

Numerical Study of Droplet Impact and Rebound on Hydrophobic Surface

Xuan Cai, Yanchen Wu, Martin Wörner and Bettina Frohnapfel

Karlsruhe Institute of Technology (KIT), Germany

70th Annual Meeting of the APS Division of Fluid Dynamics, November 19–21, 2017, Denver, Colorado

www.kit.edu

Outline

- Motivation
- Phase-field method
- Validation for impact and rebound of water droplet on microstructured and smooth surfaces
- Influence of impact parameters and surface wettability for Diesel-Exhaust-Fluid (DEF) droplets
- Summary and Outlook

Motivation

Impact of Diesel-Exhaust-Fluid (DEF) droplets onto tailpipe wall, for exhaust gas after-treatment in diesel engine

Phase Field Method

- Order Parameter (C) as phase indictor
 - Smooth transition from -1 to $1 \rightarrow$ diffuse interface
- C evolution governed by Cahn-Hilliard equation

 $\frac{\partial C}{\partial t} + (\mathbf{u} \cdot \nabla)C = \kappa \nabla^2 \phi(C) \qquad \phi = \frac{\lambda}{\varepsilon^2} C(C^2 - 1) - \lambda \nabla^2 C$

• Wetting boundary condition for equilibrium contact angle θ $\hat{n}_{s} \cdot \nabla C = \frac{\sqrt{2}}{2} \frac{\cos \theta_{e}}{\varepsilon} (1 - C^{2})$

$$\frac{\partial(\rho_{C}\mathbf{u})}{\partial t} + \nabla \cdot (\rho_{C}\mathbf{u} \otimes \mathbf{u}) = -\nabla p + \nabla \cdot \left[\mu_{C} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^{\mathsf{T}}\right)\right] + \mathbf{f}_{\sigma} + \rho_{C}\mathbf{g}$$

- The method was implemented in the open-source CFD code OpenFOAM (H. Marschall and X. Cai)
- D. Jacqmin, *J. Comput. Phys.* **1999**, 155: 96-127.

C = -1 $C = 1_{\theta_{e}} \uparrow_{\hat{n}}$ $C = \tanh\left(\frac{x}{\sqrt{2\xi}}\right)$ X

 Φ = chemical potential [J/m³] λ = mixing energy [J/m]

 ε = capillary thickness [m] κ = mobility [m³s/kg] or dimensionless versions: Cahn number: $Cn = \varepsilon / L$ Peclet number: $Pe_c = (8/9)^{1/2} LU\varepsilon / (\kappa \sigma)$

Outline

- Motivation
- Phase-field method
- Validation for impact and rebound of water droplet
- Influence of impact parameters and surface wettability for Diesel-Exhaust-Fluid (DEF) droplets
- Summary and Outlook

- Micro-structure \rightarrow super-hydrophobicity \rightarrow rebound
- Experiment of water droplet impacting (*D*=2.1 mm, *U*=0.61 m/s) on smooth & micro-structured PDMS (for smooth surface, equilibrium contact angle ≈ 100°)

Micro-structure \rightarrow super-hydrophobicity \rightarrow rebound

📖 V. Fink, X. Cai, A. Stroh, R. Bernard, B. Frohnapfel, H. Marschall and M. Wörner (2017), under review

Micro-structure \rightarrow super-hydrophobicity \rightarrow rebound

U. Fink, X. Cai, A. Stroh, R. Bernard, B. Frohnapfel, H. Marschall and M. Wörner (2017), under review

Micro-structure \rightarrow super-hydrophobicity \rightarrow rebound

2D Axisymmetric Simulation for smooth surface

3D Simulation for micro-structured surface 18 million cells and 800,000 CPU hours!

📖 V. Fink, X. Cai, A. Stroh, R. Bernard, B. Frohnapfel, H. Marschall and M. Wörner (2017), under review

Rebound on smooth surface

- Very large contact angle $\theta \rightarrow$ super-hydrophobicity \rightarrow rebound
- Validation against experiment Zang et al. (2013), θ = 163°

2D Axisymmetric Simulation 10,000 cells and 4 CPU hours

Time: 0.0000 s

Rebound on smooth surface

- Very large contact angle $\theta \rightarrow$ super-hydrophobicity \rightarrow rebound
- Validation against experiment Zang et al. (2013), θ = 163°

Outline

- Motivation
- Phase-field method
- Validation for impact and rebound of water droplet
- Influence of impact parameters and surface wettability for Diesel-Exhaust-Fluid (DEF) droplets
- Summary and Outlook

Diesel Exhaust Fluid (DEF) droplet onto wall

Regime maps for DEF-droplet impacting on wall

 $U - \theta$ map, D fixed as 0.07 mm

U - D map, θ fixed as 130°

Comparison with Caviezel theory

- Caviezel et al. (2008) proposed an analytical limit between deposition and rebound regime based on Weber number and contact angle
 - valid for negligible viscous dissipation

Caviezel et al. Microfluidics and Nanofluidics 2008, 5(4): 469-478

Conclusions and outlook

- The numerical code can reproduce droplet rebound on micro-structured surface and on smooth surface using very large contact angle
- The numerical code is validated for instantaneous droplet shape, spread factor and contact time
- Rebound occurrence is determined by contact angle together with impact velocity and diameter (or Weber number)
- Outlook: multiple droplet coalescence on solid surface

Acknowledgement for Financial Support

- Friedrich und Elisabeth Boysen-Stiftung
- DFG foundation, SFB/Transregio 150 "Turbulent, chemical reacting multi-phase flows near walls"

SFB/Transregio 150 Turbulente, chemisch reagierende Mehrphasenströmungen in Wandnähe