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Abstract 

The expansion of fluctuating renewable energy sources leads to an increasing impact of 

weather-related uncertainties on future decentralized energy systems. Stochastic modeling 

techniques enable an adequate consideration of the uncertainties and provide support for 

both investment and operating decisions in such systems. In this paper, we consider a 

residential quarter using photovoltaic (PV) systems in combination with multi-stage air-water 

heat pumps and heat storage units for space heating and domestic hot water. We model the 

investment and operating problem of the quarter’s energy system as two-stage stochastic 

mixed-integer linear program (SMILP) and optimize the thermal storage units. In order to 

keep the resulting stochastic, large-scale program computationally feasible, the problem is 

decomposed in combination with a derivative-free optimization (DFO). The subproblems are 

solved in parallel on high-performance computing (HPC) systems. Our approach is 

integrated in that it comprises three subsystems: generation of consistent ensembles of the 

required input data by a Markov process, transformation into sets of energy demand and 

supply profiles and the actual stochastic optimization. An analysis of the scalability and 

comparison with a state-of-the-art dual decomposition method using Lagrange relaxation and 

a conic bundle algorithm shows a good performance of our approach for the considered 

problem type. A comparison of the effective gain of modeling the quarter as stochastic 

program with the resulting computational expenses justifies the approach. Moreover, our 

results show that heat storage units in such systems are generally larger when uncertainties 

are considered, i.e. stochastic optimization can help to avoid insufficient setup decisions. 

Furthermore, we find that the storage is more profitable for domestic hot water than for space 

heating.  
 

Keywords: Large-scale energy system optimization, stochastic programming, uncertainty 

modeling, Markov process. 
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1. Introduction 

 

The provision of energy is continuously moving from a conventionally centralized towards a 

decentralized energy supply with a significant expansion of renewable energy sources. This 

fundamental, structural rearrangement of the energy system introduces an increased 

fluctuation and non-negligible uncertainties on the supply side. The resulting challenge is the 

actual technical and economical realization of the transition process. An additional challenge 

consists in the modeling of such energy systems taking into account their uncertainties to 

support a reliable, cost-efficient and technically feasible transition. These new problems call 

for tailored quantitative solutions to analyze and optimize energy systems [36]. In this 

context, energy systems with decentralized energy provision and load shift potentials of 

energy storage units are becoming increasingly important [4, 46, 58, 88]. Research needs 

include the development of approaches for determining the optimal dimensioning and usage 

of the decentralized energy system’s components, i.e. to support long-term investment and 

short-term operation decisions under uncertain conditions. 

In this paper, we consider a residential quarter with photovoltaic (PV) generators and load 

flexibilities using heat pumps in combination with heat storage units. Our target is to support 

the investment and operation planning process of the quarter’s energy system. In order to 

meet the preferences of the quarter’s residents in terms of maximizing the share of self-

generated electricity, the available roof area of the quarter is used completely resulting in a 

240kWp PV system in this case study. The optimization of a one-year-period with the 

resolution of 15 minutes is based on real data for a new residential quarter located in 

Germany considering a total time horizon of 20 years. To ensure a consistent generation and 

handling of these input data and uncertainties, we present a module-based framework 

including three subsystems for (i) simulating consistent ensembles of the required input data 

by a stochastic process, (ii) transforming these initial profiles into consistent sets of energy 

supply and demand profiles and (iii) using the generated profiles in a two-stage stochastic 

programming optimization. In general, the framework serves as a modeling and optimizing 

concept for a wide variety of decentralized energy systems with various energy supply and 

demand components, all under consideration of uncertain conditions. Making use of 

stochastic programming (SP) instead of deterministic programming leads to the expected 

best solution with respect to the uncertainties. 

Since renewable supply, such as PV generation, and energy demand essentially depend 

on fluctuating and uncertain meteorological data, a Markov process is used to generate 

profiles of the required meteorological parameters considering their stochastic nature. As 

mentioned above, our focus is not only on operation, but also on investment optimization. 

Therefore, our approach needs to take into account the short-term (intra-daily) and long-term 

(annual and seasonal) variations, since both can affect the optimal investment decision. The 

resulting meteorological profiles are transformed into PV and heat pump supply and electrical 

and thermal demand profiles for the subsequent optimization of the stochastic program. 

While the temperature- and solar-radiation-dependent PV supply and the temperature-

dependent heat pump supply is transformed by physical models, the electrical and thermal 

demand is based on a typical day approach depending on day, season, temperature, 

cloudiness, and building properties [82]. Thereby, the so-called ‘standard load’ or H0 profiles 

are employed to generate electrical demand profiles. The modeling of the heat storage units 

involves integer variables at the first stage. Since the employed heat pumps can only run 

stepwise, there are also integer variables at the second stage leading to a stochastic mixed-

integer linear program (SMILP) with more than 100 million variables. To solve this problem 
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with high computational intensity in reasonable time, the resulting large-scale SMILP is 

decomposed into subproblems. These subproblems are pooled by a scenario reduction 

technique of Gröwe-Kuska et al. [29] and optimized in parallel on high-performance 

computing (HPC) systems. A commercial solver is used for the inner optimization of the 

subproblems. The entire problem is solved by a derivative-free optimization (DFO) algorithm 

that coordinates the optimization of the outer masterproblem on the HPC system. We also 

compare our results to the case where the heat pumps’ operation can be modeled by 

continuous variables at the second stage. Additionally, we contrast the gain of modeling the 

quarter as stochastic program to the resulting computational expenses. Finally, we show the 

scalability of the approach in comparison to a state-of-the-art dual decomposition method 

using Lagrangian relaxation and a conic bundle algorithm for solving such problem types. 

The paper is structured as follows. Section 2 gives a literature review relevant to the 

developed approach which is described in Section 3. The focus of the paper is on the 

presentation of a real-world case study in Section 4. In this context, we demonstrate our 

approach for a residential quarter including about 70 households, a 240kWp PV system and 

heat pumps in combination with heat storage units to cover the energy demand. At the end of 

Section 4, the computational expenses and the scalability of the approach are reflected 

upon. The approach itself is discussed separately in Section 5. The paper finishes with a 

conclusion and an outlook in Section 6. 

 

 

2. Literature Review 

 

Numerous decentralized as well as centralized energy system models are designed for a 

specific system describing the interaction between energy suppliers, consumers and storage 

units (for a thorough overview see, e.g., [16, 83]). Depending on the time horizon, the 

majority is based on time slices from 10 up to 35 040 slices per year, which already leads to 

large-scale problems when realistic energy systems are considered.1 Here, the term ‘large-

scale’ does not refer to the geographic size of such a system, but to the number of decision 

variables which contours the complexity of the optimization model. According to Ventosa et 

al. [83], large-scale problems have more than 10 000 variables with high computational 

expenses.  

The economic profitability of energy systems generally depends on optimal energy 

management, i.e. on finding the optimal capacity of individual components at the first stage 

and, at the second stage, on their optimal operation over their lifetimes. Prevalently, energy 

systems are modeled deterministically to optimize the investment [78, 85], the operation [42, 

72, 76] or both [7, 24, 43, 50] without uncertainty. However, the energy management and 

thus the economic profitability are subject to manifold uncertainties associated with the future 

development of energy prices, the electrical and thermal demand and the energy supply. In 

practice, the impact of uncertainties is often considered by using expected values. The 

impact is otherwise estimated by sensitivity or scenario analyses since the variation of 

parameters by such analyses does not increase the problem size. However, such analyses 

can only provide an estimation of the effect on the optimization results, but the complex 

impact cannot be captured entirely. Stochastic modeling techniques enable an adequate 

consideration of various uncertainties in the investment and operation planning processes, 

                                                           
1
 For instance, see Jochem, Schönfelder, and Fichtner [38], who consider the operation of micro combined heat 

and power units with a resolution of 15 minutes to model the physical system properties adequately. 
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thus supporting the assessment of the system’s performance in both the short- and long-

term. There are several individual models of real energy systems that support optimal 

investment and operation, taking into account uncertainties with SP (e.g., [27, 44, 48, 55, 

87]). Most of them deal with continuous or mixed-integer decision variables and linear 

objective functions and constraints. There is a lack of a general approach with a 

comprehensive modeling chain that generates the required energy profiles under 

consideration of their mutual dependencies. The arising large-scale SP with millions of 

mixed-integer variables needs an optimization framework finding an optimal solution with 

reasonable computational effort. 

Two-stage SP enables an adequate consideration of different sources of uncertainties in 

the investment and operation planning processes of decentralized energy systems. 

Generally, uncertainties can be defined as information not exactly known (or neglected) at 

the time when the decision has to be made. There are manifold ways to classify 

uncertainties; they can be abstractly categorized as aleatory or epistemic (see e.g., [8, 26, 

28, 54, 56]).2 In our context, model results are subject to three different sources of 

uncertainties: 

 (Raw) Input data 

 Preparatory transformation of the (raw) input data 

 System modeling 

 

Each optimization model requires input data fraught with aleatory uncertainties such as 

weather, prices, supply or demand. Additional aleatory or epistemic uncertainties are 

introduced by the process transforming raw input data into data required for the optimization. 

Finally, uncertainties are induced by the model itself, mostly epistemically: the more it differs 

from the real system, the more uncertainty could be induced. The optimization results and 

the subsequent decision depend on all these sources of uncertainties. Stochastic modeling 

techniques can be used to account for the associated uncertainties of input and transformed 

data, resulting in a robust-sufficient solution that is expected to be optimal. In this paper, we 

consider uncertainty in raw input data and consistently model and propagate these 

uncertainties through the model chain to the stochastic program that is to be optimized. An 

optimization under uncertain model parameters has been initially considered about 60 years 

ago by Dantzig [17] and by Beale [6]. Those parameter uncertainties are incorporated by 

their probability distributions through SP.3 Since the economic profitability of an energy 

system depends predominantly, at the first stage, on the investment decision and, at the 

second stage, on its operation, the problem can be adequately formulated as a two-stage 

stochastic program with recourse [18, 41]. 

Two-stage stochastic linear programs without integer requirements are well-studied [70]. 

Then the recourse function is a piecewise linear convex function. A number of algorithms 

have been developed for such programs (see [64]). Most of these algorithms use an 

extension of the Benders decomposition introduced by Van Slyke and Wets [81] known as 

                                                           
2
 Uncertainties are characterized as epistemic, if they could be reduced by gathering more data or by refining 

models. They are aleatory, if the modeler does not see the possibility of reducing them [45]. 
3
 At about the same time, the principle of robust optimization was introduced by Wald [86] besides SP. It is an 

alternative approach to counteract uncertainties by minimizing the maximum risk, later termed as optimizing 
the worst case [9]. Furthermore, fuzzy or parametric programming can be used as other opportunities to 
incorporate such uncertainties (see [90, 84, 52]). 
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the L-shaped method.4 But for many cases, some decisions of the first and second stage can 

only be made on the basis of a stepwise selection. Then the main challenge arises when 

integer variables are involved and the convexity is no longer present [70] (for some major 

results in this area see also [30]).  

Birge and Louveaux [12] have presented a branch-and-cut approach with the L-shaped 

method for the simplest form of two-stage SMILP: first-stage purely binary and second-stage 

continuous variables. For the most challenging class, with integer and continuous variables 

at both stages and uncertain parameters anywhere in the model, only few algorithms can be 

found in the literature. When integer variables are involved at the second stage, the L-

shaped method (that requires convex subproblem value functions) cannot be applied directly. 

See Escudero et al. [23] for a thorough review on this subject.  

Carøe and Tind [14] and Carøe and Schultz [13] presented a generalized L-shaped 

method for models having integer variables at the second stage and either some continuous 

or some discrete first-stage variables. The dual-decomposition-based method focuses on 

using Lagrangian relaxation to obtain appropriate bounds. For a large number of mixed-

integer variables at both stages, Nürnberg and Römisch [57] have used stochastic dynamic 

programming techniques. Sherali and Fraticelli [74], Sen and Sherali [71] and Zhu [91] have 

developed a branch-and-cut decomposition, modifying the L-shaped method by a relaxation 

in combination with a special convexification scheme called reformulation-linearization 

technique. Yuan and Sen [89] and Sherali and Smith [75] have enhanced this approach 

using Benders decomposition at the first stage and a stochastic branch-and-cut algorithm at 

the second. In addition, Alonso-Ayuso et al. [2] have introduced a branch-and-fix 

coordination methodology. The main difference to the common branch-and-bound algorithm 

is that the search tree evaluates many subproblems. The decision to branch, prune or bound 

depends on all these subproblems at each step. This approach has been continuously 

upgraded to using the twin node family concept in combination with Benders decomposition 

and parallel processing for continuous and binary variables at both stages [3, 22, 23, 59]. 

Besides these exact algorithms for SMILP, there are also heuristic approaches: for 

instance, Till et al. [80] propose a hybrid algorithm that is similar to our approach. It solves 

two-stage SMILP with integer and continuous variables at either stage. Based on stage-

decomposition, the second-stage scenario problems are solved by a MILP solver. An 

evolutionary algorithm performs the search of the first-stage variables. However, this 

procedure as well as exact algorithms are not practically applicable for extremely large-scale 

problems due the high computational expenses of each iteration step. The high number of 

variables and constraints of the stochastic program requires computing nodes with 

computational power that is not available to date. But even if the required computing 

resources were available, the program would not be feasible within reasonable time and 

accuracy, when integers are involved at the second stage. In contrast, we present a module-

based approach where a well-performing DFO algorithm reliably finds a (locally) optimal 

solution of the first-stage variables in few steps. Furthermore, a necessary decomposition of 

the second stage is applied to achieve the required accuracy of the solutions within an 

acceptable period of time. Because of the extreme problem size, the decomposed second 

stage is computed in parallel. 

 

 

                                                           
4
 The L-Shape is a specific application of the Benders decomposition to the stochastic program and gets the 

name from the block structure of the extensive form of the program. The main idea is to approximate the 
recourse function in the objective, i.e. a solution of all second-stage recourse linear programs. 
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3. The developed approach for two-stage stochastic, large-scale problems 

 

In practice, an approach is needed for the economic optimization of decentralized energy 

systems under uncertainties, such as a residential quarter with storage units and its own PV 

energy provision. To support the investment and operation decisions, the problem is 

formulated as a stochastic program. In the context of a decentralized energy system, optimal 

decisions are achieved by an optimal balancing of its energy supply and demand with the 

objective of, for instance, maximal profits or minimal costs. Furthermore, the objective can 

depend on parameters such as prices, efficiencies and many others. Some of these cannot 

be used directly for the optimization, but have to be derived from raw data that are 

transformed into the required format. As the entire model chain is subject to the different 

uncertainties mentioned above, we propose a comprehensive approach, which is structured 

into three subsystems (see Fig. 1): 

a) Input data subsystem (IDS) 

b) Data transformation subsystem (DTS) 

c) Economic optimization subsystem (EOS) 

 

 

 
Fig. 1. Conceptual structure of our comprehensive modeling approach [10]. 

 

For the energy system optimization, data of energy demand, supply and prices are needed 

which can be either acquired directly as input data at the IDS or transformed from raw input 

data at the DTS. The approach accounts for the associated uncertainties by generating 

consistent ensembles of raw input parameters (e.g. weather, prices) and transformed data 

(e.g. electrical and thermal supply or demand) considering their probabilistic properties. For 

instance, it includes the fundamental relationships between these input parameters and 

energy demand as well as supply. These profiles are used in the subsequent EOS. 
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3.1. Input data subsystem (IDS) 

 

The main task of the IDS consists in generating input parameter profiles (e.g., meteorological 

profiles, such as global solar radiation and temperature) considering their fluctuating and 

stochastic nature as well as the interdependencies between them. Our ultimate target in this 

paper is the two-stage optimization of decentralized energy systems. On the one hand, this 

implies that our approach for simulating input profiles needs to take into account both the 

short-term fluctuations and uncertainties of the different load profiles as well as the long-term 

variations. For example, ‘good’ and ‘bad’ solar years may affect the choice of adequate 

dimensions for the components of a decentralized energy system. On the other hand, the 

decentralized energy system includes components on the supply and demand side. 

Therefore, our approach needs to be able to consider the interdependencies between the 

supply and demand profiles and the meteorological conditions, i.e. an independent stochastic 

simulation of the profiles would not be appropriate. For instance, the electricity generation 

from solar PV panels does not only depend on the global solar radiation but also on the 

temperature, which affects the panels’ efficiency. Moreover, the heat demand depends on 

the temperature as well as the cloudiness. We therefore need to simulate the meteorological 

conditions, such as the cloudiness, and its interdependencies with temperature and global 

solar radiation. 

The stochastic characterization of solar radiation and other meteorological parameters 

has been studied intensely in the literature. The approaches can generally be divided into 

two categories: first, regression-based models draw random variables applying an estimate 

of the probability distribution functions of the observations (see [19] for an overview for 

instance). Second, Markov processes draw a random variable by applying a transition matrix 

which represents the probabilities of future states depending on past realizations. For 

instance, focussing on the long-term variations, Amato et al. [5] model daily solar radiation 

using a Markov process. Ehnberg and Bollen [21] simulate solar radiation on the basis of 

cloud observations available in three-hour intervals. Focussing on the short-term variations in 

a high temporal resolution, Morf [53] proposes a Markov process aimed at simulating the 

dynamic behaviour of solar radiation.  

Overall, Markov processes have proven suitable to meet the above-mentioned 

requirements, e.g., to consider interdependencies between cloudiness, temperature and 

global solar radiation. While our approach is similar to the one by Ehnberg and Bollen [21], 

we additionally include seasonal information in our Markov process, i.e. the corresponding 

transition probabilities may vary from month to month (see below). Moreover, we simulate 

temperature profiles, which are consistently compatible with the simulated radiation profiles. 

In order to address the challenge of considering long-term as well as short-term 

variations, we suggest a two-step approach. In the first step, we start by modeling the daily 

cloudiness index 𝜁 ∈ {0, … ,8} as a Markov process in order to take the long-term variations 

into account. The cloudiness is considered in Oktas, describing how many eighths of the sky 

are covered by clouds, i.e. 𝜁 = 0 indicates a completely clear sky while 𝜁 = 8 indicates a 

completely clouded sky [39]. The transition matrix Θ𝜁
𝑚 (where the index 𝑚 indicates the 

month) is defined for the Markov process used for the simulation of the cloudiness 𝜁: 

 

Θ𝜁
𝑚 = (

𝜋00
𝜁,𝑚

… 𝜋08
𝜁,𝑚

⋮ ⋱ ⋮

𝜋80
𝜁,𝑚

… 𝜋88
𝜁,𝑚

). (1) 
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The transition probabilities 𝜋𝑖𝑗
𝜁,𝑚

 in equation (1) are derived on the basis of publicly 

available weather data provided by Germany’s National Meteorological Service, which are 

available for a variety of locations across Germany for periods of often more than 50 years. A 

transition probability 𝜋𝑖𝑗
𝜁,𝑚

 denotes the conditional probability that, in month 𝑚, the cloudiness 

𝜁𝛿 on day 𝛿 equals 𝑗 knowing that the cloudiness 𝜁𝛿−1 on day 𝛿 − 1 was 𝑖: 

 𝜋𝑖𝑗
𝜁,𝑚

= 𝑃(𝜁𝛿 = 𝑗 | 𝜁𝛿−1 = 𝑖); ∑𝜋𝑖𝑗
𝜁,𝑚

𝑗

= 1  ∀𝑚 ∀𝑖. (2) 

 

The Markov process for the cloudiness based on the transition probabilities in (2) then 

takes the form 

 𝜁𝛿 = 𝑓(𝜁𝛿−1, Ξ), (3) 
 

where Ξ is a uniformly distributed random variable in [0,1]. Let now ξ be a realization of Ξ. 

Then ζδ can be obtained by: 

 

𝜁𝛿 = 

{
 
 
 
 

 
 
 
 0 𝑖𝑓 𝜉 ∈ [0, 𝜋𝜁𝛿−10

𝜁,𝑚
[ ,

1 𝑖𝑓 𝜉 ∈ [𝜋𝜁𝛿−10
𝜁,𝑚

,∑𝜋𝜁𝛿−1𝑗
𝜁,𝑚

1

𝑗=0

[ ,

⋮

8 𝑖𝑓 𝜉 ∈ [∑𝜋𝜁𝛿−1𝑗
𝜁,𝑚

7

𝑗=0

, 1] .

   (4) 

 

So basically, equation (4) is an operationalization of the Markov process. Higher (lower) 

transition probabilities 𝜋𝑖𝑗
𝜁,𝑚

 (e.g., the probability of a clear sky on day 𝛿 knowing that day 

𝛿 − 1 was clear would be rather high in June but low in December) would result in larger 

(smaller) intervals. With ξ being a realization of a uniformly distributed random variable, this 

leads directly to a higher (lower) likelihood of the corresponding cloudiness on day 𝛿.  

An additional Markov process is used for modeling the daily global solar radiation on the 

basis of the cloudiness. The transition probabilities of the transition matrix Θ𝜌
𝑚,𝜁

 

corresponding to the daily global solar radiation 𝜌𝛿 on day 𝛿 can be expressed as a function 

of the month 𝑚, the cloudiness 𝜁𝛿 on day 𝛿 and the global solar radiation 𝜌𝛿−1 on day 𝛿 − 1: 

 𝜋𝑘𝑙
𝜌,𝑚,𝑗

= 𝑃(𝜌𝛿 = 𝑙 | 𝜌𝛿−1 = 𝑘 ∩ 𝜁𝛿 = 𝑗); ∑𝜋𝑘𝑙
𝜌,𝑚,𝑗

= 1

𝑙

  ∀𝑚 ∀𝑗 ∀𝑘. (5) 

 

The starting values of the Markov processes can be chosen arbitrarily since the influence 

is negligible in the long run. On the basis of the simulated daily cloudiness, the values for 

daily global solar radiation and average daily temperature are derived. Our analysis shows 

that deriving the transition probabilities on a monthly basis delivers more accurate results 

than using yearly transition probabilities. We validated our simulation approach by comparing 

the results to historical weather data published by Germany’s National Meteorological 

Service using short-term as well as long-term performance indicators. For the radiation 

supply time series, for instance, the validation included a comparison of the total annual 

radiation supply as well as a number of additional indicators on the basis of Schermeyer et 

al. [66]. Further details are provided in Appendix A.  

In the second step, a stochastic process is used to generate profiles in 15 minute 

resolution on the basis of the daily simulation results of step 1. This second step accounts for 
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the short-term fluctuations. While, in general, the seasonal and daily variations of global solar 

radiation, for instance, can be described in a deterministic way, the stochastic short-term 

variations are related to the state of the atmosphere (e.g. the cloudiness). These short-term 

variations are simulated by an empirically determined, statistically varying term under the 

constraint that a given daily global solar radiation (determined in step 1) is achieved. The 

Markov process generates time series of the required input parameters (in our case solar 

radiation, temperature and cloudiness) for the following subsystems and is applied to obtain 

the desired number of scenarios 𝜔 ∈ {1,… ,𝑁} that are the basis of the case study under 

uncertainty in Section 4. 

 

3.2. Data transformation subsystem (DTS) 

 

The DTS propagates the uncertainties of raw input data (sets of solar radiation, temperature 

and cloudiness profiles) and transforms the output of the IDS into data required for the 

subsequent optimization: energy supply and demand profiles of the decentralized energy 

system. A PV supply profile module provides the energy supply profiles of the PV system, 

taking into account the physical relationships. The main components of a PV system are 

solar modules which transform light into electrical energy through the photoelectric effect. 

Their electrical yield primarily depends on incident light, module efficiency and its orientation 

described by longitude, latitude, tilt and azimuth of the modules. A physical model on the 

basis of Ritzenhoff [62] describes these dependencies. Thereby, the global solar radiation 

coming from the IDS is split into direct and diffuse solar radiation on the module and is used 

in conjunction with ambient temperature (also from the IDS) to determine accurate module 

efficiency.5 In terms of the power generation from PV, the output of the DTS is a set of 

electrical energy supply profiles which is consistent with the simulation results of the IDS. 

These profiles are subsequently used in the EOS. The thermal supply profiles of the heat 

pumps are transformed depending on their physical performance properties and the 

uncertain ambient temperature. Concerning the energy demand, we use a reference load 

profile approach. The generation of electrical demand profiles and heat demand profiles for 

space heating (SH) and domestic hot water (DHW) is based on the VDI guideline 4655 [82] 

using parameters such as day, season, insulation, location, occupancy, temperature and 

cloudiness. Again, the latter two are taken from the sets of profiles generated by the IDS. 

Concerning the electricity demand profiles, the daily electricity demand is taken from the 

approach based on the VDI guideline 4655. As such, the daily demand depends on the 

uncertain temperature and cloudiness profiles. To achieve appropriate 15 minute electricity 

demand profiles within each day, the so-called ‘standard load’ or H0 profiles are scaled to 

match the daily electricity demand values. The main reason for using the H0 profiles here is 

that our analysis has shown a strong convergence of aggregate household load towards the 

H0 profile even for comparatively small numbers of households (further details are shown in 

Appendix A). Fig. 2 illustrates energy demand and supply profiles of a residential quarter with 

a PV system and energy requirement for electricity, SH and DHW. The electricity can also be 

taken from an external supplier, while heat demand is covered by heat pumps, heating 

elements and heat storage units within the quarter. 

                                                           
5
 The model also includes the albedo effect, averaged losses such as shadowing, module mismatching or cable 

and inverter losses for a certain PV system and the dependency of performance on low lighting and 
temperature for a certain module technology and manufacturer. 
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Fig. 2. Illustrative energy demand and PV supply profiles of a residential quarter for a typical day. 

 

With respect to Fig. 2, the optimization task is to shift the ideal amount of energy demand for 

SH (dashed line) and DHW (dotted line) to times when a PV surplus is available by using 

heat pumps in combination with optimal heat storage capacities. In addition, minimization of 

storage losses and ramp-up losses of the heat pumps, as well as avoiding the use of the 

inefficient heating elements, will lower the energy costs. 

 

3.3. Economic optimization subsystem (EOS) 

 

Within the EOS, the problem is formulated as an SMILP by optimization modules tailored to 

the specific needs of the problem that allow for carrying out (locally) optimal economic 

decisions. Hereby the profiles of the DTS can be used as possible scenarios with the 

probability of occurrence 𝜋. The stochastic program is decomposed into feasible and 

manageable subproblems by fixing inter- and intra-scenario-connected variables. In order to 

keep the computation time and costs acceptable, a scenario reduction technique is applied 

and the optimization of the remaining subproblems is executed in parallel on HPC systems, 

referred to as inner optimization. Within the masterproblem, which we refer to as outer 

optimization, the fixed, scenario-connected variables are optimized by a DFO algorithm. 

 

3.3.1. Mathematical modeling of the optimization problem 

 

Generally, finding economically optimal investment and operation decisions under uncertain 

parameters can be formulated as a two-stage stochastic program. Their analytical solution, 

however, is only possible for few simple cases. In order to solve the problem numerically, it 

can be formulated as one large linear program known as its deterministic equivalent [18, 65]: 

 min
𝒙,𝒚𝝎

     𝑐𝑇𝒙 + 𝜋1𝑝1
𝑇𝒚𝟏 +⋯+ 𝜋𝜔𝑝𝜔

𝑇 𝒚𝝎 +⋯+ 𝜋𝑁𝑝𝑁
𝑇𝒚𝑵 (6) 

   

  𝑠. 𝑡.     𝐴𝒙 ≤ 𝑏,  (7) 

 
              𝑇 1𝒙 +𝑊 1𝒚𝟏                                                                                     ≤ ℎ1, 

               ⋮                         ⋱                                                                                    ⋮ 
            𝑇 𝜔𝒙                               + 𝑊  𝜔𝒚𝝎                                                    ≤ ℎ𝜔, 
               ⋮                                                           ⋱                                                  ⋮ 
            𝑇 𝑁𝒙                                                              + 𝑊 𝑁𝒚𝑵                      ≤ ℎ𝜔, 

(8) 

 
                  𝒙,           𝒚𝟏      ⋯                𝒚𝝎 ,     ⋯               𝒚𝑵                      ≥ 0. (9) 
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At the first stage, the cost vector 𝑐, the matrix 𝐴 and the right-hand-side vector 𝑏 are assumed 

to be known, while at the second stage, the price vector 𝑝, the matrices 𝑇 𝜔 and 𝑊  𝜔 and the 

right-hand-side vector ℎ𝜔 are uncertain. Hereby, each scenario ω is an element of the 
scenario set 𝛺 = {1,2,… ,𝑁} occurring with probabilities 𝜋1, … , 𝜋𝑁, respectively.6 Decision 

variables of the stochastic program such as 𝒙 (first stage) and 𝒚 (second stage) are 

highlighted in bold. In case of mixed-integers, 𝒙 and 𝒚 are defined as [1]: 

                𝒙 ∈ ℝ+
𝐼−𝑍1 × ℤ+

𝑍1 ,              𝒚𝝎 ∈ ℝ+
𝑅−𝑍2 × ℤ+

𝑍2 , (10) 

 

where 𝐼, 𝑅, 𝑍1 and 𝑍2 are non-negative integers with 𝑍1 ≤ 𝐼 and 𝑍2 ≤ 𝑅.  

The scenarios have to be generated adequately depending on the probability distribution 

of the uncertain parameters. In the case of stochastic programs with integer recourse 

(𝑍2 > 0), Schultz [69] has also shown that, under mild conditions, discrete distributions can 

effectively approximate continuous ones to any given accuracy. Since the scenario 

generation in the IDS is based on a uniformly distributed random variable, each scenario has 

the same probability of occurrence 
1

𝑁
 and (6) can be summarized to: 

 
min
𝒙,𝒚𝝎

     𝑐𝑇𝒙 +
1

𝑁
∑ 𝑝𝜔

𝑇

𝑁

𝜔=1

𝒚𝝎, (11) 

 

the so-called sample average approximation of the stochastic problem [73]. By the law of 

large numbers, the approximated expectation converges pointwise to the exact value as 

𝑁 → ∞, assuming that each scenario is independent of other scenarios. 

 

3.3.2. Decomposition and scenario reduction 

 

The most common decomposition techniques for large-scale stochastic problems are the L-

shaped method and the Lagrangian relaxation. The L-shaped method relaxes stage-

connecting constraints to eliminate the ties between the stages, but it is not readily applicable 

when integers are involved at the second stage. Lagrangian relaxation removes the 

scenario-connecting, non-anticipativity constraints and tries to reestablish these by adding 

them to the objective function in combination with Lagrangian multipliers. Even if the 

application of Lagrangian relaxation could lead to a global optimum, it would conceivably 

take a lot of iterations and require accurate, very expensive solutions of the subproblems. 

That is why we decompose the problem not by relaxing these connections, but by fixing inter-

scenario-connected variables. This decomposition approach is similar to Till et al. [80] who 

fix the first-stage variables to optimize the scenarios separately. Therefore, equation (11) is 

written in its implicit form as a function of the first-stage decisions: 

 
(Master): min

𝒙
     𝑓(𝒙) = 𝑐𝑇𝒙 +

1

𝑁
∑ 𝑄𝜔(𝒙)

𝑁

𝜔=1

 

𝑠. 𝑡.     𝐴𝒙 ≤ 𝑏, 

(12) 
 

 

and for a given 𝒙, the evaluation of the implicit second-stage value function 𝑄𝜔(𝒙) requires 

the solution of 𝑁 independent subproblems: 

(Sub): 𝑄𝜔(𝒙) =  min
𝒚𝝎

 𝑝𝜔
𝑇𝒚𝝎  

𝑠. 𝑡.     𝑇 𝜔𝒙  +𝑊  𝜔𝒚𝝎 ≤ ℎ𝜔  ∀𝜔 = 1,… ,𝑁.  
(13) 

 

                                                           
6
 In usual practical applications 𝑊 and 𝑝𝑇 do not depend on 𝜔. 
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Inter-scenario-connected variables are linked by non-anticipativity constraints: the decisions 

have to be made at the first stage such as storage investments, without anticipating the 

actual realization at the second stage and have thus to hold for all possible scenarios.7 

If necessary, the second stage itself can also be decomposed into 𝑀 subproblems by 

fixing intra-scenario-connected variables. In energy systems, these are mostly the 

investments (first-stage decisions) and variables that are linked over time steps such as the 

storage level or losses (second-stage decisions). Then, the objective 𝑓 (𝜑 = (𝒙, 𝒚𝝎𝒇𝒊𝒙
)) is to 

be minimized, where 𝒙 presents the fixed first-stage variables and 𝒚𝝎𝒇𝒊𝒙
 the fixed second-

stage variables. 

However, if this decomposition allows an extensive computation in parallel, the 

computational effort decisively depends on the number of scenarios. Hence, it is natural to 

reduce these scenarios so that the probability distributions of the uncertain conditions are still 

reasonably represented. A compact overview in scenario generation and reduction with 

references to further readings is given by Heitsch and Römisch [34]. According to the 

employed scenario generation and decomposition, a reduction based on moment-matching 

principles or on probability metrics is suitable.  

Moment-matching aims at representing the probability distributions of the uncertain 

conditions by minimizing the difference between suitable moments of the original and the 

reduced scenario fan. Even if this heuristic methodology is accepted among practitioners, 

similar moments do not guarantee similarity of two distributions in general. It also lacks 

theoretical foundations and it is unknown how matching moments relate to the approximation 

quality of the objective value [49]. 

Scenario reduction techniques based on probability metrics minimize a certain distance 

measure between the original and the reduced scenario fan. Usually, as Dupačovâ et al. [20] 

do, a family of the Kantorovich metric (also known as Wasserstein metric) is used as 

distance measure of two probability distributions. Reducing scenarios with minimal 

Kantorovich distance to the original program is generally an NP-hard optimization problem in 

itself (due to its combinatorial structure) that can be even more computationally expensive 

than the actual problem. Hence, there are conceptually heuristic forward selection and 

backward reduction algorithms. We have applied the backward reduction described by 

Gröwe-Kuska et al. [29]: the idea is to delete one scenario such that the Kantorovich 

distance of the original and the reduced scenario set 𝐷𝑘(𝑃
all; 𝑃red) is minimal. The probability 

of occurrence of the deleted scenario is added to that with the minimal Kantorovich distance 

to the deleted one. This deletion process is repeated as long as a given relative accuracy 

𝜀rel ≤
𝐷𝐾

𝐷𝐾,1
 holds, where 𝐷𝑘,1 is the minimal possible Kantorovich distance of the original 

scenario set and only one scenario 𝐷𝑘(𝑃
all; 𝑃1). This heuristic backward reduction algorithm 

shows close-to-optimal reductions within short runtimes for a high number of scenarios [33], 

whereby there is no specific knowledge needed about the required data due to the 

dimension-independent reduction. 

 

3.3.3. Inner parallel and outer derivative-free optimization 

 

After the decomposition of the large-scale stochastic program into 𝑀𝑥𝑁 mixed-integer 

subproblems and a scenario reduction, the remaining subproblems 𝑠𝑝𝑚𝑛 are solved by the 

                                                           
7
 When the stage-variable formulation of equation (6–9) is transformed into the scenario-variable formulation 

with the decision vectors 𝒙𝟏, … , 𝒙𝝎, then the non-anticipativity constraint 𝒙𝟏 = . . . = 𝒙𝝎 emerges. 
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standard MILP solver CPLEX (ver. 12.6.3) with a relative gap < 1%. The inner optimization is 

executed in parallel using HPC nodes to reduce the computing time. The process is 

designed to solve the subproblems not only on one, but on computing nodes of different HPC 

systems. After the optimization of the subproblems, their solution is composed to calculate 

the minimal value of 𝑓(𝜑) for the fixed variables. An outer optimization performs the search 

of the fixed variables. Therefore, we propose a derivative-free optimization (DFO) due to 

integer requirements related to these variables. Fig. 3 depicts the whole optimization process. 

 

Fig. 3. Parallel optimization process (POP) for large-scale, two-stage stochastic programs. 

 

In principle, there are global and local search algorithms that require only the availability of 

objective function values but no derivative information [61]. A global solution would be 

preferable. Given the very expensive evaluation of all subproblems, a more important 

requirement is that only a few iterations are required to find an optimal solution. Also 

important is a reliable and robust solution process, especially a high tolerance to inaccuracy 

of the inner optimization solutions. Possible DFO algorithms are summarized in Appendix B 

in Table B.1, which is based on the review of Rios and Sahinidis [61] with regard to the 

mentioned requirements. Besides, the textbook of Conn et al. [15] is incorporated, which is 

exclusively devoted to this topic and gives a detailed insight into the algorithms. We have 

deliberately chosen a hill-climbing algorithm because of its simplicity, flexibility and reliability. 

We are aware that this algorithm is outperformed by others in some cases but reasons for its 

choice include the fact that it robustly proceeds to the (local) optimum even without an exact 

solution of all subproblems. Hence, the computing time can be considerably reduced by 

setting lower relative gaps for the subproblems – the closer to the optimum the more 

accuracy of the inner optimization is needed. Furthermore, with few fixed variables and a 

good starting point, then few iterations lead to the (locally) optimal solution. See Table 2 in 

Section 4.6 for a comparison of the hill-climbing algorithm with the DDSIP algorithm (dual 

decomposition in stochastic integer programming) by Carøe and Schultz [13]. In the 

following, the locally optimal solution of the hill-climbing algorithm that could be globally 

optimal is referred to just as optimal solution or optimum. 
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A hill-climbing algorithm is a local search algorithm that attempts to improve a given initial 

solution to a problem by incrementally altering its solution-dependent variables [79]. In the 

optimization process, a steepest-ascent hill-climbing (SAHC) method attempts to minimize 

the objective function 𝑓(𝜑) by adjusting a single element of 𝜑 representing continuous and/or 

discrete value of the fixed inter- or intra-scenario-connected variable 𝜑𝑘. All components of 𝜑 

are sequentially modified in the direction that improves the value of 𝑓(𝜑) at each iteration. 

The one leading to the greatest improvement is accepted (see e.g., [25]). An initial procedure 

determines the ascending direction for each fixed variable 𝜑𝑘 that improves the objective 

value 𝑓(𝜑). Therefore, a certain step size 𝑠𝑘 is separately added to each fixed variable 𝜑𝑘 

and the minimal objective value of 𝑓 is computed by the parallel optimization process (POP) 

as shown in Fig. 3. Then the same step size 𝑠𝑘 is subtracted from each fixed variable 𝜑𝑘 and 

the minimal objective value of 𝑓 is computed. The improving ascending direction for each 𝜑𝑘 

is memorized. The step with the best improvement is accepted and the steepest-ascent 

search is repeated, only for the improving ascending direction. When there is no 

improvement, then the step size is halved and the process restarts with the initial procedure. 

The process continues until the relative change of 𝑓(𝜑) is smaller than a given stopping 

criterion 𝑎 ∈ ℝ+. The complete procedure can be found in Appendix B.  

 

 

4. Application of the developed approach to a residential quarter 

 

We demonstrate the described approach for a real-world case study: a residential quarter 

that is introduced in Section 4.1. Its mathematical model is described in the subsequent 

Section 4.2. The model is optimized on a Windows master machine and three different HPC 

slave systems: on a Windows-based cluster having 10 nodes with up to 128GB RAM and 6 

cores at maximal 4.4GHz and two Linux-based clusters having 512 nodes each with up to 

128GB RAM and 40 cores at 2.4–2.6GHz. The computational results are presented and 

discussed in Sections 4.3 and 4.4. At the end of Section 4, the computational expenses and 

the scalability of the approach are reflected in Sections 4.5 and 4.6, respectively.  

 

4.1. Residential quarter 

 

The focus is on a residential quarter including 70 households on 7700m2 in multi-family or 

row houses that are clustered in several building groups 𝑔 ∈ {1,… , 𝐺}.8 Fig. 4 shows the 

energy setup of the quarter that is optimized under uncertain conditions. On the energy 

supply side, the available roof area of the quarter is used completely in this case study 

leading to a PV system of 240kWp. There is also the possibility to obtain electricity that 

cannot be covered by own production from an external energy supplier at an assumed 

electricity price of 𝑝grid = 0.25€/kWhel. If the PV supply exceeds the electricity demand of 

the quarter, the surplus can be fed into the external grid for a compensation of 

𝑝fi = 0.10€/kWhel. On the energy demand side, there are the electrical and thermal 

consumption of each building group 𝑔. In this case study, the quarter consists of 𝐺 = 4 

building groups in total. The thermal consumption, i.e. demand for space heating (SH) and 

                                                           
8
 The corresponding project is aimed at developing energy-efficient, environmentally friendly residential 

quarters. A PV system in the quarter meets a large part of the energy demand that is reduced by modern 
passive house technology. Heat pumps in combination with storage units and intelligent load shifting within 
the quarter increase the cost-effective self-consumption of the PV system. 
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for domestic hot water (DHW), of one building group is covered by two air-water heat pumps 

in combination with heat storage units for each building group. Both heat storage units are 

hot water tanks, having their own electrical heating elements (with an efficiency 𝜂 = 95%) to 

ensure thermal supply security in times of peak demand as well as adequate water 

disinfection. The heating system is separated into two cycles, because it allows the heat 

pump for SH to run at lower temperatures. As a result, a higher coefficient of performance 

(COP) and lower heat losses of the storage unit and, thus, lower energy costs are obtained. 

Because of the lower temperatures, underfloor heating systems are installed to exchange the 

required heat with a larger heat exchanger surface. SH storage units are implemented in a 

closed cycle and their temperature can be assumed as thoroughly mixed and in the range 

from 35°C up to 45°C. On the contrary, due to the fresh water requirements, the loop from the 

heat pump through DHW storage units is separated from the fresh water cycle by a heat 

exchanger in the tank. The temperature of the fresh water amounts to approximately 10°C 

and needs to be heated up to 50°C.9 The higher temperature difference results in a larger 

energy content for the same volume in comparison to the SH storage units. 

 

 
Fig. 4. Energy setup of building group 𝑔 ∈ {1,… , 𝐺} of the quarter. 

 

The concrete task is to determine optimal storage sizes for SH and DHW for each building 

group including their optimal operation that leads to minimal energy costs. In this case study, 

air-water heat pumps are used. Their maximal available heating power and their COP 

depend on the ambient air temperature. Further uncertain weather-dependent parameters 

are PV generation as well as thermal and electrical demand. Basically, there are two different 

operation technologies: one technology referred to as inverter heat pumps that can provide 

heating power at each level below or equal to their maximum heating power and the other 

technology referred to as on/off (non-inverter) heat pumps that can only run on certain 

performance levels. For this case study, heat pumps that can only run stepwise at idle, half 

                                                           
9
 By using the density and heat capacity of water, the volume storage level is converted into an energy storage 

level required by the optimization model. 
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or full load are to be installed. There are no inverter heat pumps available with the required 

heat power provision up to now. In the following, we show the results for both inverter and 

non-inverter heat pumps assuming the same investment needs. To determine the 

economically optimal sizes of the different components and their operation under these 

uncertain parameters, the energy setup (illustrated in Fig. 4) is modeled without (SMILP-1) or 

with integer requirements (SMILP-2) at the second stage depending on the employed heat 

pump technology. 

Note that we do not consider any network (constraints) between the building groups in this 

case study, neither for heat nor for electricity. Concerning electricity, there actually is a 

network connecting the building groups but this is designed from scratch so that the capacity 

of its components is chosen in such a way that internal network constraints are avoided. 

Therefore, we can assume a so-called copperplate in our analysis (i.e. omitting network 

constraints in the model). Concerning heat, a preliminary screening analysis has shown that 

the potential savings from economies of scale of yet larger heat pumps are outbalanced by 

the costs for creating and maintaining a local heat network. As a result, potential balancing 

effects of heat demand and supply between the building groups cannot be considered.  

 

4.2. Mathematical model of the quarter 

 

Corresponding to equation (6), the objective function of the deterministic equivalent for one 

possible scenario 𝜔 ∈ Ω = {1,… ,𝑁} is to minimize the 𝑐𝑜𝑠𝑡𝑠𝜔 over the capacity 𝒙𝒈,𝒊 of each 

investment 𝑖 of building group 𝑔, the used electricity from the grid 𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

 and the fed-in energy 

of the PV system 𝒆𝝎,𝒕
𝐟𝐢  in scenario 𝜔 at time 𝑡: 

 
𝑐𝑜𝑠𝑡𝑠𝜔

∗ = min
𝒙𝒈,𝒊,𝒆𝝎,𝒕

𝐠𝐫𝐢𝐝
, 𝒆𝝎,𝒕

𝐟𝐢
 𝐴𝑁𝐹∑∑𝑐𝑖

var ∙ 𝒙𝒈,𝒊 + 𝑐𝑖
fix 

𝐼

𝑖=1

𝐺

𝑔=1

+∑𝑝grid ∙ 𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

− 𝑝fi ∙ 𝒆𝝎,𝒕
𝐟𝐢

𝑇

𝑡=1

, 

(14) 

 

where the annual capital costs of each investment 𝑖 of building group 𝑔 are included by using 

the equivalent annual cost method: 𝒙𝒈,𝒊 is multiplied by 𝑐𝑖
var plus a fix amount 𝑐𝑖

fix (variable 

and fix capacity costs of component 𝑖) resulting in investments that are converted into an 

annuity per period 𝑇 [40]. The integrated annuity factor 𝐴𝑁𝐹 takes into account the lifetime of 

the investment and the possibility that the capital could be invested elsewhere at a certain 

interest rate. The equivalent annual cost is often used for investment decisions of energy 

systems (see e.g., [31, 47, 67, 77]). In this case study, an interest rate of 7% and a technical 

lifetime of 20 years is assumed. The period 𝑇 includes one year with a temporal resolution of 

15 minutes. This resolution is required to adequately model the fluctuating energy demand 

and PV supply that determine the load shift potential of the quarter. More details on the 

energy demand and supply profiles used in our analysis are presented in Appendix A (see 

Fig. A.1 for instance). Further components predefined in the presented case study are: 

 the installed PV capacity of the quarter: ∑ 𝒙𝒈,𝒊=𝐏𝐕
4
𝑔=1 = 240, 

 the number of heat pumps for SH within a building group: 𝒙𝒈,𝒊=𝐇𝐏𝐒𝐇 = 1, 

 the number of heat pumps for DHW within a building group: 𝒙𝒈,𝒊=𝐇𝐏𝐃𝐇𝐖 = 1, 

 the number of heating elements for the SH storage unit: 𝒙𝒈,𝒊=𝐇𝐄𝐒𝐇 = 4, 

 the number of heating elements for the DHW storage unit: 𝒙𝒈,𝒊=𝐇𝐄𝐃𝐇𝐖 = 4. 
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The complete nomenclature is explained in Table C.1 in Appendix C. Technically, the 

employed heating elements can provide heating power continuously below or equal to their 

maximum heating power �̂�he. Similarly, the air-water heat pumps, if designed as inverter heat 

pumps, can provide heating power at each level below or equal to their maximum heating 

power �̂�𝜔,𝑡
hp

. For this case study, the effectively used option is a heat pump that can only run 

at idle, half or full load. In this paper, the storage size for SH 𝒙𝒈,𝒊=𝐒𝐒𝐇 and for DHW 𝒙𝒈,𝒊=𝐒𝐃𝐇𝐖 

is optimized for both heat pump types. Because only discrete storage sizes are available as 

economically reasonable investments on the market, integer variables are used and 

multiplied by the smallest available storage size: 𝒙𝒈,𝒊=𝐒𝐒𝐇 = 𝒛𝒈,𝒊=𝐒𝐒𝐇 ∙ 1.16kWhth 

and 𝒙𝒈,𝒊=𝐒𝐃𝐇𝐖 = 𝒛𝒈,𝒊=𝐒𝐃𝐇𝐖 ∙ 4.65kWhth.10 

An essential constraint of the system is that the electrical supply (𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

 plus supplied PV 

energy 𝒆𝝎,𝒕
𝐏𝐕 ) and the electrical demand (used electricity of heat pumps 𝒅𝝎,𝒈,𝒖,𝒕

𝐡𝐩
 and heating 

elements 𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐞  of building group 𝑔 for use 𝑢 plus electricity demand for electrical usage 𝑑𝜔,𝑡

ee  

and fed-in PV energy  𝒆𝝎,𝒕
𝐟𝐢  in scenario 𝜔 at time 𝑡) need to be balanced at all times: 

 
𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

+ 𝒆𝝎,𝒕
𝐏𝐕 = 𝑑𝜔,𝑡

ee +∑∑(𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐩

+ 𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐞 )

2

𝑢=1

4

𝑔

+  𝒆𝝎,𝒕
𝐟𝐢                ∀𝜔 ∀𝑡, (15) 

 

The supplied PV energy depends on the size of the PV system: 𝒆𝝎,𝒕
𝐩𝐯

= ∑ 𝒙𝒈,𝒊=𝐏𝐕
4
𝑔=1 ∙ 𝑒𝜔,𝑡

PV,kWp
. 

Analogously, the thermal supply of the heat pumps and heating elements plus the heat of the 

storages 𝒔𝝎,𝒈,𝒖,𝒕 need to be equal to the thermal demand 𝑑𝜔,𝑔,𝑢,𝑡
th  in scenario 𝜔 of building 

group 𝑔 for use 𝑢 at time 𝑡 including the heat that is to be stored at 𝑡 + 1: 

 𝐶𝑂𝑃𝜔,𝑢,𝑡 ∙ 𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐩

+ 𝜂 ∙ 𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐞 + 𝒔𝝎,𝒈,𝒖,𝒕                                        

= 𝑑𝜔,𝑔,𝑢,𝑡
th + 𝑳𝝎,𝒈,𝒖,𝒕 + 𝒔𝝎,𝒈,𝒖,𝒕+𝟏               ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. 

 
(16) 

 

In equation (16), storage heat losses 𝑳𝝎,𝒈,𝒖,𝒕 are integrated by a constant loss factor 𝑙𝑢
hs 

dependent on the heat storage level: 

 𝑳𝝎,𝒈,𝒖,𝒕 = 𝑙𝑢
hs ∙ 𝒔𝝎,𝒈,𝒖,𝒕                                                                 ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. (17) 

 

The heat storage level is limited by a minimal storage level �̌�𝑔,𝑢 and the maximal capacity: 

 �̌�𝑔,𝑢 ≤ 𝒔𝝎,𝒈,𝒖,𝒕 ≤ 𝒙𝒈,𝒊=𝑺𝒖                                                             ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. (18) 

 

The heat supply for each building group is limited by the number of heating elements 𝒙𝒈,𝒊=𝐇𝐄𝒖 

and their maximal heating power �̂�ℎ𝑒: 

 𝜂 ∙ 𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐞 ≤ �̂�ℎ𝑒 ∙ 𝒙𝒈,𝒊=𝑯𝑬𝒖                                                       ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡, (19) 

 

and the number of heat pumps 𝒙𝒈,𝒊=𝐇𝐏𝒖 and their maximum heating power values �̂�𝑡
hp

: 

 
 

𝐶𝑂𝑃𝜔,𝑢,𝑡 ∙ 𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐩

=
1

𝑚
∙ �̂�𝜔,𝑡

hp
∙ 𝒛𝝎,𝒈,𝒖,𝒕                                   ∀𝜔, ∀𝑔, ∀𝑢, ∀𝑡, (20) 

 

 𝒛𝝎,𝒈,𝒖=𝐃𝐇𝐖,𝒕 ≤ 𝑚 ∙ 𝒙𝒈,𝒊=𝐇𝐏𝐃𝐇𝐖                                                        ∀𝜔 ∀𝑔 ∀𝑡, (21) 

 

                                                           
10

 The converting factors of 1.16kWhth and 4.65kWhth correspond to a 100 liter water tank. The factor is four 
times higher in the case of DHW due to the higher temperature difference in the storage.  
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 ∑𝒛𝝎,𝒈,𝒖,𝒕

2

𝑢=1

≤ 𝑚 ∙∑𝒙𝒈,𝒊=𝐇𝐏𝐮

2

𝑢=1

                                                        ∀𝜔, ∀𝑔, ∀𝑡. (22) 

 

Here, constraints (20–22) ensure that both heat pumps can be used to cover the demand for 

SH, but only one for DHW. This specific set-up is reasoned by higher peak demands for 

space heating than for domestic hot water (up to ten times on winter days). When heat 

pumps can only run at idle, half or full load, then 𝑚 = 2 (possible modes minus the idle 

mode) and the heating power level 𝒛𝝎,𝒈,𝒖,𝒕 is integer with 𝒛𝝎,𝒈,𝒖=𝐒𝐇,𝒕 ∈ {0,1,2,3,4} 

and 𝒛𝝎,𝒈,𝒖=𝐃𝐇𝐖,𝒕 ∈ {0,1,2}. In the case of inverter heat pumps, 𝒛𝝎,𝒈,𝒖,𝒕 is a continuous variable 

and 𝑚 = 1. 

Practically, positive load changes result in higher thermal and mechanical energy losses 

and reduce the COP of the heat pumps. Therefore, one further constraint is needed to 

differentiate between positive and negative load changes of the heat pumps achieved by 

positive auxiliary variables: 

 𝒛𝝎,𝒈,𝒖,𝒕+𝟏 − 𝒛𝝎,𝒈,𝒖,𝒕 = 𝒑𝒐𝒔𝝎,𝒈,𝒖,𝒕 − 𝒏𝒆𝒈𝝎,𝒈,𝒖,𝒕                     ∀𝜔, ∀𝑔, ∀𝑢,  ∀𝑡. (23) 

 

To take into account energy losses during positive ramp up times, an additional term 

𝒑𝒐𝒔𝝎,𝒈,𝒖,𝒕 ∙ 𝑙𝑢
hp

 is added to the right side of constraint (16), avoiding permanent load changes 

of the heat pumps. The loss factor 𝑙𝑢
hp

 represents the ramp-up loss of the heat pumps and is 

defined as a 5% loss of the positive load change at time 𝑡. Additionally, the left side of 

constraint (16) can be relaxed by a further auxiliary variable 𝒒𝝎,𝒈,𝒖,𝒕, if heat supply below the 

demand is acceptable. Then this variable is multiplied by a compensation factor  

𝑐𝑓 = 10 000€/kWhel and added as an economic penalty term to the objective function (14). 

Variables that are connected by a constraint over two time steps are restricted to be equal 

at the first and last time step 𝑡: 

 𝒔𝝎,𝒈,𝒖,𝒕=𝟏 = 𝒔𝝎,𝒈,𝒖,𝒕=𝑻                                                                       ∀𝜔, ∀𝑔, ∀𝑢,   

𝒛𝝎,𝒈,𝒖,𝒕=𝟏 = 𝒛𝝎,𝒈,𝒖,𝒕=𝑻                                                                       ∀𝜔, ∀𝑔, ∀𝑢.   
(24) 

 

Since the scenarios are generated by a Markov process with the same probability of 

occurrence for each scenario, the entire stochastic program can be expressed for a 

numerical optimization by adapting (14) analogously to (11): 

 
𝑐𝑜𝑠𝑡𝑠∗ = min

𝒙𝒈,𝒊,𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

, 𝒆𝝎,𝒕
𝐟𝐢
 𝐴𝑁𝐹∑∑𝑐𝑖

var ∙ 𝒙𝒈,𝒊 + 𝑐𝑖
fix 

𝐼

𝑖=1

𝐺

𝑔=1

+
1

𝑁
∑∑𝑝grid ∙ 𝒆𝝎,𝒕

𝐠𝐫𝐢𝐝
− 𝑝fi ∙ 𝒆𝝎,𝒕

𝐟𝐢

𝑇

𝑡=1

𝑁

𝜔=1

. 

(25) 

 
This stochastic program is decomposed into a master and sub problem as in (12) and (13): 

 
(Master): min

𝒙𝒈,𝒊
   𝑓(𝒙𝒈,𝒊) =  𝐴𝑁𝐹∑∑𝑐𝑖

var ∙ 𝒙𝒈,𝒊 + 𝑐𝑖
fix 

𝐼

𝑖=1

𝐺

𝑔=1

+
1

𝑁
∑ 𝑄𝜔(𝒙𝒈,𝒊)

𝑁

𝜔=1

 

𝑠. 𝑡.  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (18 − 19) 𝑎𝑛𝑑 (21 − 23), 

(26) 
 

 

(Sub): 
𝑄𝜔(𝒙𝒈,𝒊) =  min

𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

, 𝒆𝝎,𝒕
𝐟𝐢
 ∑𝑝grid ∙ 𝒆𝝎,𝒕

𝐠𝐫𝐢𝐝
− 𝑝fi ∙ 𝒆𝝎,𝒕

𝐟𝐢

𝑇

𝑡=1

  

𝑠. 𝑡.  𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠 (15 − 17), (20) 𝑎𝑛𝑑 (23 − 24). 

(27) 
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All presented variables need to be positive. The maximal storage capacity 𝒙𝒈,𝒊=𝐒𝒖 is discrete 

in SMILP-1 and SMILP-2, but the heating power level of the heat pumps 𝒛𝝎,𝒈,𝒖=𝐒𝐇,𝒕 is integer 

only in SMILP-2. 

The model dimension for one scenario is shown in Table 1 for one building group and the 

entire quarter. The integer variables of the SMILP-1 are the first stage integer variables 

representing the discrete storage sizes for SH and DHW (in case of the quarter, one SH and 

one DHW storage for each of the four building groups). In addition, the SMILP-2 considers 

integer variables at the second stage, i.e. those related to the stepwise heat pump operation 

in each 15 minute time step (35 040 integer variables per heat pump). For an appropriate 

consideration of the uncertainties, a problem with hundreds to thousands of such scenarios 

needs to be solved. 

 
Table 1 

Model dimension for one scenario 𝜔. 

 Continuous variables Integer variables 
Constraints  SMILP-1  | SMILP-2 SMILP-1  | SMILP-2 

for building group 𝑔  455 520 |  0 385 440 
 

2 |    70 082 
 

840 967 
 

for the entire quarter 1 716 960 |  1 436 640 
 

8 | 280 328 
 

3 258 745 
 

 

 

4.3. Computational results 

 

As input for the storage optimization of the quarter located in Germany, 100 weather 

scenarios were generated by the Markov process representing the uncertain global solar 

radiation, temperature and cloudiness (see Section 3.1). These profiles are transformed into 

PV supply and energy demand profiles for electricity, SH and DHW for the described 

SMILP-1 and SMILP-2. Because of the extreme problem size of one scenario, the one year 

period 𝑇 in equation (27) is also decomposed into periods of two weeks leading to 27 

subproblems per scenario.11 The resulting 2 700 subproblems are solved in parallel by using 

POP. The fixed storage sizes of the first-stage are optimized by the outer SAHC method. To 

save computing time, the 27 fixed storage levels per storage (of 35 040 storage levels per 

scenario) of the second-stage are not optimized, but set to plausible levels. In the beginning 

of the SAHC, each subproblem is solved with low accuracy within a few minutes. Only for the 

last iterations, the computing time is limited to half an hour to achieve the accuracy that is 

required by the SAHC to find the optimum.12 About 17 steps of the outer optimization are 

needed to find the optimal storage sizes. If the optimization was carried out sequentially on 

one computer, the computation would take up to seven years. Due to the POP, the problem 

is solved in less than one week. Through the application of the scenario reduction, only 1 243 

subproblems need to be computed without changing the optimal storage sizes or notably 

influencing the optimal objective value. Thus, the problem can be computed in less than half 

a week. For a better illustration, only the results for building group 1 with 29 households are 

presented and discussed in the following and until the end of this paper. 

 

                                                           
11

 The chosen period of two weeks results in problem sizes for an efficient utilization of the HPC systems with 
respect to computation requirements and total computing time. 
12

 Note that this local optimum is referred to just as optimum or optimal solution. 
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Fig. 5 shows the density function of minimal costs and optimal storage sizes of all 

scenarios for two program variants: 

 SMILP-1: with inverter heat pumps (no integers at 2nd stage) 

 SMILP-2: with heat pumps that can run at idle, half or full load (integers at 2nd stage) 

 

The optimal SH and DHW storage size of each independent scenario is plotted on the 

abscissa (lateral wide axis) versus the minimal costs on the ordinate (lateral depth axis). The 

applicate (vertical height axis) represents the occurrence frequency for the optimal storage 

size with class intervals of 1.16kWhth for SH and 4.65kWhth for DHW and their according 

minimal costs with class intervals of 200€. Note that the abscissa is differently scaled for the 

SH and DHW storage size (where 1.16kWhth and 4.65kWhth is equivalent to the smallest 

possible water tank of 100 liter for SH and DHW, respectively). 

 

 
Fig. 5. Density function of minimal costs and optimal storage size including the stochastic solution and the deterministic solution 

using expected values of the uncertain parameters of the SMILP-1 and SMILP-2 of building group 1. 
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If each scenario is optimized separately and the heat pumps can run completely flexibly 

(Fig. 5, SMILP-1), i.e. all variables at the second stage are continuous, the optimal storage 

size for SH varies between 2.3–18.6kWhth and for DHW between 60.4–69.7kWhth. The 

occurrence frequency peak is between 2.3–3.5kWhth for SH and between 65.1–69.7kWhth for 

DHW. The minimal costs amount to 25 285–27 078€ for the SMILP-1. Thereof, about 50% 

can be attributed to the capital costs of the energy system’s components. The other 50% are 

variable energy costs. The boxes in Fig. 5 include the stochastic solution (in red) and the 

deterministic solution of the expected value problem (EV) (in black). The optimal solution of 

SMILP-1 is 18.6kWhth for SH and 65.1kWhth for DHW with expected minimal costs of 

26 236€. The solution of the EV is achieved by deterministically computing one scenario with 

expected values of the uncertain input parameters. Then the optimal storage sizes are 

2.3kWhth and 69.7kWhth for SH and DHW, respectively. 

Fig. 5 analogously shows the results for mixed-integer variables at both stages in case of 

SMILP-2. The occurrence frequency peak is between 15.1–16.3kWhth for SH and between  

60.4–65.1kWhth for DHW. The optimal solution is 18.6kWhth for SH and 69.7kWhth for DHW. 

The deterministic optimization using EV of the input data results in 13.9kWhth for SH and 

65.1kWhth for DHW. 

 

 
Fig. 6. Characteristic values and measures of dispersion of 100 scenarios for the optimal solution of SMILP-1 and SMILP-2 for 

building group 1, also shown as box-and-whisker plots where the whiskers represent the minimum and maximum values 

(*PV supply is illustratively calculated for building group 1 based on a 63kWp subsystem of the entire 240kWp system). 

 

For the optimal investment solution of the SMILP-1 and SMILP-2, Fig. 6 shows variations of 

characteristic values of the 100 scenarios: minimum, 0.25 quantile, median, 0.75 quantile and 

maximum of the values are listed as measures of dispersion. In addition, the values are 

illustrated as box-and-whisker plots rotated through 90°. These values indicate the variations 

that can be expected when the investment decision is made, i.e. when the first-stage 

variables are optimally set. The minimized costs for the calculated optimal storage sizes are 

model minimum
0.25 

quantile
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0.75 
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minimized costs (in €/a) SMILP-1 25 344 25 984 26 227 26 488 27 136
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25 344€ at a min and 27 501€ at a max.13 The annual PV supply varies between 

56 914kWhel and 62 500kWhel. The electrical demand of the heating system, the heat pumps 

and heating elements, amounts to 50 328–54 812kWhel for SMILP-1 and is approximately 

1 300kWhel higher for SMILP-2. 

The higher demand results from different thermal storage and ramp-up losses of the heat 

pumps that are two and five times lower, respectively, when inverter heat pumps are used. 

Not listed in Fig. 6, the overall COP, which is related to the total thermal supply and total 

electrical demand of both heat pumps, is around 3.4 and only marginally better in SMILP-1. 

Further quantities of interest are the PV self-consumption rate of 53–58% and the actual 

autarky rate of 35–38%. With a marginally varying electricity demand of the households of 

around 40 000kWhel, the annually balanced autarky rate ranges between 60–70%.14 The 

maximum electrical load of the external grid ranges between 38–54kWel for the SMILP-1 and 

between 44–54kWel for the SMILP-2. 

 

4.4. Discussion of the results 

 

The DHW storage size is larger than the SH storage size due to the non-simultaneity of PV 

generation and space heating demand. In winter, the complete PV supply is almost entirely 

used to cover the electrical demand. In summer, there is high PV supply, but a negligible 

need for SH. The energy demand for DHW, however, is more or less constant over the year. 

Consequently, the load flexibility provided by DHW storage units is also distributed more 

constantly over the year than the flexibility of SH storage units, i.e. DHW storage units 

provide a noteworthy load flexibility also in times of high PV supply. Hence, larger storage 

sizes for DHW enable a higher self-consumption of the PV system. Thus, they are more 

profitable than storage units for SH, because less energy is required from the external grid. 

The value of the SH storage unit is less in load shifting but rather in covering peak demands 

in winter, when the air-water heat pumps also supply low heat due to cold ambient 

temperatures of the air. The storage size of at least 18.6kWhth is caused by scenarios with 

very cold winters. Implicitly, the optimal storage size depends on the capacities of the 

system’s components, i.e. the installed PV system and employed number and sizes of heat 

pumps. For example, a larger PV system makes a larger storage size more attractive, 

because more heat demand can be shifted to times when PV energy is supplied. A heating 

system with more heat pumps could cover peak demands with smaller SH storage sizes. The 

general result is that the usage of heat storage units in such a decentralized energy system 

with PV supply and energy demand of several households proves beneficial. 

As mentioned above, the input assumption of a 240kWp PV system is based on using the 

available roof area completely aimed at maximizing the amount of self-generated electricity 

which is in line with the residents’ preferences. However, we also carried out a sensitivity 

analysis, where we consider the installed PV capacity as an endogenous optimization 

variable. In this case, we find that the PV system leading to the minimum costs of the 

quarter’s energy system would be 31% smaller for SMILP-2 (35% for SMILP-1). As a 

consequence, the optimal storage size for DHW decreases by 13% (27% for SMILP-1). The 

SH storage remains unchanged to be capable of covering peak demands in cold winters. 

                                                           
13

 Note that these values are slightly higher than those of 100 separate (deterministic) optimizations of the 
storage sizes, in which the first-stage variables are still alterable. 
14

 The balanced autarky rate is the relation of the total PV supply to the total electrical demand of the quarter 
over one year. In contrast, the actual autarky rate is the relation of the total PV self-consumption to the total 
electrical demand of the quarter over one year. 



22 
 

The smaller PV system in the sensitivity analysis would lead to a higher PV self-consumption 

rate of 65–70% (68–73% for SMILP-1) but, at the same time, to a lower autarky rate of  

29–31% (26–30% for SMILP-1).  

It might be expected that the storage size for SH is more sensitive to uncertain 

meteorological parameters than for DHW. However, when the scenarios are optimized 

separately, the variation of the storage sizes (in kWhth) is higher for the DHW storage unit 

than for the SH storage unit. The fact that the daily energy demand for DHW is more or less 

constant over the year and the demand for SH is mainly in winter indicates that the 

uncertainties on the supply side (i.e. PV generation) lead to this higher sensitivity in 

comparison to the uncertainties on the demand side (i.e. heat demand). However, in this 

case, it is not only the uncertain PV supply that influences the storage size. It is also the load 

shifting potential in general, which depends on the complex combination of time-dependent 

PV supply and electrical and thermal energy demand. Furthermore, storage losses and 

ramp-up losses of the heat pumps influence the profitability of load shifting. This influence is 

higher for discontinuous heat pump supply, resulting in an increased sensitivity to uncertainty 

and a higher variation of the DHW storage size in SMILP-2 in comparison to SMILP-1. 

The optimal storage sizes differ notably from the results when using EV. If the investments 

were based on the results of the EV or even on the occurrence frequency peak, there would 

be scenarios that are very expensive or, if the heat constraint is not relaxed, even infeasible. 

In contrast, the optimal stochastic solution takes all scenarios into account and results in a 

storage size that is not optimal for a specific scenario, but feasible for all scenarios and cost-

minimal in expectation. 

The variations of the costs are mainly driven by the PV supply and the thermal demand, 

both depending on uncertain, stochastic weather conditions: the higher the global solar 

radiation and temperatures of a year, the lower the minimal costs because of a higher PV 

supply and a lower thermal demand. The residual PV surplus of at least 42% up to 47% has 

to be fed into the external electricity grid. Similarly, the autarky rate indicates the part of the 

total energy demand that can be covered by the decentralized energy sources and how 

much energy is needed from an external supplier. In this residential quarter, an actual 

autarky rate of one third is achieved. Thus, two thirds need to be covered externally for the 

given residential quarter. Concerning the grid layout, it is important to know that the maximal 

electrical load from the external electricity grid is 54kWel, almost independent of the 

uncertainties or the used heat pump technology. The total electrical net consumption from 

the external grid amounts to 60GWhel/a and varies by ±10%. Such model results are, inter 

alia, very useful to support contract design with external energy suppliers or distribution grid 

operators.  

The quarter is modeled with integers at the second stage (SMILP-2) because the 

considered heat pumps can only run stepwise for technical reasons. If (continuous) inverter 

heat pumps with the required specifications were available on the market, these could be 

modelled without integers at the second stage (SMILP-1). In this case, the storage in the 

quarter would become more unattractive and would therefore be smaller in general, 

especially when each scenario is optimized separately (see also Fig. 5 in Section 4.3). The 

reason is that inverter heat pumps can provide heat exactly as needed. In SMILP-2, when 

the flexibility of the heat pumps is technically limited to stepwise supply, this lack of flexibility 

is compensated by the storages resulting in larger units. However, when only comparing the 

stochastic solutions of SMILP-1 and SMILP-2, the size of the SH storage is the same in both 

SMILP-1 and SMILP-2 to cover heating peak demand in cold winters. In contrast, the DHW 

storage is 5kWhth larger in SMILP-2. In order to assess the value of modeling the program 
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with integers at the second stage, we also solve SMILP-2 while fixing the storages to the 

optimal size of SMILP-1. A comparison of this result with the optimum of SMILP-2 shows that 

this value is below 1%. Thus, from a practical point of view, it would be sufficient to 

determine the optimal storage sizes by SMILP-1 which requires much less computing 

resources. However, we wish to emphasize that this conclusion is only true for the stochastic 

program. As discussed above, the value of modeling the program with integers at the second 

stage is higher for deterministic programs. Moreover, the gap between SMILP-1 and SMILP-

2 depends on the temporal resolution (it increases strongly for coarser resolutions, see 

Fig. A.2 in Appendix A).  

In recent years, the long-term interest rate has continuously decreased in Germany.15 The 

assumption of 7% for the case study is based on a survey of Schlesinger et al. [68] about 

energy scenarios for the Energy Concept of the German Government. In order to assess the 

sensitivity of the results to the interest rate, the stochastic program is computed, in addition, 

with an interest rate of 𝑖 = 3% and 10%. The costs decrease by ca. 10% at 𝑖 = 3% and 

increase by ca. 20% at 𝑖 = 10%. The SH storage units remain almost unchanged, because of 

the delimiting restriction to cover peak demands and the low load-shifting potential. Only the 

unbounded DHW storage units offer more flexibility of load-shifting and increase when the 

interest is lower (by ca. 20% at 𝑖 = 3%) or vice versa (decrease by ca. 30% at 𝑖 = 10%). The 

general findings, however, remain unchanged.  

 

4.5. Computational expenses 

 

Using HPC systems can essentially reduce the computing time, but can lead to high 

overheads. Fig. 7 illustrates the computational effort of the applied approach: the arising total 

computing costs and time as a function of the utilized computing nodes. For this purpose, the 

computing time of all subproblems and iterations are logged. These times are used ex post to 

virtually allocate the computation of one subproblem after the other to the next free node. In 

case of one computing node, all evaluations of the subproblems have to be solved in series. 

A price of 0.047€ on-demand per full hour of the required node is assumed.16 Thus, the total 

computing time without scenario reduction would amount to 9 240h with costs of 441€ for 

SMILP-1 for one computing node. In case of SMILP-2, the mixed-integer subproblems take 

up to ten times more computing time than without integer requirements, causing higher 

computing time of 61 959h and costs of 1 609€. Up to 100 nodes, the computing time can be 

constantly divided by the utilized number of nodes without increasing costs. Then, in case of 

SMILP-2, the costs increase because some nodes are in idle mode while other nodes are 

still computing hard-to-solve mixed-integer subproblems. That is time-decisive for the outer 

optimization. At about 6000 nodes, this effect compensates further time reduction achieved 

by the parallelization. In the case of SMILP-1, the continuous subproblems require nearly the 

same short computing time, resulting in continuously linear reduction per additional node 

without increasing costs.  

With regard to the employed HPC systems, 1 034 physical nodes are in use. Because two 

subproblems are actually solved on one node in parallel, 2 068 computing nodes are virtually 

available. Assuming exclusive access, the entire computation of SMILP-1 and SMILP-2 could 

be theoretically solved within 4.5h and 47.8h at costs of 441€ and 2 954€, respectively. Due 

                                                           
15

 See also long-term interest rates, European Central Bank (status June 2016, 
http://sdw.ecb.europa.eu/browseTable.do?node=bbn4864&SERIES_KEY=229.IRS.M.DE.L.L40.CI.0000.EUR.N.Z) 
16

 Because no costs could be derived from the used HPC clusters, they are based on Amazon EC2 instance types 
(https://aws.amazon.com/ec2/): 0.047€ on-demand per full hour of the required node (status June 2016). 
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to the job queuing system of the HPC systems, the computation was done within a week. If 

the scenario reduction is applied, cost and time can approximately be divided by two.  

 

  
Fig. 7. Computing time (continuous lines, left log-scaled vertical axis) and computation costs (dotted lines, right vertical axis) 

versus used number of computer nodes (log-scaled horizontal axis) of SMILP-1 (black color) and SMILP-2 (red color). 

 

 

4.6. Scalability of the approach 

 

To evaluate the scalability of the optimization approach, it is tested on problems with different 

complexity and size. In addition, the approach is benchmarked with the dual decomposition 

in stochastic integer programming (DDSIP). This exact decomposition algorithm was 

developed by Carøe and Schultz [13] especially for two-stage SMILP and has been 

continuously improved until today.17 The main idea of the decomposition is the Lagrangian 

relaxation of the non-anticipativity constraints and a branch-and-bound algorithm to 

reestablish non-anticipativity. The mixed-integer subproblems in the branch-and-bound tree 

are solved by CPLEX. For the dual optimization, DDSIP uses ConicBundle provided by  

C. Helmberg.18 The rationale behind comparing SAHC and DDSIP is that both need the 

solution of the second stage to proceed with either the steepest ascent of the fixed variables 

or the descent step of the dual problem. The inner optimization of the second stage is 

identical. Therefore, only the more challenging case is considered, when integers are 

involved at both stages: discrete storage sizes at the first stage and three heating power 

levels of the heat pumps (idle, half or full load) at the second stage, similar to SMILP-2.  

Assuming that always enough nodes are available to compute all subproblems at the 

same time, only the outer iterations are time-decisive for the computation. The optimization is 

done for problems with 1, 2 and 4 building groups to vary the number of first-stage variables. 

Since DDSIP computes the subproblems only sequentially at present, the scenarios are 

simplified to two-day subproblems and reduced to 1, 2, 5 or 10 scenarios. The results are 

summarized in Table 2. Note that we only compare the number of iterations of the outer 

optimization. 

 

 

                                                           
17

 The Linux version can be downloaded from https://www.uni-due.de/~hn215go/ddsip.shtml. 
18

 For the computation, the default configurations of DDSIP with ConicBundle are used. Compared to common-
used subgradient methods, ConicBundle does not require adjusting the size or number of iteration steps when 
minimizing the sum of convex functions that arise from Lagrangian relaxation. It supports finding optimal dual 
multipliers by generating primal optimal solutions and by addition and deletion of dual variables without loss of 
quality in the used cutting models (for details see [51]).  
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Table 2 

Number of iterations of the outer optimization: DDSIP vs. SAHC method (the solution of all considered instances is identical for 

both approaches). 

 1 scenario 2 scenarios 5 scenarios 10 scenarios 

 DDSIP | SAHC    DDSIP | SAHC    DDSIP | SAHC    DDSIP | SAHC 

1 building group   (1
st

-stage variables: 2) 1 |   𝟖 14 | 𝟎𝟖 >071 | 𝟎𝟕 >139 | 𝟎𝟕 

2 building groups (1
st

-stage variables: 4) 1 |   𝟕 16 | 𝟏𝟎 >109 | 𝟏𝟔 >150 | 𝟎𝟗 

4 building groups (1
st

-stage variables: 8) 1 |   𝟖 22 | 𝟏𝟒 >150 | 𝟏𝟑 >150 | 𝟏𝟒 

  

DDSIP outperforms the SAHC method if only 1 scenario is optimized since there is no first-

stage variable that has to be equal to another scenario in this case. It appears that DDSIP 

can manage an increase of first-stage variables better than an increase of scenarios. The 

number of iterations slightly rises when more first-stage variables are added. But the number 

of iterations DDSIP needs to find a valid optimal solution increases strongly with the number 

of scenarios.19  

In contrast, the SAHC method always takes a similar number of iterations for few or many 

scenarios. Iterations only increase with more building groups because more first-stage 

variables have to be optimized. However, if the number of first-stage variables remains small, 

SAHC needs only few iterations. The search is always initialized at 8 for SH and DHW 

(equivalent to an 800 liter water tank) with an initial step size of 4 which is a better starting 

set for some instances than for others. Note that the obtained locally optimal solutions are 

identical to the optimal solutions of the DDSIP. This analysis does not consider the fact that 

SAHC can deal with a lower accuracy of the inner optimization for most iterations, enabling a 

high potential in computing time reduction of the subproblems. 

 

 

5. Discussion of the methodology 

 

Commonly, when SP is applied to problems with uncertain data, the expected value of 

perfect information is presented. It gives an economic value for obtaining perfect information 

about the future, so it is a proxy for the value of accurate forecasts. The expected value of 

perfect information is calculated as the difference between minimal expected costs of the 

stochastic solution and the minimal expected costs possible in the best case. ‘In the best 

case’ means that perfect information about future scenarios would be available and the 

storage size could still be adapted for each occurring scenario. Mathematically, these 

minimal costs result from relaxing the non-anticipativity constraints. For SMILP-1 and SMILP-

2, the difference is less than 1%. Hence, the savings are marginal when the occurring 

scenario is known exactly and the storage size could be optimally adapted. Because each 

scenario is separately optimized by an exact branch-and-cut approach (of CPLEX) with 

relaxed non-anticipativity constraints, that information of the best case can be used as a 

better relative gap for the SMILP. 

The advantage of modeling the problem as a stochastic program can be expressed by the 

value of stochastic solution: thereby, the expected result of the EV solution is subtracted from 

the optimal solution of the SP [11]. The expected result of the EV solution is calculated by 

optimizing the stochastic program with storage sizes that are deterministically determined for 

                                                           
19

 An integration of progressive hedging could reduce the DDSIP iterations: A penalty term, usually a weighted 
quadratic deviation of the Lagrangian multipliers from their preceding average values, is added to 𝑓 to 

accelerate the convergence [63]. However, the convergence speed depends on the weight factor. The 
possibility of the process performing worse or unstably cannot be ruled out [35]. 
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one scenario with expected values of the uncertain input parameters. In both SMILP-1 and 

SMILP-2, the EV solution is not feasible for all scenarios with hard heat constraints. Thus, 

the value of stochastic solution is not quantifiable, but from a qualitative viewpoint, very 

valuable. If the decision was made on the basis of an optimization with expected values, not 

all scenarios in the future would be feasible. In this case study, the violation of heat 

constraints means there are time steps in the year with room temperatures below the target 

levels desired by the inhabitants. Therefore, compensation terms, as proposed in Section 

4.2, are incorporated resulting in a value of stochastic solution for SMILP-1 of 45 551€ (174% 

more than the optimal solution) and for SMILP-2 of 3 684€ (14% more than the optimal 

solution). Regarding the derived computational expenses of 441€ for SMILP-1 and 2 954€ 

for SMILP-2, the application of the approach is advantageous. Due to the fact that computing 

costs rapidly decline, these advantages reflect a current status and will increase over time.  

The high value of stochastic solution of SMILP-1 mainly results from high penalty costs 

due to a SH storage size that is dimensioned too small on the basis of EV to cover the 

thermal demand of several cold winter scenarios. Therefore, using the expected result of the 

EV solution might not reflect the performance of a deterministic modeling approach for this 

application. Intuitively, one would calculate with cold years to determine optimal storage 

sizes, in particular for SH. However, this inevitably leads to the question of the definition of a 

‘cold year’: the year with the lowest average temperatures over the entire year (a), over the 

astronomical winter (b) or over the meteorological winter (c)? The deterministic optimization 

of definitions (a, b and c) instead of EV also results in too small SH storage sizes, i.e. not all 

peak heating demands can be covered, too. 

Critically reviewing our approach, SP is only applicable when the uncertain parameters 

can be adequately represented by probability distributions. For the case study, a Markov 

process simulates the uncertain parameters based on historical data over more than 50 

years. Occurrences or trends differing from historic data, e.g. the future climate development, 

might be taken into account by using model-derived forecasts or, if available, expert 

judgments. Besides the probability distributions, the number of scenarios and its reduction, 

which represent the distribution sufficiently well, is difficult to determine. Moreover, the 

optimal decision under uncertainties can depend on risk preferences of the decision maker 

[60]. Our results are purely based on economic considerations without accounting for such 

subjective criteria. 

For reasons of computational feasibility, each scenario is decomposed into 27 

subproblems by fixing the heat storage sizes and levels between the subproblems. The 

storage levels are not optimized in order to not increase the computational effort 

unnecessarily. For SH, they are set to zero reasoned by the fact that there is no SH demand 

in about 5 of 12 months. For the DHW storage unit, the level is set to 50% of the storage 

size, because a good estimation cannot be derived. Thus, the solution is not exactly optimal. 

However, the error is negligible in this case study (error is less than 0.1%). A stochastic 

dynamic programming technique could solve this problem but is not applied, because it 

disadvantageously results in a step-dependent optimization process, in which the 

independent optimization of all 2 700 subproblems in parallel would not be possible any 

more. If this becomes critical, an outer optimization other than the SAHC method (e.g., a 

surrogate model approach) should be selected to remedy the problem. 

The computational effort could also be reduced by a smaller temporal resolution of the 

problem. However, our analysis shows that a reduction of the temporal resolution has a 

crucial impact on the optimal solution. For example, time steps of one hour instead of 15 

minutes completely change the load shifting potential and, in case of SMILP-2, even the 
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stepwise flexibility of the heat pumps. The optimal storage sizes differ by more than 50% 

(further findings are shown in Appendix A, Fig. A.2). On the contrary, a detailed modeling of 

the technical characteristics affecting the load shifting potential could require resolutions 

below 15 minutes. In principle, the developed approach and model can deal with smaller time 

steps. But besides the problem of an increased computational effort, there are nearly no 

consistent data available in a higher temporal resolution. The time steps of 15 minutes in the 

case study should be sufficient, because the profiles of thermal supply and demand are 

smooth in comparison to the electrical profiles. Consequently, there is no balancing need 

below 15 minutes. If electrical storage units were used, their sizes would tend to be 

underestimated with 15 minute time steps.  

In terms of validating our approach and assessing its performance, we carried out the 

following comparisons. First, we solve SMILP-1 (integers for discrete storage sizes at the first 

stage but no integers at the second stage) for one building group as a closed program 

optimized by CPLEX on one computing node. For this problem, CPLEX finds an exact 

solution with a relative gap (to the relaxed problem) of 0% after five hours. Exactly the same 

results of the objective function value and decision variables are achieved by our parallel 

optimization approach, but in less than half an hour. Second, we compare the performance 

for SMILP-2 (integers for discrete storage sizes at the first stage and for the heat pump 

operation at the second stage). For this problem, CPLEX does not find an exact solution. 

However, it finds a solution with a relative gap of 15.3% after three computing days on one 

computing node (requiring about 0.5TB RAM). In contrast, our parallel optimization approach 

finds a solution with a relative gap of 2% within less than a half day. 

The advantage of the outer SAHC approach as DFO is that it is robust against inaccuracy 

of the inner optimization and reliably proceeds to an optimal solution. Therefore, only few 

computations of the expensive inner optimization are required, given a good starting point 

and few fixed variables to optimize. The disadvantage is that the solution could only be 

locally optimal, if the solution space of the SMILP is non-convex. Even a more time-intensive 

evolutionary algorithm used by Till et al. [80] as outer optimization can end in a local 

optimum. A global optimum can be guaranteed by either a complete enumeration or an exact 

algorithm such as the mentioned branch-and-bound approach used by DDSIP or the branch-

and-fix coordination methodology. But these approaches appear to be prohibited by the 

problem size. For example, Pagès-Bernaus et al. [59] apply their developed branch-and-fix 

coordination methodology to two real instances with 447 771 variables (thereof 13 338 

binary) and 56 700 variables (thereof 34 479 binary). An application of one of these exact 

algorithms to the case study of this paper with more than 100 million variables would result in 

a non-performable computational effort that exceeds the current commonly-available 

computing resources. The comparison with DDSIP corroborates this assertion. 

 
 

6. Conclusion and outlook 

 

This paper considers the optimization of the investment and operation planning process of a 

decentralized energy system, subject to different sources of uncertainties. The presented 

module-based, parallel computing approach accounts for the uncertainties by generating and 

transforming consistent ensembles of data required for the stochastic optimization problem. 

Thereby, mutual dependencies of the uncertain parameters are taken into account and 

propagated consistently through the complete model chain. Although the problem ends up in 

a large-scale two-stage stochastic mixed-integer program, the employed parallel optimization 

process and an outer derivative-free optimization find a local optimum reliably in a few steps. 
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The solution quality can be assessed by the relative gap to the stochastic program without 

integer requirements or without non-anticipativity constraints. As a result of the 

parallelization, the computational feasibility is no longer constrained by the problem size, but 

rather by the available computer resources. The employed decomposition technique allows 

an extensive computation on high-performance computing systems in parallel.  

The approach is applied to a residential quarter with 70 households using a PV system 

and heat pumps in combination with heat storage units for the energy supply in the quarter. 

Because of the complex impact of uncertain parameters on the solution, the investment 

decisions derived from the stochastic solution can be very different from the solution based 

on expected values of the input data or the occurrence frequency peak. Using two-stage 

stochastic programming leads to a solution that is expected to be optimal. This solution is 

much more reliable with respect to the parameter uncertainties than deterministic solutions 

which are not always feasible for all possible future scenarios. In general, heat storage units 

in such a quarter prove beneficial. The storage for domestic hot water is more profitable than 

for space heating as a result of the more constant provision of flexibility. A further finding is 

that the beneficial effect of the space heating storage is the fulfillment of all energy system 

restrictions, i.e. the covering of the heat demand, even in very cold winters. Therefore, the 

resulting capacity for space heating storage is generally larger than for the deterministic 

optimization, e.g., with expected values. This added value of stochastic solution amounts to 

3 700-45 500€, depending on the usage of inverter heat pumps or heat pumps that can only 

run stepwise. 

These results are achieved by using high-performance computing which can be expensive 

and offset the savings in investments. In total, the problem was solved in parallel on more 

than 1 000 computing nodes of different high-performance computing systems. Considering 

the computational expenses of less than 3 500€, the application of the approach is 

advantageous for this case study. A benchmark with an exact method of simplified stochastic 

programs shows a strong scalability with equivalent results for a number of test programs 

with different sizes. This holds especially for the optimization of few fixed first-stage and / or 

second-stage variables. Otherwise, our framework allows an adaptation (e.g., substitution of 

the outer SAHC optimization) to better cope with large numbers of fixed variables.  

The general framework enables the easy exchange of the optimization module and, if 

necessary, modules that generate ensembles of the uncertain parameters or transfer these 

ensembles into energy supply and demand profiles. This allows the optimization and analysis 

of other setups (e.g., different tariffs, or additional technologies such as electrical storage 

units) and further uncertainties. Furthermore, risk preferences can be incorporated by adding 

an additional term to the objective function: instead of minimizing or maximizing an expected 

value, a combination of expectation and a measure of risk-preference can be optimized. 

Prospectively, alternative outer optimization methods should be considered, in particular, 

when large numbers of variables need to be fixed and optimized or less computing power is 

available. This is important because, on a final note, the real-world case study shows that the 

approach using stochastic programming can be beneficial, even if the program is too large 

for determining a guaranteed global optimum.  
 

 

Appendix A. Further information on the energy supply and demand profiles 
 

Concerning the supply side profiles, we provide details on the validation of the global solar 

radiation output of the developed Markov model (see Section 3.1) for illustrative purposes. 

Moreover, we present information about how the radiation profiles differ between the different 

scenarios. The other Markov model output parameters (temperature and cloudiness) have 
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been validated accordingly. Note that historical measurement data over a longer horizon is 

only available in hourly resolution. For the validation, we therefore aggregate the model 

output from 15 minute to hourly resolution. Let 𝜌𝑎 = (𝜌𝑎
1, … , 𝜌𝑎

8760) be an hourly series of 

global solar radiation in year 𝑎, where 𝑎 ∈ {1971,… , 2011} for the historical data and 𝑎 ∈

{1,… , 100} for the results of the Markov model. We now validate the Markov model on the 

basis of four indicators: (i) the total annual radiation supply in year 𝑎 defined by Ρ𝑎 = ∑ 𝜌𝑎
ℎ8760

ℎ=1  

as a long-term indicator and (ii) the hourly volatility in year 𝑎 defined by 𝑣𝑜𝑙𝑎𝑎 = 𝜎(𝜌𝑎) 𝜇(𝜌𝑎)⁄  

as a short-term indicator, where 𝜎(𝜌𝑎) and 𝜇(𝜌𝑎) are the standard deviation and arithmetic 

mean of the global solar radiation in year 𝑎 respectively. In addition, we consider (iii) the 

maximum amplitude of radiation supply (𝑀𝐴𝑅𝑆𝑎) in year 𝑎 and (iv) the maximum gradient of 

radiation supply (𝑀𝐺𝑅𝑆𝑎) in year 𝑎 as defined by Schermeyer et al. [66]. In order to validate 

the performance of the Markov model in the long run, we compare the arithmetic means 𝜇(∙) 

of these four indicators over all available years (simulation results vs. historical data) as well 

as the 5% and 95% quantiles 𝑞𝑢𝑎𝑛𝑡5%(∙) and 𝑞𝑢𝑎𝑛𝑡95%(∙) over all available years to analyze 

the range of variation. Table A.1 shows the relative deviation of these means and quantiles 

of the four indicators between the Markov model results and historical data. For instance, the 

values in the column 𝜇(∙) are calculated as (𝜇𝑀𝑜𝑑(∙) − 𝜇𝐻𝑖𝑠𝑡(∙)) 𝜇𝐻𝑖𝑠𝑡(∙)⁄ , where the 

superscript 𝑀𝑜𝑑 denotes the model results and the superscript 𝐻𝑖𝑠𝑡 denotes historical data. 

The values in the other columns are calculated accordingly. Overall, this comparison shows 

satisfying results. At the same time, however, the table shows that there is room for further 

improvement of the Markov model in future. 

 
Table A.1 

Results of a comparison of simulation model results and historical weather data for four indicators. 

 Relative deviation of...   

  𝜇(∙) 𝑞𝑢𝑎𝑛𝑡5%(∙) 𝑞𝑢𝑎𝑛𝑡95%(∙) 

Ρ𝑎 0% 6% −3%    
𝑣𝑜𝑙𝑎𝑎 −4%    −3%    −6%    
𝑀𝐴𝑅𝑆𝑎 7% 4% 10% 

𝑀𝐺𝑅𝑆𝑎 8% −2%    5% 

 

Fig. A.1 shows the importance of using 15 minute profiles rather than hourly profiles on the 

supply side. The left diagram shows the variability of PV power output between the 100 

considered scenarios in general for a day in June. It also shows that the spikes on the top 

only occur during short periods of time (15 minute intervals rather than hours). This implies 

that the maximum amplitude of radiation supply is underestimated with hourly profiles. 

Moreover, when it comes to choosing the optimal sizes of the energy system’s components, 

the gradients of power output between time steps are very important. This is particularly 

relevant for storages which are at the core of our case study. The right diagram in Fig. A.1 

shows that the maximum positive and negative gradients are strongly underestimated when 

using an hourly resolution as opposed to a 15 minute resolution.  

Fig. A.2 shows the optimal storage size for SH and DHW under SMILP-1 and SMILP-2 for 

different temporal resolutions. When time steps of 60 minutes are used instead of 15 

minutes, the optimal storage sizes differ by up to 50%. The lower temporal resolution 

reduces the load shifting potential and leads to smaller storage units for SMILP-1 (without 

integers at the second stage). In case of SMILP-2, the stepwise flexibility of the heat pumps 

is reduced when moving from a 15 minute resolution to 60 or even 120 minutes. This makes 

the storage units more attractive. This effect outbalances the reduced load shift potential and 

results in larger storages for SMILP-2 for coarser temporal resolutions. 
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Fig. A.1. Variability of PV generation between scenarios (left) and range of maximum gradients (right) for an illustrative June day. 

 

 
Fig. A.2. Influence of the temporal resolution on the optimal storage size for space heating (SH) and domestic hot water (DHW).   

 

Concerning the demand side profiles, as described in Section 3.2, we use a standard load 

profile approach (based on so-called H0 profiles), to generate electricity demand time series 

for the 70 households of the quarter. Thereby, the total yearly electricity consumption 

(without the electricity demand of the heat pumps) is calculated according to VDI 4655, which 

takes the number of residents and the usable floor surface into account. Aiming for an ex-

post validation of the assumption that 70 households can be approximated by H0 profiles, we 

compare the H0 profiles to measured electricity demand profiles of households that have 

already moved into their dwellings in the quarter (see Table A.2). The comparison is based 

on 40 households since we only include households where measurement data is available 

for an entire year and the remaining households have moved in at a later date. Table A.2 

shows the (linear) correlation coefficient between the H0 profiles and the measured profiles, 

the mean absolute percentage error (𝑀𝐴𝑃𝐸), the root mean square percentage error 

(𝑅𝑀𝑆𝑃𝐸) and the relative difference of the demand volatility Δ(𝑣𝑜𝑙𝑎𝑎), where Δ(𝑣𝑜𝑙𝑎𝑎) =

(𝑣𝑜𝑙𝑎𝑎(𝐻0) − 𝑣𝑜𝑙𝑎𝑎(𝑚𝑒𝑎𝑠𝑢 𝑒𝑑 𝑝 𝑜𝑓𝑖𝑙𝑒𝑠))/𝑣𝑜𝑙𝑎𝑎(𝑚𝑒𝑎𝑠𝑢 𝑒𝑑 𝑝 𝑜𝑓𝑖𝑙𝑒𝑠). The correlation 

coefficient between the 40 households and the H0 profiles already amounts to 78%. For 

larger numbers of households, [32] show that the correlation coefficient between 100 

households and the H0 profile increases to 90%. We therefore expect the correlation 

coefficient of the entire quarter to be between 78% and 90%. In terms of the load volatility, 

we find that there is only a −7% difference between our 40 households and the H0 profiles, 

which we expect to further decrease for 70 households (similar to the effect described for the 

correlation).  
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Table A.2 

H0-profiles compared to real-measured electricity demand of 40 households of the quarter. 

 Number of households... 
 1 5 10 20 40 

correlation with 
H0 profiles    25%    39%    51%    64% 78% 
𝑀𝐴𝑃𝐸     89%    53%    43%    32% 23% 

𝑅𝑀𝑆𝑃𝐸   163%    74%    57%    42% 30% 

Δ(𝑣𝑜𝑙𝑎𝑎) −78% −43% −35% −18% −7% 

 

 

Appendix B. Overview of derivative-free optimization approaches 

 

As described in Section 3.3, a derivative-free optimization (DFO) is used for the outer 

optimization of the fixed mixed-integer variables. Table B.1 summarizes DFO methods with 

regard to the mentioned requirements. DFO refers to problems when information on the 

derivatives of 𝑓 is unavailable, unreliable, or impractical to obtain. This definition includes any 

algorithm applied to these problems, even if the algorithm involves the computation of 

derivatives for functions other than 𝑓 [61]. Not included are commonly-known algorithms 

such as branch-and-bound, cutting plane or Lagrangian relaxation, albeit specific variants 

could be considered as DFO according to this definition. However, the economic optimization 

subsystem introduced in Section 3.3, particularly the approach to parallelization, would need 

to be substantially changed to apply such algorithms.  

The main task is to determine optimal storage sizes of the residential quarter. Therefore, 

the problem is decomposed by fixing storage sizes and storage levels. Since the non-

optimization of the storage levels leads to a negligible error, only few fixed integer variables 

need to be optimized, i.e. 8 storage sizes of the quarter. To this purpose, SAHC is sufficient 

for the outer optimization. The advantages of the implementation are its simplicity, flexibility 

and reliability. Furthermore, it robustly proceeds to the (local) optimum even with inaccurate 

solutions of the subproblems. The complete SAHC procedure is presented in the following: 

 
Procedure of the steepest-ascent hill-climbing (SAHC) method: 

Step 0:  (Initialization) compute 𝑓(𝜑) for an initial 𝜑 (e.g. 𝜑 = 0) by using POP and set step size 𝑠𝑘 for each 

fixed variable 𝜑𝑘 of vector 𝜑. If 𝜑𝑘 ∈ ℤ, then 𝑠𝑘 ∈ ℤ. Let 𝑒𝑘 ∈ ℝ+
𝐼+𝑅−  be the 𝑘-th unit vector, where 𝐼 is 

the number of fixed first-stage variables and 𝑅 − 𝑣 is the number of fixed second-stage variables. 

 

Step 1:  Add 𝑠𝑘 to 𝜑𝑘 and compute 𝑓(𝜑 + 𝑠𝑘𝑒𝑘) and subtract 𝑠𝑘 from 𝜑𝑘 and compute 𝑓(𝜑 − 𝑠𝑘𝑒𝑘) by using 

POP sequentially for each fixation 1 ≤ 𝑘 ≤ 𝐼 + 𝑅 − 𝑣. Note if 𝑓(𝜑 + 𝑠𝑘𝑒𝑘)  > 𝑓(𝜑 − 𝑠𝑘𝑒𝑘), then 

 𝑠𝑡𝑒𝑝𝑘
∗ = +𝑠𝑘𝑒𝑘, else 𝑠𝑡𝑒𝑝𝑘

∗ = −𝑠𝑘𝑒𝑘. 

  

Step 2: Select 𝜑∗ ∈ {𝜑 ± 𝑠𝑘𝑒𝑘  | ∀ 1 ≤ 𝑘 ≤ 𝐼 + 𝑅 − 𝑣} with 𝑓(𝜑) = min
𝑘
 {𝑓(𝜑 ± 𝑠𝑘𝑒𝑘)}. 

 

Step 3: Define ∆𝑓(𝜑)𝑟𝑒𝑙 = (𝑓(𝜑) − 𝑓(𝜑∗))/𝑓(𝜑). 

 

Step 4: If ∆𝑓(𝜑)𝑟𝑒𝑙 ≤ 0, then 𝑠𝑘 =
𝑠𝑘

2
 ; if 𝜑𝑘 ∈ ℤ and 

𝑠𝑘

2
< 1, then go to step 6; if 𝜑𝑘 ∈ ℤ and 

𝑠𝑘

2
∉ ℤ,  

then round 
𝑠𝑘

2
 to the larger integer; go to step 1. Otherwise continue. 

 

Step 5: If ∆𝑓(𝜑)𝑟𝑒𝑙 > stopping criterion 𝑎 ∈ ℝ+, then accept 𝑓(𝜑) = 𝑓(𝜑∗) and 𝜑 = 𝜑∗, compute 𝑓(𝜑 + 𝑠𝑡𝑒𝑝𝑘
∗) 

by using POP sequentially for each fixation 1 ≤ 𝑘 ≤ 𝐼 + 𝑅 − 𝑣 and go to step 2. Otherwise continue. 

 

Step 6: (End) Stop. The local optimal solution value is 𝑓(𝜑∗) with the vector 𝜑∗. 

 



32 
 

Table B.1 

Possible DFO algorithms for the outer optimization of the fixed variables (based on Rios et al., 2013; Conn et al., 2009).  

Algorithm  Brief description Search 

method  

Specific concerns regarding  

the outer optimization  

Tolerance to 

inaccuracy (𝑓) 

Coordinate 

search (CS) / 

steepest-ascent 

hill-climbing 

(SAHC) 

Incrementally altering solution-dependent variables 

to improve initial solution; all of the components (to 

be optimized) of 𝑓 are sequentially modified in each 

iteration and the greatest improvement of 𝑓 is 

accepted 

Local Flexible, robust and simple, 

problem if slope of 𝑓 is low 

(few iterations to nearby 

optimum if good initial point 

and few variables) 

(Very) High/ 

low if slope 

of 𝑓 is low 

(e.g., if close 

to optimum) 

Lipschitzian-

based 

partitioning  

Constructs and optimizes a function that 

underestimates 𝑓 (enhancement by DIRECT 

algorithm or branch-and-bound search) 

Global Lipschitz constant is unknown 

and the evaluation number of 𝑓 

increases exponentially 

- 

Model-based 

search  

Constructs and utilizes a surrogate a model of 𝑓 to 

iteratively guide the search process  

Local/ 

global 

Applicable to few and many 

fixed variables 

Low / high 

(medium) 

- Branch-and-fit 

optimization 

Combines surrogate models (that determine 

evaluation candidates) and random point generation  

Global variables ≤ 10 is suggested [37] (very) high 

- Implicit 

filtering 

Constructs and utilizes a surrogate model of the 

gradient of 𝑓 to iteratively guide the search  

Local Less efficient, but more capable 

of filtering noise  

High 

- Response 

surface 

methods 

(RSM) 

Response surface 𝑓 approximates 𝑓; variation by 

surface interpolating using kriging or radial basis 

functions, others are efficient global optimization 

(EGO) or sequential design for optimization (SDO) 

Global Mismatch between 𝑓 and 𝑓 is 

assumed to be caused by a 

model and not because of noise 

Low 

(medium) 

- Surrogate 

management 

framework 

Pattern search method that utilizes a surrogate 

model to produce potentially optimal points and 

improve the accuracy of the surrogate model 

Global - - 

- Trust-region 

methods 

Surrogate model is presumed to be accurate in a 

trust region about the current iterate 

Local Guide the search by using 

surrogate model properties 

Low 

Multilevel 

coordinate 

search (MCS) 

Partitions the search space into boxes with an 

evaluated base; a conducted global-local search is 

balanced by a multilevel approach  

Global Similar to SAHC, requires more 

evaluations of the sub- 

problems for global search 

High / low 

when slope 

of 𝑓 is low 

Nelder-Mead 

simplex 

algorithm 

Corner points of simplex are determined and the 

worst one is replaced by introducing a new vertex 

in a way that results in a new simplex 

Local  Can stagnate if slope of 𝑓 is low, 

used for continuous 

optimization problem (usu.) 

High / low 

when slope 

of 𝑓 is low 

Pattern search Evaluates 𝑓 in a pattern-based fashion Local Requires many iterations (usu.) (Very) High 

- Generalized 

pattern search 

(GPS)  

Searches by poll steps (exploratory moves): a set of 

points is defined that form a pattern, determined 

by a step and a generating matrix  

Local  Similar to SAHC, can converges 

to saddle points 

(Very) High 

- Generating set 

search (GSS)  

GPS is enhanced: besides poll steps, search steps 

are used (requisite search directions are computed) 

Local Similar to SAHC High 

- Hooke-Jeeves 

direct search 

(HJDC) 

Uses exploratory moves (𝑓 is evaluated at successive 

changes in the search directions) and pattern moves 

(in underlying successful direction) 

Local Similar to SAHC, but allows 

lower usage of computation in 

parallel 

High 

- Mesh adaptive 

direct search  

Modification of GPS by polling in an asymptotically 

dense set of directions (set varies with iterations) 

Local Similar to SAHC, better esc. from 

non-stationary points than GPS 

High 

Stochastic 

search  

Relies on critical non-deterministic algorithmic steps Global Requires many evaluations of 

the subproblems in general 

High/ 

very high 

- Evolutionary 

algorithms 

(EA) 

Operates on population derived on the principles of 

natural selection and incorporate fitness assignment, 

recombination and mutation  

Global Requires many iterations in 

addition 

High 

- Hit-and-run 

algorithms 

Compares current iterate with a randomly generated 

candidate 

Global No guarantee to obtain good 

solutions in a finite iterations 

Very high 

- Particle 

swarm 

optimization 

Idea is that particles move in the solution space 

attracted by previous successful solutions and 

influencing each other with stochastic changes 

Global Requires many iterations in 

addition 

High 

- Simulated 

annealing 

algorithm 

Compares the current iterate x with a specific-

generated candidate that is, unlike hit-and-run 

algorithms, accepted with a probability function 

Global No guarantee to obtain good 

solutions in a finite number of 

iterations  

High 
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Appendix C. Further information about the mathematical model of the quarter 

 

Table C.1 lists the complete nomenclature of the residential quarter modeled as a two-stage 

stochastic mixed-integer program. 

 
Table C.1 

Nomenclature. 

Indices 

𝑔 building group 1, . . . , 𝐺 of the quarter with 𝐺 = 4 
𝑖 component 𝑖 ∈ {PV, HPSH, HPDHW, HESH, HEDHW, SSH, SDHW} of the energy system with |𝑖| = 𝐼 = 7 
𝑢 use 𝑢 ∈ {SH, DHW} for space heating or domestic hot water with |𝑢| = 2 
𝑡 time index 1, . . . , 𝑇 indicating the time step of the year 
𝜔 scenario index 1, . . . , 𝑁 

Parameters  

𝐴𝑁𝐹 annuity factor 

𝑐𝑖
fix|var

 fix or variable capacity costs of component 𝑖 

𝐶𝑂𝑃𝜔,𝑢,𝑡 COP of the heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡 

�̂�𝜔,𝑡
hp

 maximal heating power of the heat pump at time 𝑡 

�̂�he maximal heating power of the heating element  
𝑑𝜔,𝑡
ee  electricity demand for electrical usage in scenario 𝜔 of building group 𝑔 at time 𝑡 

𝑑𝜔,𝑔,𝑢,𝑡
𝑡ℎ  thermal demand in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡  

𝑒𝜔,𝑡
PV,kWp

 supplied electrical energy per kilowatt-peak of the PV system in scenario 𝜔 at time 𝑡 

𝑐𝑓 compensation factor for not-covered heat demand  

𝑙𝑢
hs loss factor of heat storage for use 𝑢 

𝑙𝑢
hp

 ramp-up loss factor of heat pump for use 𝑢 

𝑚 possible heating power modes of the heat pump  

𝑝grid price of electricity from grid 

𝑝fi price of feed-in compensation 
�̌�𝑔,𝑢 minimal heat storage level of building group 𝑔 for use 𝑢 

𝜂 efficiency of the heating element  

Variables (highlighted in bold) 

𝒙𝒈,𝒊 capacity of building group 𝑔 of component 𝑖  

 𝒙𝒈,𝒊=𝐏𝐕 installed PV capacity of building group 𝑔; ∈ ℝ+ 

 𝒙𝒈,𝒊=𝐇𝐏𝐒𝐇  number of heat pumps of building group 𝑔 for SH; ∈ ℤ+ 

 𝒙𝒈,𝒊=𝐇𝐏𝐃𝐇𝐖  number of heat pumps of building group 𝑔 for DHW; ∈ ℤ+ 

 𝒙𝒈,𝒊=𝐇𝐄𝐒𝐇  number of heating elements of building group 𝑔 for SH storage; ∈ ℤ+ 

 𝒙𝒈,𝒊=𝐇𝐄𝐃𝐇𝐖  number of heating elements of building group 𝑔 for DHW storage; ∈ ℤ+ 

 𝒙𝒈,𝒊=𝐒𝐒𝐇  maximal capacity of heat storage of building group 𝑔 for SH; ∈ ℤ+ 

 𝒙𝒈,𝒊=𝐒𝐃𝐇𝐖  maximal capacity of heat storage of building group 𝑔 for DHW; ∈ ℤ+ 

𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐩

 used electricity of heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 

𝒅𝝎,𝒈,𝒖,𝒕
𝐡𝐞  used electricity of heating element in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 

𝒆𝝎,𝒕
𝐠𝐫𝐢𝐝

 used electricity from the grid in scenario 𝜔 at time 𝑡; ∈ ℝ+ 

𝒆𝝎,𝒕
𝐟𝐢  fed-in energy of the PV system in scenario 𝜔 at time 𝑡; ∈ ℝ+ 

𝒆𝝎,𝒕
𝐏𝐕  supplied electrical energy from the PV system in scenario 𝜔 at time 𝑡 

𝑳𝝎,𝒈,𝒖,𝒕 losses of the heat storage in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 

𝒑𝒐𝒔𝝎,𝒈,𝒖,𝒕 pos. variable for positive shift of heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 

𝒏𝒆𝒈𝝎,𝒈,𝒖,𝒕 pos. variable for negative shift of heat pump in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 
𝒒𝝎,𝒈,𝒖,𝒕 not-covered heat demand in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 

𝒔𝝎,𝒈,𝒖,𝒕 stored heat in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ 

𝒛𝒈,𝒊 integer/continuous capacity of building group g of component 𝑖; ∈ ℝ+ or ℤ+ 

𝒛𝝎,𝒈,𝒖,𝒕 integer/continuous heating power level in scenario 𝜔 of building group 𝑔 for use 𝑢 at time 𝑡; ∈ ℝ+ or ℤ+ 

 

 

References 

[1] Ahmed S (2010) Two-stage stochastic integer programming: a brief introduction. In: Cochran JJ, 

Cox LA, Keskinocak P, Kharoufeh JP, Smith JC (Hrsg) Wiley Encyclopedia of Operations Research 

and Management Science. John Wiley & Sons, Inc, Hoboken, NJ, USA 



34 
 

[2] Alonso-Ayuso A, Escudero LF, Teresa Ortuño M (2003) BFC, A branch-and-fix coordination 

algorithmic framework for solving some types of stochastic pure and mixed 0–1 programs. Eur J 

Oper Res 151(3):503–519. doi:10.1016/S0377-2217(02)00628-8 
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[83] Ventosa M, Baıĺlo Á, Ramos A, Rivier M (2005) Electricity market modeling trends. Energ Pol 

33(7):897–913. doi:10.1016/j.enpol.2003.10.013 

[84] Verderame PM, Elia JA, Li J, Floudas CA (2010) Planning and Scheduling under Uncertainty. A 

Review Across Multiple Sectors. Ind Eng Chem Res 49(9):3993–4017. doi:10.1021/ie902009k 

[85] Vögele S, Kuckshinrichs W, Markewitz P (2009) A Hybrid IO Energy Model to Analyze CO2 

Reduction Policies: A Case of Germany. In: Tukker A, Suh S (Hrsg) Handbook of Input-Output 

Economics in Industrial Ecology, Bd 23. Springer Netherlands, Dordrecht, S 337–356 

[86] Wald A (1945) Statistical Decision Functions Which Minimize the Maximum Risk. The Annals of 

Mathematics 46(2):265. doi:10.2307/1969022 

[87] Wallace SW, Fleten S-E (2003) Stochastic programming models in energy Stochastic 

Programming, Bd 10. Elsevier Science, S 637–677 

[88] Yazdanie M, Densing M, Wokaun A (2016) The role of decentralized generation and storage 

technologies in future energy systems planning for a rural agglomeration in Switzerland. Energy 

Policy 96:432–445. doi:10.1016/j.enpol.2016.06.010 

[89] Yuan Y, Sen S (2009) Enhanced Cut Generation Methods for Decomposition-Based Branch and 

Cut for Two-Stage Stochastic Mixed-Integer Programs. INFORMS Journal on Computing 

21(3):480–487. doi:10.1287/ijoc.1080.0300 

[90] Zhou M (1998) Fuzzy logic and optimization models for implementing QFD. Comput Ind Eng 

35(1-2):237–240. doi:10.1016/S0360-8352(98)00073-4 

[91] Zhu X (2006) Discrete two-stage stochastic mixed-integer programs with applications to airline 

fleet assignment and workforce planning problems. Dissertation, Virginia Polytechnic Institute 

and State University 

 


