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Chapter 1
Introduction

Physics deals with the development of quantitative models that describe nature.
The most fundamental and precise models at present are: general relativity, which
describes gravity as an interaction between the curvature of space-time and matter;
and the Standard Model of particle physics (SM), which describes matter and the
remaining electromagnetic, weak and strong interaction in the form of relativistic
quantum fields.

The current high-energy physics (HEP) research focuses on the precise determination
of the 19 free parameters of the SM and the search for new physics phenomena
beyond the SM.

The Belle II experiment is part of this effort. Like its predecessor Belle, it is located
at the SuperKEKB electron-positron collider in Tsukuba, Japan. It is designed to
perform a wide range of high-precision measurements in all fields of heavy flavour
physics, including: B meson decays; B0

s meson decays; charm physics; τ lepton physics;
hadron spectroscopy; and pure electroweak measurements. These measurements will
constrain the parameter space of the SM as well as some of its extensions.

This work focuses on the development of software, in particular machine learning
algorithms, to advance scientific progress, and to enable and improve a wide range
of physics measurements at Belle II. This thesis summarizes my contributions to the
Belle experiment and its successor the Belle II experiment.

Four major topics are covered. The conversion of the data recorded by the Belle
experiment into the new data-format used by Belle II in Chapter 2. The integration
of state-of-the-art machine learning algorithms and novel data analysis techniques
into the Belle II Software Framework (BASF2) in Chapter 3. The development of the
Full Event Interpretation exclusive tagging algorithm, which is unique to the
Belle II experiment in Chapter 4. And the validation of the entire analysis software
stack using the benchmark measurement of the branching fraction of the rare decay
B → τ ντ in Chapter 5.





Chapter 2
From Belle to Belle II

During this thesis, the full Υ(4S) dataset of the Belle experiment and large amounts
of the available Monte Carlo data were converted into the new data-format used by
Belle II. Therefore, it is possible to evaluate the reliability and performance of the
newly developed analysis methods, in particular data-driven techniques, before a
comparable dataset from the Belle II experiment is available.

In the following I give a brief overview of the Belle experiment (Section 2.1), its
successor the Belle II experiment (Section 2.2) and describe the technical aspects of
converting the Belle dataset into the Belle II data-format (Section 2.3).

2.1. The Belle Experiment

From June 1st 1999 until June 30th 2010, the Belle experiment recorded 988 fb−1 of
data at the KEKB asymmetric e+e− collider [1].

This summary of the KEKB accelerator and the Belle detector is based on [1] and
[2]. Section 2.1.1 and Section 2.1.2 are adapted from my master’s thesis [3].

2.1.1. KEKB Accelerator

The KEKB collider was dedicated to B physics and operated in the energy range of
the Υ resonances. Its asymmetric beam energies induced a Lorentz boost βγ = 0.42
of the center of mass frame relative to the laboratory system, enabling the precise
observation of the time evolution of B meson decays. During its runtime between 1998
and 2010 KEKB achieved the highest instantaneous luminosity of 2.1 · 1034 cm−2s−1

ever achieved by a collider [1, sec. 1.3]. The machine parameters of KEKB are
summarized in Table 2.2.
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2.1.2. Belle Detector

The sole interaction point (IP) was surrounded by the Belle detector to detect and
identify particles produced by the collisions. Like the accelerator, the detector was
specifically designed for the precise observation of B meson decays. This includes
precise measurement of secondary vertices and good particle identification capabilities.

Figure 2.1 shows a schematic side view of the Belle detector.

Figure 2.1.: Side view of the Belle detector. Adapted from [2].

Going outwards from the interaction point the Belle detector consisted of:

• a double-walled Beryllium beam pipe with a radius of 20 mm cooled by He gas;

• radiation-hard Bismuth Germanate crystals used as an extreme forward
calorimeter (EFC) as well as a beam and luminosity monitor;

• four layers of double-sided Silicon strip detectors (SVD) for precise vertex
detection;

• a central drift chamber (CDC), which measured momentum and energy loss of
charged particles;

• an Aerogel Cherenkov counter (ACC) system for particle identification (PID);

• a time-of-flight (TOF) detector system with plastic scintillation counters;

• a segmented array of CsI(Tl) crystals with silicon photodiode readout for
electromagnetic calorimetry (ECL);

4
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Table 2.1.: Summary of the integrated luminosity collected by Belle, broken down
by center-of-mass energy. Adapted from [1].

Resonance On-resonance Off-resonance

Luminosity (fb−1) Luminosity (fb−1)

Υ(5S) 121.4 1.7
Υ(4S) − SVD1 140.0 15.6
Υ(4S) − SVD2 571.0 73.8
Υ(3S) 2.9 0.2
Υ(2S) 24.9 1.7
Υ(1S) 5.7 1.8
Scan > Υ(4S) n/a 27.6

• a superconducting solenoid which provided a homogeneous magnetic field of
1.5 T;

• and an iron support structure, which served as the return path of the magnetic
flux and was instrumented with glass-electrode resistive plate counters for KL

and muon detection (KLM).

2.1.3. Recorded Dataset

The Belle dataset is grouped into 31 experiments1; each experiment marks the time
period between two major shutdowns. Experiment 7 to 27 were recorded with the
first Silicon Vertex Detector (SVD1). The remainder was recorded with the second
(SVD2) detector and, in addition, was reprocessed in 2009 with an improved version
of the reconstruction software. Each experiment is further subdivided into a number
of runs.

Most of the data was recorded at the center-of-mass energy of the Υ(4S) resonance. In
addition, data was also recorded at the Υ(1S), Υ(2S), Υ(3S) and Υ(5S) resonances.
Apart from that, off-resonance data 60 MeV below the resonances was collected to
estimate the continuum background from data instead of Monte Carlo simulation.
Table 2.1 shows a summary of the integrated luminosity collected by Belle, broken
down by the center-of-mass energy.

The raw data coming from the detector was calibrated, reconstructed and stored on
tape using PANTHER-based2 data summary tape (DST) files. After each experiment

1Enumerated from 7 to 73 using only odd numbers and skipping the numbers 29, 57 and 59 for
reasons unknown to the author.

2The PANTHER format consists of tables, which are compressed by the zlib library. The table
formats are defined by ASCII header files.

5
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the calibration constants were recomputed by detector experts or computed directly
from data, and stored in the Belle Condition Database (based on PostgreSQL).
Finally, the data of the completed experiment was reprocessed and stored in a
compact form called mDST files3.

For each experiment, ten times the real integrated luminosity in bb events and
six times that in continuum events were simulated using EvtGen and GEANT3, and
reconstructed with the same software as was used for the detector data.

2.2. The Belle II Experiment

This summary of the SuperKEKB accelerator and the Belle II detector is based on
the detailed description in the technical design report [4] and is an updated and
condensed version of a summary presented in my master’s thesis [3].

2.2.1. SuperKEKB Accelerator

The accelerator was shut down in June 2010 and upgraded to SuperKEKB to
increase the instantaneous luminosity to 8 · 1035 cm−2s−1, which is 40 times the peak
instantaneous luminosity of KEKB [5, sec. 2].

The higher instantaneous luminosity is obtained by adopting the Nano-Beam
scheme [5, sec. 2], which requires a larger crossing angle to fit the final focusing
magnets [4, sec. 3.1]. Moreover, the beam current in both rings is doubled. The
beam energy asymmetry was reduced to mitigate the shortened beam lifetime due to
the Touschek effect4. In consequence the Lorentz boost is reduced to βγ = 0.28.
The relevant machine parameters of KEKB and SuperKEKB are summarized in
Table 2.2.

2.2.2. Belle II Detector

The original detector is currently upgraded to match the higher instantaneous
luminosity of SuperKEKB. The most important objectives for the upgraded detector
are higher physics and background rate tolerance, better physics performance despite
smaller Lorentz boost, and improved radiation hardness [5].

Figure 2.2 shows the Belle II detector.

Going outwards from the interaction point the Belle II detector consists of:

3A reduced and compressed form of the data summary tape files.
4The Touschek effect is a loss mechanism due to large angle coulomb scattering inside a bunch.
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Table 2.2.: Achieved parameters of KEKB and design parameters of SuperKEKB [4].

Machine Parameter KEKB SuperKEKB
e− e+ e− e+

Beam current (A) 1.64 1.19 3.60 2.61
Energy (GeV) (EHER/ELER) 8.0 3.5 7.0 4.0
β∗y (mm) 5.9 5.9 0.27 0.41
Crossing angle (mrad) 22 83
Beam lifetime (min) 200 150 10 10

Luminosity (1034 cm−2s−1) 2.11 80

• a double-walled Beryllium beam pipe with a radius of 12 mm cooled by paraffin;

• a pixel detector based on the DEPFET5 technology (PXD) for precise vertex
detection;

• four layers of double-sided silicon strip detectors covering the full 17◦ − 150◦

acceptance of the Belle II detector (SVD) to extrapolate the tracks reconstructed
in the CDC to the PXD and to reconstruct low-momentum tracks;

• a central drift chamber (CDC), which measures momentum and energy loss of
charged particles, and provides a fast trigger signal for the Level-1 (L1) trigger
system;

• a proximity-focusing6 Aerogel Ring-Imaging Cherenkov detector (ARICH) for
particle identification (PID) in the forward end-cap;

• a time-of-propagation counter (TOP) in the barrel region using an array of 16
quartz bars between the outer CDC cover and the calorimeter’s inner surface
providing PID information and a timing signal with a resolution of a few
nanoseconds to the trigger system;

• a segmented array of CsI(Tl) crystals in the barrel region and pure CsI crystals
in the end-caps readout photo-diodes for electromagnetic calorimetry (ECL);

• a superconducting solenoid which provides a homogeneous magnetic field of
1.5 T;

• and an iron support structure, which serves as the return path of the magnetic
flux, and is instrumented with glass-electrode resistive plate counters (RPC)
in the barrel region and scintillator strip in the end-caps for KL and muon
detection (KLM).

5DEPleted Field Effect Transistor.
6An increasing refractive index is used to reduce the spread of the ring image due to emission

point uncertainty.
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Figure 2.2.: Side view of the upgraded Belle II detector [6].

2.2.3. Anticipated Dataset

By 2025, Belle II will record 50 ab−1 of data, which corresponds to 50 times the
integrated luminosity of Belle. The current (March 17th 2017) luminosity projection
is shown in Figure 2.3.

2.2.3.1. Data Acquisition

Belle II uses a two-level trigger system, with an FPGA-based Level-1 (L1) trigger
decision and a high level trigger (HLT) farm.

At the design luminosity the nominal average L1 trigger rate is expected to be up to
30 kHz. For each trigger signal the data is read out by the data acquisition system
from the detector front-end electronics. The high level trigger farm reconstructs
the event and performs a physics-level event selection using the event data from all
sub-detectors. The final rate of raw events written to the storage is expected to be
between 6 kHz and 10 kHz. The HLT consists of multiple Linux-based PC clusters
and runs the Belle II Analysis Software Framework (BASF2) [8].

2.2.3.2. Offline Reconstruction and Monte Carlo Production

The same software framework is used in offline reconstruction, Monte Carlo pro-
duction, and physics analysis. After machine-dependent calibration parameters are
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Figure 2.3.: SuperKEKB integrated and instantaneous luminosity projection [7]
(March 17th 2017).

determined, the raw data is reconstructed and stored at the KEK computing center.
Monte Carlo production and reconstruction will be distributed to data centers around
the world. The reconstructed information is stored in ROOT-based mDST files.

2.3. Belle to Belle II dataset

In the above discussion of the recorded Belle and anticipated Belle II dataset, four
levels of data processing can be distinguished:

1. online reconstruction – the read-out of the detector and the trigger system,
producing the raw-data (DST files);

2. offline reconstruction – cluster reconstruction, track finding and fitting,
producing the mDST data;

3. mDST analysis – creation of final state particle hypotheses, reconstruction of
intermediate particle candidates and vertex fitting, producing flat n-tuples;

4. and n-tuple analysis – fit to theoretical predictions in order to extract
interesting observables, producing scientific papers.

Converting the raw-data is in principle possible, but the differences between the Belle
and Belle II detector render this a difficult and ill-defined task. While this would
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allow for the validation of the Belle II reconstruction software (e.g. the track finding
and fitting algorithms) on Belle data, this would be only of limited use due to the
vastly different expected background and the availability of data from cosmic runs.

The Belle to Belle II dataset conversion converts the Belle mDST data, which contains
mostly detector independent objects like tracks and energy clusters, into the new
mDST format used by BASF2. This enables the validation of the Belle II analysis
software, and (re-)production of Belle measurements using the improved software.
Figure 2.4 displays an overview of BASF2 including the conversion path presented in
this work.

By comparing the original Belle results, the Belle results obtained from converted
data in BASF2, and Belle II sensitivity studies on Belle II Monte Carlo, it is possible
to assign improvements in the sensitivity and occurring inconsistencies to the analysis
and reconstruction algorithms, separately.

2.3.1. Overview

The software responsible for reading in the old Belle AnalySis Framework (BASF)
[9] data-format and representing the data in memory was isolated, cleaned up and
compiled into a new library named belle legacy. A new package was introduced
in BASF2 called b2bii (Belle to Belle II). It contains three BASF2 modules developed
with the help of the belle legacy library. The conversion process is visualized in
Figure 2.5.

The B2BIIMdstInput module opens the PANTHER-based Belle mDST files and reads
the data event-by-event into the main memory. The data of the current event
is represented in the memory by a series of PANTHER tables.

The B2BIIFixMdst module applies various calibration factors onto the PANTHER

tables, for instance on the beam-energy, the momenta and error matrices of the
fitted tracks, the energy deposition in the ECL, and the particle identification
information of the CDC and TOF. It also performs standard cuts to ensure
that the selection of the detector data and Monte Carlo events is identical.
Finally, π0 candidates are reconstructed from the γ particle objects and the
corrected ECL clusters.

The B2BIIConvertMdst module converts the information stored in the Belle
PANTHER tables and writes it to the Belle II DataStore. The beam-energy and
IP-profile is collected in the BASF2 BeamParameters object and stored in the
condition Database of Belle II.
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Figure 2.4.: Schematic overview of the data-flow in the Belle II environment. Data
is provided by the Belle II detector (red); the MC generators; or Belle
mDST files. BASF2 is responsible for MC generation, detector simulation,
online reconstruction, offline reconstruction, mDST analysis and the Belle
to Belle II conversion (gray), as well as writing and reading the different
data-formats (blue). Analysis-specific user-code is only required during
the n-tuple analysis, which extracts the desired physics observables
(purple).

11



Chapter 2. From Belle to Belle II 2.3. Belle to Belle II dataset

Belle
mDST-files

Belle
database

Panther
tables

B2BII
MdstInput

,,fixed” Panther
tables

B2BII
FixMdst

B2BII
ConvertMdst

Belle II
mDST-files

Belle II
database

belle legacy library

Figure 2.5.: Schematic view of the conversion process of Belle (light blue) to Belle II
(blue) mDST files using the BASF2 modules (gray) provided by the b2bii
package and the original Belle software provided by the belle legacy

library (gray).

2.3.2. Implementation Details

The detailed matching between PANTHER tables and corresponding BASF2 data-objects
is shown in Figure 2.6. In the following I describe the conversion process in detail
for future reference.

2.3.2.1. Event Information

Event information like the beam energy and position of the interaction point are
loaded from the Belle condition database and stored in BeamParameters objects that
can be uploaded to the Belle II condition database.

BASF assumed a constant magnetic field of 1.5 T even outside the detector region.
The conversion accounts for this as well by adopting the same convention in BASF2,
where otherwise a 3D map of the magnetic field is used.

2.3.2.2. Monte Carlo

The Monte Carlo information stored in the Gen hepevt table is converted into an
MCParticleGraph, hence the fine-grained unified Monte Carlo matching algorithm of
BASF2 can be used, and problems contained in algorithms used by BASF are avoided
[6, sec. 4.3].

The Gen hepevt table includes special entries for a common mother of beam-
background particles (PDG code 911) and for virtual photons (PDG code 0). These
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entries are ignored during the conversion, because there are no corresponding concepts
in Belle II. For instance, in BASF2 beam-background is indicated by a motherless
Monte Carlo particle.

The original Belle software does not provide Monte Carlo information for
KLMClusters, following the approach of [10, sec. 5.2] reconstructed K0

L are matched
to the closest true Monte Carlo K0

L within ±15 degrees in both θ and φ.

Furthermore, unlike Belle II Monte Carlo, the Belle Monte Carlo does not pro-
vide information on the differentiation between photons generated directly by the
fundamental matrix-element calculated by the Monte Carlo generator evtgen [11]
(hereinafter referred to as gamma) and photons generated afterwards for instance by
PHOTOS [12] or the simulation [13] (hereinafter referred to as final state radiation)
(see [14, Appendix C]). Often a reconstructed particle which misses final state
radiation is considered a signal, whereas a missing gamma is considered as a wrong
reconstruction. A simple heuristic is applied to distinguish the two cases: Photons
from a decay M → AB...γ are flagged as final state radiation, and photons from a
decay M → Aγ are flagged as gammas. In particular photons from π0 → γγ and
D∗ → Dγ are considered gammas. Other cases like B → µνγ are regarded by the
heuristic as final state radiation and have to be treated by the analyst herself7.

The official Belle Monte Carlo campaigns produced ten times the real integrated
luminosity in bb events and six times that in continuum events, however some
inconsistencies were encountered during the development of the conversion software,
which were fixed if possible: The Monte Carlo campaign deleted the 8 left-most
bits of the 32 bit long PDG codes during the Monte Carlo simulation8. During the
conversion these corrupted PDG codes are restored by matching their lower 24 bit
to known PDG codes. In the official Belle Monte Carlo campaign from 2010 for
B → u`ν and other rare B decays, the mass of almost all MC particles is set to
zero, which can lead to wrong results if this quantity is used during the analysis.
However, this information is redundant since the correct mass of the MC particles
can be calculated using either the PDG values or the MC four-momenta.

2.3.2.3. Tracks

The tracking output of BASF is transformed and stored into Track and associated
TrackFitResult objects. The transformation is unique but non-trivial because the

7In this case, photons from initial and final state radiation are physically indistinguishable, since
the corresponding amplitudes interfere. Actually, there is no correct answer to the question of
whether the photon is final state radiation or not. Hence, the behavior of the heuristic is not
wrong, but probably unexpected by the analyst, because the initial state radiation amplitude
dominates in this decay.

8
BASF already implemented a function for recovering the lost bits, but it was apparently not
applied.
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two experiments employ different track parameterizations and conventions for the
reference point of the track.

2.3.2.4. ECL Clusters

The ECL information is stored in the ECLCluster object and two ParticleLists

are filled containing the γ and π0 candidates created by B2BIIFixMdst earlier. The
lists are named gamma:mdst and pi0:mdst, respectively.

2.3.2.5. KLM Clusters

The KLM information is stored in the KLMCluster object and a ParticleList is
filled containing K0

L candidates. The list is named K L0:mdst.

2.3.2.6. V0 Objects

The output of the V0 Finder is directly transformed into ParticleList objects
containing candidates for γ , K0

S and Λ. The lists are named gamma:v0mdst,
K S0:mdst and Lambda0:mdst, respectively. Additional quality information is stored
in the ExtraInfo field of the Particle objects under the keys goodKs, ksnbVLike,
ksnbNoLam and ksnbStandard.

2.3.2.7. PID Information

The PID information provided by the different Belle sub-detectors is mapped to
similar Belle II sub-detectors, so that the physical meaning of the information
is partially preserved. In particular the Belle time-of-flight (TOF) and Aerogel
Cherenkov counter (ACC) detectors are mapped to the Belle II time-of-propagation
(TOP) and Aerogel ring imaging Cherenkov (ARICH) detectors, respectively.

2.3.2.8. Relations

Finally, some of the created data-objects are related to one another (see 2.6). Hence,
BASF2 relations are created: from the ECLCluster to the MCParticle and Track

which are responsible for the creation of the cluster; similarly from the KLMCluster

to the ECLCluster and Track; from the Track to the MCParticle that created it;
and from the Track to the corresponding PIDLikelihoods. Additional relations are
created between the Particle objects in the created ParticleLists and the corre-
sponding MCParticle and PIDLikelihoods. The links between TrackFitResults

to Tracks; Tracks to Particles; and Clusters to Particles are not represented
by relations in BASF2.
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Figure 2.6.: Matching of the Belle PANTHER Tables (light blue) to the Belle II
DataStore-objects (blue) and DataStore-relations (orange).
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2.3.3. Validation

In order to ensure the correctness of the conversion, a study was performed with
Monte Carlo simulated Belle events. For each of the following six physical processes
100000 simulated events were investigated, partitioned according to the relative
integrated luminosity of all relevant experiments 7− 65:

• generic Υ(4S) events:

– Υ(4S) → B+B− (evtgen-charged),

– Υ(4S) → B0B0 (evtgen-mixed);

• continuum events:

– e+e− → cc (evtgen-charm),

– e+e− → qq (uds) (evtgen-uds),

– e+e− → τ+τ− (qed-tautau);

• and signal events B+ → τ+ντ (signal).

Furthermore, for each of the following beam conditions 100000 events recorded by the
Belle experiment were investigated, partitioned according to the relative integrated
luminosity of all relevant experiments 7− 65:

• on-resonance events recorded at the center of mass energy of the Υ(4S) reso-
nance;

• and off-resonance events recorded 60 MeV below.

The events were processed with the old BASF framework and more than 360 quantities9

were extracted from the PANTHER tables shown in Figure 2.6. The complete list
of extracted quantities can be found in Section A.1. Afterwards the events were
processed a second time with the new BASF2 software using the b2bii conversion,
and same quantities were extracted.

2.3.3.1. Observed Differences

Most quantities do not differ.

The observed differences between BASF and b2bii were further investigated and
either corrected or classified as harmless. Minor differences occur due to small
shifts caused by numerical imprecision leading to the migration of events between

9For instance: Kinematic quantities like four-momenta, Monte Carlo information, PID information
and beam-parameters.
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Figure 2.7.: Comparison of BASF (Belle) and b2bii (Belle II). The leftmost (right-
most) bin represents the underflow (overflow) bin. The upper plots show
the superimposed Belle (each component is shown individually) and
Belle II Monitoring Histograms (the total number of entries is shown
as a black line). The lower plots show the differences between Belle
and Belle II, hence a positive (negative) difference means there are less
(more) entries in the Belle II Monitoring Histogram.

adjacent bins, especially for values near zero, and differences in the treatment of
special floating point values such as infinity and NaN (Not a Number) leading to
migration from the overflow/underflow bin to the bin including zero in rare cases
(see Figure 2.7b).

Further differences are found: in the PDG codes of MCParticles due to the recovery
of the full 32 bit as mentioned above; the number of daughters of the MCParticles

due to the unconverted virtual photons occurring in nuclear interactions between
the hadronic final state particles and the detector material (see Figure 2.7a); and in
all kinematic quantities of V 0 and π0 objects after the mass-constrained vertex fit
caused by different software employed to fit the vertices.

2.3.3.2. Experiment Dependency

The changes in hardware and software between the 31 Belle experiments influence
the quantity and quality of the recorded data. In order to carry out physics analyses
and compare them with studies on Belle II Monte Carlo events, quantities should
be used, which are robust against differences between the Belle experiments. The
beam-induced background in Belle II is expected to be increased by a factor 20− 30.
Quantities that are already fluctuating between Belle experiments are likely to be
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(a) All tracks found by the tracking software.
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Figure 2.8.: The mean number of reconstructed tracks over the Belle experiments.
The error bars show the uncertainty on the mean value, however they are
mostly too small to be visible. The increase in the number of tracks after
experiment 27 is caused by the switch to the improved reconstruction
software and the replacement of the SVD.

highly dependent on the assumed background conditions in Belle II. One of the
most basic properties of an event is the number of fitted tracks. As can be seen in
Figure 2.8 there are large differences between the Belle experiments for this quantity.

Therefore, the following selections are applied to Belle events in the remainder of this
work: good tracks are selected with impact parameters less than 2 cm and 4 cm in
transverse and beam axis direction, respectively (see Figure 2.8); and good clusters
are selected without an associated track and with an energy of 50 MeV, 100 MeV,
150 MeV in the barrel, forward and backward region, respectively (see Figure 2.9).
These are the same cuts which were usually applied in Belle analyses.

Some differences between the experiments remain after the cuts. In particular due
to the switch to the improved reconstruction software and the replacement of the
SVD after experiment 27.

2.3.3.3. Monte Carlo simulation and detector data differences

This thesis uses the last official Belle Monte Carlo campaign (prefixed with evtgen-).
In addition the latest special Monte Carlo campaign for rare B decays is used
(prefixed with special-). And finally some dedicated Monte Carlo samples for QED
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Figure 2.9.: The mean number of reconstructed clusters over the Belle experiments.
The error bars show the uncertainty on the mean value, however they
are mostly too small to be visible. The large differences between the
experiments are due to different beam conditions.

background were investigated (prefixed with qed-). Those were usually not used in
Belle B meson analyses, because the hadronBJ skim suppresses them very efficiently.

Table 2.3 shows the extracted fraction and the corresponding fractions in the 7th

Belle II Monte Carlo campaign for comparison.

The simulation of continuum events, that is events which do not contain a Υ(4S),
is challenging due to the required knowledge of the correct QCD hadronization
factors and branching fractions. In addition, the exact composition of the continuum
background is poorly documented and not all components are part of the available
official (or even unofficial) Monte Carlo campaign, e.g. e−e+ → γγ , is not available.

In consequence, the continuum description of Belle is not in agreement with the
observed data. The off-resonance data recorded by the Belle detector can be used
as a cross-check and sometimes replacement for Monte Carlo simulated continuum
events. In a physics analysis the observables are usually extracted using a model
for the signal and background components, the relative fractions are usually not
fixed and determined directly from data. Nevertheless, the continuum component
description is often a leading systematic uncertainty in Belle analyses [15].

The continuum composition was investigated using 10000 simulated and recorded
events for each component, scaled according to the fractions stated in Table 2.3.
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Figure 2.10.: The distribution of the number of good tracks in each event.
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Table 2.3.: Number of simulated events corresponding to the recorded luminosity
of 0.711 ab−1 normalized to the number of the recorded events at the
Υ(4S) resonance. Belle simulated rare and b → u`ν decays separately,
while Belle II includes them in the evtgen-charged and evtgen-mixed
samples. In contrast to the official Belle MC campaign, the relative ratio
of B+B−/B0B0 = 0.514/0.486 was taken into account.

Type Belle Belle II

evtgen-charged 0.1264 0.1310
evtgen-mixed 0.1195 0.1238
evtgen-charm 0.2933 0.3078
evtgen-uds 0.4716 0.5534
qed-tautau 0.1996 0.2052
qed-mumu 0.2395 –
qed-eemm 0.2539 –
special-mixedrare 0.00102 –
special-chargedrare 0.000824 –
special-mixedulnu 0.000859 –
special-chargedulnu 0.000923 –

Of the considered QED backgrounds only e−e+ → τ−τ+ contributes. The other
components are suppressed by the so-called hadronBJ cut, which is applied per
default for all B analyses. As can be seen from Figure 2.10 the Monte Carlo
continuum description is incomplete, it underestimates (overestimates) the events in
the low-multiplicity (high-multiplicity) region. In contrast, the Υ(4S) Monte Carlo
simulation combined with the off-resonance data fits the data better.

The over-estimation of continuum background, most-likely the cc component, leads to
an increase of D meson candidates and finally to more combinatorial background for
B mesons. An example is shown in Figure 3.16, where D mesons were reconstructed
on Monte Carlo simulated events, on-resonance data and off-resonance data.

Throughout this thesis, these expected differences between Monte Carlo and data
are observed in several places. Section 3.3.3 describes techniques to mitigate the
influence of these differences in the context of multivariate classification. Section 4.3.2
investigates the continuum component in the context of exclusive tagging. In the
benchmark analysis in Chapter 5, the continuum component is a large background in
the hadronic τ decay-channels. Hence, the continuum description was investigated
in detail and compared to off-resonance data.
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2.4. Conclusion

The Belle to Belle II Conversion enables Belle II physicists to analyze the dataset
recorded by Belle using BASF2. The conversion process was validated on a basic level
by ensuring the same output for a large number of quantities. Differences which
emerged were studied and explained.

In order to validate BASF2 on a global level, physics analyses have to be performed
and compared to results published by the Belle collaboration. In this thesis the decay
B → τ ντ is investigated and compared to [16] and [15].

Other measurements using the b2bii conversion are in preparation:

• the branching ratio of B+ → `+νγ with hadronic tagging [17],

• the branching ratio of B+ → `+νγ with semileptonic tagging [18],

• the branching ratio of B+ → `+ν with inclusive tagging,

• and the search for B0
s → φπ0 [19].

Furthermore, b2bii can be used to study the performance differences between the
Belle and Belle II experiment, to optimize the latter as soon as first data has
been collected.

Finally, the conversion ensures the preservation of the legacy of the Belle experi-
ment: The full recorded dataset of nearly 1 ab−1 of data, which led mankind to the
verification of CKM mechanism and the observation of tetra-quarks.

22



Chapter 3
Multivariate Analysis Algorithms

In recent years, the field of multivariate analysis and machine learning evolved rapidly,
and provided powerful techniques, which are currently adopted in all fields of science.
Prominent use-cases include: image and speech recognition, stock market trading,
fraud detection, and medical diagnosis.

In high energy physics (HEP) multivariate analysis (MVA) methods are extensively
used: to identify interesting collision in the trigger system; reject beam-induced
hits in the drift chamber during track finding; infer the deposited energy in the
calorimeter; provide particle identification information; reject particle candidates
from combinatoric and physics background in an analysis.

The Belle II collaboration decided to provide a multivariate analysis package named
mva as part of BASF2 to encourage physicist to take advantage of existing methods
and to keep up with the recent developments in the field. The package provides: a
common code base for BASF2; support for all major MVA frameworks; transparent run-
dependent loading of the fitted models from the Belle II Conditions Database;
automatable tools for fitting, inference and evaluation of models.

The mva package and many algorithms based on it were implemented during this
thesis. In the following chapter I outline the theoretical foundation of multivariate
analysis and machine learning (Section 3.1), describe technical aspects of the mva

package (Section 3.2), and present applications based on the package (Section 3.3).
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3.1. Theory

Multivariate Analysis (MVA) algorithms are used to describe the distribution of
observed data ~x and to deduce properties of the underlying process generating the
data; the algorithms are based on multivariate statistics. Common tasks include:
the approximation of a function f(~x) (regression Section 3.1.1); the separation of
data-points into signal and background (classification Section 3.1.2); and grouping
of similar data-points (clustering).

Machine learning (ML) provides an effective way to automatically learn the required
statistical model using an appropriate domain-specific dataset, i.e. knowledge is ex-
tracted from experience, which can be viewed as a simple form of artificial intelligence.
Usually, machine learning algorithms include a fitting-phase during which a statistical
model is learned from the provided (training) dataset, and an inference-phase during
which the statistical model is used to infer the desired (target) information for a new
independent (test) dataset.

Depending on the available feedback during the fitting-phase one can distinguish
between three different types of learning: the target information is provided during
the fitting-phase (supervised learning); no additional information is provided during
the fitting-phase (unsupervised learning); rewards and punishments are provided in
a dynamic environment (reinforcement learning).

In HEP the target information is usually known from Monte Carlo simulated events,
or can be inferred on data via data-driven techniques (see Section 3.3.3). Therefore,
most tasks can be solved using supervised learning. In supervised learning the target
information y ∼ f(~x) + ε is predicted by a statistical model f̂ using a feature vector
~x. The statistical model has internal degrees of freedom (so-called weights ~w), which
can be adapted by an algorithm to minimize the discrepancy of the true value y from
the predicted value ŷ = f̂(~x, ~w), where the discrepancy is defined by a loss-function
L(y, ŷ, ~w).

Detailed introductions into the topic can be found in [20] and [21]. The relevant
concepts are summarized in the remainder of this section.

3.1.1. Regression

A statistical model f̂(~x, ~w), which estimates the value of a stochastic function
y = f(~x) + ε is called a regressor. It can be interpreted as the function which
minimizes the risk functional

R(~w) =

∫
L(y, f̂(~x, ~w), ~w)dP (~x, y), (3.1)
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where P (~x, y) is the unknown joint probability distribution [22]. In the framework
of empirical risk minimization (ERM) the risk functional is approximated by the
empirical risk using a training dataset (~xi, yi)

Remp(~w) =
∑
i

L(yi, f̂(~xi, ~w), ~w). (3.2)

The weights ~w of the statistical model are chosen so that they minimize the empirical
risk. This is known as the principle of empirical risk minimization [22].

A suitable loss function can be chosen using the ERM framework [23] or based on the
maximum likelihood principle (see Section B.1). Typical examples are: the squared
loss (ŷ − y)2; and the absolute loss |ŷ − y|. Often additional terms are added to
the loss function which depends on the weights ~w of the model, to impose certain
smoothness and regularization assumptions on f̂ .

A well-known example for the application of the principle of ERM is the linear
regression model yi = ~xi · ~w with a squared loss, which leads to the well known
least-square solution for the weights of the linear regression model ~w = (XTX)−1XT~y,
where X = (~x2, ~x2, . . . , ~xn) and ~y = (y1, y2, . . . , yn).

Various methods for regressions have been developed. One can distinguish between:

• Parametric methods with a fixed parametrized model structure and a finite
number of unknown parameters that are estimated from the training dataset.
Typical examples include: Generalized Linear Models [24] and Artificial Neural
Networks [20, Chapter 5], [21, Chapter 11].

• Nonparametric methods estimate an appropriate model structure from the
training dataset. Typical examples include: Kernel Density Estimator [25], [21,
Chapter 6] and Decision Trees [21, Chapter 9].

As stated above, the estimated function f is stochastic. Therefore, its value y is
a stochastic variable, which is distributed according to a conditional probability
density function P (y|~x). In consequence, regression can be generalized to predict
location, scale and shape parameters using a distribution assumption [26]; or the
conditional density function itself without assuming a particular distribution using
quantile regression [27] or mixture density networks [20, Chapter 5.6].

3.1.2. Classification

A statistical model f̂ , which distinguishes signal (y = 1) from background (y = 0) is
called a classifier. Classification can be viewed as a particular form of regression. The
classifier is a regressor for the signal probability P (y = 1|~x). At a certain threshold

(working point) C, data-points with f̂ > C are classified as signal, and background
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otherwise. The choice of the working point depends on the expected cost of signal
classified as background (type I error) and background classified as signal (type II
error), or equivalently on the desired signal efficiency and purity (which are usually
more closely related to the figure of merit used in physics analyses).

There is a close connection to the theory of hypothesis testing, the statistical model
can be interpreted as a test-statistic T = f̂(~x, ~w). The most efficient test statistic at
a given significance level to distinguish between two simple hypotheses is given by
the Neyman-Pearson Lemma

TNP(~x) =
PDFS(~x)

PDFB(x̃)
, (3.3)

where PDF denotes the probability density functions (PDF) of signal and background
data-points. A sound introduction to hypothesis testing and the Neyman-Pearson
Lemma can be found in the original paper [28].

The PDFs are usually unknown and cannot be sampled in a high dimensional
feature space ~x, due to the curse of dimensionality (see Figure 3.1), in consequence
TNP is unknown and has to be approximated with analytical (using distribution
assumptions) or numerical (using machine learning) methods. Two approaches can
be distinguished:

• Generative Methods like Fisher’s discriminant [29], Kernel Density Estima-
tors [25], [21, Chapter 6] or Gaussian mixture models [20, Chapter 9]; which

approximate the probability density functions for signal f̂S ≈ PDFS(~x) and

background f̂B ≈ PDFB(~x) separately, and can therefore be used to generate
new data-points.

• Discriminative Methods like Boosted Decision Trees (BDT) [30], [21, Chap-
ter 10], Support Vector Machines (SVM) [20, Chapter 7], [21, Chapter 12] or
Artificial Neural Networks (ANN) [20, Chapter 5], [21, Chapter 11]; which

directly approximate f̂(~x) ≈ TNP, usually under the assumption that the dimen-
sion d of the hyper-plane separating (discriminating) signal and background in
the feature space is much smaller than the dimension D of the feature-space
itself d� D.

The methods differ in: the convergence rate against the optimal solution with
increasing statistics, their robustness against outliers and measurement errors; the
bias and variance of the obtained model (see Section 3.1.3).

Typical loss functions used for classification are: the logistic loss [23]; the hinge loss
[23]; and the cross entropy [20, Chapter 4.3.2]. The loss-functions differ in their
robustness against outliers and their convergence rate (see [23]). A motivation for
the cross-entropy loss-function, which is extensively used in the field of deep-learning,
based on the maximum likelihood principle is given in Section B.1.
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N = 1 N = 2 N = 3

Figure 3.1.: Visualization of the curse of dimensionality. The phase-space of an N
dimensional function grows exponentially, thus the number of events
necessary to sample a high-dimensional probability density function
grows exponentially as well and is unviable.

3.1.3. Model complexity

The complexity or number of degrees of freedom (NDF) of the statistical model
strongly influences the prediction error of the model on an independent test dataset.

3.1.3.1. Bias-Variance Dilemma

There are three possible sources of errors in any statistical model f̂(~x) describing a
multivariate distribution y ∼ f(~x) + ε.

1. (Bias) The model is not complex enough to describe all relevant aspects
of the data – the model is under-fitted. This leads to a biased model
Bias(f̂) = E(f̂ − f).

2. (Variance) The model is too complex and is dominated by the statistical
fluctuations of the training data – the model is over-fitted. This leads to a
model with a large variance Var(f̂) = E(f̂ 2)− E(f̂)2.

3. (Irreducible) The intrinsic noise ε of the underlying distribution introduces an
irreducible error Var(y) = Var(ε).

Mathematical we can expand the expected quadratic deviation of the statistical
model f̂ from the true value y into these three components

E
[
(y − f̂(~x))2

]
= Bias

[
f̂(~x)

]2

+ Var
[
f̂(~x)

]
+ Var [y].

Figure 3.2 visualizes the trade-off between bias and variance as a function of the
model complexity. In the literature this fact is known as the Bias-Variance Dilemma
[20, Chapter 3.2], [21, Chapter 2.9]. Since the over-fitting effect cannot be seen
on the training data, it is crucial to always test the model on an independent
validation dataset. Choosing the optimal model complexity is the key to the successful
employment of MVA methods.
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Figure 3.2.: Visualization of the trade-off between bias and variance of a MVA method
depending on the model complexity.

3.1.3.2. Controlling the model complexity

The size of the training dataset at hand defines an upper bound for the feasible
model complexity. The model cannot resolve the underlying distribution f below
the threshold given by statistical fluctuations, i.e. the bigger the training dataset,
the more degrees of freedom of a model can be constrained.

MVA algorithms usually provide several hyper-parameters Θ (in contrast to the
parameters/weights of the statistical model itself) to control the complexity of
the underlying model. The theoretical foundation is provided by the principle of
structural risk minimization (SRM) [22]. Following [22], one can distinguish three
different concepts of SRM:

• Structure given by the architecture – Hyper-parameters which define the
architecture of the model directly control the global NDF of the model. Typical
examples are: the number of hidden layers and neurons in an artificial neural
network; the number of trees and their depth in a boosted decision tree.

• Structure given by the learning procedure – Hyper-parameters which
control the effective NDF in different regions of the feature-space during the
fitting-phase. Typical examples are: weight-decay in an artificial neural network;
pruning algorithms for a decision tree; and boosting algorithm in ensemble
methods.

• Structure given by preprocessing – Hyper-parameters which control the
degree of degeneracy in the input data by applying a transformation to the
input features prior to the fitting-phase. Typical examples are: binning and
smoothing of the input features; dimensionality reduction using principal
component analysis.

SRM provides another interpretation of the Bias-Variance Dilemma introduced
above, where the bias is given by the empirical risk and the variance is introduced
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by the generalization error due to the finite sample size. Using the hyper-parameters
Θ, a series of models f̂1, f̂2, . . . , f̂n with increasing complexity (defined by their
Vapnik–Chervonenkis (VC) dimension h [21, Chapter 7.9]) is defined. The empirical
risk is minimized for each model (meaning the model is fitted). Using the framework
of SRM, an upper bound C(h, l) for the generalization error introduced by the
finite training sample size can be calculated, i.e, an upper bound for the difference
|R−Remp| between the actual risk R and the empirical risk Remp. The principal of
structural risk minimization defines the optimal model as the one with the minimal
guaranteed risk Remp + C.

However, the upper bound C can only be calculated for certain models, and is usually
only a weak bound. In practice, the optimal model is selected by optimizing the
associated hyper-parameters, e.g. using grid or random-search [31]; gradient descent
algorithms [32]; or Bayesian optimization algorithms [33].

3.1.4. Data analysis in High Energy Physics

Data analysis plays a crucial role in HEP experiments like Belle II. There are unique
characteristics and associated challenges.

• The inherent stochastic nature of quantum field theory rules out a ground truth
for individual data-points. Therefore, supervised machine learning and data
analysis have to rely on Monte Carlo simulation or on advanced data-driven
techniques to establish a ground truth.

• The investigated phenomena are usually very subtle and cause only small
effects. Therefore, large amounts of events (often in the order of billions) have
to be analyzed in a high-dimensional feature-space.

• The statistical and systematic uncertainties have to be treated very carefully
to produce sound scientific results.

Consequently, the HEP community developed data analysis strategies suited for
these requirements. Following the history of data analysis in HEP, I describe the
advantages and disadvantages of the traditional cut-based (Section 3.1.4.1), the cur-
rent multivariate (Section 3.1.4.2) and the prospective deep learning (Section 3.1.4.3)
approach. An in-depth introduction can be found in [34].

3.1.4.1. Traditional Cut-based Analyses

In the traditional cut-based approach, the physicist determines a series of one-
dimensional cuts on the dataset, to incrementally increase the signal-to-noise ratio
in the signal-region.
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For instance, one could cut on the K+ PID information, the invariant mass of the
π0, and the χ2 probability of the vertex fit to increase the signal-to-noise ratio in the
reconstruction of the decay D0 → K−π+π0.

The cuts are determined on Monte Carlo simulated events or in control regions1.
The final signal region is only unblinded once the whole analysis strategy is fixed.

Physics knowledge can be easily incorporated into this process: phase-space with
large systematic uncertainties (for instance due to unreliable Monte Carlo simulation
or threshold effects in reconstruction algorithms) can be excluded; the dataset is
preprocessed and reduced to a suitable subset for this analysis (for instance interme-
diate particles are reconstructed and irrelevant features are dropped); new physically
motivated features can be constructed (for instance angles in particular reference
frames); and erroneous assumptions or software can be spotted by experienced
analysts.

It is relatively easy to estimate the systematic uncertainty introduced by the cuts,
by varying the cut in a certain range. Although, this common procedure has been
criticized (see [34, Chapter 8.4.3]). Moreover, the agreement between Monte Carlo
simulation and data can be verified after each cut.

The fixed analysis procedure is usually simple enough to be included in recasting
frameworks, which recast existing analysis to provide bounds for new physics scenarios,
by automatically analyzing custom signal Monte Carlo simulated events [35].

On the other hand, multivariate correlations are not (or only to a small degree) taken
into account, which leads to reduced signal efficiency. Possible correlation between
the cuts are often neglected. There is no obvious choice for the range in which
the cuts are varied to estimate the systematic uncertainties. Finally, the process of
manual cut determination and feature engineering is time-consuming and error-prone
in itself.

3.1.4.2. Multivariate Analysis

In a multivariate analysis approach, the physicist uses MVA methods like machine
learning to create a statistical model of the dataset. Either this can be used to infer
the signal probability of each event, thereby increasing the signal-to-noise ratio in the
signal-region, or to directly model and extract the signal component in the dataset.
The statistical model is determined on Monte Carlo simulated events, in control
regions or using other data-driven methods. Sometimes it is possible to calibrate the
model on data (see Section 3.3.1.2).

1A dataset without signal, but comparable background properties.
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The multivariate correlations between the input features are taken into account,
frequently this leads to an improved signal efficiency by a factor two or more (e.g.
[36]). The available dataset is therefore exploited more efficiently and the statistical
uncertainty of the final physics result is reduced.

The preprocessing of the dataset and the creation of useful physically motivated
high-level features is still handled by the physicist. The subsequent model building is
automatized and can be applied to similar classes of analyses without further human
intervention (see Section 3.3.1.1).

On the other hand, the validity of the statistical model has to be carefully verified
using control regions and channels, to avoid possible over-fitting and mis-modeling
effects. Physics knowledge must still be incorporated into this process to exclude
problematic phase-spaces. Due to the increased complexity compared to the cut-
based approach, the method itself is seen as a black box by some analysts, leading
to distrust and increased systematic uncertainty of the final physics results.

Today, MVA is an established tool in HEP with clear advantages in analyses with
dominating statistical uncertainty.

3.1.4.3. Deep Learning

The deep-learning approach is a multivariate analysis method which includes parts
of the preprocessing and the feature engineering into the statistical model. It shares
the same traits as the general multivariate analysis approach. Deep learning uses
deep artificial neural networks and takes advantage of the large available training
datasets and the massively parallel computing power provided by modern hardware.

It is long known that neural networks with one hidden layer and an arbitrary, bounded,
non-constant activation function can approximate arbitrary functions in Lp2 [37].
However, as was shown recently in [38], deep neural networks with more than one
hidden layer can approximate functions of practical interest (e.g. f(x, y) = x · y)
with exponentially fewer parameters than shallow networks.

Low-level features like the measured four-momenta and calorimeter entries are directly
fed to a deep artificial neural network. The deep neural network is intended to learn
suitable high-level features automatically. Recent research [39] indicates that deep
neural networks can extract more information from low-level features in comparison
to high-level features created by experienced human analysts. Consequently, deep-
learning approaches outperform established algorithms in many fields, as was reviewed
in [40].

2The Lebesgue space of p-integrable functions
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Physical knowledge can be incorporated into the architecture of the deep neural
network. In particular, the explicit consideration of invariance properties (e.g., the
invariance against rotations around the beam-line) is important.

The application of convolutional and recurrent neural networks in HEP is investigated.
Adversarial networks [41] allow to selectively exclude features from the generated
statistical model, to enforce a uniform signal selection efficiency in this feature [42].
This is discussed in greater detail in Section 3.3.2.

In the theory of representation learning [43], the improved performance is explained
by the transformation of the low-level input feature space into a representation,
which allows to easily solve the tasks at hand.

An illustrative example is introduced in [44]. In this work a deep neural network
is presented, which can create textual descriptions of an image. The pixels of the
image are transformed to an intermediate representation of the objects contained
in the image by a convolutional neural network. Subsequently, the intermediate
representation is transformed into a textual description of the image by a recurrent
neural network.

The key concepts of representation learning are (as described in [43]):

• distributed representations – the number of input regions which can be
distinguished grows exponentially O(2N) in the numbers of parameters N ;

• depth – the ways to re-use learned features grow exponentially with the depth
of the network;

• abstraction – the learned features in the deeper layers are increasingly invari-
ant to most local changes of the input;

• and disentangling factors of variation – the learned features represent
independent properties of the input data.

On the other hand, due to the direct usage of many low-level features it is unclear
how to define suitable control regions and channels. At the same time, the sensitivity
to mis-modeling in Monte Carlo simulation is further increased in comparison with
ordinary MVA methods, due to the reliance on a multitude of low-level features.
Therefore, it is more difficult to estimate systematic uncertainties of deep neural
networks in absence of calibration techniques on data. This problem can be mitigated
with data-driven techniques like event-based re-weighting (see Section 3.3.3).

Instead of feature engineering the time is spent in architecture engineering. Finally,
the field evolves quickly and there are no established and commonly accepted fields
of application in HEP yet.

The usage of deep learning revolutionized many fields in recent years. Applications
with a learnable distributed representation, are in particular suitable for deep-learning.
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3.2. Implementation

The mva package provides a common code base for MVA related algorithms in BASF2.
Figure 3.3 shows a schematic overview of the package. It is used in: the online
reconstruction by the FastReco path of the trigger package; the offline reconstruction
by the tracking, ecl and klm packages; and the mDST analysis by all MVA-based
algorithms like Continuum Suppression, Flavour Tagging, and the Full Event

Interpretation.

The mva package can use most of the popular MVA frameworks as backend, but it
is not a wrapper3 around existing MVA frameworks. Rather, it provides glue-code,
which integrates the frameworks into BASF2, so that the user can focus on dealing
with the framework of his choice instead of the merits of BASF2 and ROOT.

For the fitting-phase, the mva package: converts the training data from the ROOT-
format used by Belle II into the appropriate backend-specific format; streams the
data to the backend (conserving the potential out-of-core capability of the back-
end); bundles the generated backend-specific WeightFiles (serialized form of the
underlying statistical models) and all information necessary to reproduce the fitting
into a Belle II WeightFile; and uploads the Belle II WeightFile into the Belle II

Conditions Database with an optional interval of validity (a range of experiments
and runs for which the WeightFile should be used). In addition, basic examples for
all backends are provided, which the user can use as a starting-point; and advanced
examples explaining state-of-the art machine learning techniques like Bayesian hyper-
parameter optimization [33]; adversarial neural networks [42]; feature importance
calculation and sPlot [45] [46].

For the inference-phase, the mva package: (re-)loads the appropriate Belle II
WeightFile from the Belle II Conditions Database for the current experiment
and run; loads the backend-specific model; extracts the required features from the
DataStore4; calculates the response using the model and stores the response in the
DataStore.

For the evaluation, the mva package provides: plotting primitives for features (distri-
bution, correlations); plotting primitives for the method response (distribution, ROC
curves, over-fitting checks); and calculation of feature importances. The evaluation
tools are backend-agnostic and can be used to compare different backends.

Finally, the package was designed with a large degree of automation in mind. The
provided tools can be invoked from C++, Python and bash with similar interfaces.
Fitting, inference and evaluation do not require human interaction.

3A wrapper would provide a backend-agnostic interface and in consequence the lowest common
denominator of all backends.

4A memory-representation of the current event.
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Belle II database Backends

• FastBDT

• Tensorflow

• TMVA

• SKLearn

• XGBoost

• FANN

• Neurobayes

mva package

Fitting Inference Evaluation

uses

loads and stores weightfiles

provides

Figure 3.3.: Schematic overview of the mva package. It provides: an automatable
fitting, inference and evaluation interface to the user; transparently loads
and stores the WeightFiles (serialized form of the underlying statistical
models) in the Belle II database; and can use the most popular MVA
frameworks as backend.

3.2.1. Methods

In the following sections I briefly describe key ideas and concepts of the supported
backends. However, the machine learning field evolves quickly and most of the
projects will have published updated versions since the publication of this thesis.
Besides the frameworks mentioned below, the mva package can be easily extended to
new backends upon user request.

3.2.1.1. FastBDT

Belle II required a default multivariate classification algorithm which is: fast during
fitting and application; robust enough to be trained in an automated environment;
can be reliably used by non-experts; preferably generates an interpretable model and
exhibits a good out-of-the box performance.

FastBDT [47] fulfills these requirements and is the current default classification
method of the mva package. It implements a speed-optimized and cache-friendly
implementation of the widely employed Stochastic Gradient-Boosted Decision Tree
(BDT) algorithm [30], which exhibits a good out-of-the-box performance and generates
an interpretable model. Furthermore, FastBDT supports: preprocessing with equal-
frequency binning and purity-transformation; correct handling of missing data; and
boosting to uniformity (see Section 3.3.2.3).
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FastBDT was originally developed during this thesis to speed up the fitting and
inference-phase of the Full Event Interpretation (see Chapter 4). The source-
code is licensed under GPLv3 and available on github [48]. FastBDT is shipped with
BASF2 and is available on all computing sites [47].

3.2.1.2. TMVA

The TMVA library is provided by the ROOT framework. TMVA [49] is traditionally
used in HEP and implements a wide range of methods: analytical methods like the
Fisher discriminant; decision tree based like gradient-boosted decision trees; different
forms of neural networks; probability density estimators; and rule-based approaches.
It supports classification, multi-class classification and regression. Furthermore,
preprocessing steps like normalization, decorrelation and Gaussianization can be
performed on all or a subset of features.

TMVA is actively developed by the HEP community, and started to adopt recent
developments like deep learning. Since it is shipped with the ROOT framework, it is
available on all computing sites.

3.2.1.3. FANN

The Fast Artificial Neural Network (FANN) library [50] is an open-source neural
network library, which implements a multi-layer neural network. Input features and
the output of the network can be automatically scaled to sensible ranges. Furthermore,
it supports fitting and inference on multiple CPU cores. It is shipped with BASF2

and is available on all computing sites.

3.2.1.4. NeuroBayes

NeuroBayes [51] is a closed-source, commercial implementation of a neural network.
It provides an advanced feature preprocessing (equal-frequency binning, purity-
transformation, b-spline fits); Bayesian regularization methods like ARD (automatic
relevance determination); and evaluation capabilities including feature importance
estimations. It was extensively used by the Belle experiment.

As of the time of writing it is not further developed, but legacy support is available.
Due to license restrictions it is only available on some computing sites (including the
KEK computing center, DESY and KIT IETP). Belle II decided to use NeuroBayes

only for belle legacy (for example in the b2bii package) code.
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3.2.1.5. Python-based

The mva package can support all Python-based MVA frameworks. The technical
details are discussed in Section B.2.

Officially supported (i.e. examples and test-code is provided by BASF2) are:

• SKLearn [52], is part of SciPy5, it supports classification, regression, clustering,
dimensionality reduction, model selection and preprocessing;

• XGBoost [53], is an open-source, scalable, portable and distributed Gradient
Boosting library;

• hep ml, an open-source machine learning library dedicated to algorithms used
in HEP;

• Tensorflow [54], is an open-source library for (deep) neural networks using
CPU and GPUs, with wide adoption by technology companies around the
world;

• Keras [55], is an open-source, high-level interface to neural network frameworks
like Tensorflow, it was developed for easy and fast prototyping of deep learning
algorithms.

Other Python-based frameworks like pylearn2 [56] and theano [57] are supported
unofficially. The individual Python-based methods are not available on the computing
sites, but can be installed by the user.

3.2.2. Benchmark: D0 → K−π+π0

Separating correctly reconstructed particles from background is a frequent classifica-
tion task during mDST and n-tuple analysis. The reconstruction of the decay
D0 → K−π+π0[→ γγ] is used as a benchmark classification in the sections below.
This decay contains the most abundant final-state particles in the detector K, π and
γ , and has a rich phase-space structure with various intermediate resonances like ρ
and K∗. Furthermore, with a branching fraction of (14.3± 0.8)% [58], it is also the
most common decay of the D0.

The decay is reconstructed from a K− candidates with a kaon probability above 0.5,
a π+ candidate with a pion probability above 0.5, and a π0 → γγ candidate with
χ2 probability of a mass-constrained vertex fit above 0.1. Further selection criteria
are applied on the γ candidates. The invariant mass of the final D0 meson has to
be between 1.7 GeV and 1.9 GeV. A vertex fit is performed, and the χ2 probability

5A Python-based ecosystem, of open-source software for mathematics, science, and engineering.
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of the fit has to be above 0.1. The following input features are used if not stated
otherwise: the invariant mass of the D0 meson; the pairwise invariant masses of
the decay products M

K
−
π

+ , M
K
−
π

0 , and M
K

+
π

0 ; particle identification information

of K− and π+; D0, K−, π+ and π0 momenta; D0, K− and π+ vertex information;
and the χ2 fit probability of D0 (vertex-fit), K+ (track-fit), π+ (track-fit) and π0

(mass-vertex-fit).

In total 745000 charged B+B− Monte Carlo simulated events were processed, and
split into a training (355000 events) and an independent validation sample (390000
events). The signal fraction in both samples is 6.6%.

3.2.2.1. Comparison

The benchmark introduced in Section 3.2.2 was used to compare the performance
(in terms of fitting runtime, inference runtime, classification quality and WeightFile

size) of different backends.

Two sets of classifiers were compared among each other on an Intel(R) Core(TM)
i7-4770 CPU (@ 3.40GHz) with a main memory of 32 GigaByte. To ensure a sound
comparison, all methods were restricted to one core and typical hyper-parameters
were chosen.

• Stochastic gradient-boosted decision tree implementations (FastBDT, TMVA-
BDT, SKLearn-BDT, XGBoost) with the same hyper-parameters (one hundred
trees with a depth of three).

• Artificial neural network implementations (FANN, TMVA-NN, SKLearn-NN,
Tensorflow, NeuroBayes) with the same hyper-parameters (one hidden layer
with 29 neurons and maximally one hundred iterations through the dataset
during the fitting). The input features were normalized (shifted to a mean of
zero, and scaled to a standard deviation of one).

The presented results depend on the chosen preprocessing steps, hyper-parameters
and the specific task. In consequence, this comparison is only a rough guideline
of the strengths and weaknesses of the backends. The results are summarized in
Table 3.1.

The BDT methods are faster than the Neural Networks during the fitting-phase, at
the same time they outperform the Neural Networks in the quality of the separation
(measured by the area under the receiver operating characteristic AUC ROC [59]).
FastBDT is the fastest method and obtains the best AUC ROC score on the benchmark.
The convergence of FANN for this benchmark was unstable i.e. the obtained ROC
values fluctuated strongly.
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The runtime required to load the validation data from disk dominates the inference-
phase (as can be seen from the Trivial method, which only loads the validation data
and does not perform computations). To ensure a significant result the validation
dataset statistics was increased by factor 10. Contrary to the naive expectation
that the Neural Networks are faster during the inference because they rely only
on linear algebra operations, which can be performed very efficiently on modern
hardware; FastBDT is the fastest method. SKLearn-BDT is nearly as fast as FANN

and SKLearn-NN, faster than TMVA-NN and Tensorflow. NeuroBayes is the slowest
contestant.

Several effects have to be considered to explain the unexpected result: preprocessing
steps can be very expensive (e.g. NeuroBayes does several non-linear transforma-
tions as preprocessing); careful optimizations for caching and pipelining have a
large impact on modern hardware (as can be seen by the results of FastBDT). In
consequence, even the same algorithm can have very different runtimes depending on
the implementations (as can be seen by the different BDT implementations, which
all implement stochastic gradient-boosting).

3.2.3. Conditions Database Integration

The Belle II Conditions Database contains experiment and run-dependent infor-
mation required for the processing of Monte Carlo simulated events and detector-data.
Traditionally machine parameters like: beam energies; luminosity; detector alignment
and status; and calibration constants are stored in the condition database. Due to
the expected extensive usage of MVA methods in Belle II, and their dependence on
the run-dependent background conditions, the WeightFiles of MVA methods used
in the online and offline reconstruction (likely also mDST analysis) can be fitted per
experiment (or run) and stored in the Belle II Database.

Furthermore, the database provides a revision system for WeightFiles, an infras-
tructure to automatically distribute the required WeightFiles to the computing
sites, and ensures reproducibility.

The mva package transparently loads and stores WeightFiles in the Belle II

Conditions Database. Optionally, the WeightFiles can be loaded from and stored
on disk in the ROOT and XML format. Depending on the backend, used method and
its hyper-parameters, the WeightFiles usually require between 10 kilobyte and 1
megabyte disk-space. Table 3.1 states the size of the WeightFiles for the different
backends in the ROOT format.

3.2.4. Automatic Evaluation

Evaluating the fitted models is important: to spot possible issues in the input
features; to check for convergence of the algorithm; to avoid biases due to over-fitting
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Table 3.1.: Comparison of the different backends using the benchmark D0 → K−π+π0.
The first column shows the fitting time on 28 features and 355000 events
measured in seconds. The second column shows the inference time on 28
features and 3900000 events measurement in seconds. The third column
shows the area under the receiver operating characteristics as a measure
of the classification quality (more is better). Different quantities can be
used to construct the receiver operating characteristic, here the signal
efficiency and purity are used. The last column shows the size of the
WeightFile in kilobytes. All measurements were performed 10 times,
the minimal achieved time in fitting and inference, and the average AUC
ROC is stated in the table. The Trivial method does nothing during
the fitting-phase (time equals overhead of the mva package), and returns
the signal-fraction during the inference-phase (time equals overhead due
to data loading).

Method Fitting Inference AUC ROC WeightFile

time in s time in s size in KB

Trivial 0.2 4.9 0.066 2

Stochastic Gradient Boosted Decision Tree
FastBDT 3.7 6.9 0.435 58
SKLearn-BDT 32.1 7.8 0.429 69
XGBoost 18.0 11.4 0.415 34
TMVA-BDT 19.8 16.5 0.297 101

Artificial Neural Network
SKLearn-NN 27.6 7.2 0.401 32
Tensorflow 201.9 9.4 0.399 30
NeuroBayes 112.3 75.4 0.377 182
FANN 50.6 7.1 0.316± 0.061 21
TMVA-NN 510.6 16.8 0.156 53
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and under-fitting; and compare different models to one another. The automatic
evaluation of the mva package creates a summary in form of a PDF document, which
can later be examined by the user. It is also possible to observe the quality of an
MVA method in an automated fitting environment and to sent emails to quality
control if the quality drops below a predefined threshold.

The PDF summary of the mva package contains:

• the configuration of the used methods;

• correlations of all features for signal and background (see Figure 3.4a);

• importance of all features for all methods (see Figure 3.4b and Section B.3);

• distributions of all features and spectators (see Figure 3.4c);

• receiver operating characteristics on the training and an independent test
datasets for all methods (see Figure 3.4d);

• distributions on the training and an independent test dataset of the response
for all methods (see Figure 3.4e);

• diagonal plots, which shows purity of the binned response for all methods.

Additional plots (like tSNE plots, and control regions plots for different response-cuts)
are provided on demand.

3.3. Applications

This section summarizes the usages of machine learning and the mva package in the
Belle II collaboration. Section 3.3.1 describes applications during mDST analysis;
these were developed during this thesis and many are used in the analysis B →
τ ντ . Furthermore, the mva package is used extensively during online and offline
reconstruction: in the identification of K0

L particles from clusters in the KLM; the
energy and shape determination of clusters in the ECL; and the track finding and
fitting algorithms in the CDC and VXD.

This thesis focused in particular on the development of basic building blocks for
complex algorithms. Often, some features have to be reserved for subsequent steps in
the analysis like the extraction of the signal yield using a fit. Therefor, discriminators
with an enforced uniform signal selection efficiency were investigated in Section 3.3.2.
Section 3.3.3 introduces data-driven techniques, which are a key to reduce the
dependency on Monte Carlo simulation. Finally, Section 3.3.4 outlines algorithms
used to optimize the hyper-parameters of an MVA method.
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(a) Correlation among features for signal and background. (b) Feature importances
for different methods.

(c) Distribution of signal and background for
one feature.

(d) Receiver operating characteristic for dif-
ferent methods.

(e) Distribution of the response of one
method for signal and background.
Useful to check for over-fitting. A
Kolmogorov-Smirnov test is performed
to check for statistical compatibility of
the distributions on the training and an
independent test dataset.

Figure 3.4.: Exemplary evaluation plots for the benchmark problem presented in
Section 3.2.2.
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3.3.1. Analysis Algorithms

All multivariate algorithms used in the analysis package of BASF2 are based on the
mva package. In this section I briefly describe the three most important algorithms,
which were implemented during this thesis (Section 3.3.1.1) or during supervised
master theses (Section 3.3.1.2 and Section 3.3.1.3).

3.3.1.1. Full Event Interpretation

The Full Event Interpretation (FEI) is used for hadronic and semileptonic tagging.
It automatically reconstructs hadronic and semileptonic B meson decay-chains and
infers a signal probability for each reconstructed candidate. This algorithm is used
in the measurement of branching fraction of rare decays with missing kinematic
information like B → τ ντ , B → `γν and B → νν .

This signal probability is calculated using a hierarchical network of multivariate
classifiers, which is visualized in Figure 4.3. A boosted decision tree based on FastBDT

(see Section 3.2.1.1) is trained for each final state particle and each decay-channel
of the intermediate particles. For each particle candidate a signal probability is
calculated using the corresponding BDT. The signal probabilities of the daughter
particles are used as features in the training of the BDT of a composite intermediate
particle. In this manner the complete information about the entire decay-chain is
encoded in the signal probability of the final B candidates.

The training, application and evaluation of the more than 100 BDTs employed by
the FEI is fully automatized with the tools provided by the mva package.

The FEI is described in greater detail in Chapter 4.

3.3.1.2. Flavour Tagging

BASF2 includes two flavour tagging algorithms, which distinguish the decay products
of a B0 meson from a B0 meson. Flavour-tagging is used in time dependent CP
violation analyses like the measurement of ACP (B0 → J/ψK0

S).

The category-based flavour tagger trains either boosted decision trees (see Sec-
tion 3.2.1.1) or neural networks (see Section 3.2.1.3) to identify certain flavour-specific
signatures (so-called categories) like primary lepton decays or b → c → s decay-
chains [60]. Each classifier receives hand-crafted features, which are known to be
correlated to the flavour-specific signature. The output of the category classifiers are
combined by another BDT or NN to the final flavour tagging information (1 for B0

and -1 for B0) and the estimated uncertainty on the tag (0 for a random choice and
1 for absolute certainty).
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The deep learning-based (see Section 3.1.4.3) flavour tagger receives only low-level
features as its input [61]. The four momenta, POCA (point of closes approach of the
track to the beam pipe) and PID (particle identification) information of all tracks
associated to the decay products. The quantities are fed into a deep neural network
ordered by the total momentum of the associated track and separated by charge. It is
assumed, that the deep neural network learns the relevant flavour-specific signatures
and correlated high-level features automatically.

The training and application of both taggers is fully automatized with the tools
provided by the mva package.

The performance of the flavour tagger based on deep learning is out-of-the-box
equal to the traditionally used category-based flavour tagger. Both taggers can be
evaluated and calibrated on data using the b2bii package.

3.3.1.3. Continuum Suppression

Most analyses at the Belle II experiment investigate the decay of B mesons from
an e−e+ → Υ(4S) → BB decay. An important background to these analyses are
continuum events e−e+ → qq , τ−τ+, µ−µ+, e−e+.

Historically, the difference in the event topology was used to suppress continuum
events. Due to the low momentum of the B mesons in the center of mass (CMS) frame,
the topology of a BB event is spherical in the CMS frame. The continuum events
show a twofold cone-shaped back-to-back structure in the CMS frame. Hand-crafted
high-level features were designed to systematically describe the event topology like
the CLEO cones [62] and the KSFW (Kakuno Super Fox Wolfram) moments (see
[63] and [1, Chapter 9]). Figure 3.5 shows example event topologies of a continuum
event in Figure 3.5a, a possible signal-decay B− → τ−ντ event in Figure 3.5b and
a generic charged Υ(4S) event in Figure 3.5c. As can be seen from the examples,
the signal event topology is more similar to the continuum than the Υ(4S) event,
due to the one-prong decay on the signal-side. Hence, it is important to consider the
specific signal-side in the continuum suppression algorithm.

BASF2 includes two continuum suppression algorithms.

The traditional continuum suppression algorithm uses a boosted decision tree6 (see
Section 3.2.1.1), which was fitted to suppress the continuum background, using the
hand-crafted high-level features (see Section 3.1.4.2).

The deep-learning-based (see Section 3.1.4.3) continuum suppression algorithm
receives in addition low-level features as its input [64]. The four-momenta and POCA
of the charged particles are transformed into the CMS frame and rotated with respect

6FastBDT: One hundred trees with a depth of three.
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(a) e−e+ → cc (b) B− → τ−ντ (c) e−e+ → Υ(4S) → B+B−

Figure 3.5.: Event displays showing the event topologies of different event types. The
difference of the spherical topology of Υ(4S) and the twofold cone-shaped
back-to-back structure of continuum events is exploited by hand-crafted
continuum suppression features to separate them from one another.

to the thrust axis. They are fed to a deep neural network in spherical coordinates
ordered by the magnitude of the momentum of the particles and separated by the
charge and their assumed affiliation to the signal or tag side.

Both continuum suppression algorithms are trained using a dataset containing signal
events (instead of generic Υ(4S) event) and continuum events. The addition of low-
level features leads to a significant improvement in the separation (see Figure 3.6). No
significant difference between a BDT and a simple deep neural network were observed.
However, more advanced network architectures lead to further improvements [64].

3.3.2. Uniformity-constraint

Physics analyses often employ MVA classifiers to improve the signal-to-noise ratio
using multiple features, which can separate between signal and background. On
the other hand, many analyses extract physical observables by fitting a signal and
background model to one or more fit-variables. A typical example is a two-dimensional
fit to the Dalitz plane of the benchmark decay D0 → K−π+π0 to extract the fraction,
mass and width of intermediate resonances in the decay. In this example, the fit-
variables are the invariant masses of the K−π+ system M

K
−
π

+ and the K−π0 system

M
K
−
π

0 ; whereas the remaining quantities described in Section 3.2.2 are used as

features in the classifier. Figure 3.7 shows the signal and background distribution of
the benchmark decay in the fit-variables.

It is advantageous to require a uniform selection efficiency of the classifier for signal
and background in the fit-variables, separately.
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BDT(E)   0.9664

Figure 3.6.: Comparison between different feature sets: traditional hand-crafted
features E (30), low-level kinematic features DL (440) and low-level
vertex features (60). The addition of low-level features increases the
quality of the separation. Taken from [64].

Figure 3.7.: Dalitz plane of the benchmark decay D0 → K−π+π0. (Left) correctly
reconstructed D0; showing the rich substructure due to the intermediate
resonances in the decay. (Right) wrongly reconstructed D0.
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• A non-uniform selection efficiency of background events creates an artificial
peaking background if a cut on the classifier output is performed. The shape
of the background model depends on the cut on the classifier output. This
can lead to large systematic uncertainties if the background model cannot be
checked independently in a control region.

• A non-uniform selection efficiency of signal events changes the shape of the
signal model depending on the cut on the classifier output. This increases the
reliance on Monte Carlo simulation, because usually the signal model cannot
be checked independently in a control region.

• Contrastingly, a non-uniform selection efficiency of signal and background
combined is desired, because otherwise the signal-to-noise ratio would not
increase by cutting on the classifier output.

In the following I describe three algorithms, which construct classifiers with a uniform
selection efficiency in the fit-variables. They are compared to two baseline models with
non-uniform selection efficiency (Section 3.3.2.1) on the benchmark (Section 3.2.2).

The performance is compared in terms of the classification quality, measured as
usual by the area under the receiver operating characteristic curve7 (AUC ROC),
and the uniformity of the selection efficiency. As described in [65], the uniformity of
the selection efficiency can be measured by different approaches using: the standard
deviation of the efficiency in bins (SDE); the Theil index (Theil); and the Cramér-
von-Mises similarity (CvM). For all measures, a lower value indicates a more uniform
selection efficiency.

All investigated algorithms were included in the mva package during this thesis.

3.3.2.1. Baseline

Two baseline models trained on the benchmark are used: a boosted decision tree
implemented in hep ml (BDT) and a neural network implemented in tensorflow

(NN). The uniformity of the selection efficiency of the BDT and the NN is visualized
in Figure 3.8 and Figure 3.9, respectively. As can be seen from the figures, both
algorithms have a non-uniform selection efficiency for both signal and background.

3.3.2.2. Feature Drop

The simplest method to enforce a uniform selection efficiency is to remove all
features which are dependent on the fit-variables. The dependency can be quantified

7Different quantities can be used to construct the receiver operating characteristic, here the signal
efficiency and background rejection are used.
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Figure 3.8.: Baseline BDT: Deviation from the average selection efficiency for the
cut on the BDT response, which maximizes the signal-to-noise ratio.
The left (right) plot shows signal (background) D0 candidates.

Figure 3.9.: Baseline NN: Deviation from the average selection efficiency for the
cut on the neural network response, which maximizes the signal-to-noise
ratio. The left (right) plot shows signal (background) D0 candidates.
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Figure 3.10.: BDT with FeatureDrop: Deviation from the average selection effi-
ciency for the cut on the BDT response, which maximizes the signal-
to-noise ratio. The left (right) plot shows signal (background) D0

candidates. The BDT was trained on a subset of features without
kinematic information of the daughter particles.

by: linear correlation coefficients (linear and ignores multivariate correlations);
statistical hypothesis tests for two features being independent [66] (non-linear
and ignores multivariate correlations); or the feature importance of the features
in a multivariate regression to predict the fit-variable (non-linear and considers
multivariate correlations).

Using handcrafted features designed to be uncorrelated to the fit-variables, e.g., the
beam-constrained mass and ∆E as a parametrization of the four-momentum of a B
meson, can further improve this approach.

A major drawback of this method is that the features with high separation power
are often also dependent on the fit-variables. Therefore, one potentially looses a
lot in terms of classification quality as is evident from Figure 3.14 and Figure 3.15.
Furthermore, as can be seen from Figure 3.10 and Figure 3.11 even aggressively
removing dependent features does not guarantee a uniform selection efficiency. Em-
pirically, there is always some dependency between the features and the fit-variables,
so enforcing an exact uniform selection efficiency would require removing all features
from the training.

To sum up, more powerful techniques are required to enforce a uniform selection
efficiency.
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Figure 3.11.: NN with FeatureDrop: Deviation from the average selection effi-
ciency for the cut on the NN response, which maximizes the signal-
to-noise ratio. The left (right) plot shows signal (background) D0

candidates. The NN was trained on a subset of features without kine-
matic information of the daughter particles.

3.3.2.3. Boosting to uniformity

As described in [65], boosting (re-weighting of events depending on the output of
a classifier) can be used to enforce a uniform selection efficiency. This technique
can be naturally incorporated in a boosting algorithm, like it is used for stochastic
gradient-boosted decision trees. The loss-function is extended by an additional term
Lflat, which penalizes a non-uniform selection efficiency

Lflat = α CvMS + β CvMB, (3.4)

where CvM is the Cramér-von-Mises similarity introduced in Section 3.3.2, and α and
β are new hyper-parameters controlling the strictness of the uniformity constraint.
The boosting algorithm will increase (decrease) the weight of events in bins8 with
lower (higher) selection efficiency compared to the inclusive distribution.

As can be seen from Figure 3.12 this algorithm yields a nearly uniform selection
efficiency on the benchmark while maintaining a high classification quality (see
Figure 3.14).

This algorithm was implemented into FastBDT (see Section 3.2.1.1) during this thesis,
and is also (independently) available in the hep ml package.

8A joint region in the fit-variables.
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Figure 3.12.: BDT with uniformity boosting: Deviation from the average selec-
tion efficiency for the cut on the BDT response, which maximizes the
signal-to-noise ratio. The left (right) plot shows signal (background)
D0 candidates.

3.3.2.4. Adversarial neural networks

Adversarial neural networks are commonly used in generative neural networks [41].
[42] applied the technique to create a neural network classifier f(~x, ~w), whose output
s is independent of the values ~z of some nuisance parameters Z

p(f(~x, ~w) = s|~z) = p(f(~x, ~w) = s|~z?) (3.5)

for all ~z, ~z? ∈ Z and all possible outputs s of the classifier. [42] proofs that the
obtained classifier is both optimal9 and fulfills Equation 3.5, if such a solution exists.
Equation 3.5 implies that f(X), Z are independent random variables, therefore a cut
on the output of f has a uniform selection efficiency in Z by construction.

The technique was adapted during this thesis to create a uniform discriminator
by identifying the nuisance parameters with the fit-variables. As explained in
Section 3.3.2, a uniform selection efficiency is desired for signal and background
separately. This can be achieved by additionally conditioning on the event class c

p(f(~x, ~w) = s|~z, c) = p(f(~x, ~w) = s|~z?, c) (3.6)

for all ~z, ~z? ∈ Z, c ∈ {S,B} and all possible outputs s of the classifier. In partic-
ular the random variables f(X), Z are now conditionally independent instead of
independent.

9In the sense defined in [42].
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Figure 3.13.: NN with adversary: Deviation from the average selection efficiency
for the cut on the NN response, which maximizes the signal-to-noise
ratio. The left (right) plot shows signal (background) D0 candidates.

For each pair (zi, ci) of fit-variable zi and class ci, an adversarial neural network is
trained in parallel to the neural network f responsible for the classification. Each
adversarial neural network learns to predict the probability density function p(zi|s, c)
of its fit-variable and class; using the output s of f as the sole input. This can
be accomplished by minimizing the loss-function Li = − log(p(zi|s, ci)). The sum
of all adversarial loss-functions Li is subtracted from the loss-function Lf of the
classification neural network

L = Lf − α
∑
i

Li, (3.7)

where α is a new hyper-parameter controlling the strictness of the uniformity con-
straint. Hence, the adversarial neural networks learn to extract any information on
the fit-variables contained in the output of f . At the same time the classification
neural network is penalized if the adversarial neural networks succeed in doing so.
All networks are trained simultaneously until convergence.

As can be seen from Figure 3.13 this algorithm yields a nearly uniform selection
efficiency on the benchmark while maintaining a high classification quality (see
Figure 3.15).

The usage of adversarial neural networks as presented in this section is key to a
successful deployment of deep learning algorithms in HEP, because it can prevent
the network from learning specific fit-variables. Examples include: The decay length
difference ∆z in CP measurements, and the beam-constrained mass Mbc in hadronic
tagging algorithms.
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Figure 3.14.: Receiver operating characteristic (ROC) of: an ordinary BDT (baseline),
a BDT using uniform boosting (UGBoost), an ordinary BDT trained
on a subset of features without kinematic information of the daughter
particles (FeatDrop). The number in parenthesis states the area under
the corresponding ROC curve.

3.3.2.5. Conclusion

It is possible to ensure a uniform selection efficiency for signal and background
separately: For BDTs the boosting to uniformity technique, and for NNs the adversary
technique can be successfully employed. Both yield similar results in terms of
classification quality and uniformity. The traditional Feature Drop approach is
inferior.

The classification quality of the different algorithms, is compared in Figure 3.14 for
the BDT and in Figure 3.15 for the NN. The uniformity constraint diminishes the
classification quality, because information dependent on the fit-variables cannot be
fully exploited by the classifiers.

Further algorithms exist to ensure a uniform selection efficiency. [67] used hand-
crafted features to design decorrelated taggers for jet classification, and investigated
the possibility to automatize the process with principal component analysis. However,
the algorithm (as presented in [67]) still requires human input and is only shown
to work with four features and one fit-variable. [68] introduced the first boosting
to uniformity technique for boosted decision trees (distinct from the one presented
in this thesis), and previously [46] presented already an approach based on event
re-weighting by building a tree of neural networks. Both approaches suffer from
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Figure 3.15.: Receiver operating characteristic (ROC) of: an ordinary NN (baseline),
a NN with adversary (Adversary), an ordinary NN trained on a subset
of features without kinematic information of the daughter particles
(FeatDrop). The number in parenthesis states the area under the
corresponding ROC curve.

a significant runtime performance drawback, because many classifiers have to be
trained.

Finally, uniformity-constrained classifiers can be used to implicitly prevent using
information available only on MC. Here, the fit-variable is a binary variable containing
0 for MC and 1 for detector data. For instance, the adversarial neural network is
trained to distinguish MC and detector data, and the neural network responsible
for the classification is punished if this is possible. The additional conditioning on
the event class c is usually not desired (and usually not possible on data), because
signal MC is easily distinguishable from detector data, if the signal is rare. The next
section describes further data-driven techniques.

3.3.3. Data-driven

Many analyses in HEP employ Monte Carlo (MC) simulation to optimize cuts;
determine the shape of signal and background components; and train multivariate
methods. The simulated MC events are usually carefully calibrated and correction
factors for the particle identification performance and branching fractions are used
to ensure a sound modeling of the detector data. In addition, control regions and
channels can be used to cross-check the simulation.
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Figure 3.16.: The invariant mass of candidates reconstructed from the benchmark
decay D0 → K−π+π0. The filled histograms show the expected distri-
bution from Monte Carlo simulation for signal (blue) and background
(gray). The black points show the distribution obtained from detector
data. The overall normalization differs from the MC expectation. There
are two main background sources: Υ(4S) events, which is usually well
understood; and continuum events, which have large uncertainties in
the description of the hadronization and the branching fractions of the
subsequent decay-chains. The green line shows Monte Carlo expecta-
tion, where the continuum component was replaced by off-resonance
detector data. This distribution is in agreement with the detector data,
indicating that the main difference is due to the continuum description.

As can be seen from Figure 3.16, already the well-known benchmark decay (Sec-
tion 3.2.2) exhibits large differences between detector data and the Monte Carlo
expectation. The benchmark decay was reconstructed on Monte Carlo and detector
data using the b2bii package. The main differences arise from the poor description
of the continuum component, that is non-resonant processes like e+e− → cc (see
Section 2.3.3.3).

Data-driven techniques can be used to reduce the reliance of analyses on Monte
Carlo simulation. Hereby, the desired information is determined directly from data
by exploiting physics knowledge.

In the remainder of this section I introduce several data-driven techniques which
aim to reduce the dependency on Monte Carlo simulation during the fitting-phase of
multivariate methods. The first three techniques are originally described in [46]. All
of them were investigated and implemented in the mva package during this thesis
and a supervised bachelor thesis [69].
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3.3.3.1. Baseline

As a baseline for the following studies, a boosted decision tree (BDT) was trained to
distinguish signal and background candidates on the benchmark decay. Figure 3.17
shows the distribution of the invariant mass of the benchmark decay after a cut on
the response of the BDT. The cut was chosen to optimize the signal-to-noise ratio on
Monte Carlo. The observed signal-to-noise ratio on data is 31.78. It was extracted
by fitting a background-only model to the observed distribution on detector data
excluding the signal peak between 1.8 GeV and 1.9 GeV.

The training of the same boosted decision tree is repeated in the following sections
using different data-driven techniques. Throughout the text the applied cuts on the
response of the BDTs are always chosen to maximize the signal-to-noise ratio on
MC events and the cited signal-to-noise ratio is always extracted on detector data as
described above.

To ensure a sound comparison, only features independent of the invariant mass were
included in the training, otherwise a possible peaking background contribution could
distort the evaluation on detector data. This corresponds to the Feature Drop ansatz
explained in the last section.

3.3.3.2. Event re-weighting

The main idea of event re-weighting is to encode the difference of MC events
and detector data in the response of a multivariate classifier. A classifier is trained
to distinguish MC events and detector data. Its response is the probability p =

detector
detector+MC

of selecting a detector event from the whole sample. An MC event with a
high (low) probability is likely (unlikely) to appear in detector data, hence we want
to increase (decrease) the importance of this event. The importance of each MC
event is defined by a weight w = detector

MC
= p

1−p (see [46]).

The larger the differences between MC events and detector data, the better the
classification quality of the classifier. In the absence of mis-modeling, the classifier
would not be able to distinguish MC events and detector data.

In contrast to simple scaling factors derived from a binned distribution, this method
takes multivariate dependencies, between all features used in the classifier, into
account.

Subsequently, the user can train another multivariate classifier to distinguish signal
from background on the re-weighted MC dataset. In particular deep learning methods,
which typically employ numerous low-level features can profit from this technique
(see Section 3.1.4.3). Furthermore, the derived weights w can be used for all tasks
performed on MC like determining cuts and creating plots.
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Figure 3.17.: The invariant mass distribution of the benchmark decay D0 → K−π+π0,
after a cut on the response of a boosted decision tree was applied.
The BDT was trained on MC events. The filled histograms show the
expected distribution from Monte Carlo simulation for signal (blue) and
background (gray). The black points show the distribution obtained
from detector data. The black line shows the background model fitted
to the detector data

This methods cannot compensate differences in phase-space regions where no MC
events exist. Also, the method is not aware of signal and background, and could
re-weight signal (background) events from MC to match background (signal) events
in data.

Alternatively, one can use a uniformity-constraint classifier to mitigate differences
between MC events and detector data as described in Section 3.3.2.5. This approach
changes the underlying classifier itself, hence it cannot be automatized for arbitrary
classifiers.

The event re-weighting technique was implemented in the mva package, and is
automatically applied as soon as the user provides the necessary detector data.
Figure 3.18 shows the invariant mass distribution of the benchmark decay, after a
cut on a BDT trained on re-weighted MC events. The achieved signal-to-noise ratio
does not differ significantly from the baseline (see Figure 3.17). The re-weighted
expectation from MC is in agreement with the measured spectrum on detector data.
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Figure 3.18.: The invariant mass distribution of the benchmark decay D0 → K−π+π0,
after a cut on the response of a boosted decision tree was applied. The
BDT was trained on re-weighted MC events. The filled histograms
show the expected distribution from Monte Carlo simulation for signal
(blue) and background (gray). The black points show the distribution
obtained from detector data. The black line shows the background
model fitted to the detector data.

3.3.3.3. Sideband-Subtraction

Training a multivariate classifier directly on data is challenging, because usually there
are no pure signal and background samples available. However, in some situations
signal-enriched and signal-free phase-space regions can be identified. These regions
can be used to train a multivariate classifier on data, by statistically subtracting the
background in the signal-enriched region using events from a signal-free region with
a negative weight.

Sideband-Subtraction requires the definition of three phase-space regions:
a signal-enriched region, which contains signal and background events; a
background-region, which contains only background events; and a negative
signal-region; which contains only background events indistinguishable10 from the
background events in the signal-enriched region. In addition, the method requires
the expected number of signal events in the signal-enriched region e.g. from Monte
Carlo.

10Meaning that the events cannot be distinguished by the features used in the training of the
classifier.
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Since the ground truth is not known for individual detector events, all events (including
the background events) in the signal-enriched region are used as signal in the training.
To counteract the background events contained in the signal region, the background
events from the negative-signal region are used as signal as well, but with a negative
weight. Finally, the events from the background region are used as background.

Figure 3.19 shows the invariant mass distribution of the benchmark decay, after a cut
on a BDT trained on detector data using Sideband-Subtraction. The exact choice
of the regions, as long as they fulfill the assumptions and contain enough statistics,
is not important. The different regions were chosen as follows: the signal-enriched
region 1.82 GeV < M < 1.9 GeV, the background region 1.77 GeV < M < 1.78 GeV
and 1.94 GeV < M < 1.95 GeV, and the negative signal-region M < 1.8 GeV and
1.92 GeV < M . The achieved signal-to-noise ratio is worse than the baseline (see
Figure 3.17).

The method can be used to increase the signal-to-noise ratio in situations were Monte
Carlo events cannot be used. The expected number of signal events in the signal-
enriched region has to be known. If the classifier is able to distinguish background
events in the signal and negative signal regions using its features, the classification
quality deteriorates, because the negative signal events are partly rejected and cannot
subtract all background events in the signal-enriched region. In consequence, only a
subset of features can be used during the Sideband-Subtraction training.

3.3.3.4. sPlot

sPlot is a statistical technique, to reconstruct the distribution of different sources
in so-called control variables, using the known distributions of these sources in a
discriminating variable [45]. In the context of machine learning it can be used to
perform a multivariate training on data.

The sources are chosen to be signal and background decays, the control variables
are the features we want to use in the training of the multivariate classifier, and the
discriminating variable is a variable for which the signal and background distribution
is known e.g. the invariant mass of a particle.

The underlying idea is similar to Sideband-Subtraction. The known distributions in
the discriminating variable define implicitly signal-enriched and background-enriched
regions. In contrast to Sideband-Subtraction, sPlot does not require a signal-free
region.

In the sPlot based multivariate training every event is used twice, once as signal
and once as background, but with different weights. The weights for signal ws
and background wb are derived from the probability density distributions of the
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Figure 3.19.: The invariant mass distribution of the benchmark decay D0 → K−π+π0,
after a cut on the response of a boosted decision tree was applied. The
BDT was trained using sideband subtraction. In particular, no MC
events were used during this training. The filled histograms show the
expected distribution from Monte Carlo simulation for signal (blue) and
background (gray). The black points show the distribution obtained
from detector data. The black line shows the background model fitted
to the detector data.

discriminating variable for signal fs and background fb. These are fitted to the
detector data in order to extract the number of signal Ns and background events Nb:(

ws
wb

)
=

V

Ns · fs +Nb · fb
·
(
fs
fb

)
,

where V is the covariance matrix of the extracted yields. The approach can be
generalized to more than one background source.

sPlot requires the probability density distribution of the discriminating variable
for signal and all background sources. In addition, the events of each source must
be conditional independent of the discriminating variable, meaning the classifier
should not be able to estimate the value of the discriminating variable using its
features. In consequence, only a subset of features can be used during the sPlot
training. A violation of the above assumptions leads to a deterioration of the achieved
classification quality. This is the same effect already encountered in Section 3.3.3.3.

Figure 3.20 shows the invariant mass distribution of the benchmark decay, after
a cut on a BDT trained on detector data using sPlot. The probability density
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functions for the invariant mass for signal and background is extracted from Monte
Carlo simulation. The achieved signal-to-noise ratio is worse than the baseline (see
Figure 3.17). The more detailed description of the method can be found in [69] and
[46].

Figure 3.20.: The invariant mass distribution of the benchmark decay D0 → K−π+π0,
after a cut on the response of a boosted decision tree was applied. The
BDT was trained using sPlot. In particular, no MC events were used
during this training. The filled histograms show the expected distri-
bution from Monte Carlo simulation for signal (blue) and background
(gray). The black points show the distribution obtained from detector
data. The black line shows the background model fitted to the detector
data.

3.3.3.5. decorrelated sPlot

As stated in the last section, the classification quality of an sPlot training deteriorates
if the classifier can predict the discriminating variable for background-events using
its features. Using the uniformity-constraint is not straight-forward in this case (see
Section 3.3.3.6).

During this thesis an extension of sPlot was developed to mitigate this problem, by
automatically reducing the conditional dependency between the features and the
discriminating variable for background-events.

The basic idea is to perform an event re-weighting (similar to Section 3.3.3.2) to
eliminate the undesired conditional dependency. Therefor, a classifier is trained to
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distinguish events with a low L and high H value of the discriminating variable.
The main challenge is to leave the dependency between the features and the target
(signal or background) untouched.

One possible approach would be to assign all events left of the signal peak to L
and all events right of the signal peak to H. In case of a symmetrical signal peak
distribution in the discriminating variable, there would be the same amount of signal
in L and H, in consequence the classifier would learn to distinguish L and H but
not signal and background, hence leaving the dependency between the features and
the target untouched.

A more advanced approach uses all events twice (similar to sPlot), once as L and once
as H, weighted using the cumulative distribution function for signal and normalized
to the probability distribution function of background:

wL =

∫ x
−∞ fs(x

′)dx′

fb(x)

wH =

∫∞
x
fs(x

′)dx′

fb(x)
,

where x is the discriminating variable and fs (fb) is the probability density function
for signal (background). This approach is independent of assumptions on the signal
distribution shape, but still distributes the amount of signal per background evenly
between L and H.

In the next step the output p of the previously trained L vs. H classifier, is used to
assign a decorrelation weight to the event

wD =
1

2

(∫ x
−∞ fs(x

′)dx′

p
+

∫∞
x
fs(x

′)dx′

1− p

)
,

in order to remove the conditional dependency between features and the discriminat-
ing variable for background-events. The cumulative distribution function for signal
is again used to leave the signal-events on average untouched. If the classifier could
not decide between L and H, that is the probability is close to p = 0.5, the final
weight is close to wD = 1. In contrast, a stark prediction like a value close to p = 1,
will lead to a small (large) weight if the prediction is correct (incorrect).

Finally, an sPlot training as described in Section 3.3.3.4 is performed using the
decorrelation weights wD multiplied with the sPlot weights.

Figure 3.21 shows the invariant mass distribution of the benchmark decay, after
a cut on a BDT trained on detector data using decorrelated sPlot. As expected
the obtained signal-to-noise ration is better than the one obtained by pure sPlot.
Furthermore, the achieved signal-to-noise ratio is not significantly different from the
baseline (see Figure 3.17).
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Figure 3.21.: The invariant mass distribution of the benchmark decay D0 → K−π+π0,
after a cut on the response of a boosted decision tree was applied. The
BDT was trained using decorrelated sPlot. In particular, no MC
events were used during this training. The filled histograms show the
expected distribution from Monte Carlo simulation for signal (blue) and
background (gray). The black points show the distribution obtained
from detector data. The black line shows the background model fitted
to the detector data.

3.3.3.6. Conclusion

All presented methods yield reasonable results on detector data. They differ in
the amount of information they require from Monte Carlo simulation: event re-
weighting requires simulated MC events to which corrections can be applied; Sideband-
Subtraction requires an estimate of the number of signal events in the signal-enriched
region; (decorrelated) sPlot requires the distribution of the signal and background
component. In addition, Sideband-Subtraction and sPlot require that the background
composition does not change in the considered phase-space region, and that the
features used during the training are independent of the discriminating variable. The
last requirement can be mitigated by the decorrelated sPlot algorithm developed
during this thesis.

In consequence, the preferred method depends on the quality of the Monte Carlo
simulation and the correctness of the necessary assumptions for the investigated
tasks.

In the benchmark example presented in this section, the classifier based on pure
Monte Carlo, still performs slightly better or equally well compared to the data-
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driven methods. This is expected since the benchmark decay is a well-known and
well-simulated decay-channel, except for the continuum component, where the overall
normalization is off. The event re-weighting method is particularly useful, because it
yields the same results as the pure Monte Carlo training, if MC events and detector
data are indistinguishable. It is key to a successful employment of deep learning
methods, where low-level features are used, which are usually less well simulated
compared to high-level features.

It is not clear yet, if the data-driven techniques presented in this section can be
combined with the uniformity-constraint introduced in the last section. While
most data-driven technique require a discriminating-variable to define signal and
background events, the uniformity-constraint is enforced using this definition on the
fit-variable, which could be the same as the discriminating-variable (like it is the
case for sPlot). This was not further investigated during this thesis.

3.3.4. Hyper-parameter optimization

As described in Section 3.1.3, the complexity of the statistical model generated by
an MVA algorithm can be controlled by so-called hyper-parameters. While the MVA
algorithm optimizes the parameters of the statistical model to minimize the error on a
given training dataset, the hyper-parameter optimization tunes the hyper-parameters
of the MVA algorithm to minimize the error on an independent validation dataset.

In total, three independent datasets are required in this situation: the training
dataset used by the MVA algorithm; the validation dataset used by the hyper-
parameter optimization; and the test dataset used to evaluate the performance of
the selected model. Techniques like cross-validation [20, Chapter 1.3] and Bayesian
model comparison [20, Chapter 3.4] can be used to avoid introducing a dedicated
validation dataset if the amount of available labeled data is limited.

Optimizing hyper-parameters by hand is cumbersome, error-prone and not suitable
for automation. During this thesis different algorithms, used to automatize the search
for the optimal hyper-parameter values, were investigated. The mva package includes
examples for all of them. Figure 3.22 shows the application of the hyper-parameter
optimization algorithms, described in the following, to the hyper-parameters of
FastBDT on the benchmark.

3.3.4.1. Grid and Random Search

The most common approach is a grid search. The loss on the validation dataset is
evaluated on an n-dimensional grid in the hyper-parameter space. The computational
effort of this approach scales exponentially in the number of hyper-parameters. The
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(a) Grid-search evaluated on 50 grid points. (b) Bayesian optimization after 26 evalua-
tions.

Figure 3.22.: Hyper-parameter optimization of FastBDT on the benchmark (see Sec-
tion 3.2.2). Two hyper-parameters were optimized: the number of

trees and the depth of the trees. The contour map indicates the
ROC AUC score predicted by the measured hyper-parameter settings.
The blue cross indicates the best hyper-parameter configuration with a
ROC AUC score of 0.45 (both algorithms found distinct but equivalent
maximums)

accuracy of the method depends on the density of the grid. Quantitative11 and
qualitative12 hyper-parameters can be optimized by this approach.

Figure 3.22a shows an application of the grid search algorithm on the benchmark.
In total, 50 distinct configurations of FastBDT were tested, the best achieved ROC
AUC score was 0.450, which is significantly better than the default configuration
achieving 0.435 (see Table 3.1).

Recent studies suggest that random-search is superior to grid-search at least in
high-dimensional scenarios [31]. This is due to the fact that often only a few out of
many hyper-parameters really matter. In such a scenario, the computational effort
of random-search is independent of the number of nuisance13 hyper-parameters

3.3.4.2. Bayesian Optimization

A probabilistic f(~h) model of the error on the validation dataset given the hyper-

parameters ~h is constructed. Using the Bayesian Optimization framework [33] this

11Quantitative parameters have an intrinsic ordering, examples are the number of trees in an
BDT, or the weight-decay constant in the loss function of a NN.

12Qualitative parameters do not have an intrinsic ordering, examples are the separation gain
measure in a BDT and the optimization algorithm of a NN.

13A hyper-parameter with minor or no influence on the score.
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model can be used to determine the next hyper-parameter space-point to evaluate
using all available information from previous evaluations. This approach can take
into account prior knowledge about the hyper-parameters and the cost (runtime) of
the evaluation for different hyper-parameters. Quantitative and qualitative hyper-
parameters can be optimized by this approach.

Figure 3.22b shows an application of the Bayesian optimization algorithm on the
benchmark. After 26 evaluations, the model found a configuration with an ROC AUC
score of 0.450, which is significantly better than the default configuration achieving
0.435 (see Table 3.1). In comparison to grid-search, Bayesian optimization found an
equivalent best hyper-parameter configuration in fewer evaluations.

3.4. Conclusion

In the early years of HEP cut-based analysis (see Section 3.1.4.1) dominated the
field, in the final years of the last millennium HEP started to adopt multivariate
analysis methods and machine learning (see Section 3.1.4.2), today the fields move
on to deep learning (see Section 3.1.4.3).

The mva package enables Belle II physicists to keep up with the rapid developments
in the field and to easily employ modern machine learning algorithms in their work.
Most of the multivariate methods used in the reconstruction and analysis algorithms
in BASF2 are built on the mva package and use the default classification method
FastBDT, both developed during this thesis.

In particular, tagging algorithms, which exploit the unique environment provided
by B factories, such as the Flavour Tagger and Full Event Interpretation, rely
heavily on the mva package.

The provided algorithms were tested, where appropriate, on data recorded by the
Belle experiment by taking advantage of the b2bii package.
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Chapter 4
Full Event Interpretation

The Full Event Interpretation (FEI) is a tagging algorithm based on machine
learning. It exploits the unique experimental setup of B factory experiments such as
the Belle and Belle II experiment. Both experiments operate on the Υ(4S) resonance,
which decays at least 96% of the time into exactly two B mesons. Conceptually, the
event is divided into two sides: The signal-side containing the tracks and clusters
compatible with the assumed signal Bsig decay the physicist is interested in, e.g.

B+ → τ+ντ ; and the tag-side containing the remaining tracks and clusters compatible
with an arbitrary Btag meson decay. Figure 4.1 depicts this situation. Ideally, a full
reconstruction of the entire event has to take all detected tracks and clusters into
account to attain a correct interpretation of the measured data.

The FEI automatically reconstructs Btag candidates1 and calculates a signal proba-
bility to separate correctly reconstructed Btag candidates from background. Using
constraints derived from the unique experimental setup, the reconstructed Btag meson
can be used to recover information about the remaining Bsig meson in the event.

This enables the measurement of a wide range of decays with a minimum amount of
detectable information, like B+ → τ+ντ , B+ → `+νγ and B → Kνν , or no detectable
information at all, like in the case of B0 → νν , in the final state.

In the following I describe tagging at B factories in general (Section 4.1); the
FEI algorithm itself (Section 4.2); the validation of the performance of the FEI

(Section 4.3) using converted Belle detector-data and simulated Belle II Monte Carlo;
and finally possible future extensions and use-cases (Section 4.4).

1 A candidate consists of an assumed decay-chain, which happened in the detector and was
detected by a fixed set of tracks and clusters.
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Figure 4.1.: (Left) a common tag-side decay B− → D0[→ K0
S[→ π−π+]π−π+]π− and

(right) the signal-side decay B+ → τ+ντ investigated in Chapter 5.

4.1. Tag-side reconstruction

The initial four-momentum of the produced Υ(4S) resonance is precisely known.
Therefore, the reconstruction of the tag-side B meson allows to recover informa-
tion about the signal-side, which would be otherwise inaccessible. The recovered
information includes:

the consistency of quantities like the charge or the flavour;

the four-momentum of the Btag and consequently the Bsig meson;

the decay-vertex and the decay time difference ∆t between both mesons;

the event-type like Υ(4S) → B0B0 or Υ(4S) → B+B−;

and the assignment of tracks and clusters to either the Btag or the Bsig meson.

Historically, there were two distinct approaches to tagging at B factories: inclusive
and exclusive.

They differ in their tagging efficiency (that is the fraction of Υ(4S) events which
can be tagged), their tag-side efficiency (that is the fraction of Υ(4S) events with
a correct tag) and in the quality of the recovered information, which determines
the purity (that is the fraction of the tagged Υ(4S) events with a correct tag-side)
of the tagged events. These three properties are the key performance indicators
used in this thesis. They are closely related to important properties of a specific
analysis: The tagging efficiency is important to judge the disk-space required for
skimming, that is the number of events which have to be considered for the analysis;
the tag-side efficiency influences the effective statistics of the analysis, and the purity
is related to the signal-to-noise ratio of the analysis.

Exclusive tagging provides the assignment of tracks and clusters to either the tag-
side and or the signal-side, whereas the inclusive tag requires this assignment as
input. The advantages and disadvantages of the different approaches are visualized
in Figure 4.2.
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Figure 4.2.: Overview of the three tagging algorithms, which were used in the past
to infer information about the Bsig meson using the other Btag meson in
the event.

4.1.1. Inclusive Tagging

Inclusive refers to the reconstruction of a particle (here the Btag) without assuming an
explicit decay-channel. Consequently, inclusive tagging combines the four-momenta
of all tracks and clusters, which were not used during the reconstruction of the Bsig –
the so-called rest of event. The decay-chain of the Btag is not explicitly reconstructed,
hence the assignment is not provided by the algorithm and cannot be used to discard
wrong candidates. Only the overall consistency between the Bsig and Btag meson can
be checked. This approach has a high tagging efficiency of O(100)%, since it can
always provide a valid Btag, but suffers from a high background, and consequently
the tagged sample is very impure.

Inclusive tagging is used in time-dependent CP violation analyses, to determine
the decay vertex of the Btag meson. It can also be used to improve the momentum

resolution on the signal-side in analyses like B+ → µ+ν, where the signal-side alone is
suffice to provide a pure sample. Flavour tagging (see Section 3.3.1.2) and continuum
suppression (see Section 3.3.1.3) can be seen as a special form of inclusive tagging.
On the other hand, inclusive tagging cannot be used for an inclusive signal-side.

The FEI is not an inclusive tagging algorithm. However, it does try to always provide
a valid Btag like it is accomplished by the inclusive tagging. Therefore, it could be
used instead of inclusive tagging as described in Section 4.4.1.
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4.1.2. Exclusive Tagging

Exclusive refers to the reconstruction of a particle (here the Btag) assuming an explicit
decay-channel. Consequently, exclusive tagging reconstructs the Btag independently
of the Bsig using either hadronic or semileptonic B meson decay-channels. The
decay-chain of the Btag is explicitly reconstructed and therefore the assignment of
tracks and clusters to the tag-side and signal-side is known.

If the signal-side is exclusively reconstructed as well, the entire decay-chain of the
Υ(4S) is known. Consequently, all tracks and clusters measured by the detector
should be accounted for. In particular, the requirement of no additional tracks,
besides the ones used for the reconstruction of the Υ(4S), is an extremely powerful
and efficient way to remove nearly all reducible2 background. This requirement is
called the completeness-constraint throughout the text.

The tagged sample is pure, but it suffers from a low tagging efficiency O(1)%, since
only a tiny fraction of the B decays can be explicitly reconstructed, due to the large
amount of possible decay-channels and their high multiplicity, as well as the imperfect
reconstruction efficiency of tracks and clusters. For instance, the probability p to
find all tracks of a hypothetical decay chain with a multiplicity of 10, assuming a
reconstruction efficiency of 0.95 per track and a geometrical detector acceptance of
91.1% is only p ≈ 24%.

The quality of the recovered information and systematic uncertainties depend on the
decay-channel of the Btag, therefore one distinguishes further between hadronic and
semileptonic exclusive tagging.

Additionally, exclusive tagging can also be used to perform an inclusive reconstruction
of the signal-side, without assuming an exclusive signal decay-channel.

The FEI is an exclusive tagging algorithm, which supports hadronic and semileptonic
tagging.

4.1.2.1. Hadronic Tagging

Hadronic tagging solely uses hadronic B decay-channels for the reconstruction. Hence,
the four-momentum of the reconstructed Btag is well-known and the tagged sample is
very pure. However, hadronic tagging suffers from a low tagging efficiency. It is only
possible for a tiny fraction of the recorded events, because the branching fraction of
explicit fully hadronic decay-chains is very small. A typical hadronic B decay has a
branching fraction of O(10−3).

2Reducible background has distinct final state products from the signal.
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Figure 4.5 and Figure 4.10 show the beam-constrained mass distribution of hadroni-
cally reconstructed Btag mesons for Belle and Belle II, respectively. The correctly
reconstructed mesons peak at a beam-constrained mass of Mbc = 5.279 GeV. The
beam-constrained mass can be calculated from the initial beam-conditions [1, Chapter
7.1]:

Mbc =
√
E2

beam − p2
B , (4.1)

where all quantities are measured in the center-of-mass system and Ebeam is the
beam energy. Mbc is per definition independent of the mass hypotheses of the final
state particles used during the reconstruction of the B meson candidate.

Another useful quantity is the deviation from the beam-energy [1, Chapter 7.1]

∆E = EB − Ebeam, (4.2)

which is sensitive to mis-identification of the final state particles during the recon-
struction of the B meson candidate.

The above beam-dependent quantities are less correlated with each other in compari-
son to the invariant mass M and energy E of the reconstructed B meson candidate.

The hadronic tag of the FEI can be accessed by the user using BASF2 via the provided
B0:generic and B+:generic ParticleLists. The different decay-channels can be
distinguished by the associated decayModeID.

4.1.2.2. Semileptonic Tagging

Semileptonic tagging uses semileptonic B decay-channels. Due to the higher branching
fraction of semileptonic B decays this approach usually has a higher tagging efficiency
compared to hadronic tagging. A typical semileptonic B decay has a branching
fraction of O(10−2). On the other hand, the semileptonic reconstruction suffers from
missing kinematic information due to the neutrino in the final state of the decay.
Hence, the sample is not as pure as in the hadronic case.

Figure 4.6 and Figure 4.11 show the angle cos ΘBD` between the true B meson and
the measured D` system of semileptonically reconstructed Btag mesons for Belle and
Belle II, respectively. The correctly reconstructed mesons are missing exactly one
massless neutrino, and therefore peak between −1 and 1. The angle cos ΘBD` can be
calculated from the initial beam-conditions [1, Chapter 7.2]:

cos ΘBD` =
2EbeamED` −m2

B −m2
D`

2pBpD`

, (4.3)
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where all quantities are measured in the center-of-mass system and Ebeam is the
beam energy, mB is the nominal mass of the B meson and pB is the total momentum
of a B meson from a Υ(4S) decay.

The semileptonic tag of the FEI can be accessed by the user using BASF2 via the
provided B0:semileptonic and B+:semileptonic ParticleLists. The different
decay-channels can be distinguished by the associated decayModeID.

4.2. Implementation

A proof of concepts (PoC) of the Full Event Interpretation was developed in
[3] based on the original Full Reconstruction (FR) algorithm used by Belle [36].
During this thesis, the FEI was further developed from a PoC to a standard tool
used in production. It was significantly extended by: further increasing the tagging
and tag-side efficiency by getting more inclusive; reducing the runtime and memory
consumption; adapting the algorithm for the usage on converted Belle data using
b2bii; and migrating the algorithm to the mva package.

In the following I describe the complete FEI algorithm in an abstract manner
(Section 4.2.1), the training of the employed multivariate classifiers (Section 4.2.2),
and the performance optimizations (Section 4.2.4) which are key to a successful
employment of the FEI in the future.

4.2.1. Algorithm

The FEI follows a hierarchical approach with six stages, visualized in Figure 4.3.
All steps in the algorithm are configurable, therefore: the used decay-channels,
employed cuts, and the input features and hyper-parameters of the multivariate
classifiers depend on the configuration. A detailed description of the current default
configuration of the FEI including a list of all decay-channels can be found in
Section C.1.

4.2.1.1. Combination of Candidates

Charged final state particle candidates are created from Tracks assuming different
particle hypotheses, whereas neutral final state particle candidates are created
from ECL clusters, KLM clusters, or V0 objects. Each candidate can be correct
(signal) or wrong (background). For instance, a Track used to create a π+ candidate
can originate from a pion traversing the detector (signal), from a kaon traversing
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Figure 4.3.: Schematic overview of the FEI. The B mesons are reconstructed hi-
erarchically; using the detector output, final state particle candidates
are formed, and combined to intermediate particles until the final B
candidates are formed. The probability of each candidate to be correct
is estimated by an MVA algorithm. The probabilities are fed into the
subsequent MVA methods.
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the detector (background) or even consists of a random combination of hits from
beam-background (also background).

All candidates available at the current stage are combined to intermediate particle
candidates in the subsequent stages, until candidates for the desired B mesons are
created. Each intermediate particle has multiple possible decay-channels, which can
be used to create valid candidates. For instance, a B− candidate can be reconstructed
by combining a D0 and a π− candidate, or by combining a D0, a π− and a π0 candidate.
The used D0 candidate could be reconstructed from a K− and a π+, or from a K0

S

and a π0.

The FEI reconstructs more than O(100) explicit decay-channels, leading to more
than O(10000) distinct decay-chains. All considered decay-channels are listed in
Section C.1.

4.2.1.2. Multivariate Classification

The FEI employs multivariate classifiers (see Chapter 3) to estimate the probability
of each candidate to be correct. Hence, each candidate created by the FEI (regardless
at which stage) has an associated SignalProbability σ, which can be used to
discriminate correctly reconstructed candidates from background.

In order to use all available information, a network of multivariate classifiers is built,
following the hierarchical structure of the reconstruction. For each final state particle
and for each decay-channel of an intermediate particle, a multivariate classifier is
trained which estimates the probability that the candidate is correct.

For instance, the classifier built for the decay of B− → D0π− would use
the SignalProbabilitys of the used D0 and π− candidates, to estimate the
SignalProbability of the B− candidate created by combining the aforementioned
D0 and π− candidates.

The input features of the classifier are among others the kinematics and vertex fitting
information of the candidate and its daughters, as well as the SignalProbability

of the daughters. The full list of input features and the chosen hyper-parameters for
the multivariate classifiers can be found in Section C.1.

As can be seen in Figure 4.3 the available information flows from the data provided by
the detector, through the intermediate candidates into the final B meson candidates,
yielding a single number, which can be used to distinguish correctly reconstructed
from incorrectly reconstructed Btag mesons.
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4.2.1.3. Combinatorics

It is not possible to consider all possible B meson candidates created by all possible
combinations. The amount of possible combinations scales with the factorial in
the number of tracks and clusters. This problem is known as combinatorics in
HEP. Furthermore, it is not worthwhile to consider all possible B meson candidates,
because all of them (except for two in the best-case scenario) are wrong.

The FEI uses two sets of so-called cuts. A cut is a criterion a candidate has to fulfill
to be further considered. For instance one could demand that the invariant mass of
the B meson candidate is near the nominal mass 5.28 GeV of a B meson particle, or
that a µ+ candidate has a large µ likelihood calculated from the measurements in
the PID sub-detectors.

Directly after the creation of the candidate (either from a detector object, or by
combining other candidates), but before the application of the multivariate method,
the FEI uses loose and fast pre-cuts to remove wrongly reconstructed candidates
(background), without loosing signal. The main purpose of these cuts is to save
computing time and to reduce the memory consumption. These pre-cuts are applied
separately for each decay-channel.

At first, a very loose fixed cut is applied on a quantity, which is fast to calculate, e.g.
the energy for photons, the invariant mass for D mesons, the released energy in the
decay for D∗ mesons, or the beam-constrained mass for hadronic B mesons.

Secondly, the remaining candidates are ranked according to a quantity, which is
fast to calculate (usually the same quantity as above is used here). Only the n
best-candidates in each decay-channel are further considered, the others are discarded.
This best-candidate selection ensures that each decay-channel and each event receives
roughly the same amount of computing time.

Next, the computationally expensive parts of the reconstruction are performed on
each candidate (see also Section 4.2.4): the Monte Carlo matching (in case of MC),
the vertex fitting, and the multivariate classification .

After the multivariate classifiers have estimated the SignalProbability of each
candidate, the candidates of different decay-channels can be compared to one another.
Here the FEI uses tighter post-cuts to aggressively remove wrongly reconstructed
candidates using all available information. The main purpose of these cuts is to
restrict the number of candidates per particle to a manageable number.

At first, there is a loose fixed cut on the SignalProbability, to remove unreasonable
candidates.

Secondly, the remaining candidates are ranked according to their SignalProbability.
Only the m best-candidates of the particle (that is over all decay-channels) are further
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considered, the others are discarded. This best-candidate selection ensures that the
amount of candidates produced in the next stage is tractable by the computing
system (see Section 4.2.4.1).

The exact definitions of the pre-cuts and post-cuts like the used values for n and
m can be found in Section C.1.

4.2.2. Training

The multivariate classifiers used by the FEI are trained on Monte Carlo (MC)
simulated events as explained in Chapter 3. Each multivariate classifier requires at
least around O(103) signal and background candidates to be successfully trained,
that is to prevent under-fitting and over-fitting. The branching fractions of the
employed decay-channels for B and D mesons are of the order of O(10−3) and the
reconstruction efficiency of some B decay-channels is as low as O(10−2). So, it is
expected to require O(108) MC events containing B meson decays for a successful
training of the FEI. This number was empirically confirmed.

During the training of the FEI, the provided MC is reconstructed following the
hierarchical approach. At each stage the necessary training data for all classifiers
used by the current stage is written out, and the reconstruction is suspended before
the post-cuts would have been applied. The classifiers are fitted using the training
data. Afterwards, the reconstruction is resumed, the post-cuts are now applied
using the immediately previously fitted classifiers. The technical aspects of the
training are discussed in Section 4.2.4.4.

There are three distinct types of MC events, which could be used for the training
of the FEI: double-generic events: e+e− → Υ(4S) → BB, where both B mesons
decay generically3; continuum events, that is non-resonant interactions e+e− →
qq , ``, γγ ; and signal events: e+e− → Υ(4S) → BB, where one B decays generically,
and the other decays in an analysis-specific signal-channel like B+ → τ+ντ .

Depending on the training procedure and mixture of MC types in the training, the
multivariate classifiers of the FEI are optimized for different objectives. The main
objectives of the FEI are a high tag-side efficiency on signal events, that is
to output correctly reconstructed Btag mesons for signal events and assign them a
high SignalProbability; and a high purity by rejecting background candidates,
or assigning them a low SignalProbability. Moreover, if the signal-side can
already provide a good Bsig candidate, it is also desired to obtain a high tagging
efficiency by always providing at least one reasonable candidate. This can improve
the final signal selection efficiency, because the event is not discarded if for instance

3The mesons decays into all possible final states with the correct branching fractions.
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mis-identified or missing tracks prevent an entirely correct reconstruction of the
tag-side.

Continuum events are not used during the training of the FEI. Firstly, continuum
events do not contain usable signal candidates. B mesons are not present in continuum
events, and other particles like D mesons have different properties (e.g. a higher
momentum) than typically found in Υ(4S) events. Secondly, they can be suppressed
efficiently by the dedicated ContinuumSuppression (Section 3.3.1.3) algorithm of
BASF2.

In the following I describe the main training procedures and discuss their respective
advantages and disadvantages.

4.2.2.1. Generic FEI

The generic FEI is trained on double-generic MC events. The training is done
independently of any specific signal-side and can be performed centrally, once per
Monte Carlo campaign.

The classifiers are trained to identify correctly reconstructed Btag mesons on double-
generic events. The training of the classifiers could be sub-optimal for signal events,
due to the different multiplicity distribution of double-generic and signal events. One
can mitigate this problem by training the FEI on double-generic MC events with a
maximum number of 12 +N tracks, where 12 is the maximum number of tracks the
FEI can combine to a valid4 Btag and N is the number of tracks required for the
reconstruction of the Bsig (see Section 4.3.3.1).

After the user performed his analysis-specific signal-side selection and applied the
completeness-constraint, most of the wrongly reconstructed Btag candidates can be
rejected. The generic FEI cannot take advantage of this fact during the training of
the classifiers.

4.2.2.2. Specific FEI

The specific FEI is trained evenly on double-generic and signal MC events. First the
analysis-specific signal-side selection is performed, afterwards the FEI is trained on
the rest-of-event of the Bsig candidates.

The classifiers are specifically trained to identify correctly reconstructed Btag mesons
for signal events, which is the main objective of the FEI. Furthermore, B classifiers
are only trained on background candidates from the rest-of-event of double-generic
events, which fulfill the completeness-constraint. In consequence, the classifiers

4Empirically, 7 is the maximum number of tracks the FEI can combine to a correct candidate.
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can focus on reducing the non-trivial background. Candidates from incorrectly
reconstructed Bsig from signal events are not used at all, because the candidates
produced by these events would be vastly over-represented in the training data, since
the signal events are usually very rare on data.

Since only B candidates which fulfill the completeness-constraint are used, the
procedure suffers from notoriously low statistics in signal and background. In
consequence, large amounts of double-generic and signal MC are required to properly
train the FEI using this procedure.

The training depends on the analysis-specific signal-side selection and has to be
performed by the user for his analysis.

4.2.2.3. Mono FEI

The mono FEI is trained on signal MC events for the decay B0 → νν . There is exactly
one detectable B in each event. In effect, the FEI is trained on the rest-of-event of
an arbitrary correctly reconstructed Bsig.

The classifiers are specifically trained to identify the most likely tag-side decay-chain,
under the assumption of an correctly reconstructed signal-side. Such a training
could be used instead of the traditional inclusive tagging algorithm. It can provide
improved tag-side vertexing by exploiting the explicitly known tag-side decay-chain,
e.g. using the decay-tree fitter (see [70]). This type of training was not further
investigated during this thesis.

The training can be done independently of any signal-side and can be performed
centrally, once per Monte Carlo campaign.

4.2.3. Application

The FEI can either be applied to the entire event, or only to a subset like the
rest-of-event of a Bsig candidate.

After the application the FEI provides tag-side B candidates for B+ and B0 in
hadronic and semileptonic decay-channels. Each candidate has an associated
SignalProbability that can be used to reject wrongly reconstructed candidates.

An analysis with an inclusive signal-side such as B+ → Xu`
+ν applies the generic FEI

to the entire event without using the completeness-constraint. The rest-of-event of
the Btag candidate can be used to reconstruct the signal-side inclusively by assigning
all remaining tracks and clusters to the signal-side.
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An analysis with an exclusive signal-side, e.g. B+ → τ+ντ , can either apply the
generic FEI to the entire event or the specific FEI to the rest-of-event of the Bsig. In
the end, the completeness-constraint is always applied. The choice of the generic or
specific FEI depends on the feasibility of a dedicated training of the specific FEI using
large amounts of signal and double-generic MC events. Furthermore, the systematic
uncertainties are different (see Section 4.3.4).

Finally, it is also possible to apply the generic FEI to the rest-of-event, although it
was trained on the entire event. This allows a rough estimation of improvements
which can be expected of the specific FEI.

4.2.4. Performance

Fitting the FEI on O(100) million events and applying it to O(1) billion events, is a
CPU-intensive task. An optimized runtime and a small memory-footprint is key for
the practicalness in production and saves computing resources i.e. money. As can be
seen from Table 4.1 most of the time in the FEI application is spent in: vertex fitting,
particle combination and classifier inference. All three tasks have been carefully
optimized during this thesis. These optimizations are discussed in the following
sections.

Furthermore, the time-consuming training procedure has been implemented using a
distributable map-reduce approach (Section 4.2.4.4).

All runtime measurements in this section were performed on the KEKCC cluster.
The measured values depend on the hardware (e.g., CPU, RAM, and caches), the
load of the system (e.g., the amount of rivaling processes and the current IO traffic),
the software (the exact BASF2 version) and the data (e.g., the Belle experiment and
event type). Therefore, only the relative differences between the stated numbers are
meaningful.

4.2.4.1. Combination of Candidates

As explained in Section 4.2.1.3, the number of candidates which have to be processed
is growing like the factorial of the multiplicity of the channel. In previous approaches
the runtime and the maximum memory consumption was dominated by a few high
multiplicity events and tight cuts had to be applied to high multiplicity channels.

In contrast, the FEI limits the combinatorics problem by performing best-candidate
selections during the reconstruction of the decay-chain instead of fixed cuts.

In consequence, each event and each decay-channel is allowed to process the same
number of candidates in vertex fitting and classifier inference i.e. consuming similar
amounts of CPU time. Moreover, the maximum memory consumption is limited due
to the fixed number of best-candidates per event, which is a key requirement by the
computing infrastructure.
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Table 4.1.: Relative time in percent spent by the FEI applied to Υ(4S) Belle II MC
for various tasks. The fitting of the FEI is dominated by reading (writing)
the cached DataStore from (to) disk space in between the stages, which
is limited by the IO throughput of the system and cannot be optimized
in the FEI. The application is still dominated by the vertex fitting, which
originally required about 78% of the CPU time.

Task Training Application

read/write DataStore 30 0
vertex fitting 26 38
particle combination 19 27
classifier inference 11 15
training data & monitoring 6 0
best candidate selection 3 6
other 5 14

Table 4.2.: Application time of the FEI in ms for various types of MC7 on the KEKCC
cluster. The uncertainty of the absolute values is about ±3 ms.

MC Type Time per event in ms

Υ(4S)→ B+B− 128

Υ(4S)→ B0B0 119
e+e− → cc 76
e+e− → ss 48

e+e− → dd 45
e+e− → uu 43
e+e− → τ−τ+ 14
e+e− → µ−µ+ 12
B+ → τ+ντ 43
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Figure 4.4.: Runtime of an unconstrained vertex fit for different D meson decay-
channels in the BASF2 framework. FastFit is one order of magnitude
faster than KFitter and two orders of magnitude faster than RAVE.

4.2.4.2. Vertex fitting

The default vertex fitting implementation of Belle II was ported from the legacy
Belle code and is named KFitter (Kinematic Fitter). It is based on a Kalman Filter
and supports unconstrained, IP profile constrained, and mass-constrained fits. In
addition, the RAVE (Reconstruction in an Abstract, Versatile Environment) toolkit
[71] was integrated in BASF2. It has its roots in the CMS (Compact Muon Solenoid)
vertex reconstruction software and supports a broad collection of vertex finding and
fitting algorithms based on a Kalman Filter approach generalized to include adaptive
track assignment and multiple vertices.

On the other hand, the FEI uses only a simple unconstrained vertex fit during the
reconstruction, and feeds the calculated information into its multivariate classifiers.
The user can refit the whole decay-chain of the final B candidates again, including
mass and/or ip profile constraints if desired. Therefore, the FEI restricts itself to a
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fast unconstrained vertex fitting. Still, the major part of the CPU time of the FEI is
spent during vertex fitting.

During this thesis a dedicated fitter (called FastFit) based on a Kalman Filter [72]
was implemented for the FEI, which outperforms the default KFitter implementation
by one order of magnitude as can be seen in Figure 4.4. A speed-up of the vertex-
fitting part of sFastFit ≈ 5 of the FEI was measured on generic B+B− Belle II events.
With KFitter the application phase of the FEI spent p ≈ 78% of the CPU time
during the vertex fitting. According to Amdahl’s law [73], a theoretical speed-up of
the entire FEI of approximately

SFEI =
1

(1− p) + p
sFastFit

= 2.66,

is expected. Empirically, an overall speed-up of the FEI of 2.74 was observed.

The quality (deviation to the true vertex position) of the vertex fit of all three tested
implementations is very similar, which is expected since all implementations calculate
the same well-defined least-square solution. Deviations occur due to different stopping
criterion of the algorithms. Consistently, the overall maximum tag-side efficiency of
the FEI does not depend on the employed vertex fitter during fitting or application.

The FastFit code is licensed under GPLv3 and available on github [74].

4.2.4.3. Multivariate Classification

As described in Section 3.2.1.1, FastBDT is the default multivariate classification
algorithm of BASF2. It was originally designed for the FEI to speed up the fitting
and inference-phase. Compared to other popular BDT implementations such as
those provided by TMVA, SKLearn and XGBoost it originally gained more than one
order of magnitude in execution time, both in fitting and inference. Using FastBDT,
most of the time is spent during the extraction of the necessary features used for the
inference, therefore no further significant speedups can be achieved by employing a
different method.

4.2.4.4. Distributed Training

The training of the FEI is fully automatized and distributed. The distributed training
was already introduced in [3]. It follows a map-reduce approach.

The supplied Monte Carlo files are partitioned and processed by independent comput-
ing nodes. At first the total amount of supplied Monte Carlo events and their particle
content (e.g. the total number of B+ and B0 mesons) is calculated. Subsequently,
the six stages of the FEI hierarchy are reconstructed.
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At each stage the necessary training data for all classifiers used by the current stage
is written out. The reconstruction is suspended and the current content of the
DataStore of all events on all nodes is cached on disk.

The training data is merged centrally and the associated classifiers are fitted. The gen-
erated WeightFiles are uploaded into the local Belle II Conditions Database.

Afterwards, reconstruction is resumed by reading in the cached DataStore files from
disk. The classifiers are loaded from the corresponding WeightFiles, which are
downloaded from the Belle II Conditions Database.

4.2.4.5. Comparison with Full Reconstruction

The FEI was compared to the hadronic Full Reconstruction (FR) algorithm used
by Belle.

Out-of-the-box the FR requires on average 36 ms (39 ms) to reconstruct a simulated
B0B0 (B+B−) Belle event. The FR was implemented using dedicated C++ code.
In contrast, the FEI requires with the identical configuration5 on average 24 ms
(26 ms) to reconstruct the same Belle events using the b2bii interface. The FEI is
implemented in Python and only uses general purpose modules implemented in C++.

The default configuration of the FEI requires 98 ms (100 ms) to reconstruct a simulated
B0B0 (B+B−) Belle event. This time includes the reconstruction of hadronic and
semileptonic Btag candidates using many additional channels (see Section C.1) and
yielding a higher tag-side efficiency.

The average runtime 119 ms (128 ms) to reconstruct a simulated B0B0 (B+B−) Belle II
event is significantly larger because of increased event size in terms of number of
reconstructed tracks and number of reconstructed clusters.

4.2.5. Automatic Reporting

The FEI includes an automatic reporting system called Full Event Interpretation

Report (FEIR). The FEIR contains efficiencies and purities for all particles and decay-
channels at different points during the reconstruction. It is generated from so-called
monitoring histograms, which can optionally be written out during the training and
the application. In addition, reports for each multivariate classifier can be created
by the mva package (see Section 3.2.4).

This built-in monitoring capability upgrades the FEI from a black-box to a white-box
algorithm, which the user can understand and inspect on all levels.

An excerpt of the FEIR can be found in Section C.2.

5Only decay-channels were reconstructed, which were used by the FR as well.
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4.3. Validation

The FEI was extensively validated on converted Belle MC from the last Belle Monte
Carlo campaign, converted Belle data recorded by the Belle detector, and Belle II
MC from the 7th Belle II Monte Carlo campaign. Unless stated otherwise all studies
were conducted using Υ(4S) and continuum events (including cc, ss , dd, uu and
τ−τ+) scaled to their expected fractions on recorded data.

The validation includes a detailed discussion on the signal-definition used for the
Btag candidates (Section 4.3.1); the performance of the FEI on converted Belle events
(Section 4.3.2) and Belle II events (Section 4.3.3); the calibration of the FEI on
converted Belle data using control channels (Section 4.3.4); and a comparison to the
Full Reconstruction (FR) algorithm used by Belle (Section 4.2.4.5).

Throughout the text, only the results for charged B mesons are shown, the results
for neutral B mesons are very similar and can be found in Section C.3.

4.3.1. Signal Definitions

This thesis used the Monte Carlo matching algorithm of BASF2. The algorithm
searches for the common mother of all tracks and clusters used during the recon-
struction. It can distinguish a large number of possible errors, which allows for a
fine-grained signal-definition:

• particles which were missed during the reconstruction: final state radiation
(fsr), photons (excluding fsr), intermediate resonances; neutrinos, K0

L or other
massive particles;

• charged final state particles, which were misidentified or decayed in flight;

• particles which were wrongly added during the reconstruction.

The default signal-definition of Belle II allows for missing final state radiation,
missing intermediate resonances and missing neutrinos. If not stated otherwise, this
thesis uses this definition, to be comparable to previous exclusive tagging algorithms.

However, since the B mesons reconstructed by the FEI are used for exclusive tagging,
an extended signal-definition can be useful. Here, the mis-identification of a
charged final state particle and the addition of a beam-induced background particle
is allowed as well. The completeness-constraint is uncompromised by this extended
signal-definition. Also important quantities like the beam-constrained mass and
deviation from the nominal beam-energy are often unchanged.

As can be seen from Figure 4.5 (Belle) and Figure 4.10 (Belle II), the hadronically
tagged extended-signal candidates peak at the same position in the beam-constrained
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mass as the default-signal candidates. The same holds true in cos ΘBD` for the
semileptonically tagged B mesons (see Figure 4.6 (Belle) and Figure 4.11 (Belle II)).

The multivariate classifiers of the FEI use the default signal-definition, with an
additional constraint for final state particles, which have to come from the primary
interaction to be considered signal (for instance electrons from converted gammas are
not considered signal in the electron classifier). Therefore the candidates fulfilling only
the extended signal-definition are suppressed if a tight cut on the SignalProbability
is chosen (see Figure 4.7a and Figure 4.12a).

Even the extended signal-definition does not include all peaking background contri-
butions from mis-reconstructed B mesons, as can be seen from Figure 4.8, where
a Gaussian distribution for the peaking B candidates and an ARGUS function
for combinatorial background [1, Chapter 7.1] was fitted to converted Belle data.
This additional peaking background is caused by nearly correctly reconstructed B
mesons. There is no peaking background component visible on recorded off-resonance
data, which does not contain B mesons (see Figure 4.8). Consequently, the peaking
background is caused by physics and not by a non-uniform selection efficiency of
the classifiers used by the FEI (see Section 3.3.2). It is debatable if those peaking B
candidates can be (for some analyses) considered signal as well.

An analysis, for instance the benchmark analysis B+ → τ+ντ (see Chapter 5), usually
accepts all events which contain the searched signal-decay as signal. Hence, the
signal-definition of the tag-side is not used. Still, many analyses could profit from
the relaxed extended signal-definition if the classifiers used by the FEI are explicitly
trained with this definition.

4.3.1.1. Double Counting

It is possible that the same candidate is reconstructed in more than one decay-channel
by the FEI. For instance, the decay-chain B+ → D0∗[→ D0π0]π+ can be reconstructed
via the decay-channels B+ → D0∗π+ and B+ → D0π0π+, which are both used by
the FEI. Both candidates will be correct, because the missing intermediate D0∗

resonance is allowed by the default signal definition. In general, their associated
SignalProbability will be different.

To prevent double counting6 in such corner cases, the FEI provides an additional
extraInfo associated to each candidate called uniqueSignal, which will flag only
one of the candidates as signal. In the remainder of this work, the default signal
definition uses this information, while the extended signal definition regards both
candidates as true, since both peak in the signal region.

6Two candidate constructed from the same final state particles are counted as signal separately,
which can lead theoretically to efficiencies larger than one.
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Table 4.3.: Belle: Maximum tag-side efficiency of the FEI on converted Monte Carlo
simulated Belle events.

Charged B± Neutral B0

Hadronic 0.76 % 0.46 %
Semileptonic 1.80 % 2.04 %

Table 4.4.: Belle: Tagging efficiency of the FEI on converted data recorded by the
Belle detector.

All signal region

Charged B± Neutral B0 Charged B± Neutral B0

Hadronic 48.0 % 37.9 % 5.6 % 4.6 %
Semileptonic 90.0 % 87.2 % 25.2 % 22.2 %

This effect is only of minor importance, as can be seen from the FEIR reports in
Section C.2, where the tag-side efficiencies with and without the uniqueSignal

requirement are stated.

In the benchmark analysis (see Chapter 5), a best-candidate selection is performed
on the tag-side, therefore double-counting is completely prevented.

4.3.2. Performance on Belle

The performance of the FEI was studied on converted Belle MC from the last Belle
Monte Carlo campaign and converted Belle data recorded by the Belle detector. The
sample used for the training of the FEI contained 200 million simulated Υ(4S) events
divided evenly between the processes Υ(4S) → B+B− and Υ(4S) → B0B0. The
sample used to estimate the performance of the FEI during the application phase
contained 6 million simulated events divided evenly between the Υ(4S) processes
Υ(4S) → B+B−, Υ(4S) → B0B0, and 6 million simulated events divided evenly
between the continuum processes e+e− → cc, ss, dd and uu. In addition 10 million
events recorded at the Υ(4S) resonance, and 10 million off-resonance events recorded
60 MeV below the Υ(4S) resonance were used. Throughout the text, the simulated
events are scaled to the integrated luminosity of the recorded data they are compared
to.

The generic FEI trained on all Belle events with less or equal to 14 tracks per event
was applied. Table 4.3 shows the obtained tag-side efficiency and Table 4.4 shows
the obtained tagging efficiency.
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At this point an analysis with an exclusive signal-side would employ the completeness-
constraint. Instead, only the candidate with the highest SignalProbability in each
event is considered in the following. This best-candidate selection is independent of
a specific signal-side, but not optimal (meaning the stated results can be understood
as lower bounds for the tag-side efficiency and purity of the FEI).

Figure 4.5 shows the beam-constrained mass of the best hadronically tagged B+

meson candidate per event. The correctly reconstructed B mesons peak clearly at
the nominal B meson mass, as expected. Figure 4.6 shows cos ΘBD` of the best

semileptonically tagged B+ meson candidate per event. The correctly reconstructed
B mesons peak clearly in the physically allowed region between −1 and 1, as expected.
The dashed lines indicates the signal region which is used to calculate the tag-side
efficiency and purity receiver operating characteristic curves in Figure 4.7. The
hadronic tag can reach a higher purity than the semileptonic tag, whereas the
semileptonic tag provides a larger tag-side efficiency, as expected.

For the hadronic tag, the results were verified on data.

The observed differences in the background distribution between the Monte Carlo
expectation and the recorded data can be explained by the poor simulation of
the continuum component (see Section 2.3.3.3). The over-estimation of hadronic
B candidates from continuum in the Monte Carlo simulation was cross-checked
using off-resonance data (see the lower plot in Figure 4.8). The shape difference of
semileptonic B candidates is also caused by the continuum description as can be
seen from Figure 4.9.

4.3.2.1. Hadronic tag-side efficiency estimation on data

The measurement of absolute branching fractions (in contrast to, e.g, branching
fraction ratios) requires the knowledge of the selection efficiency on data. Therefore it
is crucial to calibrate the tag-side efficiency of the FEI on data using control-channels
(see Section 4.3.4). This section introduces an alternative method to estimate the
tag-side efficiency, which does not require the reconstruction of a signal-side.

The hadronic tag-side efficiency can be estimated on recorded data by fitting the
beam-constrained mass spectrum of the B meson candidates. The distribution of
the signal candidates are modeled with a Gaussian distribution and the background
candidates are modeled with an ARGUS function [1, Chapter 7.1]. The location and
scale of the distributions were fixed to the Monte Carlo expectation. Hence, only
the normalization and the shape parameter c of the ARGUS function are adjustable
by the fit. The two components are fitted using an extended unbinned maximum
likelihood (EUML) fit. Afterwards the tag-side efficiency and purity in a window of
5.24 GeV < Mbc < 5.29 GeV can be calculated using the fitted yields of the signal
and background component.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure 4.5.: Belle: The beam-constrained mass of the best hadronically tagged
B+ meson candidate per event. The spectrum of the different signal-
definitions is shown.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure 4.6.: Belle: cos ΘBD` of the best semileptonically tagged B+ meson candidate
per event. The spectrum of the different signal-definitions is shown.
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(a) Hadronic Tag

(b) Semileptonic Tag

Figure 4.7.: Belle: Receiver operating characteristic (ROC) curve of tagged
B+ for the signal and extended signal-definition. The loose
(SignalProbability > 0.01) and tight (SignalProbability > 0.1)
cut are shown in orange and red, respectively.
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This method overestimates the tag-side efficiency if the beam-constrained mass
spectrum contains a background component that peaks at the same position as the
signal component as can be seen in Figure 4.8. Although the signal peak is clearly
smaller on recorded data than on simulated events, the extracted signal fraction is
the same, because the peaking background was assigned to the signal peak by the fit
(see also the discussion of the signal-definition in Section 4.3.1).

The resulting efficiencies and purities for different cuts on the SignalProbability

of the candidates is shown in Figure 4.7a. It is compatible with the expectation from
Monte Carlo expectation, but suffers from the over-estimation problem discussed
above.

A complementary and superior method using control-channels is discussed in Sec-
tion 4.3.4. This method is robust against peaking background, because it does not
rely on any signal-definition of the tag-side candidates.

The semileptonic tag-side efficiency can be estimated on recorded data by fitting the
cos ΘBD` spectrum of the B meson candidates. This was not further investigated
during this thesis, but is described in more detail in [75].

4.3.2.2. Continuum Background

The performance of the FEI was studied on continuum data recorded by the Belle
detector 60 MeV below the Υ(4S) resonance.

At this energy, the production of B mesons is kinematically forbidden, hence the
name “continuum data”. Some kinematic properties like the beam-constrained mass
are very sensitive to the reduced energy, therefore these properties are scaled to the
correct energy scale. For instance, the beam-constrained mass is scaled by

Senergy =
10.58 GeV

10.58 GeV − 0.06 GeV
.

to account for the shift of the kinematic end-point. In the case of cos ΘBD`, the
on-resonance beam-energy is used for the calculation (see Equation 4.3).

As can be seen from Figure 4.8 the continuum data does not contain any signal
or peaking background, but the combinatorial background can be described well
with an ARGUS function. The Monte Carlo simulation overestimates the amount of
combinatorial background from continuum. The same holds true for the semileptonic
B mesons (see Figure 4.9), in addition the distribution is shifted. This is a known
problem (already encountered in Section 3.3.3 and described in Section 2.3.3.3). The
continuum background on data is about 20% lower than expected from Monte Carlo.

The tagging efficiency on continuum data (see Table 4.5) differs, as expected because
the BB component is missing.

In total, the FEI performance does not seem to be influenced by the lower beam-
energy of off-resonance data, which is a desired property because this allows the use
of off-resonance data as a signal-free control region for continuum background.
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(a) On-resonance: The signal peak on data is smaller. Hence the tag-side
efficiency is lower on data compared to the Monte Carlo expectations.
On the other hand, the fitted signal fraction is over-estimated due to
the peaking background. Both effects cancel each other.

(b) Off-resonance: As expected the fitted signal fraction is nearly zero.
Hence nearly no peaking background is observed on continuum data.
The off-resonance data was scaled to account for the shift in the
kinematic end-point of the beam-constrained mass distribution.

Figure 4.8.: Belle: The beam-constrained mass of the best hadronically tagged B+

meson candidate per event. The Monte Carlo expectation is shown as
filled histograms. The data is shown as black points with a Poisson
uncertainty. The result of the EUML on 10 million recorded Belle events
is shown as dashed lines.
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Figure 4.9.: Belle: cos ΘBD` of the best semileptonically tagged B+ meson candidate
per event. The Monte Carlo expectation of the continuum component is
shown as a filled histogram. The off-resonance data is shown as black
points with a Poisson uncertainty. The off-resonance data-points were
calculated using the on-resonance beam-energy.

Table 4.5.: Belle: Tagging efficiency of the FEI on converted continuum data
recorded by the Belle detector.

All signal region

Charged B± Neutral B0 Charged B± Neutral B0

Hadronic 40.0 % 30.6 % 6.9 % 5.6 %
Semileptonic 86.7 % 83.6 % 24.8 % 21.5 %
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Table 4.6.: Belle II: Maximum tag-side efficiency of the FEI on independent Monte
Carlo simulated Belle II events.

Charged B± Neutral B0

Hadronic 0.66 % 0.38 %
Semileptonic 1.45 % 1.94 %

Table 4.7.: Belle II: Tagging efficiency of the FEI on independent Monte Carlo
simulated Belle II events.

All signal region

Charged B± Neutral B0 Charged B± Neutral B0

Hadronic 35.5 % 28.0 % 4.7 % 3.7 %
Semileptonic 71.2 % 69.6 % 18.8 % 12.4 %

4.3.3. Performance on Belle II

The performance of the FEI was studied on Belle II MC from 7th Belle II Monte
Carlo campaign. The sample used for the training of the FEI contained 180 million
simulated Υ(4S) events divided evenly between the processes Υ(4S) → B+B− and
Υ(4S) → B0B0. The sample used to estimate the performance of the FEI during
the application phase contained 7 million simulated events divided evenly between
the processes Υ(4S) → B+B−, Υ(4S) → B0B0, and e+e− → cc, ss, dd, uu and τ+τ−,
and were scaled to an integrated luminosity of 1 ab−1.

The generic FEI was trained on all Belle II events with less than or equal to 14 tracks
per event. Table 4.6 shows the obtained tag-side efficiency. Table 4.7 shows the
obtained tagging efficiency.

At this point an analysis with an exclusive signal-side would employ the completeness-
constraint. Instead, only the candidate with the highest SignalProbability in each
event is considered in the following. This cut is independent of a specific signal-side,
but not optimal (meaning the stated results can be understood as lower bounds for
the tag-side efficiency and purity of the FEI).

Figure 4.10 shows the beam-constrained mass of the best hadronically tagged B+

meson candidate per event. The correctly reconstructed B mesons peak clearly at
the nominal B meson mass, as expected. Figure 4.11 shows cos ΘBD` of the best

semileptonically tagged B+ meson candidate per event. The correctly reconstructed
B mesons peak clearly in the physically allowed region between −1 and 1, as expected.
The dashed lines indicates the signal region which is used to calculate the tag-side
efficiency and purity receiver operating characteristic curves in Figure 4.12. The
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hadronic tag can reach a higher purity than the semileptonic tag, whereas the
semileptonic tag provides a larger tag-side efficiency, as expected.

4.3.3.1. Influence of the event multiplicity

The number of reconstructed tracks (the multiplicity) is a fundamental property of
an event. The larger the number of reconstructed tracks, the larger the combinatorial
background and the more difficult it is to reconstruct the correct decay-chain. The
influence of the event and candidate multiplicity on the performance of the FEI was
investigated during this thesis.

Figure 4.13 shows the multiplicity of Btag candidates. The majority of correctly
reconstructed tag candidates consist of less than 8 tracks. Theoretically, the maximum
number of tracks which can be combined to a valid charged (neutral) Btag candidate
by the FEI is 11 (12). However, in practice 9 (10) tracks per candidate is not
exceeded.

As can be seen from Figure 4.14 this effectively restricts the multiplicity of correctly
tagged signal events. In this thesis the rare decay B+ → τ+ντ is used as signal (see
Chapter 5). Often the investigated rare Bsig decay-channel has a very low multiplicity
N . Therefore it is reasonably to only consider events with less than 11 +N (12 +N)
reconstructed tracks in the training and/or in the application, because only those
events will pass the completeness-constraint. Furthermore, it is expected that the
FEI performs better on low-multiplicity events due to the reduced combinatorics,
and that the required computing resources scales with the event multiplicity.

The influence of the maximum number of reconstructed tracks allowed in the training
and in the application was studied. The study was conducted with version 3 of
the FEI, whereas the rest of this thesis uses version 4. The results are shown in
Figure 4.15 and should be independent of the used version. Only the best Btag

candidate per event was considered, and an additional cut on the beam-constrained
mass was applied.

Surprisingly, the maximum number of reconstructed tracks allowed in the training
barely influences the performance of the FEI if applied to all events (see Figure 4.15a).
Hence, it is not important if the training is done on all events, or on low-multiplicity
events. Only at a multiplicity as low as 6 a significant effect is visible. This can
be explained by the hierarchical approach of the FEI. It allows the training of high-
multiplicity B decay-channels using only low-multiplicity D channels. But during
the application the high-multiplicity B decay-channels can also be combined with
high-multiplicity D channels. In fact, a FEI trained on events with less than or equal
to six tracks is still able to reconstruct tag candidates with a multiplicity of seven
during the application quite well.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure 4.10.: Belle II: The beam-constrained mass of the best hadronically tagged
B+ meson candidate per event. The spectrum of the different signal-
definitions is shown.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure 4.11.: Belle II: cos ΘBD` of the best semileptonically tagged B+ meson can-
didate per event. The spectrum of the different signal-definitions is
shown.
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(a) Hadronic Tag

(b) Semileptonic Tag

Figure 4.12.: Belle II: Receiver operating characteristic (ROC) curve of tagged
B+ for the signal and extended signal-definition. The loose
(SignalProbability > 0.01) and tight (SignalProbability > 0.1)
cut are shown in orange and red, respectively.
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(a) The track multiplicity of correctly recon-
structed B candidates.

(b) The track multiplicity of incorrectly re-
constructed B candidates.

Figure 4.13.: Number of tracks (multiplicity) of the candidates. The dashed line
indicates the default cut on the maximum numbers of tracks used
during the application of the FEI in the benchmark analysis B → τ ν
in this thesis. The number in parenthesis in the legend states the mean
number of tracks for the corresponding component.

(a) The track multiplicity of the events with
correctly reconstructed B candidates.

(b) The track multiplicity of the events with
incorrectly reconstructed B candidates.
An event is counted multiple times if
it contains more than one background
candidate.

Figure 4.14.: Number of tracks (multiplicity) of the events. The dashed line indicates
the default cut on the maximum numbers of tracks used during the
training of the FEI in this thesis. The rare decay B+ → τ+ντ is used
as signal. The number in parenthesis in the legend states the mean
number of tracks for the corresponding component.
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Moreover, the performance of the FEI on events with different multiplicities is barely
influenced by the maximum number of reconstructed tracks allowed during the
training as well (see Figure 4.15b). For instance, a FEI trained specifically on events
with ≤ 6 tracks, does not perform better on events with 6 tracks than a FEI trained on
all events. However, overall the FEI performs significantly better on low-multiplicity
events, since it is much easier to reconstruct the correct Btag meson. In particular,
the tag-side efficiency for signal-sides with a low-multiplicity is usually significantly
better (see Chapter 5).

The same behavior was found for hadronically tagged B+, hadronically tagged B0,
semileptonically tagged B+ and semileptonically tagged B0 (see Section C.3.1).

The default training of the generic FEI considers only events with a maximum
multiplicity of 14 during the training, and considers all events during the application.
The number was chosen to save computing resources without any risk of decreasing
the overall performance of the FEI on signal events (see Figure 4.13). The benchmark
analysis in Chapter 5 uses the default training, but applies an additional cut on the
multiplicity during the application to save computing time without discarding signal
events.

4.3.3.2. Influence of beam-background

The exact beam-background conditions at Belle II are currently (at the time of
writing) unknown. The current estimations range between a 20 to 30 fold increase
compared to Belle. The exact numbers depend on the detector region. Therefore the
influence of the beam-background on the performance of the FEI was studied.

The generic FEI was trained, with (T1) and without (T0) beam-background. Both
were applied to independent generic Υ(4S) events, with (A1) and without (A0) beam-
background. The results are shown in Figure 4.17. Only the best Btag candidate
per event was considered, and an additional cut on the beam-constrained mass was
applied.

As expected, T0 performs better than T1 on A0, and T1 performs better than T0
on A1.

The training of the FEI is robust against beam-background. The loss in tag-side
efficiency due to occurring beam-background in the training (that is the difference
between T1 and T0) is of the order of 10%.

In contrast, the application of the FEI is sensitive to the beam-background. The loss
in tag-side efficiency due to occurring beam-background in the application (that is
the difference between A1 and A0) is of the order of 30%.

In particular the increased fake-rate (the fraction of reconstructed tracks which do
not originate from a charged particle) caused by the increased beam-background
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(a) Receiver operating characteristic (ROC) curves of the FEI applied to
all events without a cut on the event multiplicity.

(b) The area under the ROC curve (AUC ROC) depending on the multi-
plicity of the event.

Figure 4.15.: Evaluation of the best hadronically tagged B+ candidate per event,
reconstructed by different configurations of the FEI. Each curve cor-
responds to a generic FEI with a cut on the maximum number of N
tracks in the event during the training.
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Figure 4.16.: The distribution of the event multiplicity for Υ(4S) events with and
without beam-background (BB). On average, there is a fake track due
to beam-background in every second event. The number in parenthesis
in the legend states the mean number of tracks for the corresponding
component.

is problematic (see Figure 4.16), because it leads to increased combinatorics and
decreases the probability of identifying the correct Btag candidate.

The same behavior was found for hadronically tagged B+, hadronically tagged B0,
semileptonically tagged B+ and semileptonically tagged B0 (see Section C.3.2).

Finally, the completeness-constraint is very sensitive to an increased fake-rate. Also
quantities like the extra energy in the electromagnetic calorimeter are sensitive to
the amount of beam-background. However, it is expected that the fake-rate will be
significantly reduced in the upcoming years, because the reconstruction software of
Belle II is not yet optimized to reduce the fake-rate. This is further discussed in the
benchmark analysis in Chapter 5.

4.3.4. Tag-side efficiency correction

The uncertainty on the tag-side efficiency of the FEI is (one of) the most important
systematic uncertainties in the measurement of branching fractions of rare decays,
e.g. BR(B+ → τ+ντ ) = (1.25± 0.28± 0.27) · 10−4 [15], with a systematic uncertainty
due to the tag-side efficiency of 0.16 · 10−4.

Therefore it is indispensable to calibrate and correct the tag-side efficiency on data
using multiple control channels.
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Figure 4.17.: Evaluation of the best hadronically tagged B+ candidate per event,
reconstructed by different configurations of the FEI. The solid (dashed)
curves correspond to a generic FEI trained on simulated Belle II events
with (without) beam-background. The blue and purple (red and orange)
curves correspond to a generic FEI applied to simulated Belle II events
with (without) beam-background.

103



Chapter 4. Full Event Interpretation 4.3. Validation
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ε = Ndata/Nmc

B− → D0(K−π+)`−ν

B− → D0(K−π+π+π−)`−ν

B− → D0(K−π+π0)`−ν

B− → D∗0(D0(K−π+)π0)`−ν

B− → D∗0(D0(K−π+)γ)`−ν

B0 → D−(K+π−π−)`+ν

B0 → D−(K+π−π−π−π+)`+ν

B0 → D−(K+π−π−π0)`+ν

B0 → D∗−(D
0
(K+π−)π−)`+ν

B0 → D∗−(D−(K+π−π−)π0)`+ν

Figure 4.18.: The overall efficiency correction calculated by measuring the known
branching fractions of 10 control channels on converted Belle data [76].
The calibration was performed on the latest FEI version 4.

The FEI was calibrated on converted Belle data within the scope of a supervised
master’s thesis [76]. I briefly summarize the results here.

The FEI was applied to the full Υ(4S) dataset recorded by Belle. The well-known
branching fractions of ten control channels were measured using the FEI. The
difference between the Monte Carlo expectation and the data yields tag-side channel
dependent calibration factors for the tag-side efficiency, as well as their uncertainties.

Figure 4.18 summarizes the results for the ten control channels. The overall calibration
factors for the latest FEI version 4 averaged over all control channels are

εcharged = 0.74+0.014
−0.013 ± 0.050

εmixed = 0.86+0.045
−0.050 ± 0.054.

The measured values are compatible with the observed lower tag-side efficiency on
recorded data in comparison with the Monte Carlo expectation in Figure 4.8.

The uncertainty of the tag-side efficiency has only a minor effect on searches of rare
decays, which are statistically limited, e.g., in the search for B → Kνν (see [77]) or
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B → `νγ (see [78]). In addition, the uncertainty on the tag-side efficiency can be
removed by performing a relative measurement as the efficiency will cancel out due
to the normalization, e.g., R = BR(B→Dτ ντ )

BR(B→D`ν)
(see [79]).

4.3.5. Comparison with Full Reconstruction

The performance of the FEI was compared to the FR on converted Belle MC from
the last Belle Monte Carlo campaign. All numbers shown here refer to the Monte
Carlo expectation. As was shown in Section 4.3.4, the performance on data for the
FEI is about 20% lower.

The tag-side efficiencies of the FR are stated in Table 4.8. The tag-side efficiencies
of the FEI using an identical configuration, meaning the same decay-channels, are
stated in Table 4.9.

Using the identical configuration, the FEI outperforms the FR, and increases the
hadronic tag-side efficiency by 89% (83%) for charged (neutral) B mesons. This
increase in tag-side efficiency is due to the best-candidate selection and improved
classifiers.

Using the default configuration, the hadronic tag-side efficiency is increased by 171%
(156%) for charged (neutral) B mesons. This further increase in tag-side efficiency is
due to the additional new decay-channels.

The official FR did not provide a semileptonic tag. However, variants of the FR were
used for semileptonic tagging (see [75] and [15]). The semileptonic tag-side efficiency
of the default configuration of the FEI is increased by 177% for charged B mesons.

The stated results for the hadronic tag were verified on data (see Section 4.3.2.1 and
Section 4.3.4). The stated results for the semileptonic tag are based on MC, but are
consistent with the increases seen for the hadronic tag.

The performance of the FEI on Belle II MC events is worse than on Belle events,
but still significantly better than the FR on Belle events. The hadronic tag-side
efficiency is increased by 135% (111%) for charged (neutral) B mesons. As shown in
Section 4.3.3.2 the FEI performance is sensitive to the fake-rate due to the increased
beam-background. It is expected that the fake-rate will be drastically reduced as
soon as the Belle II reconstruction software is finished and optimized.

In consequence, the stated increases in tag-side efficiency for Belle II are a lower
bound of the expected improvements.

Altogether, the improvements of the FEI with respect to the FR are very consistent and
explainable for all combinations of tag (hadronic or semileptonic), charge (charged or
neutral), experiment (Belle or Belle II) and data type (MC events or recorded data).
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Table 4.8.: Tag-side efficiency of the FR [75].

Charged B± Neutral B0

Hadronic 0.28 % 0.18 %
Semileptonic 0.65 % –

Table 4.9.: Tag-side efficiency of the FEI using the identical configuration as the FR.

Charged B± Neutral B0

Hadronic 0.53 % 0.33 %

4.4. Outlook

The design of the FEI foresees the possibilities to extend the algorithms in the future.
In this section, I summarize ideas and techniques that were not further investigated
during this thesis. However, they have a large potential to further increase the key
performance indicators (tagging efficiency, tag-side efficiency and purity) of the FEI.

4.4.1. Inclusive tagging using the FEI

The FEI can be used for of inclusive tagging. Preliminary studies on the signal
channel B+ → µ+νµ have shown that this is possible in principle. The FEI was
applied to the rest-of-event of a reconstructed Bsig, and the intermediate pre- and
post-cuts were relaxed as far as possible. A valid candidate was then created in
O(10%) of the cases.

The resulting four-momentum and vertex position is as good as that provided by
the traditional inclusive tag. Now the suspected explicit decay-chain can be used to
further improve the four-momentum and vertex position with the help of a decay
tree fitter [70].

BASF2 does not include a usable decay tree fitter at the time of writing. Hence,
further studies have been postponed.

4.4.2. D → X`ν

Semileptonic tagging provides a higher efficiency compared to its hadronic counterpart,
but due to the missing kinematic information the tagged sample is not as pure. Until
now, only semileptonic B decays were used for this.

106



Chapter 4. Full Event Interpretation 4.4. Outlook

However, semileptonic D decays can be used as well and behave similarly. 13% of the
D0 and 33% of the D+ mesons decay semileptonically. The B meson is reconstructed
in a hadronic decay-channel B → D(. . . ), and the D meson is reconstructed in a
semileptonic decay-channel D → (. . . )`ν. Using the known invariant mass of the D
and the possibly occurring D∗ meson, the missing kinematic information due to the
neutrino can be partially recovered.

The current default FEI configuration (see Section C.1) already includes in addition
semileptonic D decays.

Although, this new class of decay-channels yields impure tagged samples, it provides
the next step towards even more inclusiveness, and can be beneficial in situations
where the FEI would otherwise not output a valid candidate at all.

4.4.3. X → Y K0
L

A generic B decay contains in 29% of the cases a K0
L. A K0

L can be detected by the
Belle and the Belle II detector, but both provide only a rough energy and flight
direction estimation. The situation can be compared to semileptonic decay-channels,
where kinematic information is missing as well. Until now, decay-channels containing
K0

L particles were not used.

Some Belle analyses employed a K0
L veto. In consequence, tagged events with a

detected K0
L were rejected. This situation can be improved, especially in view of

Belle II, which will provide a better K0
L identification.

The current default FEI configuration (see Section C.1) already includes in addition
decay-channels with a K0

L.

Although, this new class of decay-channels yields impure tagged samples, it provides
the next step towards even more inclusiveness, and can be beneficial in situations
where the FEI would otherwise not output a valid candidate at all.

4.4.4. π0 → γ(γ)

Many B and D decay-channels include π0 particles, which decay immediately into
two photons. A generic B decay contains in 89% of the cases a π0.

Assuming a spherical distribution and a geometric detector acceptance of 91.1% (by
taking the boost into consideration as shown in Section D.3.1) 14% of the π0 will
have one undetectable photon due to the acceptance. This number was confirmed
using MC simulation.
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The FEI could use π0 candidates reconstructed from just one photon, and check
if an assumed second photon could be outside of the detector acceptance. Using
the known invariant mass of the π0 and the detector acceptance, the momentum
of the missing photon could be estimated, leading eventually to the recovery of the
incomplete π0 particles.

As in the case of semileptonic decay-channels and decay-channels with K0
L, the FEI

could profit even from incomplete π0 particles in situations where the FEI would
otherwise not output a valid candidate at all. Furthermore, many measurements
of rare decays, which use exclusive tagging, extract the signal-yield from the extra
energy in the electromagnetic calorimeter EECL (see Chapter 5). If the FEI assigns all
tracks correctly to a tag-side Btag meson, but misses an incomplete π0, one additional
photon from the tag-side will end up in EECL. Therefore, reconstructing incomplete
π0 has the potential to improve the resolution of the signal peak in EECL.

4.4.5. FEI on Υ(5S)

The FEI can directly be applied to the Υ(5S) resonance. This resonance decays
into a pair of BB(5.5%), BB∗(13.7%), B∗B∗(38.1%), B∗sB∗s (20.1%) mesons. The user
has to add the B∗ and B∗s particles and their associated decay-channels to the FEI

configuration. The powerful completeness-constraint can still be applied in this
situation.

4.4.6. Deep FEI

Newly developed algorithms based on deep-learning can outperform established
algorithms, as was shown in the case of flavour tagging (Section 3.3.1.2) and continuum
suppression (Section 3.3.1.3). Both algorithms can be seen as a form of inclusive
tagging, hence, it is obvious to study the applicability of deep-learning to exclusive
tagging as well.

As described in Section 3.1.4.3, applications with a learnable distributed representa-
tion, are in particular suitable for deep-learning. The most successful applications of
deep-learning use domain-specific knowledge to restrict the learnable representation,
e.g. by using convolutional neural networks in image recognition (see [40, Chapter 9]),
recurrent neural network in speech recognition (see [40, Chapter 10]), and relational
neural networks for relational reasoning (see [80]).

In the case of exclusive tagging a reasonable representation of the input data (tracks
and clusters) is already known from physics: it is the decay-chain of the Υ(4S).
This representation has all desired properties defined in Section 3.1.4.3. The FEI

is designed to reconstruct this decay-chain in an hierarchical approach: starting
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Figure 4.19.: Proposed network architecture for an exclusive tagging algorithm based
on deep learning.

from the low-level information (tracks and cluster), creating intermediate particle
candidates and finally providing the most likely B meson candidates.

In that sense the FEI is a deep-learning based algorithm, which enforces the decay-
chain representation. It comes as no surprise that the hierarchical approach can be
visualized by a network (see Figure 4.3), where the nodes are given by the particle
and the weights are multivariate classifiers. In contrast to an ordinary deep neural
network, the FEI can take advantage of complex existing algorithms in each step,
e.g. vertex-fitting. Furthermore, the explicit decay-chain is automatically known,
whereas it is not straight-forward to design a deep neural network that outputs the
explicit decay-chain it reconstructed.

Nevertheless it is interesting to study the architecture of a possible exclusive tagging
algorithm based on a deep neural network. The following paragraphs require basic
knowledge of (deep) neural networks. A thorough introduction can be found in [40].
The proposed network architecture is shown in Figure 4.19.

4.4.6.1. Input Layer

The input layer takes the low-level information of each track and cluster. The main
challenge is the variable input size. In the following I describe a possible input layer,
based on the deep flavour tagger (see Section 3.3.1.2) and continuum suppression
(see Section 3.3.1.3) algorithms.

A fixed-size input layer is used, which takes the N positive tracks (orange), N negative
tracks (green) and M clusters (gray) with the highest energy (see Figure 4.19). For
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each track the four-momentum, the POCA and the PID information is passed to
the network. For each cluster the four-momentum, the cluster shape and the cluster
timing is passed to the input layer.

In case of missing tracks and clusters the associated input neurons are set to zero,
which is the natural choice for the four-momentum and PID information. In other
words, we assume that our algorithm is “infrared-safe”7: additional inputs which
suggest a particle with zero mass and momentum should not influence the result.

The inputs are ordered by their total momentum and are separated by charge.
Preliminary studies for the continuum-suppression algorithm showed, that spherical
coordinates and the center-of-mass frame should be used where appropriate.

There are several alternatives to deal with the variable input size, which I mention
briefly.

One could use a recurrent neural network (RNN) and feed the network one track
after another. RNNs exploit the sequential correlations in the provided sequence.
However, there is no obvious order of tracks which has a sequential correlation. In
fact the most high energetic tracks are most likely not from the same side.

A convolutional neural network (CNN) can be used, where the tracks and clusters
are mapped onto spatial images, e.g., using their flight direction. CNNs exploit the
spatial correlations in the provided images. Again, there is no obvious mapping of
tracks, which has a high spatial correlation. In fact correlated8 tracks are unlikely to
have a similar flight direction.

Finally, multiple networks could be trained for each possible input size. This approach
is likely to suffer from a high computational burden and low-statistics.

4.4.6.2. Hidden Layers

So far, the deep-learning based algorithms implemented in BASF2 used ordinary fully
connected feed-forward layers. Finding the optimal architecture of a neural network
usually involves trial-and-error. Therefore, I only state some building blocks here.

Firstly, the gradient of the loss-function, used during the training phase to adapt the
weights of the deep neural networks, is known to be unstable for the foremost layers.
This is known as the vanishing or exploding gradient problem [81]. Several solutions
for this problem exist e.g. greedy layer-wise pre-training.

I propose the usage of intermediate targets following the hierarchical structure of
the FEI (symbolized by the inscribed particle name in the gray hidden neurons in

7The term is used as an analogy and not in the strict sense of the word.
8Track correlation can be defined using their degree of kinship, that is two tracks with a common

mother have the highest correlation.
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Figure 4.19). Hence, the neurons in the first hidden layers should learn to identify
final state particles. In subsequent layers the presence and four-momentum of
intermediate resonances can be learned. In other words, some neurons in each layer
are enforced to learn physically interpretable quantities by adding additional terms
to the loss-function.

Therefore the loss-function naturally has a direct influence on the foremost layers,
and the network can learn the known reasonable representation (the decay-chain of
the Υ(4S)) more easily. Furthermore, this scheme allows an implicit greedy layer-wise
training, by changing the importance of the terms in the loss functions during the
training. At the start the terms associated with neurons near the input layer are
more important, while at the end only the final target in the output layer is used.

Secondly, relational neural networks (RelNN) can be used (see [80]). RelNNs learn
pairwise operations, and exploit permutation invariance. For instance one could
imagine: the vertex of two tracks, the invariant mass of two tracks, or the angle
between two clusters. The calculation of these quantities is possible and reasonable
for each given pair of tracks (or any other intermediate representation of the network).
The advantage compared to a fully-connected layer is the weight-sharing. While a
fully-connected layer has to learn O(N2) different functions to compare N objects
using one example per event during the training phase, the relational neural network
learns one function using O(N2) examples per event during the training phase.

4.4.6.3. Output Layer

There are two possible architectures for the output layer.

If the algorithm only operates on the rest-of-event of an already reconstructed signal-
side (the equivalent to the specific FEI), a single output neuron with a sigmoid
activation function and a cross-entropy loss function is sufficient. The network learns
to output 1 if the given rest-of-event forms a valid Btag candidate, and 0 otherwise.
This is shown in blue in Figure 4.19.

Additional outputs can estimate the four-momentum, the vertex, the charge, the
flavour, the number of missing neutrinos or any other quantities, under the assumption
that the formed candidate is valid. This is shown in purple in Figure 4.19.

If the algorithm operates on the entire event it has to assign each track and cluster
either to the signal or to the tag-side. This is much more challenging. I propose to
use 2N +M outputs, which output the assignment of the 2N track and M clusters
to the tag-side 1 or rest-of-event (that is the signal-side) 0. However, each output is
created by a small independent neural network, which gets the learned representation
of the main network, and the original inputs associated with the track or cluster as
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input. In other words, the small networks predict the assignment of each track or
cluster using the learned representation.

This architecture has the additional advantage, that the main network could be the
encoder part of an auto-encoder network, which can be (pre, post)-trained on data.

4.4.6.4. Final Remarks

The proposed architecture is based on the experiences of studies conducted for the
flavour tagger and continuum suppression algorithm. It is expected that only parts
of it would ultimately prove useful in a future deep FEI.

4.5. Conclusion

The Full Event Interpretation enables Belle II physicists to measure a wide
range of interesting decays with a minimum of detectable information. It exploits
the unique experimental setup of B factories.

During this thesis the FEI was further developed from a “Proof of Concept” to a
standard tool used in production. The algorithm was extensively studied on Belle
and Belle II MC, and the obtained results were verified on data recorded by the Belle
detector using the b2bii package.

The FEI more than doubles the tag-side efficiency for all combinations of tag (hadron-
ic/semileptonic), charge (charged/neutral) and experiment (Belle/Belle II), compared
to its (already very successful) predecessor. The tag-side efficiency for hadronically
tagged B mesons was calibrated on Belle data, and is ready for the productive usage
in analyses on converted Belle data.

Besides, many software tools originally developed for the FEI like FastBDT and
FastFit proofed useful in many other contexts. The FEI was the first algorithm to
take full advantage of the b2bii (see Chapter 2) and mva (see Chapter 3) package.

Finally, there are many possible extensions and unexplored applications of the FEI,
which provide an exciting and fruitful area for further research.
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Chapter 5
B→ τν

The leptonic decays of charged B mesons belong to the golden decay-channels at B
factories. The expected branching fractions in the Standard Model of particle physics
(SM) are small, hence leptonic decays are so-called rare-decays. The theoretical
uncertainties on the predicted branching fraction are small and the possible influence
of physics beyond the Standard Model (BSM) can be large.

The experimental signature is (mostly) a single track produced by a lepton or its
decay product. The accompanying neutrinos are not detected. The leptonic decays
are currently only accessible via the unique experimental setup at B factories.

The tauonic decay B → τ ν, is of particular interest. Its branching fraction is the
largest among the leptonic decays, due to the high mass of the τ meson elevating
the helicity suppression. On the other hand the τ is unstable in the detector, hence
it can only be measured indirectly using its decay products. Multiple neutrinos in
the final state render this decay particularly experimentally challenging. It is the
most prominent use-case for exclusive tagging.

During this thesis the decay B → τ ν was investigated as a benchmark analysis for
the developed software tools and algorithms presented in the preceding chapters.
The previous Belle analyses ([16] and [15]) were repeated on the full Υ(4S) dataset
recorded by Belle using the b2bii package. Furthermore, a sensitivity study on
simulated Belle II Monte Carlo events was conducted.

The main goal was to validate the developed tools and establish a prototype analysis,
which can be used as a starting point for other analyses based on b2bii and/or the
FEI.

In the following chapter, I describe the theoretical background (Section 5.1), the
experimental measurement at Belle and Belle II (Section 5.2), the validation of
the analysis strategy using off-resonance data and sidebands (Section 5.3), and the
obtained results (Section 5.4).
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b

u
Vub

W+
ν

`+

Figure 5.1.: Feynman Diagram of the leading Standard Model process mediated by
a charged W boson for the purely leptonic decay of a charged B meson.

5.1. Theory

The Standard Model of particle physics (SM) describes the elementary particles and
their fundamental interactions, except for gravity.

The SM is a relativistic quantum field theory, that is the particles are described
by quantum fields, whose equations of motion are invariant under the Poincaré
space-time symmetry. The fundamental interactions (the electromagnetic, strong
and weak interaction) are described by local gauge symmetries. The field equations
of the SM are encoded in a Lagrangian density L, from which the field equations
can be derived using the Lagrange formalism.

The SM (with massless left-handed neutrinos) has 19 free parameters. All of them
can and have been experimentally determined. A thorough introduction to the SM
can be found in [82].

5.1.1. Leptonic B± meson decays in the Standard Model

The branching fraction of the leptonic decay of charged B± mesons can be calculated
in the SM using perturbation theory. The leading order Feynman Diagram is shown
in Figure 5.1. It results in the following expression for the branching fraction [1,
Chapter 7.10.2]

B
(
B+ → `+ν

)
SM

=
G2
FMBM

2
`

8π

(
1− M2

`

M2
B

)2

fB
2|Vub |2τB , (5.1)

where all occurring constants can be theoretically calculated and/or independently
experimentally measured. The numerical values and their relative uncertainties
are summarized in Table 5.1. The measurement of the branching fraction of the
leptonic decay of charged B mesons can reduce the existing uncertainty, and provides
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Table 5.1.: Numerical values and relative uncertainties of all quantities required to
calculate the branching fraction of B+ → `+ν in the Standard Model. All
values are taken from the PDG review 2016 [58].

PDG Value Relative uncertainty

GF 11.7 TeV−2 5 · 10−7

mB 5.28 GeV 3 · 10−5

mτ 1.78 GeV 7 · 10−5

τB 1.64 ps 2 · 10−3

fB 187.1 MeV 2 · 10−2

|Vub|inc 4.49 · 10−3 5 · 10−2

|Vub|exc 3.72 · 10−3 5 · 10−2

|Vub|avg 4.09 · 10−3 1 · 10−1

Table 5.2.: Standard model prediction for B+ → `+ν calculated by Equation 5.1
using the numerical values given in Table 5.1 and the averaged |Vub |
value.

SM Prediction PDG 2016

B
(
B+ → e+νe

)
(1.09± 0.21) · 10−11 < 9.8 · 10−7 CL=90%

B
(
B+ → µ+νµ

)
(4.65± 0.91) · 10−7 < 1.0 · 10−6 CL=90%

B
(
B+ → τ+ντ

)
(1.03± 0.2) · 10−4 (1.06± 0.20) · 10−4

an independent verification for the consistency of the SM with the experimental
observations.

The leading dependency of the branching fraction on the squared lepton mass M2
`

is caused by the so-called helicity suppression [58, p. 1109]. In consequence, the τ
lepton is expected to have the largest branching fraction among the leptonic B decay
channels, as can be seen in Table 5.2.

5.1.1.1. The Vub puzzle

The CKM matrix element |Vub | corresponds to one of the 19 free parameters of the
SM. It induces the dominant theoretical uncertainty in the prediction of the branching
fraction of B+ → `+ν. |Vub | can be determined by several distinct measurements,
which differ in their associated theoretical and experimental uncertainties.

The full decay width of the inclusive decay B → Xu`ν can be calculated
with high precision, that is < 5% theoretical uncertainty, since QCD form-
factors are not required. The inclusive decay has a high branching fraction,
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but the experimental measurement is difficult due to the high background
contamination from the CKM-favored B → Xc`ν decay.

Therefore it is easier to measure the partial decay width of the inclusive decay
B → Xu`ν, by demanding a high momentum for the lepton. However, the
theoretical prediction of a partial decay width in this phase-space region is much
more difficult and requires the knowledge of a non-perturbative distribution
function, the so called “shape-functions” [58, p.1317].

The exclusive measurement of the branching fraction of B → π`ν is exper-
imentally clean, but has a lower branching fraction and requires in addition
form-factors on the theoretical side. The measurement can be performed with
and without exclusive tagging. Both approaches yield compatible results [58,
p. 1319].

There is a slight tension between the determination of |Vub | from inclusive and
exclusive measurements, as can be seen in Table 5.1. [58] states that the average
value of |Vub| should be treated with caution “given the poor consistency between the
two determinations”. Nevertheless, this thesis uses the average value (see Table 5.1),
but notes the differences between the |Vub| from exclusive and inclusive measurements
where appropriate.

Finally, the measurement presented in this thesis can provide an independent deter-
mination of |Vub|. The theoretical prediction of the branching fraction of B → `ν is
theoretically easy, since there are no strongly interacting particles in the final state.
Experimentally it is challenging since there is usually only one measurable track.

5.1.1.2. The fB decay constant

The contribution of the strong interaction in the decay B → `ν is represented by
the decay constant fB . It is related to the overlap of the bottom and up quark
wave-functions in the meson.

The decay constant induces the second largest theoretical uncertainty besides the
CKM matrix element |Vub |. It can be calculated using lattice QCD simulations
and QCD sum rules. Both approaches yield compatible results. This thesis uses
the average value (see Table 5.1) from lattice QCD simulations determined by [58,
p.1117].

5.1.2. Type II Two Higgs Doublet Model

New physics contributions could influence the measurement of the branching fraction
of B → `ν. The most famous model considered in the literature in connection
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Figure 5.2.: Feynman Diagrams of the leading Standard Model process and a hypo-
thetical new physics process mediated by a charged Higgs boson for the
purely leptonic decay of a charged B meson.

with B → `ν is the Type II Two Higgs Doublet Model [83]. In this model, the
Standard Model Higgs Doublet is replaced with two Higgs Doublets, where one
couples to down quarks and charged leptons, while the other couples to up quarks.
The model introduces additional parameters tan β, that is the ratio of the two vacuum
expectation values of the two Higgs Doublets, and the masses M

H
± , M

H
0 and M

A
0

of the four additional Higgs particles.

The model provides another leading order Feynman Diagram shown in Figure 5.2, in
which the W± boson is replaced by a hypothetical charged Higgs. The two diagrams
(amplitudes) interfere destructively, hence the branching fraction expected in the SM
is further suppressed by a multiplicative factor [1, Chapter 7.10.2]:

B
(
B+ → `+ν

)
2HDM

= B
(
B+ → `+ν

)
SM
·
(

1− M2
B tan2 β

M2

H
+

)2

. (5.2)

The mass of the charged Higgs M
H

+ is already tightly constrained by weak radiative

B meson decays M
H

+ > 580 GeV [84]. Nevertheless, a valid value of tan β ≥ 35 can

still yield a modification of the branching fraction, as large as the current theoretical
and experimental uncertainties.

Therefore, the measurement of B → `ν can provide independent constraints on
beyond the SM models like the Type II Two Higgs Doublet Model.

5.1.3. τ decay models

This thesis investigates B → τ ντ , that is the leptonic decay of the charged B meson
involving the heaviest charged lepton. This decay is particularly challenging because
the τ is not stable in the detector, consequently the measurement has to deal with
one or more neutrinos and the kinematics of the τ decay.
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The kinematics of the decay τ → `νν is well-known1. The same holds true for τ → πν,
where only a single hadron has to be considered2. The decay into multiple hadrons
(in particular τ → πππν) is more complicated due to the occurring intermediate
resonances and their interference. Belle explicitly simulated the decays τ → ρ[→
ππν]ν and τ → a1[→ πππ]ν without taking further decay channels into the same
final state into account3. In contrast, Belle II simulates the hadronic decay of
τ → ππν and τ → πππν inclusively based on [85] and takes interferences into
account4.

The implications of this different treatment in Belle and Belle II for this analysis are
mostly technical details related to the Monte Carlo matching algorithm, and are not
further discussed.

5.1.4. Previous measurements

The decay B → τ ντ was already observed in previous measurements at B factories.
Both, the Belle ([16] and [15]) and the BaBar ([86] and [87]) experiment conducted
measurements using hadronic and semileptonic tagging. The previous measurements
and the Standard Model predictions using Vub from exclusive (SMExc) and inclusive
(SMInc) measurements are shown in Figure 5.3. The Belle measurements are more
precise due to the larger recorded dataset. The hadronic and semileptonic tags have
similar statistical power. The current world average of the measured branching
fraction stated by [58], is compatible with both predictions SMExc and SMInc.

5.2. Measurement

The measurement of the branching fraction of the decay B → τ ντ involves five
reconstruction steps, which are explained in detail in this chapter.

1. The events are preselected (see Section 5.2.1).

2. The signal side is reconstructed in five distinct decay channels of the τ lepton
(see Section 5.2.2).

3. The tag side is reconstructed by the FEI (see Section 5.2.3).

4. Both sides are combined to a Υ(4S) candidates and the completeness-
constraint is applied (see Section 5.2.4).

1The EvtTaulnunu model of evtgen is used.
2The EvtTauScalarnu model of evtgen is used.
3The EvtTauVectornu model of evtgen is used.
4The EvtTauHadnu model of evtgen is used.

118



Chapter 5. B → τ ν 5.2. Measurement

0 1 2 3 4 5

B(B → τν)/10−4

Belle (hadronic tag):
(0.72+0.27

−0.25 ± 0.11) · 10−4

Belle (semileptonic tag)
(1.25± +0.28± 0.27) · 10−4

BaBar (hadronic tag)
(1.83+0.53

−0.49 ± 0.24) · 10−4

BaBar (semileptonic tag)
(1.7± +0.8± 0.2) · 10−4

PDG 2016
(1.06± 0.2) · 10−4

|Vub|exc |Vub|inc

Figure 5.3.: Current experimental status of the measurement, including the Standard
Model predictions (gray bands) using Vub from exclusive and inclusive
measurements.

5. The branching fraction is extracted with an extended unbinned maximum
likelihood fit on the extra energy in the electromagnetic calorimeter of the
selected candidates (see Section 5.2.5).

The measurement is performed on converted data recorded by the Belle detector and
Monte Carlo simulated Belle II events. The hadronically and semileptonically tagged
samples are treated as independent measurements in this thesis. The hadronic tag
already includes the tag-side efficiency correction factors obtained by [76]. At the time
of writing there was no tag-side efficiency correction available for the semileptonic
tag. In consequence, the semileptonic results have to be taken with a grain of salt.

If not stated otherwise, all figures and tables for Belle were produced using one stream
(≡ 711 fb−1) of Monte Carlo simulated events to model the background processes
and a high-statistics sample of 100 million signal-events. For Belle II, high-statistics
samples of 90 million events per component were used, and scaled to the equivalent
of one stream.

The current version of the reconstruction software of Belle II is not fully optimized yet.
During this benchmark analysis an extremely high fake-rate (up to 7 additional tracks
in correctly reconstructed events), and a poor ECL resolution with large backgrounds
caused by beam-background was observed. It is expected that these reconstruction
issues will be solved in the future (see also Section 4.3.3.2). Nevertheless, the
following figures and tables are given for both Belle and Belle II, for comparison. The
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final fit is only performed on converted Belle data, because the current reconstruction
issues prevent a meaningful result using the Belle II Monte Carlo simulation.

5.2.1. Skimming

The measurements consider only events with ten or less good tracks, that is tracks
with impact parameters of less than 2 cm and 4 cm in transverse and beam axis
direction, respectively.

This reduces the computational effort drastically without loosing any signal events.
As was shown in Figure 4.13, the fraction of Btag candidates with more than seven
tracks, which are correctly tagged by the FEI, is negligible. The Bsig requires at
most three tracks (for most channels only one). Therefore, the FEI cannot assign a
correct tag to signal events with more than ten good tracks, and the events can be
discarded without loosing correctly tagged signal events. Even incorrectly tagged
signal events are only affected in the three-prong τ decay channel, as can be seen
from Figure 4.13b.

Figure 5.4 shows this cut and the corresponding selection efficiencies for Belle and
Belle II. The observed difference between Monte Carlo simulation and data was
already investigated and discussed in Section 2.3.3.3. The increased number of tracks
in Belle II events is caused by the reconstruction issues mentioned above.

5.2.2. Signal side reconstruction

The B meson travels less than 1 mm inside the Belle II detector due to its short
life-time of 1.64 · 10−12 s. The τ lepton, produced by the investigated decay B → τ ντ ,
has an even shorter life-time of 2.9 · 10−13 s. Therefore the τ lepton does not leave
the beam-pipe and cannot be detected directly.

In this thesis the signal-side is reconstructed in five different τ decay-channels covering
a total branching fraction of BR(τ ) = 80.8% (see Figure 5.6).

Each decay-channel has distinct properties and consequently individual selection
criteria, which are described below. As can be seen from Table 5.3, the signal-
side selection criteria suppress the background by two orders of magnitude, while
maintaining most of the signal. The measured selection efficiencies on converted
data are compatible with the Monte Carlo simulation of background. The selection
is in general better on Belle Monte Carlo than on Belle II, due to the reconstruction
issues mentioned above.

Although the tag-side is reconstructed by the FEI, it proved useful to already discard
candidates whose rest-of-event is not compatible with a single B meson. A fast,
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Figure 5.4.: Skim cut on the number of good tracks. Evaluated on 10000 events for
each component, scaled according to their expected relative fractions.

Table 5.3.: The overall efficiencies of the signal-side selection: εSignalEvents, is the
fraction of events containing the stated signal decay channel, in which
a correct candidate was reconstructed. This includes the detector ac-
ceptance, trigger and reconstruction efficiencies and the skimming. The
signal-side selection alone is characterized by: the fraction of correct
candidates which survive the signal-side selection εSignal; the fraction of
background candidates which survive the signal-side selection εBackground;
and (in the case of Belle) the fraction of candidates on converted data
which survive the signal-side selection εData. Evaluated on 10000 events
for each component.

Channel Belle Belle II
εSignalEvents εSignal εBackground εData εSignalEvents εSignal εBackground

µ 0.40 0.48 0.006 0.006 0.53 0.59 0.018
e 0.68 0.71 0.008 0.010 0.53 0.66 0.025
π 0.89 0.88 0.087 0.096 0.76 0.83 0.096
ρ 0.41 0.65 0.014 0.015 0.32 0.69 0.011
a1 0.44 0.67 0.060 0.058 0.35 0.53 0.030
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Figure 5.5.: ∆E distribution of the rest-of-event in GeV for the τ → µνν decay
channel with a cut on ∆E < 1.5 GeV. Evaluated on 10000 events for
each component, scaled according to their expected relative fractions.

efficient and easy to calculate selection variable is the deviation ∆E of the total
energy in the center-of-mass system of the rest-of-event from the nominal beam-
energy in the center-of-mass system. Figure 5.5 shows the efficiency of this selection
for the τ → µνν decay channel, the distributions in the other channels look nearly
identical. This selection saves computation time, once the tag-side is reconstructed
by the FEI, a superior5 selection on the same quantity can be performed.

5.2.2.1. τ → µνν

The τ decay into a muon and two neutrinos has a branching fraction of 17.4%.
It can be efficiently selected using the muon identification provided by the PID
sub-detectors of Belle II (see Figure 5.7). We expect to find one track compatible
with a muon hypothesis in the event besides the Btag meson. The selection criteria
and corresponding efficiencies are stated in Table 5.4.

5The knowledge of the explicit decay-chain of the Btag increases the resolution of ∆E.
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τ− → µ−νµντ
17.4%

τ− → e−νeντ
17.8%

τ− → π−ντ
10.8%

τ− → π−π0ντ
25.5%

τ− → 2π−π+ντ
9.0%

τ− → π−2π0ντ
9.3%

τ− → other
10.3% τ− → `νντ

35.2%

τ− → Hadrons ντ
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Figure 5.6.: Visualization of the τ branching fractions: used in this thesis (red arc);
into exclusive decay-channels (outer circle); and into inclusive hadronic
and leptonic decay-channels (inner circle).
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Table 5.4.: The selection criteria for the τ → µνν decay-channel with the corre-
sponding selection efficiencies for signal candidates εSignal, background
candidates εBackground and (in the case of Belle) for candidates on data
εData. Evaluated on 10000 events for each component.

Selection Belle Belle II
Criterion εSignal εBackground εData εSignal εBackground

# Tracks ≤ 10 0.99 0.82 0.84 0.92 0.65
p∗τ > 0.1 GeV 1.00 0.97 0.97 0.99 0.91
∆E ≤ 1.5 GeV 0.99 0.31 0.34 1.00 0.50
dr < 2 0.98 0.75 0.74 0.99 0.91
−4 < dz < 4 0.96 0.68 0.66 0.96 0.83
PIDµ > 0.9 0.49 0.01 0.01 0.66 0.07
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Figure 5.7.: PIDµ distribution for the τ → µνν decay channel with a cut on PIDµ >
0.9. Evaluated on 10000 events for each component, scaled according to
their expected relative fractions.
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Table 5.5.: The selection criteria for the τ → eνν decay-channel with the corre-
sponding selection efficiencies for signal candidates εSignal, background
candidates εBackground and (in the case of Belle) for candidates on data
εData. Evaluated on 10000 events for each component.

Selection Belle Belle II
Criterion εSignal εBackground εData εSignal εBackground

# Tracks ≤ 10 0.99 0.82 0.84 0.91 0.65
p∗τ > 0.1 GeV 0.99 0.97 0.97 0.99 0.91
∆E ≤ 1.5 GeV 0.99 0.31 0.34 1.00 0.50
dr < 2 0.96 0.75 0.74 0.98 0.91
−4 < dz < 4 0.94 0.68 0.66 0.94 0.83
PIDµ < 0.9 1.00 0.99 0.99 0.90 0.93
PIDe > 0.9 0.74 0.04 0.04 0.86 0.16

5.2.2.2. τ → eνν

The τ decay into an electron and two neutrinos has a branching fraction of 17.8%.
It can be efficiently selected using the electron identification provided by the PID
sub-detectors of Belle II (see Figure 5.8). We expect to find one track compatible
with an electron hypothesis in the event besides the Btag meson. The selection
criteria and corresponding efficiencies are stated in Table 5.5.

5.2.2.3. τ → πντ

The τ decay into a pion and one neutrino has a branching fraction of 10.8%. It is a
two-body decay, hence the momentum of the pion in the rest-frame of the τ is known

p∗π =
1

2

(
mτ −

m2
π

mτ

)
= 0.88 GeV (5.3)

Together with the momentum of the τ lepton in the rest-frame of the B meson and
the momentum of the B meson in the center-of-mass system

p∗τ = 2.34 GeV (5.4)

p∗B = 0.33 GeV (5.5)
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Figure 5.8.: PIDe distribution for the τ → eνν decay channel with a cut on PIDe >
0.9. Evaluated on 10000 events for each component, scaled according to
their expected relative fractions.

we can calculate the momentum of the pion in the center-of-mass system using the
rapidities of the τ lepton and B+ meson

η∗τ = arsinh
p∗τ
mτ

= 1.089 (5.6)

η∗B = arsinh
p∗B
mB

= 0.062 (5.7)

and finally the minimal and maximal pion momentum in the center-of-mass system

η = ±η∗τ ± η∗B (5.8)

pπ = p∗πcoshη −
√
m2
π + (p∗π)2sinhη (5.9)

= 0.26 GeV minimum (5.10)

= 2.80 GeV maximum. (5.11)

The exact pπ distribution is skewed towards higher momenta due to the fixed helicity
of the neutrino (see Figure 5.9). We expect to find one track with a compatible
momentum in the event besides the Btag meson. In addition, we expect a large
cross-feed in this decay-channel from other signal decay-channels. For instance, a
lepton which does not pass the PID criteria will automatically be picked up by the
pion decay-channel. The selection criteria and corresponding efficiencies are stated
in Table 5.6.
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Figure 5.9.: p∗sig distribution in GeV for the τ → πντ decay channel with a cut on
p∗sig < 0.5 GeV. Evaluated on 10000 events for each component, scaled
according to their expected relative fractions.

Table 5.6.: The selection criteria for the τ → πντ decay-channel with the corre-
sponding selection efficiencies for signal candidates εSignal, background
candidates εBackground and (in the case of Belle) for candidates on data
εData. Evaluated on 10000 events for each component.

Selection Belle Belle II
Criterion εSignal εBackground εData εSignal εBackground

# Tracks ≤ 10 0.99 0.76 0.82 0.93 0.65
p∗τ > 0.5 GeV 0.95 0.42 0.43 0.98 0.44
∆E ≤ 1.5 GeV 0.99 0.31 0.34 0.99 0.50
dr < 2 0.96 0.75 0.74 0.99 0.91
−4 < dz < 4 0.93 0.68 0.66 0.97 0.83
PIDµ < 0.9 0.99 0.99 0.99 0.96 0.93
PIDe < 0.9 1.00 0.96 0.96 0.99 0.84
PIDK < 0.9 0.97 0.88 0.87 0.96 0.84
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Table 5.7.: The selection criteria for the τ → ρντ decay-channel with the corre-
sponding selection efficiencies for signal candidates εSignal, background
candidates εBackground and (in the case of Belle) for candidates on data
εData. Evaluated on 10000 events for each component.

Selection Belle Belle II
Criterion εSignal εBackground εData εSignal εBackground

# Tracks ≤ 10 0.99 0.81 0.82 0.92 0.60
p∗τ > 0.6 GeV 0.96 0.45 0.46 0.95 0.51
∆E ≤ 1.5 GeV 1.00 0.35 0.37 1.00 0.58
dr < 2 0.93 0.74 0.72 0.99 0.91
−4 < dz < 4 0.88 0.65 0.64 0.93 0.82
PIDµ < 0.9 1.00 0.99 0.99 0.95 0.93
PIDe < 0.9 0.99 0.96 0.95 0.98 0.85
PIDK < 0.9 0.98 0.88 0.87 0.97 0.84
0.5 GeV < Mρ < 1.2 GeV 0.88 0.56 0.56 0.95 0.62
0.1 GeV < M

π
0 < 0.18 GeV 0.84 0.27 0.28 0.98 0.19

5.2.2.4. τ → ρντ

The τ decay into a ρ meson and one neutrinos has a branching fraction of 25.5%. It
is the dominant decay channel of the τ with the largest branching fraction. The ρ
resonance decays instantaneous into a charged and a neutral pion ρ+ → π+π0[→ γγ ].
The intermediate resonances ρ and π0 provide efficient selection criteria based on
their invariant masses

mρ = 0.775 GeV (5.12)

m
π

0 = 0.135 GeV. (5.13)

We expect to find one track and two ECL clusters compatible with a π0 (see
Figure 5.10) and ρ (see Figure 5.11) in the event besides the Btag meson. The
selection criteria and corresponding efficiencies are stated in Table 5.7.

5.2.2.5. τ → a1ντ

The τ decay into three pions τ → 3π is dominated by the decay-chain τ+ → a+
1 [→

ρ0π+]ντ [88]. In this thesis, the τ decay into three charged pions (via ρ0 → π+π−)
was investigated for the first time, it has a branching fraction of 9.5%. The other
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Figure 5.10.: M
π

0 distribution in GeV for the τ → ρντ decay channel with a cut

on 0.1 GeV < M
π

0 < 0.18 GeV. Evaluated on 10000 events for each

component, scaled according to their expected relative fractions.

0.
02

4
0.

16
8

0.
31

2
0.

45
6

0.
6

0.
74

4
0.

88
8

1.
03

2
1.

17
6

1.
32

1.
46

4
1.

60
8

1.
75

2
1.

89
6

2.
04

2.
18

4
2.

32
8

mρ+

0

100000

200000

300000

400000

N
um

b
er

of
E

nt
ri

es

on-resonance data ( 55.65 % )

e+e−→ qq̄ (uds) ( 56.33 % )

e+e−→ cc̄ ( 56.14 % )

Υ(4S)→ B0B̄0 ( 54.53 % )

Υ(4S)→ B+B− ( 54.75 % )

B+ → τ+ν x 1e+07 ( 88.26 % )

(a) Belle

0.
02

4
0.

16
8

0.
31

2
0.

45
6

0.
6

0.
74

4
0.

88
8

1.
03

2
1.

17
6

1.
32

1.
46

4
1.

60
8

1.
75

2
1.

89
6

2.
04

2.
18

4
2.

32
8

mρ+

0

50000

100000

150000

200000

250000

N
um

b
er

of
E

nt
ri

es

e+e−→ qq̄ (uds) ( 57.61 % )

e+e−→ cc̄ ( 61.62 % )

Υ(4S)→ B0B̄0 ( 66.16 % )

Υ(4S)→ B+B− ( 66.01 % )

B+ → τ+ν x 1e+07 ( 95.06 % )

(b) Belle II

Figure 5.11.: Mρ distribution in GeV for the τ → ρντ decay channel with a cut
on 0.5 GeV < Mρ < 1.2 GeV. Evaluated on 10000 events for each
component, scaled according to their expected relative fractions.
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Table 5.8.: The selection criteria for the τ → a1ντ decay-channel with the corre-
sponding selection efficiencies for signal candidates εSignal, background
candidates εBackground and (in the case of Belle) for candidates on data
εData. The impact parameter selection criteria are the same for each of
the three tracks. Evaluated on 10000 events for each component.

Selection Belle Belle II
Criterion εSignal εBackground εData εSignal εBackground

# Tracks ≤ 10 0.94 0.64 0.66 0.72 0.36
p∗τ > 0.9 GeV 0.96 0.51 0.52 0.95 0.50
∆E ≤ 1.5 GeV 1.00 0.53 0.55 1.00 0.69
dr < 2 0.99 0.96 0.95 0.98 0.95
−4 < dz < 4 0.97 0.90 0.88 0.95 0.86

χ2
Vertex > 0.01 0.79 0.53 0.50 0.80 0.41

0.8 GeV < Ma1
< 1.6 GeV 0.94 0.53 0.53 0.96 0.47

possible decay into a charged pion and two neutral pions (via ρ0 → π0π0) was not
studied.

The resonances a1 provides an efficient selection criteria based on its invariant mass
(see Figure 5.12)

ma1
= 1.230 GeV. (5.14)

We expect to find three tracks from a common vertex compatible with the expected
intermediate resonances in the event besides the Btag meson. This is the only signal
decay-channel with a different multiplicity, that is number of tracks in the final state.
Therefore it has distinct physics background contributions compared to all other
studied decay-channels. Unfortunately, it also suffers from a large combinatorial
background, which is the reason why it was not used in previous analyses. The
selection criteria and corresponding efficiencies are stated in Table 5.8.

5.2.3. Tag side reconstruction

The default generic FEI (see Chapter 4) applied to the entire event was used to
reconstruct the tag-side of the event. The FEI provides B meson tag-side candidates
in hadronic and semileptonic decay channels. Both were used in this analysis.
Because the different systematic uncertainties (in particular the missing calibration
factors for the semileptonic tag), the tags are treated as independent measurements
in this thesis, that is in principle the same event could appear in both tagged samples.
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Figure 5.12.: Ma1
distribution in GeV for the τ → a1ντ decay channel with a cut

on 0.8 GeV < Ma1
< 1.6 GeV. Evaluated on 10000 events for each

component, scaled according to their expected relative fractions.

The default FEI does not use information from the Mbc and cos ΘBD` of the hadroni-
cally and semileptonically tagged B meson, respectively. In addition the FEI aims
to always output a valid candidate, even if the associated SignalProbability σ is
very low. However, this analysis requires a high-purity tag, because the signal-side
selection alone does not provide enough separation power. Therefore the tag-side
candidates have to fulfill the selection criteria stated in Table 5.9 to be considered in
the analysis.

The same numerical value was chosen for the cut on the SignalProbability for
Belle and Belle II. However, the cut is effectively tighter for Belle II, because the
increased fake-rate reduces the prior-probability of each candidate to be correct.

5.2.4. Event reconstruction

The selected signal-side and tag-side candidates are combined to an Υ(4S) candidate.

5.2.4.1. Completeness-constraint(s)

The completeness-constraint is applied and all candidates with additional good tracks
in the event (besides the ones, which were used for the reconstruction of the Υ(4S))
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Table 5.9.: The selection criteria for the tagged B mesons with the corresponding
selection efficiencies for correctly reconstructed candidates εSignal, back-
ground candidates εBackground and (in the case of Belle) for candidates on
data εData. Evaluated on 10 million events for each component.

Selection Belle Belle II
Criterion εSignal εBackground εData εSignal εBackground

Hadronic Tag
Mbc ≥ 5.27 0.98 0.1205 0.1167 0.96 0.1374
−0.15 < ∆E < 0.1 0.97 0.5928 0.5720 0.91 0.3475
σ > 0.005 0.94 0.1553 0.1469 0.81 0.0241

Total 0.91 0.0251 0.0242 0.76 0.0043

Semileptonic Tag
−1 < cos ΘBD` < 1 0.88 0.2926 0.2796 0.83 0.1993
σ > 0.005 0.90 0.1295 0.1262 0.72 0.0162

Total 0.80 0.0525 0.0496 0.63 0.0063

are discarded. The completeness-constraint is the most-effective selection criterion
in this analysis. It has a very high signal efficiency, while it reduces the background
by one order of magnitude in all signal-side (the five τ decay-channels) and tag-side
(hadronic and semileptonic) combinations. The efficiencies are stated in Table 5.10.
An example distribution for the τ → πντ is shown in Figure 5.13.

For Belle II, only good CDC tracks were considered for the completeness-constraint,
due to the high-fake rate from SVD tracks. In consequence, the constraint discards
less background compared to Belle.

The completeness-constraint is part of an entire class of constraints on additional
physics objects in the event besides the reconstructed Υ(4S). Conveniently, the
FEI provides candidates with an associated SignalProbability for many particle
types. In particular, completeness-constraint like selections on the number of good6

additional photons, K0
S and π0 can be performed. The cut on additional photons

is strongly correlated to the final fit variable EECL, hence only the cuts on the
additional K0

S and π0 are applied. The efficiencies are stated in Table 5.11 for π0

and in Table 5.12 for K0
S. An example distribution for the τ → πντ is shown in

Figure 5.14 for π0 and in Figure 5.15 for K0
S.

6Candidates with a SignalProbability larger than 0.1 are considered good.
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Table 5.10.: Completeness-constraint on the number of additional good tracks. Stated
are the selection efficiencies for: correctly reconstructed candidates
εSignal, background candidates εBackground, and (in the case of Belle)
for candidates on data εData. Evaluated on 10 million events for each
component.

Decay-Channel Belle Belle II
εSignal εBackground εData εSignal εBackground

Hadronic Tag
e− 0.96 0.11 0.11 0.95 0.18
µ− 0.96 0.12 0.13 0.96 0.17
π 0.96 0.11 0.11 0.95 0.17
ρ 0.95 0.12 0.14 0.95 0.18
a1 0.96 0.17 0.17 0.94 0.28

Semileptonic Tag
e− 0.97 0.05 0.05 0.96 0.08
µ− 0.97 0.05 0.06 0.96 0.09
π 0.97 0.03 0.03 0.96 0.08
ρ 0.95 0.03 0.03 0.95 0.08
a1 0.95 0.05 0.05 0.94 0.14

Table 5.11.: Completeness-constraint on the number of additional π0. Stated are the
selection efficiencies for: correctly reconstructed candidates εSignal, back-
ground candidates εBackground, and (in the case of Belle) for candidates
on data εData. Evaluated on 10 million events for each component.

Decay-Channel Belle Belle II
εSignal εBackground εData εSignal εBackground

Hadronic Tag
e− 0.83 0.42 0.38 0.96 0.45
µ− 0.85 0.39 0.42 0.96 0.45
π 0.82 0.36 0.34 0.96 0.41
ρ 0.86 0.33 0.32 0.96 0.40
a1 0.79 0.33 0.34 0.95 0.39

Semileptonic Tag
e− 0.84 0.27 0.27 0.97 0.37
µ− 0.87 0.28 0.27 0.98 0.38
π 0.84 0.21 0.21 0.96 0.34
ρ 0.88 0.19 0.18 0.97 0.31
a1 0.79 0.18 0.18 0.96 0.30
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Figure 5.13.: Distribution of the number of additional good tracks in the event not
used for the Υ(4S) reconstruction for the τ → πντ decay channel.
Evaluated on 10 million events for each component, scaled according
to their expected relative fractions.
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Figure 5.14.: Distribution of the number of additional good π0 in the event not used
for the Υ(4S) reconstruction for the τ → πντ decay channel. Evaluated
on 10 million events for each component, scaled according to their
expected relative fractions.
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Figure 5.15.: Distribution of the number of additional good K0
S in the event not used

for the Υ(4S) reconstruction for the τ → πντ decay channel. Evaluated
on 10 million events for each component, scaled according to their
expected relative fractions.
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Table 5.12.: Completeness-constraint on the number of additional K0
S. Stated are the

selection efficiencies for: correctly reconstructed candidates εSignal, back-
ground candidates εBackground, and (in the case of Belle) for candidates
on data εData. Evaluated on 10 million events for each component.

Decay-Channel Belle Belle II
εSignal εBackground εData εSignal εBackground

Hadronic Tag
e− 1.00 0.93 0.91 1.00 0.94
µ− 1.00 0.93 0.91 1.00 0.93
π 1.00 0.92 0.92 1.00 0.94
ρ 1.00 0.93 0.93 1.00 0.94
a1 1.00 0.94 0.33 1.00 0.96

Semileptonic Tag
e− 1.00 0.90 0.90 1.00 0.93
µ− 1.00 0.90 0.92 1.00 0.92
π 1.00 0.89 0.90 1.00 0.92
ρ 1.00 0.90 0.90 1.00 0.92
a1 1.00 0.92 0.92 1.00 0.94

5.2.4.2. Best-Candidate Selection

The chosen signal-side selection criteria and the completeness-constraint ensure that
all signal-side candidates are (nearly7) mutual exclusive. Therefore a best-candidate
selection solely based on the SignalProbability of the tag-side is performed. Hence,
the same event can only contribute to one of the five investigated decay-modes. The
efficiencies of the best-candidate selection are stated in Table 5.13.

5.2.4.3. Continuum Suppression

In previous and similar Belle analyses a continuum suppression algorithm based a
multivariate method using event shape features was used to reduce the background
from continuum processes (see Section 3.3.1.3).

In this benchmark analysis, I take a more conservative approach to prevent any
systematic effects caused by an additional multivariate method besides the FEI.

7In rare cases a valid π and ρ candidate can be reconstructed in the same event, where the π0

from the ρ is not considered a good π0 from the FEI. In these cases the ρ candidate is discarded
in favor of the π candidate.
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Table 5.13.: Best-candidate selection efficiencies for correctly reconstructed candi-
dates εSignal, background candidates εBackground and (in the case of Belle)
for candidates on data εData. The efficiencies are calculated after all
completeness-constraints were applied. The statistical power of the back-
ground and data sample was very limited, hence the stated efficiencies
have large uncertainties ±0.1. Evaluated on 10 million events for each
component.

Decay-Channel Belle Belle II
εSignal εBackground εData εSignal εBackground

Hadronic Tag
e− 0.86 1.0 1.0 0.95 1.0
µ− 0.86 1.0 0.9 0.95 1.0
π 0.86 0.9 0.9 0.95 1.0
ρ 0.81 0.8 0.7 0.90 0.9
a1 0.87 1.0 1.0 0.95 1.0

Semileptonic Tag
e− 0.97 1.0 1.0 0.97 1.0
µ− 0.97 1.0 1.0 0.97 1.0
π 0.96 0.9 0.9 0.97 1.0
ρ 0.91 0.8 0.8 0.92 0.8
a1 0.97 1.0 1.0 0.96 0.9
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Carlo simulation and data is discarded
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Figure 5.16.: Distribution of the angle between the thrust axes of the signal-side and
tag-side for the hadronically tagged τ → πντ decay channel.

The continuum events are suppressed by a cut on a single well-understood variable

T = | cos(^(Ttag, Tsig))|, (5.15)

where Ttag and Tsig denote the thrust axis [1, Chapter 9.3] of the tag-side and signal-
side, respectively. Correctly reconstructed Υ(4S) events have a flat distribution in
this variable, because the two B meson decay spherically and independent of one
another. Hence, the signal selection efficiency is uniform, and no additional systematic
uncertainty is introduced. On the other hand, continuum events peak at large values
of T , because of their jet-like decay topology. This theoretical assumption is verified
(also for incorrectly reconstructed Υ(4S) decays) using Monte Carlo simulation by
Figure 5.16.

5.2.4.4. Final Selection

A final selection optimized for each tag-side and signal-side combination separately
is performed using: the SignalProbability σ of the tag-side, and the continuum
suppression variable T .
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In contrast to the previous selections, this final selection is performed during the
n-tuple analysis. A multi-dimensional minimization algorithm optimizing the cuts
by minimizing the expected negative S

S+B
was investigated. However, this approach

was not used in the final analysis, because the optimum is located in a problematic
phase-space region, with peaking background contributions from continuum processes
not present in the simulated data (see Section 5.3). Instead, the cuts were chosen in
order to avoid those problematic phase-space regions.

A loose cut on the SignalProbability σ > 0.01 was chosen for the hadronically
tagged channels, whereas a tighter cut σ > 0.05 was chosen for the semileptonically
tagged channels. This reflects the difference in the purity of the samples provided
by the respective tags. The hadronic τ decay modes suffer from large continuum
backgrounds, a tight cut T < 0.7 was chosen, to suppress those continuum events. In
particular this selection discards the phase space region with the largest data/Monte
Carlo disagreement. In contrast, the leptonic τ decay modes are expected to have
only a small continuum contribution, nevertheless a loose cut T < 0.85 was applied to
ensure that peaking contributions from unknown continuum processes are discarded
(see Section 5.3.2.1).

The final selection efficiencies and the expected significance of a counting experiment
of all events with an EECL below 100 MeV are stated in Table 5.14.

Previous analyses discarded in addition all events with additional non-good tracks.
Although this selection is very effective and suppresses additional background it was
not applied in this analyses for the following reasons. The non-good tracks are not
well understood, they depend strongly on the beam-conditions and the reconstruction
software (see Section 2.3.3.2). Furthermore the remaining off-resonance data sample
after this selection does not allow a sound estimation of possible peaking background
components. Previous analyses did not consider this potentially large systematic
uncertainty (see [16]).

For Belle II, the strict requirement of no additional tracks N = 0 is very inefficient,
due to the high-fake rate. Nevertheless, the cut is required to reduce the background
to a manageable level. Compared to Belle, large parts of the continuum background
remains, even in the usually clean hadronically tagged leptonic τ decay channels. It
is expected that this will significantly improve as soon as the Belle II reconstruction
is optimized. The current estimation does not provide much scientific value. In
consequence, Belle II is not further considered in the following, except for the final
sensitivity study in Section 5.4.2.

5.2.4.5. Self-Cross-Feed

All signal Monte Carlo events, which survive the final selection are considered as signal,
regardless if they are reconstructed correctly or not. For instance, a signal event with
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Table 5.14.: Final cuts on T and σ. Stated are the selection efficiencies for; correctly
reconstructed candidates εSignal, background candidates εBackground, and
(in the case of Belle) for candidates on data εData.

S√
B

refers to the

expected significance of a counting experiment of all events (number of
signal events S and number of background events B) below 100 MeV.

Decay-Channel Belle Belle II
S√
B

εSignal εBackground εData
S√
B

εSignal εBackground

Hadronic Tag
e− 2.40 0.73 0.39 0.39 0.5 0.80 0.45
µ− 1.77 0.73 0.40 0.40 0.7 0.81 0.48
π 2.39 0.59 0.13 0.13 0.6 0.64 0.17
ρ 1.16 0.56 0.11 0.11 0.4 0.62 0.16
a1 0.37 0.57 0.11 0.11 0.2 0.65 0.16

Semileptonic Tag
e− 2.12 0.35 0.10 0.09 0.6 0.38 0.13
µ− 1.49 0.36 0.10 0.10 0.7 0.40 0.14
π 2.23 0.28 0.04 0.04 0.6 0.30 0.06
ρ 1.43 0.24 0.03 0.03 0.5 0.28 0.05
a1 0.40 0.24 0.04 0.04 0.2 0.29 0.05

Table 5.15.: Belle: Expected number of events from the Monte Carlo simulation
and the obtained number on on-resonance and off-resonance data. The
uncertainty of the stated numbers is below 2%.

Hadronic Semileptonic
e µ π ρ a1 e µ π ρ a1

signal 80 52 124 79 21 79 48 115 89 23
background 4428 4056 6154 12244 6915 3961 3382 4223 8032 5135
total 4508 4109 6278 12323 6937 4041 3430 4339 8122 5158
on-resonance 4079 3545 6019 11572 5542 4131 3421 5070 9109 5050

continuum 264 180 2625 5481 2685 61 43 1089 1604 720
off-resonance 222 175 2306 5105 1702 135 103 1574 2059 707
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Table 5.16.: Belle: The self-cross-feed of the reconstructed signal events. The rows
contain the decay-channels in which the events where reconstructed. The
upper five rows contain the hadronically tagged, and the lower five rows
the semileptonically tagged reconstructed decay-channels. The columns
indicate the Monte Carlo truth. Each cell contains the fraction of the
events in the reconstructed decay-channel (row), which originate from
the Monte Carlo decay-channel (column). The label other refers to the
remaining τ decay-channels, which are not considered in this analysis.
The uncertainty due to limited statistics is approximately ±0.01.

Hadronic Semileptonic
e µ π ρ a1 other e µ π ρ a1 other

e 0.91 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
µ 0.00 0.93 0.01 0.02 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
π 0.04 0.19 0.20 0.27 0.04 0.25 0.00 0.00 0.00 0.00 0.00 0.00
ρ 0.01 0.02 0.03 0.68 0.18 0.08 0.00 0.00 0.00 0.00 0.00 0.00
a1 0.00 0.00 0.00 0.01 0.82 0.17 0.00 0.00 0.00 0.00 0.00 0.00
e 0.05 0.00 0.00 0.00 0.00 0.01 0.86 0.01 0.00 0.00 0.00 0.08
µ 0.00 0.06 0.00 0.00 0.00 0.00 0.01 0.87 0.01 0.02 0.00 0.03
π 0.00 0.01 0.01 0.01 0.00 0.01 0.04 0.17 0.20 0.24 0.04 0.24
ρ 0.00 0.01 0.00 0.04 0.01 0.01 0.01 0.02 0.03 0.64 0.16 0.07
a1 0.01 0.01 0.00 0.00 0.05 0.01 0.00 0.00 0.00 0.01 0.76 0.15

a decay chain B → τ [→ eνν ]ν might be reconstructed as B → τ [→ πντ ]ντ , where
the electron was mis-identified as a pion. Hence, the shape of the signal component
contains two contributions: correctly reconstructed signal events (that is the signal
event is reconstructed in the correct decay channel) and incorrectly reconstructed
signal events (that is the signal event is reconstructed in a different decay channel).
The last contribution is referred to as self-cross-feed.

Table 5.16 states the fraction of the events reconstructed in a decay-channel, which
originates from a Monte Carlo decay-channel. There is nearly no self-cross-feed
between the hadronic and semileptonic tag. This means, signal events, whose tag-
side decayed semileptonically are not reconstructed by the hadronic tag. On the other
hand, signal events, whose tag-side decayed hadronically are rarely reconstructed by
the semileptonic tag.

The largest self-cross-feed can be found in the τ → πντ decay-channel. Leptons which
fail to pass the PID criteria are collected by this channel, as well as τ → ρντ decays,
where the π0 is missed. Furthermore, around 25% of the events reconstructed in the
pion channel originate from τ decay channels which are not explicitly considered
in this analysis. In consequence, the systematic uncertainty of the π channel is
potentially large, and is influenced by the τ branching fractions, PID selection
efficiencies, and the π0 reconstruction efficiency.
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Figure 5.17.: Normed distribution of EECL for the τ → eνν decay channel with
hadronic tag.

5.2.4.6. Extra energy in the electromagnetic calorimeter

The sum of all depositions in the electromagnetic calorimeter, which (according to the
reconstruction software) do not originate from the reconstructed Υ(4S) candidate, is
called the raw extra energy in the electromagnetic calorimeter Eraw

ECL.

In order to reduce the dependency on the varying beam-background conditions
between the experiments and runs (see Section 2.3.3.2), analyses using the extra
energy usually consider only ECL clusters for the calculation of EECL, which fulfill
additional requirements.

In this thesis, only clusters are considered without an associated track and with an
energy greater than 50, 100 or 150 MeV if they are located in the barrel, forward
end-cap or backward end-cap, respectively. The resulting quantity is the cleaned
extra energy in the electromagnetic calorimeter Eclean

ECL .

The quantity is shown in Figure 5.17 for the τ → eνν decay channel with hadronic
tag. The signal component peaks at zero, while the background is slowly rising
towards higher values. In consequence, Eclean

ECL can be used as a fit variable, to
determine the branching fraction of B → τ ντ .

Previous analysis considered more advanced cluster cleanings, e.g. [89] vetoed clusters,
which were located close to a reconstructed track if certain criteria based on the ECL
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cluster shape were fulfilled. The EECL variable was extensively studied in [90]. It is
used in many analyses and its distribution for the signal component was validated on
data using double-tagged events [91]. The distribution for background components
can be validated on off-resonance data and sidebands (see Section 5.3).

For Belle II, a cluster cleaning based on the ECL cluster shapes and cluster timing
will be important to mitigate the increased beam-background. However, at the time
of writing the necessary reconstruction algorithms are not available in the official
Belle II Monte Carlo campaign.

For the sake of clarity, I drop the index clean in the following, hence EECL ≡ Eclean
ECL .

5.2.5. Branching Fraction Extraction

The absolute branching fraction of B → τ ντ is determined by extracting the number of
events containing this decay Nsig,d in each decay-channel d with an extended unbinned
maximum likelihood fit on the extra energy in the electromagnetic calorimeter EECL

(see Section 5.2.4.6)

BR(B → τ ντ ) =
Nsig,d

NBB · εd
(5.16)

where NBB = (7.72± 0.1) · 108 is the number of produced BB events8 determined
by the Belle experiment, and εd is the overall reconstruction efficiency in the decay-
channel (see Table 5.18).

Figure 5.18 and Figure 5.19 show the distribution of EECL for all components used
in the fit. The continuum component was estimated with a linear regression using
the off-resonance sample.

The overall PDF is defined as

P (EECL) =
∑

d=e,µ,π,ρ,a1

(
εdNBBBR(B → τ ντ )Psig,d(EECL) +Nbkg,dPbkg,d(EECL)

)
,

(5.17)

where d denotes the reconstructed decay-channel, and Psig,d and Pbkg,d the PDFs
obtained from Monte Carlo simulation and off-resonance data for signal and back-
ground, respectively. There are six free parameters in the fit: the branching fraction
BR(B → τ ντ ) and the five background normalizations Nbkg,d. The relative fractions
of the different background components was fixed. The fit is performed independently
for the hadronic and semileptonic tag.

8The Belle analyses assumed equal branching fractions for charged and neutral B mesons. Hence
the approximation NBB ≈ 2N

B
+
B
− is used here. The correction is small compared to the

uncertainties of the measurements and therefore neglected.
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Figure 5.18.: Distribution of EECL for the hadronically tagged candidates. The
stacked histograms show the expectation from Monte Carlo simulation
and off-resonance data. The continuum component was estimated with
a linear regression using the off-resonance sample.
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Figure 5.19.: Distribution of EECL for the semileptonically tagged candidates. The
stacked histograms show the expectation from Monte Carlo simulation
and off-resonance data. The continuum component was estimated with
a linear regression using the off-resonance sample.
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5.2.5.1. Component description

The extraction of the branching fraction from EECL relies on the precise knowledge
of the shapes of all background processes. The following background processes were
considered during the fit. Each component is described by a histogram PDF using
24 equidistant bins in the region between 0 GeV and 1.2 GeV.

Υ(4S) → B+B− is background from charged B± decays. Also called generic charged
Υ(4S) background. It is the main background component in all decay-channels.
In total six (out of ten) streams of Monte Carlo were used to determine the
shape of this component.

Υ(4S) → B0B0 is background from neutral B0 decays. Also called generic neutral
(or mixed) Υ(4S) background. This type of background is suppressed by the
tag-side requirements. In total six (out of ten) streams of Monte Carlo were
used to determine the shape of this component.

e+e− → cc is background from charmed quarks. Also called charm continuum
background. Is is the main continuum background in semileptonically tagged
decay-channels. This component is estimated from off-resonance data in the
final fit. For the alternative shape description based on the Monte Carlo
simulation in total six (out of six) streams of Monte Carlo were used.

e+e− → qq (uds) is background from light quarks. Also called uds continuum
background. It is the main continuum background in hadronically tagged
decay-channels. This component is estimated from off-resonance data in the
final fit. For the alternative shape description based on the Monte Carlo
simulation in total six (out of six) streams of Monte Carlo were used.

B+ → rare is background from rare B± decays such as B+ → `+νγ . Although rare
decays have an extremely low branching fraction, their final state can be nearly
indistinguishable from B+ → τ+ντ . In fact, B+ → τ+ντ is contained in this
component as well, but was vetoed using Monte Carlo information. In total
fifty (out of fifty) streams of Monte Carlo were used to determine the shape of
this component.

B0 → rare is background from rare B0 decays such as B0 → Kνν. This type of
background is suppressed by the tag-side requirements compared to the charged
rare decays. In total fifty (out of fifty) streams of Monte Carlo were used to
determine the shape of this component.

B+ → u`+ν is background from CKM-suppressed charged b → u transitions. If the
decay products from the u are lost during the reconstruction, this component
can fake a signal component. In total twenty (out of twenty) streams of Monte
Carlo were used to determine the shape of this component.
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B0 → u`+ν is background from CKM-suppressed neutral b → u transitions. This
type of background is suppressed by the tag-side requirements compared to the
charged b → u transitions. In total twenty (out of twenty) streams of Monte
Carlo were used to determine the shape of this component.

B+ → τ+ντ In total ≈ 1200 streams of Monte Carlo were used to determine the
shape of this component.

off-resonance data is continuum background recorded 60 MeV below the Υ(4S)
resonance. It can be used to estimate the complete continuum background
without using Monte Carlo simulation. This includes the above mentioned
continuum background from quarks, QED processes and other (even unknown)
continuum processes. In total ≈ 0.08 stream of off-resonance data were available
and used to determine the shape of the continuum component.

The usually used Belle Monte Carlo campaign did not include QED processes.
However, there are Monte Carlo simulated QED events available for Belle, those could
not be used during this thesis, due to technical issues. Previous Belle analysis did not
use this type of Monte Carlo. Nevertheless, this thesis studied the QED processes
using the corresponding Belle II Monte Carlo simulated event for e−e+ → γγ ,
e−e+ → e−e+, e−e+ → µ−µ+, and e−e+ → τ−τ+. The τ−τ+ component yields a
small number of additional continuum events, which are suppressed by the continuum
suppression selection (see Figure 5.16). No candidates from other QED processes
were found to pass the selection criteria of this analysis. However, differences between
the Monte Carlo simulation of the continuum component and the off-resonance data
are observed (see Section 5.3). In consequence, the off-resonance data was used to
estimate the continuum background shape.

5.2.5.2. Statistical uncertainty

The statistical uncertainty of the fit is estimated from the likelihood profile with
respect to the branching fraction BR(B → τ ντ ). The significance of the fit is
determined by Wilk’s theorem (see [89, Chapter 7.7]) using the likelihood ratio of
the maximum likelihood obtained from the fit Lmax and the likelihood under the
null-hypothesis L0 assuming a branching fraction of zero

σ =

√
2 ln

Lmax

L0

. (5.18)

5.3. Validation

Before the final fit on on-resonance data was performed, the distribution of the extra
energy in the calorimeter in the different tag-side and signal-side combinations was
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validated. The background processes were studied using Monte Carlos simulation
(Section 5.3.1) and data-driven methods (Section 5.3.2). The fit procedure was
validated (Section 5.3.4). And finally possible systematic uncertainties of the analyses
were investigated (Section 5.3.5).

The following sections summarize the findings of this validation. Tag-side and signal-
side combinations which are not explicitly mentioned are in agreement with the
expectation.

5.3.1. Monte Carlo based study

Monte Carlo simulated events were used to investigate the known background
processes. In total six streams were investigated. An overview of the Monte Carlo
matching error flags obtained from this sample on the tag-side and signal-side can
be found in Section D.2.1.

5.3.1.1. Leptonic τ decay channels

The leptonic τ decay channels were investigated using Monte Carlo simulated events.

The main background originates from semileptonic B± decays accompanied by a
correctly reconstructed Btag decay: Υ(4S) → BtagB−[→ D0`−ν ]. The additional D0

meson decays into neutral final state particles like D0 → K0
LK0

L(K0
L) or D0 → K0

Lπ
0.

The contributing decay channels from neutral B0B0 pairs are very similar Υ(4S) →
BtagB0[→ D−`+ν]. The D− meson decays further into neutral final state particles
and an additional charged track, which is assigned to the tag-side.

The B+ → u`+ν component is dominated by the decay B+ → π0`+ν, where the π0

is missed during the reconstruction.

The contribution from rare decays like B+ → `+νγ is negligible small assuming either
the branching fractions predicted by the Standard Model or the current experimental
limits.

The background from continuum processes described by the Monte Carlo simulation
is very small as well. Here the lepton is usually produced via a semileptonic D decay,
whereas the tag-side is reconstructed from the remaining charged tracks.
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5.3.1.2. Hadronic τ decay channels

The hadronic τ decay channels were investigated using Monte Carlo simulated events.

The background from charged B+B− pairs is diverse. The main contribution originates
from decay-channels with a high branching fraction and accompanied by a correctly
reconstructed tag-side. For instance, Υ(4S) → BtagB−[→ D0π−], where the D meson

decays further into neutral final state particles like D0 → K0
LK0

L(K0
L) or D0 → K0

Lπ
0.

Another common example is a semileptonic decay-chain Υ(4S) → BtagB−[→ D0[→
K−`+ν]`−ν ], where the K meson is mis-identified as a pion.

The contributions from neutral B0B0 pairs are even more diverse, since both B
mesons are wrongly reconstructed. There is no noticeable pattern, except for the
obvious influence of the branching fractions.

The B+ → u`+ν component is dominated by the decay B+ → π0`+ν, where the π0 is
missed during the reconstruction and the lepton is mis-identified as a pion. However,
due to the additional mis-identification this component is negligible, in contrast to
the leptonic decay-channels.

On the other hand, the contribution from rare decays like B → K0
Lπ is small.

The background from continuum processes described by the Monte Carlo simulation
is as large as the background from Υ(4S) decays. The semileptonically tagged
continuum background events are dominated by e−e+ → cc, because the tag-side
requires a lepton, which is rarely produced by light quark pairs: uu, dd and ss.
Hence, light quark pairs are suppressed by the mis-identification rate of leptons.

On the other hand, the hadronically tagged continuum background events have
a large contribution from light quarks pairs, because no reconstructed lepton is
required. This contribution is as large as the one from e−e+ → cc. This can be
explained by the fact, that the D meson on the tag-side is usually mis-reconstructed,
i.e. not matched to a D meson Monte Carlo particle. Probably, true D mesons are
suppressed due to their different kinematics compared to the D mesons typically
found in Υ(4S) decays. In consequence cc pairs and light quark pairs contribute in
equal parts to the continuum background in hadronically tagged hadronic τ decay
channels.

5.3.2. Off-resonance based study

Off-resonance data was used to validate the shape of the continuum component and
to identify unknown continuum background processes. The off-resonance was scaled
to account for the difference in luminosity recorded on-resonance and off-resonance,
and the shifted center-of-mass energy.
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5.3.2.1. Peaking continuum background in semileptonically tagged τ → eνν

A large peaking background component in the semileptonically tagged τ → eνν
decay channel was observed on off-resonance data by [89]. This peaking background
is not described by the Monte Carlo simulation. It was suspected to be caused by
e−e+ → γ [→ DD]γ [→ e−e+], which is not part of the standard Belle Monte Carlo.
A selection on the minimal invariant mass Msig > 0.2 GeV of the signal-side electron
with all other tracks in the event, and on the minimal invariant mass Mtag > 0.2 GeV
of the tag-side lepton with all other tracks in the event was introduced by [89] to
suppress this background. This selection is called invariant-mass-selection in the
following.

This analysis observed the same peaking background on on-resonance and off-
resonance data. However, the chosen cuts on the SignalProbability σ > 0.05
of the Btag and on the continuum suppression variable T < 0.85 (see Section 5.2.4.3),
discard already all events, which would be discarded by the invariant-mass-selection.
This selection is called final-semileptonic-electron-channel-selection in the following.

Figure 5.20 shows the effect of the two selection sets and their relative complement,
that is the events which survive the final-semileptonic-electron-channel-selection,
but not the invariant-mass-selection. Since the relative complement is negligible
small, an additional invariant-mass-selection besides the final-semileptonic-electron-
channel-selection does not have any effect. Hence, the invariant-mass-selection was
not applied in this thesis.

5.3.2.2. Peaking continuum background in hadronic τ decay channels

A large peaking background component in the hadronic τ decay channels is ob-
served on on-resonance and off-resonance data before the final selection on the
SignalProbability σ and T are applied. This peaking background is not described
by the Monte Carlo simulation.

Off-resonance data was used to verify that the final selection σ > 0.01(0.05) for
hadronic (semileptonic) Btag and T < 0.7 discards this peaking background compo-
nent. From this one can conclude, that the observed peak is caused by an unknown
continuum component, and that the component is heavily suppressed by the final
selection. The on-resonance and off-resonance distributions of EECL can be found in
Section D.2.2.

Note that this peaking background is different from the one observed in the semilep-
tonically tagged τ → eνν decay channel. The invariant-mass-selection introduced in
Section 5.3.2.1 (where the leptons are replaced by the corresponding hadrons) does
not suppress this peaking component.
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Figure 5.20.: Distribution of EECL for the τ → eνν decay channel. A cut on Msig >
0.2 GeV and Mtag > 0.2 GeV is shown in black and discards parts of
the suspected peaking background. The selection on σ > 0.05 and
T < 0.85, used for the semileptonically tagged τ → eνν decay channel
is shown in yellow and is discards large amounts of the background
including its peaking contribution. Finally the relative complement of
the invariant mass selection with respect to the σ and T selection is
shown in red.

The previous Belle analysis which used the hadronic tag did not report any observation
of this peaking background [16], whereas the previous Belle analysis which used
the semileptonic tag did observe severe differences between Monte Carlo simulation
and data as well, and obtained the shape for the continuum component solely from
off-resonance data. This led to larger systematic uncertainties in the semileptonically
tagged measurement compared to the hadronically tagged measurement, as can be
seen in Table 5.17. This thesis estimates the continuum shape from off-resonance as
well.

5.3.3. K0
S Sideband based study

The K0
S sideband was used to validate the shape of the overall background and

to identify unknown Υ(4S) background processes. The sideband is defined by the
presence of two additional tracks forming a good K0

S candidate reconstructed by the
FEI, which is not used for the reconstruction of the Υ(4S) candidate. Subtracting
the processes identified using the off-resonance data, this sideband can be used to
investigate the shape of Υ(4S) components, in particular the contributions due to
K0

L mesons.

By the approximate symmetry under the exchange of K0
S → K0

L, it is expected to
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detect peaking background due to processes containing K0
L in the signal region, where

additional K0
S candidates are vetoed.

Background processes with a K0
L can be mitigated by the introduction of a K0

L

veto, as investigated by [92]. However, K0
L are the least understood physics objects

at the Belle experiment, hence this leads to a large systematic uncertainty (see
Section 5.3.5).

There was no significant deviation from the Monte Carlo expectation observed in
the hadronically tagged channels.

A possible peaking background component in the semileptonically tagged leptonic τ
decay channels was observed after the final selection. The distributions can be found
in Section D.2.3.

In contrast to the hadronic-tag, the semileptonic-tag used in this thesis was not
calibrated. This can cause an incorrect relative fraction between correctly and
incorrectly tagged B mesons, and in consequence could explain the observed deviation.
The calibration factors for the semileptonic tag-side efficiency are not available, yet.
Therefore, this observation was not further investigated during this thesis.

5.3.4. Fitting Procedure

The fitting procedure was validated using six streams of Monte Carlo simulated
events. Different options for the smoothing of the PDFs and the constraints used
in the fit were investigated. For the final fit it was decided to use the same fitting
procedure as in the previous Belle analysis [89]. This ensured a valid comparison.

However, the result of the fit depends heavily on the fit procedure. For instance,
using the mis-modeled continuum Monte Carlo simulation, using b-spline based
smoothing or adding additional free parameters for the normalization of the continuum
component does change the final result and potentially increases the statistical
uncertainty. To the best knowledge of the author, previous analyses did not take
these differences, caused by the fitting procedure, into account. They used either
Monte Carlo or off-resonance data, and fixed all relative branching fractions of the
background components.

5.3.4.1. Monte Carlo Measurements

The final fit was performed independently on six streams of Monte Carlo simulated
events. The tag-side calibration was not used, because it is only applicable to
recorded data. In addition, the continuum shape was taken from Monte Carlo for
these tests.

As can be seen from Figure 5.21 the results on Monte Carlo simulation reproduce
the simulated branching fraction of B → τ ντ of 1.06 · 10−4 within the statistical
uncertainties.
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Figure 5.21.: Results of the final fit performed on the six streams of Monte Carlo
simulated events. The gray bands show the predicted branching frac-
tions by the SM, and the dotted black line the current world average,
which was used in the Monte Carlo simulation.

5.3.4.2. Continuum shape description

Several alternative procedures were investigated to estimate the continuum shape
from off-resonance data and Monte Carlo simulation. For the final fit the shape is
extracted using a linear regression (i.e. a first-order polynomial was fitted) of the
off-resonance data. To estimate the systematic uncertainty, the fit was repeated
100 times by re-sampling the off-resonance data using the bootstrap method (see
[34, Chapter 4.3.5]). These fits were performed using first-order, second-order and
third-order polynomials. The standard deviation of the fit-results is quoted as the
systematic uncertainty due to the continuum description.

The procedure yields a relative uncertainty of 36.3% and 21.7% for the hadronically
and semileptonically tagged measurements, respectively. Compared to previous
results, this increases the systematic uncertainty of the overall measurements. Pre-
vious results did either use the Monte Carlo description [16], or compared the
first-order polynomial only with a single second-order polynomial, fitted on the
original off-resonance data [15].

5.3.4.3. Closure Tests

The linearity of the fit (see [34, Chapter 10.5]) was tested for 21 different simulated
branching fractions between 0 and 5 · 10−4. For each simulated branching fraction
100 fits were performed using toy Monte Carlo data-samples. The toy Monte Carlo
data-samples were created by randomly drawing events from the expected signal and
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Figure 5.22.: Linearity test of the combined fit for the hadronically and semileptoni-
cally tagged sample. The fitted branching fraction BR is in agreement
with the simulated branching fraction over a wide range of possible
branching fractions between 0 and 5 · 10−4.

background PDFs. On average the fitted branching fraction reproduces the simulated
branching fraction, i.e. no bias is observed, as can be seen from Figure 5.22.

In addition, the pull distribution (see [34, Chapter 10.5]) of the fit was investigated
by repeating the final fit using 100 toy Monte Carlo data-samples. The toy Monte
Carlo data-samples were created by randomly drawing events from the fitted signal
and background PDFs.

The obtained pull distributions for the hadronically and semileptonically tagged
samples is compatible with a standard normal distribution, as can be seen from
Figure 5.23. In other words: the distribution of the fit is approximately Gaussian, no
bias is observed and the calculated statistical uncertainty covers the correct interval.

5.3.4.4. K0
S Sideband

The fit was performed on the K0
S sideband using the signal shape of the signal region.

The EECL can be found in Figure D.5 and Figure D.6. As expected, there was no
signal observed using the hadronically tagged sample.

A significant excess was observed on the semileptonically tagged sample with a local
statistical significance of 2.76 σ. This excess was already discussed in Section 5.3.3.
Further research is required as soon as the semileptonic tag-side calibration factors
for the FEI are available.
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Figure 5.23.: Pull distributions of the combined fit for the hadronically and semilep-
tonically tagged sample. The distribution is in agreement with a
standard normal distribution. µ and σ denote the mean and standard
deviation of the pull distribution, respectively.

5.3.5. Systematic uncertainties

Correctly quantifying the uncertainty of a measured value is one of the most important
part of a scientific measurement. The statistical uncertainty, caused by the finite
amount of available data, is theoretically well understood and is either calculated
analytically using the likelihood profile of the fit, or is extracted from a Monte Carlo
generated distribution.

The systematic uncertainties, caused by deviations from assumptions made by the
analyst, are notoriously ill-defined. Usually, in order to estimate the systematic
uncertainties, those assumptions are relaxed or alternatives are investigated. Typical
sources for systematic uncertainties are the selection efficiencies obtained on Monte
Carlo, assumed branching fractions and PDF shapes used in the fit.

The dominating systematic uncertainties in the measurement of B → τ ντ are the
uncertainty on the tag-side efficiency correction and the PDF shapes used in the
fit, in particular the continuum description. Table 5.17 summarizes all systematic
uncertainties investigated by previous Belle measurements and the estimation for
this analysis.

This thesis focuses on the dominating systematic uncertainties mentioned above. In
a complete analysis it is best practice to quantify all known systematic uncertainties.
The known systematic uncertainties and their scaling behavior with increasing
luminosity are briefly summarized below.
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The tag-side efficiency correction directly enters the calculation of the branching
fraction in the denominator of Equation 5.16. The determination of the hadronic
tag-side efficiency and its uncertainty was already discussed in Section 4.3.4.
The semileptonic tag-side efficiency is not known yet, but is expected to be
similar to the hadronic tag-side efficiency, because large parts of the tag-
side reconstruction are identical. The associated systematic uncertainty is
estimated by combining the statistical and systematic uncertainty of the tag-
side efficiency correction factors. This uncertainty decreases with increasing
luminosity, because the control channels used in the calibration can be measured
with higher precision.

The PDF shapes used in the fit are usually determined from Monte Carlo simulation.
The shapes can be sensitive to the statistical fluctuations (discussed here) and
mis-modeling of the underlying Monte Carlo sample (see discussion on branching
fraction and efficiencies below). The associated systematic uncertainty is
estimated by the standard deviation of 100 fits performed using slightly varied
PDF shapes, generated by re-sampling the Monte Carlo simulated events using
the bootstrap method (see [34, Chapter 4.3.5]). This uncertainty decreases
with increasing luminosity, because usually a larger luminosity is accompanied
by a larger Monte Carlo sample. Alternatively, PDF shapes can be modeled by
(theoretically motivated) analytical functions. Here the difference obtained by
choosing different functions can be used to estimate the uncertainty associated
with the specific choice used in the fit.

The continuum description determines the shape of the continuum component in
the fit. The shape can be either determined by the Monte Carlo simulation
(as described above) or taken from the off-resonance data. While the former
is poorly modeled (as discussed in Section 2.3.3.3), the later suffers from low
statistics. In particular the hadronic τ decays are affected by continuum
background. In the case of off-resonance data, the systematic uncertainty is
estimated by fitting different analytical functions (usually first and second order
polynomials) to the off-resonance data. The detailed procedure used in this
thesis is described in Section 5.3.4.2. The uncertainty decreases with increasing
luminosity, because more off-resonance data is available. Furthermore, physical
parameters determining the continuum spectra, like branching fractions and
fragmentation constants, can be measured more precisely.

The branching fractions of the τ are only known with a finite precision. They
enter the calculation of the branching fraction in the denominator of Equa-
tion 5.16. The associated systematic uncertainty is estimated by varying the
branching fractions by their known uncertainty. The uncertainty decreases with
increasing luminosity, because a B factory like Belle II is as well a τ factory,
hence the branching fractions can be measured more precisely. However, the
precision is eventually systematically limited.
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The background branching fractions which are assumed during the simulation of
the Monte Carlo sample, used to determine the PDF shapes, are only known
with a finite precision. In particular the branching fractions of peaking back-
ground are important, because the induced uncertainty on the normalization of
a peaking component cannot be determined by the fit. The associated system-
atic uncertainty is estimated by varying the weight of the corresponding events
and repeating the fit procedure. The uncertainty decreases with increasing
luminosity, because the contributing background processes can be measured
more precisely. However, the precision of background branching fractions is
eventually systematically limited, hence it is expected that at some points the
scaling of this uncertainty decouples from the luminosity.

The track reconstruction efficiency has been studied by [93]. It has been found
that a systematic uncertainty of 0.35% has to be assigned for each charged
track on the signal-side. The uncertainty of the reconstruction efficiency for
the tag-side is already accounted for in the tag-side efficiency correction.

The π0 reconstruction efficiency has been studied by [94]. The deviation between
Monte Carlo events and data has been found to be 4%. This uncertainty
influences only the τ → ρντ decay-channel, hence the associated systematic
uncertainty is reduced by the fraction of signal events reconstructed in this
channel (see [89]).

The particle identififcation selection efficiency has been studied by [95] and [96].
The deviation between Monte Carlo events and data influences the leptonic τ
decays on the signal-side. The uncertainty of the PID selection efficiency for
the tag-side is already accounted for in the tag-side efficiency correction.

The signal reconstruction efficiency directly enters the calculation of the branch-
ing fraction in the denominator of Equation 5.16. The statistical uncertainty is
usually small, because large amounts of signal Monte Carlo events are used to
determine this efficiency. The systematic uncertainty depends on the validity
of the τ decay models used in the Monte Carlo generator (see Section 5.1.3).

The best-candidate selection can potentially have a different efficiency and modify
the shape observed on data. The associated systematic uncertainty can be
estimated by choosing a different best-candidate selection criterion, for instance
a random best-candidate selection, or by not applying a best-candidate selection
at all (as done by [89]).

The K0
L veto efficiency has been studied by [92]. It can influences the shape and

potentially the selection efficiency for signal and background. Previous Belle
analyses (e.g. [16]) used this veto to suppress background processes including
K0

L particles. The associated systematic uncertainty is estimated by varying
the weight of the corresponding events and repeating the fit procedure. Since
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the KLM clusters used to reconstruct K0
L are the least understood physics

object of the Belle experiment, the K0
L veto was not used during this thesis. In

addition the K0
L could also influence the EECL distribution, however this was

not studied by previous analyses.

The completeness-constraint efficiency can be studied using double-tagged sam-
ples. The fraction of events with additional charged tracks can be compared
between Monte Carlo and data. [89] studied this uncertainty using a double-
tagged sample B+ → D0π+ and obtained compatible results on Monte Carlo
and data with a deviation of 1.9%, which can be used as an estimate for the
systematic uncertainty.

The number of BB pairs directly enters the calculation of the branching fraction
in the denominator of Equation 5.16. The Belle collaboration determined
NΥ(4S) = (7.72± 0.1) · 108. Therefore the associated systematic uncertainty is
1.3%. Strictly speaking, this uncertainty is already contained in the tag-side
efficiency uncertainty, because the final absolute branching fraction is measured
with respect to the investigated control channels, hence the uncertainty already
enters in the measurement of the control channels. Nevertheless, the previous
Belle measurements added this uncertainty on the number of BB pairs to their
list of systematic uncertainties.

5.4. Results

The results obtained from the Belle data and a sensitivity estimation for Belle II are
summarized in this section.

5.4.1. Belle I

The rare decay channel B → τ ντ was chosen as benchmark, because it was regarded as
well-understood and established, however a previously neglected or under-estimated
systematic uncertainty of the continuum background description was found to be
sizeable.

In consequence, the overall uncertainty of the measurement could not profit from
the increased statistics, due to the necessary relaxation of the selection criteria and
the large systematic uncertainties associated with the peaking backgrounds in the
hadronic τ decay modes. These backgrounds are unlikely to be produced by b2bii

or the FEI, since they were neither encountered on the validation of tag-side only
(see Section 4.3.2) nor in the control channels used for the tag-side calibration (see
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Table 5.17.: Relative systematic uncertainties in percent. The previous measurements
by Belle based on the hadronic tag [16] and the semileptonic tag [15] are
shown in the first and second column respectively. The estimated leading
systematic uncertainties of this analysis are shown in the third and fourth
column. The tag-side efficiency correction for the semileptonic tag is not
yet available, therefore the corresponding uncertainty was estimated with
the uncertainty of the hadronic tag-side efficiency correction. The symbol
- indicates that the corresponding uncertainty was not investigated.

Source Relative uncertainty in %
[16] [15] Hadronic Sem.-lep

Tag-side efficiency 7.1 12.6 7.0 ≈ 7

PDF shapes Signal 4.2
Background 8.9 8.5 9.0 6.6

Continuum Description - 14.1 36.3 21.7
τ branching fraction 0.6 0.2 0.4 0.4
Background branching fraction 3.8 3.1 - -
tracking efficiency 0.3 0.4 0.4 0.4

π0 efficiency 0.5 1.1 0.9 1.0
PID efficiency 1.0 0.5 - -
signal reconstruction efficiency 0.4 0.6 0.4 0.3
best candidate selection efficiency - 0.4 - -

K0
L veto efficiency 7.3

completeness-constraint efficiency - 1.9 - -
number of BB pairs 1.3 1.4 1.3 1.3

Total 14.7 21.2 38.1 23.8
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Section 4.3.4). Further research and studies of the encountered background processes
are required.

The detailed results of the final fit, including the result of fitting the decay channels
independently, are stated in Table 5.18 together with the results of the previous Belle
analysis for comparison. The fitted distributions can be found in Figure 5.24 and
Figure 5.25. The combined fits are compatible with the SM and the previous Belle
results.

There are two conspicuous individual fits. Firstly, no significant signal was observed
in the hadronically tagged τ → πντ channel, which is compatible with the previous
individual fit. A more in-depth investigation hints that the linear regression of
continuum off-resonance data, is not sufficient to describe the data in the signal
region, and hence the signal contribution is suppressed although there is clearly a
signal peak visible (see Figure 5.24). The large systematic uncertainty due to the
continuum description of the hadronically tagged measurements reflects this issue in
the final result.

Secondly, the semileptonic τ → a1ντ channel yields a large branching fraction with
large uncertainties. This excess has a local statistical significance of 1.56 σ. This could
be caused either by a statistical fluctuation or by the missing tag-side calibration
factors for the semileptonic tag.

The achieved relative statistical uncertainty is very similar to the previous analyses.
However, in comparison with previous analyses, the analysis presented in this thesis
is very conservative.

The final selection was not optimized for maximal statistical significance, instead a
phase-space region was chosen which allows an accurate estimation and validation
of the background shapes on off-resonance data and sidebands. In particular, the
completeness-constraint was not fully exploited, in contrast to previous analyses.

The shape of the continuum component was estimated from off-resonance data and
does not rely on Monte Carlo simulation. The previous Belle analysis based on the
semileptonic tag took the same approach. Whereas the previous Belle analysis based
on the hadronic tag relied on Monte Carlo simulation and consequently reported a
smaller systematic uncertainty (see Table 5.17).

This work advocates the use of machine learning. However, to ensure a sound
validation of b2bii and the FEI, only simple cuts on well-understood quantities were
used for the signal-side reconstruction and final selection. In particular, this work
did not employ a multivariate continuum suppression, which could have introduced
additional systematic uncertainties due to the encountered mis-modeling of the
continuum processes.

The K0
L veto described in [92] was not used, because KLM clusters used to reconstruct

K0
L are the least understood physics object of the Belle experiment. However, a
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Table 5.18.: Results obtained by previous Belle analyses compared to this analysis.
The columns show the number of fitted B → τ ντ events Nsig, the
selection efficiency including the τ branching fractions ε, and the fitted
branching fraction BR. The stated selection efficiencies for the hadronic
tag include the hadronic tag-side efficiency correction estimated from
data. The tag-side efficiency correction for the semileptonic tag was
not available at the time of writing, and is therefore not included. The
combined hadronic tag has a statistical significance of 3.82 σ. The
combined semileptonic tag has a statistical significance of 5.20 σ.

Decay-Channel Previous This analysis

Nsig ε(10−4) BR(10−4) Nsig ε(10−4) BR(10−4)

Hadronic Tag [16]

e− 16+11
−9 3.0 0.68+0.49

−0.41 116+34
−33 6.3 2.38+0.71

−0.68

µ− 26+15
−14 3.1 1.06+0.63

−0.58 71+32
−31 4.1 2.21+0.99

−0.96

π 8+10
−8 1.8 0.57+0.70

−0.59 −43+64 9.8 −0.58+0.84

ρ 14+19
−8 3.4 0.52+0.72

−0.62 225+64
−63 6.2 4.67+1.33

−1.31

a1 – – – −5+45 1.6 −0.39+3.54

Combined 62+23
−22 11.2 0.72+0.27

−0.25 327+89
−88 28.1 1.51+0.41

−0.40

Semileptonic Tag [89]

e− 47± 25 7.4 0.90± 0.47 152+40
−40 8.4 2.34+0.62

−0.61

µ− 13± 21 5.5 0.34± 0.55 73+36
−35 5.2 1.81+0.90

−0.87

π 57± 21 4.7 1.82± 0.68 57+60
−57 12.3 0.60+0.63

−0.60

ρ 119± 33 7.3 2.16± 0.60 202+68
−67 9.6 2.73+0.92

−0.90

a1 – – – 96+63
−62 2.5 4.97+3.24

−3.19

Combined 222± 50 25.0 1.25± 0.28 528+106
−103 38.0 1.80+0.36

−0.35

162



Chapter 5. B → τ ν 5.4. Results

0.00 0.25 0.50 0.75 1.00

EECL in GeV

0

50

100

150

200
N

um
b

er
of

E
nt

ri
es

B → τν

e+e−→ Υ(4S)

e+e−→ non− resonant

Data

(a) τ → e−νeντ

0.00 0.25 0.50 0.75 1.00

EECL in GeV

0

50

100

150

200

N
um

b
er

of
E

nt
ri

es

(b) τ → µ−νµντ

0.00 0.25 0.50 0.75 1.00

EECL in GeV

0

100

200

300

N
um

b
er

of
E

nt
ri

es

(c) τ → π+ντ

0.00 0.25 0.50 0.75 1.00

EECL in GeV

0

200

400

600

N
um

b
er

of
E

nt
ri

es

(d) τ → ρντ

0.00 0.25 0.50 0.75 1.00

EECL in GeV

0

100

200

300

N
um

b
er

of
E

nt
ri

es

(e) τ → a1ντ

Figure 5.24.: Fitted distribution of EECL for the hadronically tagged candidates.
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Figure 5.25.: Fitted distribution of EECL for the semileptonically tagged candidates.
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possible effect on the extra-energy in the electromagnetic calorimeter was studied
using the K0

S sideband.

The increase in the expected reconstruction efficiency for the hadronic tag is
compatible with the expected improvements due to the increased tag-side efficiency.
In particular the leptonic τ decay-modes agree well with the expectation. The quoted
numbers include the tag-side efficiency correction obtained from control channels on
data.

The result for the combined fit using the hadronic tag including statistical and
systematic uncertainties is

BR(B → τ ντ ) =
(
1.51+0.41

−0.40 ± 0.57
)
· 10−4. (5.19)

The shift of the central values with respect to the previous Belle analysis can be
explained with the additional uncorrelated systematic uncertainty discovered during
this thesis. The previous Belle analysis was too optimistic in the estimation of the
systematic uncertainty due to the continuum background. Furthermore, although
the same dataset was used, the overlap between the investigated signal events is
maximally 40%, due to the relaxed selection criteria and the improved overall signal
selection efficiency.

The increase in the expected reconstruction efficiency for the semileptonic tag is
not as large as expected. One reason is the tight cut on the SignalProbability of
> 0.05, which was necessary due to the encountered peaking backgrounds. Moreover
this efficiency does not yet include the tag-side efficiency correction.

The result for the combined fit using the semileptonic tag including statistical and
systematic uncertainties is

BR(B → τ ντ ) =
(
1.80+0.36

−0.35 ± 0.43
)
· 10−4. (5.20)

The shift in the central value with respect to the previous Belle analysis can be
explained by the additional systematic uncertainty due to the continuum background.
Although the previous analysis used off-resonance data as well to estimate the
continuum shape, this thesis relaxed the selection criteria and has a larger overall
signal selection efficiency. In consequence, the continuum background description
is different. Furthermore, the presented result does not contain the semileptonic
tag-side calibration, which was not available at the time of writing. The tag-side
calibration influences both: the signal selection efficiency, and the shape of the
dominating charged BB background. Finally, although the same dataset was used,
the overlap between the investigated events is maximally 65%, due to the relaxed
selection criteria and the improved overall signal selection efficiency.

Taking into account the partly uncorrelated statistical uncertainty and the uncorre-
lated dominating component of the systematic uncertainties, the obtained central
values for the branching fraction of B → τ ντ are compatible with the previous Belle
analyses, the previous BaBar analyses, and the SM, as can be seen from Figure 5.26.
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0 1 2 3 4 5
B(B → τν)/10−4
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Figure 5.26.: Results obtained by the previous Belle analysis and this thesis. The
gray bands show predicted branching fractions by the SM, and the
dotted black line the current world average, which was used in the
Monte Carlo simulation.
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Table 5.19.: Statistical uncertainty: Scaled with 1√
L for Belle II.

Scenario Luminosity Relative Uncertainty in % State

L in ab−1 Hadronic Semileptonic

Belle 0.711 37.5 22.4 Measured
b2bii 0.711 27.1 20.0 Measured
Belle II 1 22.9 16.9 Scaled
Belle II 5 10.2 7.5 Scaled
Belle II 50 3.2 2.4 Scaled

5.4.2. Belle II

The rare decay B → τ ντ was used to validate the entire software stack developed
during this thesis. The initial goal of validating the software was accomplished.
The b2bii package, the mva package and the FEI are ready to be used for physics
analyses.

Assuming that the current reconstruction issues in BASF2 will be fixed, one can
estimate the statistical uncertainty on the branching fraction B → τ ντ achievable by
Belle II, based on the statistical uncertainty obtained using b2bii.

Table 5.19 states the expected relative statistical uncertainty with increasing in-
tegrated luminosity. As described in the previous section, the leading systematic
uncertainties are expected to scale with the luminosity as well.

Based on the findings described in this thesis, several recommendations for the
Belle II experiment can be deduced.

1. The Belle II reconstruction software has to be (and is currently) improved.
The fake-rate of tracks has to be decreased significantly.

2. The Monte Carlo simulation does not describe the continuum background
satisfactorily. A larger off-resonance data sample is paramount to describe the
continuum background.

3. The data-driven techniques presented in Section 3.3.3 should be used to ensure
to suppress background from continuum processes.

4. The extra energy in the electromagnetic calorimeter has to be better understood.
Previous analysis primarily tested the shape of the signal component using
double-tagged samples [91]. However, the shape of the background distributions
(in particular from continuum processes) were not validated to the same degree
of accuracy.

5. The tag-side calibration is key to the successful employment of the FEI, it should
be provided by the collaboration for both: the hadronic and the semileptonic
tag.
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5.5. Conclusion

The benchmark analysis B → τ ντ successfully used the entire stack of software
developed during this thesis. The b2bii package was used to convert the Monte
Carlo simulated Belle events and the data recorded by the Belle experiment. The
hadronic and semileptonic tag was provided by the FEI, which in turn uses the mva

package.

The expected improvements due to the larger tag-side efficiency were observed in all
tag-side and signal-side combinations on Monte Carlo simulated Belle events. The
obtained results on recorded data are consistent: with the Monte Carlo expectation,
among each other, with the previous Belle analyses and with the Standard Model
prediction. The Belle II reconstruction software is not yet mature enough to allow a
detailed sensitivity study.

The limitations of the Belle Monte Carlo simulation and current Belle II reconstruction
became apparent. The availability of recorded data, provided by the b2bii package,
proved indispensable. In particular the continuum processes require further research,
in order to reduce the systematic uncertainties in measurements which rely on the
extra energy in the electromagnetic calorimeter. An increased off-resonance sample
size would allow to constrain the shape of the continuum component more precisely.

The analysis presented in this chapter successfully reproduced the previous results
reported by Belle and BaBar. It can be used as a template for future analyses which
use b2bii or the FEI.
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Chapter 6
Conclusion

This PhD thesis covered four major topics.

The Belle to Belle II Conversion package (b2bii) enables Belle II physicists to
analyze the dataset recorded by Belle using BASF2. Thus, the entire Belle II
analysis software stack was validated on recorded data, years before recorded
data from the Belle II experiment was available.

The multivariate analysis package (mva) enables Belle II physicists to keep up
with the rapid developments in the field and to easily employ modern machine
learning algorithms in their work. Most of the multivariate methods used in the
reconstruction and analysis algorithms in BASF2 are built on the mva package
and use the default classification method FastBDT, both developed during this
thesis.

The Full Event Interpretation algorithm (FEI) enables Belle II physicists to mea-
sure a wide range of interesting decays with a minimum amount of detectable
information. The FEI more than doubles the tag-side efficiency compared to
its (already very successful) predecessor.

The B → τ ν benchmark analysis validated the entire Belle II analysis software
stack. Unresolved reconstruction issues in the Belle II framework and previously
unknown background contributions were discovered before Belle II started
recording data. It successfully reproduced the previous results reported by
Belle. The analysis serves as a prototype for other current (using b2bii) and
upcoming exclusively tagged analyses.

All software packages developed during this thesis were validated on data and are
used in production by Belle II physicists all over the world.
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Appendix A
B2BII

A.1. Monitoring Histograms

The full list of extracted quantities used for validating the Belle to Belle II Conversion.
The number in parenthesis states the number of quantities.

Beam Parameters (16):

• the experiment, run and event number (3);

• the energy in the HER (High Energy Ring), LER (Low Energy Ring) and CMS
(Center Of Mass System) (3);

• the crossing angle between the HER and LER (1);

• and the position and uncertainty of the interaction point (9).

K0
S, Λ, and converted γ (201):

• invariant mass, four-momentum and vertex position (8);

• four-momentum and POCAs (point of closest approach) of the daughters (14);

• PID information calculated by the K0
S finder (4);

• invariant mass, four-momentum and vertex position after a mass-constraint
vertex fit (8);

• uncertainties of the four-momenta and vertex position calculated by the mass-
constrained vertex-fit (28);

• p-value of the mass-constrained vertex fit (1);
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• and Monte Carlo truth of the total momentum and PDG value of the daughters
(4);

K0
L (9):

• KLM cluster position (3);

• number of KLM layers with hits (1);

• innermost KLM layer with hits (1);

• and Monte Carlo truth of the four-momentum and PDG value (4);

Tracks (41):

• PID information including quality indicators (6);

• four-momentum and POCA (7);

• uncertainties of the four-momentum and POCA (28);

γ (48):

• four-momentum and ECL cluster position (7);

• uncertainties of the four-momentum and cluster position (28);

• spherical coordinates of the ECL cluster position (3);

• ECL cluster shape quantities (6);

• and Monte Carlo truth of the four-momentum (4);

π0 (41):

• four-momentum and vertex-position (7);

• invariant mass calculated using four-momentum and the daughter four-momenta
(2)

• uncertainties of the four-momentum and vertex position (28);

• and Monte Carlo truth of the four-momentum (4);

MC Information (12):

• four-momentum of the MC particle (4);

• PDG code of the MC particle (1);

• vertex position or POCA of the MC particle (3);

• PDG code of the mother of charged and neutral pions (3);

• and number of daughters (1)
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Appendix B
MVA

B.1. Loss Functions

In HEP the quantity we care about, e.g. the combined statistical and systematical
uncertainties, usually cannot be optimized efficiently. Instead a surrogate loss-
function L is used, to optimize the statistical model by minimizing the empirical risk
(defined in Equation 3.2). This loss-function is not uniquely defined and the choice
is not straightforward. A detailed discussion can be found in [23].

In this section I present a framework to derive suitable loss-functions based on the
maximum likelihood principle.

The likelihood to observe the data D = {y1, y2, . . . , yn} given a parametrized distri-
bution assumption g(~w) is

p(D|~w) =
n∏
i

g(yi, ~w). (B.1)

The maximum likelihood principle states that the optimal values of the parameters
~w can be estimated by maximizing the likelihood of observing the data.

Instead of maximizing the likelihood, one can equivalently minimize the negative
logarithm of the likelihood

− log (p(D|~w)) = −
n∑
i

log (g(yi, ~w)) . (B.2)

We can now identify the right-hand side of Equation B.2 with the empirical risk
defined in Equation 3.2 to extract the maximum likelihood loss-function

LML = − log (g(y, ~w)) . (B.3)
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In multivariate analysis, the parameters ~w are a function of the observed features ~x.
In consequence, although the assumed distribution g can be simple, the underlying
statistical model can be extremely complex.

B.1.1. Regression

In the case of regression, a reasonable distribution assumption would be a Gaussian
distribution

g = N (y, µ(~x), σ) (B.4)

=
1√
2πσ

e
− (y−µ)2

2σ
2 . (B.5)

Using the maximum likelihood principle we can derive the ubiquitous square loss-
function

Lsquare = − log (N (y, µ)) (B.6)

∼ (y − µ)2, (B.7)

where terms and factors independent of y and ~x were omitted. So assuming a
Gaussian distribution for the target y, we can estimate the mean value of y using
our statistical model µ = f̂(~x) by minimizing the square loss in Equation B.7.

B.1.2. Classification

In the case of classification the underlying distribution is a Bernoulli distribution

g = B(y, p(~x)) (B.8)

= py · (1− p)1−y (B.9)

Using the maximum likelihood principle we can derive the ubiquitous cross-entropy
loss-function

Lcross−entropy = − log (B(y, p)) (B.10)

= y log p+ (1− y) log(1− p). (B.11)

So, using the Bernoulli distribution for the target y, we can estimate the mean value
of y using our statistical model p = f̂(~x) by minimizing the cross-entropy loss in
Equation B.11.

It is important to notice, that while the maximum likelihood principle produces a
suitable loss function to optimize the parameters ~w of the distribution g, it does not
state the optimal estimator f̂(~x) to predict y. For instance, instead of the mean
value, one could also use the median of the estimated distribution g. The correct
choice depends on the cost of a correct or wrong decision, respectively.
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B.1.3. Cross Entropy

There is an interesting connection to information theory here. By observing that the
right-hand side of Equation B.2 is an approximation of an expectation value over
the true distribution f of y for fixed ~x

E
y∼f

(− log (g(y, ~w)) ≈ −
n∑
i

log (g(yi, ~w)) (B.12)

we can identify the left-hand side with the cross-entropy

H(p, q) = −E
p

log(q). (B.13)

The cross-entropy measures the difference between two probability distributions p
and q. It measures the number of bits required on average to identify an event drawn
from p, if the employed coding scheme was optimized for q. The larger the difference
between q and p the larger is their cross-entropy.

The presented maximum likelihood loss-function LML does not only maximize the
likelihood, it also minimizes the cross-entropy between the true distribution f and
the estimated distribution g.

B.2. Python Interface

The mva package contains an API (application programming interface) defining a set
of Python hook-functions, which can be used to build, fit, save, load and apply
arbitrary Python-based MVA methods. By implementing the hook-functions, the
user can employ all MVA frameworks which provide a Python interface.

For the most popular Python-based MVA frameworks, the mva package already
predefines all the necessary hook-functions, however the user can still override
them in a user-defined Python file.

In the following I describe the standard hook-functions used to fit and apply a
Python-based MVA method. During the fitting-phase:

• the total number of events, features and spectators, and a user-defined configu-
ration string is passed to get model returning a state-object, which represents
the statistical model of the method in memory and is passed to all subsequent
calls;

• a validation dataset is passed to begin fit, which can be used during the fitting
to monitor the performance;
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• the training dataset is streamed to partial fit, which may be called several
times if the underlying method is capable to perform out-of-core fitting;

• finally end fit is called returning a serializable object, which is stored together
with the user-defined Python file as a backend-agnostic WeightFile in the
Belle II Conditions Database, and can be used later to load the fitted
method during the inference-phase.

During the inference-phase:

• the user-defined Python file is loaded from the WeightFile into the Python

interpreter and the serialized object is passed to load returning the state-object,
which represents the statistical model of the method in memory;

• the state-object and a dataset is passed to apply returning the response of
the statistical model, usually either the signal-probability (classification) or an
estimated value (regression).

In addition, the user can override the feature importance function, to include the
feature importances in the automatic evaluation of the mva package.

B.3. Feature Importance on the Benchmark

The importance of features is a useful information for physicists, to gain knowledge
about the (usual) black-box behavior of an MVA method. However, as can be seen
from Figure 3.4b, the importance estimations of features strongly depends on the
method. In fact the contribution of an individual feature to the classification is an
ill-posed problem, due to the multivariate correlations.

To mitigate this problem, the mva package implements three different approaches
to estimate the feature importance; these are listed below in order of increasing
accuracy and computing time.

Internal The importance estimation of the method itself. Not all methods provide
this (most neural network implementations do not), and some can give only a
rough estimate (total information gain of a feature in a boosted decision tree).

Iterative The method is fitted N + 1 times (where N is the number of features).
Each time one of the features is excluded from the fitting-phase. The difference
in the area under the receiver operating characteristic curve (AUC ROC) is
used to estimate the feature importance. This approach is independent of the
used method but underestimates the importance of features whose information
is highly correlated to another feature.
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Recursive The method is fitted N(N + 1)/2 times (where N is the number of
features). Here, the iterative approach is applied recursively, by removing the
most-important feature after each iteration. This will take the correlations of
variables into account.

The three methods of the mva package using FastBDT as backend, are compared to
the methods provided by NeuroBayes (used by Belle). The iterative approach of the
mva package corresponds roughly to the loss (the loss in significance if the variable
is removed) method of NeuroBayes. The recursive approach of the mva package
corresponds roughly to the significance calculated by NeuroBayes.

As can be seen from Table B.1 different feature importance estimation methods do
not provide a compatible estimate of the feature importance, except for the most
important features. This is due to the many correlations between the variables. For
instance: of the three pairwise invariant masses M

K
−
π

+ , M
K
−
π

0 , and M
π

+
π

0 , only

two are independent; and the PID variables Kaon− ID
K
− and Pion− ID

K
− contain

exactly the same information.

Nevertheless, the feature importances can provide valuable insight into the infor-
mation utilized by the MVA method, and facilitates the detection of errors in the
software (for instance physical observables which include MC information by mistake).
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Table B.1.: Feature importance ranks (most important feature is 1, least important
28) for the benchmark problem presented in Section 3.2.2 estimated by
different approaches.

Feature FastBDT NeuroBayes

Internal Iterative Recursive Loss Significance

M 1 1 1 1 2
M

K
−
π

0 2 4 2 2 1

pt
K
− 3 2 4 14 14

M
K
−
π

+ 4 7 7 5 9

dr 5 22 6 10 3
Kaon− ID

K
− 6 26 9 4 6

M
π

+
π

0 7 12 23 3 4

pt 8 11 17 6 5
p
π

0 9 14 19 13 7

dr
K
− 10 16 13 24 24

pt
π

0 11 15 24 11 13

p
K
− 12 24 12 18 22

p 13 23 26 15 16
dr
π

+ 14 9 15 9 11

χ2
prob 15 17 27 7 10

Pion− ID
K
− 16 10 25 28 28

pz 17 25 10 17 17
dz 18 27 11 22 19
pt
π

+ 19 18 5 27 27

dz
K
− 20 13 14 21 21

pz
K
− 21 28 18 26 26

χ2

prob,π
+ 22 8 20 12 12

pz
π

0 23 21 8 16 15

dz
π

+ 24 6 28 25 25

p
π

+ 25 3 21 8 8

χ2

prob,K
− 26 5 3 23 23

pz
π

+ 27 19 16 19 20

χ2

prob,π
0 28 20 22 20 18
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C.1. Default Configuration

A detailed description of the current default configuration of the Full Event

Interpretation is given in this section. In the default configuration all employed
multivariate classifiers have the same configuration: a boosted decision tree (FastBDT)
with 400 trees, a depth of 3 per tree, a shrinkage of 0.1 and a sub-sampling rate
(or bagging rate) of 0.5. The output of the boosted decision tree is named σ below.
There is no cut applied on the output of the vertex fitting, however the information
of the vertex fitting is used in the multivariate classifier.

All candidates reconstructed from one specific decay-channel are ranked according
to a variable and only the n best candidates are kept for each decay-channel – this is
known as pre-cut. A multivariate classifier is applied to all candidates. Afterwards,
all candidates reconstructed from a specific particle are ranked according to the
output of the associated multivariate classifier and only the m best candidates are
kept for each particle – this is known as post-cut. The pre-cut and post-cut of all
particles is summarized in Table C.1.

In the remainder of this chapter, the particles explicitly reconstructed by the FEI are
discussed in detail. The FEI does not explicitly reconstruct intermediate resonances
like ρ, ω or K∗, however these resonances are implicitly exploited by the multivariate
classifiers applied to all candidates. The explicitly reconstructed decay-channels
are listed below. The highlighted decay-channels were already used by the Full

Reconstruction (FR) algorithm employed by Belle. The charge-conjugated particle
and decay-channels are always implied throughout the text.
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Table C.1.: pre-cut: ranking criteria and number of best candidates which is kept
for each decay-channel before the vertex fitting and the multivariate
classifier application. post-cut: ranking criteria and number of best
candidates which is kept in total after the multivariate classifier was
applied. P-ID is the particle identification information of particle P from
the PID sub-detectors, E is the energy of the particle, σ is the signal
probability of the particle outputted by the corresponding multivariate
classifier, M is the invariant mass, MP is the nominal mass of particle P,
Q is the released energy in the decay, QP is the nominal released energy
in the decay of the particle P, and

∏
i σi is the product over the signal

probabilities of all daughter particles.

Particle pre-cut post-cut

e+ 10 highest e-ID 5 highest σ and 0.01 < σ
µ− 10 highest µ-ID 5 highest σ and 0.01 < σ
π+ 20 highest π-ID 10 highest σ and 0.01 < σ
K+ 20 highest K-ID 10 highest σ and 0.01 < σ
γ 40 highest E 20 highest σ and 0.01 < σ

π0 20 lowest |M −M
π

0| 10 highest σ and 0.01 < σ

K0
S 20 lowest |M −M

K
0
S
| 10 highest σ and 0.01 < σ

K0
L 20 lowest |M −M

K
0
L
| 10 highest σ and 0.01 < σ

D0 (had) 20 lowest |M −M
D

0| 10 highest σ and 0.001 < σ

D0 (sem) 20 highest
∏

i σi 10 highest σ and 0.001 < σ

D0 (klong) 20 highest
∏

i σi 10 highest σ and 0.001 < σ
D+ (had) 20 lowest |M −M

D
+| 10 highest σ and 0.001 < σ

D+ (sem) 20 highest
∏

i σi 10 highest σ and 0.001 < σ
D+ (klong) 20 highest

∏
i σi 10 highest σ and 0.001 < σ

D+∗ (had) 20 lowest |Q−Q
D

+∗ | 10 highest σ and 0.001 < σ

D+∗ (sem) 20 lowest |Q−Q
D

+∗ | 10 highest σ and 0.001 < σ

D+∗ (klong) 20 lowest |Q−Q
D

+∗ | 10 highest σ and 0.001 < σ

D+
s (had) 20 lowest |M −M

D
+
s
| 10 highest σ and 0.001 < σ

D+
s (klong) 20 highest

∏
i σi 10 highest σ and 0.001 < σ

D+∗
s (had) 20 lowest |Q−Q

D
+∗
s
| 10 highest σ and 0.001 < σ

D+∗
s (klong) 20 lowest |Q−Q

D
+∗
s
| 10 highest σ and 0.001 < σ

B+ (had) 20 highest
∏

i σi 20 highest σ
B+ (sem) 20 highest

∏
i σi 20 highest σ

B+ (klong) 20 highest
∏

i σi 20 highest σ

B0 (had) 20 highest
∏

i σi 20 highest σ

B0 (sem) 20 highest
∏

i σi 20 highest σ

B0 (klong) 20 highest
∏

i σi 20 highest σ
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C.1.1. Final State Particles

Particles which can directly be reconstructed from Tracks, ECL clusters, KLM

clusters, or V0 objects are considered final state particles by the FEI.

C.1.1.1. Charged

The charged final state particles e+, µ+, π+ and K+ are reconstructed from Tracks

which are close to the IP, that is a maximum radial distance of 2cm and maximum
distance along the beam-pipe of 4cm).

Only particles from the primary interaction are regarded as signal. The input
features for the multivariate classifiers include: the likelihoods of the PID detectors;
kinematics and tracking variables; the position in the best-candidate ranking of the
pre-cut.

Protons are not used in the default configuration of the FEI.

C.1.1.2. Neutral

Photons γ are reconstructed from ECL clusters and V0 objects. Only photons
with an energy of at least 140MeV (100MeV) in the forward, 130MeV (50MeV) in
the barrel, and 200MeV (150MeV) in the backward region, are considered. The
numbers in parenthesis are for converted Belle data.

Only particles from the primary interaction are regarded as signal. The input features
for the multivariate classifiers include: kinematic variables and the position in the
best-candidate ranking of the pre-cut. Additionally, cluster information like the
numbers of hits and the timing is used for photons reconstructed from ECL clusters.

Λ mesons (reconstructed from V0 objects) and neutrons are not used in the default
configuration of the FEI. K0

S and K0
L mesons are discussed below.

Neutrinos ν are not explicitly reconstructed by the FEI, because they exit the Belle
and Belle II detector undetected. Therefore, the FEI treats decay-channels containing
a neutrino separately from other decay-channels, due vastly different uncertainties
on the kinematics.

C.1.2. Light Neutral Mesons

C.1.2.1. π0

Neutral pions π0 are reconstructed from two photons.
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1. π0 → γγ

For Belle II the FEI does this reconstruction itself, on converted Belle data the
default π0 reconstruction of the B2BII package is used. Only π0 candidates with
an invariant mass between 80MeV and 180MeV are considered.

The input features for the multivariate classifiers include: kinematic variables and
the position in the best-candidate ranking of the pre-cut. In addition the signal
probability σ of the two daughter photons is used for Belle II.

C.1.2.2. K0
S

Neutral kaons K0
S are reconstructed from two charged pions, two neutral pions or a

V0 object.

1. K0
S → π+π− 2. K0

S → π0π0

For converted Belle data only the V0 objects are used. Only K0
S candidates with

an invariant mass between 400MeV and 600MeV are considered.

The input features for the multivariate classifiers include: kinematic and vertex
position variables, and the position in the best-candidate ranking of the pre-cut. In
addition the information provided from the Belle K0

S finder is used for converted
Belle data. For Belle II the signal probability σ, tracking variables and the total
momentum in the rest frame of the K0

S, of each daughter is used.

C.1.2.3. K0
L

Neutral kaons K0
L are reconstructed from KLM clusters. All candidates are con-

sidered. The usual signature of hits in the KLM without an associated track does
only provide a very rough estimate of the direction and energy of the assumed K0

L.
Therefore, the FEI treats decay-channels containing K0

L particles separately from
other decay-channels, due to the vastly different uncertainties on the kinematics.

The input features for the multivariate classifiers include: the energy and the KLM

cluster timing information.
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C.1.3. Charmed Mesons

All charmed mesons have the same input features for the multivariate classifiers:
lorentz invariant kinematic and vertex variables of the charmed meson; kinematic,
tracking and vertex variables of all daughters evaluated in the rest frame of the
charmed meson; the decay mode identifier and signal probability σ of all daughters;
the invariant mass of all possible combinations of daughter particles; and the position
of the candidate in the best candidate ranking of the pre-cut.

Since all kinematic and vertex informations are either Lorentz-invariant like the
invariant mass or evaluated in the rest frame of the charmed meson, the performance
of the multivariate classifier is independent of the B meson decay from which the
charmed meson originated.

C.1.3.1. D0 meson from hadronic decay-channels

The following hadronic channels are used to reconstruct D0 mesons:

1. D0 → K−π+

2. D0 → K−π+π0

3. D0 → K−π+π0π0

4. D0 → K−π+π+π−

5. D0 → K−π+π+π−π0

6. D0 → π−π+

7. D0 → π−π+π0

8. D0 → π−π+π0π0

9. D0 → π−π+π+π−

10. D0 → K0
Sπ

0

11. D0 → K0
Sπ

+π−

12. D0 → K0
Sπ

+π−π0

13. D0 → K−K+

14. D0 → K−K+π0

15. D0 → K−K+K0
S

Only hadronic D0 candidates with an invariant mass between 1.7GeV and 1.95GeV
are considered. If not stated otherwise D0 always refers to a D0, which decayed in
one of the hadronic decay modes listed above, throughout the text.

C.1.3.2. D0 meson from semileptonic decay-channels

Due to the different kinematic properties, D0 mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct D0 mesons:

1. D0 → K−e+ν

2. D0 → K−µ+ν

3. D0 → K−π0e+ν

4. D0 → K−π0µ+ν

5. D0 → K0
Sπ
−e+ν

6. D0 → K0
Sπ
−µ+ν

There are no further cuts applied to semileptonic D0 candidates.
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C.1.3.3. D0 meson from decay-channels with K0
L

Due to the different kinematic properties, D0 mesons from decay-channels which
include a K0

L are processed separately by the FEI. The following channels are used
to reconstruct D0 mesons:

1. D0 → K0
Lπ

0

2. D0 → K0
Lπ

+π−
3. D0 → K0

Lπ
+π−π0

4. D0 → K−K+K0
L

There are no further cuts applied to D0 candidates with K0
L.

C.1.3.4. D+ meson from hadronic decay-channels

The following hadronic channels are used to reconstruct D+ mesons:

1. D+ → K−π+π+

2. D+ → K−π+π+π0

3. D+ → K−K+π+

4. D0 → K−K+π+π0

5. D+ → π+π0

6. D+ → π+π+π−

7. D+ → π+π+π−π0

8. D+ → K0
Sπ

+

9. D+ → K0
Sπ

+π0

10. D+ → K0
Sπ

+π+π−

11. D+ → K+K0
SK0

S

Only hadronic D+ candidates with an invariant mass between 1.7GeV and 1.95GeV
are considered. If not stated otherwise D+ always refers to a D+, which decayed in
one of the hadronic decay modes listed above, throughout the text.

C.1.3.5. D+ meson from semileptonic decay-channels

Due to the different kinematic properties, D+ mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct D+ mesons:

1. D+ → K0
Se+ν

2. D+ → K0
Sµ

+ν

3. D+ → K−π+e+ν

4. D+ → K−π+µ+ν

There are no further cuts applied to semileptonic D+ candidates.

C.1.3.6. D+ meson from decay-channels with K0
L

Due to the different kinematic properties, D+ mesons from decay-channels which
include a K0

L are processed separately by the FEI. The following channels are used
to reconstruct D+ mesons:
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1. D+ → K0
Lπ

+

2. D+ → K0
Lπ

+π0

3. D+ → K0
Lπ

+π+π−

4. D+ → K+K0
LK0

S

5. D+ → K+K0
LK0

L

There are no further cuts applied to D+ candidates with K0
L.

C.1.3.7. J/ψ meson

The following hadronic channels are used to reconstruct J/ψ mesons:

1. J/ψ → e+e− 2. J/ψ → µ+µ−

Only hadronic J/ψ candidates with an invariant mass between 2.8GeV and 3.5GeV
are considered.

C.1.3.8. D+∗ meson from decay-channels

The following channels are used to reconstruct D+∗ mesons:

1. D+∗ → D0π+ 2. D+∗ → D+π0 3. D+∗ → D+γ

Only D+∗ candidates with a released energy in the decay between 0GeV and 0.3GeV
are considered. Separate particle lists are created for D+∗ meson reconstructed from
hadronic, semileptonic and klong D mesons. If not stated otherwise D+∗ always
refers to a D+∗, which decayed in one of the hadronic decay modes listed above,
throughout the text.

C.1.3.9. D∗(2010)0 meson from decay-channels

The following channels are used to reconstruct D∗(2010)0 mesons:

1. D∗(2010)0 → D0π0 2. D∗(2010)0 → D0γ

Only D∗(2010)0 candidates with a released energy in the decay between 0GeV and
0.3GeV are considered. Separate particle lists are created for D∗(2010)0 meson
reconstructed from hadronic, semileptonic and klong D mesons. If not stated
otherwise D∗(2010)0 always refers to a D∗(2010)0, which decayed in one of the
hadronic decay modes listed above, throughout the text.

C.1.3.10. D+
s meson from hadronic decay-channels

The following hadronic channels are used to reconstruct D+
s mesons:
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1. D+
s → K+K0

S

2. D+
s → K+π+π−

3. D+
s → K+K−π+

4. D+
s → K+K−π+π0

5. D+
s → K+K0

Sπ
+π−

6. D+
s → K−K0

Sπ
+π+

7. D+
s → K+K−π+π+π−

8. D+
s → π+π+π−

9. D+
s → K0

Sπ
+

10. D+
s → K0

Sπ
+π0

Only hadronic D+
s candidates with an invariant mass between 1.68GeV and 2.1GeV

are considered. If not stated otherwise D+
s always refers to a D+

s , which decayed in
one of the hadronic decay modes listed above, throughout the text.

C.1.3.11. D+
s meson from decay-channels with K0

L

Due to the different kinematic properties, D+
s mesons from decay-channels which

include a K0
L are processed separately by the FEI. The following channels are used

to reconstruct D+
s mesons:

1. D+
s → K+K0

L

2. D+
s → K+K0

Lπ
+π−

3. D+
s → K−K0

Lπ
+π+

4. D+
s → K0

Lπ
+

5. D+
s → K0

Lπ
+π0

There are no further cuts applied to D+
s candidates with K0

L.

C.1.3.12. D+∗
s meson from decay-channels

The following channels are used to reconstruct D+∗
s mesons:

1. D+∗
s → D+

s γ 2. D+∗
s → D+

s π
0

Only D+∗
s candidates with a released energy in the decay between 0GeV and 0.3GeV

are considered. Separate particle lists are created for D+∗
s meson reconstructed from

hadronic D+
s and klong D+

s mesons. If not stated otherwise D+∗
s always refers to a

D+∗
s , which decayed in one of the hadronic decay modes listed above, throughout

the text.

C.1.4. B mesons

All B mesons have the same input features for the multivariate classifiers: kinematic
and vertex variables excluding quantities correlated to the beam-constrained mass;
kinematic, tracking and vertex variables of all daughters evaluated in the rest frame
of the B meson; the decay mode identifier and signal probability σ of all daughters;
and the position of the candidate in the best candidate ranking of the pre-cut.
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C.1.4.1. B+ meson from hadronic decay-channels

The following hadronic channels are used to reconstruct B+ mesons:

1. B+ → D0π+

2. B+ → D0π+π0

3. B+ → D0π+π0π0

4. B+ → D0π+π+π−

5. B+ → D0π+π+π−π0

6. B+ → D0D+

7. B+ → D0D+K0
S

8. B+ → D0∗D+K0
S

9. B+ → D0D+∗K0
S

10. B+ → D0∗D+∗K0
S

11. B+ → D0D0K+

12. B+ → D0∗D0K+

13. B+ → D0D∗(2010)0K+

14. B+ → D0∗D∗(2010)0K+

15. B+ → D+
s D0

16. B+ → D0∗π+

17. B+ → D0∗π+π0

18. B+ → D0∗π+π0π0

19. B+ → D0∗π+π+π−

20. B+ → D0∗π+π+π−π0

21. B+ → D+∗
s D0

22. B+ → D+
s D0∗

23. B+ → D0K+

24. B+ → D−π+π+

25. B+ → D−π+π+π0

26. B+ → J/ψK+

27. B+ → J/ψK+π+π−

28. B+ → J/ψK+π0

29. B+ → J/ψK0
Sπ

+

Only hadronic B+ candidates with an beam-constrained mass above 5.2GeV and an
absolute deviation of the energy from the beam energy below 0.5GeV are considered.

C.1.4.2. B+ meson from semileptonic decay-channels

Due to the different kinematic properties, B+ mesons from semileptonic decay-
channels are processed separately by the FEI. The following semileptonic channels
are used to reconstruct B+ mesons:

1. B+ → D0e+ν

2. B+ → D0µ+ν

3. B+ → D0∗e+ν

4. B+ → D0∗µ+ν

5. B+ → D−π+e+ν

6. B+ → D−π+µ+ν

7. B+ → D+∗π+µ+ν

8. B+ → D+∗π+e+ν

In addition all hadronic channels listed in Section C.1.4.1 are used, where one of the
hadronic D mesons is replaced by a semileptonic D meson. There are no further cuts
applied to semileptonic B+ candidates.
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C.1.4.3. B+ meson from decay-channels with K0
L

Due to the different kinematic properties, B+ mesons from decay-channels which
include a K0

L are processed separately by the FEI. All hadronic channels listed in
Section C.1.4.1 are used, where either one of the hadronic D mesons is replaced by
a klong D meson, or one of the K0

S is replaced by a K0
L. There are no further cuts

applied to B+ candidates with K0
L.

C.1.4.4. B0 meson from hadronic decay-channels

The following hadronic channels are used to reconstruct B0 mesons:

1. B0 → D−π+

2. B0 → D−π+π0

3. B0 → D−π+π0π0

4. B0 → D−π+π+π−

5. B0 → D−π+π+π−π0

6. B0 → D0π+π−

7. B0 → D−D0K+

8. B0 → D−D∗(2010)0K+

9. B0 → D+∗D0K+

10. B0 → D+∗D∗(2010)0K+

11. B0 → D−D+K0
S

12. B0 → D+∗D+K0
S

13. B0 → D−D+∗K0
S

14. B0 → D+∗D+∗K0
S

15. B0 → D+
s D−

16. B0 → D+∗π+

17. B0 → D+∗π+π0

18. B0 → D+∗π+π0π0

19. B0 → D+∗π+π+π−

20. B0 → D+∗π+π+π−π0

21. B0 → D+∗
s D−

22. B0 → D+
s D+∗

23. B0 → D+∗
s D+∗

24. B0 → J/ψK0
S

25. B0 → J/ψK+π−

26. B0 → J/ψK0
Sπ

+π−

Only hadronic B0 candidates with an beam-constrained mass above 5.2GeV and an
absolute deviation of the energy from the beam energy below 0.5GeV are considered.

The channel B0 → D0π0 was used by the FR, but is not yet used in the FEI due to
unexpected technical restrictions in the KFitter algorithm.

C.1.4.5. B0 meson from semileptonic decay-channels

Due to the different kinematic properties, B0 mesons from semileptonic decay-channels
are processed separately by the FEI. The following semileptonic channels are used to
reconstruct B0 mesons:

1. B0 → D−e+ν

2. B0 → D−µ+ν

3. B0 → D+∗µ+ν

4. B0 → D+∗e+ν

5. B0 → D0π−e+ν

6. B0 → D0π−µ+ν

7. B0 → D0∗π−e+ν

8. B0 → D0∗π−µ+ν
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In addition all hadronic channels listed in Section C.1.4.4 are used, where one of the
hadronic D mesons is replaced by a semileptonic D meson. There are no further cuts
applied to semileptonic B0 candidates.

C.1.4.6. B0 meson from decay-channels with K0
L

Due to the different kinematic properties, B0 mesons from decay-channels which
include a K0

L are processed separately by the FEI. All hadronic channels listed in
Section C.1.4.4 are used, where either one of the hadronic D mesons is replaced by
a klong D meson, or one of the K0

S is replaced by a K0
L. There are no further cuts

applied to B0 candidates with K0
L.

C.2. FEIR

C.2.1. Belle

Excerpt of the FEIR for a generic training using 200million Monte Carlo simulated
Υ(4S) events.

Table C.2.: Per-particle efficiency before and after the applied pre- and post-cut.

Particle pre-cut post-cut
user ranking absolute ranking unique

π+ 0.788 0.788 0.788 0.779 0.773
K+ 0.755 0.755 0.750 0.750 0.746
µ+ 0.892 0.881 0.865 0.853 0.852
e+ 0.775 0.769 0.757 0.757 0.754
γ 0.640 0.640 0.640 0.640 0.632

π0 0.571 0.433 0.427 0.398 0.397

K0
S 0.459 0.457 0.444 0.443 0.415

J/ψ 0.086 0.086 0.086 0.086 0.086

D0 0.140 0.134 0.128 0.125 0.123
D+ 0.104 0.100 0.093 0.092 0.091
D+
s 0.071 0.069 0.052 0.052 0.051

D0∗ 0.053 0.051 0.048 0.047 0.047
D+∗ 0.050 0.049 0.049 0.049 0.047
D+∗
s 0.035 0.034 0.031 0.031 0.030

B0 0.005 0.005 0.005 0.005 0.004
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B+ 0.008 0.008 0.008 0.007 0.007

D0
SL 0.056 0.055 0.052 0.051 0.051

D+
SL 0.059 0.058 0.052 0.051 0.050

D0∗
SL 0.023 0.020 0.015 0.015 0.015

D+∗
SL 0.022 0.022 0.020 0.020 0.020

B0
SL 0.022 0.021 0.021 0.021 0.020

B+
SL 0.020 0.019 0.018 0.018 0.018

Table C.3.: Per-particle purity before and after the applied pre- and post-cut.

Particle pre-cut post-cut
user ranking absolute ranking unique

π+ 0.639 0.639 0.696 0.713 0.707
K+ 0.137 0.137 0.394 0.394 0.392
µ+ 0.046 0.047 .086 0.094 0.094
e+ 0.050 0.052 0.193 0.195 0.194
γ 0.587 0.587 0.652 0.652 0.645

π0 0.044 0.102 0.133 0.187 0.186

K0
S 0.067 0.068 0.210 0.210 0.197

J/ψ 0.109 0.109 0.207 0.207 0.207

D0 0.001 0.002 0.018 0.027 0.026
D+ 0.000 0.001 0.015 0.016 0.015
D+
s 0.000 0.000 0.014 0.014 0.014

D0∗ 0.000 0.001 0.011 0.012 0.011
D+∗ 0.001 0.001 0.051 0.051 0.050
D+∗
s 0.000 0.000 0.010 0.010 0.009

B0 0.000 0.000 0.000 0.001 0.001
B+ 0.000 0.000 0.000 0.001 0.001

D0
SL 0.001 0.001 0.012 0.014 0.014

D+
SL 0.001 0.001 0.007 0.007 0.007

D0∗
SL 0.000 0.000 0.005 0.005 0.005

D+∗
SL 0.000 0.000 0.012 0.012 0.012

B0
SL 0.000 0.000 0.000 0.001 0.001

B+
SL 0.000 0.000 0.000 0.001 0.001
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C.2.2. Belle II

Excerpt of the FEIR for training using 180million Monte Carlo simulated Υ(4S)
events.

Table C.4.: Per-particle efficiency before and after the applied pre- and post-cut.

Particle pre-cut post-cut
user ranking absolute ranking unique

π+ 0.757 0.757 0.756 0.747 0.737
K+ 0.793 0.793 0.790 0.790 0.782
µ+ 0.854 0.844 0.818 0.813 0.809
e+ 0.728 0.726 0.716 0.715 0.708
γ 0.579 0.579 0.579 0.579 0.577

π0 0.349 0.342 0.341 0.326 0.325

K0
S 0.425 0.425 0.269 0.269 0.263

J/ψ 0.091 0.091 0.091 0.091 0.090

D0 0.145 0.139 0.134 0.129 0.127
D+ 0.092 0.088 0.082 0.082 0.080
D+
s 0.063 0.060 0.054 0.053 0.052

D0∗ 0.042 0.038 0.034 0.034 0.033
D+∗ 0.047 0.047 0.046 0.046 0.045
D+∗
s 0.038 0.036 0.031 0.031 0.031

B0 0.004 0.004 0.004 0.004 0.004
B+ 0.007 0.007 0.007 0.007 0.007

D0
SL 0.064 0.063 0.060 0.059 0.058

D+
SL 0.103 0.102 0.096 0.093 0.090

D0∗
SL 0.019 0.015 0.011 0.011 0.011

D+∗
SL 0.023 0.023 0.021 0.021 0.021

B0
SL 0.023 0.022 0.022 0.021 0.020

B+
SL 0.017 0.016 0.016 0.015 0.015

Table C.5.: Per-particle purity before and after the applied pre- and post-cut.

Particle pre-cut post-cut
user ranking absolute ranking unique

π+ 0.606 0.606 0.705 0.734 0.723
K+ 0.127 0.127 0.500 0.500 0.495
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µ+ 0.042 0.046 0.106 0.112 0.111
e+ 0.050 0.055 0.213 0.216 0.214
γ 0.570 0.570 0.644 0.644 0.642

π0 0.144 0.164 0.181 0.228 0.228

K0
S 0.025 0.025 0.146 0.146 0.143

J/ψ 0.182 0.182 0.233 0.233 0.232

D0 0.001 0.003 0.018 0.028 0.027
D+ 0.000 0.001 0.014 0.016 0.015
D+
s 0.000 0.000 0.011 0.011 0.011

D0∗ 0.000 0.001 0.007 0.008 0.007
D+∗ 0.001 0.001 0.053 0.053 0.051
D+∗
s 0.000 0.001 0.007 0.007 0.007

B0 0.000 0.001 0.001 0.001 0.001
B+ 0.000 0.000 0.000 0.001 0.001

D0
SL 0.001 0.002 0.014 0.016 0.016

D+
SL 0.002 0.002 0.009 0.012 0.012

D0∗
SL 0.000 0.000 0.005 0.005 0.005

D+∗
SL 0.000 0.000 0.015 0.015 0.015

B0
SL 0.000 0.000 0.000 0.001 0.001

B+
SL 0.000 0.000 0.000 0.001 0.001

C.3. Validation

This section contains additional results of the validation of the FEI for neutral B0

mesons.

C.3.1. Influence of the event multiplicity

This section contains additional results of the investigation on the influence of the
maximum number of reconstructed tracks per event allowed during the training
and/or application of the FEI.

Only the best Btag candidate per event was considered, and additional cuts on the

beam-constrained mass and cos ΘBD`
1 were applied.

1The angle between the D` system and the flight direction of the B meson.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure C.1.: Belle The beam-constrained mass of the best hadronically tagged
B0 meson candidate per event. The spectrum of the different signal-
definitions is shown.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure C.2.: Belle cos ΘBD` of the best semileptonically tagged B0 meson candidate
per event. The spectrum of the different signal-definitions is shown.
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(a) Hadronic Tag

Figure C.3.: Belle Receiver operating characteristic (ROC) curve of tagged B0 for
the signal and extended signal-definition.

197



Appendix C. FEI C.3. Validation

(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure C.4.: Belle II The beam-constrained mass of the best hadronically tagged
B0 meson candidate per event. The spectrum of the different signal-
definitions is shown.
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(a) A loose cut on the SignalProbability was performed.

(b) A tight cut on the SignalProbability was performed.

Figure C.5.: Belle II cos ΘBD` of the best semileptonically tagged B0 meson can-
didate per event. The spectrum of the different signal-definitions is
shown..
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(a) Hadronic Tag

Figure C.6.: Belle II Receiver operating characteristic (ROC) curve of tagged B0

for the signal and extended signal-definition.
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(a) On-resonance: The signal peak on data is smaller. Hence the tag-side
efficiency is lower on data compared to the Monte Carlo expectations.
On the other hand, the fitted signal fraction is over-estimated due to
the peaking background. Both effects cancel each other.

(b) Off-resonance: As expected the fitted signal fraction is nearly zero.
Hence nearly no peaking background is observed on continuum data.
The off-resonance data was scaled with a factor 10.58

10.58−0.06 .

Figure C.7.: Belle The beam-constrained mass of the best hadronically tagged B0

meson candidate per event. The Monte Carlo expectation is shown as
filled histograms. The data is shown as black points with a Poisson
uncertainty. The result of the EUML on 10 million recorded Belle events
is shown as dashed lines.
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Figure C.8.: Belle: cos ΘBD` of the best semileptonically tagged B0 meson candidate
per event. The Monte Carlo expectation of the continuum component
is shown as a filled histogram. The off-resonance data is shown as black
points with a Poisson uncertainty. The off-resonance data-points were
calculated using the on-resonance beam-energy.
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Hadronically tagged B0 (see Figure C.9) and semileptonically tagged B+ (see Fig-
ure C.10) show the same behavior as hadronically tagged B+ (see Figure 4.15).

In contrast, the semileptonically tagged B0 candidates show an influence of the
maximum number of reconstructed tracks per event in the training (see Figure C.11).
This anomalous behavior was traced back to invalid classifier outputs in certain
decay-channels. The difference can therefore be explained by a technical issue.

C.3.2. Influence of beam-background

This section contains additional results of the investigation on the influence of beam
background on the performance of the FEI.

Only the best Btag candidate per event was considered, and additional cuts on the

beam-constrained mass and cos ΘBD`
2 were applied.

Hadronically tagged B0 (see Figure C.12) and semileptonically tagged B+ (see
Figure C.13) show the same behavior as hadronically tagged B+ (see Figure 4.17).

In contrast, the semileptonically tagged B0 candidates show a different behavior (see
Figure C.14). This anomalous behavior was traced back to invalid classifier outputs
in certain decay-channels. The difference can therefore be explained by a technical
issue.

2The angle between the D` system and the flight direction of the B meson.
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(a) Receiver operating characteristic (ROC) curves applied to all events
without a cut on the event multiplicity.

(b) The area under the ROC curve (AUC ROC) depending on the multi-
plicity of the event.

Figure C.9.: Evaluation of the best hadronically tagged B0 candidate per event, recon-
structed by different configurations of the FEI. Each curve corresponds
to a generic FEI with a cut on the maximum number of N tracks in the
event during the training.
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(a) Receiver operating characteristic (ROC) curves applied to all events
without a cut on the event multiplicity.

(b) The area under the ROC curve (AUC ROC) depending on the multi-
plicity of the event.

Figure C.10.: Evaluation of the best semileptonically tagged B+ candidate per event,
reconstructed by different configurations of the FEI. Each curve cor-
responds to a generic FEI with a cut on the maximum number of N
tracks in the event during the training.
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(a) Receiver operating characteristic (ROC) curves applied to all events
without a cut on the event multiplicity.

(b) The area under the ROC curve (AUC ROC) depending on the multi-
plicity of the event.

Figure C.11.: Evaluation of the best semileptonically tagged B+ candidate per event,
reconstructed by different configurations of the FEI. Each curve cor-
responds to a generic FEI with a cut on the maximum number of N
tracks in the event during the training.
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Figure C.12.: Evaluation of the best hadronically tagged B0 candidate per event,
reconstructed by different configurations of the FEI. The solid (dashed)
curves correspond to a generic FEI trained on simulated Belle II events
with (without) beam-background. The blue and purple (red and orange)
curves correspond to a generic FEI applied to simulated Belle II events
with (without) beam-background.

Figure C.13.: Evaluation of the best semileptonically tagged B+ candidate per event,
reconstructed by different configurations of the FEI. The solid (dashed)
curves correspond to a generic FEI trained on simulated Belle II events
with (without) beam-background. The blue and purple (red and orange)
curves correspond to a generic FEI applied to simulated Belle II events
with (without) beam-background.
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Figure C.14.: Evaluation of the best semileptonically tagged B0 candidate per event,
reconstructed by different configurations of the FEI. The solid (dashed)
curves correspond to a generic FEI trained on simulated Belle II events
with (without) beam-background. The blue and purple (red and orange)
curves correspond to a generic FEI applied to simulated Belle II events
with (without) beam-background.
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Appendix D
B→ τν

D.1. The B → τ τ puzzle

The decay B → τ τ is extremely suppressed in the Standard Model [97]

B(B0 → τ−τ+)SM = (2.22± 0.19) · 10−8. (D.1)

Surprisingly, Belle measured the decay B → τ τ and found a significant 5 sigma
excess over the SM expectation [97]

B(B0 → τ−τ+)Belle = (4.39+0.80
−0.83 ± 0.45) · 10−3. (D.2)

The measurement used the FR for exclusive hadronic tagging and reconstructed the
τ particles in one-prong decays. It was not accepted by the collaboration and not
published in a peer-reviewed paper.

The BaBar experiment searched for the same decay and set an upper limit compatible
with the Belle measurement (see [98])

B(B0 → τ−τ+)BaBar < 4.1 · 10−3 @90%C.L.. (D.3)

The measurement used exclusive hadronic tagging and reconstructed the τ particles
in one-prong decays. The exclusive hadronic tagging of BaBar relies on a different
algorithm than used by Belle.

Finally, the LHCb experiment searched for the same decay and set an upper limit
incompatible with the Belle measurement (see [99])

B(B0 → τ−τ+)LHCb < 2.1 · 10−3 @95%C.L.. (D.4)
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Since LHCb is not located at a B factory, the measurement did not use exclu-
sive hadronic tagging. Instead a high statistics sample was used and the τ was
reconstructed in three-prong decays.

The second-most1 likely2 explanation for these results is an unaccounted SM back-
ground process, which generates a peaking background contribution in one-prong,
but not in three-prong decays.

The analyses strategies used by Belle and BaBar (exclusive tagging and one-prong
decays) are very similar to the analyses presented in Section 5.1.4. In fact, the
Belle measurement would indicate that B0 → τ−τ+ is a sizeable peaking background
component in the measurement of B+ → τ+ντ .

The measurement of B+ → τ+ντ using the new (independently developed) BASF2

software applied to the Υ(4S) dataset recorded by Belle, can provide additional
insight into this situation. In particular, the encountered large systematic uncertainty
due to the continuum description could be a possible explanation.

D.2. Validation

D.2.1. Monte Carlo Study

The background events, which survive the final selection were studied, to identify the
most important background processes. The Belle II Monte Carlo matching error flags
for the tag-side and signal-side are stated in Table D.1 and Table D.2, respectively.

D.2.2. On-resonance and Off-resonance study

The distributions of EECL on on-resonance data is shown in this section before and
after the final selection. The hadronically tagged τ decay channels are shown in
Figure D.1. The semileptonically tagged τ decay channels are shown in Figure D.2.

The distributions of EECL on off-resonance data is shown in this section before and
after the final selection. The hadronically tagged τ decay channels are shown in
Figure D.3. The semileptonically tagged τ decay channels are shown in Figure D.4.
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Table D.1.: Belle: Fraction of background events after the final selection which
contain a certain Monte Carlo error flag on the tag-side. The last stated
digit is not significant.

Hadronic Semileptonic
e µ π ρ a1 e µ π ρ a1

Correct 0.34 0.34 0.21 0.18 0.19 0.40 0.42 0.31 0.29 0.29
MissFSR 0.11 0.09 0.37 0.42 0.36 0.10 0.08 0.29 0.25 0.19
MissResonance 0.79 0.80 0.79 0.85 0.80 0.79 0.79 0.82 0.84 0.80
DecayInFlight 0.01 0.01 0.02 0.02 0.02 0.00 0.00 0.01 0.01 0.01
MissNeutrino 0.39 0.39 0.21 0.23 0.23 0.92 0.92 0.88 0.89 0.88
MissGamma 0.44 0.44 0.54 0.66 0.57 0.40 0.40 0.48 0.59 0.45
MissMassiveParticle 0.42 0.43 0.56 0.65 0.60 0.41 0.40 0.52 0.53 0.53
MissKlong 0.24 0.25 0.29 0.34 0.30 0.23 0.22 0.26 0.28 0.24
MissID 0.25 0.24 0.38 0.40 0.37 0.17 0.15 0.18 0.18 0.17
AddedWrongParticle 0.46 0.47 0.59 0.67 0.62 0.43 0.41 0.54 0.54 0.54
InternalError 0.18 0.16 0.18 0.13 0.17 0.08 0.08 0.07 0.06 0.09
MissPHOTOS 0.11 0.09 0.37 0.42 0.36 0.10 0.08 0.29 0.25 0.19

Table D.2.: Belle: Fraction of background events after the final selection which
contain a certain Monte Carlo error flag on the signal-side. The last
stated digit is not significant.

Hadronic Semileptonic
e µ π ρ a1 e µ π ρ a1

Correct 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MissFSR 0.15 0.11 0.22 0.05 0.05 0.16 0.12 0.12 0.06 0.08
MissResonance 0.97 0.98 0.75 0.33 0.45 0.98 0.98 0.76 0.50 0.60
DecayInFlight 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MissNeutrino 0.96 0.96 0.35 0.19 0.32 0.99 0.98 0.61 0.42 0.55
MissGamma 0.95 0.96 0.68 0.31 0.41 0.90 0.91 0.65 0.44 0.54
MissMassiveParticle 0.99 0.98 0.79 0.33 0.45 0.99 0.99 0.82 0.50 0.60
MissKlong 0.61 0.61 0.42 0.18 0.27 0.64 0.64 0.45 0.28 0.37
MissID 0.03 0.05 0.28 0.17 0.28 0.01 0.03 0.37 0.26 0.36
AddedWrongParticle 0.96 0.97 0.81 0.34 0.45 0.97 0.97 0.84 0.52 0.61
InternalError 0.00 0.01 0.16 0.66 0.55 0.00 0.00 0.12 0.48 0.39
MissPHOTOS 0.15 0.11 0.22 0.05 0.05 0.16 0.12 0.12 0.06 0.08
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Figure D.1.: Distribution of EECL for the hadronically tagged candidates on on-
resonance data. The final selection is shown in blue and discards large
amounts of the background including its peaking contribution.
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Figure D.2.: Distribution of EECL for the semileptonically tagged candidates on on-
resonance data. The final selection is shown in blue and discards large
amounts of the background including its peaking contribution.
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Figure D.3.: Distribution of EECL for the hadronically tagged candidates on off-
resonance data. The final selection is shown in red and discards large
amounts of the background including its peaking contribution. The
shape of the continuum component in the fit is estimated by a linear
regression shown in yellow.
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Figure D.4.: Distribution of EECL for the semileptonically tagged candidates on off-
resonance data. The final selection is shown in red and discards large
amounts of the background including its peaking contribution. The
shape of the continuum component in the fit is estimated by a linear
regression shown in yellow.
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Figure D.5.: Distribution of EECL for the hadronically tagged candidates in the K0
S

sideband. The continuum component was estimated from off-resonance
data using a linear regression. The overall normalization of the expecta-
tion was scaled to the observed data.
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Figure D.6.: Distribution of EECL for the semileptonically tagged candidates in
the K0

S sideband. The continuum component was estimated from off-
resonance data using a linear regression. The overall normalization of
the expectation was scaled to the observed data.
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D.2.3. Sideband Study

The distribution of EECL in the K0
S sideband is shown after the final selection. The

hadronically tagged τ decay channels are shown in Figure D.5. The semileptonically
tagged τ decay channels are shown in Figure D.6.

In addition, the shape of the momentum of the τ in the center-of-mass frame for all
candidates in the signal region EECL < 100 MeV was investigated. These distributions
are sensitive to unknown peaking contributions from decays and b → u`ν processes.
Noe unexpected deviations were observed within the statistical fluctuations. The
hadronically tagged τ decay channels are shown in Figure D.7. The semileptonically
tagged τ decay channels are shown in Figure D.6.

D.3. Results

D.3.1. Influence of reduced Boost

The asymmetry between the electron and positron beam of SuperKEKB was reduced
with respect to KEKB, as stated in Table 2.2. The associated change of the Lorentz
boost reduces the resolution of the decay time difference in time-dependent CP
violation measurements, on the other hand it increases the detector acceptance. In
spherical coordinates the Belle (and Belle II) detector covers Θ ∈ [17◦, 150◦] and
φ ∈ [0◦, 360◦]. The geometric detector acceptance in percent is

Ω =
1

4π

∫ 150
◦

17
◦

∫ 360
◦

0
◦

dΩ = 91.1%.

Assuming a uniform spherical distribution of the tracks and neglecting the mass of
the final state particles compared to their momenta, the angle Θ? in the boosted
frame of reference is

tan (Θ?) =
1

γ

(
sin Θ

β + cos Θ

)
where γ = EH−EL

ECMS
and β = EH−EL

EH+EL
. In consequence the geometrical detector ac-

ceptance in the boosted frame of reference depends on the Lorentz boost of the
collider. As can be seen from Figure D.9 this effect is of the order of sub-percent.
The measurement of the branching fraction of B → τ ν requires the reconstruction
of all tracks and clusters in the event, consequently the reduced boost does have a
significant influence on the sensitivity [100].

1The most likely explanation is a technical error in the Belle measurement.
2In a Bayesian sense.
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Figure D.7.: Distribution of pCMS for the hadronically tagged candidates in the signal
region EECL < 100 MeV. The overall normalization of the expectation
was scaled to the observed data.
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Figure D.8.: Distribution of pCMS for the semileptonically tagged candidates in the
signal region EECL < 100 MeV. The overall normalization of the expec-
tation was scaled to the observed data.
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