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Abstract. The Peaceman—Rachford alternating direction implicit (ADI) method
is considered for the time-integration of a class of wavetype equations for linear,
isotropic materials on a tensorial domain, e.g., a cuboid in 3D or a rectangle in
2D. This method is known to be unconditionally stable and of classical order two.
So far, it has been applied to specific problems and is mostly combined with finite
differences in space, where it can be implemented at the cost of an explicit method.

In this paper, we consider the ADI method for a discontinuous Galerkin (dG)
space discretization. We characterize a large class of first-order differential equations
for which we show that on tensorial meshes, the method can be implemented with
optimal (linear) complexity.

1 Introduction

In this paper, we investigate the efficiency of the Peaceman—Rachford scheme
applied to a directional splitting for a central fluxes dG space discretization of
the split operators. We characterize a class of wave-type problems for which
we show that one timestep of the fully discrete scheme can be performed in
linear complexity w.r.t. the total number of spatial degrees of freedom.

We start by providing definitions and results used to describe the afore-
mentioned class of problems, which is then introduced in Section 2. In Sec-
tion 3, we review the methods used for discretization and Section 4 is devoted
to the efficiency of this discretization. Section 5 then provides some numerical
tests to confirm the theoretical results.

Throughout the paper, we denote the ith canonical unit vector by e; and
the ith component of a vector v by v;. By (-,-)s, we denote the standard L?
inner product over a set S and by §;; the Kronecker delta. Further, if S is a
countable set, we denote the number of its elements by |S|.

1.1 Operators with decoupled partial derivatives

In order to characterize problems enabling splitting for which the Peaceman—
Rachford method can be performed in linear complexity we start with some
definitions.

Definition 1. Let My, ..., My € R™*™ be symmetric matrices and denote
by Z; = {j € {1,...,m} | M;e; # 0} the set of indices of non-zero columns
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(or rows) in M;, i = 1,...,d. Then we call My,..., My € R™*™ decoupled
block-diagonal if Z; NZ; = for all i # j.

Hence, d symmetric and decoupled block-diagonal matrices have pairwise
disjoint non-zero rows and columns. The name decoupled block-diagonal is
motivated by the following property.

Theorem 2. Let My,..., My € R™*™ be symmetric and decoupled block-
diagonal. Then there is a permutation matric P € R™*™ s.t. for oll i =
1,...,d, the matriz PTM;P is block diagonal with at most one non-zero di-
agonal block which vanishes in all other matrices PTMjP , J F .

Proof. The assertion follows from the symmetry of the matrices M; if we
reorder the rows and columns by the indices in Z;, then Zs, ..., Zy, and last
the indices of those columns which vanish in all matrices. a

Using this notion, we characterize first order differential operators, whose
partial derivatives completely decouple.

Definition 3. Let M = Z?Zl M;0; be a first order differential operator with
symmetric matrics M; € R™*™ 4§ =1,...,d. We say that M has decoupled
partial derivatives if My, ..., My are decoupled block-diagonal.

2 Framework

Let 2 C R? be a bounded paraxial tensorial domain with boundary 9f2 and
let n be the outer unit normal on 0f2. Further, let L = Z;i:l L;0;, A =
Z?zl A;0;, B = Z?:l B;0;, with symmetric matrices L;, A;, B; € R™*™,
We consider homogeneous first order wave-type equations of the form

Owu(t) = Lu(t) = (A + B)u(t), te0,77], u(0) = u°, (1)

where A and B have decoupled partial derivatives.
This class of problems includes, e.g., advection and wave equations in 2D
and Maxwell’s equations in 3D. These examples are given as follows.

2D advection equation Here, we have m = 1, L; = «; for i = 1,2 with
the advection velocity vector a. We consider homogeneous inflow boundary
conditions, i.e., u(t) = 0 on the inflow boundary 02~ = {z € 92 | an < 0}.
The split operators are given by A; = a3, A3 =0 and B; =0, Bs = as and
the boundary conditions are given by nyu(t) = 0 on 92~ for A and nou(t) =0
on 92~ for B, respectively
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2D wave equation Here, we have m = 3 and

p

T T

u=\|q |, Li=-eie; +ezei.
q2

We consider homogeneous Dirichlet boundary conditions, i.e., p(t) = 0 on
012. The split operators are given by A; = L1, Ao =0and B; =0, By = Lo
with boundary conditions given by nip(t) = 0 on 912 for A and nop(t) =0
on 012 for B, respectively.

3D Maxwell’s equations Here, we have m = 6 and

E 0 LT
() 1= (2,

where l~/1 = egeg—egeg7 zg = ege{—eleg and I~/3 = eleg—egeip. ‘We consider
perfectly conducting boundary conditions, i.e., Z?:l Lin;E =0 on 0f2. The
split operators are given by (cf. [5,7])

0 AT 0 BF
Ai_</~1i0>’ Bi_<Bz‘0>

with /11 = —BIT = ezeg /12 = —Bg = 6361T /13 = —BST = eleg and we
subject A to Z?:l Amn;E =0 and B to Z?Zl Bin;E =0 on 912.

Remark 4. For ease of presentation, we omit material parameters in this pa-
per. However, in the case of isotropic materials, all statements apply with only
minor changes: the operator D~'L with D = diag(61,...,0m), 01,--.,0m €
L>(42), takes over the role of L (and analogously for A and B) and the av-
erage in the dG-discretization (see below) is replaced by a weighted average,
taking possible jumps in the material parameters into account. Because of the
diagonal structure of D, no further coupling is introduced, and the efficiency
analysis can be performed completely analogously.

3 Discretization

In this section, we review the Peaceman—Rachford scheme for the temporal
discretization [6] and the central flux discontinuous Galerkin (dG) scheme
[2,3] used for the spatial discretization.

3.1 Temporal discretization

The Peaceman—Rachford scheme [6] applied to (1) reads
(I —ZAW"™/2 = (I +3B)u",
(I-ZBu™ = (I+5A)u"t2
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This scheme is of (classical) order two and unconditionally stable if A and
B are dissipative operators (see e.g., [4]). It requires the solution of two
linear systems whose coefficient matrices are given by the spatially discrete
counterparts of I — 5 A or I — 5 B. However, if the operators A and B have
decoupled partial derivatives (cf. Definition 3), we will show that this can be
achieved in optimal (linear) complexity w.r.t. the total number of degrees of
freedom.

3.2 Spatial discretization

We use a central flux dG method to discretize the split differential operators in
space [2,3]. For this, we equip {2 with a mesh 7 = { K} consisting of paraxial
tensor-structured elements. We gather the faces of T in the set F = {F},
which is further decomposed into the set of interior faces F'™* and the set of
boundary faces FPd.

Due to the tensorial structure of the mesh, normal vectors to the faces
in F are +e; for some j € {1,...,d}. For F' € F we denote the unit normal
vector to F' in positive coordinate direction by nf". Hence, we have

- d
Fe={J_Fo FY={FeF|n"=e},  ac{ntext} (2)
where F®! are the sets of faces with normals pointing in the ith direction.
For each interior face F' € F™, we additionally denote the two elements
containing F as K{" and K", where the numbering is done s.t. n!" is the
outer normal to K{ .
To approximate functions in space, we use the broken polynomial space

Vi ={veL*2)|v|lg €Pyforall K € T}, (3)

where P, denotes the set of polynomials of degree at most k in each variable.
We could also allow the polynomial degree k to depend on K, but for the sake
of presentation we do not pursue this further in this paper. For the efficiency
analysis, we consider the basis

V= J{of ... o8, }

KeT

of Vi, where supp(¢X) C K for i =1,..., N, e.g., a standard discontinuous
Lagrange basis. Since functions in the space V} may be discontinuous across
the faces of the mesh, we define the average and the jump of a (possibly
vector-valued) function v over an interior face F' € Fi™ as

fope = DI el = (ol

Note that the only change for isotropic materials is to replace the average by
a weighted one, taking the material parameters into account.
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Let up, ppn € V. We define the central flux dG-discretization 0; p, of 0; as

@inun,on)a = (Giun,on) — Y, (0] [unlr, fon}r)r

KeT FeFint (4)
= > Ounon)x = Y ([unlr fendr)r
KeT FeFinti

where the second equality follows by the definition of 7% in (2). With this,
we define the dG-discretization of the split operators for up, ) € V™ as

d
(Anun, pn)o = Z (Ai0i,nun, en)2 — ba(un, pn),
()

'M& )

Il
A

(Bhun, on)e = ) _(Bidinun, pn)o — bp(un, pn),

?

where 0; j, is meant to act componentwise and b4, bp model the boundary
conditions of the corresponding operators, respectively. The concrete bound-
ary terms for the examples in Section 2 are as follows.

2D advection equation (homogeneous inflow boundary conditions) For
up, on € Vi, we have

balun,on) = Y (arun,on)p,  bplun,en) = > (o2un on)r

Fe]_-bnd,l Fe]_-bnd,Q

where F e FP" = {F e FPrdi | Fn a0~ #0).

2D wave equation (homogeneous Dirichlet boundary conditions) For uj, =
(Phs @10, G2,0) " o0 = (Ghs Y1 s P2,0)" € V2, we have

balun,on) = Y. (pnvrn)r, be(un,on) = > (pntban)r

FeFbnd,1 FeFbnd.2

3D Maxwell’s equations (perfectly conducting boundary conditions) For
up, = (EL, HO)T @, = (F, )T € VS, we have

A(un, n) Z > (AiBn,Wn)F

=1 FeFbnd,i

5(un, ¢n) Z > (BiEn,W)r

i=1 FeFbnd,i
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4 Efficiency

In this section, we investigate the efficiency of the Peaceman—Rachford dG
scheme, which is mainly determined by the cost to solve linear systems in-
volving the discrete counterparts of I — 5 A and I — 3 B, respectively. We show
that, using a suitable ordering of the degrees of freedom, the corresponding
matrices have block-tridiagonal structure, where the block-sizes only depends
on the polynomial degree k& and the number of indices in the corresponding
set Z;, but is independent of the total number of degrees of freedom. Hence,
the corresponding systems can be solved in linear time.

The mass matrix resulting from the discretization of I is block-diagonal if
the degrees of freedom are ordered elementwise, which is well-known for dG-
methods. Hence, it suffices to investigate the non-zero patterns of the matrices
corrsponding to Ay, and By, respectively. As these are defined in terms of the
discrete partial derivatives 0; p, ¢ =1,...,d, we begin by investigating them.

4.1 Structure of 9;

To investigate the non-zero pattern of the discrete partial derivatives, we
insert the basis functions in V), into the bilinear form (4). For K; # Ks, we
have

Z(aﬂbfla [{(Q)Kzoa jagzla"'kaa
KeT

since supp(¢X) C K. Hence, if we order the basis functions elementwise,
these terms only contribute to the blockdiagonal with block-width Nj.

For the sum over the interfaces, we obtain contributions outside of the
blockdiagonal. However, for F' ¢ 0K, we have

{65 e =0, [¢X]r =0.

Hence, for K7 and Ky with K1 N Ky ¢ Fi%¢ je., K; and Ky not sharing a
common face with normal in the ¢th direction, it holds

> (165 1k A0 Y r)r =0, Gl=1,..., Ny

FeFinti

Thus, these terms only contribute to off-blockdiagonal entries if the corre-
sponding basis functions are non-zero on elements sharing such a face. If we,
in addition to ordering the degrees of freedom elementwise, order the elements
of the mesh along these normal vectors, the only additional entries appear in
the first sub- and super-blockdiagonals. Altogether, with this ordering of the
degrees of freedom, the discretized partial derivative 0; , is represented by a
block-tridiagonal matrix.
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Remark 5. Note that the tensorial structure of the mesh is indispensable.
Otherwise, the normal vectors have multiple non-zero entries, resulting in
coupling between neighbouring elements w.r.t. more than one face.

If, in addition, we use a product basis for the space V}, and if the material
parameters have product structure as well, the resulting matrices even have
a Kronecker-product structure. This can be exploited to further speed up the
solution of the linear systems in each step.

4.2 Structure of the discrete split operators

To investigate the non-zero pattern of the discrete split operators, we insert
the basis functions in V}"* into the bilinear forms (5). We only consider Ap,
since for By, one can proceed completely analogously.

According to the ordering from Definition 1 corresponding to A, we de-

- d
compose the basis V}" into V" = Uizlv,%, where

Vit =U,, {oei o€V}

For v; € V}Z?i and v; € V,Tl’fj, there exist {1 € Z;,0> € Z; and ¢1, 92 € V), s.t.
Vi = ¢1eq,, Y; = ¢aey,. This implies

d d
> (Adrnthihi)a =Y e, Aver, (Orntr, d2) o = dijef, Aier, (0:.n¢1, d2) e,

r=1 r=1

where the last equality follows as a consequence of Theorem 2, since Ay, ..., A4
are symmetric and decoupled block diagonal. Hence, basis functions belong-
ing to different V}";, © = 1,...,d completely decouple. By ordering the basis
functions according to these sets, we thus obtain (up to) d diagonal blocks.
The structure of these blocks is determined by the structure of (9; n¢1, @2),
which was analyzed in Section 4.1. Therefore, by ordering the elements, and
thus the basis functions in Vy; belonging to them, according to the applied
partial derivative, we obtain a block-tridiagonal structure for eachi =1,...,d
and thus globally, since these blocks decouple. However, in contrast to Sec-
tion 4.1 the block-size is |Z;|Ng, i = 1,...,d, since per element we have N
basis functions for each index in Z; which are coupled through A;.

For the boundary conditions used in the examples above, no further cou-
pling is introduced by the boundary terms b4 and bp, respectively. This can
be seen with a similar argument as for the interfaces. Hence, these terms do
not change the block-tridiagonal structure.

5 Numerical Results

We implemented the method in deal.ii [1] for Maxwell’s equations to verify
the theoretical results. Upon request, the code to perform these experiments
will be provided.



8 Marlis Hochbruck, Jonas Kohler

Fig. 1. Runtimes of the ADI and 10° [ - ADLAG

the Verlet method (including as- - | —o— Verlet-dG 1
sembling of the 'matrices). Compl%— = 10 7 _ _‘(‘;&;";}’1" _ /’,
tations are carried out on 14 uni- 2 E _ E
form grids ranging from 6 to 32 ele- = [

ments per unit length with polyno- 10' £ E
mial degree k = 1 on the grid el- _ -7 o

ements. Time stepsize is 7 = 0.01 100 106

and 200 steps are performed. N = |vm|

The computational domain is 2 = [0, 2] x [0, 1]? with material parameters
chosen to be constant. For the solution of the linear systems in each timestep,
a standard UMFPACK solver is used. For comparison, runtimes of the explicit
Verlet or leap-frog method with the same configurations are shown.

The runtimes illustrated in Fig. 1 clearly show that the method takes only
about 1.8 times longer than the explicit Verlet method, which is unstable on
the two finest meshes. A rigorous error analysis showing temporal order two
independent of the spatial mesh will be presented in a separate paper.
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