, j € N, where v and Cy were introduced in step I).
Let € > 0. Since (f;); converges to f in L*(2), (g;); to g in Eo(J x OR3), and
(uo,;); to ug in L*(R3.), we find an index jo such that

2

€
Gw%T@%@‘ﬂﬂ;mg+WM*9@Muwm)+Wﬂ’fﬁﬂm)S@“(7%)
On the other hand, the tuple (fj,, gj,,%o0,j,) fulfills the assumptions of step I), which
therefore implies w0 — u/® in Go(£2) as n — oco. Hence, there is an index ng € N such
that ‘ 4 .
uly —u” ||y ) < 3 (7.86)
for all n > ng. Combining (7.83) to (7.86), we arrive at

l[tn — ullgo@) < lun — i llao@) + Ul = [lay@) + 170 = ullgo o)

<E4 e
-3 3 3

for all n > nyg. O
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The next lemma contains the heart of the argument for the continuous dependance
of solutions on the data. We prove that convergence of the data in H™ respectively
E,, and of the corresponding solutions of the nonlinear problem (1.6) in G,,—_1 implies
the convergence of the solutions in G,,.

The proof relies on a splitting of the highest order derivatives 9%u?, of the localized
solutions for which we have to show convergence to d%u’ in Go(£2). We write them as
a sum of two terms, where the first one converges to 9®u’ due to Lemma 7.21. The
second one can be estimated by Gronwall’s lemma with a prefactor converging to zero,
thus implying the convergence to zero of the second part. The idea of this splitting
was also used in the proof of Theorem 4.24 in [BCD11].

We further remark that we consequently overcome the loss of derivatives by the
regularization argument performed in the proof of Lemma 7.21, which is based on the
wellposedness theory for the linear initial boundary value problem (3.2), in particular
the uniqueness of solutions thereof. The initial value problem (3.17) lacks this property
so that on first sight the splitting approach seems to be applicable only to purely
tangential derivatives (that satisfy (3.2)). It is therefore a key observation that ideas
from the proof of Lemma 3.11 allow us to reduce the estimates for general derivatives
to the ones for purely tangential derivatives.

Lemma 7.22. Let J' C R be an open and bounded interval and to € J'. Let m € N
with m > 3. Take functions x € ML (G,U) and o € ML™(G,U). Set

0 vs(z) —wa(z) O
B(z) = | —v3(x) 0 vi(z) 0
va(z) —1i(x) 0 0

o O O
o O O

where v denotes the unit outer normal vector of 0G. We moreover suppose that G has a
tame uniform C™ 2-boundary with finitely many charts. Choose fn, f € H™(J' x G),
Gn, g € Ep(J' x 0G), and ug pn,uo € H™(G) for all n € N with

lluo,n — vollzrm(ay — 0, llgn — 9llEn (1 x0c) — 0, | fu — fllamrxa) — 0,

asn — 0o.

We further assume that the nonlinear initial boundary value problems (1.6) with
data (to, fn, gn, to,n) and (to, f,g,uo) have solutions u, and u on J' which belong to
Gm(J' x Q) for all n € N, that there is a compact subset Uy of U with imu(t) C Uy
for allt € J', that (up)n is bounded in G (J x G), and that (u,), converges to u in
Gm_l(J, X G)

Then the functions u, converge to u in Gp(J' x G).

Proof. Without loss of generality we assume that ¢, = 0 and that J' = (0,7”) for a
number 77 > 0. As in the proof of Proposition 7.20 we further suppose that x = (1
and o = (26 where (1,( € FS, 4(J x G) are time-independent and x and & belong
to C™(U,R6%6). The general case then follows as described in Remark 7.18. For
simplicity, we take (; = (3 = Igxs. The case of variable (; and {5 can be treated
as in Proposition 7.20. Since G has a tame uniform C™*2-boundary with finitely
many charts, we can cover it by finitely many charts in the localization procedure.
In particular, we do not have to take care that the right-hand sides of our estimates
are summable. The reduction to charts works as in Proposition 7.20 and will not
be repeated here. We thus assume that G = R} and that the coefficients are as
in Definition 5.7. In particular, there is a number 7 > 0 such that Az belongs to
Fvcnp,coeH,T(Q)‘

Let T € (0,7"], J = (0,T), and Q = J x R3..

Sobolev’s embedding yields a constant Cg, depending on the length of the interval
J’ such that

187 £.(0) — agf(O)HHm*j*l(]Rﬁ_) < Csllfn = fllgm(xrz) — 0
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as n — 0o, implying that

m—1
Z 10/ fn(0) = 0 f(O) | grm—s-1(r2 ) — 0 (7.87)
=0

as n — 0o.
We set N = NU {00}, o = U, foo = f, goo = ¢, and up oo = ug. By assumption,
(7.87), and Sobolev’s embedding there is a radius r > 0 such that

[unllG,, (7 xr2) + lunllLoe(rrxmay <7, (7.88)

m—1
> 107 fu O rm-i-1 (2 ) + w0l am @z ) + 190l £, (5 xm2 ) + L fnllm rrxmey <7
=0

(7.89)

3
Z ||Aj||Fm(J/xR1) <r (7.90)
j=1

for all n € N. As imu(t) C U, for all t € J' and (uy), converges to u in L>®(J x G)
by Sobolev’s embedding, there is a compact and connected set U; C U and an index
ng such that imw,(t) C U for all t € J' and n > ng. Without loss of generality we
assume ng = 1. Lemma 7.1 (i) then shows that x(u,) and o(u,) belong to F,,,(£2) and
that there is a radius R = R(x, o, m,r,U;) with

Ix(un)ll g, (5 xr2) + llo(un)ll £, (1 xr2) < R (7.91)
for all n € N.
By assumption, the functions u,, solve the initial boundary value problem
3
X (un)Opuy, + ZAjﬁjun + o (Un)tn = fn, reR3, telJ;
j=1
3 .
Bun:g’rh $€8R+, tEJ,
Un (0) = ug p, T € Ri;

for all n € N. Lemma 3.4 and (7.15) thus imply that the function 9%u,, solves the
linear initial value problem
{Lrﬂ}:fa,ru !EERi, teJ;

ar a0 (7.92)
U(O) = 8(0, L 3)Sx,a,]Ri,m,ao (Oa fn7u0,n)7 HAS RS 5

for all @ € N} with |a| < m and n € N. Due to Corollary 2.18 it also fulfills the linear
initial boundary value problem

L,v = fon, z€R3, teJ;
Bv = gan, zedRY, telJ; (7.93)

v(0) = 8(0""1’“2’0)5%07]1@17%% 0, frnyuom), x€ Rf’r;
for all @ € N} with a3 = 0 and |a| < m and n € N. Here we set
L,= L(X(Un), Ala A27 A37 U(Un)),

3
fam =00~ > (g) O x ()0 POy — > Y (Z) 8% 4,00 d;uy,

0<B<L J=10<B<x

3 (g) 080 (1) 0" Py,

0<B<
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Jon = 0%n — > (a> 0°Bo* P, (7.94)

0<B<ax

for all @ € N} with |a| <m and n € N.

I) Fix a multi-index o € N§ with |a| < m. Lemma 3.4 also yields that f,, is
an element of L?(Q) for all n € N. In this step we want to estimate the difference
fan — fa,00 in suitable norms for all n € N. To that purpose, we first note that

foz,n - foz,oo == aafn - 8af — Z (a> <3ﬂx(un)(8°‘7ﬂ5‘tun — 80‘7ﬁ5‘tu) (795)
0<B< B

+ (3’8x(un) — 6ﬁx(u))3a_ﬂatu + 850(un)(8a_5un — 8“"8u)

3
+ (00 (un) — %0 (u)0* Pu+ Y 0% A;(0°P0un, — aa*ﬂaju))

Jj=1

for all n € N. We first note that the proof of Lemma 3.4 shows that

3
D 1107 4;(0° P05 — 0P 0u) | L2 () < C(F) |t — | ),

J=1

3
S 10%4;0°P;un| @) < C)unll sy < Cr.T') (7.96)

j=1

for all v > 0 and n € N.
In view of Corollary 7.2, we introduce the quantity

6
Yo @, - 0,60) (un(t)) = (D, - - 00, 00) (w(t))l] oo o3
1

for all t € J’ and n € N, where §; = x, 6 = 0, and 3 = Y~ '. Employing that (u,),
converges to u in G3(f2), we deduce that (uy), converges to u also uniformly. Recall
that the functions u,, and u take values in U; for all m € N. Let Il,...,l,,, € {1,...,6}.
Then the functions 0;,, ...0;,0; are continuous and therefore uniformly continuous on
the compact set Uy for i € {1,2,3}. We conclude that 9, ...9,0;(u,) converges
uniformly to 0y, ... 8, 0;(u) on J' x R for i € {1,2,3}. In particular,

hn(t) — 0 (7.97)
for all t € J' as n — oo and -
/ R (t)dt — 0 (7.98)
as n — oo. '

We return to the task of estimating (7.95). To this aim, we observe that 9% (uy,)(s)
belongs to H™~1AI(R3) = Hm=1=UBI=1(R3 ) and 9~ F8;(u,, — u)(s) is an element of
Hlol=le=fl-1(R3 ) = HIAI=1(R?). Lemma 2.22 (v) and Lemma 7.1 (i) thus yield

167X (un) (5)8% 7 By ()| L2 ms )
< CHGﬁX(un)(S)”Hm—W(Ri)||6a7ﬂatun(5)”H\ﬁ\—l(]Ri)
< Clix(un)llp @ llunlla,. @) < Cx;m, 7, U), (7.99)

as well as

107X (un ) (5)(0* P Byun () — 0P Opu(s))ll 2as )
< Cl0° x(un)(8) || 101 g ) 10° B (5) — 0% Opu(s) | 111 (ga
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< Clix(un)llF,, @10 P Opun(s) — 3Q7B3tu(5)||H\a|—|a—m—1(R3+)

< Clumrth)(lun = ulg,, o)+ D 10%un(s) = %u(s)llaey))  (7.100)
GEN
lal=]al

for all s € J" and for all 8 € N§ with 0 < 3 < a and n € N. Analogously, we note that
9P (x(un) — x(u))(s) belongs to HI*I=IF(R3) and 9*~Fdu(s) to H™~le=AI=1(R3) =
Hm=1=(al=I8)(R3 ) for almost all s € J'. Lemma 2.22 (v) thus applies again and
shows

107 (un)(5) = 0% (u)(5))0* P Dyu(s) | 2 a3,
< C||3'BX(Un)(S) - 8BX(U)(S)||H\QI*IBI(Ri)Haa_ﬁatu(s)HHm*\ﬂfﬁ\fl(Ri)
<C Y [0%x(a)(s) = O x (W)l 2 ey Ul 6, )

BEN;
1<|BI<]a]
< C(Xamaraul) Z ||85‘un(s) - 85‘“(£)”L2(R§r) + C(X7mvrvul)5|a\mhn(8)
&EN;
0<|al<]a

< C(X’mmul)(ﬂun —ull,. @ + Z [0%un(s) — a&u(S)HLZ(Ri) + 5|a|mhn(3))
aENg
l&]=|al

(7.101)

for almost all s € J' and for all 3 € N} with 0 < 8 < a and n € N, where we used
Corollary 7.2 (i) in the penultimate estimate and §|,|,,, denotes the Kronecker delta.
Analogously, one obtains

1096 (un)(5)0° P10 (5) | 2y < Clorym, 7, 24) (7.102)
and
070 () ()0 Pun(s) = 0°Pu(s))aces
107w (5) = 0P (u) ()0 u(s) | e
< Closmrth)(lun = ulla, o+ Do 10%un(s) = 9%u(s)l L) + Saimhn(s))
Iglej\lil

(7.103)

for almost all s € J’ and for all 8 € N§ with 0 < 8 < a and n € N. In view of (7.94),
(7.95), and (7.96), we conclude

||fa,7l||L2(Q) < C(X7 g, m,T, T/a ul)a

T
o = ol = [ 1) = (o) ey s
T
< C’(X,a,m,r, Tlvul)olfn - f”%{m(Q) + ||u7l - uH2Gm,1(Q) + 5|a|m/0 hi(s)ds

T
+/ Z |0%un, (s) — 8au(s)||%2(Ri)d8) (7.104)
0 GEN
|&]=m

for all @ € N§ with 0 < |a| <m and n € N. If « is a multi-index with |a| < m — 1, we
deduce from (7.95) to (7.103) and Corollary 7.2 (ii) that

HfOLJLHGO(Q) S C(Xa O',m,T’,Ul)7
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Hfomn - fa,oo”Go(Q) < ||fn - f||G7nfl(Q) + C(Xa 07m7T7ul)||un - u||Gmf1(Q) (7105)

for all n € N.
Finally, let k € {0,...,3} and a € N} with |a| < m — 1. We recall from the proof of
Lemma 3.4 that

3
akfa,n = foz+ek,n + akX(un)ataaun + Z akféljajaaun + akg(un)aaun

Jj=1

for all n € N, see (3.4) and (3.6). From inequalities (7.96) and (7.100) to (7.103) for
& =a+ e, and 8 = e, and (7.104) we further deduce

||fa,n||H1(Q) < C(Xvavmvrv T/7u1)7
||fa,n - fa,oo”%—]l(g) < C(Xa g, m,r, T/7u1) (an - fH%Im(Q) + ||u" - quGm,l(Q)
T T
+ 5|a\m_1/0 h2 (s)ds +/O S 0%un(s) ~ aau(s)HQLg(Ri)dS) (7.106)
&€ENg

|&|=m

for all n € N. We finish this step by noting that also

”ga’” - gaaOOHQEOW(JxaRi) < C(m,r, T/)(”gn - g||2Em(J><a]R§r) + Hun - U| 2G17L71(Q)
T
+ /0 D7 10%un(s) — aau(s)l\iz(m)ds) (7.107)
&€ENg
|&l=m
for all n € N.
II) Let o € N} with |a] = m and ag = 0. We define the functions
Wo,n = a(o’al’am(})sx,a,ﬂki,m,ao (07 Jns uO,n)
for all n € N. Consider the linear initial boundary value problems
3 .
LnU:fa,ooa $€R+, tEJ,
Bv = ga,, zedR, telJ; (7.108)
U(O) = W0,00) x € Ri,
and ,
an:foc,n*fa,ooy .TGR_._, te J;
Bv = Ja,n — Ya,00y x € aRi, teJ; (7.109)
v(0) = wo,n — Wo,00, z € RY;

for all n € N. Lemma 7.7 shows that the initial value Wo,y, is an element of L? (Ri) and
Lemma 3.4 yields that f, , belongs to L?(Q) for all n € N. Moreover, the coefficients
X(un) and o(uy,) are Lipschitz and x(uy,) is symmetric and uniformly positive definite
for all n € N by Lemma 7.1 and the assumptions. Theorem 4.13 thus implies that
the problem (7.108) has a unique solution w,, in Go(?) and the problem (7.109) has a
unique solution z, in Go(f2) for every n € N.

We point out that in the case n = oo the initial boundary value problems (7.108)
and (7.93) coincide. Since the latter is solved by 0%u,, and solutions of that problem
are unique by Theorem 4.13, we conclude that

Woo = 0%Use = 0%u. (7.110)
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Furthermore, the sum w,, + 2, solves the initial boundary value problem (7.93) for all
n € N. The uniqueness assertion of Theorem 4.13 therefore gives

Wy + 2 = 0% Uy (7.111)

for all n € N.
Let 7 > 0 such that x > 7. Then x(uy) is an element of Fs, (Q) for all n € N. We
next note that (x(u,))n and (o(uy)), are bounded in W1:°°(€) since

I (n)llwro0 (@) + o (un) lwre @) < IX(un)ll 5 @) + llo(n)llF, @) < R

as noted in (7.91). Moreover, we obtain the limits

Gr(2) — 0,
(7.112)

lo(un) = o (u)ll (@) < max|o"(©)lllun — ull =) < ClosUh)llun — ullg,, @) — 0,

[X(tun) = x(u) || Lo (@) < max X (O wn — ull Lo () < C(x, U ) [[un — ul

as n — oo. Lemma 7.21 therefore tells us that
[wn = 0%ullgo(e) = [[wn — Woollge@) — 0 (7.113)

as n — o00.
Define v = y(x, o, m,r, T, U1) > 1 by

Y= '74.13,0(770()7 T, R(Xa a,m,r, ul)’ Tl)v

where 74,130 is the corresponding constant from Theorem 4.13. This lemma applied
to (7.109) then yields

HZnH%:O(Q) < €2VT||Zn||g;M(Q) (7.114)
' 1

< Oer'VT (H’wo,n - wO’OO”iz(Ri) + ||9a,n - gOCvOOH2Eo,7(J><6]R§r) + ;Hfa,n - fa,ooH%%(Q))

< 07.114(||w0,n - wo,oo”iz(R?jr) + ||ga,n - ga,oonEo(JXa]Ri) + Hfa,n — .f()é,OOHi?(Q))y

where

CO(X7 o,m,r, T/7 Z/[l) = maX{C4.13,0,0(77(X)’ T, R(X> o,m,r, ul)7 T/)J
C4.13,0 (U(X)7 T, R(Xv a,m,T, ul))}’
and Cl4.13,0,0 and Cy13,0 are the corresponding constants from Theorem 4.13. Note

that C7114 = Cr.114(x, 0, m,r, T, A3). We recall from (7.89) that we have chosen the
radius 7 in such a way that

[

e
Haffn(O)HHmfjfl(Ri) + HUO,nHHm(Ri) <r
=0

for all n € N. Lemma 7.7 thus provides a constant C7.; = C7.7(x, o, m, r,U;) such that

l|wo,n — wO,OO”L?(RLj’r)
= ||8(0’a1,O‘Q’O)Sx,a,ﬂ{i,'rn,ao (07 fn’ uO,n) - 8(0,011,@2,0)5)(707]]{1,7”’@0 (07 fv UO) “LZ(Ri)

< ||Sx,a,]Ri,m,ao (Oa fn, UO,TL) - Sx,a,Ri_,m,om (07 fa UO)”HM*QO (]Ri)

m—1
< Crr (3 107 1a(0) = & F(O) |l grm-s-1at) + o0 — woll et )
§=0
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for all n € N. Inserting this estimate together with (7.104) and (7.107) into (7.114),
we derive

m—1
||Zn||2c;0(sz) < C7-115( Z 107 £.(0) — aif(O)II%m—j—l(Ri) + [Juo,n — uO”?ﬁlm(Ri)
j=0

+ llgn — 9l 2E‘m(J><8R3_) +1fn — f||%{m(9) + llun — “Hém_l(n)>

T T
+ C7.115 / hi(s)ds + C7.115 / Z ||[~)a'u,n(s> — 8au(8)”%2(Ri)d87
0 0 sent
|&|l=m

for all n € N, where we introduce a constant C7115 = C7.115(x, 0, m,r,T',Uy). We
write a,, = al,(x,o,m,r,T',U;) for the first part of the above right-hand side. It
follows

T
lonlZ ga;+c7_115/ 3 10%un(s) = ()22 us s, (7.115)
O aent
|&|=m

for all n € N. Observe that a, converges to 0 as n — oo by our assumptions and (7.98).
Formula (7.111) and inequality (7.115) imply that

10%ur, — 6au‘|é0(ﬂ) = |lwn + 2n — aolu||2c;0(9) < 2||wn, — 8au||%¥0(ﬂ) + 2||an2GO(Q)

T
< 2||wy, — 8“u||é0(9) + 2a;, + 207.115/0 Z [[0%un(s) — 8a“(5)||2L2(Ri)ds

&ENG
|&l=m
T ~ ~
= Qq,n + C7.116/ Z Haaun(s) — 80‘u(s)”ig(R3—)d8, (7116)
0 GEN
|&|=m

for all n € N. Here we set C7.116 = C7.116(x, 0, m,r, T',U;) and note that
on 7= Ga,n (X, 0, 1 T UL = 2wy, — 0%l ) + 205, (x, 0, m, 1, T Uy ) — 0

as n — oo by (7.113).

III) We claim that for all multiindices o € N§ with |a| = m there is a sequence
(aan)n = (aan(x,o,m,r, T Ur)), and a constant C, = Cyu(x,o,m,r,T',U;) such
that

T
10%Un — 0| Gy 0y < Gan + Ca/ 7 10%un(s) — 8au(s)||2L2(Ri)ds (7.117)
0 . 4
aeNy
|&l=m
for all n € N and
Qg — 0 (7.118)

as n — o0o.

We will show this assertion by induction with respect to 3. Observe that step II)
yields that (7.117) and (7.118) are true for all & € N§ with |a| = m and ag = 0. Next
assume that there is an index | € {1,...,m} such that the assertion is true for all
a € N§ with |a| = m and a3 =1 — 1. Take o € N§ with |a| = m and a3 = [. We set
o =a—es.

At this point the key observation is that we cannot directly apply Lemma 3.11. The
reason is that this lemma was derived for a fixed differential operator and when we
apply only one such operator to a difference of solutions we experience the typical loss
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of derivatives. Therefore, we will repeat the key step of the proof of Lemma 3.11 and
apply it to the difference 9% u,, — A% u this time. We start by recalling some notation.

By the definition of F);? | (€2) respectively F” ¢ () and the assumptions there
are time independent functions p;; € F;Lpl(Q) for 1,7 € {1,2,3} such that

3
=2 Ay
1=1
for all j € {1,2,3} and an index i € {1,2,3} with |u;3] > 7 on R3. Without loss of
generality we assume that ¢ = 3. Note that there is a constant C' = C(r) such that
ksl () < C (7.119)

for all 1,5 € {1,2,3} since (7.90) is valid. We will use this estimate in the following
without further reference. We set

for all n € N as well as

2
Fn'h .- ~7Fn'6 = fa’.n — X\Un atau/un - A'a‘aalun — 0(Un aa/uru
; ; ) I+

j=1

3
=) (M X (un) VO i ( +Z/ Anikr(s

k=

—

2
Z M X un k 8k8a,un(t)a
k=1

3
=> (M W)V ) (1131 (0) +Z/ Ay (kr3)k(s)ds

k=

—

2
= (M X (tn)) (13- 060 n (1), (7.120)
k=1

where

2
An = MTOpx (tn) VO un + MT x(un)Vx(tn) ™" (fo/m — Z Ajajaa'un - a(un)aa/un)
j=1
3
+ MTVfa/,n — M7 ZVAjajaa Uy — MTVU(un)ao‘ Uy — MTU(u")V[)'l Uy,
j=1

for all n € N, cf. (3.23), (3.28), and (3.29). Recall that

6
(VAR)jx =Y OcAjih

=1

for any R®*6-valued function A and RS-valued function h. We then know from (3.30)
that

M, 050% u,, = F, (7.121)

for all n € N. We next want to estimate the difference of F,, — F in Go(Q) for all
n € N.
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To that purpose, we first note that

1 (1) 320w, — x(w)3:0° ]| o (52)

< [[OcCun) = X()20 wnll () + () wn — 00 0) (e

< [Ix(un) = X (@)l @ ltnll g, @) + X @) | (@) 100w, — 0% F0ul| g, (o)

< C(x, om, r,Un)Jun — ullg,, @) + COGUD 0¥ T0u, — 0% ull o) (7.122)

for all n € N, where we employed the Sobolev embedding theorem and Corollary 7.2 (ii)
for the first summand and (7.91) for the second summand in the last estimate. The
combination of (7.91) and the boundedness of (uy,), in G, () further yields a constant
Cp =Cp(R,r) = Cp(x,0,m,r,U;) such that

X (1n)3:0% | Gy (2) < CF (7.123)
for all n € N. Analogously, we obtain

|0 ()0 Uy — 0(u)0” ullgy (o)
S C(X,U,m,T,U1)||un - uHGm,l(Q) + C(U7ul)||8a/un — 8alu||G0(Q)
< C(x,o,m,r,Ur)|lun — ullg,,_ (@) (7.124)

for all n € N and )
o (un)0% unllay@) < CF (7.125)

for all n € N, where we increase Cr if necessary. Exploiting the estimates (7.122)
and (7.124), we infer from (7.120)

||(Fn - F)(l,...,G)HGO(Q) < ||fa’,n - fa’,oo”Go(Q) + C(X7 Uvm,raul)llun - u”Gmfl(Q)
2
+C0xoym,r Un) Y 0% T u, — 0 T gy ) (7.126)
3=0

for all n € N, where we also used that the coefficients A; are bounded, see (7.90). Note
that |o/ +ej| =m and (¢’ +e;)3 =1—1 for all j € {0,1,2}. Applying the induction
hypothesis (7.117) and also estimate (7.105), we then obtain

|(Fn — F)(I,A..,6)H%‘O(Q) <COllfn — f||?;m,1(§z) + Cllun — U||%:m,1(sz)

2 T
& & 2
+ O (tatsen+ Corte, [ 30 10%0n5) = 0%(s) g )
J=0 &EN
|&l=m
2
< Cravrll fn — f||ém,l(g) + Crao7|lun — U\|2Gm71(g) + Cr127 Zaa’+ej,n
=0

T
4 Craar [ 3 10%un(s) — 0%u(s) s ay s (7.127)
0 GENG
|&|l=m

for alln € N, where C7 197 = Cr.127(x, 0, m,r, T’ , Uy, ). Employing (7.123) and (7.125)
as well as (7.90), (7.88), and (7.91), we also deduce

1(Fn),...6)lao) < C (7.128)

for all n € N and a constant C = C(x, o, m,r,U;).
It remains to treat the seventh and eigth component of F,, — F. In order to estimate
all the appearing terms efficiently, we first prove the following auxiliary result.
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IV) Let k € No, 0; € {xji,05, (x Yji: j,l € {1,...,6}} for i € {1,...,k}, and D;
be a linear differential operator of order less or equal than 1 with bounded coefficients
on Q fori € {1,...,k+1}. Let v,,v € H(Q) for all n € N. Then

k
HHDe () () Disavn(s) |, < [T12:0: )0ty | Pt (9 22cs
k .
< C [T 10:(un)llwr. () | Disrva(s)l| 2 es )
i=1
S C(X7 g, k7T7u1)||Dk+1Un(5)”L2(R§r) (7129)

for almost all s € J and all n € N, where we employed Lemma 7.1 (i) in the last
estimate. Analogously, we derive

k
| il;[lDié)i(un)(s Dy 10n(s HD 0:(u)(5) D10(s)| .
-1
< ZHHDiQi(u)(s)(Dlel(un)( s) — Difi(u H Dibi (1) (8) Dyos10n (s )\ )
=1 =1 i=l+1
k
+ [ TT 2t Drsrvnte) = Dessv)]
k
< C(x, 0.k, Uh) Y 1 Difi(un)(s) = Dibi(w)(s)]| oo i) [ Dis1vn(5) | 22
=1
+ O, 00k, m,Un) [ Diyavn(s) — Diav(s) |2 (rs )
< C(X? g, ]41,7“,2/{1)(||un - u‘ Gm-1(9) + 53mhn(8))||Dk+1vn( )||L2(R )
+ C(X, a, k, r, U1)||Dk+1vn(s) — Dk+11}(8)”L2(Ri) (7130)

for almost all s € J and all n € N, where we used Sobolev’s embedding and Corol-
lary 7.2 (i) as well as Lemma 7.1 (i) again. We further note that the estimates (7.129)
and (7.130) are true for all s € J if v, and v additionally belong to G1(2).

V) We return to the task of estimating (F;, — F')(7,5). We start with the summand
involving A,,. Observe that each component of A,, is the sum of terms whose compo-
nents fit into the framework of step IV) with k € {0,1,2} and v, € {0% tyn, far,n} for
all n € N. By means of (7.129) and (7.130), Minkowski’s inequality, and (7.106), we
thus deduce

HZ/ (3o Vo] o <€ [ 1A s

< 0000, )10 unllis @) + | ool o) < Clxom,r T'00), (7.131)
jgin(8) = Njjioo(s) )ds
H Z/ (A(J+3)J in(8) = Aj48)ji00(5) ’
2
<O [ 1009) = Al )

2

Go(Q)

T
< C(x,o,m,, T/,Ul)(HUn —ullZ, @ +/ hi(s)ds + || farn = far ool 7 ()

/ S 0 un(s) (s)uizm)ds)

€N4
|&|=

T
< COvovm, . T t) (= ulls, @y + 1= ey + [ B2
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T
+/ Z [|[0%un(s) — 8au(s)H%2(Ri)ds) (7.132)
0 GENG
|&|l=m

for all n € N. Since u, solves (1.6), Lemma 7.5 implies that
0~ Un(o) = a(o’al’am%)‘gxya,Rivm,aé (tO’ fnvuO,n) =: wé),n

for all n € N. We can apply Lemma 7.1 (i), Corollary 7.2 (ii), and Lemma 7.7 to
deduce
1M X (1) VO 1) (0) | iy ) = 1M x(wo,0) V| £2e2 )
< C(X,T,Z/ﬁ)||a(0’a/1’a/2’aé)sx,a,Ri,m,aé||H1(R§_) < C(X7T7u1)||sx,a,R3_,m,ao”H""*“O(Ri)
S O(X,O',m,’l", Z/ll), (7133)
1M X (1) VO 1) (0) — (MTx () VO ) (0) | i)
< C()lIx(wo,m)wh n — X(uo)wh soll L2z y < Cx, 0 m,r,Un)([[un — ul

Gm-1(9)
+ ”Sx,a,Ri,m,ao (07 fn7 uo,n) - SX,U,Ri’_,m,ao (07 fv UO) ||Hm*a0 (Ri))

< Clxam, ) (llwn =l o) (7.134)

m—1
£ 3710 £4(0) = B FOl sy + w0 — ol s )
j=0

for all n € N. Employing the same arguments as in step III) once again, see (7.122)
to (7.127), we further deduce

M X ()00 | Go ) < C O, U |06 wnll o () < C(xs my ), (7.135)
M7 X ()00, — MTx ()00 |y ) (7.136)
2 T
S C”Un 7U‘|ém71(9) +OZaa/+ej,n+C/0 Z ||6aun(5) 780[“’(8)”%2(]1@3_)618
j=1 &€ENg

|&|=m

for all n € N, k € {1,2}, and a constant C = C(x, o,m,r,T", Uy, a).
Combining now (7.131), (7.133), and (7.135) respectively (7.132), (7.134), and (7.136),
we deduce

|(Fri7, Frsg)llgoo) < C, (7.137)
|(Fusr = Fr, Fuus = F)llaoten < C(llun = ull, ) + I1n = Fimay

m—1 T
+ 3 10012(0) = 05Oty + o = wollgmay + [ B (o)
j=0

2 T

+3 tuiegn + / S 10 () — 9% u(s)] 22 s ) (7.138)
J=1 0 Gend
|&|=m

for all n € N and a constant C = C(x, o, m,r,T', Uy, «). In view of (7.128) and (7.127)
we thus arrive at

[Frllao@) < C, (7.139)
1P = Fllaoe) < € (llun = uliZ,, ) + I = FIm ey
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m—1

T
+ Z ||8§fn(0) - 8gf(0)||Hm*1*j(Ri) + ||U0,n - UO||Hm(R§r) +/ hi(s)ds
j=0 0

2 T
1D U /0 3 0% (e) - (s ey Jds) (7.140)
j=0 aeNg
|&|=m

for all n € N, where C = C(x,0,m,r,T',U;,a) and where we applied Sobolev’s
embedding theorem again.

To get from (7.121) to 950 w,,, we proceed as in the proof of Lemma 3.11. We use
the matrices Gy from (3.32) and G4 from (3.37). Observe that

||G1||Loo(Q) S C and HG4HLoo(Q) S C (7.141)

for a constant C' = C(7,7). We further introduce the matrices Ga ,, by replacing the
matrix Ap in the definition of G in (3.33) by x(uy,) for all n € N. We then have

G2l ) < Clix(un)|lL=@) < C, (7.142)
G20 — G200l 2 (@) < Clix(un) — x(W)[[L= (@) < Cllun —ulla,, (@) (7.143)

for all n € N and a constant C' = C(x,7,U; ), where we used the estimate from (7.112).
Next define

Qn;jk = M??:}lMJTX(Un)M-k
for all j,k € {3,6} and n € N. Since x > 7, we obtain from (3.34) that the matrix
o= (o o)
is either positive or negative definite with
anp >Nt or a, < -nT (7.144)

for all n € N. The inverses 3,, of o, are therefore uniformly bounded and we obtain

1BnllLe= @) < C; (7.145)
1Bn = BoollLoe () < IBnllLe= (@)l = anll Lo @)l Boo | Lo (02)
< Cllx(un) = x(u)||Le @) < Cllun —ulla,,_ (@) (7.146)

for all n € N and a constant C = C(n, 7, x,r,U1). In analogy to (3.36) we now set

I 0
GS,n(66<6 ﬁ)

for all n € N. Estimates (7.145) and (7.146) yield

1G3nllLe(@) < C, (7.147)
Gs.n — G300l L (@) < Cllun —ullg,,_, (@) (7.148)

for all n € N and a constant C = C(n, 7, x,r,U;). Hence, the identity
M@g@”‘/un = G4G37nG27nG1Fn (7149)
is valid for all n € N by (3.38) and (7.121). We thus obtain

107w, — 0°ull 0y = [|M30° u — M350 ull 0
= |G4G3,1,Go,nG1 Fry — G4G3,00G2,00G1F | o ()



7.3 Local wellposedness 205

< |Gallze @) Gl L~ (@) (||G3,n = G3.00llLo @) |G2,nl Lo (@) 1P llao (@)
+[|G300l| Lo (@) |G2,n — G2,00 || Lo () [ Full o (0)
1G5 o 2@ Gl @) | = Pl

for all n € N. Inserting (7.139) to (7.143) as well as (7.147) and (7.148) into this
estimate, we arrive at

0%y, — 30‘“”2@(9)

2
< C(X,J,m,r, T/’ula a)(zaa/“l’ej,n + ”un - u| ém_l(ﬂ) + ”fn - f”%Im(Q)
j=0

m—1 ) ) T’
+ 3107 £a(0) = B FO)3pmssgas ) + o — wollm e ) + / h (s)ds
7=0

T
+ / S 0% (s) — () e ds) (7.150)
O aemt
|&l=m
for all n € N. By C, = Co(x,0,m,r,T',U;) we denote the constant on the right-hand
side of (7.150) and we set

2
Ao,n = Ca(zaa'+ej,n + [lun — “Hsz,l(J/x]RS) + o — fH%{m(J/xRi)
§=0
m—1

T/
3 1010 = 1O sy + s = ol + [ W)
=0

for all n € N. The assumptions, (7.87), (7.98), and the induction hypothesis (7.118)
then imply that aen = aan(x,0,m,r,T'U;) converges to zero as n — oo. Due
to (7.150) we conclude that (7.117) and (7.118) are true for the multi-index .

Since the multi-index o € N} with || = m and a3 = [ was arbitrary, the claims (7.117)
and (7.118) hold for all such «. By induction, we thus obtain that (7.117) and (7.118)
are true for all « € N} with |a| = m.

We define apn = amn(x,0,m,r, T, Ur) and Cy, = Cp(x, 0, m, r, T Uy ) by

am = Z Aa,n, Cm = Z Ca,

&€ENg &ENg
|&|=m |a|l=m

for all n € N. Summing (7.117) over all multiindices a € N§ with || = m, we then
get

Z ||3&Un(T) - a&U(T)”?L%Ri) < Z ||3&Un - 3&15\%0(9)

&ENG &€EN]
|&|=m |&|=m
T - ~
S Qm,n + Cm/ Z ||aaun(s) - 8au(s)”%2(R3 )dS
0o =, *
aeN,
|&|=m

for all n € N. Since T € (0,T’] was arbitrary, Gronwall’s lemma shows that

Z 10%un (T') — a&U(T)”QLz‘(Ri) < g et
&€ENg
|&|=m
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for all T' € [0,7'] and n € N. As (amn)n converges to 0 due to (7.118), we finally
arrive at

0% = 0%l it < e 0
GEN

|&|=m

as n — oo. Since |lu, — uHGmfl(J,XRi) tends to zero as n — oo, we conclude that
(un)n converges to u in Gy, (J' x R3). O

We now establish our main local wellposedness theorem. The first part, existence
and uniqueness of a solution of (1.6), is already known from Proposition 7.16. As
announced, the refined blow-up criterion follows easily from Proposition 7.20 and
Lemma 7.17. As a byproduct of the characterization of finite time blowup in terms of
the spatial Lipschitz norm - which is independent of m - we obtain that the maximal
time of existence is independent of m, i.e., the maximal H™ existence time equals
the maximal H? existence time. We point out that this result is crucial if one wants
to approximate a solution of (1.6) by smoother ones. Of course, in that context the
continuous dependance of solutions on the data is also indispensable. We give the
precise statement below.

In the following we will write By (z,r) for the ball of radius r around a point x from
a metric space M.

Theorem 7.23. Let m € N with m > 3 and to € R. Take functions x € ML (G,U)
and o € ML™(G,U). Set

0 vs(x) —wva(xr) 0 0 0O
B(z) = | —v3(z) 0 vi(z) 0 0 0},
vao(x) —11(x) 0 0 00

where v denotes the unit outer normal vector of OG. Choose data ug € H™(G),
g€ E,(-T,T) x 0G), and f € H™((—=T,T) x G) for all T > 0 such that imug CU
and the tuple (x, o,to, B, f,g,u0) fulfills the compatibility conditions (7.16) of order m.
For the mazimal existence times from Definition 7.15 we then have

T+ :T"r(m’thfagvuO) :T+(k7t0afvgvu0)7
T :T*(m7t07f7g7u0) :T*(k7t07f7g>u0)

for all k € {3,...,m}. The following assertions are true.

(i) There exists a unique maximal solution u of (1.6) which belongs to the function
space (o C7((T-, Ty), H™7(G)).
(ii) If Ty < oo, then one of the alternatives
a) the solution u leaves every compact subset of U,
b) lirnsupt/T+ IVu(t)| o (a) = oo,
is valid. The analogous result holds for T_.
(iii) Let T' € (to,Ty) and assume that G has a tame uniform C™2-boundary with

finitely many charts. Then there is a number § > 0 such that for all data f €
H™((tg,T4) X G), g € En((to, T1) x 0G), and 4y € H™(G) with

If = fllam (o, ryxe) <6 19 = gllE,. (o, 1) x06) <65 N0 = vollgm(ms) <0

and which fulfill the compatibility conditions (7.16) of order m, we have for the
mazimal existence time Ty (m, to, f,§,%0) > T'. We write (My,5,m(to,T4+),d) for
the metric space

Mxyff,m(t()vT-i-) = {(fvgaﬂo) € Hm((t07T+) X G) X Em((t()?T-i-) X G) X Hm(G)
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(x,0,to, f,g,ﬁo) is compatible of order m},
d((f1,G1,70,1), (f2, G2, 0,2)) = max{[|fy — follzrm (0.7 ) %)
191 — G2l £, (20,74 ) x0G)> 0,1 — o 2] () }-

The flow map

v BMXYU‘m(to,T_*_)((fvgau(])a(s) — Gm((t()vT/) X G)a
(f’g7a0) — u(-;f,§7ﬁ0),

is continuous, where u(-; f,§,10) denotes the mazimal H™(G)-solution of (1.6)
with inhomogeneity f, boundary value g, and initial value tg. Moreover, there is
a constant C' = C(x,o,m,r, Ty — to) such that

19 (f1, g1, 0,1) — \1/(]?2’§2aaO,Z)HGm,l((to,T’)XG) <CO|fi - f2||Hm*1((t0,T’)><G)

m—1
+C( S 108 futto) = 07 Falto) |-y + o1 — Toalliniy)  (7:151)
j=0

for all (fl,ghﬂo’l), (fz,gg,ﬁog) € B, (to, 1) ((f19,10),0). The analogous re-
sult is true for T_.

Proof. Let k € {3,...,m—1}. We have T'y = Ty (m,to, f,g,uo) < T4 (k,to, f,g,uo) by
definition. Assume now that 7'y < T (k,to, f,g,u0). Then Ty < co and the maximal
H™(G)-solution u of (1.6), which exists on (to,T}), can be extended to a H*(G)-
solution on (o, T+ (k, to, f, g, uo)) by the definition of the maximal existence times and
Lemma 7.3. In particular, the function u belongs to Gy ((to, T+) X G) so that

sup  |[u()| gr (@) < o0
te(to,Ty)

and
lim inf dist({u(t, z): © € G}, 0U) > 0. (7.152)
t ATy

Due to Sobolev’s embedding we thus obtain that also

wo = sup [lu(t)||wr.~(q) < oo.
te(to,T)

We next set T* = T, (k,to, f,g,uo) if Ty (k,to, f,g,u0) < oo and we take T* > T
otherwise. Pick a radius » > 0 such that

[

m—

Z 107 f(to) | m—i-1(cy + 191l B (o, 77y x0) + U0l (@) + [1f | (10, 7)x ) < T
3=0

Due to (7.152) and the boundedness of u there is a compact subset U; of U such that
imu(t) C U, for all t € [ty, T4 ]. Proposition 7.20 then yields

sup ||u(t)||%—l'”(G) S C7.20(X707 G,mm, wOvulvT*) ! Crz'

te(to,T4)

But by Lemma 7.17 and (7.152) we have lim; ~r, ||u(t)||Hm(Rs+) = oo and thus a
contradiction. We conclude that 1% (k,to, f,g,u0) = T4. The assertion for T_ is

proven analogously.
(i) This is just Proposition 7.16 and Remark 7.18.
(ii) Assume that 7'y < oo and that (ii) does not hold. We then have

wo = sup flu(t)||wr.eeq) < oo
te(to,Ty)
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and there is a compact subset U of U such that imu(t) C U, for all t € [ty, T4]. We
apply Proposition 7.20 with 7% = T, to deduce

Hu(t)HiIm(Ri) S O7.20(X7 ag,m,r, w07ul7 G7T+ - tO) . CTQ

for all t € (to,T4) and thus sup,c (s, 1) ||u(t)||Hm(R3+) < oo. Lemma 7.17 however

shows that lim; ~r, [|u(t)| s (q) = co. We thus obtain a contradiction.

(iii) The difficulty in assertion (iii) is to make sure that the solutions to the data in
the neighborhood we have to construct exist at least till 77. To that purpose we use
an iterative scheme that allows us to apply Theorem 7.10 with the same minimal time
step size in each iteration.

Recall that by Sobolev’s embedding there is a constant depending only on the length
of the interval [tg, T ) such that

1A Gons((to,myxG) < CsllFlm ((t0,1:)x6) (7.153)

for all f € H™((ty,Ty) x G). Fix a time T* € (T",Ty). We pick two radii 0 < r¢ <
r < 0o such that

luollzrm(ey + 1fll G sty xG) + Lf [lHm (10,74 x ) < To,

Csmrg <,

lull G ((to, 7<) < T

Moreover, there is a compact subset U; of U such that imwu(t) C U for all t € [to, T™].
Lemma 7.1 thus provides a number 7 = 7(x, o, m,r,U;) with

IX(@) | E (1o, 7y x0) F+ o) E, (10, 77)x @) ST

max{|x(u)(to)lro_ (), | Jnax 107 x(w)(to) | gm—i-1(cy} < 7,

max{lo (u)(to)llry,_, (@), max 1670 (u) (t) | -1y} < 7 (7.154)

I) Let t' € (to,T*) and (f,§,10) € My.gm(to,Ts). Assume that the solution @
of (1.6) with inhomogeneity f, boundary value §, and initial value @, exists on [to, ']
and thus belongs to G, ((to,t') x G). Pick a radius R’ and a compact subset U, of
U such that ||dllq,, (t.)xe) < R’ and imu(t),ima(t) C U, for all t € [to,t']. Set

T =T, —to. We will show that there is a constant C' = C(x, o, m,r, R',T,Z;ﬁ) such
that

1@ —ullZ,,  orxay < CUF = Flirm-1(to.eyxcy + ClT = gll g, ((to.)x06)

m—1
+ O( > 107 fto) - 0] f(to)Frm—s-1(rs) + llfio — Uo||:;{m(Ri))- (7.155)
=0

To that purpose, we apply the linear differential operator L(x(u), AS°, AS°, AS°, o(u))
to @ — u. We obtain

Lix(u), A, A5, AP, 0(u))(@ — w) = f + (x(u) — \(2)0i + (o(u) — o(@)i — f = F.
Lemma 7.1 and Lemma 2.22 show that F is an element of H™~!((tg,t') x G). Set
Yo = ’YO(Xa ag, Gv m,r, T) = ’75-6§0(7](X)7 777 T7 G) > 17

where x > 1(x) > 0 and ~5.6,0 is the corresponding constant from Thereom 5.6. This
theorem then yields

~ 2
@ — UHGM,M((tO,ﬂ)xG)
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m—2

< (Cs.6:m,0 + TC5,6;m)emCS'6*1T( DO E (o) Fm-2ms gy + 10 — wollFn— e
7=0

CSﬁm mcSGlT”FH .
HY

~ 2
Hg_g”Em—l,w((to,t')XBG)) ~ ((to,t’)XG) (7156)

for all v > o, where

Cs.6:m.0 = Cs.6:m0n(x), 7 G),  Cs.6.m = Cs.6.m(n(x), 7, T, G),
Cs.61 = Cs.61(n(x), 7, T, G)

are the corresponding constants from Theorem 5.6. We next apply Lemma 2.22 (ii)
and then Corollary 7.2 to obtain

||F||Hm L (t0,t") X C) <CO|f - fHHm L((to,t) % G)
+ CT|x (@) — X Z, oy xay 106G, (to.ryx )
+CTo(@) — o(u)|g,, 1,5 ((to,t) @&, (toryxa)
<C|f- f||Hm oy xa) T COGom R, Tth)a—ullg,, | (o) (7-157)

Let j € {0,...,m —2}. Lemma 7.1 and the definition of the M} in (7.14) then show
that

DI F(to) = 01 f(to) — 99 £ (ko) +Z( ) (Bhx () — Bx()) ()0~ i(to)

3 (1) @hotw) — olo(@y (et aten)
=0
= 0] f(to) — 0] f(t0) + (x(u0) — X(i0)) Sy,0,G.m.j+1 (to, f, o)

(Jl)(M1(t0,f,uo) M (to, f,110))Sy,0mm.j+1-1(to, f i)

Lemma 7.7 and its proof (cf. (7.18) to (7.24)) now allow us to estimate

10 F (to)|| srm—2-i(cy < 107 F(to) || zrm—1-i () (7.158)

m—1
< C(x,o,m,, R/,Lh)( Z 10} f (to) — 04 f (to) | srm—1-1(c) + [luo — 7360||Hm(<;))-
=0

Inserting (7.157) and (7.158) into (7.156), we infer that there is a constant C7 159 =
C7159(x,0,G, m,r, R, T,U) such that

@ —ullZ, . (torxc)

1. _

< 07.159(;”” =l oy xay @ F I~ f||§1;n—1((t07t,)xg) (7.159)
m—1

+ 19— g 2E,,L,m((to,t')xac) + Z 104 f(to) — aif(to)H?{mflfl(Rg) + |ltio — uOH?‘-IW(Ri))
1=0

for all 4 > 9. We next fix a number v = ~(x, 0, G, m,r, R, T,U;) with v > ~o and

Cris9% < 5. We thus arrive at

2v(t' —to)

~ 2 ~ 2
o —ulle,, |\ (to.t)xa) < € @ —ullg,, . (tot)xc)
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<227y, 1ol f - fHH “Y((to.t)x@) T 2677 Cr. 150]19 - g”E (0, x06)

+ 2627TC7.159( Z 184 F (t0) = BLf (t0) | 3m—1-1(cy + 0 — uO”%{’”(G))a
=0

i.e., estimate (7.155) is true.

IT) Recall that U is a compact subset of U such that imw(t) C U for all ¢ € [to, T*].
Pick a number « such that 2k < dist(Uy, dU). Take 7 = 7(x,0,m,T,4(m + 1)r, k)
from Theorem 7.10. There is a number N € N such that

to+(N—-1)7<T' <ty+ NT.

We set t, =t + k7 for k € {1,...,N —1}. If tg+ N7 < T*, we set ty = to+ N1;
else we choose any ty from (T’ T*).
Let 0 < §p < rg. Take (f tg) € Bty oo (to,14)((f59,u0), 60). We then have

ol zrm(a) < lluollmm(ay + llto — wollzrm () < 70 + b0 < 270 < 2r,
91 £, (to, 7y x0G) < N9l B ((to, 7y x0G) + 1T — Gl B, (0,77 x0G) < T + 0 < 27,
|l (o, 7y x ) < Nl (20, 77)x ) F L = FllEm (10,77 x ) < T0 + b0

< 20 < 2r, (7.160)
m—1
D 107 fto) |15y < Ml flGm-r (o yxc) < CsmllFllmm (0.1 0)
=0

< 2Cgmry < 2r. (7.161)

So Theorem 7.10 shows that the solution @ of (1.6) with inhomogeneity f , boundary
value g, and initial value @ at to exists on [tg,t1] and belongs to G, ((to,t1) X G).
Moreover, the proof of this theorem yields a radius R = R7.10(x, 0, m, T, 4(m+1)r, k) >
4(m+1)r, see (7.29), such that [|@]|q,, (t,t)xa) < R. We conclude that the flow map
Y maps By, . ,.(to,1,)((f,9,u0), 60) into Ba,, ((t9,t:)xc) (0, R). We further deduce from

step I) that there is a constant

C174162 = 07.162 (X) g, G7 m,r, Ta K:) = 262’}/1?6(7.159 (Xa g, G7 m,T, R(X7 ag,m, T) T, KJ)’ T)

such that

19 (f, 3 10) — W (f, 9. u0) &, ((to.tr)xc)
< Cracallf = FlEm-1((to.00yxc) T Craealld — 9, (0.7 x00)

m—1

+ C7.162( Z 197 f(to) — 8gf(t0)||%1m—j—1(mi) + [l — UOH?{m(Ri)) (7.162)
=0

for all (f,g, 1) € Bty o(to,13) (5 9,10), 60), where we denote the maximal solution
of (1.6) with data (f,§, o) by ¥(f,§, o).

Next take a sequence (fn, gn,Uon)n in Bur, , . (t0,74)((f5 95 10), d0) Which converges
to (f, g, up) in this space. Using that

3

IIC')an(to) 0] £ (to)I3m—s-1(y < Mllfa = FlGm-1(t0,75)x6)

.
Il
=3

<mCs||fn — fllam(to,riyxa) — 0 (7.163)

as n — oo, we infer that

||\Il(fnagnvu07n) - \I/(fvg,UO)HGm,l((to,tl)xG) —0
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as n — co. Lemma 7.22 thus shows that (¥(f,, gn, uo,n))n converges to ¥(f,g,up) in
Gn((to,t1) X G). We conclude that the map

\I/: BMx,a,?rL(tO;T+)((f7g? uo)? 50) — Gm((t()?tl) X G)

is continuous at (f,g,uo). In particular, there is a number 6; € (0, do] such that for
all data (f,g,%0) € B, . (t0,14)((f; 95 %0), 01) we have
||\I/(f,§,ﬂo) - \I](fvgv uO)”Gm((to,tl)XG) <,
I K
||\I](f7gau0) - \Il(fmga uO)HLOQ((tO,tl)XG) < Na
where we also employed Sobolev’s embedding for the second estimate. To sum up, we
found a radius §; > 0 such that U(f, g, o) exists on [tg, t1],

1 (£, g, o)

< |NW(f,g,10) — Y (f, g,u0)llGm((tot1)xc) + 15 95 u0) |G (to,t1) x @) < 27,
_ IN _

dlSt<1m\IJ(fagaaO)(tl)aau) >

Gm ((to ,tl) X G)

K> K,

and (7162) holds for all (f~7§a aO) € BMX,U,m(tg,TJF)((fvgvuO)a 51)
Now assume that there is an index j € {1,..., N — 1} and a number §; > 0 such
that W(f, g, o) exists on [to, t;],

1w(f,q, o) @, ((to,t,)x @) < 27,
ON —

dist(im W (f, g, @o) (), OU) > ~

K

for all ¢ € [to,t;] and (Nfag,ﬂo) € BMX,(,,,,,L(ng((f’97U0)75j)~- i
Fix such a tuple (f,§,%o). Then the tuple (x,o,t;, B, f, g, ¥(f,§,to)(t;)) fulfills
the nonlinear compatibility conditions (7.16) of order m by Lemma 7.9 and
1% (f, 3, ti0) ) | zrm iy < I¥(F, Gs o)l G ((torty) xG) < 2T,
dist(im U (£, g, 60) (t;), OU) > k.

In view of (7.161) and (7.160), Theorem 7.10 shows that the initial boundary value
problem (1.6) with inhomogeneity f, boundary value §, and initial value W(f, g, @o)(t;)
at initial time ¢; has a unique solution @ on [t;,t;41], which is bounded by R in
Gum((tj,tj41) x G). Concatenating ¥(f,§, o) and @/, we obtain a solution of (1.6)
with inhomogeneity f, boundary value g, and initial value g at initial time ¢y by
Lemma 7.13. This means that U(f, g, @g) exists on [tg,?;+1]. Uniqueness of solutions
of (1.6), i.e. Lemma 7.3, and Lemma 7.14 further yield \I/(f, s Uo)|[t; ¢ = 4/ so that

j+1]

1T(f, 3. 10) G ((to,ty1)x ) < max{ [T (f, §,T0) G ((to,t;)xG)s 1T |G ((1851)xG) }

< max{2r, R} <R.
We can therefore apply step I) again and we obtain as in (7.162) that

||\I/(f,§,110) - \I/(fagau0)||2Gm,1((to,tj+1)><G)

3 2 ~ 2
< Crae2llf = fllm—1((to,t;)xc) + Cra62lld — 9ll5,,_, ((t0.t,41)x06)
m—1

+ 07.162( Z 167 f(to) — 3gf(t0)||?{m—j—1(c) + [0 — uo||?{m(c)) (7.164)
=0

for all (f?gv ﬂo) € BMX,G,,,,L(tO,T+)((fa 9, uO)a 6]) We take again a sequence (fn;gna UO,n)
in By, . (t0,1,) ((f5 95 10), 05) converging to (f, g, uo). Combining (7.164) with (7.163),



212 7 Local wellposedness of the nonlinear system

we infer that U(f,, gn,uo,n) tends to U(f,g,up) as n — oo in Gp—1((to,tj+1) X G).
Lemma 7.22 then implies that
19 (frs gnswon) — U (f, g5 uw0)ll G ((to,t;4)xa) — 0

as n — 0o. We conclude that

Ve Bar o (to,70) (1 9510),05) = Gr((to, tj+1) X G)

is continuous at (f, g, uo). Hence, there is d;11 € (0, §;] such that

H\Ij( 7§aﬁ0) - l:[l(fvgvUO)HGm((l‘,g,tj_H)><G') <,
K

H\Il(.fagaﬂo) - \I/(fvg7uO)HL‘”((to,thrl)XG) < N

for all (f,g,ao) € Bur . n(to.1)((f, 95u0),0541), where we again used Sobolev’s em-
bedding for the second estimate. We conclude that

||\Il(f’§7a0)||Gm((t0,tj+1)XG)
S H\Il(fhgaﬂO) - \I’(fmgvuO)‘

dlSt(lHl \Il(fv ga aO)(ﬂ? 6“) >

G ((tort;4)xG) T IC(F, g5 w0) |G (to,t40) x @) < 2T

N —j—1
7]\7 K

for all t € [t07tj+1] and (.f?g7a0) € BMX,O',7TL(t01T+)((f7g’uo)’ 6jf1)'
By induction, we thus obtain a number o5 > 0 such that ¥(f, g, @) exists on [tg, t N]
and

12 (F, 3, @)l ((totw) x ) < 27
dist(im ¥(f, g, @) (t), 0U) > K
for all (f,g, o) € Bar, . (to,1:)((f59,u0), 6n). In particular,
Ty(m,to, f,§, 1) >ty > T’
for all (f, g, o) € By g (t0. 1) ((f5 95 10), On)-

Next fix two tupNIes (f1,61,%0,1) and (fg,gg,ﬂo,g) in Bar . to.m) (5 9510), 0N )-
Replacing u by U(fs, §o2,Uo,2) in step I), we deduce from (7.155) that

19 (f1, 1, T0,1) — ©(f2, G2, U02) G, (107 x )
< Clfi = follfrm-1(o. %) + Cllar = Gl ((to.7)x )

m—1
+ C( > N0 filto) = ] fa(to)ll3rm—s-1(cy + lios — 7102”?{”1(0))’
=0

where C' = C(x,0,m,r, T, k) = C7.155(x, 0, m, 21, 2, T,L{H) with
U, ={y eU: dist(y,0U) > x} N B(0,2Cscp7)

and C7.155 is the constant from (7.155). This estimate implies (7.151). Finally,
we take a sequence (fn, Gn,Uon)n 0 Bar . (to,14)((f59,u0),dn) which converges to
(fl,gl, Uo,1) in My o.m (to, T+ ). Employing Sobolev’s inequality as in (7.153) and (7.151),
we obtain that \I/(fn,gn,ﬂom) tends to \I/(fl,ghﬂo’l) in Gpo1((t0, T") x G) as n — oo.
Lemma, 7.22 therefore implies that

19 (fr, Gn> o) — V(1. 91, G0,1) |Gy (0,77 x) — 0

as n — oo. Consequently, the flow map
W: Bur,,oto 1) (F5 95u0),08) = G ((t0, T') x G)

is continuous at (fl,gl, tip,1) and thus it is continuous on By . (to,1,)((f, g, u0), 6n)-
O
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We note that also the nonlinear solution has finite propagation speed, cf. Chapter 6.

Remark 7.24. In the framework of Theorem 7.23 assume that the data vanish on a
backward light cone or outside of a forward light cone, see Theorem 6.1 respectively
Corollary 6.2 for the precise statement. Then also the solution of the nonlinear prob-
lem (1.6) vanishes on the backward respectively forward light cone. To prove this
assertion we only have to interpret the function u as the solution of the linear initial
boundary value problem (5.1) with coefficients x(u) and o(u) and apply Theorem 6.1
respectively Corollary 6.2 to it.

With the above theorem we gave a satisfying answer to the question of local well-
posedness of the quasilinear system (1.6). We now want to apply this theorem to the
physical Maxwell system (1.2). In the introduction we claimed that a solution of (1.6)
yields a solution of (1.2) if we impose additional conditions on the initial value. We
make this assertion precise in the next lemma.

Lemma 7.25. Let tg,T € R withto <T. Set J = (to,T). Assume that there exists a
solution u = (E, H) in C(J, H'(G)) N C'(J,L*(G)) of (1.6) with an inhomogeneity
f=(=J0,0), where Jg € C(J, H(G)). Suppose that there are functions

0: GxU RS op: GxU— R>*3

ago 0

such that 0,0 =: x belongs to Mﬁéd(G,L{) and o = (0 0

further assume that D and B given by

) to MLYG,U). We

(D,B)=0(z,E,H) (7.165)

belong to C(J, HY(G)) N C*(J, L?(G)). Let py € L*(G) and set J = Jog + oo(E, H).
Assume that div J belongs to C(J, L?(Q)). Set p(t) := po— ftto div J(s)ds for allt € J.
Then the following assertions hold.

(i) If div D(0) = po, then div D(t) = p(t) for allt € J.

(ii) If div B(0) = 0, then div B(t) =0 for all t € J.
(i) If Exv =0 onJ x0G and B(0)-v =0 on G, then B-v =0 on J x 0G.
Proof. Using the relations (7.165) and the fact that 9,0 = x, we compute in H!(G)

Oy divD = divo,D = div(cewl H — J) = —div J,
Oy divB =divo,B = div(—curl E) =0

on J. If div D(0) = pg, we thus obtain div D(t) = p(t) for all t € J. Analogously,
div B(0) = 0 implies div B(t) = 0 for all ¢ € J.

To prove (iii), we first note that the previous computation implies that 0;B(t)
belongs to H(div,G) for all ¢t € J. Hence, this field has a normal trace in H~/2(Q).
Using that also curl E(t) belongs to H(div,G) for all ¢ € .J, we compute

(OB -v)(t), p) 17286 x 112 (0G) = (OeB(t) - v, ) p-1/2(6)x H1/2 (86
= (—curl E(t) - v, <P>H—1/2(ac)xH1/2(aG)

= —/ div curl E(t) pdx — / curl E(t) - Vdz
G G

= — /G E(t) - curl VQOdZE + <E(t) X UV, v@)H—1/2(6G)><H1/2(6G) =0
for all t € J and ¢ € C(G). Since C(G) is dense in H'(G) and tr H'(G) =
H'Y2(0G), we deduce that 9,(B -v) = 0 on J x dG. As B(0)-v = 0 on G, we
conclude that B-v =0 on J x 0G. O
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We conclude that if the assumptions of Theorem 7.23 are satisfied and if the initial
data satisfies div.D(0) = pg, div.B(0) = 0, and B(0) - v = 0 on 0G, then the phys-
ical Maxwell system (1.2) has a unique maximal solution. The other statements of
Theorem 7.23 are also valid.

Finally, we give some examples of material laws which are covered by Theorem 7.23.
In particular, we can treat the Kerr nonlinearity as claimed in the introduction.

Ezample 7.26. We introduce the function ¢ : R¥ — RF y s |y|?"y for each n € N.
Then the derivatives

By (y) = |y|*" T, + 2nly|*"2yy” (7.166)
are positive semidefinite on R* for all n € N.

(i) Take a function ¥ € W™ (G)3*3 with ¥ > 0. Then the derivative of the
function
0: G xR SRS, (2,4,9') = (y +9(2)e3 (), y), (7.167)

with respecto to (y,y’) belongs to MLy (G, RY). We point out that 6 gives rise
to the Kerr nonlinearity, i.e.,

D=0,(z,E,H)=E+9(z)|E?E, B=H. (7.168)

(ii) Now take an arbitrary function ¥ € W™°(G)3*3. Formula (7.166) implies that
there is a radius r > 0 such that J(, 0 belongs to ML, (G, B,(0)) where B,.(0)
is a ball in R® and 6 is defined by (7.167). Hence, we can also treat the Kerr
nonlinearity (7.168) if there is no lower bound on 9.

(iii) The Kerr nonlinearity is so popular in physics as it arises as first nonlinear
approximation for the Taylor series for a general material law in which the even
powers vanish for symmetry reasons. However, also higher order approximations

are considered, cf. [BELMTWO07].

Take N € N and functions ¥; € W™>°(G)%*6 with ¢; > 0 for all i € {1,...,N}.

Set
N

0: G xR = RS, (z,y)—y+ Zﬁl(x)apgz(y)
i=1
Then 9,0 is an element of ML7, (G, R®). If we do not assume that the functions
¥; have a lower bound, we still find a radius » > 0 such that 9,0 belongs to
ML (G, B(0)) as in the case of the Kerr nonlinearity. Also variants as for the
Kerr nonlinearity (7.168), where only the dependance on the E or on the H field
is nonlinear, are possible.
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