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More than 50 years ago, Intel® co-founder G. Moore predicted that 
the number of transistors in ICs will approximately double every two 
years. His statement is still valid, however an end of Moore's law is 
on the horizon. Following, new key elements to increase the 
processing performance need to be investigated. Two possible 
approaches for "More than Moore" are 3D integration methods and 
heterogeneous systems. Besides the end of Moore's law new 
challenges are arising with shrinking technology sizes. Heat 
dissipation becomes a major issue in large scaled integrated chips. 
In order to face this problem in modern multi-core architectures, the 
power dissipation of network resources needs to be reduced 
without severely affecting the communication performance. The 
combination of frequency scaling and power gating controlled by 
hardware for 3D networks on chips as well as an FPGA prototype 
are the major topics of this work. Therefore, an existing clock 
synchronous 2D network has been extended to a three-dimensional 
asynchronous network with multiple frequency regions. Also, a 
scalable and low resource approach for online power management 
is addressed. To speed up the verification task and enable early 
software development, an automated and user-friendly project 
generator tool has been developed in this work. The tool includes a 
fast and straightforward FPGA based prototyping, especially of 
huge architectures with more than 80 CPUs. Using the simulation 
and prototype, it could be shown that the static and dynamic power 
dissipation of the network can be reduced with a negligible 
performance loss.
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Abstract

More than 50 years ago, in 1965, Intel® co-founder Gordon Moore forecast the
development process of transistor technology. He predicted that the number of
transistors in integrated circuits will approximately double every two years. His
statement is still valid, however an end of Moore’s law is on the horizon. Chip
performance improvement no longer merely depends on increasing transistor
counts. With Moore’s law at an end new key elements to increase the processing
performance need to be investigated. Two possible approaches for "More than
Moore" are 3D integration methods and heterogeneous systems. Likewise, a trend
towards many-core processor architectures based on networks on chips (NoCs) have
emerged in processor development over the last decade.

Besides the end of Moore’s law, with shrinking technology sizes below 60 nm,
new challenges are arising. Heat dissipation becomes a major issue in large scaled
integrated chips. In order to face this problem in modern multi-core architectures,
the power dissipation of network resources needs to be reduced without severely
affecting the communication performance. The combination of frequency scaling
and power gating controlled by hardware for 3D networks on chips, including a
field programmable gate array (FPGA) prototype are the major topics of this work.
Therefore, an existing clock synchronous 2D network has been extended to a
three-dimensional asynchronous network with multiple frequency regions. Also,
a scalable and low resource approach for online power management has been
developed.

Verification of new hardware is the most time consuming task of the development
process. To speed up this task and enable early software development, an auto-
mated and user-friendly project generator tool has been developed in this work.
A graphical user interface to compile the entire tool flow from architecture and pa-
rameter definition to simulation, synthesis, and test is part of this tool. In addition,
the size of the architecture poses a particular challenge for prototyping. Previous
work has failed to address a fast and straightforward prototyping, especially of
architectures with more than 50 processor cores. This work includes design space
explorations and FPGA based prototypes of different 3D NoCs implementations
with more than 80 CPUs. Using the simulation and prototype, it could be shown
that the static and dynamic power dissipation of the network can be reduced with
a negligible performance loss.
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Zusammenfassung

Vor mehr als 50 Jahren stellte Intel® Mitbegründer Gordon Moore eine Prognose
zum Entwicklungsprozess der Transistortechnologie auf. Er prognostizierte, dass
sich die Zahl der Transistoren in integrierten Schaltungen alle zwei Jahre verdop-
peln wird. Seine Aussage ist immer noch gültig, aber ein Ende von Moores Gesetz
ist in Sicht. Mit dem Ende von Moore’s Gesetz müssen neue Aspekte untersucht
werden, um weiterhin die Leistung von integrierten Schaltungen zu steigern.
Zwei mögliche Ansätze für "More than Moore” sind 3D-Integrationsverfahren
und heterogene Systeme. Gleichzeitig entwickelt sich ein Trend hin zu Multi-Core
Prozessoren, basierend auf Networks on chips (NoCs).
Neben dem Ende des Mooreschen Gesetzes ergeben sich bei immer kleiner wer-
denden Technologiegrößen, vor allem jenseits der 60 nm, neue Herausforderun-
gen. Eine Schwierigkeit ist die Wärmeableitung in großskalierten integrierten
Schaltkreisen und die daraus resultierende Überhitzung des Chips. Um diesem
Problem in modernen Multi-Core Architekturen zu begegnen, muss auch die
Verlustleistung der Netzwerkressourcen stark reduziert werden. Diese Arbeit
umfasst eine durch Hardware gesteuerte Kombination aus Frequenzskalierung
und Power Gating für 3D On-Chip Netzwerke, einschließlich eines FPGA Proto-
typen. Dafür wurde ein Takt-synchrones 2D Netzwerk auf ein dreidimensionales
asynchrones Netzwerk mit mehreren Frequenzbereichen erweitert. Zusätzlich
wurde ein skalierbares Online-Power-Management System mit geringem Res-
sourcenaufwand entwickelt.
Die Verifikation neuer Hardwarekomponenten ist einer der zeitaufwendigsten
Schritte im Entwicklungsprozess hochintegrierter digitaler Schaltkreise. Um die-
se Aufgabe zu beschleunigen und um eine parallele Softwareentwicklung zu
ermöglichen, wurde im Rahmen dieser Arbeit ein automatisiertes und benut-
zerfreundliches Tool für den Entwurf neuer Hardware Projekte entwickelt. Eine
grafische Benutzeroberfläche zum Erstellen des gesamten Designablaufs, vom
Erstellen der Architektur, Parameter Deklaration, Simulation, Synthese und Test
ist Teil dieses Werkzeugs. Zudem stellt die Größe der Architektur für die Erstel-
lung eines Prototypen eine besondere Herausforderung dar. Frühere Arbeiten
haben es versäumt, eine schnelles und unkompliziertes Prototyping, insbeson-
dere von Architekturen mit mehr als 50 Prozessorkernen, zu realisieren. Diese
Arbeit umfasst eine Design Space Exploration und FPGA-basierte Prototypen von
verschiedenen 3D-NoC Implementierungen mit mehr als 80 Prozessoren.
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1 Introduction

The fundamental goal in processor development is the maximization of process-
ing performance. This can be achieved for example by increasing transistor counts
and by higher frequencies. Subsequent of Moore’s law [74] transistor count of
integrated circuits approximately doubles every two years.1 Despite the fact
that this statement is more than 50 years old, it is still valid. The expansion
of transistors integrated into one die can be demonstrated by the development
of Intel® processor progression, see figure 1.1. Frequency increase however is
limited due to physical conditions and following new opportunities have been
explored. The most important one in recent years has been the introduction of
multi-core processors with two or more independent processing units integrated
into a single chip.
To explore further opportunities in processor development, the International Tech-
nology Roadmap for Semiconductors (ITRS) presents the industry-wide consensus
on the estimate of the industry’s research and development needs up to a 15-year
horizon. It provides a guide to the efforts of companies and research institutions
focusing of semiconductors. The report forecasts an end of Moore’s law within
the next years [105], since technology cannot further be scaled down. Following
the statement that performance can be increased by increasing the transistor count
is not valid anymore. However, the report also already presents a solution for
further performance increase besides Moore’s law, called "More than Moore".
In modern processor chips, performance depends on other factors besides tran-
sistor count. The ITRS focus on five long-term goals to face problems beyond
Moore’s law. (1) Implementation of advanced muti-gate structures also beyond
complementary metal-oxide-semiconductor (CMOS); (2) implementation of new mem-
ory structures, with on chip memory sizes in the terabyte range; (3) reliability;
(4) power scaling; and (5) integration for functional diversity which is also re-
ferred to as 3D integration. For more information see the latest ITRS report from
2013 [53].

1Depending on the reference, the time varies between 18 month and two years.
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Figure 1.1: Transistor scaling on the basis of Intel® processor progression [1]. Ac-
cording to Moore’s law the transistor count is doubled approximately
every two years.

1.1 Motivation

The fundamental goal is to be able to continue the increase of overall system
performance. Since there is an end of higher integration density and higher
frequencies in sight, other parameters need to be considered for performance
enhancement. Optimized parallel task execution is one possibility described by
Intel® [48]. Other eligible parameters are for example new gate structures and 3D
integration techniques. These parameters are considered as long term challenges
by the ITRS report [53]. However, increasing integration and hence the higher
device density also brings limitations with it. Major problems are power and
thermal issues where standard cooling techniques are no longer sufficient. CPU
power density increased almost exponentially over the last decades , but flattened
with the introduction of multi-core processors [83]. Current CPU power density
amounts to approximately 100 W/cm2 (see figure 1.2). The high power density
leads to high chip temperatures in direct proportion. With higher temperature
values system reliability decreases or results in unrepairable damage. The de-
velopment of energy-efficient circuits and power saving techniques therefore is
indispensable.

With the introduction of tera-scale computers comprising hundreds of cores, sim-
ple bus based systems to connect the cores are no longer sufficient. To reduce

2
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1.2 Contribution

Figure 1.2: Performance enhancement by increasing the frequency ended in 2005.
However, Moore’s law for transistor count (red line) still continues
[23].

communication latency an efficient and high-performance communication in-
frastructure is mandatory. Networks on chips represent a promising solution
for future multi-core systems with hundreds of cores. To meet performance
and power constraints of novel multi-core architectures the development of the
methods must be extended by the network layer.

1.2 Contribution

Silicon integrated circuits characterized the electronic development of the 21st

century. Gordon Moore predicted in 1965 that the transistor count per integrated
circuit will double approximately every two years. Concurrent to the growing
number of transistors, the lithography process scales linearly, shrinking down
to 5 nm node in the latest technologies. However, linear technology scaling will
soon become impossible, due to physical restrictions. Three dimensional chip
design is the emerging technology to continue the increase of performance of
processors, laptops, mobile phones, and other electronics. At the same time, bus

3
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Figure 1.3: Extension and optimization of 3D networks on chip.

based multi-core designs, have been replaced by network on chips.
3D designs face challenges in both manufacturing technology and physical de-
sign. This work focuses on the physical design challenges, including vertical
interconnects and power management. In addition, special emphasis is placed on
testability of these new designs.

The basic router design and other network components, like the network adapter
have been designed as part of the work of the InvasIC project [7], Heisswolf
[45], and Zaib [114]. The design has been developed to be scalable, but with
growing architecture sizes new challenges are arising, such as excessive power
dissipation and associated heat generation. Also, new architectures have mainly
been verified using hardware description language (HDL) simulations, without
testing the associated software.

This work focuses on the extension of the basic router designs so that it can be ap-
plied to the latest technology updates. In order to verify the novel developments
a multi-FPGA prototype including a tool for straightforward architecture design
and verification is part of this work. Parallel software development and software
tests on real hardware become possible.

The extension of chip technology to a third dimension generates new network
topology opportunities. This work includes a design space exploration of 3D
networks on chips with varying parameter setup. The 3D extension of the network
router includes among others pin multiplexing to face problems with restricted
cross layer connections, while ensuring that the network performance is not
affected. Also, the architecture has been divided into multiple clock regions. The
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1.3 Outline

clock domain crossing is integrated in the router input buffers to keep the resource
overhead as small as possible.

Since future high integrated chips will struggle with high power dissipation, a
power management unit for the network resources has been developed. The
power management includes fine and coarse grained power gating techniques as
well as frequency scaling opportunities to optimize power dissipation. One of the
major aspects of effective power management is to keep the resource overhead of
the controller to a minimum. Otherwise, it would hardly be possible to reduce the
overall power consumption of the design if the controller itself consumes much
power. To keep the design scalable one power management unit is integrated into
each router.

For system evaluation and analysis of the effects of the extensions, an FPGA based
prototype has been created. To provide prototypes with over 50 processor cores, a
prototyping platform with multiple FPGAs has been used. Thereby, the design
partitioning across the FPGAs presents the major difficulty. An automated tool
flow enables fast and easy compilation of designs with varying parameters. This
provides the opportunity for design space explorations and enhanced debugging
and tests. To cope with the limited number of debug interfaces a transactor based
debugging interface has been introduced.
The project generator tool offers a complete automated tool flow supported by
a graphical user interface. Thus, even developers without extensive hardware
knowledge can use the tool to build custom designs. The tool automatically builds
a simulation and a design for an FPGA based prototype.

1.3 Outline

This work is organized as follows. Chapter 2 reviews the background and gives
an overview of the fundamentals discussed in this work. Section 2.1 describes
new technologies to cope with the increasing number of components integrated
into one chip and the associated increasing transistor count. One of the latest
trends in this domain are multidimensional chips. On the one hand they can solve
the steadily growing demand of transistors per chip, but on the other hand new
challenges are arising. Section 2.2 describes the basics of multidimensional chips
and the resulting issues, such as connections between silicon layers and thermal
problem caused by power dissipation. The fundamentals of power models are
introduced in the following section 2.3.

Basics of the integration of multiple components into a single chip are described
in section 2.4. Networks on chips are introduced in section 2.5. At first basic
definitions of on chip networks are described, followed by evaluation criteria.

5
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This section concludes with an overview of existing NoC based multi-processor
systems. The context of this work, invasive computing, is presented in section 2.6.
Enclosed in this section is the description of the hardware layer of the NoC based
multi-core architecture as well as a short description of the software layer. The
last section in this chapter generally describes hardware development of digital
circuits and the hardware description languages used in this work (see section
2.7.1).

The essential part of this work are adaptive 3D on chip networks, power manage-
ment as well as process automation and debugging (see figure 1.3). The state of
the art is subdivided into three sections (3.2, 4.2, and 5.2) according to the content
of chapter three to five.

Chapter 3 introduces three-dimensional networks on chips (NoCs) comparing dif-
ferent topologies in section 3.1. Section 3.2 summarizes the state of the art of
multi-dimensional network technology. The implementation of a heterogeneous
bandwidth router design is described in section 3.3. It includes a concept to
cope with restricted number of through-silicon vias (TSV). The design includes a
clock domain crossing, so that additional synchronization between the chip layers
gets redundant. Section 3.4 evaluates the 3D NoC concept in terms of resource
consumption and performance gain.

Power optimization methods for on chip networks are presented in chapter
4. Section 4.2 summarizes the state of the art of on chip power optimization.
The main part of this chapter illustrates the development of a hardware power
management controller, introduced in section 4.3. Furthermore, results are given
in section 4.5.

Chapter 5 pictures the hardware development process. The first section in this
chapter gives a general overview of system development life cycles and introduces
agile methods for hardware development. The succeeding section summarizes
the state of the art. The proposed prototyping strategy is illustrated in section
5.3 (simulation) and in section 5.4 (FPGA prototype). Special emphasis is placed
on the extension of debug interfaces which is realized by using transactor based
interfaces. The system validation and testing concept is described in section
5.5. A user friendly tool for automated design generation, synthesis, and test is
introduced in section 5.6.

Finally, this work is concluded in chapter 6. It also gives a brief outlook on future
work in section 6.2.

6



22 Fundamentals

This chapter gives a general introduction to system on chip (SoC) designs and
networks on chips (NoCs) including a listing of recent NoC realizations. The focus
is on the invasive multi-processor architecture which builds the basis of the
following extensions and optimization technologies. Also, this chapter outlines
the challenge one is facing in current very large scale integrated (VLSI) designs.

2.1 More than Moore

Moore’s law describes the continuing shrinking of physical feature sizes of chips
to reduce cost and especially to improve performance. With technology sizes
around 2 nm, the distance between structural elements only measures 10 atoms.
At that size electron behavior is not stable anymore due to quantum uncertainties.
The production of reliable devices is indispensable and consequently comes to an
end. However, beyond the shrinking of feature sizes, there are other possibilities
to improve performance which are then outlined as More than Moore.
The concept of functional diversification addresses among others heterogeneous
integration of separately manufactured components into one die. These system in
package (SiP) offer enhanced performance beyond the scaling following to Moore’s
law.

Higher integration levels, functional density benefits, and power management
are the main roadmap aspects. The trade-off between performance increase and
power reduction thereby plays an important role [12, 105].

2.2 Multi-Layer Chip Technology

Following Moore’s law to increase the amount of transistors per unit area, bare or
packaged chips are stacked together in vertical direction. The vertical stacking of
chips is especially valuable in space constrained environments like cell phones,
since it reduces the dimension of the attached printed circuit board (PCB).
Another advantage of multi-layer chips designs, several different technology
layers can be combined, while in two-dimensional chips the complete layer has

7
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Figure 2.1: Four versions of multi-chip system integration.

to be processed in one technology. However, there are different technologies
optimized for memory, low-power or for high speed processing. Hence, single
chip layer designs are specialized for one aspect only. On the other hand, in
three-dimensional designs the optimal process technology can be chosen for each
design module, separated into multiple layers. Following designs with huge
memory combined with low-power processing units are possible.
Figure 2.1 shows four different realizations of multi-chip designs. The most sim-
ple design with multiple chips are PCBs where different integrated circuits are
soldered onto one board (see figure 2.1a). In this multi-chip design, the integrated
circuits are separated from each other building multiple packages.
If multiple chips are integrated into one package format, they are called system in
package (SiP). Depending on the composition of the chip layers and the wiring,
different versions of SiP can be built. A Multi-Chip Package (MCP) contains two
or more chips, combined into one package. These chips are either located side
by side on one substrate or they can also be stacked on top of each other. Each
chip is wire bonded to the substrate which is attached to the PCB. An example
implementation is shown in figure 2.1c.
Compared to the MCP design shown in figure 2.1c, the SiP shown in figure 2.1b
has a different chip connection type. In figure 2.1b, the bottom chip is connected
via flip chip solder bump connections while the upper chip is wire connected.
The fourth version of multi-chip designs is shown in figure 2.1d where the dif-
ferent chips are connected through through-silicon vias (TSV) (green lines in the
figure). A detailed description of TSV technology is given in the following section.
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2.2 Multi-Layer Chip Technology

2.2.1 Through-Silicon Via (TSV)

Stacked chips can be connected vertically through short interconnects, called
through-silicon vias (TSV). The number of TSV depends on the chip dimensions
and the technology. The pitch size of TSV is in the micro meter range [27], while
the pitch size of on chip connections is one dimension smaller [79]. Hence, the
amount of TSV in a given chip region is limited and often the bottleneck of 3D
chip designs. The amount of TSV per die cannot be directly calculated by dividing
the die area through the TSV area, since there must be a gap between two TSV.
Figure 2.2 illustrates the dimensional difference between a TSV and transistors.
Electrical characteristics of TSV such as delay, resistance, capacitance, and induc-
tance are important for the design of 3D ICs. In order to analyze the electrical
behavior of 3D designs, a model of the design is necessary. Compact models for
physical TSV constraints are presented in [60, 108]. Especially if the TSV density
rises, capacitive coupling to neighboring TSV is possible.

If a multi-processor design, connected through a network, is partitioned across
several chip layers, the partitioning is usually done at the router links. However,
still there are more connections required than can be built up in TSV connections.
The partitioning and handling of restricted vertical connections hence poses a
challenge to new implementations of multi-layer designs. There are several
solutions to cope with limited inter layer connections described in literature. For
example only a portion of routers are connected across the chip layers [103] or
the bandwidth of each router link is reduced. However, in both cases it results in
a larger average packet latency.

Figure 2.2: Cross sections of a TSV and a Fin Field Effect Transistor (FinFET) device
at close proximity. The FinFET device has 40 nm height and 20 nm
width while the TSV diameter (5 µm) is greater by a factor of 100 [42].
Copyright © 2012, IEEE.
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2.2.2 Heat Distribution

Besides restricted TSVs, the heat distribution of modern high integrated designs
poses a challenge. The electric power consumed by the chip is converted into
thermal energy. To prevent overheating, the generated heat needs to be spread.
In single layer designs, the cooling system is usually directly connected to the
chip substrate and as a result the thermal energy can be easily dissipated. In
three-dimensional chip designs, layers in the middle of the chip are no longer
directly connected to the cooling system since the space between two layers is
usually not sufficient to insert cooling mechanisms in between. Hence, stacking
multiple dies on top of each other results in a higher power generated per unit
surface area. Thus, thermal management is strongly needed in 3D designs.
The maximum junction temperature of a stacked chip varies with the number of
chips stacked on top of each other in the package. Lau et. al. [65] analyzes the
junction temperature and thermal resistance of 3D stacking. With a maximum
temperature of 85 ◦C, the maximum number of stacked chips is seven if the power
is dissipated uniformly over the whole chip. The gap between a pair of stacked
chips and the chip thickness play an important role for the thermal performance.

2.3 Power model fundamentals

This section shortly presents the fundamentals of power consumption of inte-
grated circuits.

2.3.1 Definitions

The power consumption of CMOS circuits can be divided into two parts, static and
dynamic power. First, static power is dissipated in the absence of cell switching
activity. In some references the static power is refereed to as leakage power. The
second part of overall power consumption, dynamic power, is caused mainly by
switching activities.

Psystem = Pstatic + Pdynamic

= Pstatic + Pinternal + Pswitch
(2.1)

Figure 2.3 shows a CMOS inverter circuit, including the different currents which
flow in this elementary circuit.
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2.3.1.1 Static power

The leakage power of a chip is calculated by adding the leakage power dissipation
of all cells. Hence, the static power depends on the number of cells per chip as well
as the library which is used to design the chip. The static power is independent
of the circuit’s activity. The static power dissipation is mainly caused by source-
to-drain subthreshold leakage (Ileak).
A smaller part is contributed by current leaking between the diffusion layers
and the substrate. For this reason static power dissipation is often called leakage
power. Equation 2.2 presents the calculation of the static power. The cell leakage
power PCell leakage i is specified in the data-sheet of the particular standard cell
library. The leakage power increases as thickness of gates reduces. The static (or
leakage) power is expressed in equation 2.2.

PCell leakage i = Vdd ∗ Ileak

PLeakage total = ∑
Number of cells

PCell leakage i
(2.2)

On the occasion of shrinking transistor sizes, different types of problems can be
identified, all causing increasing static power dissipation. The leakage current
Ileak depends exponentially on the difference between the gate-source voltage VGS

and the threshold voltage VT of a logic cell. Hence, if system power supply voltage
is scaled down to limit the dynamic power dissipation, the leakage power grows
exponentially. Accordingly, with shrinking technology sizes and hence shrinking
threshold voltage VT , the static power gains an increasing share of the total
system power Psystem. Also, the amount of gate leakage increases dramatically
with register sizes below 65 nm.

The leakage power of a design can be calculated using tools such as Synopsys®

PowerCompiler. These tools can also calculate the dynamic power consumption
for given runtime scenarios. Section 4.1.1 describes the calculation of dynamic
power which was applied in this work.

2.3.1.2 Dynamic power

The dynamic power is composed of the sum of switching power and internal
power and is dissipated when the circuit is active.
Every logic transition dissipates energy when switching between zero and one
states. The following equation describes the energy dissipated per transition with
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CL as the load capacitance. The load capacitance corresponds to the loads driven
by the outputs of the logic gates and depends on the type and length of the wires.

EC =
1
2

CV2
dd (2.3)

The internal power dissipation is caused by short circuit current when both the
NMOS and PMOS are gating and there is a direct path between Vdd and GND.
This occurs during switching from 1 to 0 and from 0 to 1. The internal power is
defined in equation 2.4. As the system clock frequency increases consequently,
short circuit power dissipation increases in equal measure.

Pinternal = V2
dd ∗ ISC ∗ f (2.4)

The dynamic power of a gate or a connection line which is dissipated during
charging or discharging is defined in equation 2.5. Often this is also called the
transient power consumption.

Pswitch = α ∗ Cpd ∗ V2
dd ∗ f (2.5)

With:

α Average number of 0 to 1 transitions in one clock cycle (referred to as
switching activity).

Cpd Dynamic power dissipation capacitance
Vdd Power supply voltage
f Clock frequency
ISC Short circuit current

The internal energy Eint and the load capacitance CL of each cell are given in
the library data-sheet. The switching activity can be determined from design
simulations. If no simulation is available, the switching activity is set to one
signal switch every ten clock cycles. Simulation tools such as ModelSim® are
used to generate the switching activity information of the design, in the format
of Switching Activity Information Format (SAIF) files. The simulation testbench
thereby specifies the design behavior.
In addition to register-transfer level (RTL) simulation, gate-level simulation can
be used to generate power consumption information. Supplemental, technology
library information is integrated into the simulation process.
The PowerCompiler by Synopsys® tool flow can be used for a design space explo-
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N - device

P - device
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ISC
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Figure 2.3: Static CMOS inverter.

ration of different architecture settings. For easy reuse the tool flow is written
down in a script file.

The goal in low power designs is to reduce the consumed power by limiting the
switching energy. This can be achieved by one of the following four options.

1. Reduce the number of clock transitions (clock gating) –> Only possible if
components are not used.

2. Reduce Vdd –> This will also limit the clock speed and hence reduce the
performance.

3. Reduce the number of circuits –> However, less transistors lower the per-
formance.

4. Reduce node capacitance –> One reason why processes are scaled down.
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2.3.1.3 CMOS inverter

Figure 2.3 shows the circuit diagram of a CMOS inverter. With the help of this
example, the power dissipation of integrated circuits can be exemplary stated,
since the CMOS inverter is a nucleus part of all digital designs. The behavior of
all other gates can be deducted from the results given by the inverter.
A detailed description of integrated circuit designs and its power consumption
can be found in [86, 92].

2.3.1.4 Wake-up Latency

After electric devices are power gated and switched on again, they need some
time after wake-up until they are fully functional again. This time is defined as
wake-up latency. The wake-up latency depends on the power gating technology
and on the depth of the sleep state of the gates. One possibility to power gate
CMOS circuits is the insertion of sleep transistors. Tovinakere et al. [99, 100]
describe in their work a model to estimate the wake-up latency for circuits power
gated with sleep transistors. It that case a PMOS sleep transistor is inserted
between the supply voltage (Vdd) and the node of the circuit where the supply
voltage would usually be connected. Hence, the wake-up time is equivalent to the
switching time of a PMOS transistor. Depending on the technology and transistor
size, the wake-up time varies between 40 ns and 0.26 ns. However, the sleep
transistors are larger than the rest of the circuit since they need to handle the
required amount of switching current. If the power gating is part of the power
distribution network instead of being part of the standard cell, the switching time
will be higher.

2.4 Systems on Chip

Systems on chips (SoCs) are devices which comprise several parts on one chip,
instead of distributing the parts across a PCB. Components which are integrated
into a single die are for example CPUs including embedded software, memory,
and peripherals. SoCs are designed for specific purposes, same as application-
specific integrated circuit (ASIC) designs. Since ASIC designs do not necessarily
include a CPU, SoCs can be seen as a subset to ASICs. SoC designs are widely
used and part of every day’s life. They are implemented in consumer electronics,
mobile devices, as well as in automotive industry products.

The growing demand of computing resources encourages the integration process
according to Moore’s law. With increasing design complexity and components
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integrated into one chip, the communication amount grows and a more advanced
communication infrastructure than simple bus based systems is required. On chip
networks present one possible solution to this problem, where heterogeneous
nodes are connected through routing interfaces.

2.5 Network on Chip

The growing size of multi-core systems and especially the increasing number of
cores integrated into one chip leads to a high amount of communication. In the
past, all cores in multi-core architectures have been connected by bus systems
to communicate with each other and to get access to memory and peripherals.
However, bus based systems do not scale well and with an increasing number
of cores other connection types need to be considered. Tiled multi-core systems
connected by an on chip network close this performance gap since network
structures scale very well [18, 29, 37].

There are several design opportunities to create on chip networks. All have in
common that the heart of the communication infrastructure are routers connected
with each other. In addition, each router is connected to one or multiple cores.
Section 2.5.4 gives a brief introduction to available implementations of multi-
core systems based on network architectures. Beforehand, fundamentals about
communication infrastructure and network topologies and characteristics are
given.

2.5.1 Communication Infrastructure and Amdahl’s law

More than half a century ago Gene Amdahl investigated the execution time speed-
up of parallelization in multi-core systems [11]. At that time, single processing
elements have reached the limits of speed-up and first implementations of multi-
core systems have been explored. Amdahl’s law is a model for the relationship
between the expected speed-up of parallelized implementations of an algorithm,
relative to the serial algorithm, under the assumption that the problem size
remains the same when parallelized. Equation 2.6 describes the expected speed-
up defined by Amdahl’s law.

Speedup(rp, n) =
1

rs +
rp

n

With rs + rp = 1

(2.6)
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Where rs represents the ratio of the sequential portion in one program and rp rep-
resents the ratio of the parallel portion in one program. n represents the number
of processors, without any restrictions in this equation. However, software cannot
be parallelized infinitely.

Amdahl’s law claims that even the problem size is fixed, independent of the
number of processors. Gustafson [43] presented in his work, that the problem
sizes scales with the number of processors used for parallelization. However,
the main problem of Amdahl’s law is that the communication is not considered,
which means that the speed-up does not increase as stated in equation 2.6. With
an increasing number of cores attached to one interconnection, the interconnect
becomes a bottleneck and following the speed-up curves need to be adapted.
Also, modern heterogeneous chip architectures are not considered in Amdahl’s
law [50]. Besides all the drawbacks, Amdahl’s law is still valid in a sense.

(a) Bus (b) Ring (c) Tree

(d) 2D mesh (e) 2D torus (f) 3D mesh

Figure 2.4: Two and three-dimensional network topologies.

16



2

2.5 Network on Chip

2.5.2 Network Topologies

This section describes some basic network topologies. The presented network
topologies follow some basic rules. The topology must be simple, otherwise
comprehensive routing strategies are required. Also, they need to be scalable,
so that the size is not restricted. The choice of an appropriate network topology
is important with regards to resource consumption and communication latency.
Network topologies can be divided into direct and indirect networks. In direct
networks, the routing element is directly connected to a limited number of neigh-
boring routing elements as well as a limited number of processing elements (PEs).
In indirect networks the connections to neighboring routing elements are not
fixed. With both networks, the communication topology can change due to the
application demands. The most popular implementations of an indirect network
is a bus based structure. Other examples are multistage networks and crossbar
switches. Since indirect networks do not scale well, they will not be considered in
the following.

To compare the network topologies with each other, specific network parameters
will be examined. The distance of communication is defined as the minimum
number of routers that a packet has to pass from the source to the destination
node. The network diameter is defined as the maximum shortest path length
between any pair of nodes in the topology. It indicates the worst case message
latency. Depending on the routing algorithm it is possible that the packets take
an even longer route through the network, than the network diameter.

Another indicator for communication latency is the average distance between
nodes. The average distance of all packets in the network rely on the traffic
pattern. For example, equation 2.8 defines the average distance in a 2D mesh
network applying XY routing.

Mesh based NoCs are becoming more and more popular due to their simple rout-
ing strategies (XY routing) and their scalability. To reduce the network diameter
in 2D networks, three-dimensional network implementations will be introduced
as well. The following sections describe the network topologies implemented in
this work. Existing realizations of network topologies are described in chapter
2.5.4.

2.5.2.1 Mesh Networks

The basic definition of mesh networks states that each node is connected to its
neighbors. In this work only rectangular (dim_x ∗ dim_y) mesh networks are
considered. An example implementation is shown in figure 2.4d. The mesh
network diameter and average distance is given in the following equation.
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Diameter2Dmesh = (dim_x − 1) + (dim_y − 1) (2.7)

∆2Dmesh =
dim_x + dim_y

3
(2.8)

Due to the simple structure of mesh based networks, simple routing strategies
such as XY routing can be applied. Beyond, the architecture scales very well. Most
of the current available multi-core chips including a communication network are
based on mesh networks.

2.5.2.2 Torus Networks

Torus networks have a similar structure as mesh networks, but in addition to
mesh networks, torus networks are symmetric. Hence, every router has the
same number of neighbors it is connected to. Due to higher connectivity, torus
networks have lower latencies compared to mesh networks. However, the higher
connectivity requires more connections which need to be realized on the chip. The
diameter of a torus network with even x and y dimensions, is given in equation
2.9. If the x dimension is an odd number, dim_x must be replaced by (dim_x − 1)
in this equation. The same applies respectively for dim_y.

Diameter2Dtorus =
dim_x

2
+

dim_y

2
(2.9)

At a first sight it looks like there are quite long connections in a torus network,
connecting one edge router with a router at the opposite edge (see figure2.4e).
However, with an intelligent placement of the routers, a maximum length of a
two router hop can be realized. An example placement of a 4x1 torus network is
shown in figure 2.5.

2.5.2.3 Multidimensional Networks

Multidimensional networks are built up of multiple network layers. Compared
to 2D network designs, the average distance between nodes is smaller in 3D
networks. Mesh based networks have been a popular topology for 2D NoC
implementations and they can easily be extended to a third dimension. An
example 3D mesh network is shown in figure 2.4f.
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Figure 2.5: Router placement of a 2D Torus design to prevent long connections.

2.5.3 Network Evaluation

Besides the network diameter and the average distance between nodes, the fol-
lowing section describes further characteristics of a network. Pande et. al. [78]
discuss network performance evaluation and design trade-offs with regard to
latency, throughput, energy dissipation, and silicon area requirements. The same
parameter are used later in this work to evaluate the novel network extension
developments.

2.5.3.1 Communication Latency

Network message latency is defined as the time elapsed from the moment a
packet header flit is injected into the network until the moment the packet tail
flit leaves the network again. In the remainder of this work this is referred to
as packet latency. Depending on the source and destination node as well as
the routing algorithm the packet flits passes several router nodes on its way
through the network. Each router which needs to be passed by a packet adds
additional latency. Hence, the goal is to minimize the distance between source and
destination node to minimize the packet latency. In contrast to the throughput
measurements, the latency examines entire packets instead of single flits, since
virtual channel allocation and flow control are performed on the granularity of
packets.
For network evaluation the average packet latency (Lavg) is calculated according
to the following equation:

Lavg =
∑

P
1 Li

P
(2.10)
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In this equation P describes the total number of packets transmitted into the
network, and Li is defined as the latency of packet i. Li is composed of the sum of
the latency added by each router the packet passes. The latency Lavg and also Li

depend on the allocation of source and destination of a packet. Since the focus
is not on application allocation, the packet latency of a single router is used to
assess the network performance.

Definition. The packet transmission latency used for performance evaluation in this

work is defined as the number of cycles elapsed between the arrival of a packet header at a

router and the time the packet tail leaves the same router.

2.5.3.2 Throughput

Instead of characterizing the network by its bandwidth (bits/s), the network
throughput can also be used for performance evaluation. The throughput TP is
defined as the maximum amount of information delivered per clock cycle [32].
Since the size of a message packet can vary but the channel width is equal for all
designs, the throughput is measured in flits per clock cycle. In case of this work a
normalized throughput is used by dividing it by the size of the network (number
of network nodes or routers). As a result, the unit of the normalized throughput
is flits per clock cycle per node (see equation 2.11). Accordingly, a throughput
(TP) equal one corresponds to scenario where each router in the network transmit
one flit per clock cycle.
The total time for equation 2.11 is measured starting when the first flit enters the
network till the last flit reaches its destination.

TP =
number o f transmitted f lits

(number o f nodes) ∗ (total time)
(2.11)

To explore the network characteristics the throughput is usually measured with
varying injection rates. The injection rate is defined as the rate at which flits are
inserted into the network from a local processing node. For simulations and stress
tests the flits are generated synthetically. In a normal design the data is generated
by the processing node and the network adapter transfers the data into network
flits. An injection rate of 0.25 hence indicates that at the local port of a router
a new flit is inserted in one out of four clock cycles. Depending on the traffic
pattern which should be simulated, the injection rate can be a constant value or
following a process. The following section describes some traffic patterns which
have been used in this work for evaluations.
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2.5.3.3 Traffic Patterns

For performance evaluation of the network, different traffic patterns have been
applied. Depending on the source and destination distribution of messages, they
can be grouped into synthetic and realistic patterns. Synthetic traffic patterns refer
to abstract network communication models. They are used to generate the worst
case scenarios for the network, while realistic traffic emulates the communication
behavior of real applications.
The purpose of using different traffic patterns is to test different network charac-
teristics. Depending on the message length, injection rate and message destination
distribution, the performance of the network can vary heavily.
The traffic patterns which have been used in this work are described as follows.

Synthetic Traffic Synthetic traffic does not depend on any real application, but
is rather used to emulate the worst case scenarios for the network. However,
synthetic traffic can also be used to mimic real traffic patterns without any com-
putational effort. For simulations, it is then possible to simulate and evaluate the
network without CPUs, caches and applications. In the following, three popular
synthetic traffic patterns are described.

Uniform Random Traffic: Each node sends data to random source nodes
with equal probability. The amount of flits sent per cycle and node is defined as in-
jection rate. The injection rate is a variable value which can be set in the testbench.
With increasing injection rates, the network can be tested for congestion.

Hot Spot Traffic: This traffic pattern is based on uniform random traffic but
some specific nodes (called Hot Spots) receive packages with a higher probability
than other nodes. The Hot Spot node represents a very busy node, for example
nodes connected to the main memory.

Transpose Traffic: There are two implementations of transpose traffic. First,
a node (i,j) only sends messages to node (n-i,n-j) where n is defined as the network
diameter. Second, each node sends messages to a node with an address of the
reversed dimension index. For example in a 2D mesh network, node (i,j) only
sends messages to node (j, i). Since the source and destination need to be two
different nodes, node (i,i) send messages to node (n - i + 1,n - i + 1), where n
presents the network diameter.
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Realistic Traffic The more accurate way to evaluate the network performance
is the usage of real applications. Simulation models usually do not comprise
the processing elements, hence the traffic of real applications is only modeled.
Depending on the distribution of the application across different nodes, the com-
munication traffic strongly varies. Consequently, nonuniform traffic distributions
are more likely.

2.5.4 Reference NoC Architectures

There are already several embedded NoCs on the market. A subset is explained
in detail in the following. For additional information see [45].

2.5.4.1 Tilera®

The Tile processor is a multi-core design manufactured by Mellanox Technologies,
Ltd. Currently two realizations are available, the TILE-Gx36™ including 36 cores
and the TILE-Gx72™ comprising 72 cores. Both implementations are optimized
for networking, video, and data center applications.
In literature far more often the preceding model is mentioned [17]. Figure 2.6
shows a schematic diagram of the TILE64 processor architecture. The iMesh [109]
network is a packet switched, wormhole routed with point-to-point connections.
It consists of five independent networks which are listed in the following:

• IDN - System and I/O

• MDN - Cache misses, DMA, other memory

• TDN - Tile to tile memory access

• UDN and STN - User-level streaming and scalar transfer

2.5.4.2 KALRAY

The KALRAY massively parallel processor array (MPPA®) architecture has been
designed for power efficient, computation intensive, and embedded applications.
Up to one thousand processing cores are integrated on a single die. Clusters
of processing cores are connected through an on chip network [44]. To enable
predictable transfer times in the NoC and to provide quality of service, the
network makes use of virtual channel buffers.
Currently available on the market is the MPPA2® high-speed I/O processor
which integrates 288 cores and 128 crypto co-processors on one chip.
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Figure 2.6: Architecture overview of the Tilera® Tile64 processor [17].

2.5.4.3 Intel® Research

Intel® is the global market leader in the semiconductor industry with more
than 15% market share [6]. In 2009 Intel® introduced the Single-chip Cloud Com-
puter (SCC) [70], a research microprocessor with the highest number of integrated
cores at this time. The 48 cores are connected via an on chip network, including
advanced power management technologies and support for message-passing
[39]. The mesh based network comprises 24 routers, each connected to two cores.
Figure 2.7 shows an overview of the SCC architecture. The cores can run indi-
vidual instances of operating systems. Each core has its own level 1 and level
2 cache. Among the cores, there is no hardware cache coherency implemented.
Due to a distributed memory structure either message-passing or software cache
coherency can be used.

The performance of the SCC chip has been evaluated besides others in regards
of communication performance, power and energy consumption and memory
throughput [41]. Since the SCC is only a research chip, the evaluation results
cannot be directly compared to measurements of standard high-edge processors.
However, the chip provides a great variety of benchmarking possibilities.
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Figure 2.7: Architecture overview of the Intel® SCC. Showing the routers (R)
connected as a mesh architecture and a schematic of one tile. Four
memory controllers (MC) are connected at the border [98].

For power management, the chip is divided into three groups, where each group
provides its own clocks and power sources. The three groups are tiles, mesh
network, and memory controllers. The voltage and the frequency of the tiles
can be dynamically configured during runtime by software, resulting in a power
consumption from 25 W to 125 W [26, 98]. Each tile, consisting of two cores, can
be separately power gated. Additionally, the performance level of the cores can
be controlled by software. The developer can either directly write to a hardware
register to access the power management or can use a special message passing
library for controlling architectural characteristics.
The SCC thermal model is described in [88], but with focus on the cores. The heat
generation of the routers of the SCC chip is not described in any work.

The SCC is only a research project to propose possible improvements for future
chips and figure out the weaknesses. However, this chip already proved that
the future of many-core processor chips will be based on network on chip (NoC)
technologies.

Besides the SCC, Intel® introduced other network on chip (NoC) based chips. One
example is the 80-node Intels® Teraflops research chip (see [102]). It was the
first tera-scale programmable silicon with an on-die mesh network. Also, current
processor chips with up to 24 cores, like the Xeon processor as shown in figure
2.8, are available on the market.

24



2

2.5 Network on Chip

Figure 2.8: Architecture of Intels® latest Xeon® processor, with 24 cores [1].

2.5.4.4 Further NoC Architectures

There is a vast amount of NoC implementations described in literature, most
of them developed within research projects where no real chips have been pro-
duced. In the following, four of these networks are described briefly: (1) Nostrum;
(2) Æthereal; (3) MANGO; and (4) Argo. They all provide latency and throughput
guarantees to obtain time predictability and hence are the most similar networks
compared to the NoC described in this work. All four use virtual channels in
equal fashion to share communication resources for multiple connections.

The Nostrum network is also a regular packet switched network but without
any buffers within the routers [72]. The absence of the buffers requires a more
sophisticated routing algorithm, in this case a deflective routing algorithm is
applied. The main achievement of the Nostrum network are special packet types,
called containers, which are used for guaranteed bandwidth communication.
However, if there are multiple guaranteed bandwidth connections established,
other communication can be blocked. There is a power model available for the
Nostrum network [82].

Philips’s Æthereal network also combines guaranteed service and best effort
connections [38]. Æthereal is using contention free routing to reserve wires and
buffers and release the resources after use.
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MANGO is a message passing asynchronous NoC providing hard real-time guar-
anteed services through Open Core Protocol (OCP) interfaces [19]. It supports
connectionless best effort (BE) communication as well as connection oriented
guaranteed service (GS) communication to provide guarantees.

The last network architecture presented here is called Argo [59]. It consists of an
router design supporting message passing among processors to support hard
real-time applications. The network is implemented as a locally synchronous but
globally asynchronous network. All routers in the architecture are within one
clock domain while each processor core runs its own clock domain. The Argo
has no input or output buffers for the virtual channels in order to reduce the
hardware complexity.

2.5.5 Summary

With a growing number of cores integrated into one chip, networks on chips is
given a greater emphasis in research. Also, first multi-core chips with a network
communication infrastructure are available on the market.

2.6 Invasive Computing

In the Transregional Collaborative Research Center Invasive Computing, one of
the goals is to design a new scalable multi-core embedded processor design for
applications with high computational processing demands. The development in-
cludes new programming concepts, languages, compilers and operating systems
which support resource-aware programming. Future multi-core architectures
with more than 1000 processor cores integrated in one chip still lack appropriate
programming paradigms. The holistic approach is challenging and requires early
prototypes to prove the concept.
In the following, the hardware architecture of Invasive Computing is described,
which is built up of a network structure connecting heterogeneous computing
clusters. Subsequently, the software layer of Invasive Computing is briefly pre-
sented.

2.6.1 Invasive Hardware Architecture

The invasive hardware architecture is a scalable heterogeneous many-core architec-
ture. The architecture consists of heterogeneous clusters connected by a NoC. The
invasive NoC is the underlying architecture which has been used for this work. An
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example 4x4 mesh architecture is shown in figure 2.9. The design is organized in
a mesh 2D-array of tiles to increase scalability. Other topologies are also possible
and are discussed in chapter 2.5.2. Each router in this design has bidirectional
connections to its neighbor routers and one bidirectional connection to a local tile.
A network adapter builds the interface between the router and the bus of the tile.
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Figure 2.9: InvasIC heterogeneous hardware architecture. A mesh based network
connects clusters containing different PE, memory or IO.

In contrast to the NoC technologies invented by Intel® and Tilera® , the tiles
of the invasive hardware architecture consists of a multi-core system. The clus-
ter architecture integrates a variable number of LEON3 cores, all connected to
one local Advanced High-performance Bus (AHB) [34]. Furthermore, each cluster
includes an L2 cache and a tile local memory. Some nodes within the network
contain a global DDR memory in addition. The combination of a distributed and
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Figure 2.10: InvasIC basic computing tile (cluster) architecture. The network
adapter on the left side build the connection to the router.

global memory architecture reduces the network accesses, since tile local memory
is sufficient for most of the computations. This arrangement has implications
for the degree of network capacity utilization, since network accesses can be
reduced. However, on the other hand the realization of huge distributed memory
is more challenging. Besides different memory setups , it is possible that the
clusters contain special hardware, such as massively parallel processing arrays
(tightly-coupled processor array (TCPA)) or reconfigurable PEs called i-Core, with a
runtime adaptive instruction set.

2.6.1.1 Cluster Architecture

The cluster architecture integrates a variable number of LEON3 cores, all con-
nected to a local AHB bus [35]. Furthermore, each cluster includes different
memory controllers and I/O interfaces. A simple compute tile comprises level
one (L1) caches, one L2 cache and a tile local memory to realize a distributed
memory structure. The Ethernet and DDR memory controller are optional.
For debugging reasons, each tile contains one debugging unit (DSU) to give access
to the memory mapped registers and trace information of the processor cores.
Further information about hardware debugging is given in chapter 5.
In the given architecture each router has a bidirectional connection to a local
cluster. A network adapter (left side in the figure) builds the interface between
the router and the local bus of this cluster. Figure 2.10 shows one possible imple-
mentation of the cluster architecture.
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Figure 2.11: InvasIC network adapter block diagram. The network adapter (NA)
in the middle builds the interface between the router on the left side
and the tile on the right side.

2.6.2 Invasive Network on Chip

The basic network design is organized in a 2D array mesh of tiles to increase
scalability. Other topologies are also possible and will be further discussed in
chapter 3. The invasive network is a packet switching network with wormhole
flow control. The network layer is separated into routers and network adapters.
The latter build the interface between the network and the local compute cluster.

2.6.2.1 Network Adapter

The network adapter builds the interface between the AHB bus inside the tile
and the local port of the router [47]. Thus, the network adapter is responsible for
translating the bus transfers into network packets and vice versa.
The NA supports different transmission schemes and hence has a bus slave
interface as well as a bus master interface. The master interface is necessary to
provide hardware accelerated direct memory access (DMA) service. Whereas the
slave interface is responsible for load/store and message passing communication.
Figure 2.11 shows a schematic of the network adapter. Furthermore, the network
adapter initiates the request for invading communication resources, by setting up
GS connections. The application writes to a memory mapped register inside the
network adapted and the necessary header flits are then generated automatically,
controlled by the hardware of the network adapter. To retreat the communication
resources, the application writes again to this memory mapped register.
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2.6.2.2 Router Architecture

The following describes the router design which was used as a basis for this work.
A more detailed description of the router can be found in [45]. The network router
supports both, connectionless best effort (BE) communication and connection
oriented guaranteed service (GS) communication. Both transmission strategies (BE
and GS) share the router resources dynamically. As a routing strategy XY routing
is used in this work, other routing algorithms are also implemented, such as
adaptive odd-even turn routing.
The routers are connected with each other by two unidirectional links which are
divided into a parameterizable number of virtual channels (VCs). A block diagram
of a single router unit is shown in figure 2.12. The router input and output links,
which are usually placed in cardinal directions to the neighboring routers are
grouped together in this figure on the left (input ports) and right (output ports)
side. Also, the router provides monitoring information about the current link
utilization, the buffer fill level and VC utilization during runtime.
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1 HEAD 0        BODY 0        BODY 1 TAILPacket Y

Flit

Figure 2.13: Network packet, consisting of multiple flits, where each flit holds its
own control flag (Ctrl. Bit). Each packet starts with a header flit and
is terminated with a tail flit.

Flit Format Data packets are divided into smaller portions of equal size, also
referred to as flits. The size of the flits is equal to the bandwidth of the router
link and can be chosen during the design process. The size of a packet is variable,
depending on the amount of payload to be transferred. Each packet consists of
one header flit, several payload flits and one tail flit, see figure 2.13. The header
flit contains routing information, such as source and destination address as well
as the connection type (GS and BE). The composition of the header and tail flit is
shown in figure 2.14. The header flit is transmitted first and will be routed in each
router. The routing information is stored in a lookup table in each router and all
other flits follow the path which was established by the header. The VC used by
this packet is reserved till the tail flit closes the connection. Figure 2.14 shows the
structure of the three different flit formats. To indicate the router to establish or
close a connection, header and tail flits are transferred with a control flag. For
payload flits, this control flag is kept low.

Credit-based Wormhole Flow Control By the time the sending router puts
data on the link, a valid signal is sent simultaneously. The transmitter has a
credit counter for the buffer fill level of the neighboring routers. The counter is
decremented when a flit is transmitted. The acknowledge bit is sent back from
the receiver router at the moment the receiver forwards the flit to the next partner.
This indicates, that the space in the input buffer of the receiving router is free
again. There is no flow control implemented for the case that data gets lost or
corrupted during transfer.

Scheduling Each physical link is used by a predefined number of VCs. For
sharing the link resources, a scheduling strategy is mandatory. The router output
port scheduling unit makes a decision based on priorities and buffer fill levels.
The scheduling of VCs can also be referred to as link access arbitration.
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Figure 2.14: A packet consists of three different types of flits. Flit format of header
and tail flits contain routing information while the payload flit com-
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To provide adaptive quality of service (QoS), a weighted Round Robin scheduling
scheme is used in this work. Multiple service levels for hard QoS guarantees can
be chosen by the application software.

2.6.3 Invasive Software

The invasive paradigm includes a resource-aware programming model which
is capable of mapping applications to various types of processing elements (PEs)
available on the hardware platform. The mapping is done online and based on
the actual workload of the PEs. The application performance can be improved by
adapting the application to available resources at runtime.
Applications can dynamically acquire (invade) hardware resources according to
their needs and according to the status of the hardware. Resources which can
be invaded are the following: (1) computation bandwidth; (2) communication
bandwidth and latency; and (3) memory space The application competes for
hardware resources to get exclusive access [80].

The operating system called OctoPOS, which manages the hardware and software
resources is also specialized on the resource aware concept of invasive computing
[75]. Figure 2.15 shows the interaction between application (blue), runtime system
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(orange) and hardware (green). OctoPOS provides operating system primitives
based on Linux and in addition it provides a special execution environment for
parallel applications. Providing scalability is one of the key features of OctoPOS.
Resulting from that, each tile runs one instance of the operating system. This
brings new challenges for the prototyping system since each tile requires a rather
huge local memory.

2.7 Hardware Development

2.7.1 Hardware Description Languages

There are several hardware description languages (HDLs) available for designing
digital hardware for FPGA or ASIC designs. The two best languages are Very High
Speed Integrated Circuit HDL (VHDL) and Verilog. Both languages are supported
by most development tools. However, new hardware description language have
been introduced over the last years in an effort to raise the level of abstraction.
One example is SystemVerilog, which is described in more detail in the following.

2.7.1.1 SystemVerilog

The hardware description language SystemVerilog is an extension to the Verilog
language. It combines the advantages of Verilog, VHDL and C. While VHDL
puts much emphasis on compile time checking, SystemVerilog provides better
support for larger and more complex SoC designs. Thereby, the SystemVerilog
language achieves a new level of modeling abstraction for hardware development
and verification.
The Verilog language is extended by C-style data types such as struct, typedef,
and dynamic types for better encapsulation and compactness of code and for
tighter specification. Also, object oriented programming classes are introduced
as well as new interface constructs. In SystemVerilog it is then possible to work
with dynamic arrays and queues. Another new feature are assertions which can
be used to validate the behavior of the design. Also, they can be used for formal
functional verification. Further information about the SystemVerilog language
can be found in [93, 40].

Due to the higher level of abstraction, productivity can be improved especially in
the development of large-gate-count designs. In this work, the router design and
its extensions as well as the testbenches for design verification have been written
in SystemVerilog.
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2.7.2 Design Verification and Prototyping

The wide variety of existing verification technologies can be categorized into four
classes [85]: (1) simulation based technologies; (2) static technologies; (3) formal
technologies; and (4) physical verification and analysis. To achieve a failure free
design, a combination of these four verification technologies must be applied.
Using one of the technologies exclusively makes it impossible to prove the absence
of failures. However, the entire verification process is complex and far beyond
the scope of this work, hence this work focuses on simulation based verification
technologies only to reveal faults caused by implementation errors.
Applying simulation based verification, the design under test (DUT) is surrounded
by a testbench. The input stimuli are applied to the testbench and output signals
are compared to a reference model. The simulator can either be a software (e.g.
ModelSim®) or a hardware (e.g. FPGA). Also, hybrid simulators such as Co-
Simulation (see section 5.3.1) are possible.

Chapter 5 presents the verification methodology and an automated design and
verification process which was developed for this work. For further information
about fundamentals of verification methods see [64].
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3D chip structures are envisioned as the solution to keep up with an ever increas-
ing number of transistors per die area. Also, communication performance benefits
from the reduction of the average distance between nodes in 3D networks. A
further advantage of stacked dies is that different types of silicon processes can be
interconnected to heterogeneous chips. Hence, for each layer the optimal process
can be chosen. Most of all, this enables the production of chips with considerably
larger numbers of memory.

However, besides the advantages mentioned above, new challenges arise for
three-dimensional chips, such as:

• The amount of available interconnections between layers is restricted.

• Higher latency of interconnection signals.

• Higher power consumption of inter-layer I/O pins

• Design partitioning takes additional implementation effort.

This chapter describes the extension of the existing network on chip to a third
dimension and presents a solution to the interconnection challenges described
above. An adaptive bandwidth router encapsulates several functions such as clock
synchronization and parallel to serial conversion including flow control. This
enables a fully routed three-dimensional network design with minimal resource
overhead compared to 2D solutions. Chapter 4 presents a method to limit the
power consumption in the network layer. The following chapter 5 focuses on the
automation of the design implementation process.

3.1 Network Topologies

In section 2.5.2 the basics of 2D network topologies have been described. This
section focuses on 3D network topologies and varying interconnection types.
One of the major characteristics of network performance to be 37 evaluated is
the average distance between nodes or related with it, the longest path in the
network. In figure 3.1 the longest path length of four network topologies is
evaluated with a varying number of routers. The shortest maximum path length
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Figure 3.1: Evaluation of longest path length in different two and three-
dimensional network topologies.

is always given in three-dimensional torus networks. However, torus networks
require a huge number of interconnects which is antithetic to a restricted number
of interconnections in 3D integrated circuits (ICs). Hence, further topologies than
torus designs need to be considered.

3.1.1 Interconnection Types

To cope with the restricted number of connections between the layers there are two
major solutions to the problem. On the one hand, a fully routed 3D design, where
all routers of one layer are connected to the other layer, but each connection has a
small bandwidth. On the other hand, a design where only a portion of routers is
connected vertically, but with a high bandwidth of the vertical connections. Both
options have advantages and disadvantages. While a fully connected design does
not require comprehensive routing algorithms, the partial routed design offers
higher bandwidths.
In case of partially connected networks, there are different possibilities regarding
the choice of routers which have a vertical connection (so called 3D routers).
Either the connections are randomly distributed among the routers, or the 3D
routers are all placed in the center or at the border of the design.
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Figure 3.2: Homogeneous 3D NoC multi-core architecture with a mixture of 2D
and 3D routers [103].

In this work a third option to cope with limited vertical connections will be
introduced. The routers are extended by a special port with variable bandwidth
and frequency.

Figure 3.2 shows one possible 3D NoC topology with a mixture of 2D and 3D
routers. Only a few routers are connected vertically. On the one hand this solves
the problem of restricted number of vertical interconnects. On the other hand this
provokes deadlock situations, since all vertical communication has to be handled
by these connections. In addition, a more complex routing algorithm than XYZ
routing needs to be applied. Furthermore, two different router types need to be
developed.

3.2 State of the Art

Several implementations of two-dimensional NoC are already established on the
market, for example Intel® SCC [101, 51], Tilera® TILE64 [17], and Kalray MPPA
[44]. The first two architectures are mesh based network structures where single
processing engines are connected with a five port router. The Kalray network is
also based on a mesh structure, but instead of single processing elements, a cluster
containing multiple PEs is connected to a router. By progressive development of
multi-layer chip technology, new network topologies become possible. A general
description of basics for 3D networks on chips can be found in chapter five of [8].

39



3

3 Adaptive Three Dimensional Router

Also, Pavlidis et al. [81] investigates three-dimensional network topologies on
three-dimensional (3D) ICs.

There are different methods to construct 3D ICs [79]. The first one is chip stacking,
where multiple fully processed and tested stand-alone components are stacked
into one system-in-package. The second on is called transistor stacking, where
multiple layers of transistors are stacked on a single substrate. As a third option,
wafer-level stacking where entire wafers are stacked. Figure 2.1 in chapter 2.2
shows four different implementations of multi-chip system integration.
While the concept proposed for a 3D NoC in this work works with all construc-
tion methods, the chip stacking is not recommended due to long interconnects.
According to the 2011 ITRS interconnect edition [27], the maximum number
of connections between two layers can be calculated for each interconnection
method. Although vertical interconnects have quite huge dimensions, the number
of vertical connections between two chip layers is restricted and presents the main
bottleneck in 3D designs.

The synchronization between chip layers creates another challenge in addition to
restricted interconnects in 3D designs. One possibility to solve this problem are
Globally Asynchronous and Locally Synchronous (GALS) systems with multiple clock
domains. These implementations require a synchronization mechanism between
clock regions. Vivet et al. presents the FAUST (Flexible Architecture of Unified
System for Telecom) chip [104] as an example of a complex GALS NoC architec-
ture. The network interface thereby performs the synchronization between the
synchronous and asynchronous logic domains using ad-hoc decoupling first in -
first outs (FIFOs).

Dividing a simple planar design into different layers and then connecting the
layers among themselves with short vertical interconnects has been described in
[15]. The connection of multiple layers can be achieved without any other design
changes. Modeling of TSV resistance, inductance, and capacitance is necessary
for 3D IC designs, but this is not part of this work. Further information can be
found in [60]. Also, there have been first investigations on how to cope with the
restricted amount of vertical interconnects in 3D NoC designs. Liu et al. [67]
describes a scheme for sharing vertical interconnects among neighboring routers
in a time division multiplex mode. Xu et al. [113] investigates the impact of
TSV placement to 3D NoC designs, while restricting the number of TSVs to a
minimum. Vivet et al. [103] also worked on 3D NoCs and emphasized on the
interconnection infrastructure. They present a 3D NoC with a combination of 2D
and 3D routers. The same approach has been taken by Wang et al. [107].
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Figure 3.3: Horizontally Stacked Silicon Interconnect Technology introduced by
Xilinx® [87].

3.2.1 Xilinx® Stacked Silicon Interconnect Technology

With the introduction of the Virtex® -7 FPGAs [112], Xilinx® introduced a new
FPGA series with integration at 28 nm and a new stacked silicon interconnect (SSI)
technology. The SSI technology uses passive silicon interposer with microbumps
and through-silicon vias (TSVs) to combine multiple FPGA dies in a single pack-
age [87]. Figure 3.3 shows a schematic side view of the stacked FPGA design. The
FPGAs are mounted on a high-performance package substrate by using TSVs.
Xilinx® shows that there is a huge potential in reducing static power if multiple
dies are stacked [52]. Xilinx® also reduces the dynamic power and I/O power.
However, the reduction of the maximum static power delivers the most significant
contribution with a reduction of over 65 %. In total, they can achieve a power
reduction of up to 50 % compared to a previous generations equivalent.
Particularly due to its huge amount of logical cells, the stacked Virtex®-7 FPGAs
are excellently suited for ASIC prototyping. The quad V7 prototyping platform
presented in section 5.4.1 contains four of these Virtex®-7 FPGAs.
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Figure 3.4: 3D mesh network structure, with all routers fully connected to their
neighboring routers. The heterogeneous multi-layer network has a
memory layer between two processing layers, containing routers and
processing elements.

3.3 Heterogeneous Bandwidth Router for 3D Network on

Chips

The goal of this work is to design a router which encloses two kinds of ports, one
for vertical and one for horizontal connections. This heterogeneous router enables
3D mesh networks which are fully connected without contravening the restricted
amount of interconnects between the chip layers. A first implementation of this
approach has been presented in [FLB16].

Figure 3.4 shows one possible implementation of the 3D NoC described in this
work. This example shows also the possibility of stacking various heterogeneous
technologies on top of each other. The lower and upper layer comprise processing
nodes and network infrastructure, while the layer in the middle only comprises
memory cells. Due to this, the memory layer can be built up of a different
technology than the layers containing routers and processing elements.
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Figure 3.5: Physical router interface, including the link width of the router ports.

3.3.1 Vertical Interconnects

Stacked chips can be connected vertically through short interconnects, called
through-silicon vias (TSV). The number of TSVs depend on the chip dimension and
the technology. Hence, the amount of TSVs in a given chip region is limited and
often the bottleneck of 3D chip designs. An example of TSV dimension is given
in [42], with a 5 µm diameter per TSV.

One possible solution to cope with limited inter layer connections is to connect
only a portion of routers across the chip layers. However, this would require a
more complex routing algorithm than XYZ routing and result in longer distances
between nodes and hence a larger average packet latency. The routing mechanism
within a router takes more time than transmitting data over links with lower
bandwidth. Therefore, the data link width of vertical connections is reduced in
this work. The link width of connection within one layer can differ from the link
width of inter-layer connections.

Figure 3.5 shows the basic physical interface between two routers. The bit width
of the links depends on the link configuration. Each router has one unidirectional
input and one output link per port. The number of connections per link is defined
as shown in equation 3.1. Where NVC and n are defined as the number of virtual
channels (VCs) and d represents the data link width.

Nlink = ld[ceil(NVC)] + n + d + 2 (3.1)

The number of connections between two neighboring layers hence is made up of
the product of number of routers and the double of the link width.
Taking the mesh based design discussed in section 3.4 as an example, with 4x4
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routers per layer, a total of 4,352 links between two layers are needed, if a design
is taken where each router has four VC per port and a data link width of 128 bit.
Therefore, the number of links between two layers could be calculated as follows:

Nlink = (2 + 4 + 128 + 2) ∗ 16 ∗ 2 = 4352 (3.2)

3.3.2 Clock Constraints in Higher Dimensional Chip Design

Global synchronous clocks are not possible in 3D designs because clock synchro-
nization across multiple dies is hard to achieve while holding up the frequency in
the Gigahertz range. Otherwise, high clock skews will cause timing problems.
One approach to avoid global synchronous clocks are GALS systems. In case of
three-dimensional systems, the most suitable solution is to have synchronous
clocks at each chip layer, but the layers are not synchronous with each other.
Resulting from that, a clock synchronization between the layers is necessary. The
synchronization logic represents an overhead in terms of resource consumption
and adds latency to the communication and is further described in the following
section.
The FAUST chip [104] is an example of a complex GALS NoC architecture. In this
implementation the synchronization is located in the network interface between
the router and the processing element. Following, the routers are all within the
same clock region. The design proves that GALS techniques are feasible and
mature enough for NoC systems. However, the 2D design cannot be extended to
a third dimension, since this would require that routers are asynchronous with
each other.

3.3.2.1 Clock Domain Crossing

To realize logic designs with multiple frequency islands, a clock domain crossing
needs to be performed. Transferring signals between the clock domains may lead
to setup and hold violations if no additional synchronization step is included.
If there is a large difference between two clock frequencies, data can get lost
or interpreted twice. Following, a clock domain crossing logic is mandatory in
multi-clock designs to prevent such failures.

There are several possibilities to address clock domain timing problems. A simple
mechanism for clock synchronization are flip-flop chains with at least two flip-
flops. Other opportunities are handshaking protocols and FIFOs. In this work,
a dual-clock FIFO concept has been applied. Figure 3.6 displays the structure
of the router link and the connection to the router input and output ports. The
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Figure 3.6: Block diagram of the parallel to serial and serial to parallel conversion
at the router output and input ports. With flit size n and serialization
factor of four.

clock domain crossing is handled by the parallel to serial converter. Hence, the
converters act like dual clock FIFOs with different width of input and output port.

Beyond the clock domain crossing, the restricted number of vertical connections
requires a serialization mechanism. Instead of using synchronous input buffers
for the router as described in [45], the clock synchronization and parallelization
at the input port is handled by the serial to parallel converter. The input bit
width in figure 3.6 is equal to the size of one flit. The serialization factor can be
chosen during design time. In this example, the serialization factor equals four.
Following, size m is equal to n/4. Other works have refrained to use serialization
schemes [103, 107] because of the increase in complexity and area of the router.
To keep the resource overhead as small as possible, the flow control mechanism
of the converter has been combined with the input port buffer flow control.
Two control signals indicate whether the converter is empty or full. Other control
signals are not necessary due to the flow control already integrated in the router
input port buffers (see ack signal in figure 3.6). The flow control is always aware
of how much free space is in the neighboring input buffer. A counter value is
decreased every time a flit is transferred and increased when an acknowledgment
(ack) signal is received. Following, the complexity added by the serialization is
insignificant.

3.3.3 Implementation

In order to avoid a reduction of the router bandwidth in the entire network, due
to limitations given by the vertical connections, a router with optional low link
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width ports has been developed. In addition, these links use their own clock
domain to smooth clock synchronization problems due to a partitioned design
across different chip layers. The router can enclose both types of ports at the same
time. During design phase the developer must choose which ports should have
the usual link width and which ports should provide special low link width and
asynchronous serialization mechanism. Figure 3.7 shows a simplified design with
only two routers connected with each other. The serial to parallel converter at first
handles the clock domain crossing and secondly are connected to the input buffers
for flow control reasons (see detailed in figure 3.6). This connection between the
converter and input buffers is necessary to assure that new data is not transmitted,
as long as the converter is busy with the serial transfer of the data. Henceforth,
there are no additional registers mandatory for flow control at the low bandwidth
ports. Flits which shall be transmitted through the low link width port, are split
in the converter and transmitted sequentially. At the neighboring router input
port, the flit fragments are reassembled before the entire flit is stored in the input
buffer. The designer can specify the bandwidth of usual and through-silicon
router links during design time. Figure 3.6 shows an example implementation
of the converters with a split factor of four. Also, the clock frequency of all three
clock domains can be chosen by the designer depending on physical parameters
of inter layer connections. Although the vertical connections are shorter than
router links on one chip layer, it is possible to use a higher frequency for the TSV.
Accordingly, it is possible to reduce the delay which originates from serial data
transfer. Depending on the size of the through-silicon router links and the size of
header information, it is possible to start the routing process with flit fragments
arriving at the input port of the layer border. This avoids increasing latencies due
to sequential transmission.

Flit extension: The general flit composition is described in section 2.6.2.2. The
space for the source and destination address depends on the size of the network.
If the design is extended by a third dimension, there is more space necessary for
the source and destination address, due to the additional Z coordinate. Thus, it is
more likely that the flit size of 32 bit is not sufficient for the complete header flit
information.

3.4 Evaluation

In order to prove the approach of the adaptive bandwidth router and investigate
the systems’ functionality including extensive software benchmarks, an FPGA
based prototype of the 3D network has been implemented. Although the tech-
nology of FPGAs differ tremendously from 3D ASIC implementations, it could
only be used as a prototype of the design. To realize a design with millions of
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gates, multiple FPGA devices are necessary. Therefore, a platform with six Virtex5
LX330 FPGAs has been used. Each FPGA represents one layer of the final chip
design. The different FPGAs are interconnected via cables. While the memory
builds a separate layer in the target chip, the memory on the prototyping system
is realized as extension boards. Chapter 5 describes in more detail the prototyping
and debugging setup.

Table 3.1 shows the resource consumption of different network implementations.
Routers which are placed at the border of the network do not need to have input
buffers for each port. Only those ports which are connected with another router
hold input buffers. Hence, the resource consumption of one router within the
network varies for mesh based networks. The additional ports per router result
in a 32.06 % higher look up table (LUT) consumption for a 3D mesh network,
compared to an equivalent 2D implementation with the same number of nodes.
In torus networks, all ports of the border routers are connected and following from
that, all routers in the network consume the same resources. This results in an
even higher resource consumption than 3D mesh networks. A 3D torus network
consumes 87.85 % more LUT than an equivalent 2D mesh implementation.

For performance measurements HDL simulation models of networks with 64
router nodes have been used. For network topology evaluation three-different
designs have been implemented. First a 8x8 2D mesh network, second a 4x4x4 3D
mesh, and third a 4x4x4 3D torus network, all with constant router links of 128
bits and four VC. To evaluate the different topologies, a test pattern with synthetic
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Component Resources
absolute relative

in LUTs in Register in LUTs in Register

8x8 design 677,894 88,073 +/- 0 % +/- 0 %
Primary 2D router 12,793 1,534 +/- 0 % +/- 0 %
4x4x4 mesh design 895,203 92,613 + 32.06 % + 5.15 %
4x4x4 torus design 1,273,452 116,448 + 87.85 % + 32.26 %
3D router 20,137 1,885 + 57.41 % + 22.88 %

Table 3.1: Resource consumption of a 2D and 3D router design.

uniform random traffic has been used, in which the injection rate at all router
nodes is equal. The basic definitions of latency and throughput measurements are
described in section 2.5.3.1 and 2.5.3.2. The results of the latency and throughput
are shown in figure 3.8. Since higher dimensional networks have a lower average
distance between nodes, the average latency of packets is lower in the 3D mesh
network implementation, see figure 3.8b. The latency is even further reduced if a
three-dimensional torus network is applied. In equal measure, the throughput is
increased for torus networks and the saturation point is at an injection rate of 0.6
instead of 0.4 for two-dimensional mesh networks (see figure 3.8a).
However, since the torus network consumes a much higher resource overhead
than the mesh network and the throughput gain is negligible higher, the best
trade-off to minimize the resource consumption while maximizing the through-
put is to take a 3D mesh network. Also, the number of vertical connections is
too high in torus designs. Following, the prototype presented in chapter 5 only
comprises 2D and 3D mesh designs.

Current state of the art 3D NoC implementations are not fully routed due to
limited number of vertical interconnects. There are several implementations
to spread the vertical connections and to partition the design across the chip
layers. One possibility described in literature are neighboring routers sharing the
interconnection resources [67]. Designs with different router implementations for
horizontal and vertical connections are a further possibility to realize 3D NoCs.
Thereby only the 3D routers are connected vertically [103]. Kim et al. [62] suggests
a partially connected crossbar to deal with the limited number of vertical links.
These approaches have all in common that they require an enhanced routing
algorithm, while the design presented in this work can use a simple XYZ routing
algorithm. An enhanced routing results in additional hardware resources as well
as in higher latencies due to longer routes. The results presented in literature do
not mention the resource overhead. In addition, the 3D design presented in the
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submitted work automatically include a clock domain crossing, in contrast to
other work where additional synchronization mechanisms are required. A fully
routed design with network multiplexer is presented by Said et al. [89], but only
2 to 1 multiplexers are used in this work and hence scalability is not provided.
In [30] the network components are placed on a separate layer. Nevertheless
network resources only represent a fraction of the overall design resources and
following the present work introduces a different floorplanning. Each layer
comprises a number of tiles and their direct connected routers. To meet high
memory capacity requirements, a separate memory layer is placed between two
of these layers. To provide flexibility, the design of this work can be applied to
any 3D manufacturing process. Parameters which are specific for the process can
be adapted during design time.

3.5 Summary

With the introduction of 3D integrated circuits and an ever increasing number
of transistors per chip, the extension of network topologies to a third dimension
become focus of research. Though, the extension to a third dimension costs
about one third more resources for mesh networks and more than 85 % for torus
networks. However, due to shorter average distances between the nodes in 3D
networks, the latency could be decreased and hence communication performance
rises. The performance gain of torus networks is only marginal higher than using
a mesh design, whereas the resource overhead is exceedingly higher.

The issue with a restricted number of vertical connections in 3D designs have
been solved in this work by a router which possesses two different kinds of ports.
The bandwidth and frequency of the ports can be chosen independently. Due
to the link between the output port parallel to serial converters and the input
buffers, the resource overhead ca be kept to a minimum. Hence, it is possible to
compensate the restricted number of inter layer connections without performance
degradation in the other network segments. Further, there is no need of additional
clock synchronization between the chip layers because it is handled by the new
router ports as well.
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Figure 3.8: Network performance of two-dimensional mesh and three-
dimensional mesh and torus networks, each with 64 nodes
and homogeneous bandwidth of 128 bit, using uniform random traffic
with equal injection rates at all routers.
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Optimization

Low power designs are becoming increasingly important, on the one hand be-
cause of limited battery power of portable devices. On the other hand because of
high heat generation due to power dissipation in integrated circuits (ICs). In future
systems built up of hundreds of cores, power dissipation becomes critical due to
massive thermal output. The increasing chip integration density raises thermal
issues even in 2D implementations. Stacking chips on top of each other for 3D
designs increases these issues all the more. Especially leading away thermal
power from the middle of the chip causes problems.
This chapter focuses on the minimization of energy consumption and power man-
agement of network architectures. Thereby, the continuous increase of overall
system performance is the fundamental goal while optimizing the power dissipa-
tion. A hardware power management controller monitors the router workload
and takes the decision of fine or coarse granular power gating or clock scaling of
network resources.

The first section of this chapter describes the fundamentals of the power saving
methods for on chip networks and highlights different general techniques to save
power within ICs. This is followed by section 4.2 which lists current research
in this topic. Section 4.3 presents the implementation of the power manage-
ment controller designed for this work and is followed by the evaluation of the
implementation.

4.1 Power Saving Methods for Network on Chips

There are different principles to reduce power in ICs. They all have in common
that the value of at least one of the following parameters needs to be decreased:

• Vdd (supply voltage)

• Frequency

• Load capacity

• Switching activity
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With rising package density and shrinking technology sizes, the power problem
is becoming worse. Reducing the supply voltage has a quadratic effect on the
dynamic power. However, the reduction is only possible as long as the supply
voltage is substantially higher than the threshold voltage of the gates.
There are many approved methods for power reduction in integrated circuits.
The following chapter describes six low power design methodologies. First clock
and power gating is covered followed by frequency and power scaling methods.
Further it discusses different levels to save power within the design. For further
information about low power design, see [61, 77].

4.1.0.1 Clock Gating

The clock net of an integrated circuit consumes a huge percentage of the overall
power. In order to reduce the clock net power consumption it is possible to include
an enabling signal to stop the toggling of local clock trees, whenever the modules
in this region are inactive. The resolution of clock tree regions needs to be chosen
during design time. It is differentiated between fine-grained and coarse-grained
clock gating depending on the size of clock regions. Applying fine-grained clock
gating, single registers are equipped with an enabling signal. However, this will
result in a huge amount of additional logic. While coarse-grained clock regions
consume less additional resources, it is less likely that the whole region is inactive
and hence it can be isolated from the clock signal.
The biggest disadvantage of clock gating is that only dynamic power can be
reduced, while the static power dissipation still remains.

4.1.0.2 Power Gating

The power gating technique works similar to clock gating, but now the enabling
signal is used to disconnect a module from the power source or from ground. As
opposed to clock gating leakage power can be removed as well, but the wake-up
time adds a bigger delay to the system the moment the module is needed again.
However, the system performance is not affected during normal operation.

In order to ensure that the system resumes operation based on its last state before
power gating, special cells need to be added which can store the state during shut
down. These retention cells are consuming power during shut down. There is
also additional energy required for the wake-up process. Hence, the decision
to power gate a module needs to be made more carefully. Therefore, power
management controllers are needed to evaluate the measured utilization. This
method offers the highest possible power saving, but on the other hand adds the
highest wake-up latency.
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4.1.0.3 Power Scaling

Since the dynamic power is proportional to V 2
dd, lowering the supply voltage has

a quadratic effect on the power dissipation. On the other hand, the reduction
of the supply voltage has a huge negative impact on the switching delay of the
gates. Hence, power scaling method can only be applied if the performance is not
effected.
The solution are design installations with multiple power regions. Each region
has the lowest possible voltage without violating the system timing. Providing
multiple clock regions however requires additional logic and more complex
power grids [61]. The instantiation of level shifters is necessary to drive signals
between different power domains.

4.1.0.4 Clock Scaling

The power consumption depends on the supply voltage as well as on the fre-
quency. For frequency change, a divider value is used to select operating fre-
quency by dividing the global frequency. The frequency range is restricted.
The advantage of this method lies in the relatively small amount of additional
hardware compared to power gating, since no isolation is required. The supply
voltage for a stable operation depends on the frequency. Hence, if the frequency
is reduced, it is also possible to scale down the voltage. The combination of clock
and voltage scaling is described in the following section.
In order to get an overview about the realization of dynamic clock frequencies in
FPGAs see [111].

4.1.0.5 Dynamic Voltage and Frequency Scaling (DVFS)

The most efficient power management technology, combining the strategies intro-
duced above, is dynamic voltage and frequency scaling (DVFS). The minimization of
power is achieved by dynamically adjusting the voltage and frequency of com-
ponents. For DVFS, voltage regulator controllers (VRCs) are necessary to provide
several voltage islands on the die. Also, controllers are needed to switch between
the different voltages and frequencies. However, typically these controllers are
implemented in software.

53



4

4 Multi-Granularity Network Power Optimization

4.1.0.6 Fine Grain and Coarse Grain Power Switching Techniques

There are different levels of power switching techniques. Also, one can distinguish
between chip perspective and design perspective.
First, looking at fine grain power switching at chip level, there is one power
switch placed next to each standard cell. The overhead of this method is quite
large.
In coarse grained power gating, a complete block of gates is power gated by one
switch. Using this method, the resource overhead added by the power switches
is much smaller compared to fine grained power gating, whereas the design
implementation is more challenging since the power gates of a power region must
be physically placed next to each other. In order to weigh up the disadvantages
and the advantages of both methods, the penalty of resource overhead overweight
and hence current designs usually use coarse grained power gating [61].

Looking at the design view for example of a router, also different levels of power
switching can be applied. Either a complete instance of a router can be power
gated, or single modules of the router are switched off. A first implementation of
disabling single VC is described in [110, 73].

4.1.1 Power Evaluation Methodology

In order to evaluate the different settings of the architecture in terms of power
dissipation, a power simulation was created using Synopsys® PowerCompiler,
since there is no real chip available which can be used for power measurement.
The tool PowerCompiler [95] is integrated in the Synopsys® DesignCompiler [94]
for power estimation at RTL level. In order to get power estimation results at gate
level instead, Synopsys® PrimePower can be used. Since a rough appraisement of
the system power consumption is sufficient for evaluation, only RTL level power
estimation is considered in this work.

In order to get power estimations, standard cell libraries are used. They contain
the basic building blocks for modern integrated circuit (IC) design. The Taiwan
Semiconductor Manufacturing Company (TSMC) digital standard cell model library
tcbn45gsbwpwc contains timing and area information for each standard cell at
45 nm. The switching activity of all gates needs to be identified to calculate the
power consumption of a component.

Figure 4.1 describes a methodology for power analysis using a combination of
RTL simulation and ASIC synthesis. The gate-level power analysis uses switching
activity from RTL code to analyze net switching power, cell internal power, and
leakage power.
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Figure 4.1: Design tool flow for power simulation using ModelSim® simulation
in combination with DesinCompiler power estimation.

The following series of items shows the steps of the power evaluation process:

1. System elaboration

2. Synthesis

3. Design simulation to generate switching activity

4. Power analysis

The HDL simulation tool ModelSim® is used to generate the Switching Activity
Information Format (SAIF) file, containing the switching activity of the design
depending on the corresponding testbench. The designer can choose between
optimizing the design with regard of timing, power or area.

4.1.2 Thermal Issues

With shrinking technology sizes, the power density is increasing. Especially with
transistor sizes below 90 nm, power dissipation and the resulting heat generation
cannot be disregarded any longer. One of the main reason is the exponentially
growing sub-threshold leakage current due to increasing temperature.
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Thermal management gets even more important with stacked designs and 3D
architectures. Even with 2D dies heat sinks to regulate the on chip temperature
are no longer sufficient. This effect is increasingly strengthened with stacking
dies and further pushing of density.

The rising temperature provokes multiple failure mechanisms and in the last
resort causing permanent damage. To prevent hot spots, power saving techniques
for NoCs need to be applied, as described in section 4.1.

4.2 State of the Art

The following section describes state of the art of power saving techniques for
NoCs. General descriptions of fundamentals of low power designs are given
are [77, 61]. An overview of low-power designs for NoC architectures, includ-
ing power and energy aware design techniques from several perspectives and
abstraction levels is given in [91].

The number of switches between on and off states should be limited. Firstly, since
each wake-up process results in power penalty and secondly because of high
wake-up latencies [99, 100]. Both values highly depend on the applied technology
and the depth of the sleep state [10].

There are several methods for power saving for NoC systems. They can be
divided into two groups, focused either on dynamic power reduction, or on the
reduction of the static power. Reduction of dynamic power can be achieved by
task or thread manipulation [36] or DVFS methods. The reduction of static power
is always linked with power or clock gating mechanisms and is described in the
following section.

The following works are inspired by dark silicon research [49] and propose a dif-
ferent kind of power gating granularity, where multiple physical networks run in
parallel and each layer can be power gated separately [24, 28]. The sub-networks
can be power gated without compromising the connectivity of the primary net-
work. Although the total power consumption of the multi-layer network can
be reduced compared to single-layer networks, the resource consumption is not
considered at all. Bokhari et al. [21] takes the idea of multi-layer networks and
describes the delay which is inserted when switching between the different layers.
All these works have in common that they suffer a disadvantage in regard of re-
source overhead by utilizing to the design of sub-networks. To keep the resource
overhead to a minimum due to power management, is one of the key features of
this work here.
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Another method to achieve power reduction by reducing the dynamic power is
DVFS. Lee at al. [66] presented a frequency and voltage scaling method based
on the network workload. Another system-level DVFS technique is presented
in [25], where higher level caches are comprised as well as network resources.
Bogdan et al. [20, 76] present a control approach for NoC designs with multiple
voltage and frequency islands. Their approaches focus on an analytic solution
of the power management problem, which results in a high resource utilization
and long decision times. As opposed to this, the method described in this work
pursues a minimal size hardware implementation for the power management,
with fast response to changing communication load since the complete logic is
implemented in hardware. In addition, the centralized approach in [20] does not
scale well, in contrast to my approach.
The Intel® Single-chip Cloud Computer is equipped with power management.
Tiles, mesh network, and memory controllers all have separate clocks and power
sources. Nevertheless, the frequency and voltage of network resources cannot be
adjusted at runtime [58].

For fine grained power gating on the system level Mirhosseini et al. [73] describe
a power gating scheme for virtual channels in on chip networks, that uses an
adaptive method to dynamically adjust the number of active virtual channels (VCs)
based on the on chip traffic characteristics. However, the proposed method does
not comprise guaranteed service connection within the network. Hence, if virtual
channels are reserved but currently not used, they cannot be power gated. Also,
other resources of the router than buffers will not be power gated if they are
inactive.

Jevtic et al. [54] describes a methodology to measure FPGA power consumption
and separate the total power into static and dynamic power. The measurements
results are more accurate than FPGA power estimation tools. However, due to the
complexity of the measurement proceeding, estimation tools are usually sufficient
to get an overview of the system power consumption.
It is also possible to reduce the static power in FPGAs [52], but in this work the
FPGA only serves as a prototype.

Since there is no real chip available of the NoC architecture described in this work,
the power measurements for evaluation of the design are based on simulation
models. A basic performance and power evaluation model for NoC based inter-
connection networks is described in [16]. Another example for an existing power
model for network routers is ORION, which comprises a set of architectural net-
work power models [56, 106]. The power model was validated using real power
measurement values from the Intel® 80-core Teraflops chip.

H. Matsutani and M. Koibuchi investigated power saving methods for on chip
networks and presented their work in several publications. In [68] an ultra fine-
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grained runtime power gating method for on chip routers is described. Each
router is divided into 35 micro power domains. A similar work of the same
author [69] presents a look-ahead routing strategy to switch on routers in advance.
However, this technology requires additional computational effort. In addition to
a not negligible resource overhead, additional computation overhead is necessary
inside the router to produce the information required to generate a wake-up
request signal. In the present work, the routers are powered on in advance as well,
but the required information does not require sophisticated routing algorithms,
only an additional 1 bit link between the routers to transmit the pre-request signal
is required. Low power networks often conclude in a lack of performance. The
goal of this work was a reduction of the power consumption while keeping the
communication performance high. The following describes the implementation
of a power management for networks on chips controlled by hardware logic.

4.3 Multi-Granularity Power Management Controller

The goal of the online power management unit for on chip networks is to decide
whether it is reasonable to switch off single virtual channels, a complete router or
to scale down the frequency without affecting the communication performance.
Therefore a power management controller (PMC), composed of the controller and
a Load Detection Unit (LDU), has been developed. A simplified version of the
controller has been presented in [FNB16], including only coarse grained power
gating. For efficient power gating functionality the PMC needs to observe the
current utilization of the on chip routers. Each router is already supplied with a
monitoring unit which is utilized by the PMC. The following section describes
the hardware implementation in detail. The design implementation is written
in SystemVerilog which offers the possibility to use the same files as for a FPGA
based prototype on the one hand. On the other hand the design files can be used
for an ASIC synthesis and the associated power estimation.

In order to come to a fast decision for every router while keeping the design
scalable, there is one power management controller (PMC) connected to every router.
The resulting resource overhead is proportionally small in contrast to the router
design and is further evaluated in section 4.5. Figure 4.2 shows a schematic of a
3x3 mesh network, based on the architecture described in section 2.6.2, where all
routers have a connection to their direct neighbors, the local cluster, and to one
PMC. In order to improve clarity, the wake-up and sleep signals are only given
for the router in the center of figure 4.2. In the actual implementation all PMC
have these two signals to all adjacent routers.
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Figure 4.2: Schematic of a 3x3 mesh network, including one power management
controller (PMC) for each router. The PMC sleep and wake-up signals
are only shown for the PMC in the middle, all others are connected
accordingly.
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Figure 4.3: Block diagram of the power management unit, consists of the load
detection unit inside the router, a clock generator, and the power
management controller.

In order to motivate the design of a multi-granularity power management concept,
router power consumption divided into the most important components is listed
in table 4.1. The biggest share of the total power (almost 80 %) is attributed to
the input buffers. The measurements have been executed with the same setup
as described in table 4.2. With five ports per router and each port providing four
VCs, the design holds in total 20 input buffers. Following power gating, a single
input buffer can reduce the router static power by 4 %. Hence, the approach
presented in this work provides the possibility to power gate a complete router or
single virtual channels (VCs) of a router.

The power management unit consists of the following three components. At first,
the load detection unit which analyzes the monitoring information. Secondly,
the transmission control unit which extends the existing control unit so that
no flits are transmitted as long as the following router is power gated. The
third component, the power management controller which decides whether the
corresponding router can be power gated or if the clock frequency should be
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Router Component

Power Consumption in W Dynamic Static
Total Percentage

Switching Internal Leakage

Router Core 1.24 ∗ 10−4 4.85 ∗ 10−4 4.67 ∗ 10−6 6.14 ∗ 10−4 10.85 %

Buffer Structure 9.15 ∗ 10−5 4.38 ∗ 10−3 1.74 ∗ 10−5 4.49 ∗ 10−3 79.40 %

OPS (Output port selection) 3.78 ∗ 10−5 1.04 ∗ 10−4 9.10 ∗ 10−7 1.43 ∗ 10−4 2.52 %

VCRT (Virtual channel reservation table) 4.46 ∗ 10−5 3.61 ∗ 10−4 2.63 ∗ 10−6 4.08 ∗ 10−4 7.22 %

Table 4.1: Static and dynamic power consumption of router components.

scaled. An overview of the power management unit, integrated into the router,
is given in figure 4.3. Of course the router still includes the components shown
in figure 2.12, but for reasons of simplification they are not shown here. In the
following section, the implementation of the load detection unit and the PMC is
described in detail.

4.3.1 Load Detection Unit (LDU)

The output of the monitoring unit is continuously evaluated by the Load Detection
Unit (LDU). While a router is active, the monitoring unit output values are greater
than zero. The LDU checks during every single clock cycle if its monitoring
value is greater than zero. If the monitoring value is equal to zero for a complete
observation time Tidle_detect, the router is marked as idle and hence the router
could be switched off completely. Otherwise, the busy signal of the detector
is set high to signalize a busy router device. The observation time Tidle_detect is
parametrizable and can be set during design time.
The LDU is integrated into the router. The advantage of this approach is that,
while the router is shut down, the monitoring unit is also powered off. While
the appropriate power management controller (PMC) must always be active even
when the router is shut down to watch out for newly arriving flits. Since the
power management unit cannot be power gated, the goal is to keep it as small as
possible with regard to resource and power consumption.

4.3.2 Power Management Controller (PMC)

The applied network provides two different communication types, best effort (BE)
and guaranteed service (GS) communication. In case of BE all flits of one packet are
sent right after each other. Hence, the reserved channel will be utilized the whole
time. In case of GS communication a channel will be reserved for a longer period
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and might not be utilized for any length of time.
The PMC has to signal the power state of its router to all adjacent devices to
prevent the loss of data packets. The PMC sends a hold-signal immediately when
it detects an idle router to block further outgoing transmissions by neighboring
routers and its local tile. The hold-signal interrupts the reservation process in the
transmission control of the out port virtual channels (VCs). Hence, flits are held
back in the sending router till the neighboring router is activated again.
On the other hand, as soon as the arbitration module determines a new packet
arrival, a transmission request signal is sent to the router in the direction the packet
should be forwarded, even before the actual arbitration process is finished. Conse-
quently, power gated routers start with their wake-up process as early as possible
to minimize the performance penalty due to power saving mechanisms.
Isolation cells are integrated at the input of the router to generate a known logic
value during shutdown of the supply power.

Observe

Power off

Power on
after Twakeup cycles

Isolation

serve

Power onation

Pre request

= 1 ?

Router busy ?

= 1 

yes

no

no

>TLVu >TLVl   &   <TLVu 

Scale down 

frequency

Power 

gate VC

Scale up 

frequency

Power on 

VC

Figure 4.4: State chart of the power management controller. Depending on the
router utilization (TLV - threshold limit value), the control loop suggest
a frequency scaling factor or power gates single virtual channels or
the complete router.
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Figure 4.4 shows the state diagram of the power management controller (PMC)
behavior. The following four paragraphs describe the main states and switches
between states of the controller.

Monitoring The monitoring unit continuously evaluates the virtual channel
utilization of a router. If at least one VC is utilized, the router is marked as active.
In addition, each VC has its associated utilization signal. Theses signals are used
by the Load Detection Unit (see section 4.3.1).

Power down If the Load Detection Unit (LDU) signals that the router is inactive,
the power management controller monitors for transmission request signals of
adjacent routers to avoid a false shut down while a transmission is already queued.
Also, the LDU checks whether there are channels reserved for GS communication.
Only if both are cases are false, the PMC can take the next state for isolating the
circuits of the router. Before the router is finally shut down on the next rising
clock edge, the PMC checks again for incoming requests. If a request arises at this
point in time (Pre request state in figure 4.4), the shutdown is canceled and the
router stays active.
Instead of isolating the router from the supply voltage, it is also possible to
disconnect the clock source. Consequently, the leakage power will not be reduced,
but on the other hand the wake up delay will be much shorter. In order to
evaluate which gating techniques suites better, the wake-up time is implemented
as a parameter and can be changed during design time.

Wake-up process In case that a flit should be routed to a power gated region,
the component needs to be woken up before. The initiating source router sends
a transmission request signal to the sleeping routers’ PMC. This causes the PMC
to switch the routers sleep transistor and connect it to the systems supply. In the
next step the PMC resets the virtual channel reservation table at the output port of
the requesting router to release the blocked VCs. Afterwards, the transmission is
executed as usual. The time a router requires for waking up and starting its usual
operation is defined as Twake−up and is crucial for the added latency by the power
gating functionality. A mechanism for early wake-up procedure is presented in
the following paragraph.

Power on Delay After the power on signal arrives at the power gated router
or VC, it takes time till all cells of the module reach a stable state to be fully
functional. This time is defined as Twake-up and highly depends on the applied
power gating technology, chip technology, and sleep state of the module. Firstly,
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since the chip technology is not known at early development stages and secondly
to keep the design flexible, the Twake-up is implemented as a variable parameter.
One possibility to power gate CMOS circuits is the insertion of sleep transistors.
Tovinakere et al. [100] describe in their work a model to estimate the wake-up
latency for circuits, power gated with sleep transistors. A similar method is
described in [99]. In that case a p-channel metal-oxide semiconductor (PMOS) sleep
transistor is inserted between the supply voltage (Vdd) and the node of the circuit
where the supply voltage would be connected usually. Hence, the wake-up time
is equivalent to the switching time of a PMOS transistor. Depending on the
technology and transistor size, the wake-up time varies between 40 ns and 0.26 ns.
However, the sleep transistors are bigger than the rest of the circuit since they
need to handle the required amount of switching current. If the power gating is
part of the power distribution network instead of being part of the standard cell,
the switching time will be higher. This is the case if a complete router should be
power gated. In case of smaller granularity, e.g. to power gate individual virtual
channels, the wake-up latency will be shorter. Thus, there are two variables which
need to be specified at design time, Twake-up router and Twake-up VC.

In order to decrease the performance penalty due to wake-up times, a look-ahead
wake-up strategy is implemented within this work. The wake-up signal (green
line in figure 4.5) indicates the power management controller (PMC) of the power
gated router that it should start its wake-up process. Whereas the orange sleep
signal indicates the neighboring routers that packets should be held back until
the router is fully functional again. This prevents packets being lost if they should
be routed towards a power gated region.
The look-ahead routing strategy does not require additional logic due to the
simple XY routing algorithm which is used in the design. The routing of a packet
header from arrival at the input port, till the header flit leaves the router requires
fife clock cycles. The port a packet has to leave a router is already known after
two clock cycles while the other clock cycles are needed for the VC reservation
process. Since the information of the port is already sufficient, the router can start
the wake up process already two clock cycles after the arrival of the packet by
giving notice to the neighboring PMC in direction of this port to wake up the
neighboring router.
Matsutani et al. [69] introduced a look-ahead sleep control to reduce the perfor-
mance penalty. In contrast, the approach described in the work can achieve the
same results without additional resources.

Frequency scaling In case of low loads or if channels are reserved by guaranteed
service (GS) connections, the router cannot be power gated. In order to reduce
power also in these cases, the PMC comprises a clock scaling unit in addition to
the power gating mechanism.
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Figure 4.5: Clipping of a NoC architecture including power management. A new
packet arrives at router 1 which should be transferred to the power
gated router 2.

The observe state is the default state of the power management controller, see top
of figure 4.4. Depending on the degree of router utilization, the controller either
suggest a frequency scaling factor (scaling the frequency up or down) or power
gates the complete router in case of no utilization. The router utilization threshold
limit value (TLV) can be chosen during design time. Depending on this parameter,
different scaling factors are calculated.
The realization of multiple clock domains requires a clock domain crossing be-
tween the different clock regions. The approach described in this work replaces
the buffers at each input port of the router by asynchronous FIFOs to reduce the
resource overhead. Thus, neighboring routers can run in different clock domains
without any further design changes. As a result of this, clock synchronization
becomes redundant.

Parameter Setting At the beginning of the design process it is usually not clear
which specific standard cell library shall be used. Simulation libraries contain
information about electrical, operating, and power characteristics. In particular,
tables about the propagation delay and power consumption as well as cell width
information are given in detail. In addition, even if the technology is known, the
delay times vary widely. In order to be flexible at the one hand and to explore
advantages and disadvantages of different settings on the other hand, the design
should not be bound to a specific delay time. Hence, the implementation of the
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power management controller introduces an adjustable delay which can be set
during the system design phase. Thus, the designer gets the opportunity to test its
implementation with different delay times to access the impact of this factor onto
the network performance. As well, it is possible to react to short term changes in
the standard cell library selection process.
The standard cell libraries are usually optimized either for maximum frequency,
low power, or minimum area with highly varying delay times. After an excessive
benchmarking process where different design configurations are tested against
each other, the most suitable technology can then be chosen.

4.4 Routing Strategies for Power Gated Networks

In case of power gating one complete router or even multiple routers, the usual
XY routing cannot be applied any longer without causing backpressure onto the
network. Packets which need to cross this region either need to be kept back till
the region is powered on again, or other routing strategies need to be applied to
route the packets around the power gated region.
Keeping back packets and waking-up regions on the one hand lowers the network
performance and on the other hand this might result in a high switching activity.
The power on switches consume additional power and therefore should be kept
to a minimum. Also, if on chip hotspots should be prevented, it might not be
possible to switch on a region for a specific time.
The second possibility, routing packets around power gated regions. Therefore,
different implementations can be applied such as more sophisticated routing
strategies than XY routing, packet rerouting or multi layer networks.
The following sections describe two possible strategies to route packets around
power gated regions. First, a rerouting strategy is presented. Second, a multi-
layer network implementation is described which is used to route packets around
power gated regions.

4.4.1 Rerouting

In this work only XY and XYZ routing has been applied so far. In order to
avoid huge off/on switching activities in case of power gated routers, the usage
of other routing algorithms provides better possibilities. In [46] a rerouting
strategy is described. In this paper the rerouting was used to route packets around
overloaded regions, but the same technique can also be applied to route packets
around power gated regions. Accordingly, routers need only to be switched on in
case that the router is within the destination region.
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Figure 4.6: 4x4 mesh network. The red routers are power gated routers.

The new routes around the power gated region still need to be minimal routes.
Non minimal routes would be possible as well, but to avoid additional latency
and out of order problems, only minimal routes should be considered.

The hardware implementation of the rerouting logic adds approximately eight
percent of resources. In order to adapt the concept to bypass power gated regions
only congestion detection must be extended to the existing work, so that it is also
sensible to power gated regions [46].

4.4.2 Multi-Layer Networks

Instead of a single layer of network resources, multiple heterogeneous network
layers are connected with each other. In the present work the basic network layer
is extended by a second lightweight layer, called second layer network (SLN). It was
initially built to provide fault tolerance for on chip networks [HFM+16] and then
has been extended in this work, so that it can be applied for power saving too
[HWZ+15].
The SLN is build up of switches and multiplexers. Depending on the configuration
at design time, the SLN adds up to 18 % of resources to the basic network.
However, as long as the SLN components are not used for rerouting packets
around power gated regions, the SLN can be power gated itself and hence does
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Figure 4.7: 8x8 mesh network architecture used for performance simulation. The
simulation framework include routers with power management as
well as the computing tiles connected to the local router port.

not consume any power. Only if basic network components are power gated,
a ring is configured around the power gated region and substitute the normal
network in regions. The communication is transparently redirected. Accordingly,
there is no need for adaptive routing schemes to bypass power gated regions.
[LWT+16]

4.5 Evaluation

For performance and power evaluation the architecture described in section 2.6.1
has been utilized and is extended by the power management. Detailed parameters
of the network architecture for evaluation are given in table 4.2. The proposed
router design and the power management unit are implemented in SystemVerilog.
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Topology 8 x 8 mesh

Router Architecture 5 port router (4 neighbors + 1 local tile)

Input Buffer 4 buffers per port (due to 4 virtual channels), each 4
flits deep

Link Width 128 bit data, 9 bit control

Processor Gaisler Leon3

Tile 5 processors per tile (cluster)

Technology TSMC 45 nm library (tcbn45gsbwp_120a)

Frequency 25 MHz (FPGA prototype)

1 GHz (ASIC implementation, worst case)

Table 4.2: Network architecture details for performance and power simulation.

The synthesis was done on the one hand for an FPGA based prototype using one
Xilinx® Virtex7 2000T FPGA. On the other hand the same HDL files have been
used for an ASIC synthesis and power estimation with Synopsys® DesignCompiler.
Therefore, the TSMC library tcbn45gsbwp_120a is applied.

The wake-up delay times for power gated circuits depend as described before on
the one hand on the used design library and on the other hand on the depth of
the sleep state. In order to keep flexibility and not to be assigned to one specific
parameter setting, the wake-up delay time of the routers is implemented as a
variable parameter. Hence, the designer can test its architecture design with
different delay times to assess the impact of the switching delay on the network
performance.1

4.5.0.1 Resource Consumption

One of the main goals of the implementation was to keep the resource overhead as
small as possible when adding the power management comprising the load detec-
tion unit and the power management controller. The generated area overhead by
adding the power management to the router design amounts only 2.1 %. Figure

1The results presented in this work have been generated with a delay of 20 clock cycles.
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4.8 shows the contrasting juxtaposition of resource consumption of a single cluster
(tile), a network router without power management, and a router including the
power management controller (PMC). The design parameter set of the tile and the
router are given in table 4.2. Resource consumption for look up tables (LUT),
Flip Flops (FFs), Block RAM (BRAM), and Digital Signal Processors block (DSPs)
are listed in figure 4.8. The results are based on an FPGA synthesis for Xilinx®

Virtex7 2000T. The overhead for an ASIC synthesis has a similar proportional
outcome.
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0 0171 50 0 0
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Figure 4.8: Resource consumption of a single tile, the original router, and the
power management unit (PMU). The PMU consists of the load detec-
tion unit and the power management controller. The figure illustrates
the synthesis results of a Xilinx® Virtex 7 2000T FPGA.

4.5.0.2 Simulation Infrastructure

In order to evaluate the performance by adding the power management, a HDL
based ModelSim® simulation of an 8x8 mesh network has been used. With the
purpose of reducing simulation time, the processing elements are represented by
simple models. Hence, only synthetic generated traffic is applied. The injection
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(x,y) 0 1 2 3 4 5 6 7

0 21% 18% 16% 15% 15% 17% 22% 27%
1 19% 15% 13% 13% 14% 16% 20% 23%
2 18% 13% 11% 11% 12% 16% 18% 23%
3 18% 13% 12% 12% 12% 15% 19% 23%
4 18% 13% 13% 12% 13% 16% 18% 22%
5 19% 15% 13% 12% 12% 16% 18% 23%
6 21% 17% 16% 15% 16% 21% 22% 26%
7 30% 22% 19% 19% 17% 20% 23% 32%

Table 4.3: Proportion of time routers are power gated in an 8x8 mesh, with syn-
thetic uniform random traffic and an injection rate of 0.3 flits/cycle/n-
ode.

rate for each router in the design is equal. In order to evaluate the design, multiple
runs with varying injection rates have been made.

The proportion of power gated routers depends particularly on the application.
Taking communication intensive applications, the amount of time a router can be
power gated will be much lower than having computation intensive applications.
In order to evaluate the worst case scenario, a synthetic generated uniform ran-
dom traffic model with varying injection rates as well as transpose traffic have
been used. Even these worst case consumption still show that the approach by
adding a small amount of resources can save power without major performance
loss. The injection rates were measured in flits per cycle per node (router). Table
4.3 shows the percentage of power gated time of each router in an 8x8 mesh
network with an injection rate of 0.3 flits/cycle/node. Building the average over
all injection rates between 0.1 and 0.6, in as many as 14.2 % of the time a router is
switched off.

Figure 4.9 compares the throughput and latency of an 8x8 mesh network without
power management with a network of equal dimensions including the power
management controller (PMC), using uniform random traffic. The definition of
latency and throughput measurements are given in section 2.5.3.1 and 2.5.3.2.
For one simulation run, the injection rate of all routers is equal. However, rising
injection rates, starting from 0.1 flits/cycle/node, are used to evaluate the system
performance. The throughput (see figure 4.9a) is almost equal in both implemen-
tations. Due to the power on delay, packets which should be transmitted to a
power gated router will be delayed. Hence, the latency with low injection rates
differ much more since it is more likely that routers can be power gated. If the
injection rate increases, it is less likely that routers can be power gated due to
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(x,y) 0 1 2 3 4 5 6 7

0 4% 4% 6% 6% 7% 8% 9% 11%
1 5% 5% 5% 6% 7% 7% 9% 9%
2 6% 6% 6% 6% 6% 7% 8% 8%
3 8% 7% 6% 6% 6% 7% 8% 8%
4 8% 8% 7% 7% 7% 6% 7% 8%
5 10% 9% 8% 7% 6% 6% 7% 7%
6 11% 10% 9% 7% 6% 6% 6% 7%
7 13% 11% 10% 8% 7% 7% 6% 7%

Table 4.4: Proportion of time routers are power gated in an 8x8 mesh, with syn-
thetic transpose traffic and an injection rate of 0.3 flits/cycle/node.

high utilization and following the latency of the two implementations is almost
the same.

Figure 4.10 shows the equivalent results for transpose traffic. The latency over-
head including the power management is comparatively small for transpose
traffic. The reason for this is the small percentage of power gated routers as it
is stated in table 4.4. Using transpose traffic, router (x,y) send packets to router
(y,x). As a consequence the traffic is evenly distributed in the mesh network and
routers on the margin are utilized in the same degree as routers in the center of
the mesh.
In order to reduce the power consumption for such traffic patterns as well, where
routers carry only low loads and hence cannot be power gated, the PMC suggest
a clock scaling factor. A selection of fixed values are possible as frequency scaling
factors. They can be chosen during design time by defining the threshold limit
value (TLV) accordingly.

Instead of retarding packets if routers are power gated, it would also be possible
to use a different routing scheme than XY routing. For example Heisswolf et al.
[46] describe a rerouting mechanism. Nevertheless, the more complex routing
algorithm comes with a resource overhead and increased latencies if non minimal
routes are used. Besides that, the destination router need to be waked up anyway
and hence retarding packets cannot be fully prevented. For these reasons this
work abandoned the option of a different routing algorithm than XY routing.
The second routing option for power gated networks (described in chapter 4.4.2)
using multiple-network layers is also not applied here since it also adds too
much extra resources. Only if the design has several network layers anyway, this
technology sounds reasonable.
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(x,y) 0 1 2 3 4 5 6 7

0 77 69 56 55 57 60 66 71
1 66 58 51 48 53 55 61 67
2 54 56 45 43 52 55 58 64
3 55 58 45 48 51 57 60 59
4 52 52 50 49 49 57 57 59
5 62 60 54 48 52 54 63 64
6 63 57 56 52 61 55 60 66
7 82 78 69 55 59 63 70 82

Table 4.5: Power on switching activity of routers in 8x8 mesh, with synthetic
uniform random traffic and an injection rate of 0.3 flits/cycle/node.
Simulation time: 315 µs and 135,000 flits dispatched in total.
Measurement given in total number of power on switches.

4.5.0.3 Power Analysis

There are different methods available to measure the power dissipation of FPGAs.
Jevtic at al. [54] describe a methodology to measure separate values of static,
clock, interconnect, and logic power in FPGAs. However, the power consumption
of FPGAs differs considerably from ASIC power consumption [63]. Hence, the
FPGA prototype is only used for system functionality verification and not for
power evaluations.

There are two parameters which are important to evaluate the power saving
potential. First, the span of time a router is powered off. Second, the amount of
switches between power off and on state since each switch costs additional power.
Table 4.5 shows the number of on switches for each router in an 8x8 mesh network
with an injection rate of 0.3 flits/cycle/node using uniform random traffic.

For power estimations at RTL level the Synopsys® PowerCompiler included in the
Synopsys® tool DesignCompiler has been used. The tool computes the leakage and
dynamic power of a router based on a given test bench scenario. For generating
the power estimation results, the same test bench as described in section 4.5.0.2
has been used. Table 4.6 shows the ASIC area and power consumption of a refer-
ence router without power management, compared to a router including the PMC.
Thereby, the power consumption is given on the one hand for no communication
(Power (Min.) columns) and on the other hand for high communication load
(Power (Max.) columns).
In case of no communication, the router is inactive all the time and can be clock-
or power gated. If so, the highest power savings are possible. In case of high com-
munication load, the router is active all the time and cannot be switched off at any
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time. Resulting from that, the router including the power management consumes
8.52 % additional power than the implementation without power management.
The PowerCompiler measurements, given in table 4.6, only comprise clock gating
instead of power gating. Hence, the leakage power is not reduced in this case.

Version
ASIC area Leakage power Dynamic power Total power

(µm2) (mW) (mW) (mW)

Base Router 229944
Min. 2.30 10.81 13.1028
Max. 2.06 449.2474 451.3119

Router with PM 232565 (+1.14 %)
Min. 2.13 7.29 9.4197 (-28.11 %)
Max. 2.08 487.71 489.7825 (+8.52 %)

Table 4.6: ASIC TSMC 45 nm power estimation results for a single router including
the power management. Compared to the original router.
(Frequency = 1 GHz; Operating Voltage = 0.8 V )

The maximum power saving potential using clock gating is 28.11 %. If power
gating is applied instead, even higher power savings could be achieved. Since the
same concept of the power management for network resources can be used for
clock gating as well as for power gating, no additional implementation effort is
required.

State of the art dark silicon NoC concepts presented in [24, 28] include a second
network layer. Both works do not consider the resource overhead caused by
the second network layer. Also, the switch between the network layers requires
time and hence adds latency to the communication [21]. Another disadvantage
of previous concepts, they do not scale well [20] and hence are not applicable
for designs with thousands of processors. All previous works have in common
that in contrast to this work, they did not constrain the resource overhead. This
work here however presents an approach with minimal resource overhead while
keeping the network performance as high as possible.
Matsutani et al. [69] introduced a look-ahead sleep control to reduce the perfor-
mance penalty. In contrast, the approach presented in this work can achieve the
same results without additional resources.
Compared to the network described in [73] the power management technique
presented in this work covers best effort (BE) and guaranteed service (GS) communi-
cation and is also capable of switching off complete routers. Hence, depending
on the actual communication an optimal energy saving measure is applied. In
addition, a working FPGA prototype is available and hence more realistic com-
munication patterns can be generated.
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4.6 Summary

The power dissipation is massively rising when technology scales down. Hence,
techniques for power reduction are essential, also for network resources. In
order to figure out the modules with the highest amount of power consumption,
estimation and modeling of the hardware architecture need to be done.
Since the power consumption contingents on the load capacitance, the operation
frequency, and the supply voltage, a reduction of any of these three parameters
results in a reduction of the power dissipation. Depending on which of these
parameters should be reduced, different methods are available, such as power
gating or frequency scaling.

In this chapter, a power management controller for on chip networks has been
presented. Each router comprises its own controlling unit to realize a decentral-
ized power optimization while minimizing the performance loss. Depending on
the degree of router utilization, the controller either suggest a frequency scaling
factor or power gates the complete router in case of no utilization.
The resource overhead of the power management controller (PMC) is kept to a mini-
mum, while saving an average of 14.2 % of the network power. Also an FPGA
based implementation of the approach is available for evaluation as well as an
ASIC design flow for power simulation.
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Figure 4.9: Network performance using uniform random traffic of 8x8 two-
dimensional mesh networks, each with homogeneous bandwidth of
128 bit. The reference implementation, which does not include a power
management controller is compared to the design of this work.
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Figure 4.10: Network performance of 8x8 two-dimensional mesh networks using
transpose traffic. Comparing a reference implementation with the
design including power management.
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The development of new hardware components including requirement analysis,
implementation, production, and test takes several years from the first step till the
final product release. To cut costs and be able to react fast on changing customer
demands, a reduction of the time to market is essential. Since design verification
is the most time consuming task in the development process, a reduction of
verification time is crucial.

The manufacturing process of integrated circuit designs is time consuming and
quite expensive. Especially critical, design faults cannot be eliminated after man-
ufacturing has started. This is the reason why an extensive verification and
validation process should be done in advance to remove as many failures as
possible. The verification process can be subdivided into four classes: simulation
based technologies; static technologies; formal technologies; and physical veri-
fication and analysis (see section 2.7.2). This work focuses on simulation based
verification only due to the complexity of the verification process. Since some
failures can only be extracted by running extensive software tests, a prototype of
the design is essential. In addition, the prototype enables a parallel development
of hardware and software components. So software can be released in parallel to
the hardware.

The main criteria for benchmarking information processing devices are the follow-
ing: (1) scalability; (2) speed; (3) energy efficiency, and (4) resource consumption.
To get a rough overview of the coverage of the verification process presented in
this work figure 5.1 compares ASIC designs, FPGA prototypes, and HDL sim-
ulation of single units and the complete architecture in terms of complexity of
the HDL design, simulation time, and test complexity. With increasing test and
design complexity, the simulation time increases dramatically. HDL based timing
accurate simulation including complex software tests (for example simulating
the entire operating system) is hardly usable since it take several days to run the
simulation. Also, the benefit of HDL simulation to have access to all signals fail
to apply due to the huge amount of data. ASIC designs offer the shortest time
to run complex test, but the time and amount of money to design an ASIC is not
commensurate. FPGA on the other hand have almost the same possibilities while
the design can be easily changed without further costs. However, the creation
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Figure 5.1: Comparison of simulation time, depending on test and HDL design
complexity.

of designs for multi-FPGA platforms is also a time consuming task and requires
extensive knowledge about the hardware design.

Formal verification of circuits with manageable size delivers good results in con-
firming the absence of failures for a given property. Although, with rising design
complexity, the verification decision is reached after long runtimes. Hence, formal
verification is not applicable for many-core systems with hundreds of cores. The
verification process presented in this chapter bases only on simulation based
technologies (see section 2.7.2). The following sections describe a combination of
abstracted simulation, cycle-accurate simulation, and FPGA-based prototyping.
The combination of those three methods is necessary to simulate as well as demon-
strate the benefits of the new network architectures in regard of performance and
power consumption. High-level simulations are used to verify the concepts at
high simulation speed at an early stage. Also, this kind of simulations are used
for application development. Cycle-accurate RTL simulation is used to verify the
functionality of smaller architectural blocks. Furthermore, it allows developing
and testing interfaces and the underlying protocols for communication between
modules.
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Figure 5.2: The V-model as an example for serial systems engineering process
models. This work focuses on the low level design implementation and
test. Requirement analysis and architecture design are not included.

5.1 System Development Life Cycle

The development of new digital systems can be divided into several stages;
planning, creating, testing, and deployment of the system. To manage the devel-
opment complexity, several process models have been created. In conventional
development process models the stages are disposed in serial fashion. The two
most well known serial models are the Waterfall model and V-model. Figure 5.2
shows a diagram of the V-model.
At the beginning of the life cycle of a new product, a developer team collects the
system requirements. The decisions made at that step, will not change during
the complete lifetime. However, some requirements are not identifiable during
the early phases or can change due to customer requirements changes. To react
on rapid changes, more flexible process models have been introduced, summa-
rized as agile development process models. They are shortly introduced in the
following section.
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Figure 5.3: SCRUM framework, a subset of an agile design flow.

5.1.1 Agile Design Process Model

Agile development methods have been established in software development since
many years [33]. They enable an increasing frequency in which new features and
products can be released.
To adopt the benefits of agile principle also to hardware development a flexible
test environment is necessary. In conventional process models each team is spe-
cialized on one topic, see figure 5.2. The teams communicate using extensive
documentation. While one of the major components of agile methods are mixed
interdisciplinary teams where each new developed component can directly be
tested on its own or as part of the entire design (see figure 5.3). This figure repre-
sents the SCRUM framework [90], where the project is split up into small work
packages which will then be finished within a month. The work packages are
pooled as the product backlog.
Section 5.3 and the following describe the simulation and prototyping environ-
ment which have been part of this work. A major challenge to apply agile methods
to embedded hardware development is to split the product into smaller working
packages. Each working package has to be implemented and tested on its own
and afterwards integrated into the design. The main achievement of this work
is the integration of various scripts into a graphical user interface which fully
automatically simulate, synthesize and test new hardware components.

5.2 State of the Art

Field programmable gate array (FPGA) prototyping is widely used in semiconductor
design. The verification of simple and small designs can be made with common
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FPGA evaluation boards. If it comes to bigger designs, prototyping platforms
with multiple FPGAs are used. In case of this work the CHIPit prototyping plat-
form from Synopsys® , including six Virtex5 FPGAs has been used as well as
the QuadV7 from ProFPGA. Common rapid FPGA-based prototyping hardware
platforms like Haps-80 series from Synopsys® [4] and Quad KU115 Logic Module
from S2C [3], as well as the CHIPit system, do not provide many interfaces. Even
custom designed prototyping platforms are not capable to provide as many inter-
faces as a multi-processor design with hundreds of cores would require. Hence, it
would not be possible to debug all processors on core level.
Previous debug modules did not give the possibility to trace the processor in-
structions as well as the network communication. The Gaisler LEON system
originally did not include a network system and hence one connection for the
debugging support unit was sufficient. Novel NoC systems require more than one
debug support unit and therefore it is hardly possible to connect every unit with
one physical interface, since FPGA prototypes have a limited number of debug
interfaces. In [97] the network resources are used to transmit debug informa-
tion through a Joint Test Action Group (JTAG) interface. However, this work only
comprise four network nodes. This yields in two problems for huger networks
with a single JTAG connection. First, the network resources are overloaded by
debugging information and second, with an increasing amount of debugging
data, a single JTAG interface builds a bottleneck. A different approach to handle
limited number of debug interfaces is presented in [22]. The author present a
virtual debug interface where all cores in the system are connected to one universal
asynchronous receiver/transmitter (UART) interface. One drawback of the virtual
UART concept is the limitation of the bandwidth to the host computer due to the
use of a single UART connection. In contrast to other solutions, the transactor
based debugging presented in this work only requires one physical interface
while most other solution need as many interfaces as the number of debugging
units in the design.

Kaisti et al. [57] present the characteristics of embedded systems and the associ-
ated challenges arising when applying agile methods to the development process.
They also give guidance how to map agile principles on hardware development.
However, they do not propose concrete concepts and tools to handle the new
challenges. T. Punkka [84] emphasizes that prototyping is the main part of agile
hardware development, including FPGA prototypes. Nevertheless, this work
does not show any tools or examples how the suggested process should look
like. In contrast, the following sections present a hardware development tool flow
which enables an agile development process.

The university of Stanford developed a cycle accurate NoC simulator called Book-
Sim [55]. The simulator supports different topologies, such as mesh, torus, and
flattened butterfly networks. Also, it provides diverse routing algorithms and
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includes options for customizing the networks’ router micro-architecture.
The disadvantage of the simulator described above, it only simulates the network
and do not include the processing elements. A first work combining network
simulators and simulators for multi-processor systems has been described in
[115].
Another automated process called ATLAS, for the design flow of the Hermes
network on chip, is presented in [71]. The model focuses on the generation and
evaluation of the network infrastructure. The processing elements connected to
the network routers are not included and the network traffic is generated by a
traffic generator. In contrast, the approach presented in the present work includes
the network resources as well as the processing elements. ATLAS enables quick
evaluation of the performance and power consumption of different NoC config-
urations. Disadvantage of all available tools, they only support homogeneous
architectures or they do not include the processing elements at all.
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Figure 5.4: Prototype of a three-dimensional multi-core architecture. A 2x2x2
mesh is partitioned across four FPGAs.
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5.3 Simulation

Software based, cycle-accurate simulators are typically used for hardware devel-
opment. Cycle accurate hardware simulation delivers precise timing behavior of
the hardware and software running on top but dramatically decreases the speed
of the simulation. Nevertheless, for hardware development software-based RTL
simulation is the only reasonable method. For software and functional simulation
the common method is to raise the level by abstracting from the underlying
hardware to increase simulation speed. However, raising the abstraction level
lowers the simulation accuracy as timing can no longer be modeled precisely. As
high-level simulations do not require precise hardware models, they are used
early in the development flow for software development and debugging. Figure
5.4 shows a rough draft of the target architecture which should later be realized
as an FPGA prototype.

ModelSim® is a powerful HDL simulation tool that allows to stimulate the inputs
of modules and view both outputs and internal signals. However, simulation on
register transfer level can not model the effect of meta-stability which can occur
in asynchronous designs. In addition to the simulation a prototype of the system
is essential to cover also these kinds of failures.

5.3.1 Co-Simulation

The Co-Simulation is an extension to the described simulation method above. For
the Co-Simulation it is mandatory that parts of the design are already verified and
running stable on FPGA prototypes. While other design components are either
redesigned or newly developed. The FPGA prototype is then connected directly
with the HDL simulation. This is especially beneficial to speed up simulation
time. The following describes the technical realization of the Co-Simulation on
the CHIPit platform, but this technique can also be applied to other prototyping
platforms. The Co-Simulation process is described in detail in [FHMB14].

The HDL bridge is dedicated to move HDL modules, IPs or whole designs into
the CHIPit platform and connect them to a simulation software running on
a host computer. This process is also known as Co-Simulation. The DUT is
moved into a hardware, and it is replaced by a simulator environment. This
simulator environment will have the same I/O ports and parameters as the
original HDL module. The simulator environment is directly connected with
the CHIPit platform. Using this connection the signal values will be exchanged
with the real HDL module implemented into the hardware. The opposite side
is implemented into the CHIPit platform. There is also an environment, which
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Figure 5.5: Co-simulation flow using a multi-FPGA platform in combination with
an HDL simulation running on a host PC.

is called hardware environment. The hardware environment is connected to the
corresponding simulator environment. The HDL module is connected to the
hardware environment. It receives the signal values from the simulator, applies
these values to the HDL module and sends the result values from the HDL
module back to the simulator. The hardware environment is like a wrapper and is
available in Verilog or VHDL. The physical communication between the software
and the hardware is implemented using the UMRBus Communication System.
Figure 5.5 shows the Co-simulation tool flow.

5.4 FPGA Based Hardware Prototyping

In regard of decreasing product life cycles and to react on customer individual
conveniences, designers have less time to develop new hardware architectures.
To hold down the development costs of an ASIC it is mandatory to extensively
test and simulate the design before producing the actual ASIC. FPGA-based
prototyping systems are designed for system and software validation. As FPGA
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devices have become larger and faster, verifying functionality of ASIC designs
in FPGAs has become an effective and economical method of verification. To
map ASIC designs consisting of millions of gates to a prototyping platform,
development boards with multiple FPGAs are necessary. However, mapping the
design across multiple FPGAs makes the verification process quite complex. To
obtain optimal performance and usability, automatic synthesis flow and testing
will be introduced in this chapter.

Within this work a scalable multi-core embedded processor design is realized
as a prototype on a multi-FPGA platform. The two different FPGA platforms
which have been used are described briefly in the following section. For system
evaluation and design space exploration, different implementations of the NoC
based multi-core architecture have been realized. As an example, one realization
is pictured in figure 5.4, where a three-dimensional mesh is partitioned across
four FPGAs.

5.4.1 Prototyping Platforms

Prototypes of huge multi-core designs, especially with realistic cache sizes require
many FPGA resources. Common FPGA development board usually comprise
only single FPGAs and provide only limited number of I/O interfaces as well as a
limited amount of memory. To cope with the huge resource demand and to offer
large debugging possibilities a multi-FPGA prototype platform has been used
in this work. The following two sections describe first the CHIPit platform from
Synopsys® followed by the Quad V7 platform from proFPGA.

5.4.1.1 CHIPit Prototyping Platform

The CHIPit Platinum Edition System is a high-capacity, high-speed emulation and
rapid prototyping system for ASIC designs and is the predecessor of the recent
HAPS systems [4]. It contains six Virtex-5 LX330T FPGAs which is equivalent to
12 million ASIC gates; furthermore the platform can be extended up to 18 FPGAs.
Next to each FPGA there is an SRAM memory placed with a capacity of 8 Mbyte
each. In addition, on the top of the prototyping system there are extension board
interfaces to plug in up to six half-size extension boards. These boards can contain
different extensions of the system as memory, Ethernet or other interfaces. Figure
5.6 shows an image of the CHIPit Platinum Edition System with extension board
connectors on the top and additional logic analyzer debug connectors on the front
side. In addition to the extension board interfaces, the CHIPit is connected to a
host computer via the Universal Multi-Resource Bus (UMRbus). This bus enables
co-simulation and builds the interconnection for transactor based communication
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Figure 5.6: CHIPit prototyping platform containing six Virtex-5 LX330T FPGAs.

where hardware running on the FPGAs is connected to software which is executed
on the host computer.

The FPGAs are arranged on two boards connected by a main board, see figure 5.7.
The FPGAs, SSRAM memory modules and extension boards are connected with
each other via switches. The configuration of the switches has to be done during
design time.

5.4.1.2 Quad V7 Prototyping Platform

The quad V7 prototyping platform from proFPGA is similarly constructed as the
CHIPit platform. It contains four Virtex-7 2000T FPGAs (XC7V2000T) which are
currently the biggest available FPGAs on the market. The quad V7 platform has
the capacity to simulate designs with up to 48 M ASIC gates. The four FPGA
modules can be connected with each other using cables. The same connectors
can be used for extension boards containing I/O interfaces or memory. Figure 5.8
shows the architecture of the prototyping platform. The yellow lines represent the
FPGA user I/Os for inter FPGA connections or for extension boards. The green
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Figure 5.7: Switch matrix of the CHIPit platform. Additional to the signals shown,
there are 32 fixed routed global signals, one reset resources, the clock
resources and the UMR bus. The debugging connectors are placed on
the left side, connected to FPGA 1-3.
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Figure 5.8: Architecture of the proFPGA quad V7 prototyping platform [2].

lines represent the clock tree. While the blue lines represent the Multi-Gigabit
Transceiver (MGT) where each FPGA offer 16 connections.

5.4.2 Design Partitioning

When working with platforms consisting of multiple chips, the design needs to
be portioned. There are different challenges arising, working with portioned
designs, such as timing closure and restricted number of inter chip connections.
Following, the partitioning of an FPGA design is usually an extensive piece of
work which cannot be easily automated. However, the tile based network on chip
hardware architecture used in this work supports the automatic generation of
partitioned bitstreams quite well. The partition process will split the design only
on the border between the routers and so each tile will remain as a whole on one
FPGA. Figure 5.14 shows a 2x2 mesh design partitioned across four FPGAs.
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The allocation of the tiles to one certain FPGA has to be written down in the
tool flow script, because the placement matters for example in regards of mem-
ory extension boards and debug connectivity. However, once the placement is
done, even if the internal tile structure changes, it is not necessary to change the
partitioning and placement anymore. The number of tiles per FPGA is mainly
restricted by the FPGA resources and external memory.
In regards of the number of signals between FPGAs, the regular network structure
suits the partitioning quite well too, since only signals between two routers are
transferred. Hence, pin multiplexing can be avoided with the current setup. The
current router setup uses four virtual channel (VC) and a link bandwidth of 128 bit.
This gives the opportunity to automate the complete tool flow and even a user
with little knowledge about multi FPGA platforms can generate new bitstreams.
The automated tool flow is further discussed in section 5.6.

5.4.3 Debug Connection Interfaces

The number of available physical debug interfaces on prototyping platforms is
quite restricted. FPGAs of the Xilinx® Virtex series offer approximately 1000
user IO pins. However, these pins need to be used for inter FPGA connections
as well as for connections to external memory. To avoid issues with severely
limited pin counts, while at the same time offering a huge amount of debugging
interfaces, virtualized debug interfaces will be introduced as shown in [FHB14].
The following section describes one possible implementation of a virtualized
debug interface.

5.4.3.1 XACTOR Gen Package

The Synopsys® transactor library for Advanced Microcontroller Bus Architecture (AMBA)
is the link between AMBA based user designs and a software environment on a
PC host machine. With respect to the AMBA-based LEON-Cores that are used
in the prototype, these transactors play an important role as detailed later. The
library packet includes several AMBA transactors, such as master and slave com-
ponents for different bus systems, including Advanced High-performance Bus (AHB)
and Advanced eXtensible Interface (AXI).
The connection between the AHB bus on the FPGA side and software running on
a host PC is provided by the UMRbus. The library package includes the hardware
IP for each transactor as well as a C++ library; hence the user does not need to
care about the UMRbus implementation. Hence, the user only needs to configure
the transactor for its own purpose and integrate it into the project. The transctors
library could be used to realize the connection for hybrid prototyping as well
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Figure 5.9: UMRBus transactor model.

as in place for all kind of interfaces. For more information about the Transactor
Library see [96].

The UMRbus based transactor model is shown in figure 5.9. The left side repre-
sents the software part with multiple software instances and the right represents
the hardware adapter and the DUT. In the middle lies the UMRBus driver which
connects the hardware and software side. Since the communication over the
UMRbus is carried out in a serial way, each transactor includes two FIFOs to store
incoming and outgoing messages. The inport FIFO holds data packets while the
AHB bus fabric processes them. While the outport FIFO queues the messages
during the UMRbus is busy. Both FIFO sizes could be customized in the range of
16 to 4095 32-bit words.

Figure 5.10 shows the allocation of UMRBus components across FPGAs of the
CHIPit platform. Each UMRbus component inside one FPGA is connected in
a serial way, as well as the communication between FPGAs and the UMRbus
communication interface is also serialized. Hence, each FPGA requires only
one set of UMRbus signal independent of the number of transactor instances
inside the FPGA. Up to 64 UMRbus components are allowed within the platform.
However, due to limited FPGA resources, only designs with a maximum of 9 tiles
can be realized on the CHIPit platform. The Quad V7 platform provides space for
mesh based multi-core designs with up to 20 tiles.
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Figure 5.10: Allocation of UMRBus components across FPGAs of the CHIPit Pro-
totyping Platform.

5.4.3.2 AHB Transactor Overhead

Including one AHB transactor into each tile results in a small overhead of re-
sources in contrast of using only serial interfaces. The size of inport and outport
FIFOs inside the transactor module could be custom parameterized and hence
the consumption of BRAM resources varies. Table 5.1 shows the resource con-
sumption of the AHB transactor implementation in contrast to a serial UART.
The number of pins used by one transactor component is also higher than for
one simple serial interfaces, but if more than one transactor component is placed
into one FPGA, they all share the same pin resources. Figure 5.11 shows the pin
utilization, in terms of different number of tiles, for implementation with serial
interfaces, the UMRbus based concept, and a reference design with virtual UART
interfaces [22].

5.4.4 Gaisler Debug tool GRMON2

The Aeoroflex Gaisler tool GRMON2 [9] is a general debug monitor for LEON3
processors, and for SoC designs based on the GRLIB IP library. The Debug Support
Unit (DSU) provides a non intrusive debug environment for the Leon cores on
real target hardware. The LEON3 DSU can be controlled through any AMBA
AHB master in a system on chip (SoC) design. The debug interface can be of various
types: serial UART, Ethernet or a user defined interface can be used. The GR-
MON2 monitor interfaces to the on chip debug support unit DSU, implementing
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Virtex5LX330 UART AHB IO

interface transactor

LUTs 189,183 336 3744 (1,98 %)

Register 207,360 184 3699 (1,78 %)

BRAM 288 0 7 (2,43 %)

IO pins 1,200 2 20 (1,67 %)

Table 5.1: Design space exploration of debugging alternatives.

a large range of debug functions. These functions are for example download
and execution of software applications, built-in disassembler and trace buffer
management, and read and write access to all system registers and memory which
are accessible in the tile local address range. Since the GRMON2 debug monitor
is intended to debug SoC designs but not network on chip (NoC) designs, it is
necessary to have multiple instances of GRMON2 in NoC designs such as the
invasive hardware architecture.
In addition to the usual prototyping challenges there are some specific issues
arising from invasive computing technology. Since hardware and software is built
up from scratch, one debug interface in each tile is necessary. For example soft-
ware loading from the main memory is not yet implemented, and so the software
must be loaded into each tile. However, this amount of debug interfaces usually
exceeds the number of interfaces available on prototyping systems. Another issue
is the amount of required memory. Since the goal is to run parallel applications
competing with execution on current multi-core computer, the size of memory is
crucial. FPGA development boards cannot cover this demand.

For optimal design debugging and loading software to each individual tile in the
design, one DSU is required in each tile. Following from that, as many interfaces
are necessary as the design tile count. For designs with more than two tiles, the
available physical interfaces are not sufficient. Consequently, virtual interfaces
are used to connect the DSU with host PC. One possible implementation of virtual
interface is described in section 5.4.3.1. A loadable module must be compiled into
a shared object library which includes AHB read and write functions as well as
an initialization of the transactor. The user than can start GRMON2 in a common
way with the shared library and the tile ID as a parameter:

./grmon -dback my_io.so -dbackarg Tile_ID
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After starting GRMON2, the UMRbus interface will be initialized. Afterward
data could be read and written to any memory location which is implemented
and accessible through the AHB bus.

5.4.5 Debugging System Performance

Considering the performance of system components, the software on the host
computer side runs at GHz speed. The FPGAs design runs with a lower frequency
at 25MHz and the UMRBus communication link is running at 70MHz, but because
of a long latency of the link, the transmission rate could be translated roughly to
100 KHz. However, it is possible to achieve a maximum data rate of 100 Mb/sec,
by using asynchronous communication across the link and by transferring large
packets over the UMRBus.
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Figure 5.11: Required FPGA or ASIC pins for realization of different debugging.
alternatives.

Since the transactor data is transmitted serially, the data rate decrease if all trans-
actors are transferring data at the same time. However, since parallel debugging
of all processors is not necessary on the one hand and on the other hand the debug
information does not compromise huge data sets, the data transmission rate is
not that affected during debugging. Only if huge amount of data is transferred at
the same time, the transmission rate of a single transactor decreases. Figure 5.12
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Figure 5.12: Bandwidth of debugging alternatives

illustrates the bandwidth of the debugging interfaces according to the number
of tiles in the design. The experimental tests only considered designs with maxi-
mum of nine tiles. Thereby, it could be observed that the accumulated bandwidth
decreases if one UMRbus connection for multiple FPGAs is used.

Figure 5.13 shows an example view of the GRMON2 connections. At start-up,
information of tile internal components are reported. Because one GRMON2
connection for each tile need to be opened, a simple script to open all monitors at
once in one screen window has been developed. At the bottom of the screen in
figure 5.13, the tile ID of the current view is highlighted. It is also possible to load
and run applications automatically after opening the connection. Thus, the user
only need to start the script once and then only need to interpret the different
monitoring data printed in the debugging window.

The debugging process of complex NoC systems is still a time consuming task,
but thanks to the given comprehensive monitoring information, also bugs could
be detected whose cause of error happens a huge space of time before the bug is
visible to users.
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Figure 5.13: GRMON2 debug window at system start.

5.5 Verification and Testing

With rising design complexity the test process complexity also increases. After
successful simulation, the design functionality need to be verified with more
comprehensive software tests. Also, to reduce the time to market, software
development is done in parallel to the embedded hardware development. As
soon as the first prototype is available, first real applications can be tested. This
offers the advantage that software can be improved already in an early stage
of the product development process. Furthermore, interaction of hardware and
software can be investigated.

5.5.1 Design Space Exploration

Evaluation of competing system architectures and diverse parameter settings is
done by comparing the trade-offs given by results from performance and power
measurements. Therefor different testbench scenarios of multiple architectures
with varying parameters and different communication patterns have been created.
Based on this, an HDL based simulation has been used for first evaluations.
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Afterwards, the same HDL files are used to synthesize the design on the one hand
for area and power assessment using an ASIC synthesis flow. On the other hand
using these files for a FPGA based prototype.

During this work, different extensions to the original network design have been
implemented. To contrast the different implementations with each other for exam-
ple in terms of resource consumption, synthesis results have been analyzed. Table
5.2 shows the resource consumption of different modules of the NoC architecture.

Configuration
Xilinx® Virtex7

Cells RAM64

2D router 6,361 –

3D router 9,865 –

2D router including power management (PM) 6,440 –

Network adapter (NA) 6,246 8

Processing node (tile) 61,667 240

2x2 design, 5 cores 303,236 994

Table 5.2: Resource consumption of different network and tile components. De-
tails about the design parameters are given in table 4.2.

5.5.2 Hardware Regression Test

Every time, when new hardware components are added to a design or existing
units are updated, it need to be verified that the system functionality has not
been influenced by the changes. In software development, regression tests are
in wide use. This principle is now mapped onto hardware development. The
implementation need to verified to a certain level before the regression tests can
start. Continuous and self-triggered test iterations are necessary that the test can
run autonomous.
The following described the benchmarks which have been applied for the hard-
ware regression test, followed by the results. The scripts for automated testing
have been part of a collaborative work that arose from the InvasIC project [7].
Since the FPGA prototype is quite similar to the intended chip, the test software
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produced for these FPGA based hardware regression tests, can later be reused for
production tests on the produced chip.

5.5.2.1 NAS Parallel Benchmarks

In the early ’90s the Numerical Aerodynamic Simulation program developed a multi-
processor system, consisting of more than 1,000 processor cores to simulate an
entire aerospace vehicle system within a computing time of few hours [14]. At
that time there has been no feasibility to test and evaluate such huge systems
and prove functionality before production. For performance evaluation of such
huge multi-processor systems the NASA Advanced Supercomputing (NAS) parallel
benchmarking system has been developed then. The benchmarks do not include
any hardware specifics, so they can be used for evaluation of any parallel archi-
tecture, so it can also be applied to the InvasIC network architecture. The software
code of the benchmarks can be configured to fit the architecture requirements.

Table 5.3 lists the eight NAS applications which have been used to evaluate the
invasive architecture. The first five benchmarks in this table are parallel kernel
benchmarks. The last three applications in table 5.3 solve discretized versions of
the unsteady, compressible Navier-Stokes equations in three spatial dimensions
[13]. Each benchmark focuses upon different matters; (1) computation inten-
sive application with no inter-processor communication; and (2) communication
intensive applications with inter-tile communication.

The NAS parallel benchmarks have actually been developed for performance
evaluation but in this work they have been applied for hardware regression tests.
After each hardware update, it is necessary to verify the system is still functional
the same way as before. Different hardware versions can be compared with each
other and it is possible to visualize the improvement.

5.5.2.2 Regression Test Results

Figure 5.15 shows part of the regression test result page. The user need to specify
the applications which should be tested as well as the number of iterations each
test is repeated. After successful finishing the regression test, an HTML file with
the test results is generated. The coloring of the tests gives a fast overview of
the result. Green coloring imply that all iterations ended successful (UMR bus
failures do not count in this case), yellow coloring imply that a portion of test
iterations ended without errors and red coloring imply that all test iterations have
failed.
If failures are noticed, the script directly tries to assign them to known issues,
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Figure 5.15: Regression test result page.

such as DMA (operating system detected a problem with DMA request) or heap
(C library detected a problem during free).

5.6 InvasIC Project Generator

The development and evaluation tool flow as described in the previous sections
consists of many steps, e.g. simulation, synthesis, and test. Figure 5.16 shows the
complete tool flow which builds the framework of the graphical user interface (GUI).
For automation and reusability reasons, scripts for each of these steps has been
developed. The user does not need a detailed view of each step any longer.
However, it is still necessary to customize the hardware files by hand and to type
the commands to start the scripts. Instead of command line interfaces and to
simplify the usage, a GUI combining all scripts into one tool has been developed
in this work. Also, this opens up the usage of FPGA prototypes for users without
any knowledge about hardware design, while they are still able to customize the
hardware architecture.

Besides the better usability a second issue came to the fore. One of the major
difficulties in designing new heterogeneous devices is testing the devices with
multiple configurations. A test infrastructure for comparison of the different
configurations is necessary in order to maintain a time and cost efficient design
verification.
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Figure 5.16: Framework of the InvasIC Project Generator.
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Figure 5.17: Start window of InvasIC Project Generator GUI.

The following chapter describes the structure of the InvasIC Project Generator GUI
and a test environment to accelerate the test process.

5.6.1 GUI Implementation

A graphical user interface (GUI) gives the opportunity that the user does not require
deep knowledge about the hardware code to customize the architectural design.
As well as it does not require command-line knowledge. The following describes
the implementation of the GUI and the different windows which are visible for
the user.

To implement a multi-platform GUI, the tool QT creator [5] has been used for de-
velopment. Qt is an object-oriented user interface written in C++. The generated
software code can be compiled for Windows and as well for Linux systems which
was one of the basic requirements to be platform independent.

When the user start the tool, the first window which opens is the "start up screen"
to open an existing project or to create a new architecture, see figure 5.17. Cur-
rently only mesh based architectures are possible, but with an adjustable size.
The user has to specify the X and Y dimension of the architecture. Afterwards the
next window will open to select the tiles.

Figure 5.18 shows the window view to define the heterogeneous architecture. The
user must choose the content and location of processing as well as memory and
I/O tiles. Prefabricated tiles are shown on the right side of the window, depicted
by an appropriate image. The content of each tile can be chosen either through a
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Figure 5.18: Window to define the content of the processing tiles.
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Figure 5.19: Parameter selection window. Neatly arranged, since more frequent
used parameters are in a separate list.

drop down list or by drag and drop one of the images into the respective location
of the mesh design. It is also possible to add other tiles in addition to the listed
ones.

Additional parameters, such as the number of cores per tile can be set in the
parameter setting window, see figure 5.19. Each parameter has a default value,
so that the user only need to change the ones necessary for its project. Since
the number of parameters is quite huge and it would be too confusing to list
all parameters in one list, a separate list containing the most frequently used
parameters is available. This list is called standard parameters. It is possible to
add or delete parameters from that list and save the settings.
One of the most important advantage of the parameter setting in this tool, the
parameters are set equally in all hardware files where they are required.
Also, since the configuration for simulation and synthesis can vary, there are two
columns for each parameter, one for settings for HDL simulation and a second
one for synthesis. For example the floating point unit of the LEON processor can
not be used in simulation, while it is required for the FPGA prototype (see last
row in figure 5.19).
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Figure 5.20: Regression test window. The user can choose between predefined
tests.

After defining the architecture and modifying the parameters, the top level and
configuration hardware files are automatically generated. Following the simula-
tion and also the FPGA synthesis can be started without further assistance of the
user.

If the synthesis has finished successfully, the design can be tested on real hard-
ware. Therefor a FPGA prototyping system need to be connected to the machine
where the tool is running on. The only modification of the user is the selection of
iterations and tests which should be included in the current setting. Figure 5.20
shows the window to select the tests.

In addition to existing NoC simulators, the framework described in this work
comprises architecture definition, automatic file generation, hardware simulation
with a variety of network traffic patterns as well as regression tests on real hard-
ware. The hardware regression test gives the opportunity to test network and the
processing elements (PEs) on an FPGA prototype.

Kaisti et al. [57] present the characteristics of embedded systems and the associ-
ated challenges arising when applying agile methods to the development process.
They also give guidance how to map agile principles on hardware development.
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However, they do not propose concrete concepts and tools to handle the new
challenges. T. Punkka [84] emphasize that prototyping is the main part of agile
hardware development, including FPGA prototypes. Nevertheless, this work
does not show any tools or examples how the suggested process should look like.
In contrast, this work here presents a hardware development tool flow which
enables an agile development process. Another challenge arising with FPGA
prototypes are limited number of debug interfaces. In [97] the network resources
are used to transmit debug information through a JTAG interface. However, this
work only comprise four network nodes. For prototypes with huger networks,
this yields in two problems. First, the network resources are overloaded by de-
bugging information and second, with an increasing amount of debugging data, a
single JTAG interface builds a bottleneck. A different approach to handle limited
number of debug interfaces is presented in [22]. The author present a virtual
debug interface where all cores in the system are connected to one UART interface.
One drawback of the virtual UART concept is the limitation of the bandwidth to
the host computer due to the use of a single UART connection. In contrast to other
solutions, the transactor based debugging presented in this work only requires
one physical interface while most other solution need as many interfaces as the
number of debugging units in the design. Another advantage of the transactor
based debugging to conventional interfaces is the considerable increase of the
bandwidth.

5.7 Summary

This chapter presented a simulation environment and an FPGA based debugging
methodology for large scale many-core architectures. The resulting prototype
of the network architecture was used for proof of concept and data rate mea-
surements. In contrast to other solutions, the transactor based debugging only
requires one physical interface while most other solution need as many interfaces
as the number of debugging units in the design. Thus, there will be no problems
because of the lack of interfaces for debugging. Another advantage of the trans-
actor based design to conventional interfaces is the considerable increase of the
bandwidth.

For automated agile system exploration and to summarize the significant number
of scripts of the simulation, synthesis and test flow, a graphical user interface (GUI)
tool has been implemented. The user friendly interface enables an easy selection
of user defined heterogeneous architectures and automatic file generation.
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Abbr. Benchmark Name Description

EP Embarrassingly Parallel Evaluation of an integral by
means of pseudo-random trials.
Virtually the kernel does not re-
quire inter-processor communi-
cation.

MG MultiGrid Requires highly structured long
distance communication.

CG Conjugate Gradient Tests irregular long-distance
communication, using unstruc-
tured matrix-vector multiplica-
tions.

FT Fast Fourier Transform A three-dimensional partial dif-
ferential equation.

IS Integer Sort Tests integer computation
speed and communication
performance.

LU Lower-Upper symmetric
Gauss-Seide

Represents computations associ-
ated with the implicit operator
of a newer class of implicit com-
putational fluid dynamics algo-
rithms.

SP Scalar Pentadiagonal Solution of multiple, indepen-
dent systems of non-diagonally-
dominant, scalar, pentadiagonal
equations.

BT Block Tri-diagonal Solution of multiple, indepen-
dent systems of non-diagonally-
dominant, block tridiagonal
equations.

Table 5.3: The eight NAS parallel benchmarks introduced by Bailey et. al [14].
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6 Conclusion and Outlook

6.1 Conclusion

Gordon Moore predicted in 1965 that the transistor count per integrated circuit
will double approximately every two years. The prediction is still valid but an
end of "Moores law" is in sight. For further performance increase of processors,
laptops, mobile phones, and other electronics, new technologies such as three-
dimensional chip designs are required. At the same time, bus based multi-core
designs have been replaced by network on chips and these architectures need to
be mapped onto the new 3D chips.

The goal of this work was to face these new challenges by implementing and
mapping a three-dimensional network on chip (NoC) onto a 3D chip. One of the
main criteria of the new design has been the restriction of vertical interconnects.
The development of a new router port with adaptive bandwidth enables fully
routed 3D network designs partitioned across several chip layers and still satisfy
the restricted number of vertical interconnects. Thereby, the bandwidth of each
router port can be individually chosen during design time.

When focusing on high integrated 3D chip designs one major issue arising is
the heat generation due to power dissipation. A decentralized, communication
aware power management concept have been designed in this work. One power
management controller (PMC) is integrated into each router to use communication
monitoring information to generate fast decisions if a router can be power gated.
A main criterion, the communication performance should not be affected by the
power management. The results given in section 4.5 show that the performance is
only marginal affected including the power management unit to the design while
it is possible to save an average of 14 % of power.

To validate the proposed 3D network architecture and the concept of power man-
agement, an FPGA based prototype have been build up. To place the huge many
core design, a platform comprising multiple FPGAs had to be taken. Each FPGA
represents one chip layer of a target architecture. One of the biggest challenges
in the development process of new digital hardware designs is the verification.
The lack of debug interfaces usually constitutes a problem of FPGA platforms.
The concept of a transactor based debug interface solves this problem. Since the
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design flow for multi-FPGA platforms is time consuming and requires broad
knowledge of the hardware architecture, a graphical user interface (GUI) tool has
been designed. The tool enables a fast generation of new heterogeneous architec-
ture versions. After defining the architecture, the FPGA design is automatically
created and synthesized. As well, it includes a verification process for automatic
hardware regression testing.

6.2 Outlook

The Latest silicon transistors have dimensions around a few nano meters [31].
Since further technology shrinking is hardly possible in a few years, completely
new ideas are required. The end of pure silicon based chip design is within
reach. There are a lot of new ideas on the horizon, but not yet fully applicable.
Quantum computing and carbon nanotubes are two possible concepts for further
performance improvement. Also, other materials than silicon will be applied
for integrated circuits. Materials such as gallium arsenide (GaAs) or silicon-
germanium (SiGe) have higher electron mobility than silicon and hence provide a
major transport enhancement.

Chapter 4 described the implementation of a power management unit for adap-
tive hardware controlled power management of the routers. Also, first rerouting
algorithms are given in section 4.4, but further enhancement of the routing algo-
rithms is possible. Power aware communication can further decrease the power
consumption of the network resources.

The network on chip discussed in this work as well as the FPGA prototype are
part of the Transregional Collaborative Research Center Invasive Computing [7].
Both will continuously be used for further research. Also, the FPGA prototype
forms a basis for software developer as well as it can be used for verification of
further hardware integration.
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