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Abstract
In this thesis, we investigate the Cauchy problem for the quasilinear stochastic evolution
equation u(t) = [−A(u(t))u(t) + f(t)] dt +B(u(t))dW (t), t ∈ [0, T ],

u(0) = u0

in a Banach space X.

In the first part of the thesis, we concentrate on the parabolic situation, i.e. we assume
that −A(u(t)) is for every t a generator of an analytic semigroup and that A(u(t)) has a
bounded H∞-calculus. Under a local Lipschitz assumption on u 7→ A(u) we prove existence
and uniqueness of a local strong solution up to a maximal stopping time that can be char-
acterised by a blow-up alternative. We apply our local well-posedness result to a second
order parabolic partial differential equation on Rd, to a generalised Navier-Stokes equation
describing non-Newtonian fluids and to a convection-diffusion equation on a bounded do-
main with Dirichlet, Neumann or mixed boudary conditions. In the last situation, we can
even show that the solution exists globally.

In the second part of the thesis, we go to a special hyperbolic situation. We look at a Maxwell
equation on a domain D with perfect conductor boundary condition in chiral media with a
nonlinear retarded material law, i.e. we consider

A(u)u(t) = −Mu(t) + |u(t)|qu(t)−
∫ t

0

G(t− s)u(s) ds .

Here, M(u1, u2) = (curlu2,− curlu1)T is the Maxwell operator on L2(D)3 × L2(D)3. To
solve this equation we apply a refined version of the monotonicity approach using the spectral
multipliers of the Hodge-Laplace operator, which is a componentwise Laplace operator with
boundary conditions comparable to those of M2. We show existence and uniqueness of a
weak solution u in the sense of partial differential equations and under stronger assumptions
we prove that u is a strong solution, i.e. Mu(t, x) exists almost surely for almost all t ∈ [0, T ]

and x ∈ D.
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Introduction

Most of the laws of nature are modelled by time dependent partial differential equations
and in many real world problems from engineering, physics and chemistry these equations
are highly nonlinear. This poses severe difficulties for the mathematical investigation and
in many cases it is even unclear whether a unique solution exists or not.

In this thesis, we focus on quasilinear and semilinear equations. A partial differential equa-
tion for a quantity u is quasilinear if it is linear in the top order derivatives of u and it is
semilinear if the coefficients in front of the top order derivatives of u are independent of u.
A typical example is the reaction-diffusion equation∂tu(t, x) =

∑d
i,j=1 aij

(
t, x, u(t, x),∇u(t, x)

)
∂i∂ju(t, x) + F (u(t, x)), t ∈ [0, T ], x ∈ D,

u(0, x) = u0(x), x ∈ D,

on a domain D ⊂ Rd. It is linear in the second order derivatives ∂i∂ju but nonlinear in u
and ∇u. In the special case aij = aij(t, x) the above equation is semilinear.

As usual in the context of time dependent partial differential equations, we formulate the
problem as an ordinary differential equation of first order in time on a Banach space X
which contains the spatial dependency. This yields

(Q)

u′(t) = −A(u(t))u(t) + F (u)(t), t ∈ [0, T ],

u(0) = u0.

Here, A(u(t)) is a linear spatial differential operator for every t and F (u) is a nonlinear
term that only depends on lower order derivatives. In the literature A(u(t))u(t) is called the
quasilinear part of the equation, whereas F (u) is the semilinear part. A common choice for
X is Lq(D) or the distributional space W−1,q(D) if one is interested in weak solutions.

In the past, it turned out that for the well-posedness theory one has to distinguish parabolic
and hyperbolic equations that require completely different approaches. We define these
notions in the same way as Kato in [58]. We call (Q) parabolic if −A(u(t)) is a generator of
an analytic semigroup for every t. Otherwise, we say that (Q) is of hyperbolic type.

Parabolic quasilinear equations have been studied for more than 30 years using strong lin-
earisation techniques relying on the solvability of non-autonomous equations under certain
Hölder continuity assumptions (see e.g. [74], [103]) or relying on maximal Lp-regularity (see
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2 INTRODUCTION

e.g. [4], [5], [22], [87]). It is quite remarkable that due to parabolic smoothing it was possible
to develop a theory that covers many examples at once. A good overview about the abstract
theory and many descriptive examples can be found in [87]. Here, the authors consider (Q)

with A(u(t)) = −
∑d
i,j=1 aij

(
t, x, u(t, x),∇u(t, x)

)
∂i∂j and A(u(t)) = −div

(
a(u(t))∇u(t)

)
for several types of boundary condition. For equations of hyperbolic type, the situation is
completely different. Here, the solution strategy highly depends on the equation itself and
on the boundary condition.

In addition to the highly nonlinear behaviour many applications also have some uncertainty
concerning the external sources or the precise behaviour of the medium. To include this
randomness into the model, researches beginning with Itô in 1946 (see [50], [51]) replaced
the original partial differential equation by an equation that is perturbed with white noise.
This is the time derivative of a Brownian motion β : Ω × R≥0 → R on a probability space
Ω. However, since β is not differentiable in time, we formally writedu(t) =

[
−A(u(t))u(t) + F (u)(t)

]
dt+

[
B(u)(t) + b(t)

]
dβ(t), t ∈ [0, T ],

u(0) = u0.
(1)

Here one distinguishes between the additive noise b which is a random force and the mul-
tiplicative noise B(u) perturbing the medium. This equation is interpreted as an integral
equation in the Banach space X, i.e. u is a solution of (1) if and only if

u(t)− u(0) =

∫ t

0

−A(u(s))u(t) + F (u)(s) ds+

∫ t

0

B(u)(s) + b(s) dβ(s)

almost surely for all t ∈ [0, T ] in X. Here, the stochastic integral is a Banach space valued
Itô-integral in the sense of [100].

The main object of research in this thesis is (1) either in the parabolic or in the hyperbolic
situation. As in the deterministic setting we treat the parabolic case abstractly in a general
way, whereas in the hyperbolic case a general theory seems out of reach and we focus on a
special hyperbolic Maxwell equation.

First, we briefly describe our results in the parabolic setting and we compare them to
the existing literature. We develop an abstract theory for well-posedness of quasilinear
stochastic parabolic evolution equations up to a maximal stopping time τ . Furthermore,
we apply our abstract results to (1) with the elliptic operators A(u) = −

∑N
i,j=1 aij(u)∂i∂j

and A(u) = −div(a(u)∇) on Rd and on a bounded domain D ⊂ Rd with mixed boundary
conditions. If we restrict us to Dirichlet boundary conditions, we can show that under
additional assumptions the solution does not explode and exists on the whole interval [0, T ].

This improves the result of Hofmanova and Zhang in [46]. Moreover, we give an application
to fluid dynamics and prove well-posedness of a generalized stochastic Navier-Stokes equation
for non-Newtonian fluids.

Special quasilinear stochastic parabolic equations have been extensively studied in the litera-
ture in case of monotone coefficients (see e.g. [12,40,64,84]). In the same spirit is [73], where
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the authors extend the results to locally monotone coefficients. Existence and uniqueness
of (1) with A(u) = − div(a(u)∇) was proved by Hofmanova and Zhang in [46]. However,
as far as we know, there is no abstract theory comparing to the state of knowledge in the
deterministic parabolic situation.

In the hyperbolic case, we focus on a semilinear Maxwell equation in chiral media on a
domain D and we show existence and uniqueness of a weak solution u, i.e. u solves the
equation in the sense of distributions. Under additional assumptions we can even show that
u is a strong solution. The equation is motivated by [88] in Chapter 2 and 7. We choose
A(u(t)) = M with the Maxwell operator

M

(
u1

u2

)
=

(
curlu2

− curlu1

)

for three dimensional vector fields u1, u2 and we impose the perfect conductor boundary
condition u1 × ν = 0 on ∂D. As semilinear part we choose

F (u)(t) = −|u(s)|qu(s) +

∫ t

0

G(t− r)u(r) dr +J(t)

with a power-type nonlinearity that describes the optical response, a nonlocal dispersive
memory term and an external current J . We end up with

du(t) =
[
Mu(t)− |u(t)|qu(t) +

∫ t
0
G(t− r)u(r) dr + J(t)

]
dt +

[
B(u)(t) + b(t)

]
dβ(t),

u(0) = u0.

In a deterministic setting there are good results for nonlinear Maxwell equations. Especially
of interest is the well-posedness of (1) with A(u(t)) = κ(u(t))−1M with a positive definite
matrix function κ : R6 → R6×6. This models a material of Kerr type, i.e. with a polarisa-
tion P given by P (E) = |E|2E. The corresponding equation was studied by Müller on R3

(see [80]) and by Spitz on a domain with perfect conductor boundary condition. They used
smooth initial data and made use of the fact that in a deterministic setting the time reg-
ularity increases with increasing space regularity. However, their technique is not available
in a stochastic setting, since solutions of stochastic differential equations are only Hölder
continuous of order β < 1

2 and one has to find a different approach. For this reasons we focus
on the semilinear equation from above with κ(u) = I and develop new tools to study nonlin-
ear Maxwell equations in a stochastic setting. As far as we know, there are no comparable
well-posedness results. One reason might be that in the absence of Strichartz estimates for
(etM )t∈R, even local solvability is a tricky issue. Moreover, there is no embedding of the
form D(M) ↪→ Lp that helps to control the nonlinearity. Therefore, our research can be
seen as a start for the analysis of nonlinear stochastic Maxwell equations.
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Sketch of our approach to quasilinear parabolic equations

Our goal is to prove existence and uniqueness of a strong solution up to a maximal stopping
time τ of the quasilinear parabolic stochastic evolution equation

(QSEE)

du(t) =
[
−A(u(t))u(t) + F (u)(t)

]
dt+

∑∞
k=1Bk(u)(t) dβk(t), t ∈ [0, τ),

u(0) = u0

in Lp(0, τ ;E) for p > 2 and for a UMD Banach space E of type 2, in γ(0, τ ;E) for a
UMD Banach space E and in Lq(U ;Lp(0, τ)) for p, q > 2. Here (βk)k is a sequence of
independent Brownian motions on a probability space Ω. We develop a framework with
maximal regularity estimates for the deterministic and the stochastic convolution as input
and a unified well-posedness theory in all the three spaces as output.

In the following, we explain our ideas for the construction of a strong solution using the
space Lp(0, τ, E) with E = Lq(U) for some q > 2. The core strategy remains unchanged in
the additional settings.

Van Neerven, Veraar and Weis investigated in [96,97] maximal regularity estimates for the
stochastic convolution. Together with the well-known deterministic maximal regularity this
leads to a well-posedness theory for semilinear stochastic evolution equations of the form

(SEE)

du(t) =
[
− Λu(t) +G(u)(t)

]
dt+

∑∞
k=1Bk(u)(t) dβk(t), t ∈ [0, T ],

u(0) = u0.

Here, (Λ(ω))ω∈Ω is a family of closed and densely defined operators with common domain E1

such that almost all Λ(ω) have a bounded H∞-calculus with bound independent of ω ∈ Ω.

Moreover, the initial value u0 : Ω→ (E,E1)1−1/p,p is strongly F0-measurable. We consider
Lipschitz continuous nonlinearities G : [0, T ]×E1 → Lq(U) and Bk : [0, T ]×E1 → [E,E1] 1

2

with small enough Lipschitz constant.

Now, we are in a position to briefly describe our main assumptions for the quasilinear theory
and our strategy. We assume that the domain of the operators A(z), z ∈ (E,E1)1−1/p,p,

is constant, i.e. there is a Banach space E1 such that D(A(z)) = E1 for every z ∈(
E,E1

)
1−1/p,p

. Moreover, we demand A to be globally Lipschitz continuous, i.e. there
exists L > 0 such that

‖A(z)−A(y)‖B(E1,E) ≤ L‖z − y‖(E,E1)1−1/p,p

for every y, z ∈ (E,E1)1−1/p,p and we assume that the operators A(z) have a bounded
H∞-calculus with bound independent of z. As a first step, we consider

F̃1(u(t)) = θλ

(
sup
s∈[0,t]

‖u(s)− u0‖(E,E1)1−1/p,p
+ ‖u‖Lp(0,t;E1)

)(
A(u(t))−A(u0)

)
u(t),

where θλ : [0,∞)→ [0, 1], λ > 0, is a Lipschitz continuous cut-off function such that θλ ≡ 1

on [0, λ] and θλ ≡ 0 on [2λ,∞). This means that as long as u(t) is close enough to u0
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and ‖u‖Lp(0,t;E1) is small, we have A(u(t))u(t) = A(u0)u(t) + F̃1(u(t)). We prove that F̃1

has a Lipschitz constant proportional to λ and thus, choosing λ small enough, satisfies the
assumptions needed to solve (SEE) with Λ = A(u0) and G(u) = −F̃1(u)+F (u). The solution
u of (SEE) exists on [0, T ]. However, u solely solves (QSEE) on the random interval [0, τ1],

where τ1 is a stopping time given by

τ1 = inf
{
t ∈ [0, T ] : ‖u(t)− u0‖(E,E1)1−1/p,p

+ ‖u‖Lp(0,t;E1) > λ
}
.

Since the interval [0, τ1] on which u solves (QSEE) might be larger than [0, τ1] we have to
extend it to a maximal interval [0, τ). We know that the set of stopping times σ such that
there exists a unique solution u on [0, σ] is non-empty, since τ1 is contained in this set. We
show that the essential supremum τ : Ω → [0, T ] of this set exists and that τ is also a
stopping time. Moreover, we prove that τ is maximal and satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;E1) <∞, u : [0, τ)→ (E,E1)1−1/p,p is uniformly continuous

}
= 0.

This condition implies that it is sufficient for global existence to show pathwise uniform con-
tinuity of u as a function with values in (E,E1)1−1/p,p and ‖u‖Lp(0,τ ;E1) <∞ almost surely.
Finally, we extend this result to quasilinearities u 7→ A(u) that are Lipschitz continuous on
every ball in (E,E1)1−1/p,p with a localisation technique.

Sketch of our approach to the nonlinear Maxwell equation with retarded material law

The other problem we address is the nonlinear stochastic Maxwell equationdu(t) =
[
Mu(t)− |u(t)|qu(t) + (G ∗ u)(t) + J(t)

]
dt +[b(t) +

∑∞
k=1Bk(u)(t)] dβk(t),

u(0) = u0

(2)
for a 6d vector field u = (u1, u2) with the retarded material law (G∗u)(t) =

∫ t
0
G(t−s)u(s) ds

and the perfect conductor boundary condition u1 × ν = 0 on ∂D. We consider a domain
D ⊂ R3, obviously in the case D = R3 the boundary condition drops. Here, (βk)k is a
sequence of independent Brownian motions on a probability space Ω. At first, we show that
(2) has a unique weak solution

u ∈ L2(Ω;C(0, T ;L2(D)))6 ∩ Lq+2(Ω× [0, T ]×D)6. (3)

This is done in two steps. First, we use a version of the Galerkin method from Röckner
and Prévot (see [85]) to solve (2) in the special case G ≡ 0 and make use of the monotone
structure of the nonlinearity. The novelty is that we are able to deal with the term Mu,
despite the fact that u /∈ D(M). Afterwards, we include the retarded material law with
Banach’s fixed point theorem.

The proof of the existence and uniqueness of a strong solution that additionally satisfies

Mu ∈ L2(Ω;L∞(0, T ;L2(D)))6 + L
q+2
q+1 (Ω× [0, T ]×D)6
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is more tricky. Again, we start with G ≡ 0 and add a non-trivial G at the very end. In a
deterministic setting, one would try to estimate ‖u′(t)‖L2(D)6 and then use (3) to control
Mu. However, solutions of stochastic differential equations are not differentiable in time. The
first idea was to derive an estimate for ‖Mu(t) − |u(t)|qu(t) + J(t)‖2L2(D)6 with Gronwall’s
Lemma, but we failed since the Itô-formula for this quantity contains the term

‖Dvv(|v|qv)(u(t))
(
Bk(u(t)), Bk(u(t)

)
‖2L2(D)6 , (4)

we could not estimate properly. Hence, we choose the noise
∑N
j=1

(
bj(t) + iBju(t)

)
dβj(t)

and use the rescaling transformation

y(t) = u(t)e−i
∑N
j=1 Bjβj(t)

to get rid of the multiplicative noise and to avoid the difficulties from (4). The arising
equation has the form

(TSEE)

dy(t) = [My(t)− |y(t)|qy(t) +A(t)y(t) + J̃(t)] dt +
∑N
i=1 b̃i(t) dβi(t),

u(0) = u0,

where A(t) is a nonautonomous operator having random coefficients, J̃ is a new current and
b̃ is a new additive noise. For ψ ∈ C∞c (D) with suppψ ⊂ [0, 2] and ψ = 1 on [0, 1], we
define the spectral multipliers Sn = ψ(−2−n∆H) and Pn = 1[0,2n](−∆H). Here, ∆H is the
Hodge-Laplacian on Lp that is the component-wise Laplace operator with domain{

(u1, u2) ∈ Lp(D)6 : curlu1, curlu2, curl curlu1, curl curlu2 ∈ Lp(D)3,div u1 ∈W 1,p
0 (D),

div u2 ∈W 1,p(D), u1 × ν = 0, u2 · ν = 0, curlu2 × ν = 0 on ∂D
}
.

We show that Pn, Sn are self-adjoint on L2(D)6 and commute with both ∆H andM . Further,
we have ‖Snu‖Lp(D)6 ≤ C‖u‖Lp(D)6 with a constant C > 0 depending on p, but not on u and
n. Note that such an estimate is not applicable for Pn in a general situation. We point out
that the uniform Lp-boundedness of (Sn)n is a consequence of the fact that the semigroup
generated by ∆H satisfies generalised Gaussian bounds. The deep connection between ∆H

and M originates from the formula

−∆ = curl curl− grad div,

which implies ∆H = M2 in the range of the Helmholtz projection PH and M2 = 0 in the
range of I − PH .

We truncate (TSEE) with a refined Faedo-Galerkin approach, i.e. we solvedyn(t) = Pn[Myn(t)− |yn(t)|qyn(t) +A(t)yn(t) + J̃(t)] dt +
∑N
i=1 Snb̃i(t) dβi(t),

yn(0) = Snu0.

Pn and Sn reduce the problem to an ordinary stochastic differential equation that can be
solved easily. Afterwards, we estimate∥∥PnMyn(t)− Pn|yn(t)|qyn(t) + PnA(t)yn(t) + PnJ̃(t)

∥∥2

L2(D)6
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using Itô’s formula, the monotone structure of the equation and the properties of Pn and
Sn. This yields an estimate for Myn that is uniform in n. Finally, we pass to the limit again
using the monotonicity of the nonlinearity and undo the transformation to get a strong
solution u of (2) such that Mu(t, x) exists almost surely for almost all t ∈ [0, T ] and x ∈ D.

Outline of this thesis

This thesis is organised as the follows. Chapter 1 contains an overview over the most
important definitions and theorems that are used frequently. In particular, we recall some
facts about vector calculus and the related Sobolev, Besov and Triebel-Lizorkin spaces.
Then, we collect important stochastic concepts like adaptivity and stopping times. We
introduce γ-radonifying operators and sketch the construction of stochastic integrals in UMD
Banach spaces. A short overview over sectorial operators and their functional calculi ends
this chapter.

In Chapter 2, we develop a framework with maximal regularity estimates for the determin-
istic and the stochastic convolution as input and a well-posedness theory for quasilinear
parabolic stochastic evolution equations as output. In Section 2.1, we recall three maximal
regularity concepts for stochastic evolution equations from the literature. The first one is
maximal regularity in the space Lp(0, T ;E) for a UMD Banach space E of type 2 and some
p > 2. Here, we follow [96]. Next, we consider maximal regularity in γ(0, T ;E) for some
UMD Banach space E in the same way as [98]. Moreover, we treat maximal regularity
in spaces of the form Lq(U ;Lp(0, T )) for U ⊂ Rd which was treated in [8]. To get more
flexibility for applications we slightly generalise the last approach by allowing fractional
spaces of the form Λβ

(
Lq(U ;Lp(0, T ))

)
for some densely defined and invertible operator Λ

on Lq(U) that has an Rp-bounded H∞-calculus. With these estimates for the stochastic
and the deterministic convolution, we show existence and uniqueness of a strong solution of
the equationdu(t) =

[
−Au(t) + F (u)(t)

]
dt+

∑∞
k=1Bk(u) dβk(t), t ∈ (σ, T ],

u(σ) = uσ

in Section 2.2. Here, our strategy is a version of the argumentation in [96]. Our contribution
is that we treat the three settings from above in a unified way, that we allow a random initial
time σ and that we allow F and B to be memory terms with the Volterra property. This
means that the restriction F (u)|[σ,σ̃] only depends on u|[σ,σ̃]. These novelties will be essential
in the treatment of the quasilinear equationdu(t) =

[
−A(u(t))u(t) + F (u)(t)

]
dt+

∑∞
k=1Bk(u)(t) dβk(t), t ∈ [0, τ),

u(0) = u0

in Section 2.3. Here, we follow the strategy we sketched above simultaneously in our three
settings. First, we show existence and uniqueness of a strong solution with a globally
Lipschitz continuous quasilinearity in Subsection 2.3.1 and we generalise this to a locally
Lipschitz continuous quasilinearity in Subsection 2.3.2.
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In Chapter 3, we apply our abstract results to quasilinear parabolic stochastic equations.
In these examples, we benefit from the extensive literature about elliptic operators, their
regularity properties and their functional calculi. In Section 3.1, we show that our theory
covers the most straightforward parabolic example A(u(t)) = −

∑d
i,j=1 aij(u(t),∇u(t))∂i∂j .

In Section 3.2, we investigate the reaction-diffusion equationdu(t) =
[

div(a(u(t))∇u(t)) + F (u)(t)
]

dt+
∑∞
k=1Bk(u)(t) dβk(t), t ∈ [0, τ),

u(0) = u0

and we proof existence and uniqueness of a weak solution u in the sense of partial differential
equations, which means that the equation holds in a distributional sense. If we restrict
ourselves to a bounded domain with Dirichlet boundary conditions, we can even show that
u exists on the whole time interval [0, T ]. Our last example in Section 3.3 is inspired from
fluid dynamics and we treat non-Newtonian fluids in a stochastic setting.

In Chapter 4, we consider the nonlinear Maxwell equation with retarded material law. In
Section 4.1, we show the existence of a sequence of orthogonal projections (Pn)n and of
related operators (Sn)n that commute with M and that satisfy Snx → x for n → ∞ with
convergence in Lp for every x ∈ Lp. We construct them with a spectral multiplier theorem
for the Hodge-Laplacian and we exploit the deep connection between the Hodge-Laplacian,
the Helmholtz-projection and M2 to show the commutation property. In Section 4.2, we
use Pn and Sn to show existence and uniqueness of a solution u in the distributional sense.
Under stronger assumptions, we show in Section 4.3 that the solution is more regular, i.e.
Mu(t, x) exists almost surely for almost all t ∈ [0, T ] and x ∈ [0, T ]. We end this chapter
with a comparison to the results in the literature and with some remarks about the more
general situation with non-trivial electric permittivity ε and magnetic permeability µ.

In Appendix A, we present a byproduct of our research. We prove a theorem about bound-
edness of pseudo-differential operators on Banach spaces with a rough symbol that has a
special structure which allows us to apply square function estimates. In particular, we show
that given a UMD Banach space X the operator

Lf(t) = A(t)

∫ t

0

e−(t−s)A(t)f(s) ds

which arises in the context of maximal regularity for nonautonomous deterministic evolution
equations is bounded on Lp(0, T ;X) for all p ∈ (1,∞). Here, we just require that t 7→ A(t)

is measurable in time.



CHAPTER 1

Preliminaries

The purpose of this section is to provide a short overview over the basic tools and notations
used in this thesis. For most of the proofs and further details, we give references to the
literature.

Before we start, we fix some notation. Given normed spaces X and Y , B(X,Y ) denotes
the set of all linear and bounded operators from X to Y . We write C(a, b;X) for the space
of uniformly continuous functions on [a, b] with values in X equipped with its usual norm.
Given U ⊂ Rd and a measure µ on U , Lq(U, µ;X) is the space of strongly measurable
f : U → X such that

‖f‖Lq(U,µ;X) :=
(∫

U

‖f(x)‖qX dµ(x)
) 1
q

<∞

with the obvious variation in the case q =∞. The ball with centre x ∈ X and radius r > 0

is denoted by B(x, r) := {y ∈ X : ‖x− y‖X < r}.

1.1. Vector calculus and related function spaces

In this section, we introduce the differential operators ∇, div and curl in a weak setting
and we provide some trace theorems. Throughout this section, let D ⊂ Rd be a Lipschitz
domain. In the context of curl, we always choose d = 3. We define the cross product a × b
by

a× b := (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)T

9
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for a, b ∈ C3 and for smooth functions f : D → C, g : D → Cd and h : D → C3, we set

grad f := ∇f := (∂1f, . . . , ∂df)T ,

∆f :=

d∑
j=1

∂2
j f,

div g :=

d∑
i=1

∂igi,

curlh := (∂2h3 − ∂3h2, ∂3h1 − ∂1h3, ∂1h2 − ∂2h1)T .

Note that curl and ∆ are formally symmetric operators, whereas the formal adjoint of grad

is −div, i.e. we have ∫
D

∇f1(x) · f2(x) dx = −
∫
D

f1(x) div f2(x) dx,∫
D

curl g1(x) · g2(x) dx =

∫
D

g1(x) · curl g2(x) dx,∫
D

∆h1(x)h2(x) dx =

∫
D

h1(x)∆h2(x) dx

for all smooth fj , gj and hj , j = 1, 2, that are compactly supported in D. This leads us to
derivatives in a weak sense. For given u ∈ L1

loc(D) with∫
D

u(x) div φ(x) dx = −
∫
D

f(x) · φ(x) dx

for some f ∈ L1
loc(D)d and for all φ ∈ C∞c (D)d, we say that ∇u exists in the weak sense and

∇u := f. For given v ∈ L1
loc(D)d with∫
D

v(x) · ∇φ(x) dx = −
∫
D

g(x)φ(x) dx

for some g ∈ L1
loc(D) and for all φ ∈ C∞c (D), we say that div v exists in the weak sense and

div v := g. Finally, for given w ∈ L1
loc(D)3 with∫

D

w(x) · curlφ(x) dx =

∫
D

h(x) · φ(x) dx

for some h ∈ L1
loc(D)3 and for all φ ∈ C∞c (D)3, we say that curlw exists in the weak

sense and curlw := h. One can show that the classical derivative and the weak derivative of
smooth functions coincide and that this concept is a proper generalisation. As a next step,
we define Sobolev spaces that are associated with grad, div and curl . For q ∈ [1,∞], we set

W 1,q(D) :=
{
u ∈ Lq(D) : ∇u exists weakly with ∇u ∈ Lq(D)d

}
,

W q(div)(D) :=
{
v ∈ Lq(D)d : div v exists weakly with div v ∈ Lq(D)

}
,

W q(curl)(D) :=
{
w ∈ Lq(D)3 : curlw exists weakly with curlw ∈ Lq(D)3

}
.

These spaces are Banach spaces equipped with the usual graph norm. In the same way, we
define higher order Sobolev spaces using higher order weak derivatives. However, since we
just need Sobolev spaces of order 2 in this thesis, we solely introduce

W 2,q(D) :=
{
u ∈W 1,q(D) : ∇(∂iu) exists weakly with ∇(∂iu) ∈ Lq(D)d, i = 1, . . . , d

}
,
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equipped with the norm

‖u‖W 2,q(D) :=

d∑
i,j=1

‖∂i∂ju‖Lq(D) + ‖∇u‖Lq(D)d + ‖u‖Lq(D).

Throughout this thesis, we use several well-known identities from vector-calculus.

Lemma 1.1.1. Let d = 3 and let u : D → C and v, w : D → C3 be smooth. The following
identities hold true.

a) curl∇u = 0.

b) div curl v = 0.

c) curl curl v = ∇ div v − (∆v1,∆v2,∆v3)T .

d) div(v × w) = curlw · v − curl v · w.

e) div(uv) = udiv v + v · ∇u.

In particular, these identities can be used to define traces for functions in W p(div)(D) and
W p(curl)(D). To motivate this procedure, we use Gauß Divergence Theorem to get∫

∂D

φ · (f × ν) dσ =

∫
∂D

ν · (φ× f) dσ =

∫
D

div(φ× f)(x) dx

=

∫
D

curl f(x) · φ(x) dx−
∫
D

f(x) · curlφ(x) dx.

for f, φ ∈ C1(D)3 and∫
∂D

ψ(g · ν) dσ =

∫
D

div(ψg)(x) dx

=

∫
D

∇ψ(x) · g(x) dx+

∫
D

ψ(x) div g(x) dx.

for g ∈ C1(D)d and ψ ∈ C1(D). This leads to the following definition.

Definition 1.1.2. For g ∈W p(div)(D), we say g · ν = 0 on ∂D, if∫
D

∇ψ(x) · g(x) dx+

∫
D

ψ(x) div g(x) dx = 0

for all ψ ∈ C1(D). Last but not least, for d = 3 and f ∈W p(curl)(D), we say f × ν = 0 on
∂D, if ∫

D

curl f(x) · φ(x) dx−
∫
D

f(x) · curlφ(x) dx = 0

for all φ ∈ C1(D).

As a consequence, we can define the subspaces

W p(div, 0)(D) := {u ∈W p(div)(D) : u · ν = 0 on ∂D}

W p(curl, 0)(D) := {u ∈W p(curl)(D) : u× ν = 0 on ∂D}.
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For Lipschitz domains D with compact boundary, one can show that W p(div, 0)(D) is
the closure of C∞c (D)3 in W p(div)(D) and that W p(curl)(D) is the closure of C∞c (D)3

in W p(curl)(D). This can be found amongst others in [80], Theorem 2.21 and Theorem
2.23.

In Chapter 3, we also consider parabolic equations with mixed boundary conditions. Hence,
it will be necessary not only to introduce the subspace of functions in W 1,p(D) that van-
ish on the boundary, but also the subspace of functions that vanish on a part of the boundary.

Definition 1.1.3. Let Γ ⊂ ∂D be open in the topology of ∂D. For q ∈ [1,∞], we define
W 1,q

Γ (D) as the completion of

C∞Γ (D) :=
{
φ|D : φ ∈ C∞c (Rd) and supp(φ) ∩ (∂D \ Γ) = ∅

}
with respect to the norm ‖φ‖W 1,q

Γ (D) := ‖∇φ‖Lq(D) + ‖φ‖Lq(D).

Since every smooth function f ∈ W 1,q
Γ (D) satisfies f |∂D\Γ = 0, ∂D \ Γ is understood as

the Dirichlet part. In the special cases Γ = ∂D and Γ = ∅, we write W 1,q(D) := W 1,q
∂D(D)

and W 1,q
0 (D) := W 1,q

∅ (D). The first of these notations is justified, since C∞(D) ∩ Lq(D)

is dense in W 1,q(D) (see e.g. [2], Theorem 3.22). As we discuss operators of the form
u 7→ div(a∇u) with domain W 1,q

Γ (D) we have to introduce the range of this operator, which
is the space W−1,q

Γ (D). It is defined as the dual space of W
1, q
q−1

Γ (D) with respect to the
standard L2-duality, which means that

〈u, v〉(
W−1,q

Γ (D),W
1,

q
q−1

Γ (D)
) =

∫
D

u(x)v(x) dx

if u ∈W−1,q
Γ (D) ∩ Lq(D) and v ∈W 1, q

q−1

Γ (D).

Finally, we introduce Besov spaces and Triebel-Lizorkin spaces of positive order. Let s > 0

and p, q ∈ [1,∞]. We start with the special case D = Rd since in this case, we are able to
use the Fourier transform for a neat definition. Let φ ∈ C∞c (Rd) with φ ≥ 0, supp(φ) ⊂
{ 1

2 ≤ |x| ≤ 2} and with
∑∞
j=−∞ φ(2−jx) = 1 for all x ∈ Rd \ {0}. We set φj := φ(2−j ·) and

φ0 := 1−
∑∞
j=1 φj . Every φj can be associated with an operator φj(∂) given by

φj(∂)f := F−1
(
ξ 7→ φj(ξ)(Ff)(ξ)

)
.

Given p, q ∈ [1,∞], s ≥ 0 and f ∈ C∞c (Rd), we define

‖f‖Bsq,p(Rd) := ‖φ0(∂)f‖Lq(Rd) +
( ∞∑
j=1

‖2sjφj(∂)f‖p
Lq(Rd)

)1/p

‖f‖F sq,p(Rd) := ‖φ0(∂)f‖Lq(Rd) +
∥∥∥( ∞∑

j=1

|2sjφj(∂)f |p
)1/p∥∥∥

Lq(Rd)

with the usual modification if p = ∞. We now define Bsq,p(Rd) and F sq,p(Rd) as the com-
pletion of C∞c (Rd) with respect to the norms ‖ · ‖Bsq,p(Rd) and ‖ · ‖F sq,p(Rd) respectively. In
Chapter 3, we also need Besov spaces on a bounded domain D. We set

‖f‖Bsq,p(D) := inf
{
‖g‖Bsq,p(Rd) : g ∈ Bsq,p(Rd) and g = f a.e. in D

}
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and we define Bsq,p(D) as the completion of C∞(D) with respect to this norm.

1.2. Basic stochastic theory

Throughout this thesis, let (Ω,F,F = (Ft)t≥0,P) be a filtered probability space that satisfies
the usual conditions, i.e. F0 contains all P-null sets and the filtration is right-continuous.
We start with the definition of adaptivity for operator valued processes.

Definition 1.2.1. Given a Banach space X and a Hilbert space H, a stochastic process
W : Ω × [0, T ] → B(H;X) is called adapted, if the random variable W (t)h : Ω → X is
strongly Ft-measurable for all t ∈ [0, T ] and all h ∈ H. If additionally Wh : Ω× [0, t]→ X

is for all h ∈ H strongly Ft ⊗ Borel(0, t)-measurable, W is called progressively measurable.

It is easy to see that any progressively measurable process is adapted. However, if W has
almost surely continuous paths, the converse also holds true. We want to remark that one
often makes this definition with H = C and with the identification B(C, E) = E. We need
these more general notions for the definition of the stochastic integral in Section 1.3. Next,
we introduce the Brownian motion relative to the filtration F.

Definition 1.2.2. An F-adapted process β : Ω × [0,∞) → R is called Brownian motion
relative to F, if the following conditions are satisfied.

a) β(0) = 0 almost surely.

b) For almost all ω ∈ Ω, the paths t 7→ β(ω, t) are continuous.

c) For 0 ≤ s < t, the increment β(t)− β(s) is a Gaussian random variable with mean 0

and variance t− s.

d) For 0 ≤ s < t, the increment β(t)− β(s) is independent of Fs.

It will be necessary to stop a stochastic process when it leaves certain balls around the initial
value. However, this time will differ from path to path and therefore we introduce stopping
times. τ : Ω → [0, T ] is called F-stopping time, if {τ ≤ t} ∈ Ft for all t ∈ [0, T ]. By the
right-continuity, this is equivalent to {τ < t} ∈ Ft. The σ-algebra

Fτ =
{
A ∈ F : A ∩ {t ≤ τ} ∈ Ft ∀t ∈ [0, T ]

}
is called σ-algebra of τ -past and can be interpreted as the knowledge of an observer at the
random moment τ. The following well-known result will be used frequently. The proof can
be found e.g. in [60], Lemma 9.21 and Lemma 9.23.

Proposition 1.2.3. Fτ is a σ-algebra and satisfies the following properties.

a) If τ = t almost surely for some t ∈ [0, T ], we have Fτ = Ft.

b) Given another F-stopping time σ, we have Fτ∧σ = Fτ ∩ Fσ. In particular, if τ ≤ σ

almost surely, we have the inclusion Fτ ⊂ Fσ.
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c) If (X(·, t))t∈[0,T ] is a progressively measurable process with respect to F, the random
variable Xτ (ω) := X(ω, τ(ω)) is Fτ -measurable.

Throughout this thesis, we will use the notation

Λ× [τ, µ) :=
{

(ω, t) ∈ Λ× [0, T ] : t ∈ [τ(ω), µ(ω))
}

for some Λ ⊂ Ω and some stopping times τ, µ with τ ≤ µ almost surely. Closed and open
random intervals are defined similarly. If we call a process u defined on Ω × [τ, µ] adapted
or progressively measurable, we mean that u1[τ,µ] is adapted or progressively measurable as
process on [0, T ].

In the next Lemma, we show that an exit time of a stochastic process is a stopping time.
Results of these type are well-known, but we give a proof for convenience of the reader.

Lemma 1.2.4. Let X : Ω × [0, T ] → R≥0 be an F-adapted process with almost surely
continuous paths, σ an F-stopping time with values in [0, T ] and λ > 0. If we define

σ̃ = inf
{
t ∈ [0, T − σ] : X(t+ σ) > λ

}
∧ T,

then σ + σ̃ is also an F-stopping time.

Proof. Since F is right-continuous, it is sufficient to prove {σ + σ̃ < t} ∈ Ft for given
t ∈ [0, T ]. We start with{

σ + σ̃ < t
}

=
⋃

q1,q2∈Q≥0,q1+q2<t

{σ < q1, σ̃ < q2} (1.2.1)

and prove that the sets {σ < q1, σ̃ < q2} are contained in Ft. For fixed q1, q2 ∈ Q≥0 with
q1 + q2 < t, the definition of σ̃ and the pathwise continuity of t 7→ Xt yield

{σ̃ < q2} =
⋃

s∈[0,q2)

{Xσ+s > λ} =
⋃

q∈[0,q2)∩Q

{Xσ+q > λ}.

Thus, we have {
σ < q1, σ̃ < q2

}
=

⋃
q∈[0,q2)∩Q

(
{σ < q1} ∩ {Xσ+q > λ}

)
.

Moreover, Proposition 1.2.3 implies {Xσ+q > λ} ∈ Fσ+q and since {σ < q1} ∈ Fq1 in any
case by definition of stopping times, we conclude{
σ < q1, σ̃ < q2

}
∈

⋃
q∈[0,q2)∩Q

(
Fq1 ∩ Fτ+q

)
⊂ Fq1+q2 ∩ Fσ+q2 ⊂ Fmin(q1+q2,σ+q2) ⊂ Fq1+q2 .

Hence, the claimed result follows by (1.2.1).

In Chapter 2, we construct a local solution of a quasilinear stochastic differential equation up
to an eventually small stopping time and we want to continue it to a solution on a maximal
random interval. Therefore, we need to maximise the set{

τ : Ω→ [0, T ] | τ is an F-stopping time and there exists a solution on [0, τ ]
}
.
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However, we cannot take the pointwise supremum for every fixed ω, since the supremum over
uncountably many stopping times is not necessarily a stopping time any more. To overcome
this difficulty, we introduce the essential supremum of a family of random variables.

Definition 1.2.5. Let Λ be a family of real-valued random variables on Ω. Then, ess sup Λ

is a random variable on Ω that satisfies the following properties.

a) For all X ∈ Λ, we have X ≤ ess sup Λ almost surely.

b) If Y is a random variable with Y ≥ X almost surely for all X ∈ Λ, then we also have
Y ≥ ess sup Λ almost surely.

From this definition it is apparent that two different essential supremums coincide up to
a set of measure zero. However, it is not clear whether ess sup Λ exists. It turns out the
following theorem is sufficient for our purpose.

Theorem 1.2.6. Let Λ be a nonempty family of nonnegative and bounded random vari-
ables on Ω. In this case, ess sup Λ exists and if Λ is additionally closed under pairwise
maximisation, there exists a sequence (Xn)n ⊂ Λ with Xn+1 ≥ Xn almost surely and
limn→∞Xn = ess sup Λ almost surely.

Proof. The proof can be found in [57], Theorem A.3.

In particular, this theorem implies that the essential supremum of a set of [0, T ]-valued
stopping times that is closed under pairwise maximisation is again a stopping time.

1.3. γ-radonifying operators and stochastic integration in

UMD Banach spaces

First, we introduce two important notions from the geometry of Banach spaces.

Definition 1.3.1. Let Y be a Banach space and (rn)n an independent sequence of Rademacher
random variables. We make the following definition.

a) Y has type p ∈ [1,∞), if there exists C > 0 such that

(
E‖

N∑
j=1

rjxj‖pY
) 1
p ≤ C

( N∑
j=1

‖xn‖pY
) 1
p

for all finite sequences (xj)
N
j=1.

b) Y has the UMD property, if for all p ∈ (1,∞), there exists a constant C > 0 only
depending on p and Y , such that the following holds. Whenever (fn)Nn=1 is a finite
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martingale, then for all scalars |εn| = 1, n = 1, . . . , N , we have

E
∥∥ N∑
n=1

εn(fn − fn−1)
∥∥p
Y
≤ CE

∥∥ N∑
n=1

(fn − fn−1)
∥∥p
Y
.

Note that Hilbert spaces or Banach spaces that are isomorphic to closed subspaces of
Lq(U ;µ), q > 2 are of type 2 and have the UMD property.

Next, we define the γ-spaces. Let H̃ a separable Hilbert space with orthonormal basis
(hn)n∈N, Y a Banach space and (γn)n∈N a sequence of independent standard-Gaussian dis-
tributed random variables. The Banach space γ(H̃;Y ) of γ-radonifying operators is the
closure of

{T : H̃ → Y linear and of finite rank}

with respect to the norm

‖T‖γ(H̃;Y ) =
(
E‖

∞∑
n=1

γnThn‖2Y
)1/2

Note that the norm is independent of the choice of the orthonormal basis. In the special case
Y = Lq(O,µ) for some q ∈ (1,∞), γ(H̃;Y ) is isomorphic to Lq(U ; H̃) via the isomorphism
Lq(U ; H̃) 3 f 7→ Tf ∈ γ(H̃;Y ), where Tf is defined by

Tf (h)(x) := 〈f(x), h〉H

for h ∈ H̃ and x ∈ U. The equivalence of ‖Tf‖γ(H̃;Y ) ' ‖f‖Lq(O;H̃) can be shown easily by
the Kahane-Khintchine inequality(

E‖
∞∑
n=1

γnfn‖qY
)1/q

'q E‖
∞∑
n=1

γnfn‖Y

for q ∈ [1,∞). Throughout this thesis, we shortly write γ(a, b;Y ) := γ(L2(a, b);Y ) and
γ([a, b] ×H;Y ) := γ(L2(a, b;H);Y ). For further details about γ-radonifying operators, we
refer to the survey paper of Van Neerven (see [94]).

Before we introduce to the stochastic integral, we need a slightly different version of the
adaptivity, we defined in Definition 1.2.1 for stochastic processes.

Definition 1.3.2. Let p ∈ [1,∞). A finite linear combination of processes G : Ω× [0, T ]×
H → Y of the form

G = 1(s,t]×B〈·, y〉Hx

with B ∈ Fs, y ∈ H and x ∈ Y is called elementary adapted. For given F-stopping times
τ, µ with 0 ≤ τ ≤ µ ≤ T almost surely, a process G : Ω→ γ([τ, µ]×H;Y ) is called strongly
adapted, if there exists a sequence of elementary adapted processes (Gn)n with Gn1[τ,µ] →
G1[τ,µ] in probability in γ([τ, µ]×H;Y ) for n→∞. Moreover, for p ∈ [1,∞), we set

L0
F(Ω; γ([τ, µ]×H;Y )) :=

{
G : Ω→ γ([τ, µ]×H;Y ) : G is strongly adapted

}
,

LpF(Ω; γ([τ, µ]×H;Y )) := L0
F(Ω; γ([τ, µ]×H;Y )) ∩ Lp(Ω; γ([τ, µ]×H;Y )).
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At first this looks like a completely new concept of adaptivity. However, by [99], Proposition
5.6 and the remark below this result, any adapted X : Ω× [τ, µ]→ γ(H;X) in the sense of
Definition 1.2.1 that additionally satisfies X ∈ Lp(Ω; γ([τ, µ] ×H;X)) is strongly adapted.
Next, we sketch the construction of the stochastic integral in a UMD Banach space Y . We in-
troduce the stochastic integral in the Itô sense with respect to a cylindrical Brownian motion.

Definition 1.3.3. Given a Hilbert space H, a cylindrical Brownian motion is a bounded
linear operator W : L2(0, T ;H)→ L2(Ω) with the following properties.

a) For all f ∈ L2(0, T ;H), the random variable W (f) is centred Gaussian.

b) For all t ∈ [0, T ] and f ∈ L2(0, T ;H) supported in [0, t], W (f) is Ft-measurable.

c) For all t ∈ [0, T ] and f ∈ L2(0, T ;H) supported in (t, T ], W (f) is independent of Ft.

d) We have E(W (f) ·W (g)) = 〈f, g〉L2(0,T ;H) for all f, g ∈ L2(0, T ;H).

An example of an L2(0, T ;H)-cylindrical Brownian motion is a family (βn)n∈N of indepen-
dent real valued Brownian motions together with H = l2(N) and W uniquely determined
by the formula W (1(0,t]en) = βn(t), n ∈ N, where (en)n is the sequence of the standard unit
vectors in l2(N).

For an elementary adapted processes G : Ω× R≥0 ×H → Y of the form

G = 1(s,t]×B〈·, y〉Hx

with B ∈ Fs, y ∈ H and x ∈ Y, we can define the stochastic integral via

I(G) :=

∫ T

0

GdW := 1BW (1(s,t]h)x ∈ X

and we can extend it to finite linear combinations of such processes. Van Nerven, Veraar
and Weis proved in [100] the following two-sided estimate for this stochastic integral.

Theorem 1.3.4. Let Y be a UMD Banach space and G be an elementary adapted processes
in γ(H;Y ). Then, for all p ∈ (1,∞) one has the Itô-isomorphism

‖I(G)‖Lp(Ω;Y ) 'p ‖G‖Lp(Ω;γ([0,T ]×H;Y )).

In particular, the stochastic integral can be continued to a linear and bounded operator

I : LpF(Ω; γ([0, T ]×H;Y ))→ Lp(Ω;Y ).

In this thesis, we also deal with adapted integrands in Lp(Ω × [0, T ]; γ(H;Y )) for p > 2.
Here, we restrict ourselves to UMD Banach spaces of type 2 (details about type and cotype
of Banach spaces can be found in [82]), for which the embeddings

Lp(0, T ; γ(H;Y )) ↪→ L2(0, T ; γ(H;Y )) ↪→ γ([0, T ]×H;Y ) (1.3.1)
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are bounded. Consequently, the stochastic integral I(G) is also defined for adapted processes
G ∈ Lp(Ω × [0, T ]; γ(H;Y )). Also relevant is stochastic integration for adapted integrands
in Lr(Ω;Lq(U ;Lp(0, T ; l2(N)))) for p, q > 2, r ∈ (1,∞) and some measure space (U, µ). In
this case, we can use

Lr(Ω;Lq(U ;Lp(0, T ; l2(N)))) ↪→Lr(Ω;Lq(U ;L2([0, T ]; l2(N))))

=Lr(Ω; γ([0, T ]× l2(N);Lq(U)))

to define the stochastic integral.

1.4. Sectorial operators and functional calculus

1.4.1. R-boundedness and H∞-calculus

Let (rn)n∈N be a sequence of independent Rademacher random variables on a probability
space (Ω̃,A, P̃), i.e. P̃(rn = 1) = P̃(rn = −1) = 1

2 . Given the Banach spaces X and Y , a
family T ⊂ B(X,Y ) is called R-bounded if there exists C > 0, such that

E‖
N∑
j=1

rjTjxj‖2Y ≤ C E‖
N∑
j=1

rjxj‖2X

for all (Tj)
N
j=1 ⊂ T and (xj)

N
j=1 ⊂ X with C independent of N ∈ N. The least possible

constant C will be called R-bound of T or shortly R(T ). Note that every R-bounded family
is uniformly bounded in B(X,Y ), whereas the converse holds only if X,Y are Hilbert spaces.
For details, we refer to [21], [28] and [70].

An operator A with domain D(A) is called sectorial of angle θ ∈ (0, π/2) on a Banach space
Y , if it is closed, densely defined, injective and it has a dense range. Moreover, we require
that its spectrum is contained in the sector Σθ = {z ∈ C : | arg(z)| < θ} and that the set{

λR(λ,A) : λ /∈ Σφ
}

(1.4.1)

is for all φ ∈ (θ, π) bounded in B(X) and the bound only depends on φ. In this case, −A
generates a holomorphic semigroup on E. If the set in (1.4.1) is even R-bounded, one says
that A is R-sectorial.

For any holomorphic function f on Σφ, φ > θ, satisfying the growth estimate |f(z)| ≤
C |z|δ

1+|z|2δ for some δ > 0, the integral

f(A) =
1

2πi

∫
Σφ

f(z)R(z,A) dz

exists. This integral defines a functional calculus for functions with the growth estimate
from above. We say that A has a bounded H∞(Σφ)-calculus, if there exists C > 0 such that

‖f(A)‖B(E) ≤ C‖f‖∞ (1.4.2)
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is satisfied for all these functions. The least constant C > 0 will be called bound of the H∞-
calculus. In this case, the functional calculus f 7→ f(A) can be extended to any bounded
holomorphic function on Σφ and (1.4.2) remains true. Moreover, if X is UMD, the bounded-
ness of the H∞-calculus of A particularly implies that A is R-sectorial. Details on sectorial
operators, R-sectorial operators and the functional calculus can be found amongst others
in [44] and [70]. A list of operators having a bounded H∞-calculus can be found in [96],
Example 3.2.

1.4.2. Rp-boundedness and Rp-bounded H∞-calculus

Throughout this section, let p ∈ (1,∞), U ⊂ Rd and let µ be a σ-finite measure on U . More-
over, we shortly write Lp(U) := Lp(U, µ). In Chapter 3, we discuss quasilinear stochastic
partial differential equations in spaces of the form Lp(U ;Lq(0, T )). In his thesis, [8], Markus
Antoni found out that to estimate the deterministic and the stochastic convolution in this
space, one needs the notion ofRp-boundedness and of anRp-boundedH∞-calculus. In what
follows, we just want to sketch these concepts. For more details, we refer to the mentioned
thesis and to [65] and [69].

A family T ⊂ B(Lq(U)) is called Rp-bounded if there exists C > 0 such that

∥∥( N∑
j=1

|Tjxj |p
)1/p∥∥

Lq(U)
≤ C

∥∥( N∑
j=1

|xj |p
)1/p∥∥

Lq(U)

for all (Tj)
N
j=1 ⊂ T and (xj)

N
j=1 ⊂ Lq(U ; lp(N)), where C is independent of N ∈ N. The

least possible constant C will be called Rp-bound of T or shortly Rp(T ). The notion of
R2-boundedness coincides with the notion of R-boundedness we introduced in the previous
section. However, it is important to note that a single operator is R-bounded, but it is not
necessarily Rp-bounded (see e.g. [32], Chapter 8). Nevertheless, many famous operators
from harmonic analysis, like the Riesz transform or the Hilbert transform are Rp-bounded.
For us, the most important application of Rp-boundedness is the following result on point-
wise multipliers in Lq(U ;Lp(0, T )).

Proposition 1.4.1. Let S : [0, T ] → B(Lq(U)), such that t 7→ S(t)x is for all x ∈ Lq(U)

strongly measurable. Then, the set T = {S(t) : t ∈ [0, T ]} is Rp-bounded if and only if there
exists C > 0 with(∫

U

(∫ T

0

∣∣S(t)f(x, t)
∣∣∣p dt

) q
p

dµ(x)
) 1
q ≤ C

(∫
U

(∫ T

0

∣∣∣f(x, t)
∣∣p dt

) q
p

dµ(x)
) 1
q

(1.4.3)

for all f ∈ Lq(U ;Lp(0, T )). In this case, the least possible C in (1.4.3) is given by Rp(T ).

Proof. The proof can be found in [65], Proposition 2.12.

From [56], Theorem 5.3 and Corollary 5.4, we know that if an operator A on Lq(U) has a
bounded H∞(Σθ)-calculus, then for each θ′ > θ the set{

f(A) : ‖f‖H∞(Σθ′ )
≤ 1
}
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is R-bounded. However, we cannot replace R- by Rp-boundedness. Here, we need a new
concept. We say that a sectorial operator A on Lq(U) has an Rp-bounded H∞(Σθ)-calculus
for some θ ∈ (0, π2 ), if the set {

f(A) : ‖f‖H∞(Σθ) ≤ 1
}

is Rp-bounded.

Proposition 1.4.1 implies that an Rp-bounded operator S on Lq(U) can be extended to a
bounded operator Lq(U ;Lp(0, T )). Moreover, we can extend a closed operator A : D(A)→
Lq(U) to a closed operator A on Lq(U ;Lp(0, T )). At this point we made an abuse of notation,
since we should distinguish between A and its extension. In detail, this extension procedure
is discussed in [8], section 2.4. We just want to point out that the extension of a closed
and densely defined operator is also closed and densely defined. Moreover, if A has an Rp-
bounded H∞(Σθ)-calculus, its extension to Lq(U ;Lp(0, T )) has a bounded H∞(Σθ)-calculus
(see [8], Theorem 2.4.5).

Finally, we define the so called generalised Triebel-Lizorkin spaces associated to an operator
A on Lq(U). Here, we do not discuss these spaces in full generality, but we restrict us to
the cases we need. Hence, we just discuss p, q ∈ (1,∞) and we assume that A has an Rp-
bounded H∞(Σθ)-calculus for some θ ∈ (0, π/2). The generalised Triebel-Lizorkin spaces
were first introduced in [65] and their connection to parabolic stochastic partial differential
equations in Lq(U) was detected by [8].

Definition 1.4.2. Let A be a closed and densely defined operator on Lq(U) with 0 ∈ ρ(A)

that has an Rp-bounded H∞(Σθ)-calculus and let α ≥ 0, p, q ∈ (1,∞). We set

‖f‖FαA,q,p :=
(∫

U

(∫ ∞
0

∣∣t1−αAe−tAf ∣∣p dt
t

) q
p

dµ
)1/q

and we define the generalised Triebel-Lizorkin space FαA,q,p by

FαA,q,p :=
{
f ∈ Lq(U) : ‖f‖FαA,q,p <∞

}
.

The name can be explained if we choose A = −∆ on Lq(Rd). Then, the spaces FαA,q,p coin-
cide with the classical Triebel-Lizorkin spaces F 2α

q,p(Rd) defined in section 1.1 (see e.g. [92],
Theorem 3). In section 2.5 in [8], Antoni characterised FαA,q,p as an interpolation space
between Lq(U) and D(A) with a new interpolation method he called lq-interpolation. We
don’t go into detail here, but we want to highlight a nice characterisation of F 1−1/p

q,p,A as a
trace space.

Proposition 1.4.3. Let A be a closed and densely defined operator on Lq(U) with 0 ∈ ρ(A)

that has an Rp-bounded H∞(Σθ)-calculus and let p, q ∈ (1,∞). Then

‖x‖TR = inf
{
‖w′‖Lq(U ;Lp(0,T )) + ‖Aw‖Lq(U ;Lp(0,T ))

∣∣ w(0) = x, w ∈ Lq(U ;W 1,p(0, T ))

and Aw ∈ Lq(U ;Lp(0, T ))
}
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defines an equivalent norm on F
1−1/p
q,p,A . In particular, given w ∈ Lq(U ;W 1,p(0, T )), such

that we also have Aw ∈ Lq(U ;Lp(0, T )), we are able to evaluate w at time t ∈ [0, T ] and we
have w(t) ∈ F 1−1/p

q,p,A .

Proof. The proof is a combination of [8], Proposition 2.5.3 and Theorem 2.5.4.

Unfortunately, solutions of stochastic evolution equations are not differentiable in time.
However, we still want to evaluate them at a fixed time t. This will be guaranteed by the
following embedding result.

Lemma 1.4.4. Let A be a closed and densely defined operator on Lq(U) with 0 ∈ ρ(A) that
has an Rp-bounded H∞(Σθ)-calculus. Moreover, let p, q ∈ (1,∞) and α ∈ ( 1

p , 1 + 1
p ). Then

the embedding

Lq(U ;Wα,q(0, T )) ∩
{
w : Aw ∈ Lq(U ;Lp(0, T ))

}
↪→ C(0, T ;F

α−1/p
q,p,A )

is continuous.

Proof. The proof is a combination of Theorem 2.5.4 and Theorem 2.5.9 in [8].

1.4.3. Functional calculus via Lp0-Lp1-off-diagonal estimates

Many elliptic operators in both divergence and nondivergence form on Lp(U) := Lp(U, µ)

have an Rp-bounded H∞-calculus. In a pioneering work Kunstmann and Ullmann estab-
lished this property by showing Lp0-Lp1 -off-diagonal estimates for the semigroup generated
by these operators (see [69]). For this result, we additionally need that (U, d) is a metric
space of homogeneous type, i.e. there exists C > 1 and D > 0, such that

µ
(
B(x, λr)

)
≤ CλDµ

(
B(x, r)

)
for all x ∈ U and λ, r > 0. Moreover, we define the annuli

Ak(x, r) := B(x, (k + 1)r) \B(x, kr)

for k ∈ N. Then, their result reads as the follows.

Theorem 1.4.5. Let 1 ≤ p0 < 2 < p1 ≤ ∞ and ω0 ∈ (0, π2 ). Let A be a closed and densely
defined operator on L2(U), such that A has a bounded H∞(Σω0

)-calculus. Moreover, we
assume that the analytic semigroup generated by −A satisfies for all θ ∈ (ω0, π) the off-
diagonal estimates∥∥1

Ak(x,|λ|
1
2 )
e−λA1

B(x,|λ|
1
2 )

∥∥
B(Lp0 (U),Lp1 (U))

≤ Cθµ
(
B(x, |λ| 12 )

) 1
p1
− 1
p0 (1 + k)−κθ∥∥1

B(x,|λ|
1
2 )
e−λA1

Ak(x,|λ|
1
2 )

∥∥
B(Lp0 (U),Lp1 (U))

≤ Cθµ
(
B(x, |λ| 12 )

) 1
p1
− 1
p0 (1 + k)−κθ

for some Cθ > 0, κθ > max{ 1
p0

+ d(1 − 1
p1

), 1 − 1
p1

+ d
p0
} and for all x ∈ U, k ∈ N0 and

λ ∈ Σπ
2−θ. Then, for all p, q ∈ (p0, p1) and α ∈ (ω0, π), the operator A has an Rp-bounded
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H∞(Σα)-calculus on Lq(U) with bound depending on Cθ, κθ, p, q, ω0 and on the bound of the
H∞-calculus on L2(U).

Proof. This statement can be found in [69], Theorem 2.3. The explicit dependence of the
constants is not mentioned in this theorem. However, the main tool for the proof of this result
is Proposition 2.5 in the same article and in this result, the dependency of the constants is
discussed. Hence, we get the claimed dependency by closely looking at the proof of Theorem
2.3.

A detailed list of elliptic operators satisfying these Lp0-Lp1-off-diagonal bounds can be found
in [69], Section 3 and in [8], Section 2.3, Example A and B.

So far, we discussed operators A having several versions of a holomorphic functional cal-
culus. However, for some operators on Lq(U), we can extend the functional calculus and
define f(A) : Lq(U) → Lq(U) for smooth f : [0,∞) → R. For A = −∆ on Lq(Rd) such
a spectral calculus was developed by Hörmander in [47]. Over the years, there were many
generalisations of this result. The most recent versions of such a spectral calculus are due
to Kunstmann and Uhl (see [68],[67]) and to Kriegler and Weis (see [61], [62]). We present
an application of their results that is sufficient for our purpose. We restrict us to U ⊂ Rd

equipped with the Lebesgue measure and with the Euclidean metric.

Proposition 1.4.6. Assume that A is a nonnegative self-adjoint operator on L2(U) and
assume that there exist constants c, C > 0 such that∥∥1

B(x,t
1
2 )
e−tA1

B(y,t
1
2 )

∥∥
B(Lp0 (U),L

p0
p0−1 (U))

≤ Ct
d
2 (1− 2

p0
)exp

(
− c |x−y|

2

t
1
2

)
for all x, y ∈ U and all t > 0. Then, given f ∈ C∞c ([0, 2)) with 0 ≤ f ≤ 1 and f ≡ 1

on [0, 1], the operators Sn = f(2−nA) are bounded on Lp(U) for p0 < p < p0

p0−1 and
supn∈N ‖Sn‖B(Lp(U)) <∞.

Proof. We apply Theorem 2.3 in [68]. We choose ω ∈ C∞c ( 1
4 , 1) such that 0 ≤ ω ≤ 1 and∑

k∈Z ω(2−lx) = 1 for all x ∈ R \ {0}. It is sufficient to show that

K := sup
n∈N

sup
l∈Z
‖x 7→ ω(x)f(2l−nx)‖Cs(R) = sup

l∈Z
‖x 7→ ω(x)f(2lx)‖Cs(R) <∞

for s ∈ N, s ≥ d
2 . Then, the quoted theorem implies

sup
n∈N
‖Sn‖B(Lp(U)) ≤ Cp(K + 1)

for all p ∈ (p0,
p0

p0−1 ). Since f and ω are bounded by 1, ‖x 7→ ω(x)f(2lx)‖C(R) ≤ 1. The
derivative is given by ω′f(2l·) + 2lωf ′(2l·). However, due to the assumptions on the support
of f and ω, this term is only nontrivial on

( 1
4 , 1) ∩ [0, 2−l+1) =

( 1
4 ,

1
2 ), for l = 2,

( 1
4 , 1), for l ≤ 1.
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This yields

‖x 7→ ω(x)f(2lx)‖C1(R) ≤ 1 + ‖ω′‖∞‖f‖∞ + 4‖ω‖∞‖f ′‖∞,

which is an estimate independent of l ∈ Z. Higher order derivatives can be estimated in the
same way. This yields the claimed result.





CHAPTER 2

Parabolic stochastic evolution equations via maximal

regularity

In this chapter, we provide a unified approach to the well-posedness of semilinear and quasi-
linear parabolic evolution equations. We develop a framework with maximal regularity
estimates for the deterministic and the stochastic convolution as input and a theory about
quasilinear equations as output. The maximal regularity estimates are based on the work of
Van Neerven, Veraar and Weis in [96] and [98] and Antoni in [8]. Our unified approach to
semilinear equations is orientated to Van Neerven’s, Veraar’s and Weis’ approach in [96] and
[98] and contains beside the different presentation few generalisations, whereas the theory
about local well-posedness of quasilinear equations is completely new.

As before, let
(
Ω,P

)
be a probability space with filtration F = (Ft)t≥0 satisfying the usual

conditions and W be a cylindrical Brownian motion in a Hilbert space H. Throughout this
section, let τ be a stopping time with respect to F and Fτ the corresponding σ-Algebra of
τ -past.

Before we start, we shortly sketch our approach. Given a family of semigroups with random
dependency (e−tA(ω))ω∈Ω,t≥0 and with generators (−A(ω))ω∈Ω all having the same domain
E1, such that ω 7→ A(ω)x is for all x ∈ E1 strongly Fτ -measurable, the mild solution to the
linear equationdu(ω, t) =

[
−A(ω)u(ω, t) + f(ω, t)

]
dt+ b(ω, t) dW (t), t ∈ [τ(ω), T ],

u(ω, τ(ω)) = uτ (ω)

is formally given by

u(ω, t) = e−(t−τ(ω))A(ω)uτ (ω) +

∫ t

τ(ω)

e−(t−s)A(ω)f(ω, s) ds+

∫ t

τ(ω)

e−(t−s)A(ω)b(ω, s) dW (s)

as long as t ≥ τ(ω). Therefore, to study the regularity properties of this mild solution, one
has to derive regularity properties for both the deterministic convolution

(e−(·)A ∗ f)τ (ω, t) :=

∫ t

τ(ω)

e−(t−s)A(ω)f(ω, s) ds :=

∫ t

0

e−(t−s)A(ω)f(ω, s)1s>τ(ω) ds (2.0.1)

25



26 CHAPTER 2. Parabolic stochastic evolution equations via maximal regularity

and the stochastic convolution

(e−(·)A � b)τ (ω, t) :=

∫ t

τ

e−(t−s)Ab(·, s) dW (s)(ω) :=

∫ t

0

e−(t−s)Ab(·, s)1s>τ dW (s)(ω)

(2.0.2)
for t ≥ τ. These operators are at first only defined for simple functions f on Ω× [τ,∞) and
for adapted simple functions b on Ω× [τ,∞)×H. However, we can extend them by density
to operators on larger spaces. This will be the content of section 2.1. In section 2.2, we use
these results to investigate the well-posedness of the semilinear equation

(SEE)

du(ω, t) =
[
−A(ω, t)u(ω, t) + F (u)(ω, t)

]
dt+B(u)(ω, t) dW (t), t ∈ (τ(ω), T ]

u(ω, τ(ω)) = uτ (ω),

that starts at the random time τ with strongly Fτ -measurable initial data uτ . Here, we
allow F and B to be memory terms that have the Volterra property, which means that
given a stopping time τ̃ with 0 ≤ τ ≤ τ̃ ≤ T almost surely the functions F (u)1[τ,τ̃ ] and
B(u)1[τ,τ̃ ] only depend on u1[τ,τ̃ ]. We solve this equation with an iterative application of
the contraction mapping theorem on [(τ + nκ) ∧ T, (τ + (n + 1)κ) ∧ T ] for a small enough
κ > 0. Quasilinear stochastic equations of the form

(QSEE)

du(ω, t) =
[
−A(u(ω, t))u(ω, t) + F (u)(ω, t)

]
dt+B(u)(ω, t) dW (t), t > 0,

u(ω, 0) = u0(ω),

will be discussed in section 2.3. We reduce (QSEE) on small random intervals [τ1, τ2] to an
equation of the form (SEE) with a nonlinear memory term and solve this with the theory
we derived before. Then, we put the solutions on all the random intervals together to a
solution up to a maximal stopping time that is characterised by a blow-up alternative.

2.1. Maximal regularity for the deterministic and the sto-

chastic convolution

In this section, we will discuss maximal regularity estimates in three different spaces. We
will consider the spaces Lp(Ω × [0, T ];E) and Lr(Ω; γ(0, T ;E)) for a Banach space E and
Lr(Ω;Lq(U ;Lp(0, T ))). Each of these maximal regularity concepts has its own advantages.
For the maximal γ-regularity, we can assume E to be UMD, whereas we additionally need
that E is of type 2 in the first setting. For maximal regularity in Lr(Ω;Lq(U ;Lp(0, T ))),
the assumptions on the operator A are most restrictive, since we have to assume A to have
an Rp-bounded H∞-calculus and not only an ordinary H∞-calculus as in the other cases.
However, especially for p > q ≥ 2 this approach yields stronger results, since the space
Lq(U ;Lp(0, T )) is smaller than Lp(0, T ;Lq(U)) and γ(0, T ;Lq(U)) = Lq(U ;L2(0, T )).
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2.1.1. Maximal Lp-regularity of the deterministic and the stochastic
convolution in Banach spaces of type 2

In this section, we discuss the regularity of the stochastic and the deterministic convolution
based on the work of Van Neerven, Veraar and Weis in [96]. Additionally, we prove lower
order estimates that will be needed in what follows. Although, they are standard, we give the
details for convenience. This setting will be called [TT]. We make the following assumptions.

[TT1] Let p ∈ (2,∞) and let E,E1 be UMD Banach spaces of type 2 and with a dense
embedding E1 ↪→ E. Moreover, let the family

{Jδ : δ > 0} ⊂ B
(
Lp(Ω× (0,∞); γ(H;E)), Lp(Ω× (0,∞);E)

)
defined by

Jδb(t) := δ−1/2

∫ t

(t−δ)∨0

b(s) dW (s)

be R-bounded.

[TT2] Let A : Ω → B(E1, E) be such that ω 7→ A(ω)x is for all x ∈ E1 strongly Fτ -
measurable and such that 0 ∈ ρ(A(ω)) for almost all ω ∈ Ω. Moreover, we assume
that A(ω) is for almost all ω ∈ Ω closed with D(A(ω)) = E1, i.e there exists M > 0,
such that we have

M−1‖x‖E1 ≤ ‖A(ω)x‖E ≤M‖x‖E1

for almost all ω ∈ Ω and all x ∈ E1. Further, A(ω) has for almost all ω ∈ Ω a bounded
H∞-calculus of angle η ∈ [0, π/2) with

‖Ψ(A(ω))‖B(E) ≤M‖Ψ‖H∞(Ση)

for all Ψ ∈ H∞(Ση). Here, all the occurring constants are independent of ω ∈ Ω.

Note that the requirement that not only E but also E1 is a UMD space of type 2 is not
restrictive, since by [TT2] they are isomorphic and both the UMD property and the type
of E are stable under isomorphisms. In particular, the interpolation spaces [E,E1] 1

2
and

(E,E1)1−1/p,p also inherit the UMD property from E.

We start with maximal regularity estimates of the deterministic convolution
(
e−(·)A ∗ f

)
τ
.

So far, we can exclude the dependence on ω and argue pathwise. The following purely de-
terministic theorem is sufficient for our purpose.

Theorem 2.1.1. Let τ ≥ 0. The on Lp(τ,∞;E) well-defined deterministic convolution

(e−(·)A ∗ f)τ (t) =

∫ t

τ

e−(t−s)Af(s) ds

satisfies (e−(·)A ∗ f)τ ∈ Lp(τ,∞;E1) and

‖(e−(·)A ∗ f)τ‖Lp(τ,∞;E1) + ‖(e−(·)A ∗ f)τ‖C(τ,∞;(E,E1)1−1/p,p) ≤ CMRD‖f‖Lp(τ,∞;E).

Here, CMRD > 0 depends on p, E, η and M .
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Proof. The proof can be found in [102], Theorem 3.4. Note that our assumption on the
H∞(Ση)-calculus implies the R-sectoriality of A required in this theorem.

In the sequel, it will be very helpful to know that the constant in a lower order estimate
of the deterministic convolution becomes smaller, if one reduces the size of the considered
interval.

Proposition 2.1.2. Let τ ≥ 0 and κ > 0. We have

‖(e−(·)A ∗ f)τ‖Lp(τ,τ+κ;E) ≤ Cκ‖f‖Lp(τ,τ+κ;E)

for all f ∈ Lp(τ, τ +κ;E) with a constant C > 0 only depending on supt∈[τ,τ+κ] ‖e−tA‖B(E).

Proof. Using Hölder’s inequality and the boundedness of e−(·)A, we estimate

∥∥∫ t

τ

e−(t−s)Af(s) ds
∥∥
E
. κ1−1/p‖f‖Lp(τ,τ+κ;E).

Taking the Lp-norm implies the claimed result.

Before we turn to the stochastic convolution, we want to mention a well-known trace esti-
mate for [τ,∞) 3 t 7→ e−(t−τ)Auτ .

Proposition 2.1.3. Let τ ≥ 0. Then, there exists a constant C > 0, such that

‖t 7→ e−(t−τ)Auτ‖Lp(τ,∞;E1) + ‖t 7→ e−(t−τ)Auτ‖C(τ,∞;(E,E1)1−1/p,p) ≤ C‖uτ‖(E,E1)1−1/p,p

for all uτ ∈ (E,E1)1−1/p,p.

Proof. The estimate

‖t 7→ Ae−(t−τ)Au0‖Lp(τ,∞;E) + ‖t 7→ e−(t−τ)Au0‖C(τ,∞;(E,D(A))1−1/p,p)

≤ C‖u0‖(E,D(A))1−1/p,p

is well-known and can be found e.g. in [75]. The claimed result then follows from the
equivalence of the norms ‖A · ‖E and ‖ · ‖E1 .

Next, we provide estimates for the stochastic convolution. Thus, from now on, let τ be an
F-stopping time. At first, we have to make sure that the stochastic integral in (2.0.2) is
well-defined, because it is not immediately clear that the integrand

(ω, s) 7→ e−(t−s)A(ω)b(ω, s)1τ(ω)<s≤t

is adapted to F.
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Lemma 2.1.4. Let b : Ω× [τ,∞)→ γ(H;E) be F-adapted with b ∈ Lp(τ, T ; γ(H;E)) almost
surely. Then, the random variable

ω 7→ e−(t−s)A(ω)b(ω, s)1t≥s>τ(ω)

is for all 0 ≤ s ≤ t strongly Fs−measurable.

Proof. Since ω 7→ A(ω)x is for all x ∈ E1 strongly Fτ -measurable, ω 7→ R(λ,A(ω))x is for
all x ∈ E strongly Fτ -measurable. Since the identity

e−tA(ω)x = lim
n→∞

(
n
tR(nt , A(ω))

)n
x

holds true for all x ∈ E and ω → e−tA(ω)x is also for all x ∈ E and t ≥ 0 strongly
Fτ -measurable as pointwise limit of strongly Fτ -measurable functions.

Now, we prove that for fixed s ≤ t the map ω 7→ e−(t−s)A(ω)x1s>τ(ω) is strongly Fs-
measurable. Indeed, for every Borel set B ⊂ E and x ∈ E we have

{e−(t−s)Ax1s>τ ∈ B} = {0 ∈ B, s ≤ τ} ∪ {e−(t−s)Ax ∈ B, s > τ}.

Since the filtration F is right-continuous, we have both {s ≤ τ} ∈ Fs and {s > τ} ∈ Fs.
Thus, we obtain {0 ∈ B, s ≤ τ} ∈ Fs and hence, Proposition 1.2.3 yields

{e−(t−s)Ax ∈ B, s > τ} ∈ Fτ ∩ Fs = Fτ∧s ⊂ Fs.

Last but not least, we conclude that

ω 7→ e−(t−s)A(ω)b(ω, s)1s>τ(ω)

is strongly Fs-measurable in the sense of Definition 1.2.1 as composition of strongly Fs-
measurable functions.

Now we are in the position to state the maximal Lp-regularity result and the maximal in-
equality for the stochastic integral.

Theorem 2.1.5. The stochastic convolution

(e−(·)A � b)τ (t) =

∫ t

0

e−(t−s)Ab(·, s)1(τ,∞)(s) dW (s)

is well-defined for all adapted b ∈ LpF(Ω× [τ,∞), γ(H;E)) and we have

‖(e−(·)A � b)τ‖Lp(Ω×(τ,∞);E1) +
(
E sup
t∈[0,∞)

‖(e−(·)A � b)τ‖p(E,E1)1−1/p,p

)1/p
≤ CMRS‖b‖Lp(Ω×(τ,∞),γ(H;[E,E1] 1

2
))

for all b ∈ LpF(Ω × [τ,∞), γ(H; [E,E1] 1
2
)). Here, the constant CMRS > 0 only depends on

E,p, η and M.
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Proof. By Lemma 2.1.4, the stochastic convolution is well-defined. The proof follows the
line of the proof of Theorem 1.1 in [97]. There, the result is only shown for E = Lq(µ), but it
extends to the general situation under the additional assumption that (Jδ)δ>0 is R-bounded.
This extension is discussed in [96], Proposition 3.5.

As for the deterministic convolution, we want to derive a lower order estimate that improves
if one lessens the size of the considered interval.

Proposition 2.1.6. Let κ > 0 and T > 0. Then, we have

‖(e−(·)A � b)τ‖Lp(Ω×[τ,(τ+κ)∧T ];E) ≤ Cκ1/2‖b‖Lp(Ω×[τ,(τ+κ)∧T ],γ(H;E))

for all b ∈ Lp(Ω× [τ, (τ + κ)∧ T ], γ(H;E)) with a constant C > 0 only depending on E and
the bound of e−(·)A.

Proof. Since E has type 2, the space L2(0, t; γ(H;E)) embeds into γ([0, t]×H;E) (see e.g.
[99], page 11). Thus, the Itô isomorphism (see Theorem 1.3.4) yields

‖(e−(·)A � b)τ (t)‖Lp(Ω,E) ' ‖s 7→ e−(t−s)Ab(s)1τ≤s≤(τ+κ)∧t‖Lp(Ω;γ([0,T ]×H;E))

. ‖s 7→ e−(t−s)Ab(s)1τ≤s≤(τ+κ)∧t‖Lp(Ω;L2(0,T ;γ(H;E)))

for all t ∈ [τ, (τ + κ) ∧ T ]. Since e−tA is bounded on E uniformly in t, we have

‖t 7→ (e−(·)A � b)τ (·, t)‖Lp(Ω×[τ,(τ+κ)∧T ];E))

. ‖(t, s) 7→ b(s)1τ≤s≤(τ+κ)∧t‖Lp(Ω×[0,T ],L2(0,T ;γ(H;E)))

≤ κ1/2−1/p‖(t, s) 7→ b(s)1τ≤s≤(τ+κ)∧t‖Lp(Ω×[0,T ]2;γ(H;E))

≤ κ1/2‖b‖Lp(Ω×[0,T ];γ(H;E)).

Here, we used Hölder’s inequality and Fubini. This closes the proof.

2.1.2. Maximal γ-regularity of the deterministic and stochastic convo-
lution in UMD Banach spaces

In this section, we discuss the regularity of the stochastic and the deterministic convolution
in a space of γ-radonifying operators based on the work of Van Neerven, Veraar and Weis
in [98]. Additionally, we prove lower estimates that will be needed later on. Although they
are standard, we give the details for convenience. In what follows, this setting will be called
[GM]. Throughout this section, we make the following assumptions.

[GM1] Let r ∈ (1,∞) and let E,E1 be UMD Banach spaces with property-(α) and a dense
embedding E1 ↪→ E.

[GM2] We assume the mapping A : Ω → B(E1, E) to be strongly Fτ -measurable such that
D(A(ω)) = E1 for almost all ω ∈ Ω, i.e there exists M > 0, such that we have

M−1‖x‖E1 ≤ ‖A(ω)x‖E ≤M‖x‖E1
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for almost all ω ∈ Ω and all x ∈ E1. Moreover, we assume 0 ∈ ρ(A(ω)) for almost
all ω ∈ Ω and that A(ω) has for almost all ω ∈ Ω a bounded H∞-calculus of angle
η ∈ [0, π/2) with

‖Ψ(A(ω))‖B(E) ≤M‖Ψ‖H∞(Ση)

for all Ψ ∈ H∞(Ση). Here, all the occurring constants are independent of ω ∈ Ω.

We start with maximal regularity estimates of the deterministic convolution
(
e−(·)A ∗ f

)
τ
.

So far, we can ignore the dependence on ω and argue pathwise. The following purely deter-
ministic theorem is sufficient for our purpose.

Theorem 2.1.7. Let τ ≥ 0. Then, the for simple functions f : Ω× [τ,∞)→ E well-defined
deterministic convolution

(e−(·)A ∗ f)τ (t) =

∫ t

τ

e−(t−s)Af(s) ds

satisfies (e−(·)A ∗ f)τ ∈ γ(τ,∞;E1) and

‖(e−(·)A ∗ f)τ‖γ(τ,∞;E1) + ‖(e−(·)A ∗ f)‖C(τ,∞;[E,E1] 1
2

) ≤ CMRD‖f‖γ(τ,∞;E).

Here, the constant CMRD > 0 depends on p, E, η and M . Hence, we can extend f 7→
(e−(·)A ∗ f)τ to a bounded operator from γ(τ,∞;E) to γ(τ,∞;E1).

Proof. The proof can be found in [98], Theorem 3.3. Note that our assumption on the
H∞(Ση)-calculus implies the γ-sectoriality of A which is required in this theorem.

Again, it will be very helpful to know that the constant in a lower order estimate of the
deterministic convolution becomes smaller, if one reduces the size of the considered interval.

Proposition 2.1.8. Let τ, κ ≥ 0. We have

‖(e−(·)A ∗ f)τ‖γ(τ,τ+κ;E) ≤ Cκ‖f‖γ(τ,τ+κ;E)

for all f ∈ γ(τ, τ + κ;E) with a constant C > 0 only depending on M .

Proof. Let f ∈ C∞c (τ, τ + κ;E) and g ∈ C∞c (τ, τ + κ;E
′
). Then, t 7→

∫ t
τ
e−(t−s)Af(s) ds is

also an E-valued function and we can estimate∣∣∣ ∫ τ+κ

τ

〈∫ t

τ

e−(t−s)Af(s) ds, g(t)
〉

(E,E′ )
dt
∣∣∣

=
∣∣∣ ∫ τ+κ

τ

∫ τ+κ

τ

〈
e−(t−s)Af(s)1τ≤s≤t≤τ+κ, g(t)

〉
(E,E′ )

dsdt
∣∣∣

≤ ‖(t, s) 7→ e−(t−s)Af(s)1τ≤s≤t≤τ+κ‖γ([τ,τ+κ]2;E)‖(t, s) 7→ g(t)‖γ([τ,τ+κ]2;E′).

In the last inequality, we used the finite cotype of E and the corresponding γ-Hölder in-
equality (see Corollary 5.5 in [55]). By assumption the A(ω) have a bounded H∞-calculus
with ω-independent bound. Thus, Remark 7.1 in [55] implies that the operators A(ω) are
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γ-sectorial with an ω-independent bound and in particular (e−tA(ω))t≥0 is γ-bounded. More-
over, γ-Fubini (see Proposition 3.14 in [94]) for spaces with property-α yields

‖(t, s) 7→ e−(t−s)Af(s)1τ≤s≤t≤τ+κ‖γ([τ,τ+κ]2;E) . ‖(t, s) 7→ f(s)‖γ([τ,τ+κ]2;E)

' ‖t 7→
(
s 7→ f(s)

)
‖γ(τ,τ+κ;γ(τ,τ+κ;E))

= κ1/2‖f‖γ(τ,τ+κ;E)

and similarly

‖(t, s) 7→ g(t)‖γ([τ,τ+κ]2;E) . κ1/2‖g‖γ(τ,τ+κ;E′ ).

Since C∞c (τ, τ + κ;E) and C∞c (τ, τ + κ;E′) are dense in the spaces γ(τ, τ + κ;E) and
γ(τ, τ + κ;E

′
) respectively, we proved the claimed result.

Before we turn to the stochastic convolution, we provide a trace estimate for [τ,∞) 3 t 7→
e−(t−τ)Auτ .

Proposition 2.1.9. Let τ ≥ 0. Then, there exists C > 0, such that

‖t 7→ e−(t−τ)Auτ‖γ(τ,∞;E1) + ‖t 7→ e−(t−τ)Auτ‖C(τ,∞;[E,E1] 1
2

) ≤ C‖uτ‖[E,E1] 1
2

for all uτ ∈ [E,E1] 1
2
.

Proof. The estimate

‖t 7→ Ae−(t−τ)Au0‖γ(τ,∞;E) + ‖t 7→ e−(t−τ)Au0‖C(τ,∞;[E,D(A)] 1
2

) ≤ C‖u0‖[E,D(A)] 1
2

can be found in [98], Theorem 3.8. The claimed result then follows from the equivalence of
the norms ‖A · ‖E and ‖ · ‖E1 .

As in Lemma 2.1.4, we can show that the integrand of the stochastic convolution

(ω, s) 7→ e−(t−s)A(ω)b(ω, s)1τ(ω)<s≤t

is strongly adapted to F in the sense of Definition 1.3.2. Hence, we are in the position to
state the maximal γ-regularity result and the maximal inequality for the stochastic integral.

Theorem 2.1.10. The stochastic convolution

(e−(·)A � b)τ (t) =

∫ t

0

e−(t−s)Ab(·, s)1(τ,∞)(s) dW (s)

is for all adapted b ∈ LrF(Ω; γ([τ,∞)×H;E)) well-defined and we have

‖(e−(·)A � b)τ‖Lr(Ω;γ(τ,∞;E1)) +
(
E sup
t∈[τ,∞)

‖(e−(·)A � b)τ‖r[E,E1] 1
2

)1/r
≤ CMRS‖b‖Lr(Ω;γ([τ,∞)×H;[E,E1] 1

2
))

with a constant CMRS > 0 only depending on p, η and M.
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Proof. The proof follows the lines of the proof of Proposition 4.3 in [98].

As for the deterministic convolution, we want to derive a lower order estimate that improves
if one lessens the size of the considered interval.

Proposition 2.1.11. Let κ > 0. Then, we have

‖(e−(·)A � b)τ‖Lr(Ω;γ(τ,τ+κ;E)) ≤ Cκ1/2‖b‖Lr(Ω;γ([τ,τ+κ]×H;E))

for all b ∈ Lr(Ω; γ([τ, (τ + κ)∧ T ]×H;E)) with a constant C > 0 only depending on E and
on M.

Proof. Since E has property-(α), we can apply γ-Fubini (see Proposition 3.14 in [94]) and
the Itô-isomorphism (see Theorem 1.3.4) to obtain

‖t 7→ (e−(·)A � b)τ (t)1[τ,τ+κ](t)‖Lr(Ω;γ(0,∞;E))

'E ‖t 7→ (e−(·)A � b)τ (·, t)1[τ,τ+κ](t)‖γ(0,∞;Lr(Ω,E))

' ‖(t, s) 7→ e−(t−s)Ab(s)1τ<s≤t≤τ+κ‖Lr(Ω;γ((0,∞)×(0,∞)×H;E)).

By assumption A(ω) has a bounded H∞-calculus with ω-independent bound. Thus, Remark
7.1 in [55] implies that the operators A(ω) are γ-sectorial with an ω-independent bound.
In particular, the set

{
e−tA(ω) : t ∈ (0,∞)

}
⊂ B(E) is γ-bounded and therefore we can

estimate

‖(t, s) 7→ e−(t−s)Ab(ω, s)1τ<s≤t≤τ+κ‖γ((0,∞)×(0,∞)×H;E)

. ‖(t, s) 7→ b(s)1τ<s≤t≤τ+κ∧T ‖γ((0,∞)×(0,∞)×H;E)

. κ1/2‖b1[τ,(τ+κ)∧T ]‖γ((0,∞)×H;E)

almost surely, which yields the claimed result.

2.1.3. Maximal Lq(U ;Lp(0, T ))-regularity of the deterministic and sto-
chastic convolution

In this section, we discuss the regularity of the stochastic and the deterministic convolution
based on the work of Antoni in [8]. In the maximal regularity settings above, we just had
to fix a state space E and a constant domain E1 for the operators A(ω). To adapt this
flexibility to Antoni’s approach, which was only developed in the space Lq(U ;Lp(0, T )),
we introduce a scale of possible state spaces and possible domains. This will be done by
choosing the state space as a fractional domain of an operator Λ that has an Rp-bounded
H∞-calculus on Lq(U ;Lp(0, T )). In what follows, this setting will be called [LQ]. We make
the following assumptions.

[LQ1] Let r ∈ (1,∞), q ∈ (1,∞), p ∈ [2,∞), U ⊂ Rd and let µ be a σ-finite measure on U.
We choose H = l2(N) and W (t) =

∑∞
j=1 ekβk(t) with a sequence (βk)k of independent
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Brownian motions relative to F and with unit vectors (ek)k ⊂ l2(N). Moreover, let Λ

be a closed and densely defined operator on Lq(U) := Lq(U, µ) with 0 ∈ ρ(Λ) that
has an Rp-bounded H∞(Ση̃)-calculus for some η̃ ∈ (0, π2 ). For given α ∈ ( 1

p , 1], let
Eα := D(Λα) and denote by Eα−1 the extrapolation space of Lq(U) equipped with
the norm ‖Λα−1 · ‖Lq(U).

[LQ2] We assume the mapping A : Ω → B(Eα, Eα−1) to be strongly Fτ -measurable. More-
over, the operators A(ω) are for almost all ω ∈ Ω closed, densely defined with 0 ∈
ρ(A(ω)) and have an Rp-bounded H∞(Ση) calculus with

Rp
({
ψ(A(ω)) : ‖ψ‖H∞(Ση) ≤ 1

}
⊂ B(Lq(U))

)
≤M

for some M > 0 and η ∈ (0, π/2) independent of ω ∈ Ω. Moreover, the operators
ΛαA−α, AαΛ−α, Aα−1Λ1−α, Λα−1A1−α are almost surely Rp-bounded with ω inde-
pendent bounds.

As we have seen in section 1.4.2, Λ can be extended to an invertible operator Λp,a,b on
Lq(U ;Lp(a, b)) that has a bounded H∞(Ση̃)-calculus. In what follows, we write Eα(a, b) :=

D(Λαp,a,b) and Eα−1(a, b) for the extrapolation space of Lq(U ;Lp(a, b)) with respect to
‖Λα−1

p,a,b · ‖Lq(U ;Lp(a,b)).

Due to Proposition 1.4.1, the assumptions on the Rp-boundedness from [LQ2] imply the
equivalences of the norms ‖Aα · ‖Lq(U ;Lp(a,b)) ' ‖ · ‖Eα(a,b) and ‖Aα−1 · ‖Lq(U ;Lp(a,b)) '
‖ · ‖Eα−1(a,b) almost surely with ω-independent estimates. Since both A and Λ particularly
have Rp-bounded imaginary powers, we also get the norm equivalence ‖Aθ · ‖Lq(U ;Lp(a,b)) '
‖Λθp,a,b · ‖Lq(U ;Lp(a,b)) for all θ ∈ [α − 1, α] and that the operators ΛθA−θ and AθΛ−θ are
Rp-bounded.

Note that the restriction α ∈ ( 1
p , 1] is necessary, as for the proof of the trace estimates of

the deterministic and the stochastic convolution, we need to apply the embedding{
Λαu ∈ Lq(U ;Lp(a, b))

}
∩ Lq(U ;Wα,p(a, b)) ↪→ C(a, b;F

α− 1
p

Λ,q,p )

from Lemma 1.4.4, which only holds true for α > 1
p . Throughout this section, we frequently

use the estimate
‖Γf‖Lq(U ;Lp(a,b)) ≤ Rp(Γ)‖f‖Lq(U ;Lp(a,b))

for any Rp-bounded operator Γ from Proposition 1.4.1 without explicitly mentioning it.

We start with an estimate for the deterministic convolution
(
e−(·)A ∗ f

)
τ
. Here, we can ig-

nore the dependence on ω and argue pathwise. The following purely deterministic theorem
is sufficient for our purpose.

Theorem 2.1.12. Let 0 ≤ τ ≤ T and let f : Ω× [τ, T ]→ Eα be a simple function. Then,
the deterministic convolution

(e−(·)A ∗ f)τ (t) =

∫ t

τ

e−(t−s)Af(s) ds
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is well-defined, satisfies (Λαe−(·)A ∗ f)τ ∈ Lq(U ;Lp(τ, T )).Additionally, we have

‖Λα(e−(·)A ∗ f)τ‖Lq(U ;Lp(τ,T )) + ‖(e−(·)A ∗ f)τ‖C(τ,T ;F
α−1/p
Λ,q,p )

≤ CMRD‖Λα−1f‖Lq(U ;Lp(τ,T )).

Here, the constant CMRD > 0 only depends on p, q, η, M and the Rp-bounds of ΛαA−α,
A1−αΛα−1 and Aα−1Λ1−α. Hence, we are able to extend f 7→ (e−(·)A ∗ f)τ to a bounded
operator from Eα−1(τ, T ) to Eα(τ, T ).

Proof. The proof of the inequality

‖A(e−(·)A∗f)τ‖Lq(U ;Lp(τ,T )) + ‖A1−α(e−(·)A ∗ f)τ‖Lq(U ;Wα,p(τ,T )) ≤ C̃MRD‖f‖Lq(U ;Lp(τ,T ))

can be found in [8], Theorem 3.3.9. The claimed estimate in Eα(τ, T ) then follows from

‖Λα(e−(·)A∗f)τ‖Lq(U ;Lp(τ,T ))

= ‖ΛαA−αAα(e−(·)A ∗A1−αAα−1f)τ‖Lq(U ;Lp(τ,T ))

≤ Rp
(
ΛαA−α

)
C̃MRD‖Aα−1Λ1−αΛα−1f‖Lq(U ;Lp(τ,T ))

≤ Rp
(
ΛαA−α

)
C̃MRDRp

(
Aα−1Λ1−α)‖Λα−1f‖Lq(U ;Lp(τ,T )).

In the same way, we get

‖(e−(·)A ∗ f)τ‖Lq(U ;Wα,p(τ,T )) ≤ C̃MRD‖Aα−1f‖Lq(U ;Lp(τ,T ))

= C̃MRDRp
(
Aα−1Λ1−α)‖Λα−1f‖Lq(U ;Lp(τ,T ))

for f ∈ Eα−1(τ, T ). Hence, we can apply Lemma 1.4.4 to get the claimed trace estimate in
F
α−1/p
Λ,q,p .

In the sequel, it will very helpful to know that the constant in a lower order estimate of the
deterministic convolution becomes smaller, if one reduces the size considered interval.

Proposition 2.1.13. Let 0 ≤ τ ≤ T and κ > 0, such that τ + κ ≤ T. Then, we have

‖(e−(·)A ∗ f)τ‖Eα−1(τ,τ+κ) ≤ Cκ‖f‖Eα−1(τ,τ+κ)

for all f ∈ Eα−1(τ, τ + κ) with a constant C > 0 only depending on M and the Rp-bound
of Λα−1A1−α and Aα−1Λ1−α, but not on κ.

Proof. From [8], Proposition 3.3.1, we get

‖(e−(·)A ∗ f)τ‖Lq(U ;Lp(τ,τ+κ)) ≤ Cκ‖f‖Lq(U ;Lp(τ,τ+κ)).

This together with the Rp-boundedness of Λα−1A1−α and Aα−1Λ1−α yields

‖Λα−1(e−(·)A∗f)τ‖Lq(U ;Lp(τ,τ+κ))

= ‖Λα−1A−α+1(e−(·)A ∗Aα−1f)τ‖Lq(U ;Lp(τ,τ+κ))

≤ Rp
(
Λα−1A−α+1

)
Cκ‖Aα−1Λ1−αΛα−1f‖Lq(U ;Lp(τ,τ+κ))

≤ Rp
(
Λα−1A1−α)CκRp(Aα−1Λ1−α)‖Λα−1f‖Lq(U ;Lp(τ,τ+κ)).
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Before we turn to the stochastic convolution, we give a trace estimate for t 7→ e−(t−τ)Au0.

Proposition 2.1.14. Let 0 < τ ≤ T . Then, there exists C > 0, such that

‖t 7→ Λαe−(t−τ)Au0‖Lq(U ;Lq(τ,T )) + ‖t 7→ e−(t−τ)Au0‖C(τ,T ;F
1−1/p
Λ,q,p )

≤ C‖u0‖Fα−1/p
Λ,q,p

for all u0 ∈ Fα−1/p
Λ,q,p .

Proof. The estimate

‖t 7→ Aαe−(t−τ)Au0‖Lq(U ;Lq(τ,T )) + ‖t 7→ e−(t−τ)Au0‖C(τ,T ;F
α−1/p
A,q,p )

≤ C‖u0‖Fα−1/p
A,q,p

.

is a combination of [8], Proposition 3.2.12 and [65], Theorem 4.25. The claimed result then
follows from ‖Aα · ‖Lq(U ;Lp(τ,T )) ' ‖·‖Eα(τ,T ) and ‖Aα−1 · ‖Lq(U ;Lp(τ,T )) ' ‖·‖Eα−1(τ,T ).

From now on let τ be an F-stopping time with 0 ≤ τ ≤ T almost surely. As in Lemma 2.1.4,
we can show that the integrand of the stochastic convolution

(ω, s) 7→ e−(t−s)A(ω)b(ω, s)1τ(ω)<s≤t

is adapted to F. Hence, we are in the position to state the maximal regularity result and
the maximal estimate for the stochastic integral.

Theorem 2.1.15. The stochastic convolution

(e−(·)A � b)τ (t) =

∫ t

0

e−(t−s)Ab(s)1(τ,T )(s) dW (s)

is well-defined for all adapted b ∈ Lr(Ω;Lq(U ;Lp(τ, T ; l2))) and we have

‖Λα(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Lp(τ,T ))) +
(
E sup
t∈[τ,T )

‖(e−(·)A � b)τ‖rFα−1/p
Λ,q,p

)1/r
≤ CMRS‖Λα−

1
2 b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2)))

with a constant CMRS > 0 only depending on p, η, M and the Rp-bounds of ΛαA−α and
Aα−1/2Λ1/2−α. Hence, we can extend the stochastic convolution f 7→ (e−(·)A � b)τ to a
bounded operator from

{
Λα−

1
2 b ∈ LrF(Ω;Lq(U ;Lp(τ, T ; l2)))

}
to the space Lr(Ω;Eα(τ, T ))∩

Lr(Ω;C(τ, T ;F
α− 1

p

Λ,q,p )).

Proof. Following the proof of [8], Theorem 3.4.10, we get

‖A1/2(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Lp(τ,T ))) + ‖A1/2−σ(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Wσ,p(τ,T )))

≤ C̃MRS‖b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2))) (2.1.1)

for σ ∈ (0, 1
2 ) and b with A

1
2 b ∈ Lr(Ω;Lq(U ;Lp(τ, T ; l2))). The estimate in the space

Lr(Ω;Eα(τ, T )) then follows from

‖Λα(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Lp(τ,T )))

= ‖ΛαA−αAα(e−(·)A �A1/2−αAα−1/2b)τ‖Lr(Ω;Lq(U ;Lp(τ,T )))

≤ Rp
(
ΛαA−α

)
C̃MRS‖Aα−1/2Λ1/2−αΛα−1/2b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2)))

≤ Rp
(
ΛαA−α

)
C̃MRSRp

(
Aα−1/2Λ1/2−α)‖Λα−1/2b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2))).
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In the same way, for σ ∈ (0, 1
2 ), we get

‖(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Wσ,p(τ,T )))

≤ C̃MRSRp
(
Aσ−1/2Λ1/2−σ)‖Λσ−1/2b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2))) (2.1.2)

as a consequence of (2.1.1). To derive the trace estimate in Fα−1/p
Λ,q,p , we have to distinguish

the cases α ∈ ( 1
p ,

1
2 ) and α ∈ [ 1

2 , 1]. In the first case, (2.1.1) implies

‖(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Wα,p(τ,T ))) ≤ C̃MRS‖Aα−1/2b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2)))

≤ Rp
(
Aα−1/2Λ1/2−α)‖Λα−1/2b‖Lr(Ω;Lq(U ;Lp(τ,T ;l2)))

and the embedding from Lemma 1.4.4 yields the claimed result. If on the other hand
α ∈ [ 1

2 , 1], choose ε ∈ (0, 1
2 −

1
p ). We use the same embedding and (2.1.2) to get

‖(e−(·)A � b)τ‖Lr(Ω;C(τ,T ;F
α−1/p
Λ,q,p ))

= ‖Λα−1/2+ε(e−(·)A � b)τ‖
Lr(Ω;C(τ,T ;F

1
2
−ε− 1

p
Λ,q,p ))

≤ C‖Λα(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Lp(τ,T ))) + C‖Λα−
1
2 +ε(e−(·)A � b)τ‖

Lr(Ω;Lq(U ;W
1
2
−ε,p(τ,T )))

≤ C
(
Rp
(
ΛαA−α

)
C̃MRSRp

(
Aα−

1
2 Λ

1
2−α

)
+Rp

(
Aα−

1
2 Λ

1
2−α

))
‖Λα− 1

2 f‖Lr(Ω;Lq(U ;Lp(τ,T ;l2))).

This closes the proof.

As for the deterministic convolution, we want to derive a lower order estimate that improves
if one lessens the size of the considered interval.

Proposition 2.1.16. Let κ > 0 and T > 0. Then, we have

‖Λα−1(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Lp(τ,(τ+κ)∧T ))) ≤ Cκ1/2‖Λα−1b‖Lr(Ω;Lq(U ;Lp(τ,(τ+κ)∧T ;l2)))

for all b ∈ Lr(Ω;Lq(U ;Lp(τ, (τ + κ) ∧ T ; l2))) with a constant C > 0 only depending on M
and the Rp-bound of Λ1−αAα−1 and Aα−1Λ1−α.

Proof. From Proposition 3.4.1 in [8], we get

‖(e−(·)A � b)τ‖Lr(Ω;Lq(U ;Lp(τ,(τ+κ)∧T ))) ≤ Cκ1/2‖b‖Lr(Ω;Lq(U ;Lp(τ,(τ+κ)∧T )))

Using the ω-independent boundedness of Rp
(
Λ1−αAα−1

)
and Rp

(
Aα−1Λ1−α), the result is

an immediate consequence of this estimate.

2.2. Semilinear parabolic stochastic evolution equations

In this section, we show well-posedness of semilinear parabolic stochastic evolution equations
in different spaces based on the known maximal regularity estimates for the stochastic and
the deterministic convolution. Since, these arguments are independent of the underlying



38 CHAPTER 2. Parabolic stochastic evolution equations via maximal regularity

setting, we work simultaneously in Lp(0, T ;E), γ(0, T ;E) with a UMD Banach space E and
in Lq(U ;Lp(0, T )). In every single of these spaces, there are results for semilinear stochastic
equations (see [8], [96], and [98]). However, we not only give a unified approach to these
equations, we also make slight generalisations. We start the equation at an F-stopping time
τ with given initial date uτ : Ω → TR that is strongly Fτ -measurable. Here, TR is the
trace space in our theory. It differs from setting to setting and will be introduced later
on. Moreover, we allow not only nonlinearities that are pointwise Lipschitz continuous, but
also nonlinearities that are Lipschitz continuous with respect to the norm of the maximal
regularity space. This allows us to deal with nonlinear memory terms, which will be crucial,
when we apply these results to quasilinear equations. Although our results are not to much
different from the originals, we still give most of the proofs to convince the reader of the
validity of our changes and to highlight the common structure of all three approaches.

As before, let
(
Ω,P

)
be a probability space with filtration F = (Ft)t≥0 satisfying the usual

conditions and let W be a cylindrical Brownian motion in a Hilbert space H. Moreover, let
T > 0 and let τ be an F-stopping time with 0 ≤ τ ≤ T almost surely.

We consider the stochastic evolution equation

(SEE)

du(t) =
[
−Au(t) + F (u)(t) + f(t)

]
dt+

[
B(u)(t) + b(t)

]
dW (t), t ∈ (τ, T ]

u(τ) = uτ ,

(2.2.1)
on a generalized interval Ω× [τ, T ] := {(ω, t) ∈ Ω× [0, T ] : τ(ω) ≤ t ≤ T}.

The general framework consists of a Banach space X with an extension to the timeline
X(a, b) for some interval (a, b) ⊂ [0, T ]. Moreover, we have a maximal regularity space
X1(a, b), a space X

1
2

H(a, b) in which the stochastic part of the equations lives and a trace
space TR. We will choose them in such a way that the solution u of (SEE) always satisfies u ∈
X1(τ, T ), Au ∈ X(τ, T ), B(u) ∈ X

1
2

H(τ, T ) and u ∈ C(τ, T ; TR) almost surely. Additionally,
r will be our integrability exponent with respect to Ω, i.e. for given uτ ∈ Lr(Ω; TR), we
want to show that the solution u satisfies u ∈ Lr(Ω;X1(τ, T ) ∩ C(τ, T ; TR)).

To give an impression about the possible spaces, let A = ∆ and X = Lq(Rd). Then,
both X(a, b) = Lp(a, b;Lq(Rd)) and X(a, b) = Lq(Rd;Lp(a, b)) are possible choices with
the corresponding X1(a, b) = Lp(a, b;W 2,q(Rd)) or X1(a, b) = W 2,q(Rd;Lp(a, b)). Here, TR

is given by B
2−2/p
q,p (Rd) and F

2−2/p
q,p (Rd) respectively. Equations in these spaces will be

discussed in depth in chapter 3.

In every setting discussed in the previous section, we will choose these abstract spaces
individually. We fix the notation in the following way.

[TT] Assume [TT1] and [TT2] from section 2.1.1. In this setting, we define X := E,
X(a, b) := Lp(a, b;E), X1(a, b) := Lp(a, b;E1), XH(a, b) := Lp(a, b; γ(H;E)) and
X

1
2

H(a, b) := Lp(a, b; γ(H; [E,E1] 1
2
)). The trace space TR is the real interpolation

space (E;E1)1−1/p,p.
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[GM] Assume [GM1] and [GM2] from section 2.1.2. We set X := E, X(a, b) := γ(a, b;E),
X1(a, b) := γ(a, b;E1), XH(a, b) := γ([a, b]×H;E), X

1
2

H(a, b) := γ([a, b]×H; [E,E1] 1
2
).

The trace space TR is the complex interpolation space [E;E1] 1
2
.

[LQ] Assume [LQ1] and [LQ2] from section 2.1.3. Here, we set Xα(a, b) := D(Λαp,a,b),
Xα−1(a, b) = Λ1−α

p,a,b

(
Lq(U ;Lp(a, b))

)
, XH(a, b) := Λ1−α

p,a,b

(
Lq(U ;Lp(a, b; l2(N)))

)
and

X
1
2

H(a, b) := Λ
1
2−α
p,a,b

(
Lq(U ;Lp(a, b; l2(N)))

)
. The trace space TR is the interpolation

space Fα−1/p
Λ,q,p in the sense of Definition 1.4.2.

The other assumptions are similar in every setting and can be formulated universally. How-
ever, before we can make them precise, we need to know what LrF(Ω;Xi(τ, µ)) for i = 0, 1

and LrF(Ω;X
1
2

H(τ, µ)) actually mean for given F-stopping times τ, µ with 0 ≤ τ ≤ µ ≤ T

almost surely. In the setting [GM], this is obvious by Definition 1.3.2. In [TT], we use the
same definition with the choice Y = Ei for i = 0, 1 and in [LQ], we take H = l2(N) and
Y = Λ1−α−i(Lq(U)

)
. This last choice makes sense because of

Λ1−α−i
p,τ,µ

(
Lq(U ;Lp(τ, µ))

)
↪→ γ(τ, µ; Λ1−α−i(Lq(U)))

for i = 0, 1, which is a consequence of γ(τ, µ;Lq(U)) = Lq(U ;L2(a, b)). Now we can present
the universal assumptions.

[S3] uτ : Ω→ TR is a strongly τ -measurable.

[S4] For any F-stopping time µ with τ ≤ µ ≤ T almost surely, the mapping

F :
{
u ∈ L0

F(Ω;X1(τ, µ) ∩ C(τ, µ; TR)) : u(τ) = uτ a.s.
}
→ L0

F(Ω;X(τ, µ))

is a Volterra map, i.e. for a given F-stopping time τ̃ with τ ≤ τ̃ ≤ µ almost surely, the
restriction F (u)|[τ,τ̃ ] only depends on u|[τ,τ̃ ]. This means that we have F (u)1[τ,τ̃ ] =

F (v)1[τ,τ̃ ] almost surely, whenever u1[τ,τ̃ ] = v1[τ,τ̃ ] almost surely. Moreover, there
exist an Fτ -measurable ρ : Ω→ [0,∞) and constants L(i)

F , L̃F , C
(i)
F ≥ 0, i = 1, 2, such

that F is of linear growth, i.e.

‖F (φ1)‖X(τ,µ) ≤ ρ+ C
(1)
F ‖φ1‖X1(τ,µ) + C

(2)
F ‖φ1‖C(τ,µ;TR)

and Lipschitz continuous, i.e.

‖F (φ1)− F (φ2)‖X(τ,µ)

≤ L(1)
F ‖φ1 − φ2‖X1(τ,µ) + L̃F ‖φ1 − φ2‖X(τ,µ) + L

(2)
F ‖φ1 − φ2‖C(τ,µ;TR)

almost surely for all φ1, φ2 ∈ L0
F(X1(τ, µ) ∩ C(τ, µ; TR)) with φ1(τ) = φ2(τ) = uτ

almost surely with constants independent of µ and ω ∈ Ω.

[S5] For any F-stopping time µ with τ ≤ µ ≤ T almost surely, the mapping

B :
{
u ∈ L0

F(Ω;X1(τ, µ) ∩ C(τ, µ; TR)) : u(τ) = uτ a.s.
}
→ L0

F(Ω;X
1
2

H(τ, µ))

is a Volterra map, i.e. for a given F-stopping time τ̃ with τ ≤ τ̃ ≤ µ almost surely, the
restriction B(u)|[τ,τ̃ ] only depends on u|[τ,τ̃ ]. This means that we have B(u)1[0,τ̃ ] =
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B(v)1[0,τ̃ ] almost surely, whenever u1[0,τ̃ ] = v1[0,τ̃ ] almost surely. Moreover, there
exist an Fτ -measurable ρ : Ω→ [0,∞) and constants L(i)

B , L̃B , C
(i)
B ≥ 0, i = 1, 2, such

that B is of linear growth, i.e.

‖B(φ1)‖
X

1
2
H (τ,µ)

≤ ρ+ C
(1)
B ‖φ1‖X1(τ,µ) + C

(2)
B ‖φ1‖C(τ,µ;TR)

and Lipschitz continuous, i.e.

‖B(φ1)−B(φ2)‖
X

1
2
H (τ,µ)

≤ L(1)
B ‖φ1 − φ2‖X1(τ,µ) + L̃B‖φ1 − φ2‖X(τ,µ) + L

(2)
B ‖φ1 − φ2‖C(τ,µ;TR)

almost surely for all φ1, φ2 ∈ L0
F(X1(τ, µ) ∩ C(τ, µ; TR)) with φ1(τ) = φ2(τ) = uτ

almost surely with constants independent of µ and ω ∈ Ω.

[S6] We assume f ∈ LrF(Ω;X(τ, T )) and b ∈ LrF(Ω;X
1
2

H(τ, T )).

We want to remark that it might be possible that τ(ω) = T for some ω ∈ Ω. For these
ω we don’t need any assumptions on F and B, since

(
e−(·)A ∗ (F (·, u) + f))

)
τ

(ω, T ) and(
e−(·)A � (B(·, u) + b))

)
τ

(ω, T ) vanish in this case anyway. In the next Lemma, we collect
an important universal property of the spaces X(a, b) and X1(a, b).

Lemma 2.2.1. Let u ∈ X1(a, b). Then, [a, b] 3 t 7→ ‖u‖X(a,t) and [a, b] 3 t 7→ ‖u‖X1(a,t)

are continuous.

Proof. Since the arguments are similar for t 7→ ‖u‖X(a,t) and t 7→ ‖u‖X1(a,t), we just show the
continuity of [a, b] 3 t 7→ ‖u‖X1(a,t). In this proof, we have to distinguish the three different
settings. The continuity of t 7→ ‖u‖Lp(a,t;E) and t 7→ ‖Λα−1u‖Lq(U ;Lp(a,t)) is immediate by
the dominated convergence theorem.

For the γ-setting, let t ∈ [a, b] and (tn)n be a sequence with tn → t for n → ∞. Defining
Sn : L2(a, b)→ L2(a, b), f 7→ 1[a,tn]f and S : L2(a, b)→ L2(a, b), f 7→ 1[a,t]f , one can show
Sng → Sg for every g ∈ L2(a, b) with L2-convergence. By Corollary 6.5 in [94], we get
Snu→ Su in γ(a, b;E) for n→∞ and in particular, we have

‖u‖γ(a,tn;E) = ‖Snu‖γ(a,b;E) → ‖Su‖γ(a,b;E) = ‖u‖γ(a,t;E),

for n→∞, which proves the claimed continuity.

Next, we introduce mild and strong solutions of (SEE).

Definition 2.2.2. Let µ be another F-stopping time with τ ≤ µ ≤ T almost surely. A
process u : Ω × [τ, µ] → X is called a mild solution of (SEE) if it is strongly measurable,
adapted with u(τ) = uτ almost surely and

a) both the deterministic convolution
(
e−(·)A ∗F (u)1[τ,µ]

)
τ
and the stochastic convolution(

e−(·)A �B(u)1[τ,µ]

)
τ
are well-defined.
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b) The identity

u(t) = e−(t−τ)Auτ +
(
e−(·)A ∗ (F (u) + f))

)
τ

(t) +
(
e−(·)A � (B(u) + b))

)
τ

(t)

holds almost surely for all t ∈ [τ, µ].

Usually, one says that a process u is a strong solution if it is sufficiently regular and the
formula

u(t)− uτ = −
∫ t

τ

Au(s) ds+

∫ t

τ

F (u)(s) + f(s) ds+

∫ t

τ

B(u)(s) + b(s) dW (s)

holds almost surely for all t ∈ [τ, T ]. However, this is not possible in all of our settings. So,
we have to explain what we mean with

∫ t
τ

ds, since u ∈ X1(τ, T ) does not necessarily imply
that Au is integrable in time.

Definition 2.2.3. Let µ be another F-stopping time with τ ≤ µ ≤ T almost surely. A process
u : Ω× [τ, µ]→ E is called a strong solution of (SEE) on [τ, µ] if it is strongly measurable,
strongly adapted with u(τ) = uτ almost surely, we have u ∈ X1(τ, µ) ∩ C(τ, µ; TR) almost
surely and u satisfies the following identities depending on the respective setting.

[TT] The identity

u(t)− uτ = −
∫ t

τ

Au(s) ds+

∫ t

τ

F (u)(s) + f(s) ds+

∫ t

τ

B(u)(s) + b(s) dW (s)

holds almost surely for all t ∈ [τ, T ] as an equation in E. Here, the integral over
time is an E-valued Bochner integral and the stochastic integral is well-defined as a
consequence of Theorem 1.3.4 and (1.3.1).

[GM] The equation

u(t)− uτ = −Au(1[τ,t]) + (F (u) + f)(1[τ,t]) +

∫ t

τ

B(u)(s) + b(s) dW (s)

holds almost surely for all t ∈ [τ, T ] as an equation in E. Note that Au, F (u), f ∈
γ(τ, T ;E) implies that they are linear operators from L2(τ, T ) to E. Moreover, the
stochastic integral is well-defined as a consequence of Theorem 1.3.4.

[LQ] The equality

Λα−1u(t, x)−Λα−1uτ (x) =

−
∫ t

τ

Λα−1Au(s, x) ds+

∫ t

τ

Λα−1F (u)(s, x) + Λα−1f(s, x) ds

+

∫ t

τ

Λα−1B(u)(s, x) + Λα−1b(s, x) dW (s)

holds almost surely for almost all x ∈ U and for all t ∈ [τ, T ] as an equation in
C. These deterministic integrals are well-defined, since Λα−1Au,Λα−1F,Λα−1f ∈
Lp(τ, µ;L2(U)) almost surely.



42 CHAPTER 2. Parabolic stochastic evolution equations via maximal regularity

Under our assumptions the mild solution concept and the strong solution concepts coincide.
In the maximal Lp-regularity setting [TT], this was shown in Proposition 4.4 in [96]. For
the maximal Lp-regularity setting [GM], this result can be found in [98], Proposition 5.3.

In the setting [LQ], a version of our result was proved in [8], Proposition 3.5.6. Adding the
operator Λ1−α, one can follow the proof step by step.

Proposition 2.2.4. Choose one of the settings [TT], [GM] or [LQ] and let [S3]-[S6] be
fulfilled. Moreover, let µ be another F-stopping time with τ ≤ µ ≤ T almost surely. A
process u : Ω× [τ, µ]→ X with u(τ) = uτ almost surely and with u ∈ X1(0, µ)∩C(τ, µ; TR)

almost surely is a mild solution of (SEE) on [τ, µ] if and only if u is a strong solution of
(SEE) on [τ, µ].

To establish existence and uniqueness of a strong solution of (SEE) on [τ, T ], we try to
find a mild solution with the regularity properties we demanded in Proposition 2.2.4 via the
contraction mapping theorem. It will emerge that we only get a solution on a smaller interval
[τ, (τ+κ)∧T ] for some κ > 0 small enough and we then have to iterate the procedure. From
now on, we write τ0 := τ and τn := (τ + nκ) ∧ T for n ∈ N. Clearly, τn is also a stopping
time as sum and minimum of stopping times.

We assume that we already constructed a strongly adapted solution u on [τ, τn−1] for some
n ∈ N in the sense of Definition 2.2.3 and we want to extend u to [τn−1, τn]. We therefore
consider the operator defined by

Knφ(t) =e−(t−τn−1)Au(τn−1) +
(
e−(·)A ∗ (F (φ) + f)

)
τn−1

(t)

+
(
e−(·)A � (B(φ) + b)

)
τn−1

(t) (2.2.2)

almost surely for t ∈ [τn−1, τn] and Knφ(t) = u(t) for t ∈ [τ, τn−1) on the set

E(κ, n) :=
{
φ ∈ L0

F(Ω;X(τ, τn))
∣∣ φ = u on Ω× [τ, τn−1], φ ∈ Lr(Ω;X1(τn−1, τn)),

φ ∈ C(τn−1, τn; TR) a.s., and E sup
t∈[τn−1,τn]

‖φ(t)‖rTR <∞
}

endowed with the metric

‖v − w‖µ,κ,n :=
∥∥v − w∥∥

Lr(Ω;X1(τn−1,τn))
+ µ

∥∥v − w∥∥
Lr(Ω;X(τn−1,τn))

+
(
E sup
t∈[τn−1,τn]

‖v(t)− w(t)‖rTR

)1/r

for some µ > 0.

In the following Lemma, we choose the open parameters κ and µ, such that Kn is a self-
mapping contraction on E(κ, n). This is essentially a consequence of the maximal regularity
estimates of the deterministic and the stochastic convolution we mentioned in the previous
section. Summarizing section 2.1, there exist CMRS, CMRD > 0, such that we have∥∥(e−(·)A � g

)
τn−1

∥∥
Lr(Ω;X1(τn−1,τn)∩C(τn−1,τn;TR))

≤ CMRS‖g‖
Lr(Ω;X

1
2
H (τn−1,τn))

(2.2.3)
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for all g ∈ Lr(Ω;X
1
2

H(τn−1, τn)) and∥∥(e−(·)A ∗ g̃
)
τn−1

∥∥
Lr(Ω;X1(τn−1,τn)∩C(τn−1,τn;TR))

≤ CMRD‖g̃‖Lr(Ω;X(τn−1,τn)) (2.2.4)

for all g̃ ∈ Lr(Ω;X(0, T )). Moreover, we have the lower order estimate∥∥(e−(·)A � g
)
τn−1

∥∥
Lr(Ω;X(τn−1,τn))

≤ C1κ
1/2‖g‖Lr(Ω;XH(τn−1,τn)) (2.2.5)

for all g ∈ Lr(Ω;X
1
2

H(τn−1, τn)) and∥∥(e−(·)A ∗ g̃
)
τn−1

∥∥
Lr(Ω;X(τn−1,τn))

≤ C2κ‖g̃‖Lr(Ω;X(τn−1,τn)) (2.2.6)

for all g̃ ∈ Lr(Ω;X(τn−1, τn)).

Lemma 2.2.5. Choose one of the settings [TT], [GM] or [LQ] and let [S3]-[S6] be fulfilled
with

CMRDL
(i)
F + CMRSL

(i)
B < 1

for i = 1, 2. Further, we assume uτ ∈ Lr(Ω,TR) and ρ ∈ Lr(Ω). Moreover, we fix µ > 0

such that
µ > CMRDL̃F + CMRSL̃B

and we choose κ > 0 small enough such that

max
{
κC2L

(1)
F µ+ κ

1
2C1L

(1)
B µ, κC2L

(2)
F µ+ κ

1
2C1L

(2)
B µ, κC2L̃F + κ

1
2C1L̃B

}
< 1.

Then, the operator Kn defined in (2.2.2) on E(κ, n) is a self-mapping contraction, i.e. we
have Kn(E(κ, n)) ⊂ E(κ, n) and

‖Knu−Knv‖µ,κ,n ≤ δ‖u− v‖µ,κ,n

for all u, v ∈ E(κ, n) with a constant 0 ≤ δ < 1.

Proof. For the time being we start with an arbitrary κ > 0 and µ > 0 that will be chosen
later on. The self-mapping property is immediate since we have Kφ(τ) = uτ almost surely
by definition of K. Moreover, the linear growth of F and B, together with the trace estimate
for t 7→ e−(t−τn−1)Au(τn−1) and the maximal regularity estimates mentioned above yield

‖Kφ‖µ,κ,φ . ‖u(τn−1)‖Lr(Ω;TR) + ‖F (φ)‖Lr(Ω;X(τn−1,τn)) + ‖B(φ)‖
Lr(Ω;X

1
2
H (τn−1,τn))

. ‖ρ‖Lr(Ω) + ‖u(τn−1)‖Lr(Ω;TR) + ‖φ‖Lr(Ω;X1(τ,τn)) + ‖φ‖Lr(Ω;X(τ,τn))

+ ‖φ‖Lr(Ω;C(τ,τn;TR))

. ‖ρ‖Lr(Ω) + ‖u(τn−1)‖Lr(Ω;TR) + ‖φ‖Lr(Ω;X1(τn−1,τn)) + ‖φ‖Lr(Ω;C(τn−1,τn;TR))

+ ‖u‖Lr(Ω;X1(τ,τn−1)) + ‖u‖Lr(Ω;C(τ,τn−1;TR)). (2.2.7)

In the last step, we used φ = u on Ω × [τ, τn−1]. Note that in the special case n = 1, this
estimate reduces to

‖Kφ‖µ,κ,φ . ‖ρ‖Lr(Ω) + ‖uτ‖Lr(Ω;TR) + ‖φ‖Lr(Ω;X1(τn−1,τn)) + ‖φ‖Lr(Ω;C(τn−1,τn;TR)).

(2.2.8)
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To check that K is a contraction on E(κ, n) we take u, v ∈ E(κ, n) and estimate the difference
‖Ku −Kv‖µ,κ,n. Here, we are precise with the occurring constants to be able to choose κ
and µ correctly.

We start with a pathwise estimate of the deterministic convolution. Estimate (2.2.4), to-
gether with the Lipschitz continuity of F assumed in [S4] and the Volterra property of F ,
yield

‖
(
e−(·)A ∗ (F (u)− F (v))

)
τn−1
‖X1(τn−1,τn) + ‖

(
e−(·)A ∗ (F (u)− F (v))

)
τn−1
‖C(τn−1,τn;TR)

≤ CMRD‖F (u)− F (v)‖X(τn−1,τn)

≤ CMRDL
(1)
F ‖u− v‖X1(τn−1,τn) + CMRDL

(2)
F ‖u− v‖C(τn−1,τn;TR)

+ CMRDL̃F ‖u− v‖X(τn−1,τn),

almost surely on Ω. In the same way, by (2.2.6), we obtain

‖
(
e−(·)A ∗ (F (u)− F (v))

)
τn−1
‖X(τn−1,τn)

≤ κC2L
(1)
F ‖u− v‖X1(τn−1,τn) + κC2L

(2)
F ‖u− v‖C(τ,(τ+κ)∧T ;TR) + κC2L̃F ‖u− v‖X(τn−1,τn),

almost surely on Ω. This yields

‖
(
e−(·)A ∗ (F (u)− F (v)

)
τn−1
‖µ,κ,n ≤

(
CMRDL

(1)
F + κC2L

(1)
F µ

)
‖u− v‖Lr(Ω;X1(τn−1,τn))

+ (CMRDL
(2)
F + κC2L

(2)
F µ

)
‖u− v‖Lr(Ω;C(τn−1,τn;TR))

+ µ
(
CMRDL̃Fµ

−1 + κC2L̃F
)
‖u− v‖Lr(Ω;X(τn−1,τn)).

To estimate the stochastic convolution we combine the Lipschitz continuity of B assumed
in [S5], the Volterra property of B and estimate (2.2.3). We get

‖
(
e−(·)A � (B(u)−B(v))

)
τn−1
‖Lr(Ω;X1(τn−1,τn))∩C(τn−1,τn;TR)

≤ CMRS‖B(u)−B(v)‖
Lr(Ω;X

1
2
H (τn−1,τn))

≤ CMRSL
(1)
B ‖u− v‖Lr(Ω;X1(τn−1,τn)) + CMRSL̃B‖u− v‖Lr(Ω;X(τn−1,τn))

+ CMRSL
(2)
B

(
E sup
t∈[τn−1,τn]

‖u(t)− v(t)‖rTR

)1/r
.

If we instead apply the lower order estimates, we obtain

µ‖e−(·)A � (B(u)−B(v))‖Lr(Ω;X(τn−1,τn ))

≤ κ1/2C1L
(1)
B µ‖u− v‖Lr(Ω;X1(τn−1,τn )) + κ1/2C2L̃Bµ‖u− v‖Lr(Ω;X(τn−1,τn ))

+ κ1/2C1L
(2)
B µ

(
E sup
t∈[τn−1,τn]

‖u(t)− v(t)‖rTR

)1/r
This yields

‖
(
e−(·)A � (B(u)−B(v)

)
τn−1
‖µ,κ,n

≤
(
CMRSL

(1)
B + κ

1
2C1L

(1)
B µ

)
‖u− v‖Lr(Ω;X1(τn−1,τn))

+ (CMRSL
(2)
B + κ

1
2C2L

(2)
B µ

)
‖u− v‖Lr(Ω;C(τn−1,τn;TR))

+ µ
(
CMRSL̃Bµ

−1 + κ
1
2C1L̃B

)
‖u− v‖Lr(Ω;X(τn−1,τn)).
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All in all, we proved ‖Ku−Kv‖µ,κ,n ≤ δ‖u− v‖µ,κ,n, where δ is given by

δ = max
{
CMRDL

(1)
F + κC2L

(1)
F µ+ CMRSL

(1)
B + κ

1
2C1L

(1)
B µ,

CMRDL
(2)
F + κC2L

(2)
F µ+ CMRSL

(2)
F + κ

1
2C2L

(2)
B µ,

CMRDL̃Fµ
−1 + κC2L̃F + CMRSL̃Bµ

−1 + κ
1
2C1L̃B

}
.

To ensure δ < 1 we have to choose µ and κ properly. Due to the requirement

CMRDL
(i)
F + CMRSL

(i)
B < 1

for i = 1, 2 some expressions are already smaller than 1. Next we fix µ such that

µ > CMRDL̃F + CMRSL̃B

and last but not least, we choose κ small enough such that

max
{
κC2L

(1)
F µ+ κ

1
2C1L

(1)
B µ, κC2L

(2)
F µ+ κ

1
2C1L

(2)
B µ, κC2L̃F + κ

1
2C1L̃B

}
< 1.

This closes the proof.

Applying the Lemma from above, we can construct a strong solution of (SEE) on the ran-
dom interval [τ, T ] step by step. This gives the main result of this section.

Theorem 2.2.6. Choose one of the settings [TT], [GM] or [LQ] and let [S3]-[S6] be fulfilled
with

CMRSL
(i)
F + CMRSL

(i)
B < 1.

If we additionally assume uτ ∈ Lr(Ω; TR) and ρ ∈ Lr(Ω), there exists a unique strong
solution u of

(SEE)

du(t) = [−Au(t) + F (u)(t) + f(t)]dt+ [B(u)(t) + b(t)]dWt, t ∈ [τ, T ]

u(τ) = uτ ,

and u has almost surely continuous paths on [τ, T ] viewed as a function with values in TR.
Moreover, we have the estimate(

E‖u‖rX1(τ,T ) + E sup
t∈[τ,T ]

‖u(t)‖rTR

)1/r ≤ C(1 + ‖uτ‖Lr(Ω;TR) + ‖ρ‖Lr(Ω)

)
(2.2.9)

for some constant C > 0 independent of uτ .

Proof. First, we choose µ, κ > 0 as in Lemma 2.2.5. Without restriction, we assume that
κ = T/k for some k ∈ N. Otherwise, we choose κ slightly smaller. As before, we set τ0 := τ

and τn := (τ + nκ) ∧ T. This choice ensures τk = T almost surely.

Lemma 2.2.5 yields the existence and uniqueness of a fixpoint u1 of the operator K1 defined
in (2.2.2) in E(κ, 1). In particular, by definition of K1, we have

u1(t) =

∫ t

τ

e−(t−s)A(F (u1)(s) + f(s)) ds+

∫ t

τ

e−(t−s)A(B(u1)(s) + b(s)) dW (s)

+ e−(t−τ)Auτ
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for t ∈ [τ0, τ1]. Thus, u1 is a mild solution on [τ, τ1] with almost surely continuous paths as
a function with values in TR. Moreover, using the contraction property of K1 applied to
any ψ ∈ E(κ, 1) yields

‖u1‖µ,κ,1 = ‖K1(u1)‖µ,κ,1 ≤ ‖K1(u1)−K1(ψ)‖µ,κ,1 + ‖K1(ψ)‖µ,κ,1

≤ δ‖u1 − ψ‖µ,κ,1 + C‖K1(ψ)‖µ,κ,1

≤ δ‖u1‖µ,κ,1 + C̃1(1 + ‖uτ‖Lr(Ω,TR) + ‖ρ‖Lr(Ω)).

for some C̃1 > 0 only depending on the choice of ψ. The last estimate for K1(ψ) was shown
in (2.2.8). Especially, since δ < 1, we have the estimates(

E‖u‖rX1(τ,τ1) + E sup
t∈[τ,τ1]

‖u(t)‖rTR

)1/r ≤ C(1 + ‖uτ‖Lr(Ω;TR) + ‖ρ‖Lr(Ω)

)
(2.2.10)

for some C > 0 independent of uτ and ρ. We set u := u1 on Ω × [τ, τ1]. In the same way,
we construct a strong solution u2 ∈ E(κ, 2) of (SEE) on the interval [τ1, τ2] with past u on
[τ, τ1] as a fixpoint of K2 in E(κ, 2). As above we can show that there exists C2 > 0 such
that (

E‖u2‖rX1(τ1,τ2) + E sup
t∈[τ1,τ2]

‖u2(t)‖rTR

)1/r
≤ C2

(
1 + ‖u‖Lr(Ω;X1(τ,T )) + ‖u‖Lr(Ω;C(τ,τ1;TR)) + ‖ρ‖Lr(Ω)

)
≤ CC2

(
1 + ‖uτ‖Lr(Ω;TR) + ‖ρ‖Lr(Ω)

)
. (2.2.11)

Here, we used (2.2.7) and (2.2.10). We set u = u2 on [τ1, τ2]. Repeating this argument k
times, we obtain a unique strong solution un on every interval [τn−1, τn] for n = 1, . . . , k

as a fixed point of Kn on E(κ, n). Setting u = un on [τn−1, τn], we get a strong solution
u of (SEE) on [τ, T ] with the claimed regularity properties. (2.2.9) is a combination of
(2.2.10), (2.2.11) and the corresponding estimates for un, n = 3, . . . , k. The uniqueness is an
immediate consequence of the uniqueness of the un, n = 1, . . . , k.

Next, we prove a very useful Lemma that ensures that if the initial data, the operators
and the nonlinearities coincide on some subset of Ω of positive measure, the corresponding
solutions of (SEE) also coincide on this subset.

Lemma 2.2.7. Choose one of the three settings [TT], [GM], [LQ], let u(1)
τ , u

(2)
τ ∈ Lr(Ω; TR)

be strongly Fτ -measurable and set Γ :=
{
u

(1)
τ = u

(2)
τ

}
. Moreover, let A1 and A2 be operator-

valued random variables that satisfy [TT2], [GM2] or [LQ2] respectively and that almost
surely coincide on Γ. Let the nonlinearities Fj , Bj, j = 1, 2 satisfy [S4]-[S6] with ρi ∈ Lr(Ω)

and with
CMRDL

(i)
Fj

+ CMRDL
(i)
Bj

< 1

for i, j = 1, 2,. Moreover, we assume that F1(v1Γ) = F2(v1Γ) and F1(v1Γ) = F2(v1Γ)

almost surely. If the ui, i = 1, 2, are the unique strong solutions ofdui(t) = [−Aiui(t) + Fi(ui)(t) + f(t)]dt+ [Bi(ui)(t) + b(t)] dW (t), t ∈ [τ, T ]

ui(τ) = u
(i)
τ ,
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then u1(ω, t) = u2(ω, t) for almost all ω ∈ Γ and all t ∈ [τ(ω), T ].

Proof. We choose µ, κ as in the proof of Theorem 2.2.6 and we define the stopping times τ0
and τn as before. Since u1 and u2 are strong solutions and in particular mild solutions, we
have

ui(t) =e−(t−τ)Ai ũi(τ) +
(
e−(·)Ai ∗ (Fi(ui) + f)

)
τ

+
(
e−(·)Ai � (Bi(ui) + b)

)
τ

for i = 1, 2 on [τ, τ1] and in particular

u1(t)1Γ − u2(t)1Γ

=
(
e−(·)A1 ∗ (F1(u11Γ)− F1(u21Γ))

)
τ
(t) +

(
e−(·)A1 � (B1(u11Γ)−B1(u21Γ))

)
τ
(t)

almost surely for all t ∈ [τ, τ1]. Here, we made use of the fact that the initial data, the
nonlinearity and that the operators coincide on Γ. Note that one can drag 1Γ into the
stochastic integral, since Γ is Fτ -measurable and thus the integrand

e−(t−s)A1(B1(u11Γ)(s)−B1(u21Γ)(s)1τ<s≤t

is still adapted. Using the fixed point operator K on the space E(κ, 1) from the proof of
Theorem 2.2.6 and its contraction property, we obtain

‖u11Γ − u21Γ‖µ,κ,1 = ‖K(u11Γ)1Γ −K(u21Γ)1Γ‖µ,κ,1 ≤ δ‖u11Γ − u21Γ‖µ,κ,1

for some δ ∈ [0, 1). This proves u1Γ = v1Γ almost surely on [τ, τ1]. Repeating this procedure
inductively as in the proof of Theorem 2.2.6 finally yields u1Γ = v1Γ almost surely on
[τ, T ].

As an easy application of this Lemma, we can prove existence and uniqueness of strong
solutions of (SEE) with initial data uτ that is only integrable with respect to Ω and with
nonlinearities whose ρ is also only measurable. In [95], Theorem 7.1, and [89], Proposition
5.4, a similar result was proved for measurable initial data u0. We adapt their arguments
to our situation.

Corollary 2.2.8. Choose one of the settings [TT], [GM] or [LQ] and let [S4]-[S6] be fulfilled
with

CMRDL
(i)
F + CMRDL

(i)
B < 1.

If we don’t demand anything on uτ and ρ, but to be strongly Fτ -measurable, the equation

(SEE)

du(t) = [−Au(t) + F (u)(t) + f(t)]dt+ [B(u)(t) + b(t)] dW (t), t ∈ [τ, T ],

u(τ) = uτ

has a unique strong solution u on [τ, T ] with u ∈ X1(τ, T ) ∩ C(τ, T ; TR) almost surely.
However, u has not necessarily any integrability properties with respect to Ω.
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Proof. We define Γk := {‖uτ‖TR < k, ρ ≤ k}. Since both uτ and ρ are strongly Fτ -
measurable, we have Γk ∈ Fτ and Ω = ∪∞n=1Γk. Hence, we have uτ1Γk ∈ Lr(Ω; TR) and
the nonlinearities F (u)1Γk and B(u)1Γk satisfy [S4] and [S5]. Moreover, the Fτ -measurable
function in the linear growth condition is given by ρ1Γk ∈ Lr(Ω). As a consequence, Theorem
2.2.6 yields a unique strong solution u(k) ofdu(t) =

[
−Au(t) + F (u)(t)1Γk + f(t)

]
dt+

[
B(u)(t)1Γk + b(t)

]
dWt, t ∈ (τ, T ]

u(τ) = uτ1Γk ,

with u(k) ∈ Lr(Ω;X1(τ, T ) ∩ C(τ, T ; TR). Further, by Lemma 2.2.7 the processes u(k) and
u(m) coincide almost surely on Γk if m ≥ k. Therefore, we can define the pathwise limit

u(ω, ·) = lim
k→∞

u(k)(ω, ·)

for almost all ω ∈ Ω. This limit is attained after finitely many k and we have u = uk on Γk.
Moreover, since all the u(k) are strongly adapted, u is also strongly adapted as almost sure
limit of strongly adapted processes. Clearly, since all the uk are strong solutions, u is also
a strong solution of (SEE) and we have u ∈ X1(τ, T ) ∩ C(τ, T ; TR) almost surely, because
each u(k) has this property. It remains to prove uniqueness.

Let v be another strong solution with initial data uτ that satisfies v ∈ X1(τ, T )∩C(τ, T ; TR)

almost surely. Defining the F-stopping time

ηk := inf{t ∈ [τ, T ] : ‖u‖X1(τ,t) + ‖u‖C(τ,t;TR) > k}

∧ inf{t ∈ [τ, T ] : ‖v‖X1(τ,t) + ‖v‖C(τ,t;TR) > k} ∧ T,

we have limk→∞ ηk = T almost surely. To be precise, since u, v ∈ X1(τ, T ) ∩ C(τ, T ; TR)

almost surely, for almost all ω ∈ Ω there exists k(ω) such that νm(ω) = T for m ≥ k(ω).

Thus, it is sufficient to prove that u and v coincide on [0, ηk] for all k ∈ N.

Since u and v are strong solutions, they are particularly mild solutions [τ, T ] and hence, we
have

u(t)1[τ,µk] − v(t)1[τ,µk]

=
(
e−(·)A ∗ (F (u)− F (v))1[τ,µk]

)
τ
(t) +

(
e−(·)A � (B(u)−B(v))1[τ,µk]

)
τ
(t)

almost surely for t ∈ [τ, T ]. The Volterra property of F and B (see [S4], [S5]) implies
F (w)1[τ,µk] = F (w1[τ,µk])1[τ,µk] and B(w)1[τ,µk] = B(w1[τ,µk])1[τ,µk] for w = u or w = v.
Thus, we have

u(t)1[τ,µk](t)− v(t)1[τ,µk](t)

=
(
e−(·)A ∗ (F (u1[τ,µk])− F (v1[τ,µk]))1[τ,µk]

)
τ
(t)

+
(
e−(·)A � (B(u1[τ,µk])−B(v1[τ,µk]))1[τ,µk]

)
τ
(t)

almost surely for t ∈ [τ, T ]. Using the same fixed point operator K as in (2.2.2) on the
interval [τ, (τ + κ) ∧ ηk], we have u1[τ,µk] − v1[τ,µk] = K(u1[τ,µk]) −K(v1[τ,µk]). As in the
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proof of Lemma 2.2.5, we can choose κ > 0 and µ > 0, such that∥∥v − w∥∥
Lr(Ω;X1(τ,(τ+κ)∧µk))

+ µ
∥∥v − w∥∥

Lr(Ω;X(τ,(τ+κ)∧µk))

+ ‖v − w‖Lr(Ω;C(τ,(τ+κ)∧µk;TR))

≤δ
(∥∥v − w∥∥

Lr(Ω;X1(τ,(τ+κ)∧µk))
+ µ

∥∥v − w∥∥
Lr(Ω;X(τ,(τ+κ)∧µk))

+ ‖v − w‖Lr(Ω;C(τ,(τ+κ)∧µk;TR))

)
for some δ ∈ [0, 1), which proves u(t) = v(t) almost surely for all t ∈ [τ, (τ + κ)∧ µk]. In the
same way as in the proof of Theorem 2.2.6, we can iterate this procedure and get u(t) = v(t)

almost surely for all t ∈ [τ, µk]. This closes the proof.

Finally, we give an analogous result to Lemma 2.2.7 in case that uτ and ρ are not integrable
with respect to Ω.

Corollary 2.2.9. Choose one of the settings [TT], [GM] or [LQ], let u(1)
τ , u

(2)
τ : Ω→ TR be

strongly Fτ measurable and let Ai, Fi and Bi as in Lemma 2.2.7, but with only Fτ -measurable
ρi for i ∈ {1, 2}. Moreover, let u1 and u2 be the unique strong solutions ofdui(t) = [−Aiui(t) + Fi(ui)(t) + f(t)]dt+ [Bi(ui)(t) + b(t)] dW (t), t ∈ [τ, T ],

ui(τ) = u
(i)
τ ,

for i = 1, 2. Then, we have u1(ω, t) = u2(ω, t) for almost all ω ∈ {u(1)
τ = u

(2)
τ } and for all

t ∈ [τ(ω), T ].

Proof. We define Γk = {‖u(1)
τ ‖TR < k, ρ1 < k} ∩ {‖u(2)

τ ‖TR < k, ρ2 < k}. As we have seen
in the proof of Corollary 2.2.8, we have u1 = u

(k)
1 and u2 = u

(k)
2 on Γk. Here, u(k)

i ∈
Lr(Ω, X1(τ, T ) ∩ C(τ, T ; TR)) is the solution of the truncated equationdu

(k)
i (t) = [−Aiu(k)

i (t) + Fi(u
(k)
i )(t)1Γk + f(t)]dt+ [Bi(u

(k)
i )(t)1Γk + b(t)] dW (t),

uki (τ) = u
(i)
τ 1Γk .

By Lemma 2.2.7, we have u(k)
1 (ω, t) = u

(k)
2 (ω, t) for almost all ω ∈

{
u

(1)
τ = u

(2)
τ

}
∩Γk and all

t ∈ [τ, T ]. Since ∪∞n=1Γk = Ω, this implies u1(ω, t) = u2(ω, t) for almost all ω ∈ {u(1)
τ = u

(2)
τ }

and all t ∈ [τ, T ].

2.3. Quasilinear parabolic stochastic evolution equations

In this chapter, we consider a quasilinear stochastic evolution equation of the form

(QSEE)

du(t) = [−A(u(t))u(t) + F (u)(t) + f(t)] dt+ [B(u)(t) + b(t)] dW (t), t ∈ [0, T ],

u(0) = u0
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for t ∈ [0, T ] with a cylindrical Brownian motion W on a Hilbert space H. Our main result
will be the existence and uniqueness of a strong solution of this equation up to a maximal
blow-up stopping time τ . We work in the same abstract framework as in the previous section
to deal with equations in Lp(0, T ;E) and γ(0, T ;E) with a UMD Banach space E and in
Lq(U ;Lp(0, T )) in a unified way. As before, the general framework consists of a Banach space
X with an extension to the timeline X(a, b) for some interval (a, b) ⊂ [0, T ], a corresponding
maximal regularity space X1(a, b) and a trace space TR. Again, we will choose these spaces
in such a way that the solution u of (QSEE) always satisfies u ∈ X1(0, τ), Au ∈ X(0, τ) and
u ∈ C(0, τ ; TR) almost surely.

2.3.1. Globally Lipschitz continuous quasilinearity

In the semilinear theory of the previous section, the assumptions on ω 7→ A(ω) were uniform
with respect to ω. The application of these result gives a quasilinear theory for operators
(ω, y) 7→ A(ω, y) with uniform assumptions with respect to ω and y and with a globally
Lipschitz dependence on y.

Before we start, we present our setting in detail. We begin with the assumptions that fit to
the maximal Lp-regularity estimates in type 2 Banach spaces from section 2.1.1. Again, we
will denote this setting with [TT].

[TTQ1] Let p ∈ (2,∞), r = p and E,E1 be UMD Banach spaces with type 2 or p = 2 and
E,E1 Hilbert spaces. We assume the embedding E1 ↪→ E to be dense and we assume
that the family

{Jδ : δ > 0} ⊂ B
(
Lp(Ω× (0,∞); γ(H;E)), Lp(Ω× (0,∞);E)

)
defined by

Jδb(t) := δ−1/2

∫ t

(t−δ)∨0

b(s) dW (s)

is R-bounded.

[TT2] The mapping A : Ω×(E,E1)1−1/p,p → B(E1, E) is such that ω 7→ A(ω, y)x is strongly
F0-measurable for all x ∈ E1 and y ∈ (E,E1)1−1/p,p with 0 ∈ ρ(A(ω, y)) almost surely.
Moreover, we assume D(A(ω, y)) = E1, i.e

‖A(ω, y)x‖E ' ‖x‖E1

for almost all ω ∈ Ω, all y ∈ (E,E1)1−1/p,p and all x ∈ E1 with estimates independent
of y, x and ω.

[TTQ3] For all y ∈ (E,E1)1−1/p,p and almost all ω ∈ Ω, the operators A(ω, y) are sectorial
and have a bounded H∞(Ση)-calculus of angle η ∈ (0, π/2), i.e.

‖φ(A(ω, y))‖B(E) ≤ C‖φ‖H∞(Ση)

with a constant C > 0 independent of ω and y.
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[TTQ4] There exists CQ > 0 such that for all z, y ∈ (E,E1)1−1/p,p and almost all ω ∈ Ω, we
have

‖A(ω, z)−A(ω, y)‖B(E1,E) ≤ CQ‖z − y‖(E,E1)1−1/p,p
.

In this setting, we set X := E, X(a, b) := Lp(a, b;E), X1(a, b) := Lp(a, b;E1) and we define
X

1
2

H(a, b) := Lp(0, T ; γ(H; [E,E1] 1
2
)). The trace space TR is the real interpolation space

(E;E1)1−1/p,p.

Next, we make the assumptions that fit to the maximal γ-regularity estimates in UMD
Banach spaces from section 2.1.2. Again, we will denote this setting with [GM].

[GMQ1] Let r ∈ (1,∞), E,E1 UMD Banach spaces with property-(α) and a dense embedding
E1 ↪→ E.

[GMQ2] The mapping A : Ω × [E,E1] 1
2
→ B(E1, E) is such that ω 7→ A(ω, y)x is strongly

F0-measurable for all x ∈ E1 and y ∈ [E,E1] 1
2
with 0 ∈ ρ(A(ω, y)) almost surely.

Moreover, we assume D(A(ω, y)) = E1 almost surely, i.e we have

‖A(ω, y)x‖E ' ‖x‖E1

for almost all ω ∈ Ω, all y ∈ [E,E1] 1
2
and all x ∈ E1 with estimates independent of

y, x and ω.

[GMQ3] For all y ∈ [E,E1] 1
2
and almost all ω ∈ Ω, the operators A(ω, y) are sectorial and have

a bounded H∞(Ση)-calculus of angle η ∈ (0, π/2), i.e.

‖φ(A(ω, y))‖B(E) ≤ C‖φ‖H∞(Ση)

with a constant C > 0 independent of ω and y.

[GMQ4] There exists CQ > 0 such that for all z, y ∈ [E,E1] 1
2
and almost all ω ∈ Ω, we have

R
({
A(ω, z(t))−A(ω, y(t)) : t ∈ [a, b]

}
⊂ B(E1, E)

)
≤ CQ sup

t∈[a,b]

‖z(t)− y(t)‖[E,E1] 1
2

.

Here, we set X := E, X(a, b) := γ(a, b;E), X
1
2

H(a, b) := γ(0, T ; γ(H; [E,E1] 1
2
)) and we define

X1(a, b) := γ(a, b;E1). The trace space TR is the complex interpolation space [E;E1] 1
2
.

Next, we make the assumptions that fit to the maximal regularity estimates in the space
Lq(U ;Lp(0, T )) from section 2.1.2. In the sequel, this setting will be denoted with [LQ].

[LQQ1] Let r ∈ (1,∞), p ∈ (2,∞), q ∈ (2,∞), U ⊂ Rd and µ be a σ-finite measure on U.

We choose H = l2(N) and W (t) =
∑∞
j=1 ekβk for an sequence (βk)k∈N of independent

Brownian motions and with unit vectors (ek)k ∈ l2(N).Moreover, let Λ be a closed and
densely defined operator on Lq(U) := Lq(U, µ) with 0 ∈ ρ(Λ) that has an Rp-bounded
H∞(Ση̃)-calculus for some η̃ ∈ (0, π2 ). For given α ∈ ( 1

p , 1], we denote Eα := D(Λα)

and Eα−1 as the extrapolation space of Lq(U) with the norm ‖Λα−1 · ‖Lq(U).
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[LQQ2] The mapping A : Ω × F
α−1/p
Λ,q,p → B(Eα, Eα−1) is strongly F0-measurable. More-

over, the A(ω, y) are closed with 0 ∈ ρ(A(ω, y)) and ΛαA(ω, y)−α, A(ω, y)αΛ−α,
A(ω, y)α−1Λ1−α and Λα−1A(ω, y)1−α are for almost all ω ∈ Ω and all y ∈ F

α−1/p
Λ,q,p

Rp-bounded on Lq(U) with bounds independent of ω and y.

[LQQ3] For all y ∈ Fα−1/p
Λ,q,p and almost all ω ∈ Ω, the operators A(ω, y) are sectorial and have

an Rp-bounded H∞(Ση) calculus with

Rp
({
ψ(A(ω, y)) : ‖ψ‖H∞(Ση) ≤ 1

}
⊂ B(Lq(U))

)
≤M

for some M > 0 and η ∈ (0, π/2) independent of ω ∈ Ω and y ∈ Fα−1/p
Λ,q,p .

[LQQ4] There exists CQ > 0 such that for all z, y ∈ Fα−1/p
Λ,q,p and almost all ω ∈ Ω, we have

Rp
({

Λα−1(A(ω, z(t))−A(ω, y(t)))Λ−α : t ∈ [a, b]
}
⊂ B(Lq(U))

)
≤ CQ sup

t∈[a,b]

‖z(t)− y(t)‖
F
α−1/p
Λ,q,p

.

The assumption on Λ imply that Λ can be extended to an operator Λp,a,b on Lq(U ;Lp(a, b))

that has a bounded H∞(Ση̃)-calculus for some angle 0 ≤ η̃ < π/2. We choose Xα(a, b) :=

D(Λαp,a,b) andX
α−1(a, b) = Λ1−α

p,a,b

(
Lq(U ;Lp(a, b))

)
. The stochastic partB(u)+b is contained

in the space X
1
2

H(a, b) := Λ
1
2−α
p,a,b

(
Lq(U ;Lp(a, b; l2(N)))

)
. The trace space TR is the Triebel-

Lizorkin space Fα−1/p
Λ,q,p in the sense of Definition 1.4.2.

The other assumptions are similar in any of the above settings and can be formulated
universally.

[Q5] The initial value u0 : Ω→ TR is strongly F0-measurable.

[Q6] For any F-stopping time µ with 0 ≤ µ ≤ T almost surely, the mapping

F : L0
F
(
Ω;X1(0, µ) ∩ C(0, µ; TR)

)
→ L0

F
(
Ω;X(0, µ)

)
is a Volterra map, i.e. for a given F-stopping time τ̃ with 0 ≤ τ̃ ≤ µ almost surely, the
restriction F (u)|[0,τ̃ ] only depends on u|[0,τ̃ ]. This means that we have F (u)1[0,τ̃ ] =

F (v)1[0,τ̃ ] almost surely, whenever u1[0,τ̃ ] = v1[0,τ̃ ] almost surely. Moreover, there
exist constants L(i)

F , L̃F , C
(i)
F ≥ 0, i = 1, 2 such that F is of linear growth, i.e.

‖F (φ1)‖X(0,µ) ≤ C
(1)
F

(
1 + ‖φ1‖X1(0,µ)

)
+ C

(2)
F

(
1 + ‖φ1‖C(0,µ;TR)

)
and Lipschitz continuous, i.e.

‖F (φ1)− F (φ2)‖X(0,µ)

≤ L(1)
F ‖φ1 − φ2‖X1(0,µ) + L̃F ‖φ1 − φ2‖X(0,µ) + L

(2)
F ‖φ1 − φ2‖C(0,µ;TR)

almost surely for all φ1, φ2 ∈ X1(0, µ) ∩ C(0, µ; TR) with constants independent of
ω ∈ Ω.
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[Q7] For any F-stopping time µ with 0 ≤ µ ≤ T almost surely, the mapping

B : L0
F
(
Ω;X1(0, µ) ∩ C(0, µ; TR)

)
→ L0

F
(
Ω;X

1
2

H(0, µ)
)

is a Volterra map, i.e. for a given F-stopping time τ̃ with 0 ≤ τ̃ ≤ µ almost surely, the
restriction B(u)|[0,τ̃ ] only depends on u|[0,τ̃ ]. This means that we have B(u)1[0,τ̃ ] =

B(v)1[0,τ̃ ] almost surely, whenever u1[0,τ̃ ] = v1[0,τ̃ ] almost surely. Moreover, there
exist constants L(i)

B , L̃B , C
(i)
B ≥ 0, i = 1, 2, such that B is of linear growth, i.e.

‖B(φ1)‖
X

1
2
H (0,µ)

≤ C(1)
B

(
1 + ‖φ1‖X1(0,µ)

)
+ C

(2)
B

(
1 + ‖φ1‖C(0,µ;TR)

)
and Lipschitz continuous, i.e.

‖B(φ1)−B(φ2)‖
X

1
2
H (0,µ)

≤ L(1)
B ‖φ1 − φ2‖X1(0,µ) + L̃B‖φ1 − φ2‖X(0,µ) + L

(2)
B ‖φ1 − φ2‖C(0,µ;TR)

almost surely for all φ1, φ2 ∈ Lp(0, µ;E1)∩C(τ, T ; TR) with constants independent of
ω ∈ Ω.

[Q8] We assume f ∈ LrF(Ω;X(0, T )) and b ∈ LrF(Ω;X
1
2

H(0, T )).

As we have shown in section 2.1, the assumptions imply uniform maximal regularity esti-
mates for the deterministic and the stochastic convolution in all of the three settings. There
exists CMRS, CMRD > 0 such that for every F-stopping time µ with 0 ≤ µ ≤ T almost surely
and all y ∈ TR, we have∥∥(e−(·)A(y) � g

)
µ

∥∥
Lr(Ω;X1(µ,T )∩C(µ,T ;TR))

≤ CMRS‖g‖
Lr(Ω;X

1
2
H (µ,T ))

for all g ∈ Lr(Ω;X
1
2

H(µ, T )) and∥∥(e−(·)A(y) ∗ g̃
)
µ

∥∥
Lr(Ω;X1(µ,T )∩C(µ,T ;TR))

≤ CMRD‖g̃‖Lr(Ω;X(µ,T ))

for all g̃ ∈ Lr(Ω;X(µ, T )). As in the semilinear case, we require small Lipschitz constants
in [Q6], [Q7]. More precisely, we assume the following.

[Q9] Let the constants of [Q6] and [Q7] be small enough to ensure

CMRDL
(i)
F + CMRDL

(i)
B < 1

for i = 1, 2.

We define strong solutions of (QSEE) in the same way as we defined strong solutions of
(SEE). The only difference is that we replace the autonomous operator by A(ω, u(t)).

Definition 2.3.1. Let µ be an F-stopping time with 0 ≤ µ ≤ T almost surely. A process
u : Ω× [0, µ]→ X is called a strong solution of (QSEE) on [0, µ] if it is strongly measurable
and strongly adapted with u ∈ X1(0, µ) ∩ C(0, µ; TR) almost surely and if u satisfies the
following identity depending on the respective setting.
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[TT]

u(t)− u0 = −
∫ t

0

A(u(s))u(s) ds+

∫ t

0

F (u)(s) + f(s) ds+

∫ t

0

B(u)(s) + b(s) dW (s)

almost surely for all t ∈ [0, µ] as an equation in E. Here, the integral over time is an
E-valued Bochner integral and the stochastic integral is well-defined as a consequence
of Theorem 1.3.4 and (1.3.1).

[GM]

u(t)− u0 = −A(u)u(1[τ,t]) + (F (u) + f)(1[τ,t]) +

∫ t

τ

B(u)(s) + b(s) dW (s)

almost surely for all t ∈ [0, µ] as an equation in E. Note that A(u)u, F (u), f ∈
γ(0, µ;E) particularly means that they are linear operators from L2(0, µ)→ E. More-
over, the stochastic integral is well-defined as a consequence of Theorem 1.3.4.

[LQ]

Λα−1u(t, x)−Λα−1ũ(τ, x) =

−
∫ t

0

Λα−1A(u)u(s, x) ds+

∫ t

0

Λα−1F (u)(s, x) + Λα−1f(s, x) ds

+

∫ t

0

Λα−1B(u)(s, x) + Λα−1b(s, x) dW (s)

holds almost surely for almost all x ∈ U and for all t ∈ [0, µ] as an equation in
C. The deterministic integrals are well-defined, since Λα−1A(u)u,Λα−1F (u),Λα−1f ∈
Lq(U ;Lp(0, µ)) almost surely.

Even in the deterministic case, quasilinear evolution equations do not have global solutions
without further structural assumptions. Therefore, we now explain the concept of local so-
lutions. The following definition adapts the terms Van Neerven, Veraar and Weis introduced
in [95] to our situation.

Definition 2.3.2. Let σ, σn, n ∈ N, be F-stopping times with 0 ≤ σ, σn ≤ T almost surely
for all n ∈ N.

a) We say that
(
u, (σn)n, σ

)
is a local solution of (QSEE), if (σn)n∈N is an increasing

sequence with limn→∞ σn = σ almost surely such that

u ∈ X1(0, σn) ∩ C(0, σn; TR)

almost surely and such that u is a strong solution of (QSEE) on [0, σn] for all n ∈ N.

b) We call a local solution
(
u, (σn)n, σ

)
of (QSEE) unique if every other local solution(

ũ, (σ̃n)n, σ̃
)
satisfies ũ(ω, t) = u(ω, t) for almost all ω ∈ Ω and for all t ∈ [0, σ ∧ σ̃).

c) We call a local solution
(
u, (σn)n, σ

)
of (QSEE) maximal unique local solution if for

any other local solution
(
ũ, (σ̃n)n, σ̃

)
, we almost surely have σ̃ ≤ σ and ũ(ω, t) = u(ω, t)

for almost all ω ∈ Ω and all t ∈ [0, σ̃).
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If the approximating sequence σn is not important for a result, we shortly write (u, σ) for
the local solution. In the following, we establish a well-posedness result for the quasilinear
evolution equation (QSEE) up to a maximal stopping time. The next theorem is one of our
main results and will be proved during this section.

Theorem 2.3.3. Choose one of the settings [TT], [GM] or [LQ] and let [Q5]-[Q9] be ful-
filled. Then, the quasilinear stochastic evolution equation (QSEE) has a maximal unique
local solution

(
u, (τn)n, τ

)
. Moreover, we have

P
{
τ < T, ‖u‖X1(0,τ) <∞, u : [0, τ)→ TR is uniformly continuous

}
= 0. (2.3.1)

If we additionally assume u0 ∈ Lr(Ω; TR), the estimates(
E‖u‖rX1(0,τn)

)1/r

≤ C(n)(1 + ‖u0‖Lr(Ω,TR))

(
E sup
t∈[0,τn]

‖u(t)‖rTR

)1/r

≤ C(n)(1 + ‖u0‖Lr(Ω,TR))

hold true for all n ∈ N and for some C(n) > 0 independent of u0.

Note that the blow-up criterion (2.3.1) can be used to show τ = T on some paths. Indeed, if
one can show ‖u‖X1(0,τ) <∞ and the uniform continuity of u : [0, τ)→ TR on a set Ω̃ ⊂ Ω,

then τ = T almost surely on Ω̃. This can be seen in the following way. Ω̃ can be decomposed
into a set N of measure 0 and(

Ω̃ ∩ {τ = T}
)
∪
(

Ω̃ ∩
{
τ < T, ‖u‖X1(0,τ) <∞, u : [0, τ)→ TR is uni. cont.

})
∪
(

Ω̃ ∩
{
τ < T, ‖u‖X1(0,τ) =∞ or u : [0, τ)→ TR is not uni. cont.

})
.

The last set has measure zero by assumption and the second set has measure zero by the
blow-up criterion. Hence, we end up with Ω̃ =

(
Ω̃ ∩ {τ = T}

)
∪N .

The proof of this theorem is rather technical and will be done in this section. As a start,
we need a Lemma that brings the Lipschitz estimates in [TTQ4], [GMQ4] and [LQQ4] into
the general framework.

Lemma 2.3.4. Choose one of the settings [TT], [GM] or [LQ]. In any case, we have

‖fg‖X(a,b) ≤ ‖f‖L∞(a,b)‖g‖X(a,b)

for all f ∈ L∞(a, b) and all g ∈ X(a, b). Moreover, there exists LQ > 0 such that

‖(A(y)−A(z))v‖X(a,b) ≤ LQ sup
t∈[a,b]

‖y(t)− z(t)‖TR‖v‖X1(a,b)

almost surely for all y, z ∈ C(a, b; TR) and all v ∈ X1(a, b) with constants independent of
ω ∈ Ω and (a, b) ⊂ [0, T ].
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Proof. The first assertion is trivial in [TT] and [LQ], since in both cases we can drag out
f from ‖fg‖Lp(a,b;E) and ‖fΛ−αg‖Lq(U ;Lp(a,b)) with the ‖ · ‖L∞(a,b) norm. By assumption
[TTQ4], the second assertion is immediate in the setting [TT].

In [GM], we need a pointwise multiplier result in the space γ(a, b;E). From [94], Theorem
5.2, we get

‖(A(y)−A(z))v‖γ(a,b;E) ≤ γ
({
A(z(t))−A(y(t)) : t ∈ [a, b]

}
⊂ B(E1, E)

)
‖v‖γ(a,b;E1)

almost surely and

‖fg‖γ(a,b;E) ≤ ‖f‖L∞(a,b)‖g‖γ(a,b;E).

The well-known fact that all γ(T ) ≤ R(T ) for all T ⊂ B(E1, E) (see e.g. [71], Theorem 1.1)
and [GMQ4] complete the argument.

It remains to show the last inequality in the setting [LQ]. By Proposition 1.4.1, we get

‖Λα−1(A(y)−A(z))v‖Lq(U ;Lp(a,b))

= ‖Λα−1(A(y)−A(z))Λ−αΛαv‖Lq(U ;Lp(a,b))

≤ Rp
({

Λα−1(A(z(t))−A(y(t)))Λ−α : t ∈ [a, b]
}
⊂ B(Lq(U))

)
‖Λαv‖Lq(U ;Lp(a,b)).

Together with assumption [LQQ4], this closes the proof.

Before we start, we briefly describe our strategy. First, we prove existence and uniqueness
of a strong solution u in a small ball around the initial value up to a stopping time τ1 with
the semilinear theory, we developed in section 2.2. Consequently, the set of stopping times
σ such that there exists a unique solution u on [0, σ] is non-empty and hence, the essential
supremum τ : Ω → [0, T ] of this set exists. We then show that τ is also a stopping time
and that there exists an increasing sequence of stopping times (τn)n∈N, with limn→∞ τn = τ

almost surely. Last but not least, we derive the blow-up alternative

P
{
τ < T, ‖u‖X1(0,τ) <∞, u : [0, τ)→ TR is uniformly continuous

}
= 0,

which helps us to prove that
(
u, (τn)n, τ

)
is indeed a maximal unique solution.

We begin with the definition of a cut-off function φλ that will enclose the processes in a
suitable ball around the initial value. Let

Φ(t) =


1 for t ∈ [0, 1]

−t+ 2 for t ∈ [1, 2]

0 for t ∈ [2,∞)

and define Φλ(t) := Φ( tλ ) which gives us a monotonously decreasing function bounded by 1

that equals 1 on [0, λ] and vanishes on [2λ,∞). Moreover, Φλ is Lipschitz continuous with

|Φλ(t)− Φλ(s)| ≤ λ−1|t− s|
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for all t, s ≥ 0. Now we can define the desired cut-off function. For ua ∈ TR, u ∈ C(a, b; TR)∩
X1(a, b) and t ∈ [a, b], let

θλ(a, t, u, ua) := Φλ
(
‖u‖X1(a,t) + sup

s∈[a,t]

‖u(s)− ua‖TR

)
.

Clearly, we have θλ(a, t, u, ua) = 0 if ‖u‖X1(a,t) + sup
s∈[a,t]

‖u(s) − ua‖TR ≥ 2λ and if on the

other hand ‖u‖X1(a,t) + sup
s∈[a,t]

‖u(s)− ua‖TR ≤ λ, we obtain

A(u(t))u(t) = A(ua)u(t) + θλ(a, t, u, ua)
(
A(u(t))−A(ua)

)
u(t).

With this fact in mind, it is quite natural to consider the stochastic evolution equationdu(t) =
[
−A(u0)u(t) + F̃λ(u)(t) + f(t)

]
dt+ [B(u)(t) + b(t)] dW (t),

u(0) = u0,
(2.3.2)

where F̃λ is given by

F̃λ(u)(t) = θλ(0, t, u, u0)
(
A(u0)−A(u(t))

)
u(t) + F (u)(t).

Since we want to sustain the local solution to a maximal time interval, it will be necessary to
consider not only the initial time zero but also, as in the previous section, an equation that
begins at a F-stopping time σ with a given past ũ ∈ X1(0, σ) ∩ C(0, σ; TR) almost surely.

The following Lemma makes sure that the nonlinearity F̃λ satisfies the assumptions of The-
orem 2.2.6, if one chooses λ small enough.

Lemma 2.3.5. Choose one of the settings [TT], [GM] or [LQ], let σ, µ be F-stopping times
with 0 ≤ σ ≤ µ ≤ T almost surely and let uσ : Ω → TR be strongly Fσ-measurable. For
t ∈ [0, T ], λ > 0 and y ∈ L0

F
(
Ω;X1(σ, µ) ∩ C(σ, µ,TR)

)
with y(σ) = uσ, we define

Qλ,σ(y, uσ)(t) :=

θλ(σ, t, y(t), uσ)
(
A(uσ)−A(y(t))

)
y(t) , if σ ≤ t ≤ µ,

0 , if t < σ.

Then, Qλ,σ maps{
y ∈ L0

F(Ω;X1(σ, µ) ∩ C(σ, µ; TR)) : y(τ) = uσ

}
→ L0

F(Ω;X(σ, µ))

and has the Volterra property we introduced in [S4]. Moreover, Qλ,σ is bounded i.e

‖Qλ,σ(u, uσ)‖X(σ,µ) ≤ 4CQλ
2

and Lipschitz continuous, i.e

‖Qλ,σ(u, uσ)−Qλ,σ(v, uσ)‖X(σ,µ)

≤ 6CQλ
(
‖u− v‖X1(σ,µ) + ‖u− v‖C(σ,µ;TR)

)
almost surely and for all u, v ∈ L0

F
(
Ω;X1(σ, T )∩C(σ, T ; TR)

)
. All in all, Qλ,σ satisfies the

assumption [S4] of the previous section.
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Proof. The measurability properties of Qλ,σ are immediate and Qλ,σ has the Volterra prop-
erty, since both θλ(σ, t, y(t), uσ) and A(y(t)) only depend on y|[0,t].

To prove the Lipschitz and the growth estimate we argue pathwise for fixed ω ∈ Ω with
σ(ω) ≤ µ(ω) ≤ T . In order to keep the notation simple, we suppress the explicit dependence
on ω. Let u, v ∈ X1(σ, µ) ∩ C(σ, µ; TR) with u(σ) = v(σ) = uσ and define

σu = inf
{
s ∈ [σ, µ] : ‖u‖X1(σ,s) + ‖u− uσ‖C(σ,s;TR) ≥ 2λ

}
∧ µ

and similarly

σv = inf
{
s ∈ [σ, µ] : ‖v‖X1(σ,s) + ‖v − uσ‖C(σ,s;TR) ≥ 2λ

}
∧ µ.

The definition of θλ(σ, t, u, uσ) ensures Qλ,σ(u, uσ)(t) = 0 for t ≥ σu and Qλ,σ(v, uσ)(t) = 0

for t ≥ σv. In the following, we assume without restriction that σu ≥ σv. First we prove the
growth estimate. θλ ≤ 1, Lemma 2.3.4 and the definition of σu yield

‖Qλ,σ(u, uσ)‖X(σ,µ) = ‖Qλ,σ(u, uσ)‖X(σ,σu)

≤ LQ sup
t∈[σ,σu]

‖u(t)− uσ‖TR‖u‖X1(σ,σu) ≤ 4CQλ
2.

For the Lipschitz estimate, we start with

‖Qλ,σ(u, uσ)−Qλ,σ(v, uσ)‖X(σ,µ)

≤ ‖
(
θλ(σ, ·, u, uσ)− θλ(σ, ·, v, uσ)

)(
A(u)−A(uσ)

)
u‖X(σ,σu)

+ ‖θλ(σ, ·, v, uσ)
(
A(u)−A(v)

)
u‖X(σ,σu)

+ ‖θλ(σ, ·, v, uσ)
(
A(v)−A(uσ)

)
(u− v)‖X(σ,σv).

Note that in the last step we used θλ(σ, t, v, uσ) = 0 for t ≥ σv. The Lipschitz continuity of
θλ and Lemma 2.3.4 yield∥∥(θλ(σ, ·, u, uσ)− θλ(σ, ·, v, uσ)

)(
A(u)−A(uσ)

)
u
∥∥
X(σ,σu)

≤ sup
t∈[σ,σu]

∣∣θλ(σ, t, u, uσ)− θλ(σ, t, v, uσ)
∣∣ sup
t∈[σ,σu]

LQ sup
t∈[σ,σu]

‖u(t)− uσ‖TR‖u‖X1(σ,σu)

≤ λ−1LQ sup
s∈[σ,T ]

∣∣∣‖u‖X1(a,s) + ‖u− uσ‖C(σ,s;TR) − ‖v‖X1(a,s) − ‖v − uσ‖C(σ,s;TR)

∣∣∣
sup

t∈[σ,σu]

‖u(t)− uσ‖TR‖u‖X1(σ,σu)

≤ 4CQλ
(
‖u− v‖X1(σ,µ) + ‖u− v‖C(σ,µ;TR)

)
In the last step, we used the definition of σu to estimate the terms not depending on the
difference u− v. Accordingly, we derive∥∥θλ(σ, ·, v, uσ)

(
A(u)−A(v

)
u
∥∥
X(σ,σu)

≤ 2CQλ‖u− v‖C(σ,µ;TR)

and ∥∥θλ(σ, ·, v, uσ)
(
A(v)−A(uσ

)
(u− v)

∥∥
X(σ,σv)

≤ 2CQλ‖u− v‖X1(σ,µ)
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respectively. All in all, we proved∥∥Qλ,σ(u, uσ)−Qλ,σ(v, uσ)
∥∥
X(0,µ)

≤ 6CQλ
(
‖u− v‖X1(σ,µ) + ‖u− v‖C(σ,µ;TR)

)
,

which is the claimed result.

Next, we construct a local solution of (QSEE) starting from a random initial time σ under
the assumption that we already solved the equation on the random interval [0, σ]. We do
this by solving a version of (2.3.2) with given past u and restricting the solution to a random
interval on which the solution also satisfies (QSEE).

Proposition 2.3.6. Choose one of the settings [TT], [GM] or [LQ] and let [Q5]-[Q9] be
fulfilled. Let σ be an F-stopping time with 0 ≤ σ ≤ T almost surely and u be a unique strong
solution of (QSEE) on [0, σ] with u ∈ X1(0, σ) ∩ C(0, σ,TR) almost surely. Moreover, we
assume λ > 0 to be small enough to ensure

6CQλ+ CMRDL
(i)
F + CMRDL

(i)
B < 1

for i = 1, 2. Then, the equationdu(t) = [A(u(t))u(t) + F (u)(t) + f(t)] dt+ [B(u)(t) + b(t)] dW (t)

u(0) = u0

(2.3.3)

has a unique solution u on [0, σ̃] with u ∈ X1(0, σ̃) ∩ C(0, σ̃; TR) almost surely. Here, the
F-stopping time σ̃ is given by

σ̃ = inf
{
t ∈ [σ, T ] : ‖u− uσ‖C(σ,t;TR) + ‖u‖X1(σ,t) > λ

}
∧ T.

If we additionally assume u ∈ Lr(Ω;X1(0, σ)) ∩ Lr(Ω;C(0, σ; TR)) with(
E‖u‖rX1(0,σ) + E sup

t∈[0,σ]

‖u(t)‖rTR

)1/r ≤ C(1 + ‖u(0)‖Lr(Ω,TR)

)
,

for some C > 0 independent of u(0), we also have(
E‖u‖rX1(0,σ̃) + E sup

t∈[0,σ̃]

‖u(t)‖rTR

)1/r ≤ C̃(1 + ‖u(0)‖Lr(Ω,TR)

)
for some C̃ > 0 independent of u(0).

Proof. Let Qλ,σ be defined as in Lemma 2.3.5. To construct a local solution, we first consider
the equationdw(t) =

[
−A(u(σ))w(t) + F (1)(w)(t) + f(t)

]
dt+ [B(w)(t) + b(t)] dW (t), t ∈ [σ, T ]

w(σ) = u(σ),

(2.3.4)
where F (1) is given by

F (1)(y)(t) = Qλ,σ(y, u(σ))(t) + F
(
u1[0,σ) + y1[σ,T )

)
(t)
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for y ∈ L0
F
(
Ω;X1(σ, T ) ∩ C(σ, T ; TR)

)
with y(σ) = u(σ). Clearly, u1[0,σ) + y1[σ,T ) ∈

X1(0, T ) ∩ C(0, T ; TR) almost surely, and hence F
(
u1[0,σ) + y1[σ,T )

)
is well-defined.

Lemma 2.3.5, together with [Q6], shows that F (1) is a Volterra mapping. Let µ be an F-
stopping time σ ≤ µ ≤ T almost surely. Then, for y ∈ L0

F
(
Ω;X1(σ, T ) ∩ C(σ, T ; TR)

)
, we

have the linear growth estimate

‖F (1)(y)‖X(σ,µ) ≤ ‖Qλ,σ(y, u(σ))‖X(σ,T ) + ‖F
(
u1[0,σ) + y1[σ,T )

)
‖X(σ,T )

≤ 4CQλ
2+C

(1)
F

(
1 + ‖u‖X1(0,σ) + ‖y‖X1(σ,µ)

)
+C

(2)
F

(
1 + ‖u‖C(0,σ;TR) + ‖y‖C(σ,µ;TR)

)
almost surely and the Lipschitz continuity

‖F (1)(u)− F (1)(v)‖X(0,µ)

≤(6CQλ+ L
(1)
F )‖u− v‖X1(0,µ) + (6CQλ+ L

(2)
F )‖u− v‖C(0,µ;TR) + L̃F ‖u− v‖X(0,µ)

almost surely. In particular, F (1) satisfies [S4] from the previous section with

ρ = 4CQλ
2 + C

(1)
F

(
1 + ‖u‖X1(0,σ)

)
+ C

(2)
F

(
1 + ‖u‖C(0,σ;TR)

)
.

Note that due to the adaptivity of u on [0, σ], ρ is Fσ-measurable.

We can apply Corollary 2.2.8 and obtain a unique strong solution w of (2.3.4) on [σ, T ]

with w ∈ X1(0, T ) ∩C(0, T ; TR) almost surely with w(σ) = u(σ) almost surely. Since both
t 7→ ‖w‖X1(σ,t) and t 7→ ‖w − u(σ)‖C(σ,t;TR) are adapted and almost surely continuous (see
Lemma 2.2.1),

σ̃ = inf
{
t ∈ [σ, T ] : ‖w − u(σ)‖C(σ,t;TR) + ‖w‖X1(σ,t) > λ

}
∧ T

is an F-stopping time by Lemma 1.2.4. Moreover, for σ ≤ t ≤ σ̃ the identity

Qλ,σ(w, u(σ))(t) =
(
A(u(σ))−A(w(t))

)
w(t)

holds. Defining u := w on [σ, σ̃] finally gives us a strong solution ofdu(t) = [A(u(t))u(t) + F (u)(t) + f(t)] dt+ [B(u)(t) + b(t)] dW (t)

u(0) = u0

on [0, σ̃]. In case that u ∈ Lr(Ω, C(0, σ; TR)) ∩ Lr(Ω, X1(0, σ)) with(
E‖u‖rX1(0,σ) + E sup

t∈[0,σ]

‖u(t)‖rTR

)1/r ≤ C(1 + ‖u(0)‖Lr(Ω,TR)

)
we additionally get the claimed estimate for u on [0, σ̃] as an immediate consequence of
(2.2.9).

Now, we are in the position to prove the main theorem with the following strategy. We
already showed that the set Γ of stopping times τ̃ such that (QSEE) has a unique solution u



2.3. Quasilinear parabolic stochastic evolution equations 61

on [0, τ̃ ] is non-empty. Hence, the essential supremum τ of Γ in the sense of Definition 1.2.5
exists. This τ will be our maximal stopping time that also satisfies the blow-up criterion.
However, at first it is unclear, whether τ is a stopping time or not. This can be shown if Γ

is closed under pairwise maximization (see Theorem 1.2.6).

Lemma 2.3.7. If (u1, τ1) and (u2, τ2) are unique local solutions of (QSEE) with ui ∈
X1(0, τi) ∩ C(0, τi; TR) almost surely for i = 1, 2, then the equation (QSEE) has a unique
solution (u, τ1 ∨ τ2) with u ∈ X1(0, τ1 ∨ τ2) ∩ C(0, τ1 ∨ τ2; TR) almost surely.

If we additionally assume ui ∈ Lr(Ω;X1(0, τi)) and E supt∈[0,τi) ‖u(t)‖rTR <∞ for i = 1, 2,
we also get u ∈ Lr(Ω;X1(0, τ1 ∨ τ2)) and E supt∈[0,τ1∨τ2) ‖u(t)‖rTR <∞.

Proof. Define u by

u(t) = u1(t ∧ τ1) + u2(t ∧ τ2)− u1(t ∧ τ1 ∧ τ2)

for t ∈ [0, τ1 ∨ τ2]. Clearly, u is adapted as a composition of stopped adapted processes. By
uniqueness, we have u1(t) = u2(t) almost surely for every t ∈ [0, τ1 ∧ τ2]. Hence, u = u1 on
{τ1 > τ2}× [0, τ1) and u = u2 on {τ1 ≤ τ2}× [0, τ2). This proves that (u, τ1 ∨ τ2) is a unique
solution of (QSEE) that inherits all the regularity properties from u1 and u2.

Proof of Theorem 2.3.3. We define the Γ as the set of all F-stopping times τ̃ : Ω → [0, T ]

such that there exists a unique solution (ũ, τ̃) with ũ ∈ X1(0, τ̃)∩C(0, τ̃ ; TR) almost surely.

By Proposition 2.3.6, this set is non-empty ( start with σ = 0, then the corresponding σ̃ is
in Γ). Moreover, by Lemma 2.3.7, Γ is closed under pairwise maximization, i.e. if τ1, τ2 ∈ Γ,
we also have τ1 ∨ τ2 ∈ Γ. Consequently, Theorem 1.2.6 yields the existence of τ := ess sup Γ

and of an increasing sequence of stopping times (τn)n in Γ with τ = limn→∞ τn almost
surely. In particular, τ is an F-stopping time as almost sure limit of F-stopping times.

Each τn belongs to a unique solution (un, τn). This can be used to ultimately define the
solution of (QSEE) on [0, τ).We set u = un on Ω× [0, τn). Then, u is a well-defined strongly
adapted process on Ω× [0, τ) and

(
u, (τn)n, τ

)
is a unique solution in the sense of Definition

2.3.2.

Next, we show that

Ω̃ = {τ < T, ‖u‖X1(0,τ) <∞, u : [0, τ)→ TR is uniformly continuous}

is a set of measure zero. Assume P(Ω̃) > 0. Since u is pathwise uniformly continuous on Ω̃,
we can extend u on Ω̃ to the closed interval [0, τ ]. Moreover, since we have τn → τ almost
surely, we also have sups∈[τn,τ) ‖u(τn)−u(s)‖TR → 0 and ‖u‖X1(τn,τ) → 0 almost surely for
n→∞ on Ω̃ by Lemma 2.2.1.

By Egorov’s theorem, there exists a subset Λ ⊂ Ω̃ of positive measure such that the limits
from above are uniform on Λ. In particular, there exists N ∈ N such that

sup
s∈[τN (ω),t]

‖u(ω, τN (ω))− u(ω, s)‖TR + ‖u(ω, ·)‖X1(τN (ω),t) <
λ
2
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for all ω ∈ Λ and t ∈ [τN (ω), τ(ω)], where λ > 0 is chosen in the same way as in Proposition
2.3.6. The same Proposition shows that we can sustain the unique solution u from [0, τN ]

to a unique solution ũ of (QSEE) on [0, τ̃N ] with

τ̃N = inf
{
t ∈ [τN , T ] : ‖ũ− uτN ‖C(τN ,t;TR) + ‖ũ‖X1(τN ,t) > λ

}
∧ T.

By uniqueness, u and ũ coincide on [0, τ ∧ τ̃N ) and hence τ̃N ∈ Γ. However, on Λ we have
τ̃N > τ which contradicts the definition of τ as essential supremum of Γ. All in all, we
proved P(Ω̃) = 0.

If u0 ∈ Lr(Ω; TR), we replace Γ by

Γ̃ =
{
σ ∈ Γ : the unique solution u(σ) corresponding to σ satisfies

u(σ) ∈ Lr(Ω;X1(0, σ)), E sup
t∈[0,σ)

‖u(t)‖rTR <∞
}

and repeat the argument step by step.

It remains to prove maximality of the solution. Let (z, (µn)n, µ) be another local solution of
(QSEE). By uniqueness of u, we get z = u on [0, τ∧µ). Assume that there is a set of positive
measure Λ ⊂ Ω with µ > τ on Λ. Then, for almost all ω ∈ Λ there exists n = n(ω) ∈ N
with µn(ω) > τ(ω). In particular, by definition of a local solution, u : Λ × [0, τ ] → TR is
pathwise almost surely uniformly continuous and we have ‖u‖X1(0,τ) < ∞ on Λ. Thus the
blow-up criterion we derived above implies τ = T almost surely on Λ. But this contradicts
µ > τ on Λ, since µ is also bounded by T. Hence, we established µ ≤ τ almost surely, which
is the claimed result.

We prove that if two different initial values coincide on a set of positive measure, the corre-
sponding solutions also coincide on this set.

Corollary 2.3.8. Let
(
u1, τ1

)
and

(
u2, τ2

)
be the maximal unique strong solutions of (QSEE)

to the initial values u(1)
0 ∈ TR and u(2)

0 ∈ TR respectively. Then, we have τ1(ω) = τ2(ω)

and u1(ω, t) = u2(ω, t) for almost all ω ∈ {u(1)
0 = u

(2)
0 } and all t ∈ [0, τ1(ω)).

Proof. We define Γ as the set of all F-stopping times τ̃ : Ω → [0, T ] such that the maximal
unique solutions (u1, τ1) and (u2, τ2) of (QSEE) to the initial values u(1)

0 and u
(2)
0 satisfy

u1(ω, t) = u2(ω, t) for almost all ω ∈ {u(1)
0 = u

(2)
0 } and for all t ∈ [0, τ̃ ].

We first show that Γ contains a stopping time that is almost surely strictly positive on
{u(1)

0 = u
(2)
0 }. Let λ > 0 small enough as in the proof of Proposition 2.3.6 and let

σi = inf
{
t ∈ [0, τi) : ‖ui‖X1(0,t) + ‖ui − u(i)

0 ‖C(0,t;TR) > λ
}
∧ τi

for i = 1, 2. Clearly, σi is strictly positive. Then, ui is a strong solution of the semilinear
equationdui =

[
A(u

(i)
0 )ui + Fi(ui) + f

]
dt+

[
B(ui) + b

]
dW (t), t ∈ [0, T ]

ui(0) = u
(i)
0 ,

(2.3.5)
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on [0, σi], where Fi(w) = Qλ,0(w, u
(0)
i ) +F (w). Clearly, on {u(1)

0 = u
(2)
0 }, we have A(u

(1)
0 ) =

A(u
(2)
0 ) almost surely and F1(w) = F2(w) almost surely for every w. Consequently, Corollary

2.2.9 implies u1(ω, t) = u2(ω, t) for almost all ω ∈ {u(1)
0 = u

(2)
0 } and for all t ∈ [0, σ1 ∧ σ2].

In particular, we have σ1 ∧ σ2 ∈ Γ.

As in the proof of Lemma 2.3.7, we can see that Γ is closed under pairwise maximization.
Thus, Theorem 1.2.6 yields the existence of η := ess sup Γ and of an increasing sequence
of stopping times (ηn)n in Γ with limn→∞ ηn = η almost surely. In particular, η is an
F-stopping time that is also almost surely strictly positive on {u(1)

0 = u
(2)
0 }.

It remains to show η = τ1 = τ2 almost surely on {u0 = v0}. Assume η < τ1 ∧ τ2 on
{u(1)

0 = u
(2)
0 }. Then, we have u, v ∈ X1(0, η) ∩ C(0, η; TR) almost surely on {u(1)

0 = u
(2)
0 }

and
{u(1)

0 = u
(2)
0 } = {u1(t) = u2(t) ∀t ∈ [0, η]} ∪N

for some N ⊂ Ω with P(N) = 0.

Let λ > 0 as before and define

σ̃i = inf
{
t ∈ [η, τi) : ‖ui‖X1(η,t) + ‖ui − ui(η)‖C(0,t;TR) > λ

}
∧ τi

for i = 1, 2. Then, ui is a strong solution of the semilinear equation

dui =
[
A(ui(η))ui + F̃i(ui) + f

]
dt+

[
B̃i(ui) + b

]
dW (t), t ∈ [0, T ] (2.3.6)

on [η, σ̃i] with initial data ui(η) and

F̃i(w) := F
(
ũi1[0,σ) + w1[σ,T ]

)
B̃i(w) := B

(
ũi1[0,σ) + w1[σ,T ]

)
for all w ∈ L0

F
(
Ω;X1(η, T ) ∩ C(η, T ; TR)

)
with w(η) = ui(η) almost surely. Since we have

u1(ω, t) = u2(ω, t) for almost all ω ∈ {u(1)
0 = u

(2)
0 } and all t ∈ [0, η], the A(ui(η)), the F̃i and

the B̃i coincide on {u(1)
0 = u

(2)
0 } and we can apply Corollary 2.2.9 to get u1(ω, t) = u2(ω, t)

for almost all ω ∈ {u(1)
0 = u

(2)
0 } and all t ∈ [0, σ̃1 ∧ σ̃2]. However, we have σ̃1 ∧ σ̃2 > η almost

surely on {u(1)
0 = u

(2)
0 }, which cannot be since η was defined as the essential supremum of

Γ. This proves η = τ1 ∧ τ2 on {u(1)
0 = u

(2)
0 }.

Last but not least, we show that τ1 = τ2 almost surely on {u(1)
0 = u

(2)
0 }. Assume τ2 < τ1 on

Λ ⊂ {u(1)
0 = u

(2)
0 } with P(Λ) > 0. Since u1 and u2 coincide almost surely on {u(1)

0 = u
(2)
0 }×

[0, τ2) and u1 has a larger time of existence on Λ, we know that u2 : [0, τ2)→ TR is uniformly
continuous and ‖u2‖X1(0,τ2) < ∞ on Λ. Hence, the blow-up criterion from Theorem 2.3.3
implies τ2 = T almost surely on Λ, which contradicts τ2 < τ1 on Λ. Consequently, P(τ2 <

τ1, u
(1)
0 = u

(2)
0 ) = 0. In the same way, we show P(τ1 < τ2, u

(1)
0 = u

(2)
0 ) = 0, which closes the

proof.

2.3.2. Locally Lipschitz continuous quasilinearity

In the different versions of the assumptions 2−4 in the respective settings, we assumed a uni-
form boundedness of the functional calculus of A(u(t)) and a global Lipschitz condition on
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A. However, we established a local well-posedness theory only using local methods. There-
fore, we can generalize our result in the next section and allow local Lipschitz continuous
nonlinearities. In the same way as before, we have to distinguish our three settings. In every
setting, the assumptions 2-4 are replaced by the following weaker conditions. Afterwards we
shortly repeat our unified notation. We begin with the improvement in [TT].

[TTQ2*] The mapping A : Ω×(E,E1)1−1/p,p → B(E1, E) is such that ω 7→ A(ω, y)x is strongly
F0-measurable for all x ∈ E1 and y ∈ (E,E1)1−1/p,p and such that D(A(ω, y)) = E1.
More precisely, for every n ∈ N, there exists µ(n) > 0 and C(n) > 0, such that

C(n)−1‖x‖E1 ≤ ‖(µ(n) +A(ω, y))x‖E ≤ C(n)‖x‖E1

for almost all ω ∈ Ω, all y ∈ (E,E1)1−1/p,p with ‖y‖(E,E1)1-1/p,p
≤ n and all x ∈ E1.

[TTQ3*] For all n ∈ N, there exists µ(n), C(n) > 0 such that the operators µ(n) +A(ω, y) have
a bounded H∞(Ση(n))-calculus of angle η(n) ∈ (0, π/2) with

‖φ(µ(n) +A(ω, y))‖B(E) ≤ C(n)‖φ‖H∞(Ση)

for almost all ω ∈ Ω, for all φ ∈ H∞(Ση(n)), and for all y ∈ TR with ‖y‖(E,E1)1−1/p,p
≤

n.

[TTQ4*] For all n ∈ N there exist CQ(n) > 0 such that

‖A(ω, z)−A(ω, y)‖B(E1,E) ≤ CQ(n)‖z − y‖TR

for almost all ω ∈ Ω and all ‖y‖(E,E1)1-1/p,p
, ‖z‖(E,E1)1-1/p,p

≤ n.

In this setting, we set X := E, X(a, b) := Lp(a, b;E), X1(a, b) := Lp(a, b;E1) and we define
X

1
2

H(a, b) := Lp(a, b; γ(H; [E,E1] 1
2
)). The trace space TR is the real interpolation space

(E,E1)1−1/p,p. Next, we give the refined assumptions for [GA].

[GMQ2*] The mapping A : Ω× [E,E1] 1
2
→ B(E1, E) is such that ω 7→ A(ω, y)x is for all x ∈ E1

and y ∈ [E,E1] 1
2
strongly F0-measurable and such that D(A(ω, y)) = E1. More

precisely, for every n ∈ N, there exists µ(n), C(n) > 0, such that

C(n)−1‖x‖E1 ≤ ‖(µ(n) +A(ω, y))x‖E ≤ C(n)‖x‖E1

for almost all ω ∈ Ω, all y ∈ [E,E1] 1
2
with ‖y‖[E,E1] 1

2

≤ n and all x ∈ E1 with
estimates independent of ω.

[GMQ3*] For all n ∈ N, there exist µ(n), C(n) > 0 such that the operators µ(n) + A(ω, y) have
a bounded H∞(Ση(n))-calculus of angle η(n) ∈ (0, π/2) with

‖φ(µ(n) +A(ω, y))‖B(E) ≤ C(n)‖φ‖H∞(Ση)

for almost all ω ∈ Ω and for all φ ∈ H∞(Ση(n)), y ∈ [E,E1] 1
2
with ‖y‖[E,E1] 1

2

≤ n.

[GMQ4*] For all n ∈ N there exist CQ(n) > 0 such that

R
({
A(ω, z(t))−A(ω, y(t)) : t ∈ [a, b]

}
⊂ B(E1, E)

)
≤ CQ(n) sup

t∈[a,b]

‖y(t)−z(t)‖[E,E1]1/2

for almost all ω ∈ Ω and for all y, z ∈ [E,E1]1/2 with ‖y‖[E,E1]1/2
, ‖z‖[E,E1]1/2 ≤ n.
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Here, we set X := E, X(a, b) := γ(a, b;E), X
1
2

H(a, b) := γ(0, T ; γ(H; [E,E1] 1
2
)) and we define

X1(a, b) := γ(a, b;E1). The trace space TR is the complex interpolation space [E;E1] 1
2
. Last

but not least, we give the refined assumptions for [LQ].

[LQQ2*] The mapping A : Ω × Fα−1/p
Λ,q,p → B(Eα, Eα−1) is strongly F0-measurable. Moreover,

the A(ω, y) are closed and for any n ∈ N there exists µ(n), C(n) > 0, such that the
operators Λα(µ(n) +A(ω, y))−α, (µ(n) +A(ω, y))αΛ−α, (µ(n) +A(ω, y))α−1Λ1−α and
Λα−1(µ(n) + A(ω, y))1−α are Rp-bounded on Lq(U) with Rp-bound C(n) for almost
all ω ∈ Ω and all ‖y‖

F
α−1/p
Λ,q,p

≤ n.

[LQQ3*] For every n ∈ N, there exist µ(n), C(n) > 0, such that the operators µ(n) + A(ω, y)

have an Rp-bounded H∞(Ση(n)) calculus η(n) ∈ (0, π/2) that additionally satisfies

Rp
({
ψ(A(ω, y)) : ‖ψ‖H∞(Ση(n)) ≤ 1

}
⊂ B(Lq(U))

)
≤ C(n)

for almost all ω ∈ Ω and for all y ∈ Fα−1/p
Λ,q,p with ‖y‖

F
α−1/p
Λ,q,p

≤ n.

[LQQ4*] For all n ∈ N there exist CQ(n) > 0 such that we have

Rp
({

Λα−1(A(ω, z(t))−A(ω, y(t)))Λ−α : t ∈ [a, b]
}
⊂ B(Lq(U))

)
≤ CQ sup

t∈[a,b]

‖z(t)− y(t)‖
F
α−1/p
Λ,q,p

almost all ω ∈ Ω and for all ‖y‖
F
α−1/p
Λ,q,p

, ‖z‖
F
α−1/p
Λ,q,p

≤ n.

The assumption on Λ imply that Λ can be extended to an operator Λp,a,b on Lq(U ;Lp(a, b))

that has a bounded H∞(Ση̃)-calculus for some angle 0 ≤ η̃ < π/2. We choose Xα(a, b) :=

D(Λαp,a,b) andX
α−1(a, b) = Λ1−α

p,a,b

(
Lq(U ;Lp(a, b))

)
. The stochastic partB(u)+b is contained

in the space X
1
2

H(a, b) := Λ
1
2−α
p,a,b

(
Lq(U ;Lp(a, b; l2(N)))

)
. The trace space TR is the Triebel-

Lizorkin space Fα−1/p
Λ,q,p in the sense of Definition 1.4.2.

The local Lipschitz conditions on the nonlinearities are universal and can be formulated in
our general framework.

[Q6*] F has the same mapping properties as in [Q6]. More precisely, for every n ∈ N there
exist L(i)

F (n), L̃F (n), C
(i)
F (n) ≥ 0, i = 1, 2, such that F is locally of linear growth, i.e.

‖F (φ1)‖X(0,µ) ≤ C
(1)
F (n)

(
1 + ‖φ1‖X1(0,µ)

)
+ C

(2)
F (n)

(
1 + ‖φ1‖C(0,µ;TR)

)
and locally Lipschitz continuous, i.e.

‖F (φ1)− F (φ2)‖X(0,µ)

≤ L(1)
F (n)‖φ1 − φ2‖X1(0,µ) + L̃F (n)‖φ1 − φ2‖X(0,µ) + L

(2)
F (n)‖φ1 − φ2‖C(0,µ;TR)

almost surely for all φ1, φ2 ∈ L0
F(Ω;X1(0, µ) ∩ C(0, µ; TR)) with φ1(0) = φ2(0) = u0

and supt∈[0,µ] ‖φi‖TR ≤ n almost surely for i = 1, 2. The occurring constants are
independent of ω ∈ Ω.
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[Q7*] B has the same mapping properties as in [Q7]. More precisely, for every n ∈ N, there
exist L(i)

B (n), L̃B(n), C
(i)
B (n) ≥ 0, i = 1, 2, such that B is of linear growth, i.e.

‖B(φ1)‖
X

1
2
H (0,µ)

≤ C(1)
B (n)

(
1 + ‖φ1‖X1(0,µ)

)
+ C

(2)
B (n)

(
1 + ‖φ1‖C(0,µ;TR)

)
and Lipschitz continuous, i.e.

‖B(φ1)−B(φ2)‖
X

1
2
H (0,µ)

≤ L(1)
B (n)‖φ1 − φ2‖X1(0,µ) + L̃B(n)‖φ1 − φ2‖X(0,µ) + L

(2)
B (n)‖φ1 − φ2‖C(0,µ;TR)

almost surely for all φ1, φ2 ∈ L0
F(Ω;X1(0, µ) ∩ C(0, µ; TR)) with φ1(0) = φ2(0) = u0

almost surely and with supt∈[0,µ] ‖φi‖TR ≤ n almost surely for i = 1, 2. The occurring
constants are independent of ω ∈ Ω.

As we have shown in Section 2.1, the assumptions imply maximal regularity estimates for the
deterministic and the stochastic convolution in all of the three settings. However, since the
occurring constants are uniform on balls in TR of radius n, we solely get uniform maximal
regularity estimates of A(y) for ‖y‖TR < n. More precisely, for every n ∈ N, there exists
CMRS(n), CMRD(n) > 0 such that for any stopping time µ with 0 ≤ µ ≤ T almost surely, we
have ∥∥(e−(·)A(y) � g

)
µ

∥∥
Lr(Ω;X1(µ,T )∩C(µ,T ;TR))

≤ CMRS(n)‖g‖
Lr(Ω;X

1
2
H (µ,T ))

for all ‖y‖TR ≤ n and all g ∈ LrF(Ω;X
1
2

H(µ, T )) and∥∥(e−(·)A(y) ∗ g̃
)
µ

∥∥
Lr(Ω;X1(µ,T )∩C(µ,T ;TR))

≤ CMRD(n)‖g̃‖Lr(Ω;X(µ,T ))

for all ‖y‖TR ≤ n and all g̃ ∈ Lr(Ω;X(µ, T )). As before, we require small Lipschitz constants
in [Q6*], [Q7*]. More precisely, we assume the following.

[Q9*] Let the constants of [Q6*] and [Q7*] be small enough to ensure

CMRD(n)L
(i)
F (n) + CMRD(n)L

(i)
B (n) < 1

for every n ∈ N and for i = 1, 2.

Before, we start we comment on the local Lipschitz assumptions for F and B. We have
to admit that [Q9*] is a lot more restrictive than [Q9]. The main difference is that even
in concrete situations, it is very difficult to calculate the constants CMRD(n) and CMRS(n)

precisely, usually one solely knows that these constants are increasing with n. In practice,
this means that we can just allow decreasing sequences L(i)

F (n) and L
(i)
B (n) that converge

to zero and even worse, we usually do not know anything about the rate of convergence we
have to require. At least, locally Lipschitz continuous lower order terms can be handled very
well. We make this precise in the following proposition.

Proposition 2.3.9. Let θ ∈ [0, 1) and let

F : L0
F(Ω; [X(0, µ), X1(0, µ)]θ)→ L0

F(Ω;X(0, µ))

B : L0
F(Ω; [X(0, µ), X1(0, µ)]θ)→ L0

F(Ω;X
1
2

H(0, µ))
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be Volterra mappings in the sense of [Q6] and [Q7]. Moreover, we assume that for every
n ∈ N, there exists L̃(n) ≥ 0 such that for every F-stopping time µ with 0 ≤ µ ≤ T almost
surely, we have

‖F (φ1)− F (φ2)‖X(0,µ) ≤ L̃(n)‖φ1 − φ2‖[X(0,µ),X1(0,µ)]θ ,

‖B(φ1)−B(φ2)‖
X

1
2
H (0,µ)

≤ L̃(n)‖φ1 − φ2‖[X(0,µ),X1(0,µ)]θ

almost surely for every φ1, φ2 ∈ L0
F(Ω;X1(0, µ) ∩ C(0, µ; TR)) with φ1(0) = φ2(0) = u0 and

supt∈[0,µ] ‖φi‖TR ≤ n almost surely for i = 1, 2. Then, F and B satisfy [Q6*], [Q7*] and
[Q9*].

Proof. For a, b, ε > 0, we calculate

ab = aε1−θbεθ−1 ≤ (1− θ)εa
1

1−θ + θε
θ−1
θ b

1
θ .

Together with the properties of complex interpolation this yields

L̃(n)‖φ1 − φ2‖[X(0,µ),X1(0,µ)]θ ≤ L̃(n)1−θ‖φ1 − φ2‖1−θX(0,µ)L̃(n)θ‖φ1 − φ2‖θX1(0,µ)

≤ (1− θ)εL̃(n)‖φ1 − φ2‖X1(0,µ) + θε
θ−1
θ L̃(n)‖φ1 − φ2‖X(0,µ)

for every ε > 0. For given n ∈ N, we choose ε > 0 small enough such that

(1− θ)εL̃(n)(CMRD(n) + CMRD(n)) < 1.

This proves the claimed result.

In the setting [TT], [X(0, µ), X1(0, µ)]θ is given by Lp(0, µ; [E,E1]θ), whereas in [GM] it
equals γ(0, µ; [E,E1]θ). In [LQ], things are more complicated. Here, it coincides with a
fractional domain of the operator Λp,0,µ, which is the extrapolation of Λ to Lq(U ;Lp(0, µ)).
More precisely, we have [X(0, µ), X1(0, µ)]θ = D(Λα−1+θ

p,0,µ ), if α− 1 + θ ≥ 0. If on the other
hand α − 1 + θ < 0 it equals to completion of Lq(U ;Lp(0, µ)) with respect to the norm
‖Λα−1+θ

p,0,µ · ‖Lq(U ;Lp(0,µ)).

To construct a solution of (QSEE) for a given F0-measurable u0 : Ω→ TR, we first investi-
gate the truncated equationdu(t) =

[
−An(u(t))u(t) + Fn(u)(t) + f(t)

]
dt+

[
Bn(u)(t) + b(t)

]
dW (t),

u(0) = u01Γn ,
(2.3.7)

where An(ω, y) := A(ω,Rny), Fn(y) := F (Rny), Bn(y) := B(Rny), Γn := {‖u0‖TR ≤ n
2 }.

Here, the cut-off mapping Rn : TR→ TR is defined by

Rny =

y, if ‖y‖TR ≤ n
ny
‖y‖TR

, if ‖y‖TR > n.
(2.3.8)

The idea to use such a truncation to extend global Lipschitz nonlinearities to local ones
was used several time in case of semilinear equations (see e.g. [19], Theorem 4.10, [89],
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Proposition 5.4, [95], Theorem 8.1). The following Lemma is well-known. However, since
we nowhere found a proof, we give it for convenience of the reader.

Lemma 2.3.10. Given n ∈ N, the mapping Rn : TR→ TR defined in (2.3.8) is Lipschitz,
i.e.

‖Rnx−Rny‖TR ≤ 2‖x− y‖TR.

In particular, An satisfies the assumptions 2− 4 of the globally Lipschitz case in any of the
three settings and Fn and Bn satisfy [Q6] and [Q7] respectively.

Proof. Let x, y ∈ TR . If they are both contained in ball of radius n around zero, there is
nothing to prove. So we start with the case that they are both outside this ball. Then
triangle inequality yields∥∥∥ nx

‖x‖TR
− ny
‖y‖TR

∥∥∥
TR
≤ n

∥∥∥ x
‖x‖TR

− y
‖x‖TR

∥∥∥
TR

+ n
∥∥∥ y
‖x‖TR

− y
‖y‖TR

∥∥∥
TR

≤ n
‖x‖TR

‖x− y‖TR + n
‖x‖TR

∣∣‖y‖TR − ‖x‖TR

∣∣
≤ 2‖x− y‖TR.

If we have ‖x‖TR > n and ‖y‖TR ≤ n we estimate∥∥∥ nx
‖x‖TR

− y
∥∥∥

TR
≤ n

∥∥∥ x
‖x‖TR

− y
‖x‖TR

∥∥∥
TR

+
∥∥∥ ny
‖x‖TR

− y
∥∥∥

TR

≤ ‖x− y‖TR + ‖y‖TR

‖x‖TR

∣∣n− ‖x‖TR

∣∣
≤ ‖x− y‖TR +

(
‖x‖TR − n

)
≤ 2‖x− y‖TR.

Since Rn maps into a ball around zero with radius n, all the local assumptions for A,F ,B
become to global assumptions for An, Fn,Bn.

We can apply Theorem 2.3.3 to the truncated equation (2.3.7) and obtain for every n ∈ N
a unique maximal local solution

(
un, (τnk)k, τn

)
. To do this, note that one can infix the

spectral shift from [TTQ2*], [GAQ2*], [LQQ2*], i.e. we actually solvedu(t) =
[
−Ãn(u(t))u(t) + F̃n(u)(t) + f(t)

]
dt+ [Bn(u)(t) + b(t)] dW (t),

u(0) = u01Γn ,

with Ãn(u(t))u(t) =
(
µ(n)+An(u(t))

)
u(t) and F̃n(u)(t) = Fn(u)(t)+µ(n)u(t). In each case,

the solution un of the truncated equation is a solution of (QSEE) on Γn × [0, σn), where σn
is defined by

σn := τn ∧ inf
{
t ∈ [0, τn) : ‖un(t)‖TR > n

}
. (2.3.9)

Note that σn is indeed an F-stopping time, since τn is one and entrance times of continuous
F-adapted processes into open sets are also stopping times by Lemma 1.2.4. In the following
Lemma, we show that the sequence (σn)n increases pathwise starting from a large enough
n ∈ N.
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Lemma 2.3.11. There is a set N ⊂ Ω with P(N) = 0 such that the sequence
(
σn(ω)

)
n∈N

is for all ω ∈ Ω\N monotonously increasing beginning from some n = n(ω) ∈ N. Moreover,
we have uk(ω, t) = ul(ω, t) for almost all ω ∈ Ω, for all l > k ≥ n(ω) and all t ∈ [0, σk(ω)).

Proof. Given ω ∈ Ω, choose n = n(ω) such that ω ∈ Γn. Since ‖u0‖TR is almost surely
finite, this can be done for almost all ω ∈ Ω. Let l > k ≥ n. We first prove that we have
uk(ω, t) = ul(ω, t) for almost all ω ∈ Γn and all t ∈ [0, σk(ω) ∧ σl(ω)). Clearly, both uk and
ul solvedu(t) = [−Al(u(t))u(t) + Fl(u)(t) + f(t)] dt+ [Bl(u)(t) + b(t)] dW (t),

u(0) = u01Γn

(2.3.10)

in the strong sense on [0, σk) and [0, σl) respectively and therefore the uniqueness result from
Corollary 2.3.8 directly yields the almost sure coincidence of ul and uk on Γn × [0, σl ∧ σk).

To prove the pathwise monotonicity of the stopping times on Γn, we distinguish the cases
Γn = Λn ∪̇ Λ̃n ∪̇ Ñ with a null-set Ñ ,

Λn = Γn ∩ { sup
s∈[0,τl)

‖ul(s)‖TR ≤ l}

and
Λ̃n = Γn ∩ { sup

s∈[0,τl)

‖ul(s)‖TR > l}.

We have σl = τl on Λn and σl = inf{t ∈ [0, τl) : ‖ul(t)‖TR > l} on Λ̃n. As an immediate
consequence, we get σk ≤ τl = σl almost surely on Λn, since τl was chosen as the maximal
stopping time of a solution of (2.3.7) which coincides with the maximal time of existence of
(2.3.10) on Γn. On Λ̃n, we argue differently. Here, it suffices to note that by almost sure
coincidence of ul and uk on Γn × [0, σl ∧ σk), we have

sup
s∈[0,σk∧σl)

‖ul(s)‖TR = sup
s∈[0,σk∧σl)

‖uk(s)‖TR ≤ k,

whereas
sup

s∈[0,σl)

‖ul(s)‖TR = l.

Thus, we must have σk < σl on Λ̃n. Putting these cases together, we finally proved the
claimed result, namely σk ≤ σl almost surely on Γn. Last but not least, we choose N as the
union of all sets of measure zero we excluded in this proof.

We proved that (σn)n is at least for large natural numbers pathwise almost surely monoton-
ously increasing and we know from the definition of (σn)n that the sequence is bounded by
T. Therefore we can define the F-stopping time

µ = lim
n→∞

σn. (2.3.11)

Moreover, we set
u(ω, t) := lim

n→∞
un(ω, t)1Γn1[0,σn)(t). (2.3.12)
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for ω ∈ Ω and t ∈ [0, µ). Note that for given ω and t, this limit is attained after finitely
many steps by Lemma 2.3.11. In particular, u is a strongly adapted process on Ω × [0, µ).

Since the un are strong solutions of (QSEE) on Γn× [0, σn), u is a good candidate for a local
solution of (QSEE) on Ω × [0, µ). We just have to find a sequence of stopping times (µn)n

that approximates µ such that u ∈ C(0, µn; TR) ∩ X1(0, µn) almost surely for all n ∈ N
and such that u is a strong solution of (QSEE) on [0, µn]. Note that σn does not need to
have this property, since we used the maximal stopping times τn in the definition of σn and
therefore, we cannot preclude that σn is a blow-up time on some paths.

Theorem 2.3.12. Choose one of the settings and assume [TTQ1], [TTQ2*]-[TTQ4*] or
[GMQ1], [GMQ2*]-[GMQ4*] or [LQQ1], [LQQ2*]-[LQQ4*]. Moreover, we assume [Q5], [Q8]

and [Q6*], [Q7*], [Q9*]. Then, there is an increasing sequence of F-stopping times (µn)n with
0 ≤ µn ≤ T almost surely such that

(
u, (µn)n, µ

)
is the maximal unique solution of

(QSEE)

du(t) = [−A(u(t))u(t) + F (u)(t) + f(t)] dt+ [B(u)(t) + b(t)] dW (t)

u(0) = u0.

Moreover, we have the blow-up criterion

P
{
µ < T, ‖u‖X1(0,µ) <∞, u : [0, µ)→ TR is uniformly continuous

}
= 0.

Proof. First we construct the sequence of stopping times (µn)n∈N. Recall the definition of
σn in (2.3.9) and of µ in (2.3.11). If we additionally set

σnk := τnk ∧ inf
{
t ∈ [0, τn) : ‖un‖TR > n

}
,

we have the pointwise almost sure convergences µ = limn→∞ σn and σn = limk→∞ σnk. Since
the stopping times σn, σnk are all bounded by T, the dominated convergence theorem yields
σn → µ for n → ∞ and σnk → σn in L1(Ω) for k → ∞. If we now choose for given n ∈ N
the natural number k(n) such that ‖σn − σnk(n)‖L1(Ω) ≤ 1

n , we obtain σnk(n) → σ in L1(Ω)

for n→∞. Choosing a suitable subsequence still denoted by (σnk(n))n∈N yields σnk(n) → σ

pointwise almost surely for n → ∞. Moreover, since (Γn)n is an increasing sequence with
Ω = ∪n∈NΓn, we also have σnk(n)1Γn → σ pointwise almost surely for n→∞. Unfortunately
this sequence is not necessarily increasing anymore. Therefore, we define

µn := max
i∈{1,...,n}

σik(i)1Γi

and prove that (µn)n is the sequence, we wanted to construct. Clearly, since σnk(n) is an
F-stopping time for all n ∈ N and since Γn ∈ F0, µn is also an F-stopping time. Furthermore
the trivial bounds σnk(n) ≤ µn ≤ µ for every n ∈ N yield µn → µ almost surely.

It remains to check that u is a strong solution of (QSEE) on [0, µn]. It is sufficient to
show that u is a strong solution of (QSEE) on Γn × [0, σnk] for all n, k ∈ N. We have
u(ω, t) = un(ω, t) for almost all ω ∈ Γn and all t ∈ [0, σn(ω)) ⊃ [0, σnk(ω)] by definition of
u. Since un is a strong solution of the truncated equation (2.3.8) on [0, τnk] and in particular
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a strong solution of (QSEE) on Γn × [0, σnk], we conclude that u itself is a strong solution
of (QSEE) on Γn × [0, σnk].

Next, we prove

P
{
µ < T, ‖u‖X1(0,µ) <∞, u : [0, µ)→ TR is uniformly continuous

}
= 0.

Since uniformly continuous functions on a bounded interval are always bounded, we only
need to prove P(Ωn) = 0 for every n ∈ N, where Ωn is given by

Ωn :=
{
µ < T, ‖u‖X1(0,µ) <∞, u : [0, µ)→ TR is uniformly continuous,

‖u‖C(0,µ;TR) ∈ [n−1
2 , n2 )

}
.

We first show that for almost all ω ∈ {‖u‖C(0,µ;TR) ∈ [n−1
2 , n2 )}, we have µ(ω) = τn(ω).

Clearly τn = σn on {‖u‖C(0,µ;TR) ∈ [n−1
2 , n2 )}. Furthermore the sequence (σk)k≥n increases

on the even larger set Γn by Lemma 2.3.11 and converges to µ. Thus we have τn ≤ µ on
{‖u‖C(0,µ;TR) ∈ [n−1

2 , n2 )}.

On the other hand, we have τn ≥ µ on {‖u‖C(0,µ;TR) ∈ [n−1
2 , n2 )} since on this subset of Ω,

u solves the truncated equationdw(t) = [−An(w(t))u(t) + Fn(w)(t) + f(t)] dt+ [Bn(w)(t) + b(t)] dW (t),

w(0) = u01Γn ,
(2.3.13)

and τn was defined as the maximal stopping. This finally proves τn = µ on the set
{‖u‖C(0,µ;TR) ∈ [n−1

2 , n2 )} and the above argument also shows u(ω, t) = un(ω, t) for almost
all ω ∈ {‖u‖C(0,µ;TR) ∈ [n−1

2 , n2 )} and all t ∈ [0, µ(ω)). In conclusion, we have

P
{
µ < T, ‖u‖X1(0,µ) <∞, u : [0, µ)→ TR is uniformly continuous,

‖u‖C(0,µ;TR) ∈ [n−1
2 , n2 )

}
=P
{
τn < T, ‖un‖X1(0,τn) <∞, un : [0, τn)→ TR is uniformly continuous,

‖un‖C(0,τn;TR) ∈ [n−1
2 , n2 )

}
and by Theorem 2.3.3 this quantity equals zero.

It remains to check that
(
u, (µn)n, µ

)
is a maximal unique solution. Let

(
v, (κn)n, κ

)
be

another local solution of (QSEE). We first prove that u and v coincide on Ω × [0, µ ∧ κ).

Define the sequence (ρn)n of F-stopping times by

ρn := inf
{
t ∈ [0, µ) : ‖u‖TR > n

}
∧ inf

{
t ∈ [0, κ) : ‖v‖TR > n

}
∧ µ ∧ κ

for n ∈ N. Then both u and v solve the truncated equation (2.3.13) on Γn × [0, ρn) and this
equation is uniquely solvable up to a maximal stopping time, which implies u(ω, t) = v(ω, t)

for almost all ω ∈ Γn and all t ∈ [0, ρn). Since ρn → µ ∧ κ almost surely for n → ∞ and
∪∞n=1Γn = Ω \ Ñ for some set of measure zero Ñ , we conclude that u and v coincide on
Ω× [0, µ∧κ). Maximality is then a consequence of the blow-up alternative we derived above.
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Indeed, if we had κ > µ on a set of postive measure Λ, then u : Λ × [0, µ) → TR would be
almost surely uniformly continuous and we had ‖u‖X1(0,µ) < ∞ almost surely on Λ. But
this would imply µ = T on Λ, which contradicts κ > µ on Λ, since κ is also bounded by
T.

The following corollary shows, that we can mix spatial regularity and regularity in time of
the maximal unique solution (u, (τn)n, τ).

Corollary 2.3.13. Let the assumptions from Theorem 2.3.12 be fulfilled and let θ ∈ [0, 1
2 ).

Then, the maximal unique solution (u, (τn)n, τ) has the following additional regularity de-
pending on the respective setting.

[TT] u ∈W θ,p(0, τn; [E,E1]1−θ) almost surely for every n ∈ N.

[GM] u ∈ γ(W−θ,2(0, τn); [E,E1]1−θ) almost surely for every n ∈ N.

[LQ] u ∈ Λθ−α
(
Lq(U ;W θ,p(0, τn))

)
almost surely for every n ∈ N.

Proof. u is a strong solution ofdu(t) =
[
−A(u0)u(t) + F̃ (u)(t) + f(t)

]
dt+

[
B(u)(t) + b(t)

]
dW (t), t ∈ [0, τn],

u(0) = u0

(2.3.14)
in the sense of Definition 2.2.3 with

F̃ (u)(t) =
(
A(u0)−A(u(t))

)
u(t) + F (u)(t).

Moreover, we have u ∈ X1(0, τn)∩C(0, τn; TR) almost surely. In particular, u is also a mild
solution of (2.3.14), i.e.

u(t) = e−tA(u0)u0 +
(
e−(·)A(u0) ∗ (F̃ (u) + f)

)
0

(t) +
(
e−(·)A(u0) � (B(u) + b)

)
0

(t)

almost surely for all t ∈ [0, τn]. By [S5], we have B(u) + b ∈ X
1
2

H(0, τn) almost surely. Define

ηl := inf
{
t ∈ [0, τn] : ‖B(u) + b‖

X
1
2
H (0,t)

> l
}
∧ τn

and set Γl := {‖u0‖TR ≤ l}. Then, we have t 7→ 1ΓlB(u)(t∧ηl)+b(t∧ηl) ∈ Lr(Ω;X
1
2

H(0, τn))

and we can apply regularity results for the stochastic convolution in all the three settings.
At this point, it essential that we restrict us to Γl, since on Γl the operator A(u0) has a
bounded H∞-calculus that is uniform with respect to ω. Under the assumptions for [TT],

we get (
e−(·)A(u0) � 1Γl

(
B(u)(· ∧ ηl) + b(· ∧ ηl)

))
0
∈ Lr(Ω;W θ,p(0, τn; [E,E1]1−θ))

by [96], Theorem 3.5. The analogous result for [GM] namely(
e−(·)A(u0) � 1Γl

(
B(u)(· ∧ ηl) + b(· ∧ ηl)

))
0
∈ Lr(Ω; γ(W−θ,2(0, τn); [E,E1]1−θ))
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can be found in [98], Theorem 3.3. For [LQ] and(
e−(·)A(u0) � 1Γl

(
B(u)(· ∧ ηl) + b(· ∧ ηl)

))
0
∈ Lr

(
Ω; Λθ−α

(
Lq(U ;W θ,p(0, τn))

))
we use [8], Theorem 3.4.10. It remains to pass to the limit l→∞ to get the claimed pathwise
regularity for the stochastic convolution. Here, we make use of the fact that for almost every
ω ∈ Ω, there exists l = l(ω) such that ω ∈ Γl and ηl = τn.

For the deterministic convolution, we can argue pathwise. However, it is important to note
the estimates are not independent of ω ∈ Ω, since both the bound of the functional calculus
and the norm of A(u0(ω)) depend on ‖u0(ω)‖TR.

In [TT] complex interpolation together with Theorem 2.1.1 yields∥∥e−tA(u0)u0+
(
e−(·)A(u0) ∗ (F̃ (u) + f)

)
0

∥∥
W θ,p(0,τn;[E,E1]1−θ)

.
∥∥e−tA(u0)u0 +

(
e−(·)A(u0) ∗ (F̃ (u) + f)

)
0
‖W 1,p(0,τn;E)

+ ‖e−tA(u0)u0 +
(
e−(·)A(u0) ∗ (F̃ (u) + f)

)
0

∥∥
Lp(0,τn;E1)

.‖u0‖(E,E1)1−1/p,p
+ ‖F̃ (u) + f‖Lp(0,τn;E).

In [GM], Theorem 3.3 from [98] directly gives∥∥e−tA(u0)u0 +
(
e−(·)A(u0) ∗ (F̃ (u) + f)

)
0

∥∥
γ(W−θ,2(0,τn);[E,E1]1−θ)

. ‖u0‖[E,E1] 1
2

+ ‖F̃ (u) + f‖γ(0,τn;E)

and in [LQ], we use [8], Theorem 3.3.9, to get∥∥Λα−θe−tA(u0)u0+Λα−θ
(
e−(·)A(u0) ∗ (F̃ (u) + f)

)
0

∥∥
Lq(U ;W θ,p(0,τn))

. ‖u0‖
F
α− 1

p
Λ,q,p

+ ‖Λα−1(F̃ (u) + f)‖Lq(U ;Lp(0,τn)).

Hence, it remains to estimate the right hand sides. This can be done in a unified way. The
constant in the following estimate depends on supt∈[0,τn] ‖u(t)‖TR. We have

‖u0‖TR + ‖(A(u0)−A(u))u+ F (u) + f‖X(0,τn)

.1 + ‖u0‖TR + sup
t∈[0,τn]

‖u(t)− u0‖TR‖u‖X1(0,τn) + ‖u‖X1(0,τn) + ‖u‖C(0,τn;TR)

+ ‖f‖X(0,τn)

and the right hand side is almost surely finite, since u is a strong solution on [0, τn]. This
closes the proof.





CHAPTER 3

Examples for quasilinear parabolic stochastic evolution

equations

In the following chapter, we apply the theory we developed in Chapter 3 to quasilinear
stochastic partial differential equations. At first, we tread quasilinear parabolic equations
in both nondivergence form, i.e. with principal part

∑d
i,j=1 aij(·, u(t),∇u(t))∂i∂ju(t), and

in divergence form, i.e. with principal part div(a(u(t))∇u(t)). In these examples we benefit
from the extensive literature about elliptic operators, their regularity properties and their
functional calculi. Applying Theorem 2.3.12, we show existence and uniqueness of a maximal
unique solution (u, (τn)n, τ) in all the three settings. Using the blow-up characterisation from
Theorem 2.3.12, we can even prove global well-posedness of a divergence form equation on
a bounded domain with Dirichlet boundary conditions. The last example is inspired from
fluid dynamics. We treat non-Newtonian fluids in a stochastic setting and derive local
well-posedness.

3.1. A quasilinear parabolic equation in nondivergence

form on Rd

In this section, we discuss the most straightforward example, namelydu(t) =
[∑d

i,j=1 aij(·, u(t),∇u(t))∂i∂ju(t) + F (u)(t)
]

dt+
∑∞
j=1Bj(u)(t) dβj(t),

u(0) = u0

(3.1.1)
on Rd. For simplicity, we restrict us to noise perturbation with respect to an independent
sequence of Brownian motions (βn)n on a probability space (Ω,P) relative to a filtration
F = (Ft)t∈[0,T ] that satisfies the usual conditions.

First, we discuss this example in the settings [TT] and [LQ]. At the end of this section, we
treat it in [GM], since in this case, we will need different assumptions on the coefficients.

At first, we show existence and uniqueness of a maximal unique solution (u, (τn)n, τ) for

75
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given initial data u0 ∈ B
2−2/p
q,p (Rd) or u0 ∈ F

2−2/p
q,p (Rd). In the first case, u will be in

u ∈ Lp(0, τn;W 2,q(Rd)) almost surely and in the second case, we show that u is contained
in W 2,q(Rd;Lp(0, τn)) almost surely for every n ∈ N. For the treatment of this equation,
we essentially need that the operator u 7→

∑d
i,j=1 aij(·, v(t),∇v(t))∂i∂ju has the domain

W 2,q(Rd) for any fixed v and that it has a bounded H∞-calculus. At first, we specify our
assumptions.

[E1] The coefficient matrix a = (aij)i,j=1,...,d : Rd × C × Cd → Cd×d is uniformly elliptic,
i.e.

ess inf
x∈Rd,y∈C,z∈Cd

inf
|ξ|=1

Re ξTa(x, y, z)ξ = δ0 > 0.

Moreover, a is β-Hölder continuous in the first and locally Lipschitz continuous in the
second and the third component, i.e. there exists a constant C > 0 and for every
n ∈ N, there exist constants L(n) > 0, L̃(n) > 0 depending on n such that

|a(x, y, ỹ)− a(x̃, z, z̃)| ≤ C|x− x̃|β + L(n)|y − z|+ L̃(n)|ỹ − z̃|

for all x, x̃ ∈ Rd and all |y|, |z|, |ỹ|, |z̃| < n. Further, we assume a(·, 0, 0) ∈ L∞(Rd).

[E2] We choose p, q ∈ (2,∞) such that 1− 2/p > d/q and r ∈ (1,∞).

[E3] We either choose u0 : Ω → B
2−2/p
q,p (Rd) or u0 : Ω → F

2−2/p
q,p (Rd). In both cases, we

require u0 to be strongly F0-measurable.

[E4] The nonlinearities F and (Bn)n satisfy [Q6*] and [Q7*] together with [Q9*]. If u0 ∈
B

2−2/p
q,p (Rd), we take the assumptions in the setting [TT], whereas we choose [LQ] if

u0 ∈ F 2−2/p
q,p (Rd). In any case, the underlying Hilbert space H is given by l2(N).

Note that the nonlinearities particularly fulfil [E4] if the are of lower order. This is a
immediate consequence of Proposition 2.3.9. We want to apply Theorem 2.3.12 with the
family of operators A(z) = −

∑d
i,j=1 aij(·, z,∇z)∂i∂j in the settings [TT] and [LQ]. We only

have to check [TTQ2*]− [TTQ4*] and [LQQ2*]− [LQQ4*].

We first show that the operators A(z) have a holomorphic functional calculus and that they
have a constant domain W 2,q(Rd). For elliptic operators in nondivergence form, these re-
sults are well-known.

Lemma 3.1.1. Let p, q ∈ (1,∞), M > 0, 0 ≤ θ0 ≤ π/2, δ > 0, β > 0 and α > 0. Moreover,
let

Bf(x) = −
d∑

i,j=1

bij(x)∂i∂jf(x)

with uniformly elliptic coefficient matrix b = (bij)i,j=1,...,d, i.e.

ess inf
x∈Rd

inf
|ξ|=1

Re ξT b(x)ξ = δ > 0

and with ξT b(x)ξ ∈ Σθ0 for all x ∈ Rd and ξd ∈ Cd. Moreover, b additionally satisfies

sup
x∈Rd

|bij(x)|+ sup
x,y∈Rd

|bij(x)− bij(y)|
|x− y|β + |x− y|α

≤M
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for all i, j = 1, . . . , d. Then, B is a closed operator on Lq(Rd) with domain W 2,q(Rd).
Moreover, given θ ∈ (θ0, π/2), there exist µ > 0 and K > 0 only depending on p, q,M, θ0, δ, β

and α such that

K−1‖(µ+B)x‖Lq(Rd;lp(N)) ≤ ‖x‖W 2,q(Rd;lp(N)) ≤ K‖(µ+B)x‖Lq(Rd;lp(N)) (3.1.2)

for all x ∈ Lq(Rd; lp(N)) and such that

‖f(µ+B)‖B(Lq(Rd)) ≤ K‖f‖H∞(Σθ)

for all f ∈ H∞(Σθ).

Proof. In [6], Theorem 9.4 the authors show that elliptic operators in nondivergence form
have a bounded functional calculus if the coefficients are Hölder continuous. In the mean-
time, there are more general versions (see e.g. [33]). However, we chose this result, since
the authors discussed the precise dependencies of the constants in detail. For the estimate
(3.1.2) we note that

‖(µ+B)x‖Lq(Rd;lp(N)) ≤ C‖x‖W 2,q(Rd;lp(N))

for some constant C > 0 is immediate by Lemma 2.3.4 and by the boundedness of (bij)ij .

The reverse estimate is more tricky. From [39], Remark 5.6, we know

‖x‖W 2,q(Rd;ν) ≤ C̃‖(µ+B)x‖Lq(Rd;ν)

for all Muckenhoubt weights ν ∈ Aq and all x ∈ W 2,q(Rd; ν). The authors are also precise
with the constant C̃ > 0 depending on q, δ,M, θ and on ν in an Aq-consistent way. As
a consequence, we get the vector valued inequality (3.1.2) by extrapolation. This can be
found in [23], Corollary 3.12. For the precise estimate of the constant see also [38], Theorem
2.3.

In particular, −(µ + B) is the generator of a bounded analytic semigroup on Lq(Rd) of
angle π/2 − θ0 which satisfies ‖e−(µ+B)z‖B(Lq(Rd)) ≤ Mη for some η ∈ (0, π/2 − θ0), some
Mθ > 0 and for all z ∈ Ση. It is quite remarkable that in this special situation, sectoriality
of µ+B implies that e−t(µ+B) satisfies the generalised Gaussian estimates we need for the
Rp-bounded holomorphic functional calculus of B.

Lemma 3.1.2. Let 1 < q0 < q1 < ∞ and η ∈ (0, π/2 − θ0). Then, there exist C > 0 and
b > 0 only depending on q0, q1,M, η, θ0, δ, β and α such that the operator B introduced in
Lemma 3.1.1 satisfies

‖1
B(x,|z|−

1
2 )
e−zB1

B(y,|z|−
1
2 )
‖B(Lq0 (Rd),Lq1 (Rd)) ≤ Cz

− d2 ( 1
q0
− 1
q1

)e−µRe(z)e−
b|x−y|2
Re(z)

for all z ∈ Ση. Here, µ > 0 is the same as in Lemma 3.1.1.
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Proof. This statement is due to Kunstmann in [66], Theorem 6.1. The proof is in the same
article in Corollary 3.5. and consists of an interpolation between the estimates in Theorem
3.1 and an application of Lemma 3.4. In Theorem 3.1, the precise dependency of the involved
constants on q0, q1,M, η, θ0, δ and α is mentioned. Interpolation preserves the dependency
of the constants and closely inspecting the proof of Lemma 3.4, we see that C and b only
depend on the parameters from above.

Now, we are in the position to check [TTQ2*], [TTQ3*] and [LQQ2*], [LQQ3*]. For the set-
ting [LQ], we choose Λ := (I −∆). Of course, (I −∆) is an Rp-sectorial operator on Lq(Rd)
with 0 ∈ ρ(I−∆) that has anRp-bounded H∞-calculus. This can be found in [69], section 3.

Proposition 3.1.3. For all n ∈ N, there exist C(n) > 0, η(n) ∈ (0, π/2) and µ(n) > 0 such
that the following statements hold true.

a) For all u ∈ B
2−2/p
q,p (Rd) with ‖u‖

B
2−2/p
q,p (Rd)

≤ n the operators µ(n) + A(u) have the
domain W 2,q(Rd) with

C(n)−1‖(µ(n) +A(u))x‖Lq(Rd) ≤ ‖x‖W 2,q(Rd) ≤ C(n)‖(µ(n) +A(u))x‖Lq(Rd)

for all x ∈W 2,q(Rd) and they have a bounded H∞(Ση(n))-calculus with

‖f(µ(n) +A(u))‖B(Lq(Rd)) ≤ C(n)‖f‖H∞(Ση(n))

for all f ∈ H∞(Ση(n)).

b) For all u ∈ F
2−2/p
q,p (Rd) with ‖u‖

F
2−2/p
q,p (Rd)

≤ n the operators µ(n) + A(u) have the
domain W 2,q(Rd) with the same estimate as above. Moreover, (I−∆)(µ(n)+A(u))−1

and (µ(n) + A(u))(I −∆)−1 are Rp-bounded with bound C(n). Further, they have an
Rp-bounded H∞(Ση(n))-calculus with

Rp
({
f(µ(n) +A(u)) : ‖f‖H∞(Ση(n)) ≤ 1

}
⊂ B(Lq(Rd)

)
≤ C(n).

In particular, the operators A(u) satisfy [TTQ2*], [TTQ3*] and [LQQ2*], [LQQ3*] respec-
tively.

Proof. By choice of p and q, functions in B2−2/p
q,p (Rd) and in F 2−2/p

q,p (Rd) and their first order
derivatives are α- Hölder continuous for some α > 0. Hence, we can apply Lemma 3.1.1
and Lemma 3.1.2 to A(u) and get the existence of θu with 0 ≤ θu ≤ π/2 and of constants
Cu > 0, C̃u, bu > 0, µu > 0 such that

‖f(µu +A(u))‖B(Lq(Rd)) ≤ Cu‖f‖H∞(Ση) (3.1.3)

for some η > 0 with θu ≤ π/2− η and for all f ∈ H∞(Ση) and

‖1
B(x,|z|−

1
2 )
e−zA(u)1

B(y,|z|−
1
2 )
‖B(Lq0 (Rd),Lq1 (Rd)) ≤ C̃uz

− d2 ( 1
q0
− 1
q1

)e−µu Re(z)e−
b|x−y|2
Re(z)

(3.1.4)
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for all z ∈ Ση. Again, by Lemma 3.1.1, we know that µu +A(u) is invertible with

C−1
u ‖(µu +A(u))‖Lq(Rd) ≤ ‖x‖W 2,q(Rd) ≤ Cu‖(µu +A(u))‖Lq(Rd).

We now show that these constants do not explicitly depend on u, but on ‖u‖Cα(Rd) and
‖∇u‖Cα(Rd) for some α > 0 and on the constants in [E1]. To do this, we have to estimate
the quantities M, δ, α and θ0 from Lemma 3.1.1 in this situation. The coefficient matrix
a(·, u,∇u) is uniformly elliptic with ellipticity constant δ0, hence we can use δ := δ0. More-
over, by the Hölder continuity of a, u and ∇u, we get

sup
x∈Rd
|a(x, u(x),∇u(x))|

≤ sup
x∈Rd

|a(x, u(x),∇u(x))− a(x, 0, 0)|+ ‖a(·, 0, 0)‖L∞(Rd)

≤ L
(
‖u‖L∞(Rd)

)
‖u‖L∞(Rd) + L̃

(
‖∇u‖L∞(Rd)

)
‖∇u‖L∞(Rd) + ‖a(·, 0, 0)‖L∞(Rd)

and

|a(x, u(x),∇u(x))− a(y, u(y),∇u(y))|

≤ C|x− y|β + L
(
‖u‖L∞(Rd)

)
|u(x)− u(y)|+ L̃

(
‖∇u‖L∞(Rd)

)
|∇u(x)−∇u(y)|

≤ C|x− y|β + L
(
‖u‖L∞(Rd)

)
‖u‖Cα(Rd)|x− y|α + L̃

(
‖∇u‖L∞(Rd)

)
‖∇u‖Cα(Rd)|x− y|α

.‖u‖
Cα(Rd)

,‖∇u‖
Cα(Rd)

|x− y|β + |x− y|α.

Hence, we proved that M only depends on ‖u‖Cα(Rd) and ‖∇u‖Cα(Rd). It remains to inves-
tigate the dependency of the angle θ0. Given x ∈ Rd and ξ ∈ Cd, we estimate

Im ξTa(x, u(x),∇u(x))ξ ≤ |ξTa(x, u(x),∇u(x))ξ| ≤ ‖a(·, u,∇u)‖L∞(Rd)|ξ|2

≤
‖a(·, u,∇u)‖L∞(Rd)

δ0
Re ξTa(x, u(x),∇u(x))ξ

which yields

arg
(
ξTa(x, u(x),∇u(x))ξ

)
≤ arctan

(‖a(·, u,∇u)‖L∞(Rd)

δ0

)
for all x ∈ Rd and all ξ ∈ Cd. Consequently, θ0 only depends on ‖u‖L∞(Rd) and ‖∇u‖L∞(Rd).

All in all, we showed that the constants in (3.1.3) and (3.1.4) only depend on ‖u‖Cα(Rd) and
‖∇u‖Cα(Rd). However, using Sobolev embeddings, we get both ‖u‖Cα(Rd) + ‖∇u‖Cα(Rd) ≤
‖u‖

B
2−2/p
q,p (Rd)

and ‖u‖Cα(Rd) +‖∇u‖Cα(Rd) ≤ ‖u‖F 2−2/p
q,p (Rd)

. Hence, Cu, C̃u, bu, θu, µu do not
depend precisely on u, but only on ‖u‖

B
2−2/p
q,p (Rd)

or ‖u‖
F

2−2/p
q,p (Rd)

. This proves part a). The
Rp-bounded functional calculus in b) is then an immediate consequence of Theorem 1.4.5.

It remains to show that (I−∆)(µ(n)+A(u))−1 and (µ(n)+A(u))(I−∆)−1 are Rp-bounded
with bounds depending on n for all ‖u‖TR ≤ n. This follows from (3.1.2) and the discussion
about the dependence of the constants from above.

It remains to show that our quasilinearity is locally Lipschitz with respect to the trace spaces
B

2−2/p
q,p (Rd) and F 2−2/p

q,p (Rd).
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Lemma 3.1.4. For all n ∈ N, there exists a constant CQ(n) > 0 such that

a) for all y, z ∈ B2−2/p
q,p (Rd) with norm at most n and all v ∈W 2,q(Rd), we have

‖A(z)v −A(y)v‖Lq(Rd) ≤ CQ(n)‖z − y‖
B

2−2/p
q,p (Rd)

‖v‖W 2,q(Rd).

b) For all y, z ∈ C(a, b;F
2−2/p
q,p (Rd)) with norm at most n, we have

Rp
({
A(z(t))−A(y(t))(I −∆)−1 : t ∈[a, b]

}
⊂ B(Lq(Rd), Lq(Rd))

)
≤ CQ(n) sup

t∈[a,b]

‖z(t)− y(t)‖
F

2−2/p
q,p (Rd)

.

In particular, [TTQ4] and [LPQ4] are fulfilled.

Proof. We just prove b), part a) follows the same lines. Let y, z ∈ C(a, b;F
2−2/p
q,p (Rd)) with

norm at most n, let t1, · · · , tN ∈ [a, b] and v1, . . . , vN ∈W 2,q(Rd). We estimate∥∥∥( N∑
k=1

|(A(y(tk))−A(z(tk)))(I −∆)−1v|p
)1/p∥∥∥

Lq(Rd)

≤
d∑

i,j=1

∥∥∥( N∑
k=1

|(aij(·, y(tk),∇y(tk))− aij(·, z(tk),∇z(tk)))∂i∂j(I −∆)−1v|p
)1/p∥∥∥

Lq(Rd)

≤
d∑

i,j=1

sup
k=1,...,N

‖aij(·, y(tk),∇y(tk))− aij(·, z(tk),∇z(tk))‖L∞(Rd)

∥∥∥( N∑
k=1

|∂i∂j(I −∆)−1vk|p
)1/p∥∥∥

Lq(Rd)

≤
d∑

i,j=1

(
L(n)‖y − z‖L∞([a,b]×Rd) + L̃(n)‖∇y −∇z‖L∞([a,b]×Rd)

)
∥∥∥( N∑

k=1

|∂i∂j(I −∆)−1vk|p
)1/p∥∥∥

Lq(Rd)

. (L(n) + L̃(n)) sup
t∈[a,b]

‖y(t)− z(t)‖
F

2−2/p
q,p (Rd)

∥∥∥( N∑
k=1

|∂i∂j(I −∆)−1vk|p
)1/p∥∥∥

Lq(Rd)

almost surely. From [49], Theorem 5.6.12 we know that ∂i∂j(I−∆)−1 is a bounded operator
on Lq(Rd; lp). This finally proves the claimed result.

Now, we are in the position to apply our abstract result to equation (3.1.1).

Theorem 3.1.5. If [E1]−[E4] are fulfilled, there is a maximal unique local solution (u, (τn)n, τ)

of equation (3.1.1). If u0 : Ω→ B
2−2/p
q,p (Rd), we have

u ∈ Lp(0, τn;W 2,q(Rd)) ∩ C(0, τn;B2−2/p
q,p (Rd)) ∩W θ,p(0, τn;W 2−2θ,q(Rd))

almost surely for every θ ∈ (0, 1
2 ) and for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 2,q(Rd)) <∞, u : [0, τ)→ B2−2/p

q,p (Rd) is uniformly continuous
}

= 0.
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If on the other hand u0 : Ω→ F
2−2/p
q,p (Rd), we have

u ∈W 2,q(Rd;Lp(0, τn)) ∩ C(0, τn;F 2−2/p
q,p (Rd)) ∩W 2−2θ(Rd;W θ,p(0, τn))

almost surely for every θ ∈ (0, 1
2 ) and for every n ∈ N. Furthermore, τ satisfies

P
{
τ < T, ‖u‖W 2,q(Rd;Lp(0,τ)) <∞, u : [0, τ)→ F 2−2/p

q,p (Rd) is uniformly continuous
}

= 0.

Proof. We apply Theorem 2.3.12 and Corollary 2.3.13 in [TT] with the spaces E = Lq(Rd),
E1 = W 2,q(Rd) and with (E,E1)1−1/p,p = B

2−2/p
q,p (Rd). The assumption [TTQ1] is then sat-

isfied straight away, whereas [TTQ2*],[TTQ3*] are checked in Proposition 3.1.3 and [TTQ4*]

follows from Lemma 3.1.4.

In the setting [LQ], we apply the same results with the choice Λ = (I−∆) and α = 0. Here,
[LQQ1] is also satisfied straight away and [LQQ2*], [LQQ3*] are checked in Proposition
3.1.3. The assumption [TTQ4*] follows from Lemma 3.1.4. This yields a solution u with

(I −∆)u ∈ Lq(Rd;Lp(0, τn))

almost surely for every n ∈ N. Due to [49], Theorem 5.6.12 we know{
u : (I −∆)u ∈ Lq(Rd;Lp(0, τn))

}
= W 2,q(Rd;Lp(0, τn)),

which closes the proof.

In particular, this theorem can be used to show that the solution (u, (τn)n, τ) is Hölder con-
tinuous in time. A Sobolev embedding yields u ∈ Cβ(0, τn;W 2−2θ(Rd)) if u0 ∈ B2−2/p

q,p (Rd)
and u ∈W 2−2θ(Rd;Cβ(0, τn)) if u0 ∈ F 2−2/p

q,p (Rd) with β = θ − 1
p for all θ ∈ ( 1

p ,
1
2 ).

Comparing this result with the known semilinear theory by van Neerven, Veraar and Weis
in [96] and by Antoni in [8], we must admit that we cannot deal with noise of the form
B(u)(t) = σ · ∇u with σ ∈ l2(N)d with a small enough norm. The reason for this is that the
top-order Lipschitz constant in [Q7*] has to decrease to zero, since we have to fulfil [Q9*]

and in general we cannot preclude that CMRD(n) and CMRS(n) increase with n and tend to
infinity. In particular, an estimate of the form

‖σ · ∇u− σ · ∇v‖W 2,q(Rd;l2(N)) ≤ ‖σ‖l2(N)‖u− v‖W 2,q(Rd)

is not sufficient to fulfil [Q7*], no matter how small ‖σ‖l2(N)d is.

We want to point out that the setting [GM] is also applicable to this equation if we slightly
modify the quasilinear part. We choose E=Lq(Rd) and E1 = W 2,q(Rd). TR is then given
by W 1,q(Rd). Moreover, we have

γ(a, b;W k,q(Rd)) = W k,q(Rd;L2(a, b)).

This setting has the advantage that we can choose the initial data in a larger space. Here,
one possibility is to allow the coefficient matrix (aij)ij to depend on u, but not on ∇u and
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to choose q > d. In this case, we can show the local Lipschitz estimate

R
({
A(z(t))−A(y(t)) :t ∈ [a, b]

}
⊂ B(W 2,q(Rd), Lq(Rd))

)
≤ C

(
‖z‖L∞([a,b]×Rd) + ‖y‖L∞([a,b]×Rd)

)
sup
t∈[a,b]

‖z(t)− y(t)‖W 1,q(Rd),

which implies [GMQ4*], since W 1,q(Rd) ↪→ L∞(Rd) for q > d. The assumptions [GMQ3*]

and [GMQ4*] can be checked in the same ways as in the other settings. Here, we also make
use of the embedding W 1,q(Rd) ↪→ Cα(Rd) for some α > 0.

Another possibility is to take the quasilinearity of the form aij(u) = ai,j(‖u‖W 1,q(Rd)). Here,
we can exploit all the advantages of the setting [GM], since we are able to solve our quasi-
linear equation for all 1 < q <∞ and not only for q > 2 as in the other settings.

Theorem 3.1.6. Let the following assumptions be fulfilled.

a) The coefficient matrix a = (aij)i,j=1,...,d : R≥0 → Cd×d is uniformly elliptic, i.e.

ess inf
y≥0

inf
|ξ|=1

Re ξTa(y)ξ = δ0 > 0

and locally Lipschitz continuous, i.e. for every n ∈ N, there exists a constant L(n) > 0

such that

|ai,j(y)− ai,j(z)| ≤ L(n)|y − z|

for all |y|, |z| < n and all i, j = 1, . . . , d.

b) We require u0 : Ω→W 1,q(Rd) to be strongly F0-measurable.

c) The nonlinearities F and (Bn)n satisfy [Q6*] and [Q7*] together with [Q9*].

Then, there exists a maximal unique solution
(
u, (τn)n, τ

)
of (3.1.1) with

u ∈W 2,q(Rd;L2(0, τn)) ∩ C(0, τn;W 1,q(Rd))

almost surely for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖W 2,q(Rd;L2(0,τ)) <∞, u : [0, τ)→W 1,q(Rd) is uniformly continuous

}
= 0.

Proof. In this setting, the proof is simple. Since the coefficients do not depend explicitly on
x, we can apply the theory about elliptic operators with constant coefficients to

A(z)u =
∑
i,j

ai,j(‖z‖W 1,q(Rd))∂i∂ju

to get [GMQ2*] and [GMQ3*]. Amongst others this can be found in [87], Theorem 6.1.8. All
the occurring constants in this result depend on the ellipticity and on the upper bound of the
coefficients. In our situation, this means that the constants depend on δ0 and L(‖z‖W 1,q(Rd)).
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It remains to show the Lipschitz estimate required in [GMQ4*]. Let y, z ∈ C(a, b;W 1,q(Rd))
with norm at most n, let t1, · · · , tN ∈ [a, b] and v1, . . . , vN ∈W 2,q(Rd). We estimate∥∥∥( N∑

k=1

|(A(y(tk))−A(z(tk)))v|2
)1/2∥∥∥

Lq(Rd)

≤
d∑

i,j=1

∥∥∥( N∑
k=1

|(aij(‖y(tk)‖W 1,q(Rd))− aij(‖z(tk)‖W 1,q(Rd)))∂i∂jv|2
)1/2∥∥∥

Lq(Rd)

≤
d∑

i,j=1

sup
i,j=1...,d

sup
k=1,...,N

∣∣aij(‖y(tk)‖W 1,q(Rd))− aij(‖y(tk)‖W 1,q(Rd))
∣∣‖v‖W 2,q(Rd;l2(N))

≤
d∑

i,j=1

sup
i,j=1...,d

sup
k=1,...,N

L(n)
∣∣‖y(tk)‖W 1,q(Rd) − ‖z(tk)‖W 1,q(Rd)

∣∣‖v‖W 2,q(Rd;l2(N))

. L(n) sup
t∈[a,b]

‖y(t)− z(t)‖W 1,q(Rd)‖v‖W 2,q(Rd;l2(N)).

This shows [GMQ4*] and hence, Theorem 2.3.12 is applicable.

3.2. Weak solution of a quasilinear parabolic stochastic

equation in divergence form

In this section, we consider a convection-diffusion equation

(DIV)

du(t) =
[

div(a(u(t))∇u(t)) + F (u)(t)
]
dt+B(u)(t) dW (t)(t), t ∈ [0, T ]

u(0) = u0,

either on D = Rd or on a bounded domain D ⊂ Rd, d ≥ 2 with Dirichlet, Neumann or
mixed boundary conditions. We aim to show existence and uniqueness of weak solutions
in the sense of partial differential equations, which means that we treat this equation in
W−1,q(D). On Rd, both [TT] and [LQ] are applicable, whereas in the bounded domain case,
we just use [TT]. The reason for this lack of generality is that we make use of the great
progress within the last years concerning mixed boundary problems in W−1,q(D) for q > 2

and these tools are not deeply enough investigated in a vector valued setting, which makes
it difficult to check the Rp- boundedness assumptions needed in [LQ].

At the end of this section, we restrict ourselves to Dirichlet boundary condition and show
that under a global Lipschitz assumption on the diffusion matrix a(u), the solution does not
explode and exists on the whole interval [0, T ]. This generalises the work of Hofmanova and
Zhang ([46]) on the torus to arbitrary bounded C1-domains. Moreover, our method does
not need initial data in the space C1+ε(D), but only in (W−1,q(D),W 1,q

0 (D))1−1/p,p, which
seems to be natural if one expects solutions that are pathwise in Lp(0, T ;W 1,q

0 (D)).

3.2.1. Local weak solution on Rd

We aim to show existence and uniqueness of a weak solution u in the sense of partial
differential equations. We will show u ∈ Lp(0, τn;W 1,q(Rd))∩C(0, τn;B

1−1/p
q,p (Rd)) for u0 ∈



84 CHAPTER 3. Examples for quasilinear parabolic stochastic evolution equations

B
1−1/p
q,p (Rd) which corresponds to the setting [TT]. If on the other hand u0 ∈ F 1−1/p

q,p (Rd),
our solution u will be almost surely in W 1,q(Rd;Lp(0, τn))∩C(0, τn;F

1−1/p
q,p (Rd)). This will

be proved by using the setting [LQ]. As before, (τn)n is an increasing sequence of stopping
times that converges to a maximal stopping time τ almost surely. For simplicity we restrict
ourselves to noise with respect to an independent sequence of Brownian motions (βn)n on a
probability space (Ω,P) relative to a filtration F = (Ft)t∈[0,T ]. We considerdu(t) =

[
div(a(u(t))∇u(t)) + F (u)(t)

]
dt+

∑∞
j=1

[
Bj(u)(t)

]
βj(t), t ∈ [0, T ],

u(0) = u0

(3.2.1)

and make the following assumptions.

[L1] a : C→ Rd×d is uniformly positive definite, i.e.

ess inf
y∈C

inf
|ξ|=1

ξTa(y)ξ = δ0 > 0,

and a is locally Lipschitz continuous, i.e. for every α > 0, there exists a constant
L(α) > 0 such that

|a(y)− a(z)| ≤ L(α)|y − z|

for all |y|, |z| < α.

[L2] We choose p, q ∈ (2,∞) such that 1− 2/p > d/q.

[L3] We either choose u0 : Ω → B
1−2/p
q,p (Rd) or u0 : Ω → F

1−2/p
q,p (Rd). In both cases, we

require u0 to be strongly F0-measurable.

[L4] The nonlinearities F and (Bn)n satisfy [Q6*] and [Q7*] together with [Q9*]. If u0 ∈
B

1−2/p
q,p (Rd), we take the assumptions in the setting [TT], whereas we choose [LQ] if

u0 ∈ F 1−2/p
q,p (Rd). In any case, the underlying Hilbert space H is given by l2(N).

We want to apply Theorem 2.3.12 with A(z)u = −div(a(z)∇u) in the settings [TT] and
[LQ]. We have to check [TTQ2*]− [TTQ4*] and [LQQ2*]− [LQQ4*]. Our starting point are
Gaussian estimates for the kernel of the semigroup generated by div(b∇u).

Lemma 3.2.1. Let b ∈ Cs(Rd)d×d be a real-valued and uniformly positive definite matrix
with 〈b(z)ξ, ξ〉Rd ≥ δ|ξ|2 for every ξ ∈ Rd and every z ∈ C. We define Lf := −div(b∇f).
Then, the semigroup e−tL is for every t > 0 an integral operator with kernel kt(x, y) that
satisfies the Gaussian estimate |kt(x, y)| ≤ Ct− d2 e−

c|x−y|2
t and

|t 1
2∇kt(x, y)| ≤ C̃t− d2

(
1 + ‖b‖

1
s

Cs(Rd)d×d
t

1
2

)M
e−

c|x−y|2
t

for every x, y ∈ Rd and all t > 0. Here, the constants c, C̃,M > 0 only depend on δ, d, s and
‖b‖Cs(Rd)d×d , whereas the constant C > 0 only depends on d, δ and ‖b‖L∞(Rd)d×d .

Proof. The gradient estimate and a slightly weaker version of the Gaussian estimate for
kt(x, y) can be found in [11], Theorem 4.15. The claimed estimate for kt(x, y) can be found
in [25], Theorem 6.1. Both of the theorems above are precise with the constants.
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As a consequence, we get that L has an Rp-bounded functional calculus.

Proposition 3.2.2. The operator L from the previous Lemma has for every p, q ∈ (1,∞) an
Rp-bounded functional calculus. In particular, there exists a constant C > 0 only depending
on δ, d and ‖b‖L∞(Rd)d×d such that

Rp
({
f(L) : ‖f‖H∞(Ση(n)) ≤ 1

}
⊂ B(Lq(Rd))

)
≤ C.

Proof. By [69], Lemma 2.2 the Gaussian estimate on kt implies the L1-L∞-off-diagonal
estimates for semigroup e−λL that are required in Theorem 1.4.5. Hence, L has an Rp-
bounded functional calculus whose bound only depends on the constants in the estimate of
kt from Lemma 3.2.1.

Again, using the Gaussian estimates from Lemma 3.2.1, one can derive a crucial property
of L, namely that the Riesz transform ∇L− 1

2 associated to L is Rp-bounded.

Lemma 3.2.3. Let L be as in the previous results. Then, ∇L−1/2 is an Rp-bounded operator
on Lq(Rd) for every q, p ∈ (1,∞) and Rp(∇L−1/2) only depends on q, p, d, ‖b‖Cs(Rd)d×d and
δ. In particular, the operators (I −∆)−

1
2 (I + L)

1
2 , (I −∆)

1
2 (I + L)−

1
2 , (I + L)−

1
2 (I −∆)

1
2

and (I + L)
1
2 (I −∆)−

1
2 are Rp-bounded with bounds depending on the same constants.

Proof. The boundedness of ∇L−1/2 on Lq(Rd) is shown in [11], Theorem 5.1. The precise
dependence of the constants is mentioned in Corollary 5.9 in the same article. The bound-
edness of of ∇L−1/2 on Lq(Rd; lp(N)) for all p, q ∈ (1,∞) is due to [10], chapter 8. The Riesz
transform is discussed therein in the remarks below Proposition 8.1. To get the result we
need, you shall choose the weight µ = 1.

Since lp(N) is UMD, we can apply [49], Proposition 5.6.3 and Theorem 5.6.11 and the vector
valued boundedness of the Riesz transform to get

‖(I −∆)
1
2 (I + L)−

1
2 f‖Lq(Rd;lp(N))

.p,q ‖(I + L)−
1
2 f‖W 1,q(Rd;lp(N))

= ‖(I + L)−
1
2 f‖Lq(Rd;lp(N)) + ‖∇(I + L)−

1
2 f‖Lq(Rd;lp(N))

= ‖(I + L)−
1
2 f‖Lq(Rd;lp(N)) + ‖∇L− 1

2L
1
2 (I + L)−

1
2 f‖Lq(Rd;lp(N))

≤ ‖(I + L)−
1
2 f‖Lq(Rd;lp(N)) +Rp

(
∇L− 1

2

)
‖L 1

2 (I + L)−
1
2 f‖Lq(Rd;lp(N))

.δ,‖b‖
Cs(Rd)

,d,p,q ‖f‖Lq(Rd;lp(N))

for every f ∈ Lq(Rd; lp(N)). Note that in the last step, we used the Rp-boundedness of the
functional calculus of L from Proposition 3.2.2. As the adjoint of L is also a divergence
form operator with uniformly positive definite and Hölder continuous coefficients, the same
argument shows that (I−∆)

1
2 (I+L∗)−

1
2 is bounded on Lq(Rd; lp(N)) for every p, q ∈ (1,∞).

By duality, this implies that (I + L)−
1
2 (I − ∆)

1
2 is bounded on Lq(Rd; lp(N)) for every
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p, q ∈ (1,∞). It remains to estimate ‖(I + L)
1
2 (I −∆)−

1
2 ‖B(Lq(Rd;lp(N))). We calculate〈

(I + L)
1
2 (I −∆)−

1
2 f, g

〉
Lq(Rd;lp)

=
〈
(I + L)(I −∆)−

1
2 f, (I + L∗)−

1
2 g
〉

(Lq(Rd;lp),Lq′ (Rd;lp′ ))

=
〈
(I −∆)−

1
2 f + L(I −∆)−

1
2 f, (I + L∗)−

1
2 g
〉

(Lq(Rd;lp),Lq′ (Rd;lp′ ))

=
〈
(I −∆)−

1
2 f, (I + L∗)−

1
2 g
〉

(Lq(Rd;lp),Lq′ (Rd;lp′ ))

+
〈
b∇(I −∆)−

1
2 f,∇(I + L∗)−

1
2 g
〉

(Lq(Rd;lp),Lq′ (Rd;lp′ ))
,

which yields the estimate

‖(I + L)
1
2 (I −∆)−

1
2 ‖B(Lq(Rd;lp))

≤‖(I −∆)−
1
2 ‖B(Lq(Rd;lp))‖(I + L∗)−

1
2 ‖B(Lq′ (Rd;lp′ ))

+ ‖b‖L∞(Rd)‖∇(I −∆)−
1
2 ‖B(Lq(Rd;lp))‖∇(I + L∗)−

1
2 ‖B(Lq′ (Rd;lp′ )).

The boundedness of ∇(I − ∆)−
1
2 is due to [49], Theorem 5.6.3 and the boundedness of

∇(I+L∗)−
1
2 was shown above. The boundedness of (I−∆)−

1
2 and (I+L∗)−

1
2 finally follows

from the Rp-boundedness of the functional calculus (see Lemma 3.2.2). The remaining
operator (I −∆)−

1
2 (I + L)

1
2 can be handled with duality in a similar way as above. This

proves our assertion.

Now, we are in the position to check [TTQ2*], [TTQ3*] and [LQQ2*], [LQQ3*]. For the set-
ting [LQ], we choose Λ := (I−∆). Of course, (I−∆) is an Rp-sectorial operator on Lq(Rd)
with 0 ∈ ρ(I−∆) that has anRp-bounded H∞-calculus. This can be found in [69], section 3.

Proposition 3.2.4. For all n ∈ N, there exist constants C(n) > 0 and η(n) ∈ (0, π/2) such
that the following statements hold true.

a) For all u ∈ B1−2/p
q,p (Rd) with ‖u‖

B
1−2/p
q,p (Rd)

≤ n the operators I+A(u) have the domain
W 1,q(Rd) with

C(n)−1‖(I +A(u))x‖W−1,q(Rd) ≤ ‖x‖W 1,q(Rd) ≤ C(n)‖(I +A(u))x‖W−1,q(Rd)

for all x ∈W 1,q(Rd) and they have a bounded H∞(Ση(n))-calculus with

‖f(I +A(u))‖B(W−1,q(Rd)) ≤ C(n)‖f‖H∞(Ση(n))

for all f ∈ H∞(Ση(n)).

b) For all u ∈ F 1−2/p
q,p (Rd) with ‖u‖

F
1−2/p
q,p (Rd)

≤ n the operators (I −∆)
1
2 (I + A(u))−

1
2 ,

(I−∆)−
1
2 (I+A(u))

1
2 , (I+A(u))

1
2 (I−∆)−

1
2 and (I+A(u))−

1
2 (I−∆)

1
2 are Rp-bounded

with bound smaller than C(n). Further, they have an Rp-bounded H∞(Ση(n))-calculus
with

Rp
({
f(I +A(u)) : ‖f‖H∞(Ση(n)) ≤ 1

}
⊂ B(Lq(Rd))

)
≤ C(n).

In particular, the operators A(u) satisfy [TTQ2*],TTQ3*] and [LQQ2*], [LQQ3*], respec-
tively.
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Proof. By choice of p and q, functions in B
1−2/p
q,p (Rd) and in F

1−2/p
q,p (Rd) are α- Hölder

continuous for some α > 0. Hence, we can apply Lemma 3.2.3 and get theRp boundedness of
(I−∆)

1
2 (I+A(u))−

1
2 , (I−∆)−

1
2 (I+A(u))

1
2 , (I+A(u))

1
2 (I−∆)−

1
2 and (I+A(u))−

1
2 (I−∆)

1
2

with bound Cu > 0. In particular, (I + A(u))−1 : W−1,q(Rd) → W 1,q(Rd) is bounded with
bound smaller than C̃u := C2

u‖(I − ∆)−
1
2 ‖B(Lq(Rd),W 1,q(Rd))‖(I − ∆)

1
2 ‖B(W−1,q(Rd),Lq(Rd)).

This proves

(1 + ‖a(u)‖L∞(Rd)d×d)−1‖(I +A(u))x‖W−1,q(Rd) ≤ ‖x‖W 1,q(Rd) ≤ C̃u‖(I +A(u))x‖W−1,q(Rd).

Moreover, by Proposition 3.2.2, there exist cu > 0, ηu ∈ (0, π/2) such that A(u) and espe-
cially (I +A(u)) have an Rp-bounded functional calculus of angle ηu with bound cu.

Now, we show that these constants do not explicitly depend on u, but on ‖u‖Cα(Rd) and
on the constants in [L1]. To do this, we have to estimate the quantities δ and ‖a(u)‖Cα(Rd)

from Lemma 3.2.1 in our situation. The coefficient matrix a(u) is uniformly elliptic with
ellipticity constant δ0, hence we can use δ := δ0. Moreover, by the local Lipschitz continuity
of a and the Hölder continuity of u, we get

sup
x∈Rd

|a(u(x))| ≤ sup
x∈Rd

|a(u(x))− a(0)|+ |a(0)| ≤ L
(
‖u‖L∞(Rd)

)
‖u‖L∞(Rd) + |a(0)|

and

|a(u(x))− a(u(y))| ≤ L
(
‖u‖L∞(Rd)

)
|u(x)− u(y)| ≤ L

(
‖u‖L∞(Rd)

)
‖u‖Cα(Rd)|x− y|α.

Hence, we get the ‖u‖Cα(Rd) ≤ ‖u‖B1−2/p
q,p (Rd)

and ‖u‖Cα(Rd) ≤ ‖u‖F 1−2/p
q,p (Rd)

for some α > 0

by applying Sobolev embeddings. In particular, the constants cu, Cu, and C̃u do not depend
precisely on u, but only on ‖u‖

B
1−2/p
q,p (Rd)

and ‖u‖
F

1−2/p
q,p (Rd)

, respectively. This closes the
proof.

It remains to show that our quasilinearity is locally Lipschitz with respect to the trace spaces
B

1−2/p
q,p (Rd) and F 1−2/p

q,p (Rd).

Lemma 3.2.5. For all n ∈ N, there exists CQ(n) > 0, such that the following statements
hold true.

a) For all y, z ∈ B1−2/p
q,p (Rd) with ‖y‖

B
1−2/p
q,p (Rd)

, ‖z‖
B

1−2/p
q,p (Rd)

≤ n and all v ∈W 1,q(Rd),
we have

‖A(z)v −A(y)v‖W−1,q(Rd) ≤ CQ(n)‖z − y‖
B

1−2/p
q,p (Rd)

‖v‖W 1,q(Rd).

b) For all y, z ∈ C(a, b;F
1−2/p
q,p (Rd)) with ‖y‖

C(a,b;F
1−2/p
q,p (Rd))

, ‖z‖
C(a,b;F

1−2/p
q,p (Rd))

≤ n we
have

Rp
({

(I −∆)−
1
2

(
A(z(t))−A(y(t))

)
(I −∆)−

1
2 : t ∈ [a, b]

}
⊂ B(Lq(Rd))

)
≤ CQ(n) sup

t∈[a,b]

‖z(t)− y(t)‖
F

1−2/p
q,p (Rd)

.
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In particular, [TTQ4*] and [LPQ4*] are fulfilled.

Proof. We prove b), part a) follows the same lines. Let y, z ∈ C(a, b;F
1−2/p
q,p (Rd)) with norm

at most n, let t1, · · · , tN ∈ [a, b] and v1, . . . , vN ∈ W 1,q(Rd). As lp(N) is UMD, Theorem
5.6.12 in [49] implies that both (I −∆)−

1
2 div and ∇(I −∆)−

1
2 are bounded on Lq(Rd; lp).

Thus, we have∥∥∥( N∑
k=1

|(I −∆)−
1
2 (A(y(tk))−A(z(tk)))(I −∆)−

1
2 vk|p

)1/p∥∥∥
Lq(Rd)

.p
∥∥∥( N∑

k=1

|(a(y(tk))− a(z(tk)))∇(I −∆)−
1
2 vk|p

)1/p∥∥∥
Lq(Rd)d

≤ sup
k=1,...,N

‖a(y(tk))− a(z(tk))‖L∞(Rd)d×d

∥∥∥( N∑
k=1

|vk|p
)1/p∥∥∥

Lq(Rd)

≤ L
(

max(‖y‖L∞([a,b]×Rd), ‖z‖L∞([a,b]×Rd))
)
‖y − z‖L∞([a,b]×Rd)

∥∥∥( N∑
k=1

|vk|p
)1/p∥∥∥

Lq(Rd)

.d,p,q L(n)‖y − z‖
C(a,b;F

1−2/p
q,p (Rd))

∥∥∥( N∑
k=1

|vk|p
)1/p∥∥∥

Lq(Rd)
.

This proves the claimed result.

Now, we are in the position to apply our abstract result to (3.2.1) and get the main result
of this section.

Theorem 3.2.6. Set q′ := q
q−1 . If [L1] − [L4] are fulfilled, there is a maximal unique

solution (u, (τn)n, τ) of (3.2.1) that is weak in the sense of partial differential equations, i.e.
the equation

〈u(t)− u0, φ〉(Lq(Rd),Lq′ (Rd)) =−
∫ t

0

〈a(u(s))∇u(s), φ〉(Lq(Rd),Lq′ (Rd)) ds

+

∫ t

0

〈F (u)(s), φ〉(W−1,q(Rd),W 1,q′ (Rd)) ds

+

∫ t

0

〈B(u)(s), φ〉(Lq(Rd),Lq′ (Rd)) dWs

holds almost surely for every t ∈ [0, τn] and for every φ ∈ C∞c (Rd). If u0 ∈ B1−2/p
q,p (Rd), we

have

u ∈ Lp(0, τn;W 1,q(Rd)) ∩ C(0, τn;B1−2/p
q,p (Rd)) ∩W θ,p(0, τn;W 1−2θ,q(Rd))

almost surely for every θ ∈ (0, 1
2 ) and for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 1,q(Rd)) <∞, u : [0, τ)→ B1−2/p

q,p (Rd) is uniformly continuous
}

= 0.

If on the other hand u0 ∈ F 1−2/p
q,p (Rd), we have

u ∈W 1,q(Rd;Lp(0, τn)) ∩ C(0, τn;F 1−2/p
q,p (Rd)) ∩W 1−2θ(Rd;W θ,p(0, τn))
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for every θ ∈ (0, 1
2 ) and for every n ∈ N. Furthermore, τ satisfies

P
{
τ < T, ‖u‖W 1,q(Rd;Lp(0,τ)) <∞, u : [0, τ)→ F 1−2/p

q,p (Rd) is uniformly continuous
}

= 0.

Proof. First, we discuss the setting [TT]. We apply Theorem 2.3.12 and Corollary 2.3.13 with
E = W−1,q(Rd), E1 = W 1,q(Rd), TR = B

1−2/p
q,p (Rd) and X

1
2

H(a, b) = Lp(a, b;Lq(Rd; l2(N))).

The assumption [TTQ1] is then satisfied straight away, whereas [TTQ2*] and [TTQ3*]

are checked in Proposition 3.2.4 and [TTQ4*] follows from Lemma 3.2.5. This yields a
strong solution u inW−1,q(Rd) with the claimed regularity properties. The claimed solution
formula is immediate by testing the functionals in W−1,q(Rd) with φ ∈ C∞c (Rd). We just
use the identity

〈
div a(u(s))∇u(s), φ

〉
(W−1,q(Rd),W 1,q′ (Rd))

= −
〈
a(u(s))∇u(s),∇φ

〉
(Lq(Rd),Lq′ (Rd))

.

In the setting [LQ], things are more complicated. We choose Λ = (I − ∆) and α = 1
2 .

The assumption [LQQ1] is then satisfied straight away, whereas [LQQ2*] and [LQQ3*] are
checked in Proposition 3.2.4 and [LQQ4*] follows from Lemma 3.2.5. However, Theorem
2.3.12 and Corollary 2.3.13 solely give us a solution with the claimed regularity properties
that satisfies

(I −∆)−
1
2u(t, x)−(I −∆)−

1
2u0(x) =∫ t

0

(I −∆)−
1
2 div(a(u)∇u)(s, x) ds+

∫ t

0

(I −∆)−
1
2F (u)(s, x) ds

+

∫ t

0

(I −∆)−
1
2B(u)(s, x) dW (s)

almost surely for almost all x ∈ Rd and for almost all t ∈ [0, τn]. In this formula, the
regularization with (I − ∆)−

1
2 is needed to define the deterministic integrals over time

for fixed x ∈ Rd. To get rid of this regularization, we test this equation with a function
φ ∈ Lq′(Rd). We get

〈
(I −∆)−

1
2u(t)− (I −∆)−

1
2u0, φ

〉
(Lq(Rd),Lq′ (Rd))

=

∫ t

0

〈
(I −∆)−

1
2 div(a(u)∇u)(s), φ

〉
(Lq(Rd),Lq′ (Rd))

ds

+

∫ t

0

〈
(I −∆)−

1
2F (u)(s), φ

〉
(Lq(Rd),Lq′ (Rd))

ds

+

∫ t

0

〈
(I −∆)−

1
2B(u)(s), φ

〉
(Lq(Rd),Lq′ (Rd))

dW (s)

almost surely for all t ∈ [0, τn]. This holds true for all φ ∈ Lq
′
(Rd) and we can insert

φ = (I −∆)
1
2ψ for some ψ ∈ C∞c (Rd).

Since (I −∆)−
1
2 is self-adjoint and the adjoint of (I −∆)−

1
2 div is given by −∇(I −∆)−

1
2 ,
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we finally end up with

〈
u(t)− u0, ψ

〉
(Lq(Rd),Lq′ (Rd))

=

∫ t

0

−
〈
a(u(s))∇u(s),∇ψ

〉
Lq(Rd)

ds+

∫ t

0

〈
F (u)(s), ψ

〉
(W−1,q(Rd),W 1,q′ (Rd))

ds

+

∫ t

0

〈
B(u)(s), ψ

〉
(Lq(Rd),Lq′ (Rd))

dW (s)

almost surely for every t ∈ [0, τn], which is the claimed result.

In particular, this theorem can be used to show that the solution (u, (τn)n, τ) is Hölder con-
tinuous in time. A Sobolev embedding yields u ∈ Cβ(0, τn;W 1−2θ(Rd)) if u0 ∈ B1−2/p

q,p (Rd)
and u ∈W 1−2θ(Rd;Cβ(0, τn)) if u0 ∈ F 1−2/p

q,p (Rd) with β = θ − 1
p for all θ ∈ ( 1

p ,
1
2 ).

Last but not least, we want to point out that we cannot apply the setting [GM] in the same
way. This is due to the fact that in this setting, we have TR = Lq(Rd) and in particular
a Sobolev embedding of the form TR ↪→ L∞(Rd) is not available. Thus, we need a mo-
dification of the coefficient matrix a similar to the one discussed at the end of the previous
section. We could treat a coefficient matrix of the form a(u) = a(‖u‖Lq(Rd)). We get the
following result with a slight modification of the proof of Theorem 3.1.6.

Theorem 3.2.7. Assume the following assumptions.

a) The coefficient matrix a = (aij)i,j=1,...,d : R≥0 → Rd×d is uniformly elliptic, i.e.

ess inf
x∈R≥0

inf
|ξ|=1

Re ξTa(x)ξ = δ0 > 0

and locally Lipschitz continuous, i.e. for every n ∈ N, there exists a constant L(n) > 0

such that

|aij(y)− aij(z)| ≤ L(n)|y − z|

for all 0 ≤ y, z ≤ n and all i, j = 1, . . . , d.

b) We require u0 : Ω→ Lq(Rd) to be strongly F0-measurable.

c) The nonlinearities F and (Bn)n satisfy [Q6*] and [Q7*] together with [Q9*].

Then, there exists a maximal unique solution
(
u, (τn)n, τ

)
of (3.2.1) in W−1,q(Rd) with

u ∈W 1,q(Rd;L2(0, τn)) ∩ C(0, τn;Lq(Rd))

almost surely for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖W 1,q(Rd;L2(0,τ)) <∞, u : [0, τ)→ Lq(Rd) is uniformly continuous

}
= 0.
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3.2.2. Local weak solution on a bounded domain with mixed boundary
conditions

In this section, we discuss the convection-diffusion equation

(DIV)

du(t) =
[

div(a(u(t))∇u(t)) + F (u)(t)
]
dt+B(u)(t) dW (t)), t ∈ [0, T ],

u(0) = u0

on a bounded domain D ⊂ Rd, d ≥ 2, with Dirichlet, Neumann or mixed boundary con-
ditions. In this example, we focus on the the setting [TT], since important tools needed
for the setting [LQ] like the Rp-boundedness of ∇(I − div(a(u)∇))−

1
2 are not deep enough

investigated in the literature in context of bounded domains.

In this section, we work in the spacesW 1,q
Γ (D) andW−1,q

Γ (D) from Definition 1.1.3 for some
Γ ⊂ ∂D that is open in the topology of ∂D. Then, TR will be a subspace of B1−2/p

q,p (D) that
respects the boundary condition on Γ and ∂D \Γ. Since we always work with 1− 2/p > d/q

every u ∈ B1−2/p
q,p (D) is continuous on D. Hence, we are able to define

B
1−2/p
q,p,Γ (D) :=

{
u ∈ B1−2/p

q,p (D) : u|∂D\Γ = 0
}
.

We will consider the quasilinear equation (DIV) in the space W−1,q
Γ (D) for q ∈ [2,∞),

which means, we try to find a weak solution in the sense of partial differential equations.
Remember,

(
u, (τn)n, τ

)
is a local solution of (DIV) in the setting [TT] in the sense of

Definition 2.3.2 with the choice E = W−1,q
Γ (D) and E1 = W 1,q

Γ (D) if and only if the
identity ∫

D

(u(t, x)− u0(x))φ(x) dx =−
∫ t

0

∫
D

a(u(s, x))∇u(s, x)∇φ(x) dxds

+

∫ t

0

〈F (u)(s), φ〉
(W−1,q

Γ (D),W 1,q′
Γ (D))

ds

+

∫ t

0

∫
D

B(u)(s, x)φ(x) dxdW (s)

holds almost surely for all t ∈ [0, τn] and for all φ ∈ C∞Γ (D).

At first, we look at (DIV) with a locally Lipschitz continuous diffusion matrix a. However,
we have to guarantee that the operators div(a(u(ω, t))∇) onW−1,q

Γ (D) have for almost every
ω and for every t the same domain W 1,q

Γ (D). In the last decades, it turned out that this
property highly depends on D, its dimension and the regularity of the coefficient function.
Therefore, we introduce the following notation.

Definition 3.2.8. Let µ : D → Rd×d be uniformly elliptic and uniformly continuous. Then,
we define Tµ as the set of all r ∈ [1,∞] such that the operator

z 7→ Lµz = −div(µ∇z) + z : W 1,r
Γ (D)→W−1,r

Γ (D)

is a topological isomorphism and such that the norms of Lµ and L−1
µ only depend on r, the

ellipticity of µ, its modulus of continuity and of ‖µ‖L∞(D).
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Now, we can specify our assumptions.

[LD1] For every point x ∈ ∂D, there exists two open sets U, V ⊂ Rd and a bi-Lipschitz
transformation Φ from U to V such that x ∈ U and Φ(U ∩ (D ∪ Γ)) coincides with
one of the sets {y ∈ Rd : |y| < 1, y1 < 0} ∪ {y ∈ Rd : |y| < 1, y1 = 0, y2 > 0} and
{y ∈ Rd : |y| < 1}.

[LD2] a : C→ Rd×d is uniformly positive definite, i.e.

ess inf
y∈C

inf
|ξ|=1

ξTa(y)ξ = δ0 > 0,

and locally Lipschitz continuous, i.e. for every n ∈ N, there exists a constant L(n) > 0

such that
|a(y)− a(z)| ≤ L(n)|y − z|

for all |y|, |z| < n.

[LD3] We choose p, q ∈ (2,∞) such that 1− 2/p > d/q and q ∈ Ta(z) for all z ∈ B1− 2
p

q,p,Γ(D).

[LD4] The initial value u0 : Ω→ B
1−2/p
q,p,Γ (D) is a strongly F0- measurable random variable.

[LD5] The nonlinearities F and B satisfy [Q6*] and [Q7*] together with [Q9*] in the setting
[TT] with the spaces E = W−1,q

Γ (D), E1 = W 1,q
Γ (D) and TR = B

1− 2
p

q,p,Γ(D).

Before we proceed, we comment on our assumptions. We chose the requirement on the
domain [LD1] in order to guarantee the important interpolation results

(W−1,q
Γ (D),W 1,q

Γ (D))1−1/p.p = B
1−2/p
q,p,Γ (D), [W−1,q

Γ (D),W 1,q
Γ (D)]1/2 = Lq(D)

from [42]. In particular, this representation of the real interpolation space makes sure that
u0 is in the usual space for initial values. Moreover, [LD3] implicitly contains assumptions
on the boundary of D and on the coefficient function a as well, since it is impossible to
ensure that

y 7→ −div(a(u(t))∇y) + y : W 1,q
Γ (D)→W−1,q

Γ (D)

is an isomorphism for all q ∈ (1,∞) if one just assumes [LD1] and [LD2]. Even in case of the
Dirichlet Laplacian, there are counterexamples (see [52], Theorem A). In general, one only
knows that a small interval (2− ε, 2 + ε) with ε > 0 depending on the geometry of D and Γ

and on the coefficient function µ is contained in Tµ (see [45], Theorem 5.6 and Remark 5.7).
Nevertheless, there are several situations, in which one can fulfil [LD3]. In the following, we
mention some of them.

If one assumes D to be a C1-domain that has either pure Dirichlet (Λ = ∅) or pure Neumann
boundary (Λ = ∂D) and one assumes µ to be a uniformly continuous coefficient function,
one has q ∈ Tµ for all q ∈ (1,∞). This is a classical result, which can be found in [3], section
15 or [79], page 156-157. Consequently, since we require 1 − 2/p > d/q and hence every
z ∈ B1−2/p

q,p,Γ (D) is even Hölder continuous, we automatically have q ∈ Ta(z).

If D is just a Lipschitz domain with Dirichlet boundary (Λ = ∅) and the coefficient function
µ is a symmetric, uniformly continuous matrix, then there is a q > 3 with q ∈ Tµ. This only
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helps us if d = 2, 3 since then it is possible to choose p large enough to ensure 1−2/p > d/q.

This is shown in [37], Theorem 1.1.

So far, we only gave examples for Dirichlet or Neumann boundary conditions. In case of
mixed boundary conditions, we exploit the very detailed work [30]. In the case d = 3, the
authors provide a wide range of geometries of D and Γ that permit the existence of a q > 3

such that q ∈ Tµ, where µ is a real scalar valued function that is uniformly continuous.
Moreover, in Section 3, they provide many descriptive examples for the geometries, they
allow. The following Lemma adjusts these results to our situation.

Lemma 3.2.9. Let D ⊂ R3 and Γ ⊂ ∂D satisfy Assumption 4.2 in [30] and let a(u) be real
and scalar valued. Then, there exists q > 3 such that q ∈ Ta(z) for every z ∈ B1−2/p

q,p,Γ (D). In
particular, the norms of both I−div(a(z)∇) and (I−div(a(z)∇))−1 depend on the constants
in Assumption 4.2, on the constants in [LD2] and on supx∈D |z(x)|.

Proof. By Theorem 4.8 in [30], there exists q > 3, such that I − div(a(0)∇) is a topological
isomorphism from W 1,q

Γ (D) to W−1,q
Γ (D). Since, we assumed a to be Lipschitz continuous

and p to be large enough such that 1−2/p > 3/q, the map x 7→ a(z(x)) is Hölder continuous.
In particular, the set {a(z) : z ∈ B1−2/p

q,p,Γ (D) : ‖z‖
B

1−2/p
q,p,Γ

≤ n} is compact in C(D). Hence
by Corollary 6.4 in [30], the map

{a(z) : z ∈ B1−2/p
q,p,Γ (D)} 3 µ 7→ (I − div(µ∇))−1 ∈ B(W−1,q

Γ (D),W 1,q
Γ (D))

is bounded and Lipschitz continuous. In particular, this means

‖(I − div(a(z)∇))−1‖B(W−1,q
Γ (D),W 1,q

Γ (D))

≤‖(I − div(a(z)∇))−1 − (I − div(a(0)∇))−1‖B(W−1,q
Γ (D),W 1,q

Γ (D))

+ ‖(I − div(a(0)∇))−1‖B(W−1,q
Γ (D),W 1,q

Γ (D))

≤C sup
x∈D
|a(z(x))− a(0)|+ ‖(I − div(a(0)∇))−1‖B(W−1,q

Γ (D),W 1,q
Γ (D))

≤CL(sup
x∈D
|z(x)|) sup

x∈D
|a(z(x))|+ ‖(I − div(a(0)∇))−1‖B(W−1,q

Γ (D),W 1,q
Γ (D)).

On the other hand, we have

‖I − div(a(z)∇)‖B(W 1,q
Γ (D),W−1,q

Γ (D)) ≤ 1 + ‖a(z)‖L∞(D)

≤ 1 + L(sup
x∈D
|z(x)|) sup

x∈D
|z(x)|+ sup

x∈D
|a(0)|.

This proves that I−div(a(z)∇) is a topological isomorphism fromW 1,q
Γ (D) toW−1,q

Γ (D) for
every z and that the norms of both I−div(a(z)∇) and (I−div(a(z)∇)−1 have the required
dependency on the coefficient function.

Our goal is to apply Theorem 2.3.12 to the operators

A(u(t))u(t) = −div(a(u(t))∇u(t)) + u(t)
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in the setting [TT]. In the following Lemma, we prove that A(u(t)) has the needed mapping
properties like a timely constant domain and a bounded H∞-calculus.

Lemma 3.2.10. Under the assumptions [LD1]-[LD3], the operators

A(z)u := −div(a(z)∇u) + u : W 1,q
Γ (D)→W−1,q

Γ (D)

are for all z ∈ B1−2/p
q,p,Γ (D) densely defined, closed with 0 ∈ ρ(A(z)) and have a bounded H∞-

calculus with bound and angle only depending on the constants L, δ0 and on ‖z‖
B

1−2/p
q,p,Γ (D)

.
We also have for every n ∈ N a constant C(n) > 0 such that the local Lipschitz estimate

‖A(z)−A(y)‖B(W 1,p
Γ (D),W−1,p

Γ (D)) ≤ C(n)‖z − y‖
B

1− 2
p

q,p,Γ(D)

holds for all ‖z‖
B

1−2/p
q,p,Γ (D)

, ‖y‖
B

1−2/p
q,p,Γ (D)

≤ n. Last but not least, we have

(W−1,q
Γ (D),W 1,q

Γ (D))1−1/p,p = B
1− 2

p

q,p,Γ(D)

and as a consequence, A satisfies [TTQ2*]− [TTQ4*] from the previous chapter.

Proof. By choice of p and q, the Sobolev embedding B
1− 2

p

q,p,Γ(D) ↪→ Cl(D̄) holds true for some

l > 0. In the sequel, we write CJ for the constant of this embedding. Given z ∈ B1− 2
p

q,p,Γ(D),
we obtain

‖a(z)‖L∞(D) ≤ ess sup
x∈D

|a(z(x))− a(0)|+ |a(0)|

≤ L
(
CJ‖z‖

B
1− 2

p
q,p,Γ(D)

)
CJ‖z‖

B
1− 2

p
q,p,Γ(D)

+ |a(0)|.

In particular, the operator A(z) : W 1,q
Γ (D) → W−1,q

Γ (D) is well-defined and bounded.
Moreover, since we assumed q ∈ T (a(z)), Theorem 6.5 in [31] implies that A(z) with
D(A(z)) = W 1,q

Γ (D) is a closed operator.

By Theorem 11.5 in [9], A(z) has a bounded H∞-calculus of angle arctan
(‖a(z)‖L∞(D)

δ0

)
and the bound only depends on ‖a(z)‖L∞(D) and δ0 (see also [34]). Note that the critical
assumption for this theorem is that A(z) possesses the square root property in L2(D), i.e.
the operator

(I − div(a(z)∇))1/2 : W 1,2
Γ (D)→ L2(D)

is a topolical isomorphism. This result can be found in [35], Theorem 4.1.

The claimed Lipschitz estimate for A is an immediate consequence of the Lipschitz continuity
of a and a Sobolev embedding. Indeed, we have

‖A(z)−A(y)‖B(W 1,q
Γ (D),W−1,q

Γ (D)) . ‖(a(z)− a(y))∇‖B(W 1,q
Γ (D),Lq(D))

. ‖a(z)− a(y)‖L∞(D)

≤ CJL(CJn)‖z − y‖
B

1− 2
p

q,p,Γ(D)
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for all ‖z‖
B

1−2/p
q,p,Γ

(D), ‖y‖
B

1−2/p
q,p,Γ

(D) ≤ n.

It remains to check (W−1,q
Γ (D),W 1,q

Γ (D))1−1/p,p = B
1− 2

p

q,p,Γ(D). By [42], Lemma 3.4, we have
the identity [W−1,q

Γ (D),W 1,q
Γ (D)]1/2 = Lq(D). Using the reiteration formula between real

and complex interpolation (see e.g. [93], Theorem 1.10.3.2), it is sufficient to show

(Lq(D),W 1,p
Γ (D))1−2/p,p = B

1−2/p
q,p,Γ (D).

This is done in [42], Remark 3.6.

Next, we check that the spaces W−1,q
Γ (D) and W 1,q

Γ (D) fit in the setting of stochastic max-
imal Lp-regularity.

Lemma 3.2.11. The spaces W 1,q
Γ (D) and W−1,q

Γ (D) are UMD Banach spaces with type 2.
Moreover, the family of operators

{Jδ : δ > 0} ⊂ B
(
Lp(Ω× (0,∞); γ(H;W−1,q

Γ (D))), Lp(Ω× (0,∞);W−1,q
Γ (D))

)
defined by

Jδb(t) := δ−1/2

∫ t

(t−δ)∨0

b(s) dW (s)

is R-bounded. In conclusion, these spaces satisfy assumption [TTQ1] of the previous section.

Proof. By Lemma 3.2.10 the spaces W−1,q
Γ (D) and W 1,q

Γ (D) are isomorph. In the proof
of the same Lemma, we checked [W−1,q

Γ (D),W 1,q
Γ (D)]1/2 = Lq(D) and hence, amongst

others A(0)1/2, provides an isomorphism between Lq(D) and W−1,q
Γ (D). Moreover, the type

of Banach space, the UMD property and the R-boundedness of (Jδ)δ>0 are stable under
isomorphisms and the UMD space Lq(D) is of type 2. Noting that by [97], Theorem 3.1,

the family is R-bounded on Lp(Ω× (0,∞); γ(H;Lq(D))) completes the proof.

Now, we are in the position to proof existence and uniqueness of a solution of (DIV) by
applying Theorem 2.3.12 to the operator A(z)y = −div(a(z)∇y) + y.

Theorem 3.2.12. Let the assumptions [LD1] − [LD5] be satisfied. Then, there exists a
maximal unique local solution

(
u, (τn)n, τ

)
of (DIV) in W−1,q

Γ (D) such that we have

u ∈ Lp(0, τn;W 1,q
Γ (D)) ∩ C(0, τn;B

1−2/p
q,p,Γ (D))

pathwise almost surely for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 1,q

Γ (D)) <∞, u : [0, τ)→ B
1−2/p
q,p,Γ (D) is uniformly continuous

}
= 0.

Proof. Writing

div(a(z)∇z) + F (z) =
(

div(a(z)∇z)− z
)

+
(
F (z) + z

)
,
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we see that we can solve the equationdu(t) =
[
−A(u(t))u(t) + F̃ (u)(t)

]
dt+B(u)(t) dW (t), t ∈ [0, T ]

u(0) = u0

with F̃ (z) := F (z) + z for z ∈ W 1,q
Γ (D). By Lemma 3.2.10, the assumptions [TTQ2*]-

[TTQ4*] are fulfilled, whereas Lemma 3.2.11 guaranties [TTQ1]. All in all, Theorem 2.3.12
yields the desired result.

3.2.3. Global weak solution with Dirichlet boundary condition

In this section, we investigate the convection diffusion equation with Dirichlet boundary
conditions (Γ = ∅) and we therefore restrict us to the space W 1,q

∅ (D) that will be denoted
with W 1,q

0 (D) in what follows. As usual in the literature, we write W−1,q(D) for W−1,q
∅ (D).

We consider the equation

(GDIV)

du(t) =
[

div(a(u(t))∇u(t)) + div(G(u(t)))
]
dt+B(u)(t) dW (t)), t ∈ [0, T ],

u(0) = u0

and we strengthen the assumptions in order to prove that the local solution from Theorem
3.2.12 exists on the whole interval [0, T ]. We require:

[GD1] D ⊂ Rd is a bounded C1-domain.

[GD2] a : R→ Rd×d is bounded and uniformly positive definite, i.e.

inf
y∈R

inf
|ξ|=1

ξTa(y)ξ = δ0 > 0

and a is globally Lipschitz continuous, i.e. there exists L > 0 such that

|a(y)− a(z)| ≤ L|y − z|

for all y, z ∈ R.

[GD3] We choose p, q ∈ (2,∞) such that 1− 2/p > d/q.

[GD4] The initial value u0 : Ω→ B
1−2/p
q,p,0 (D) is a strongly F0-measurable random variable.

[GD5] G : R→ Rd is Lipschitz continuous, i.e. there is a constant LG > 0 such that

|G(y)−G(z)| ≤ LG|y − z|

for all y, z ∈ R.

[GD6] The driving noise W is an l2- cylindrical Brownian motion with the decomposition

W (t) =

∞∑
k=1

ekβk(t),

where (ek)k is the standard orthonormal basis of l2(N) and (βk)k is a sequence of
independent real-valued Brownian motions relative to the filtration (Ft)t∈[0,T ].
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[GD7] B = (Bn)n : Ω× [0, T ]×D × R→ l2(N) is strongly measurable and ω 7→ B(ω, t, x, y)

is for all t ∈ [0, T ], x ∈ D and y ∈ R strongly Ft-measurable. Furthermore, B is of
linear growth, i.e. ( ∞∑

n=1

|Bn(ω, t, x, y)|2
)1/2

≤ C(1 + |y|)

and Lipschitz continuous in the last component, i.e. there is LB > 0 such that

( ∞∑
n=1

|Bn(ω, t, x, y)−Bn(ω, t, x, z)|2
)1/2

≤ LB |y − z|

for all y, z ∈ R, t ∈ [0, T ], x ∈ D and almost all ω ∈ Ω. Moreover, we assume

‖Bn(ω, t, ·, f)‖γ(l2(N);W 1,2
0 (D)) ≤ C(1 + ‖f‖W 1,2

0 (D))

for all f ∈W 1,2
0 (D), t ∈ [0, T ], x ∈ D and almost all ω ∈ Ω.

These assumptions are strictly stronger than [LD1]-[LD5]. a is not locally, but globally
Lipschitz and the nonlinearities div(G) and B are only of lower order. As we have already
mentioned in our remarks below the assumptions of the previous section, [GD1] and [GD2]

also imply q ∈ Ta(z) for every z ∈ B1−2/p
q,p,0 (D) and q ∈ (1,∞).

All in all, Theorem 3.2.12 yields a local solution (u, (τn)n, τ) of (GDIV), i.e. an increasing
sequence of F-stopping times (τn)n with 0 ≤ τn ≤ T and limn→∞ τn = τ almost surely and
a process u : Ω× [0, τ)→W 1,q

0 (D) such that u solves (GDIV) on [0, τn] and

u ∈ Lp(0, τn;W 1,q(D)) ∩ C(0, τn;B
1−2/p
q,p,0 (D)) (3.2.2)

almost surely for every n ∈ N.

In this section, we aim to prove that we actually have τ = T almost surely. By the blow-up
alternative from Theorem 3.2.12, it is sufficient to show that u : [0, τ)→ B

1−2/p
q,p,0 (D) is almost

surely uniformly continuous and satisfies ‖u‖Lp(0,τ ;W 1,q
0 (D)) < ∞ almost surely. However,

this is not too easy, since (3.2.2) that originally comes from the abstract construction of a
solution of a quasilinear equation highly depends on n and to find uniform estimates for u,
we have to use the special structure of the equation.

Our first goal is to derive a uniform estimate in Lα(Ω;L∞(0, τn;Lα(D))) for u for all
α ∈ [2,∞) and to do this, we need a suitable version of the Itô formula that is useful
to deal with weak solutions of stochastic partial differential equations. There are several
versions of the following Lemma in the literature, see e.g. [63], Theorem 2.1. or [27], Propo-
sition A.1. The strategy is always the same. One approximates the Itô process in order to
apply the classical Itô formula, rearranges the equation into the form one wants to achieve
and at the end, one passes to the limit. However, as far as we know, there is no result that
covers our situation. Therefore, we sketch the proof for convenience of the reader.
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Lemma 3.2.13. Let (u, (τn)n, τ) be the maximal unique local solution of [GDIV]. Then,
for α ≥ 2, the generalized Itô formula∫

D

|u(t, x)|α − |u0(x)|α dx

=−
∫ t

0

∫
D

α(α− 1)|u(s, x)|α−2
(
a(u(s, x))∇u(s, x) +G(u(s, x))

)
∇u(s, x) ds

+

∞∑
k=1

∫ t

0

∫
D

α|u(s, x)|α−2u(s, x)Bk(s, x, u(s, x)) dxdβk(s)

+
1

2

∞∑
k=1

∫ t

0

∫
D

α(α− 1)|u(s, x)|α−2Bk(s, x, u(s, x))2 dxds

holds almost surely for all t ∈ [0, τn] and all n ∈ N.

Proof. In what follows, we shortly write F (s, x) := a(u(s, x))∇u(s, x) + G(u(s, x)) and
Hk(s, x) := Bk(s, x, u(s, x)). With this notation, we get

u(t)− u0 =

∫ t

0

divF (s) ds+
∞∑
k=1

∫ t

0

Hk(s) dβk(s) (3.2.3)

almost surely for all t ∈ [0, τn] as an equation in W−1,q(D). Next, we extend the functions
u, u0, F and Hk by zero to the whole space Rd. Since we assumed Dirichlet boundary
conditions, we have u ∈ Lp(0, τn;W 1,q(Rd))∩C(0, τn;B

1−2/p
q,p (Rd)) almost surely. Moreover,

we define

ηl = τn ∧ inf
{
t ∈ [0, τn] : ‖u‖Lp(0,t;W 1,q(Rd)) + ‖u‖

C(0,t;B
1−2/p
q,p (Rd))

≥ l
}
.

Let (δm)m ⊂ C∞c (Rd) be a Dirac sequence, i.e. δm ≥ 0, supp(δm) ⊂ B(0, 1
m ) and we have∫

Rd δm(x) dx = 1 for every m ∈ N. We convolute the equation (3.2.3) with δm and obtain

um(t, x)− u(m)
0 (x) =

∫ t

0

divFm(s, x) ds+

∞∑
k=1

∫ t

0

H
(m)
k (s, x) dβk(s) (3.2.4)

almost surely for every t ∈ [0, ηl] and every x ∈ Rd. Here un, u(m)
0 , Fm and H(m)

k denote the
convolution of the respective function u, u0, F and Hk with δm. In this step, we used the
well-known identity div(F ) ∗ δm = div(F ∗ δm) and the fact that by stochastic Fubini, one
can interchange convolution and the stochastic integral. However, t 7→ um(t, x) is for every
x ∈ Rd an Itô process in R. So, we can apply Itô’s formula to | · |α and integrate afterwards
over Rd. We obtain∫

Rd
|um(t, x)|α dx =

∫
Rd
|u(m)

0 (x)|α dx+

∫ t

0

∫
Rd
α|um(s, x)|α−2um(s, x) divFm(s, x) dx ds

+

∞∑
k=1

∫ t

0

∫
Rd
α|um(s, x)|α−2um(s, x)H

(m)
k (s, x) dx dβk(s)

+
1

2

∞∑
k=1

∫ t

0

∫
Rd
α(α− 1)|um(s, x)|α−2H

(m)
k (s, x)2 dx ds.
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Further, integration by parts and∇
(
|um(s, x)|α−2um(s, x)

)
= (α−1)|um(s, x)|α−2∇um(s, x)

yield∫
Rd
|um(t, x)|α dx

=

∫
Rd
|u(m)

0 (x)|α dx−
∫ t

0

∫
Rd
α(α− 1)|um(s, x)|α−2∇um(s, x)Fm(s, x) dx ds

+

∞∑
k=1

∫
Rd

∫ t

0

α|um(s, x)|α−2um(s, x)H
(m)
k (s, x) dβk(s) dx

+
1

2

∞∑
k=1

∫ t

0

∫
Rd
α(α− 1)|um(s, x)|α−2H

(m)
k (s, x)2 dx ds

almost surely for all t ∈ [0, ηl]. Now, we can take the limit m→∞. Here, we make use of the
fact that δm ∗ f converges to f in W 1,q(Rd) if f ∈ W 1,q(Rd), in Lγ(Rd) with 1 ≤ γ <∞ if
f ∈ Lγ(Rd) and uniformly if f ∈ Cc(Rd). Note that as a consequence of [GD5] and [GD7], we
have F ∈ L∞(Ω;Lp(0, ηl;L

q(Rd))) and (Hk)k ∈ L∞(Ω;Lp(0, ηl;L
q(Rd; l2(N)))). Moreover,

we have u ∈ L∞(Ω;C([0, ηl] × Rd)), which follows from 1 − 2/p − d/q > 0 and a Sobolev
embedding. This yields

|um|α−2∇um · Fm
m→∞−−−−→ |u|α−2∇u · F

|um|α−2
∞∑
k=1

(H
(m)
k )2 m→∞−−−−→ |u|α−2

∞∑
k=1

H2
k

in L1(Ω× [0, ηl]× Rd). In the same way, one shows

|um|α−2umH
(m)
k

m→∞−−−−→ |u|α−2uHk

in L2(Ω× [0, ηl]× Rd × N), which implies the convergence of the stochastic integral. All in
all, we get∫

D

|u(t, x)|α − |u0(x)|α dx

=−
∫ t

0

∫
D

α(α− 1)|u(s, x)|α−2
(
a(u(s, x))∇u(s, x) +G(u(s, x))

)
∇u(s, x) ds

+

∞∑
k=1

∫ t

0

∫
D

α|u(s, x)|α−2u(s, x)Hk(s, x) dxdβ(s)

+
1

2

∞∑
k=1

∫ t

0

∫
D

α(α− 1)|u(s, x)|α−2|Hk(s, x)|2 dx ds

almost surely for all t ∈ [0, ηl]. Since we defined u(s, ·) = 0, u0 = 0, H(s, ·) = 0 and
F (s, ·) = 0 on Rd \D, we get the claimed identity on [0, ηl]. It remains to take l→∞. Due
to u ∈ Lp(0, τn;W 1,q(D)) ∩ C(0, τn;B

1−2/p
q,p,0 (D)) almost surely, there exists l = l(ω) such

that ηl(ω) = τn(ω). Hence, this identity also holds true on the time interval [0, τn]. This
finishes the proof.

The following Lemma was used several times in the literature in comparable situations (see
e.g. [46], Theorem 3.1 or [27], Proposition 5.1). The difference is that we deal with Dirichlet



100 CHAPTER 3. Examples for quasilinear parabolic stochastic evolution equations

boundary conditions, whereas the references consider periodic boundary conditions on the
torus. Furthermore, we work on a random interval up to a stopping time.

Lemma 3.2.14. If we assume [GD1]-[GD7] and additionally u0 ∈ Lα(Ω × D) for some
α ∈ [2,∞), we have (

E sup
0≤t<τ

‖u(t)‖αLα(D)

)1/α ≤ Cα(1 + ‖u0‖Lα(Ω×D))

with a constant Cα > 0 independent of u0. Moreover, we have

‖u‖L2(Ω×[0,τ);W 1,2
0 (D)) <∞.

Proof. Let

ηm = τ ∧ inf
{
t ∈ [0, τ) : ‖u‖Lp(0,t;W 1,q(Rd)) + ‖u‖

C(0,t;B
1−2/p
q,p (Rd))

≥ m
}
.

We work on the interval [0, ηm] and apply the Itô formula from Lemma 3.2.13. This yields∫
D

|u(x, t)|α dx−
∫
D

|u0(x)|α dx

−
∫ t

0

∫
D

α(α− 1)|u(s, x)|α−2∇u(s, x)
(
G(u(s, x)) + a(u(s, x))∇u(s, x)

)
dx ds

+

∞∑
k=1

∫ t

0

∫
D

α|u(s, x)|α−2u(s, x)Bk(s, x, u(s, x)) dx dβk(s)

+
1

2

∞∑
k=1

∫ t

0

∫
D

α(α− 1)|u(s, x)|α−2Bk(s, x, u(s, x))2 dx ds (3.2.5)

almost surely for all t ∈ [0, ηm]. Next, we estimate E sup0≤s≤t∧ηm
∫
D
|u(x, s)|α dx term by

term beginning with the stochastic integral. Applying the scalar valued Burkholder-Davis-
Gundy inequality, the assumptions on B and Hölder’s inequality, we get

E sup
0≤s≤t∧ηm

∣∣∣ ∞∑
k=1

∫ s

0

∫
D

α|u(r, x)|α−2u(r, x)Bk(r, x, u(r, x)) dxdβk(r)
∣∣∣

. E
(∫ t∧ηm

0

∞∑
k=1

(∫
D

|u(r, x)|α−2u(r, x)Bk(r, x, u(r, x)) dx
)2

dr
)1/2

. E
(∫ t∧ηm

0

∥∥|u(r)|α2
∥∥2

L2(D)

∥∥|u(r)|
α−2

2 B(r, u(r))
∥∥2

L2(D;l2(N))
dr
)1/2

. E
(∫ t∧ηm

0

∥∥u(r)
∥∥α
Lα(D)

∥∥|u(r)|
α−2

2 (1 + |u(r)|)
∥∥2

L2(D)
dr
)1/2

≤ E
(∫ t∧ηm

0

∥∥u(r)
∥∥α
Lα(D)

(
‖u(r)‖α−2

Lα(D) + ‖u(r)‖αLα(D)

)
dr
)1/2

. E
(∫ t∧ηm

0

‖u(r)‖αLα(D)

(
1 + ‖u(r)‖αLα(D)

)
dr
)1/2

. E
(

sup
0≤s≤t∧ηm

‖u(r)‖αLα(D)

)1/2(
1 +

∫ t∧ηm

0

‖u(r)‖αLα(D) dr
)1/2

.
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Finally, the well-known estimate ab ≤ εa2 + 1
4εb

2 for a, b, ε > 0 yields

E sup
0≤s≤t∧ηm

∣∣∣ ∞∑
k=1

∫ s

0

∫
D

α|u(r, x)|α−2 Re〈u(r, x), Bk(r, x, u(r, x))
〉
C dx dβk(r)

∣∣∣
≤ 1

2
E sup

0≤s≤t∧ηm
‖u(r)‖αLα(D) + C

(
1 + E

∫ t∧ηm

0

‖u(r)‖αLα(D) dr
)

for some constant C > 0. We proceed with the deterministic terms in (3.2.5). Since a is
uniformly elliptic,

−α(α− 1)|u(s, x)|α∇u(s, x)a(u(s, x)∇u(s, x) ≤ 0

holds almost surely for all s ∈ [0, ηm] and all x ∈ D and the corresponding term can be
dropped in an upper estimate. Moreover, the divergence theorem of Gauss and u(t, x) = 0

almost surely all for t ∈ [0, ηm] and x ∈ ∂D yields∫
D

α(α− 1)|u(s, x)|α∇u(s, x)G(u(s, x)) dx

=

∫
D

div
(∫ u(t,x)

0

α(α− 1)|ξ|αG(ξ) dξ
)

dx

=

∫
∂D

(∫ u(t,x)

0

α(α− 1)|ξ|αG(s, ξ) dξ
)
ν dσ(x) = 0.

The last remaining term can be estimated with the assumptions on B. We have

E sup
0≤s≤t∧ηm

∣∣∣ ∞∑
k=1

∫ s

0

∫
D

α(α− 1)|u(r, x)|α−2|Bk(r, x, u(r, x))|2 dx dr
∣∣∣

. E
∫ t∧ηm

0

∫
D

|u(r, x)|α−2 + |u(r, x)|α dxdr

. 1 +

∫ t

0

E sup
0≤s≤r∧ηm

∫
D

|u(s, x)|α dxdr.

All in all, we proved

E sup
0≤s≤t∧ηm

∫
D

|u(x, s)|α dx . 1 + E
∫
D

|u0(x)|α dx+

∫ t

0

E sup
0≤s≤r∧ηm

∫
D

|u(s, x)|α dxdr

and hence, Gronwall yields,

E sup
0≤s≤t∧ηm

∫
D

|u(x, s)|α dx . 1 + E
∫
D

|u0(x)|α dx

for every t ∈ [0, T ] and n ∈ N with an estimate independent ofm.We want to finish the proof
by applying Fatou’s Lemma to pass to the limit m→∞. Here, we use that ηm → τ almost
surely for m → ∞. Note that one can interchange sup and lim inf in an upper estimate,
since lim inf can be written in the form sup inf and supremums can be interchanged, whereas
sup inf ≤ inf sup. Thus, we have

E sup
0≤s<τ

∫
D

|u(x, s)|α dx ≤ lim inf
m→∞

E sup
0≤s≤t∧ηm

∫
D

|u(x, s)|α dx

. 1 + lim inf
m→∞

E
∫
D

|u0(x)|α dx

= 1 + E‖u0‖αLα(D).
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This proves the first claim. For the second claim, we have to look at (3.2.5) in the special
case α = 2. We get

‖u(t)‖2L2(D) =‖u0‖2L2(D) − 2

∫ t

0

∫
D

∇u(s, x)a(u(s, x))∇u(s, x) dx ds

+ 2

∞∑
k=1

∫ t

0

∫
D

u(s, x)Bk(s, x, u(s, x)) dxdβk(s)

+

∞∑
k=1

∫ t

0

∫
D

Bk(s, x, u(s, x))2 dxds

almost surely for all t ∈ [0, ηm]. Coercivity of a(u(s, x)) then yields

−
∫
D

∇u(s, x)a(u(s, x))∇u(s, x) dx ≤ −δ0‖∇u(s)‖2L2(D).

As a consequence, we have

δ0

∫ t

0

‖∇u(s)‖2L2(D) ds ≤‖u0‖2L2(D) + 2

∞∑
k=1

∫ t

0

∫
D

u(s, x)Bk(s, x, u(s, x)) dxdβk(s)

+

∞∑
k=1

∫ t

0

∫
D

Bk(s, x, u(s, x))2 dxds

almost surely for all t ∈ [0, τ) and with the estimates we did before, we get(
E‖∇u‖2L2([0,τ)×D) ds

)1/2
. (1 + ‖u0‖L2(Ω×D)).

This finishes the proof.

As a consequence of these estimates, we can extend u to a pathwise continuous function
with values in L2(D) on the closed interval [0, τ ].

Lemma 3.2.15. If we assume [GD1]-[GD7] and additionally u0 ∈ L2(Ω×D) the function
u : [0, τ)→ L2(D) is pathwise almost surely uniformly continuous and can be extended to a
continuous function on [0, τ ].

Proof. We know that u is an Itô process in W−1,2(D) and that we have

u(t)− u0 =

∫ t

0

div(a(u(s))∇u(s)) + div(G(u(s))) ds+

∫ t

0

B(u(s)) dW (s)

for every t ∈ [0, τ) and by Lemma 3.2.14, we have u ∈ L2(0, τ ;W 1,2
0 (D)) almost surely.

Moreover, by [GD7] and the Itô isometry, we obtain∥∥t 7→ ∫ t

0

B(u(s))1[0,τ)(s) dW (s)
∥∥
L2(Ω×[0,T ];W 1,2

0 (D))
= ‖B(u)1[0,τ)‖L2(Ω×[0,T ]×N;W 1,2

0 (D))

. 1 + ‖u‖L2(Ω×[0,τ);W 1,2
0 (D)) <∞

and thus, we also have t 7→
∫ t

0
B(u(s)) dW (s) ∈ L2(0, τ ;W 1,2

0 (D)) almost surely. Conse-
quently, we have

t 7→ u0 +

∫ t

0

div(a(u(s))∇u(s)) + div(G(u(s))) ds ∈ L2(0, τ ;W 1,2
0 (D))
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almost surely. On the other hand, the fundamental theorem of calculus yields

t 7→ u0 +

∫ t

0

div(a(u(s))∇u(s)) + div(G(u(s))) ds ∈W 1,2(0, τ ;W−1,2(D))

almost surely. Since the embedding

W 1,2(0, τ ;W−1,2(D)) ∩ L2(0, τ ;W 1,2
0 (D)) ↪→ C(0, τ ;L2(D))

is bounded (see e.g. [90], Chapter III , Proposition 1.2), the map

t 7→ u0 +

∫ t

0

div(a(u(s))∇u(s)) + div(G(u(s))) ds

is almost surely uniformly continuous on [0, τ) viewed as a function in L2(D). Clearly, by the
Burkholder-Davies-Gundy inequality, the same holds true for the stochastic integral. This
closes the proof.

In the previous lemmas, we extended our local solution
(
u, (τn)n, τ

)
to the closed interval

[0, τ ] and derived estimates for u on [0, τ ]. As a consequence, we can apply a regularity re-
sult for quasilinear stochastic evolution equations in divergence form that yields additional
regularity properties for u. It turns out that u is even pathwise Hölder continuous in space
and time.

Lemma 3.2.16. If we assume (GD1)-(GD7) and u0 ∈ Lm(Ω × D) for every m ∈ [2,∞),
the process u : Ω × [0, τ ] ×D → R is pathwise Hölder continuous in space and time. More
precisely, there exists η > 0 such that

E
(

sup
t∈[0,τ ],x∈D

|u(t, x)|+ sup
t,s∈[0,τ ],x,y∈D

|u(t, x)− u(s, y)|
max{|t− s|η, |x− y|2η}

)m
<∞

for every m ∈ [2,∞).

Proof. By Lemma 3.2.14 and Lemma 3.2.15, we have

u ∈ Lm(Ω;L∞(0, τ ;Lm(D))) ∩ L2(Ω× [0, τ);W 1,2
0 (D))

for all m ∈ [2,∞) and u : [0, τ ] → L2(D) is almost surely uniformly continuous. Moreover,
our initial value u0 ∈ B1−2/p

q,p,0 (D) satisfies u0 = 0 almost surely on ∂D, since we required
1 − 2/p > d/q. Thus, a slight variation of [26], Theorem 2.6 implies the claimed result.
The only change we need is that we investigate the equation on the random interval [0, τ ]

instead of [0, T ]. However, in the proof of Theorem 2.6 one can replace T by τ without
further difficulties, since they authors argue pathwise with a classical regularity result about
deterministic parabolic equations by Ladyzhenskaya, Solonnikov and Uralceva (see [72],
Theorem 10.1 in Chapter III). In [26], Theorem 2.6, ∂D was assumed to be smooth, but
to apply Ladyzhenskaya’s result, a piecewise C1-boundary combined with the so called
condition A, that is explained in [72] on page 9, is sufficient. Note that our assumption of
a C1-boundary implies this condition A.
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Finally, we can prove the main theorem of this section. We show that our local solution u is
indeed a global solution that exists on the whole interval [0, T ]. For this proof, we compare
u with the solution z of a stochastic heat equation with the noise B(u)(t) dW (t). Then, we
investigate the regularity properties of u − z, which solves a non-autonomous determinis-
tic partial differential equation with a random parameter by applying results on maximal
regularity for both the stochastic heat equation and for the arising non-autonomous equation.

Theorem 3.2.17. If we assume (GD1)-(GD7), the local solution
(
u, (τn)n, τ

)
of (GDIV)

is a global solution, i.e. we have τ = T almost surely and the solution satisfies

u ∈ Lp(0, T ;W 1,q
0 (D)) ∩ C(0, T ;B

1−2/p
q,p,0 (D))

almost surely.

Proof. We first check the theorem for u0 ∈ L∞(Ω;B
1−2/p
q,p,0 (D)). By Theorem 3.2.12, there

exists a local solution
(
u, (τn)n, τ

)
of (GDIV) to the initial value u0. Since we chose 1−2/p >

d/q, we have u0 ∈ Lm(Ω×D) for all m ∈ [2,∞). As a consequence, Lemma 3.2.16 implies
that u : Ω × [0, τ ] × D → R is pathwise almost surely uniformly continuous in space and
time and u1[0,τ ] ∈ Lm(Ω;L∞(0, T ;Lm(D))).

Next, we consider the equationdz(t) = ∆z(t) dt+B(u)(t) dW (t)), t ∈ [0, τ ],

z(0) = 0.

By (GD7), we have B(u) ∈ Lp(Ω×[0, T ]; γ(l2;Lq(D))). Therefore the maximal Lp-regularity
result for stochastic evolution equations, Theorem 2.2.6, yields a unique solution

z ∈ Lp(Ω× [0, T ];W 1,q
0 (D)) ∩ Lp(Ω;C(0, T ;B

1−2/p
q,p,0 (D))).

If we investigate the difference y := u−z on [0, τ ], we find out that y pathwise almost surely
solves the deterministic non-autonomous parabolic equationy′(t) = [div(a(u(t))∇y(t)) + div(G(u(t))) + div((a(u(t))− I)∇z(t)), t ∈ [0, τ ]

y(0) = u0.

(3.2.6)
Note that any solution of this equation in L2(0, τ ;W 1,2

0 (D)) is unique by a classical result
of Lions for non-autonomous evolution equations governed by forms (see e.g. [90], Chapter
III, Proposition 2.3).

As a next step, we prove that this equation has deterministic maximal Lp-regularity. We
estimate

‖div(a(u(t))∇x)− div(a(u(s))∇x)‖W−1,q(D) ≤ ‖(a(u(t))− a(u(s)))∇x‖Lq(D)

≤ sup
x∈D
|a(u(t, x))− a(u(s, x))|‖x‖W 1,q

0 (D)

. sup
x∈D
|u(t, x)− u(s, x)|‖x‖W 1,q

0 (D)
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and since u is pathwise almost surely uniformly continuous on [0, τ ]×D (see Lemma 3.2.16),
the mapping [0, τ ] 3 t 7→ div(a(u(t))∇) ∈ B(W 1,q

0 (D),W−1,q(D)) is almost surely contin-
uous. Moreover, as we have seen in Lemma 3.2.10, the operator div(a(u(t))∇) has al-
most surely for fixed t ∈ [0, τ ] a bounded H∞-calculus on W−1,q(D) and its domain is
given by W 1,q

0 (D). Therefore, we can apply [86], Theorem 2.5 and obtain almost surely
the maximal Lp-regularity of the non-autonomous equation (3.2.6). Moreover, we both have
div(G(u)) ∈ Lp(0, τ ;W−1,q(D)) and div((a(u)−I)∇z) ∈ Lp(0, τ ;W−1,q(D)). Indeed, [GD6]

and the regularity of z together with [GD2] imply

‖div(G(u))‖Lp(0,τ ;W−1,q(D)) . ‖G(u)‖Lp(0,τ ;Lq(D)) . 1 + ‖u‖Lp(0,τ ;Lq(D)),

‖ div((a(u)− I)∇z)‖Lp(0,τ ;W−1,q(D)) . ‖(a(u)− I)∇z‖Lp(0,τ ;Lq(D) . ‖z‖Lp(0,τ ;W 1,q
0 (D)).

As a consequence of maximal regularity, we get

‖y‖Lp(0,τ ;W 1,q
0 (D)) + ‖y‖

C(0,τ ;B
1−2/p
q,p,0 (D))

≤ CMR

(
‖ div(G(u))‖Lp(0,τ ;W−1,q(D)) + ‖ div((a(u)− I)∇z)‖Lp(0,τ ;W−1,q(D))

)
. 1 + ‖u‖Lp(0,τ ;Lq(D)) + ‖z‖Lp(0,τ ;W 1,q

0 (D))

and thus y ∈ Lp(0, τ ;W 1,q
0 (D)) ∩ C(0, τ ;B

1−2/p
q,p,0 (D)) almost surely. With the unique solv-

ability in L2(0, τ ;W 1,2
0 (D)) and u = y + z one sees that u is also pathwise almost surely

in the space Lp(0, τ ;W 1,q
0 (D)) ∩ C(0, τ ;B

1−2/p
q,p,0 (D)). Hence the blow-up alternative from

Theorem 3.2.12 yields τ = T almost surely, which is the desired result.

Last but not least, we have to deal with arbitrary initial values u0 : Ω → B
1−2/p
q,p,0 (D).

Defining Λn := {‖u0‖B1−2/p
q,p,0 (D)

< n} and the truncated initial values u(n)
0 := u01Λn , we can

apply the result we derived above and we get global solutions un of (GDIV) to the initial
value u(n)

0 that pathwise almost surely satisfy un ∈ Lp(0, T ;W 1,q
0 (D))∩C(0, T ;B

1−2/p
q,p,0 (D)).

By Corollary 2.3.8, the solutions un and um coincide on Λn∧m and therefore the pointwise
limit v = limn→∞ un is a well-defined adapted process. Moreover, since for almost all ω ∈ Ω

there is an n(ω) such that v(ω, ·) = un(ω)(ω, ·), v solves (GDIV) and has almost surely the
claimed regularity. However, by maximal uniqueness of the solution (u, τ), we must have
τ = T and u(t) = v(t) almost surely for every t ∈ [0, T ].

The reader may ask, why we could not prove

u ∈ Lp(Ω× [0, T ];W 1,q
0 (D)) ∩ Lp(Ω;C(0, T ;B

1−2/p
q,p,0 (D)))

under the additional assumption u0 ∈ Lp(Ω;B
1−2/p
q,p,0 (D)). This is due to the maximal regu-

larity result for non-autonomous deterministic equations we used. The maximal regularity
constant CMR highly depends on the modulus of continuity of the coefficient function which
is in our case given by a(u(ω, t, x)). Therefore, CMR depends on the modulus of continuity
of u itself, but this one differs from path to path and cannot be controlled uniformly in ω.
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So, the best estimate, we can achieve is

‖u(ω, ·)‖Lp(0,T ;W 1,q
0 (D)) = ‖y(ω, ·) + z(ω, ·)‖Lp(0,T ;W 1,q

0 (D))

≤ CCMR(ω)
(
1 + ‖u(ω, ·)‖Lp(0,τ ;Lq(D)) + ‖z(ω, ·)‖Lp(0,τ ;W 1,q

0 (D))

)
for almost ω ∈ Ω, but it is impossible to control ‖u‖Lp(Ω×[0,T ];W 1,p

0 (D)) in this way. One
would need a significantly stronger result on maximal Lp- regularity for non-autonomous
deterministic equations with CMR only depending on the upper bound and the ellipticity
constant of the coefficient function a(u(ω, t, x)). Unfortunately, such a result is only known
for p = 2 by a classical result of Lions and for p ∈ [2 − ε, 2 + ε] for some small ε > 0 by a
recent result of Disser, ter Elst and Rehberg (see [31], Proposition 6.3). This can be used to
prove at least

u ∈ Lp(Ω;Lr1(0, T ;W 1,r2
0 (D)))

for r1, r2 ∈ [2− ε, 2 + ε].

3.3. The incompressible Navier-Stokes system for genera-

lised Newtonian fluids

We now deal with a quasilinear stochastic model in fluid dynamics. This example is inspired
by Bothe and Prüss, who treated the same model in a deterministic setting (see [18]).

Throughout this section the divergence of a d × d matrix T is a vector field defined by
(div T )i =

∑d
k=1 ∂kTik and ∇f is the Jacobian of the vector field f.We start with a universal

model for fluids, namely

(FM)



du(t) = [−(u(t) · ∇)u(t) + divS(t) + f(t)] dt+ [B(u)(t)−∇p̃] dW (t), t ∈ [0, T ],

S(t) = µ̃(t)− p(t)I, t ∈ [0, T ],

div u(t) = 0, t ∈ [0, T ],

u(0) = u0.

Here, u : [0, T ] × Rd → Cd is the macroscopic velocity. In this model the density ρ of a
perfect fluid is assumed to be constant and can therefore be chosen identically one. Together
with the continuity equation

∂tρ(t, x) + div u(t, x) = 0,

that holds in every mechanical model, this results in the restriction div(u(t)) = 0. Moreover,
as in every perfect fluid, the total stress tensor S : [0, T ]×Rd → Cd×d is a sum of the viscous
stress µ̃ : [0, T ]× Rd → Cd×d and the hydrostatic pressure pI, where p is scalar-valued.

In the following, we discuss generalised Newtonian fluids that are characterised by the as-
sumption µ̃ = 2µ(|E|22)E , where E = 1

2 (∇u+∇uT ) is the symmetrised derivative of the veloc-
ity, the so called rate-of-strain tensor and | · |2 is the Hilbert-Schmidt norm on Cd×d. There
are many examples for this model, e.g. the Ostwald-de-Waele power-law µ(s) = µ0s

m/2−1
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for m ≥ 1 and µ0 > 0, the Carreau model µ(s) = µ0(1 + s)m/2−1 or the truncated Spriggs
law µ(s) = µ0s

m/2−11[s0,∞)(s) for some s0 > 0. For details about generalised Newtonian
fluids, we refer to Chapter 5 in the monograph of Armstrong, Bird and Hassager ([17]). Last
but not least, we would like to mention that a noise perturbation was discussed several times
in case of Newtonian fluids with µ̃ = µ0E (see e.g. [20], [76] and [96]). We want to generalise
these results to the quasilinear case. However, we must admit that we cannot deal with the
Kreichnan model of turbulence which is a noise perturbation of the form (σ · ∇)u with a
small enough (σn)n ⊂ l2(N). The reason for this is the same as in Section 3.1 and we briefly
described this problem below Theorem 3.1.5.

As a first step, we derive a quasilinear evolution equation from (FM). Using the product
rule and div(u) = 0, we calculate

( divS)i = div
(
µ(|E|22)2E − pI

)
i

=
(
µ(|E|22) div(2E) + µ′(|E|22)∇(|E|22) · 2E

)
i
− ∂ip

= µ(|E|22)

d∑
k=1

(
∂k∂iuk + ∂2

kui
)

+ µ′(|E|22)

d∑
j,k,l=1

(∂lui + ∂iul)(∂kuj + ∂juk)∂k∂luj − ∂ip

= µ(|E|22)

d∑
k=1

∂2
kui + µ′(|E|22)

d∑
j,k,l=1

(∂lui + ∂iul)(∂kuj + ∂juk)∂k∂luj − ∂ip.

All in all, we get the quasilinear system
du(t) = [−A(u(t))u(t)−∇p(t)− (u(t) · ∇)u(t) + f(t)] dt+ [B(u)(t)−∇p̃] dW (t),

div u(t) = 0,

u(0) = u0

with

(A(z)u)i = −µ(|∇z+∇z
T

2 |22)

d∑
k=1

∂2
kui − µ′(|∇z+∇z

T

2 |22)

d∑
j,k,l=1

(∂lzi + ∂izl)(∂kzj + ∂jzk)∂k∂luj .

We consider this equation in Lp(Rd)d and as usual in the context of fluid dynamics, we use
the Helmholtz decomposition

Lq(Rd)d = Lqσ(Rd)⊕∇W 1,q(Rd),

where Lqσ(Rd) = {f ∈ Lq(Rd)d : div(f) = 0}. Note that this decomposition exists for all
q ∈ (1,∞) and induces the bounded Helmholtz projection P : Lq(Rd)d → Lqσ(Rd). Applying
P yields the evolution equation

(QNS)

du(t) = [−PA(u(t))u(t)− P (u(t) · ∇)u(t) + Pf(t)] dt+ PB(u)(t) dW (t),

u(0) = u0

in Lqσ(Rd) for the velocity u.

In the following, we use the abbreviations Bsq,p,σ(Rd) := {f ∈ Bsq,p(Rd)d : div(f) = 0}
and W s,q

σ (Rd)d := {f ∈ W s,q(Rd) : div(f) = 0}. We treat (QNS) under the following
assumptions.
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[QN1] Let µ : R≥0 → R>0 be continuously differentiable such that µ and µ′ are locally
Lipschitz continuous, i.e. for every n ∈ N there exists C(n) > 1 such that

|µ′(x)− µ′(y)|+ |µ(x)− µ(y)| ≤ C(n)|x− y|

for all 0 ≤ x, y ≤ n. Moreover, we assume µ(s) + 2sµ′(s) > 0 for all s ≥ 0.

[QN2] We choose p, q ∈ (2,∞) such that 1− 2/p > d/q.

[QN3] The initial value u0 : Ω→ B
2−2/p
q,p,σ (Rd) is a strongly F0- measurable random variable.

[QN3] The driving noise W is an l2- cylindrical Brownian motion of the form

W (t) =

∞∑
k=1

ekβk(t),

where (ek)k is the standard orthonormal basis of l2 and (βk)k is a sequence of inde-
pendent real-valued Brownian motions relative to the filtration (Ft)t∈[0,T ].

[QN4] The nonlinearity (PBn)n is chosen in such a way that it satisfies [Q7*] together with
[Q9*] in the setting [TT].

[QN5] f ∈ Lp(Ω× [0, T ];Lq(Rd)d) is strongly measurable and F-adapted.

We want to apply Theorem 2.3.12 in the setting [TT] with E = Lqσ(Rd), E1 = W 2,q
σ (Rd)

and H = l2(N). The trace space TR is then given by (E,E1)1−1/p,p = B
2−2/p
q,p,σ (Rd). Due

to our assumptions, [TTQ1], [Q7*] and [Q8] are directly fulfilled. We now check [Q4*], i.e.
we have to prove that PA(z) has for every z ∈ B2−2/p

q,p,σ (Rd) a bounded H∞-calculus. In the
following Proposition, we restate a result of Bothe and Prüss (see [18], proof of Theorem
4.1). Unlike Bothe and Prüss we need the precise dependence of all involved constants from
z. Therefore, we need an additional argument.

Lemma 3.3.1. We assume [QN1] and [QN2]. Then, for every z ∈ B2−2/p
q,p,σ (Rd), there exists

γ > 0, θ ∈ [0, π/2) such that the operator γ+PA(z) has the domain W 2,q
σ (Rd) and such that

it is R-sectorial in Lqσ(Rd) on the sector Σθ. Moreover, γ, θ, the bound Cν > 0 in

R
({
λR
(
λ, γ + PA(z)

)}
⊂ B(Lqσ(Rd))

)
≤ Cν

for given ν > θ and the constant M > 0 in

M−1‖(γ + PA(z))x‖Lqσ(Rd) ≤ ‖x‖W 2,q
σ (Rd) ≤M‖(γ + PA(z))x‖Lqσ(Rd)

for all x ∈W 2,q
σ (Rd) only depend on ‖z‖

B
2−2/p
q,p,σ (Rd)

, p, q and on the constants from [QN1].

Proof. Bothe and Prüss derive from [QN1] the strong ellipticity of A(z) (see [18], page 385).
In our case, A(z) only depends on ∇z ∈ B1− 2

p
q,p (Rd)d×d. Thus, it is sufficient to show that

given u ∈ Cα(Rd)d2 ∩ Lq(Rd)d2

for some α > 0 and a strongly elliptic operator of the form
B(u) = −

∑
|β|=2 bβ(u)Dβ with locally Lipschitz continuous coefficients bβ : Cd2 → Cd×d,

the statement from above holds true with PA(·) replaced by PB(·) and θ, Cν , M and
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µ only depend on ‖u‖α and on ‖u‖Lq(Rd)d2 . The claimed result then follows directly by

∇z ∈ B1− 2
p

q,p (Rd)d×d and the Sobolev embedding

B1−2/p
q,p (Rd)d×d ↪→ Cα(Rd)d

2

∩ Lq(Rd)d
2

for some α ∈ (0, 1).

Note that Bothe and Prüss prove in [18], Section 5, that γ + PB(u) has the maximal
regularity property in Lqσ(Rd) and that the domain of γ+PB(u) is given byW 2,q

σ (Rd). This
implies the R-sectoriality of γ + PB(u) (see [102], Theorem 4.2).

We can follow the argument of Bothe and Prüss step by step, we just have to argue that
the spectral shift γ̃, the constant M̃ in

M̃−1‖(γ̃ + PB(u))x‖Lqσ(Rd) ≤ ‖x‖W 2,q
σ (Rd) ≤ M̃‖(γ̃ + PB(u))x‖Lqσ(Rd)

and the maximal regularity constant of γ̃ + PB(u) only depend on ‖u‖α, ‖u‖Lq(Rd)d2 and
on the ellipticity and the local Lipschitz constants of B.

In [18], Theorem 5.1 Bothe and Prüss start with a constant coefficient elliptic operator B̃.
They prove that PB̃ has the maximal regularity property, that the domain of PB̃ is given by
W 2,q
σ (Rd) and that all the involved estimates only depend on the bound and the ellipticity of

the symbol of B̃. In Corollary 5.2 in the same article, they show that one still has maximal
regularity, if one perturbs B̃ with functions, whose supremum is smaller than some η > 0.

This η also only depends on the ellipticity and the bound of the symbol of B̃.

To deal with PB(u), their idea is to use the uniform continuity of bβ(u) and convergence
at infinity to choose a radius δ > 0 and finitely many balls B(xi, δ), such that we have
|bβ(u(x))− bβ(u(xi))| < η for all x ∈ B(xi, δ) and |bβ(u(x))− bβ(0)| < η for x /∈ ∪iB(xi, δ).
Then, they localise the equation with a partition of unity subordinate to these balls, solve
locally and put the local solutions together. Closely inspecting their proof it turns out that
M , γ and the maximal regularity constant only depend on the ellipticity and the supremum
of the symbol of B(u) and on the number of balls needed in this argument. The ellipticity
of the symbol is fixed by [QN1] and the supremum can be controlled by ‖u‖Cα(Rd)d×d and
C(n) from [QN1]. So, it remains to estimate the number of balls by a quantity that can be
controlled by ‖u‖α and ‖u‖Lq(Rd)d2 .

Fix u ∈ Cα(Rd)d2 ∩ Lq(Rd)d2

and by the local Lipschitz continuity of bβ , there exists
C(‖u‖∞) > 1 such that we have

|bβ(x)− bβ(y)| ≤ C(‖u‖∞)|x− y|

for all |x|, |y| ≤ ‖u‖∞.We divide Rd in the two disjoint subsets
{
|u| ≥ η

2C(‖u‖∞)

}
and {|u| <

η
2C(‖u‖∞)} and we define δ :=

(
η

6‖u‖αC(‖u‖∞)

)1/α
. The set

{
|u| ≥ η

2C(‖u‖∞)

}
is closed and

bounded and hence compact. Then, by Vitali’s covering Lemma (see e.g. [41], Lemma 2.1.5),
there are disjoint balls (B(xi, δ))i=1,...,N with radius δ and centre xi ∈

{
|u| ≥ η

2C(‖z‖∞)

}
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such that {
|u| ≥ η

2C(‖u‖∞)

}
⊂

N⋃
i=1

B(xi, 3δ).

The balls (B(xi, 3δ))i=1,...,N are the sets we are looking for. Indeed, for x /∈ ∪Ni=1B(xi, 3δ),

we have |u(x)| ≤ η
2 and for x, y ∈ B(xi, 3δ), we have

|bβ(u(x))− bβ(u(y))| ≤ C(‖u‖∞)‖u‖α(3δ)α ≤ 3αη
6 ≤

η
2 .

It remains to estimate the size of N. We have

∪Ni=1B(xi, δ) ⊂
{
|u| > η

4C(‖u‖∞)

}
.

Indeed, given y ∈ B(xi, δ) there is i = 1, . . . , N, such that

|u(y)| ≥ |u(xi)| − |u(xi)− u(y)| ≥ η
2C(‖u‖∞) − ‖u‖αδ

α = η
2C(‖u‖∞) −

η
6C(‖u‖∞) = η

3C(‖u‖∞) .

Consequently, using that the B(xi, δ) are disjoint, we get

CdNδ
d =

∣∣∣ N⋃
i=1

B(xi, δ)
∣∣∣ ≤ ∣∣∣{|u| > η

4C(‖u‖∞)

}∣∣∣ ≤ 4qC(‖u‖∞)q‖u‖q
Lq(Rd)d2

ηq

with Chebyshev’s inequality, where Cd is the volume of the unit sphere in Rd. This finally
yields

N ≤
4q6

d
α ‖u‖q

Lq(Rd)d2‖u‖
d
α
α C(‖u‖∞)

d
α+q

Cdηq+
d
α

,

which finishes the proof.

Next, we conclude that the operators γ + PA(z) also have a bounded H∞-calculus. Our
proof of [TTQ3*] adapts the arguments of [53], Proposition 9.5 to our situation. A key
ingredient is Sneiberg’s Lemma.

Lemma 3.3.2. Let (Xθ)θ∈(0,1) and (Yθ)θ∈(0,1) be complex interpolation scales of Banach
spaces and let S : Xθ → Yθ for each θ ∈ (0, 1) be a bounded linear operator. If S is for some
θ0 ∈ (0, 1) an isomorphism between Xθ0 and Yθ0 , then there is a δ ∈ (0, 1) such that S is also
an isomorphism between Xµ and Yµ for µ ∈ (θ0 − δ, θ0 + δ). In particular, ‖S−1‖B(Yµ,Xµ)

depends on ‖S‖B(Xµ,Yµ), ‖S‖B(Xθ0 ,Yθ0 ), ‖S−1‖B(Yθ0 ,Xθ0 ) and |µ− θ0|.

A proof can be found in [101], Theorem 3.6. The precise dependence of ‖S−1‖B(Yµ,Xµ) on
the other parameters, namely

‖S−1‖B(Yµ,Xµ) ≤ ‖S‖B(Xµ,Yµ)

‖S−1‖B(Yθ0 ,Xθ0 ) − ‖S‖B(Xθ0 ,Yθ0 )|µ− θ0|
‖S‖B(Xθ0 ,Yθ0 ) − ‖S−1‖B(Yθ0 ,Xθ0 )|µ− θ0|

for |µ− θ0| small enough is stated in Theorem 2.3 in the same article. The original proof is
due to Sneiberg (see [91]) in Russian language.
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Proposition 3.3.3. Given z ∈ B2−2/p
q,p,σ (Rd), the operator

u 7→ Λ(z)u := γu+ PA(z)u : W 2,q
σ (Rd)→ Lqσ(Rd)

is invertible with

M−1‖Λ(z)x‖Lqσ(Rd) ≤ ‖x‖W 2,q
σ (Rd) ≤M‖Λ(z)x‖Lqσ(Rd),

for all x ∈ W 2,q
σ (Rd). Moreover, Λ(z) has a bounded H∞(Σθ)-calculus and the angle θ ∈

(0, π/2), the spectral shift γ, M and the constant C > 0 in

‖f(Λ(z))‖B(Lqσ(Rd)) ≤ C‖f‖∞

only depend on ‖z‖
B

2−2/p
q,p,σ (Rd)

, p, q and on the constants from [QN1]. In particular, Λ(z)

satisfies [TTQ2*] and [TTQ3*] of the previous section.

Proof. By Lemma 3.3.1 Λ(z) = γ + PA(z) is invertible and R-bounded on Lqσ(Rd) on a
sector Σθ, θ ∈ [0, π/2) and the occurring constants have the claimed dependency. It remains
to show that Λ(z) has a bounded H∞-calculus.

Let (rn)n be a sequence of independent Rademacher random variables, ν ∈ (θ, π) and
(λj)j∈N ⊂ Σν be a dense sequence. For η ∈ R, we define the norms

‖(uj)j‖Xη : = E‖
∞∑
j=1

rjuj‖Wη+2,q
σ (Rd) + E‖

∞∑
j=1

rjλjuj‖Wη,q
σ (Rd)

‖(uj)j‖Yη : = E‖
∞∑
j=1

rjuj‖Wη,q
σ (Rd)

and the spaces

Xη :=
{

(uj)j ⊂W η+2,q
σ (Rd) : ‖(uj)j‖Xη <∞

}
Yη :=

{
(uj)j ⊂W η,q

σ (Rd) : ‖(uj)j‖Yη <∞
}
.

Both (Xη)η∈R and (Yη)η∈R form complex interpolation scales. We define the operator

Sη : Xη → Yη, (fj)j 7→
(
λj − Λ(z))fj

)
j
.

Due to its Hölder continuous coefficients, the operator Λ(z) : W η+2,q
σ (Rd) → W η,q

σ (Rd) is
bounded if |η| < δ for some δ > 0 small enough. In particular, Sη is bounded for |η| < δ.

The R-sectoriality of Λ(z) on Lqσ(Rd) implies that S0 is an isomorphism with S−1
0 (uj)j =(

(λj − Λ(z))−1uj
)
j
. By the previous Lemma, ‖S0‖B(X0,Y0), ‖S−1

0 ‖B(Y0,X0) only depend on
the ellipticity and the Hölder norm of the coefficients and hence they are determined by
‖z‖

B
2−2/p
q,p,σ (Rd)

. By Sneiberg’s Lemma, there exists β > 0 such that S : X−β → Y−β is
an isomorphism and the size of β and ‖S−1‖B(Y−β ,X−β) depend on µ and ‖z‖

B
2−2/p
q,p (Rd)

.

Especially, we have

E‖
∞∑
j=1

rjλj(λj − Λ(z))−1uj‖W−β,qσ (Rd) ≤ ‖S
−1
−β‖B(Y−β ,X−β)E‖

∞∑
j=1

rjuj‖W−β,qσ (Rd).
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This proves the R-sectoriality of Λ(z) on W−β,qσ (Rd) with domain W 2−β,q
σ (Rd). Indeed, let

(λ̃j)
N
j=1 ⊂ C \ Σν and λ(n)

j ∈ (λk)k, n ∈ N, j = 1, . . . , N, such that λ(n)
j → λ̃j as n → ∞.

Then, by Fatou and the holomorphicity of the resolvent, we have

E‖
N∑
j=1

rj λ̃jR(λ̃j ,Λ(z))fj‖W−β,qσ (Rd) ≤ lim inf
n→∞

E‖
N∑
j=1

rjλ
(n)
j R(λ

(n)
j ,Λ(z))fj‖W−β,qσ (Rd)

≤ ‖S−1
−β‖B(Y−β ,X−β)E‖

N∑
j=1

rjfj‖W−β,qσ (Rd)

for every (fj)
N
j=1 ⊂W−β,qσ (Rd).

If we now apply Corollary 7.8 in [54], we get that Λ(z) has a bounded H∞(Ση) calculus
on the space 〈W−β,pσ (Rd),W 2−β,p

σ (Rd)〉β/2. Here 〈·, ·〉η denotes Rademacher interpolation.
Working through the proof of Corollary 7.8 one sees that the bound of the calculus only
depends on the size of |β| and on ‖S−1

−β‖B(Y−β ,X−β). It remains to identify the Rademacher
interpolation space. Since the Helmholtz projection P commutes with I − ∆ and I − ∆

has a bounded H∞-calculus on Wα,p(Rd)d for every α ∈ R, p ∈ (1,∞), this is also true
for P (I − ∆) = I − ∆ on Wα,p

σ (Rd). In this case, by Lemma 7.4 in [53], the Rademacher
interpolation spaces and the complex interpolation spaces coincide. This finally implies

〈W−β,qσ (Rd),W 2−β,q
σ (Rd)〉β/2 =

(
W−β,qσ (Rd),W 2−β,q

σ (Rd)
)
β/2

= Lqσ(Rd)

which completes the proof.

It remains to check the locally Lipschitz continuity of the quasilinear part, [TTQ4*], and
the locally Lipschitz continuity of the semilinear part, [Q6*]. Let y, z ∈ B2−2/p

q,p,σ (Rd) with
‖y‖

B
2−2/p
q,p,σ (Rd)

, ‖z‖
B

2−2/p
q,p,σ (Rd)

≤ n and u ∈W 2,q
σ (Rd). Recall that

A(z)u = −µ(|∇z+∇z
T

2 |22)

d∑
k=1

∂2
kui − µ′(|∇z+∇z

T

2 |22)

d∑
j,k,l=1

(∂lzi + ∂izl)(∂kzj + ∂jzk)∂k∂luj .

With the Sobolev embedding B2−2/p
q,p,σ (Rd) ↪→ C1

b (Rd)d, we estimate

‖PA(y)u− PA(z)u‖Lqσ(Rd)

≤
(
‖µ(|∇y+∇yT

2 |22)− µ(|∇z+∇z
T

2 |22)‖L∞(Rd)

+ ‖µ′(|∇y+∇yT
2 |22)− µ′(|∇z+∇z

T

2 |22)‖L∞(Rd)‖∇y‖2L∞(Rd)d×d

+ ‖µ′(|∇y+∇yT
2 |22)‖L∞(Rd)‖∇y‖L∞(Rd)d×d‖∇y −∇z‖L∞(Rd)d×d

)
‖u‖W 2,q

σ (Rd)

≤C
(
‖y‖L∞σ (Rd), ‖z‖L∞σ (Rd), ‖∇y‖L∞(Rd)d×d , ‖∇z‖L∞(Rd)d×d

)
‖∇y −∇z‖L∞(Rd)d×d‖u‖W 2,q

σ (Rd)

≤C(n)‖y − z‖
B

2−2/p
q,p,σ (Rd)

‖u‖W 2,q
σ (Rd).

Next, we estimate the semilinear part. Let u, v ∈W 2,q
σ (Rd). Again using a Sobolev embed-
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ding, we get

‖P (u · ∇)u− P (v · ∇)v‖Lqσ(Rd)

≤ ‖((u− v) · ∇)u‖Lq(Rd)d + ‖(v · ∇)(u− v)‖Lq(Rd)d

≤ ‖u− v‖L∞(Rd)d‖∇u‖Lq(Rd)d×d + ‖v‖L∞(Rd)d‖∇u−∇v‖Lq(Rd)d×d

≤
(
‖u‖

B
2−2/p
q,p,σ (Rd)

+ ‖v‖
B

2−2/p
q,p,σ (Rd)

)
‖u− v‖

B
2−2/p
q,p,σ (Rd)

.

Applying Proposition 2.3.9 we see that this estimate is sufficient to fulfil [Q6*]. All in all,
we proved that (z, u) 7→ PA(z)u satisfies [TTQ4*] and u 7→ P (u ·∇)u satisfies [Q6*]. Hence,
Theorem 2.3.12 can be applied to the equation

(QNS)

du(t) = [−PA(u(t))u(t)− P (u(t) · ∇)u(t) + Pf(t)] dt+ Pg(u,∇u) dW (t),

u(0) = u0.

This yields a maximal unique local strong solution (u, (τn)n, τ) of (3.3) with

u ∈ Lp(0, τn;W 2,q
σ (Rd)) ∩ C(0, τn;B2−2/p

q,p,σ (Rd)) ∩W θ,p(0, τn;W 2−2θ,q
σ (Rd))

almost surely for every θ ∈ (0, 1
2 ) and for every n ∈ N. Moreover, τ satisfies

P
{
τ < T, ‖u‖Lp(0,τ ;W 2,q

σ (Rd)) <∞, u : [0, τ)→ B2−2/p
q,p,σ (Rd) is uniformly continuous

}
= 0.

Finally, we want to remark that we do not know, whether we could also use the setting [LQ]

or not. We would need that the operators A(z) have an Rq-bounded H∞-calculus and we
failed to show this property. The setting [GM] is not applicable in this situation, due to
the fact that here TR is given by W 1,2

σ (Rd) and hence a Sobolev embedding of the form
TR ↪→W 1,∞

σ (Rd) cannot hold. Consequently, we cannot show the local Lipschitz continuity
of y 7→ PA(y)u in the same way as above.





CHAPTER 4

A nonlinear stochastic Maxwell equation with retarded

material law

In this chapter, we consider the semilinear stochastic Maxwell equationdu(t) =
[
Mu(t)− |u(t)|qu(t) + (G ∗ u)(t) + J(t)

]
dt+

[
B(t, u(t)) + b(t)

]
dW (t),

u(0) = u0

(4.0.1)
in L2(D)6 = L2(D)3 × L2(D)3 driven by a cylindrical Brownian motion W (t) with the
retarded material law

(G ∗ u)(t) =

∫ t

0

G(t− s)u(s) ds

and the perfect conductor boundary condition u1×ν = 0 on ∂D. Here, the Maxwell operator
is given by

M

(
u1

u2

)
=

(
curlu2

− curlu1

)
for 3d vector fields u1 and u2. We consider a bounded domain D or the full space D = R3,
obviously in this case the boundary condition drops.

This equation is a model for a stochastic electromagnetic system in weakly-nonlinear chiral
media and was derived in Chapter 2 in [88]. It has its origin in the deterministic Maxwell
system ∂t(Lu(t)) = Mu(t) + J(t), t ∈ [0, T ]

u(0) = u0

with constitutive relation

Lu(t, x) = κ(x)u(t, x) +

∫ t

0

K1(t− s, x)u(s, x) ds+

∫ t

0

K2(t− s, x)|u(s, x)|qu(s, x) ds.

This material law consists of an instantaneous part κu with a hermitian, uniformly positive
definite and uniformly bounded matrix κ : D → C6×6, a linear dispersive part K1 ∗ u and a
nonlinear dispersive part K2 ∗ |u|qu. This power-type nonlinearity is motivated by the Kerr-
Debye model. Note that in applications one would either take the nonlinearity |u1|qu1 or

115
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|u2|qu2 to model either nonlinear polarisation or magnetisation. We take the two quantities
to study both phenomena at once. Using the product rule, we end up withκu′ = Mu−K1(0)u−K2(0)|u|qu− (∂tK1) ∗ u− (∂tK2) ∗ |u|qu+ J,

u(0) = u0.

At this point, we introduce additional simplifications. Usually, one demands K1(0) : D →
C6×6 to be bounded and positive semi-definite and K2(0) : D → C6×6 to be bounded and
uniformly positive definite. But for sake of simplicity, we choose K1(0) ≡ 0 and K2(0) ≡ I.
However, the results are unchanged by this simplification and the proofs could be adjusted
easily. Next, we assume that the term (∂tK2) ∗ |u|qu can be neglected. This is typical for
a weakly nonlinear medium since one assumes that both the dispersion and the nonlinear
effects are weak.So, the combination satisfies (∂tK2) ∗ |u|qu << K2(0)|u|qu. Although, this
simplification seems to be motivated physically, we want to point out that our method cannot
deal with such a nonlinear term since it destroys the monotone structure of the equation.
Moreover, we choose κ = I. We must admit that this simplification is also necessary at
this point since our methods cannot deal with coefficients so far. The problems one has
to overcome if κ 6= I are discussed in section 4.4 in detail. Setting G := −∂tK1, we get a
deterministic version of equation (4.0.1).

In many applications, there is some uncertainty concerning the external sources or the precise
behaviour of the medium itself. In these cases, it is useful to model u as a random variable on
a probability space Ω and to impose a stochastic noise perturbation. Here, one distinguishes
between the additive noise b perturbing J and the multiplicative noise B(u) perturbing the
medium. A linear stochastic version of (4.0.1) was already discussed in [88], chapter 12.

However, as far as we know, there are no known results about a nonlinear stochastic Maxwell
equation. One reason might be that in the absence of Strichartz estimates for (etM )t∈R, even
local solvability is a tricky issue. Moreover, there is no compact embedding D(M) ↪→ Lp

that helps to control the nonlinearity. Even the deterministic version of (4.0.1) has not
been treated rigorously so far. In [88], the authors profess to prove well-posedness, but their
argument ignores some severe complications. Since they claim to have better deterministic
results than ours, we discuss their approach in section 4.4 in detail.

4.1. The Hodge-Laplacian on a bounded C1-domain and

its spectral multipliers

In this section, we provide the spectral theory basics for our well-posedness proofs. We
discuss spectral multipliers of the Hodge-Laplacian ∆H which is the componentwise Laplace
operator on Lp(D)6 with boundary conditions comparable to the boundary conditions con-
tained in D(M2). The method of finite dimensional approximation with a sequence of
orthogonal projections (Pn)n is well-known in the literature about stochastic and determin-
istic partial differential equations. However, it turned out that we not only need Pnx → x
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in L2(D)6 for n → ∞ for all x ∈ L2(D)6, but also a comparable convergence property
in Lp(D)6, p 6= 2. A sequence of orthogonal projections on L2 that also approximates the
identity in Lp can only be found in very special situations, e.g. the Fourier cut-off on the
torus. Hence, we have to construct another sequence of operators (Sn)n that has the nec-
essary convergence property in Lp(D)6, p ∈ (1,∞), and that is not far away from being an
orthogonal projection, i.e. R(Sn−1) ⊂ R(Pn) ⊂ R(Sn) for all n ∈ N. In our construction, we
make use of the spectral multiplier theorems of Kunstmann and Uhl (see [68]) that work on
Lp(D)6. They require that the semigroup generated by ∆H satisfies generalised Gaussian
bounds. Here, we benefit from a work of Mitrea and Monniaux who already showed a version
of these tricky estimates in [78].

At first, we precisely introduce ∆H . We consider the bilinear form

a(u, v) =

∫
D

(curlu)(x) · (curl v)(x) dx+

∫
D

(div u)(x)(div v)(x) dx

with form domain D(a) either given by V (1) := W 2(curl, 0)(D)∩W 2(div)(D) or by V (2) :=

W 2(curl)(D) ∩W 2(div, 0)(D) equipped with the norm

‖u‖2V (i) := ‖ curlu‖2L2(D) + ‖ div u‖2L2(D) + ‖u‖2L3(D)

for i = 1, 2. In both cases the form a is bilinear, symmetric and bounded. Moreover, a is
coercive in the sense that

a(u, u) = ‖u‖2V (i) − ‖u‖2L2(D)

for all u ∈ V (i), i = 1, 2. Setting

D(A(1)) = {u ∈ V (1) : curl curlu ∈ L2(D)3, div u ∈W 1,2
0 (D)},

D(A(2)) = {u ∈ V (2) : curl curlu ∈ L2(D)3, curlu× ν = 0 on ∂D, div u ∈W 1,2(D)},

it turns out that a with D(a) = V (1) is associated with the operator

A(1) = curl curl− grad div = −∆

on the domain D(A(1)), whereas a with D(a) = V (2) is associated with the operator

A(2) = curl curl− grad div = −∆

on the domain D(A(2)). To see this, use integration by parts for curl and div and exploit the
respective boundary conditions. In a more general setting, this can be found in [78], (3.17)

and (3.18). By the coercivity of the corresponding forms, the operators I + A(i), i = 1, 2,
are strictly positive. Moreover, the symmetry implies that they are self-adjoint on L2(D)3

(see e.g. [81], Proposition 1.24.). Since the embeddings V (i) ↪→ L2(D)3 are compact (see
[7], Theorem 2.8), the embeddings D(A(i)) ↪→ L2(D)3 are also compact for i = 1, 2.

To simplify the notation in what follows, we combine A(1) and A(2) to a self-adjoint operator
−∆H(u1, u2) := (A(1)u1, A

(2)u2) for (u1, u2) ∈ D(A(1))×D(A(2)) =: D(∆H). In particular,
the embedding D(∆H) ↪→ L2(D)6 is compact and I −∆H is positive. Hence, there exists
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an orthonormal basis of eigenvectors (hj)j∈N to the positive eigenvalues (λj)j∈N of I −∆H

with λj →∞ for j →∞.

The next proposition shows that the semigroups generated by −A(i) and ∆H satisfy gener-
alised Gaussian estimates. We add an additional spectral shift since some of the theorems
we apply in what follows require strictly positive operators.

Proposition 4.1.1. The semigroups generated by −(I + A(1)), −(I + A(2)) and −I + ∆H

satisfy generalised Gaussian (2, q) estimates for every q ∈ [2,∞), i.e. for every q ∈ [2,∞)

there exist C, b > 0 such that

‖1
B(x,t

1
2 )
e−t(I+A

(i))1
B(y,t

1
2 )
‖B(L2(D)3,Lq(D)3) ≤ Ct−

3
2 ( 1

2−
1
q )e−

b|x−y|2
t , i = 1, 2,

‖1
B(x,t

1
2 )
e−t(I−∆H)1

B(y,t
1
2 )
‖B(L2(D)6,Lq(D)6) ≤ Ct−

3
2 ( 1

2−
1
q )e−

b|x−y|2
t

for all t > 0 and all x, y ∈ D.

Proof. In [67], the authors argue on page 239 that the semigroups generated by −A(1) and
−A(2) satisfy generalised Gaussian (2, q)-bounds for every q ∈ [2, qD). Here, qD ∈ [2,∞)

denotes the supremum over all indexes p for which the boundary value problems
∆u = f in D,

curlu, curl curlu ∈ Lp(D)3, div(u) ∈W 1,p(D),

u · ν = 0, curl(u)× ν = 0 on ∂D

and 
∆u = f in D,

curlu, curl curlu ∈ Lp(D)3, div(u) ∈W 1,p
0 (D),

u× ν = 0 on ∂D

have a unique solution for given f ∈ Lp(D)3. This argument heavily makes use of iterative
resolvent estimate for the Hodge-Laplacian (see [78], section 5 and 6). By [77], Theorem
1.2 and 1.3, we know that qD = ∞ since D is a C1-domain in R3. Gaussian estimates are
preserved under negative spectral shifts in the generator of the semigroup. Hence, also the
semigroups generated by −(I + A(1)) and −(I + A(2)) satisfy generalised Gaussian (2, q)-

bounds. Last but not least, we remark that by e−t(I−∆H) =
(e−t(I+A(1))

e−t(I+A
(2))

)
these estimates

also hold true for the semigroup generated by −(I −∆H).

For more details about these operators, we refer to [78], where they are discussed in a more
general differential geometric setting.

We define spectral multipliers with the functional calculus for self-adjoint operators on a
Hilbert space that have a basis of eigenvectors. Let Ψ ∈ C∞c (R) with supp(Ψ) ⊂ [ 1

2 , 2] and∑
l∈Z Ψ(2−lx) = 1 for all x > 0. The operators Pn : L2(D)6 → L2(D)6 and Sn : L2(D)6 →



4.1. The Hodge-Laplacian on a bounded C1-domain and its spectral multipliers 119

L2(D)6 are defined by

Pn(u)x = 1[0,2n](I −∆H)x =
∑

k:λk≤2n

〈x, hk〉L2(D)6hk,

Sn(u)x =

n∑
l=−∞

Ψ(2−l(I −∆H))x =

∞∑
k=1

n∑
l=−∞

Ψ(2−lλk)〈x, hk〉L2(D)6hk

for x ∈ L2(D)6 and n ∈ N. Note that the last sum is in fact finite since only finitely many
eigenvalues of (I −∆H) are smaller than 2n+1 and hence, Ψ(2−lλk) = 0 for all but finitely
many l ∈ Z and k ∈ N. The next proposition summarises the most important properties of
Sn and Pn as operators on L2(D)6.

Proposition 4.1.2. Pn and Sn satisfy the following properties.

i) Pn is a projection, i.e. we have P 2
n = Pn for all n ∈ N.

ii) The operators Pn, Sn are self-adjoint with ‖Pn‖B(L2(D)6) = ‖Sn‖B(L2(D)6) = 1 for every
n ∈ N.

iii) Pn and Sm commute for every n,m ∈ N.

iv) The ranges of Pn and Sn are finite dimensional. Moreover, we have R(Pn), R(Sn) ⊂
D(M) for every n ∈ N.

v) We have R(Sn−1) ⊂ R(Pn) ⊂ R(Sn), SnPn = Pn and PnSn−1 = Sn−1 for every
n ∈ N.

vi) We have limn→∞ Pnx = limn→∞ Snx = x for every x ∈ L2(D)6.

Proof. For this proof, we just need the properties of the functional calculus for the self-
adjoint and positive operator I −∆H on the Hilbert space L2(D)6. It remains to show iv)

and v). Pn and Sn have a finite dimensional range, since only finitely many eigenvalues of
I −∆H are smaller than 2n+1. Moreover, let y = (y1, y2) be in the range of 1[0,2n](I −∆H)

and in the range of
∑n
l=−∞Ψ(2−l(I −∆H)). By functional calculus, we have yi ∈ D(∆H)

and particularly yi ∈ V (i) for i = 1, 2. Thus, curl yi ∈ L2(D)3 for i = 1, 2 and y1 × ν = 0 on
∂D, which shows (y1, y2) ∈ D(M). Last but not least, we note that v) follows by

n∑
l=−∞

Ψ(2−l·) = 1(0,2n) + ψ(2−n·)1[2n,2n+1).

This closes the proof.

Moreover, the operators Sn have the following property that will be crucial in what follows.

Lemma 4.1.3. For every p ∈ (1,∞), the operators Sn are bounded from Lp(D)6 to Lp(D)6

with a bound depending on p, but not on n ∈ N. Moreover, we have Snf → f in Lp(D)6 as
n→∞ for all f ∈ Lp(D)6.



120 CHAPTER 4. A nonlinear stochastic Maxwell equation with retarded material law

Proof. The first statement follows from the spectral multiplier theorem 5.4 in [68] as a con-
sequence of the generalised Gaussian bounds for the semigroup generated by I −∆H . One
could also argue with the more general Theorem 7.1 in [62]. The claimed convergence prop-
erty is then a special case from [61], Theorem 4.1. To apply this theorem the 0-sectoriality
of I − ∆H and the boundedness of a Mikhlin functional calculus Mα in Lp(D)6 for some
α > 0 are needed. The first property is checked in [78], Theorem 6.1, whereas the second
holds true with α > 4 by the generalised Gaussian bounds (see [61], Lemma 6.1, (3)).

Next, we introduce two different Helmholtz projections on L2(D)3. The proof for the fol-
lowing statement is well-known and can be found amongst others in [59], section 4.1.3.

Proposition 4.1.4. Let D ⊂ R3 be a bounded Lipschitz domain. Given u ∈ L2(D)3, the
following decompositions hold true.

(1) There exists a unique p ∈ W 1,2
0 (D) and ũ ∈ W 2(div)(D) with div ũ = 0 such that

u = ũ + ∇p. The corresponding operator P (1)
H : L2(D)3 → L2(D)3, u 7→ ũ is an

orthogonal projection.

(2) There exists a unique p ∈ W 1,2(D) with
∫
D
p(x) dx = 0 and ũ ∈ W 2(div, 0)(D)

with div ũ = 0 such that u = ũ + ∇p. The corresponding operator P (2)
H : L2(D)3 →

L2(D)3, u 7→ ũ is an orthogonal projection.

In particular, PH(u1, u2) :=
(
P

(1)
H u1, P

(2)
H u2

)
for u1, u2 ∈ L2(D)3 defines an orthogonal

projection on L2(D)6.

The Helmholtz projection PH is closely related to both M and ∆H . For example, due to
divP

(i)
H = 0, one calculates

∆HPH =

(− curl curlP
(1)
H + grad divP

(1)
H

− curl curlP
(2)
H + grad divP

(2)
H

)
=

(− curl curlP
(1)
H

− curl curlP
(2)
H

)
= M2PH , (4.1.1)

which implies that M2 = ∆H on D(M)∩PHL2(D)6). We use this connection to show some
powerful commutation identities.

Lemma 4.1.5. We have PH∆H = ∆HPH on D(∆H), MPH = PHM on D(M) and PnM =

MPn, SnM = MSn on D(M).

Proof. From [78], section 3 or from [67], Lemma 5.4 we know that P (i)
H A(i) = A(i)P

(i)
H for

i = 1, 2. This shows PH∆H = ∆HPH on D(∆H) and by the properties of the functional
calculus, we also have SnPH = PHSn and PnPH = PHPn.

For the second statement, we first show that Mu = PHMu for all u = (u1, u2) ∈ D(M), i.e.
we have to show P

(2)
H curlu1 = curlu1 and P (1)

H curlu2 = curlu2. Due to div curlui = 0 for
i = 1, 2, we just have to show curlu1 · ν = 0 on ∂D for u1 ∈W 2(curl, 0)(D). The definition
of u1 × ν = 0 from Definition 1.1.2 a) together with curl∇ = 0 and div curl = 0 yield∫

D

∇φ(x) · curlu1(x) dx =

∫
D

curl∇φ(x) · u1(x) dx = 0 =

∫
D

φ(x) div curlu1(x) dx
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for every φ ∈ C∞(D), which implies curlu1 · ν = 0 according to Definition 1.1.2 b).

As a consequence of curl∇ = 0, we know M(I − PH) = 0. All in all, we get

MPH − PHM = MPH −M = M(PH − I) = 0.

Finally, by using M2 = ∆H on D(M) ∩ PH(L2(D)6) together with M = MPH , we get

MPn = MPH1[0,2n](I −∆H) = M1[0,2n](I −M2)PH

= 1[0,2n](I −M2)PHMPH = 1[0,2n](I −∆H)M = PnM

on D(M). For SnM = MSn, one may argue analogously.

As a consequence, we get the following density relations.

Corollary 4.1.6.
⋃∞
n=1R(Pn) is dense in D(M) and in Lp(D)6 for any p ∈ (1,∞).

Proof. Let u ∈ D(M). Using the commutation property of Pn by Lemma 4.1.5 and vi) from
Proposition 4.1.2, we get

‖Mu−MPnu‖L2(D)6 = ‖Mu− PnMu‖L2(D)6
n→∞−−−−→ 0.

If on the other hand u ∈ Lp(D)6, we get Snu→ u in Lp(D)6 as n→∞ from Lemma 4.1.3.
This together with Proposition 4.1.2 v) proves the claimed result.

We also consider the nonlinear Maxwell equation with retarded material law (4.0.1) on the
full space R3 and hence, we need an analogue to the Pn and Sn in this different situation.
However, in the absence of boundary conditions, things are well known and far more easy.
We define

Pnf = Snf := F−1
(
ξ 7→ 1[−2n,2n](ξ1)1[−2n,2n](ξ2)1[−2n,2n](ξ3)f̂(ξ)

)
for f ∈ L2(D)6. As M is a differential operator, it commutes with this frequency cut-off.
Moreover, Pn and Sn satisfy the same properties as in Proposition 4.1.2 expect iv). Further,
as a consequence of the boundedness of the Hilbert transform on Lp(R3), they are bounded
on Lp(R3)6. This finally results in an analogue to Lemma 4.1.3 and Corollary 4.1.6. For
details, we refer to [41], Chapter 6.1.3. We end this section with a lemma showing the map-
ping properties of the projection Pn as operator from L2(D)6 to Lp(D)6 and as an operator
from L2(R3)6 to Lp(R3)6.

Lemma 4.1.7. Let either D be a bounded C1-domain or D = R3. For fixed n ∈ N,
p ∈ [2,∞) and q ∈ (1, 2] the operator Pn : Lq(D)6 → L2(D)6 and Pn : L2(D)6 → Lp(D)6 is
linear and bounded with norm depending on n.
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Proof. This statement is trivial if D is bounded, since all norms on a finite dimensional
space are equivalent. In the other case, it is sufficient to show that Pn : Lq(R3)6 → L2(R3)6

is bounded. The rest follows by duality. The Hölder and the Hausdorff-Young inequality
yield

‖Pnf‖L2(R3)6 = ‖ξ 7→ 1[−2n,2n](ξ1)1[−2n,2n](ξ2)1[−2n,2n](ξ3)f̂(ξ)‖L2(R3)6 .n ‖f̂‖
L

q
q−1 (R3)6

≤ ‖f‖Lq(R3)6 ,

which finishes the proof.

4.2. Existence and uniqueness of a weak solution

In this section, we will prove existence and uniqueness of a weak solution in the sense of
partial differential equations of

(WSEE)

du(t) =
[
Mu(t)− |u(t)|qu(t) + (G ∗ u)(t) + J(t)

]
dt+B(t, u(t)) dW (t),

u(0) = u0

for any q > 0. Here, we use F (u) := |u|qu and (G ∗ u)(t) =
∫ t

0
G(t− s)u(s) ds. This is done

in two steps. First, we use a version of the Galerkin method from Röcker and Prévot (see
[85]) to solve (4.0.1) in the special case G ≡ 0 and make use of the monotone structure of
our nonlinearity. As this approach is well-known, we just discuss the different steps and
concentrate on how to deal with the additional term Mu, despite the fact that u /∈ D(M).

Afterwards, we include the retarded material law with Banach’s fixed point theorem. Before
we start, we explain our solution concept.

Definition 4.2.1. We say that an adapted process u : Ω× [0, T ]→ L2(D)6 with

u ∈ L2(Ω;C(0, T ;L2(D)))6 ∩ Lq+2(Ω× [0, T ]×D)6

is a weak solution of (WSEE) if

〈u(t)− u0, φ〉L2(D)6 =

∫ t

0

〈
− |u(s)|qu(s) + J(s) + (G ∗ u)(s), φ

〉
L2(D)6 ds

+

∫ t

0

−
〈
u(s),Mφ

〉
L2(D)6 ds+

∫ t

0

〈
B(s, u(s)), φ dW (s)

〉
L2(D)6

holds almost surely for all t ∈ [0, T ] and for all φ ∈ D(M) ∩ Lq+2(D)6. Moreover, we call a
weak solution u unique if for any other weak solution v, there exists N ⊂ Ω with P(N) = 0

such that u(ω, t) = v(ω, t) for all ω ∈ Ω \N and all t ∈ [0, T ].

We make the following assumptions.

[W1] Let D ⊂ R3 be a bounded C1-domain or D = R3.

[W2] The initial value u0 : Ω→ L2(D)6 is strongly F0-measurable.
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[W3] Let G : Ω × [0, T ] → B(L2(D)6) such that x 7→ G(t)x is for all x ∈ L2(D)6 strongly
measurable and F-adapted. Moreover, we assume

ess sup
ω∈Ω

∫ T

0

‖G(ω, t)‖B(L2(D)6) dt <∞.

[W4] Let U be a separable Hilbert space andW a U -cylindrical Brownian motion. Moreover,
let B : Ω × [0, T ] × L2(D)6 → L2(U,L2(D)6) be strongly measurable such that ω 7→
B(ω, t, u) is strongly Ft-measurable for almost all t ∈ [0, T ] and all u ∈ L2(D)6.
Furthermore, there exists a constant C > 0 such that B is of linear growth, i.e.

‖B(t, u)‖L2(U ;L2(D)6) ≤ C
(
1 + ‖u‖L2(D)6

)
and Lipschitz continuous, i.e.

‖B(t, u)−B(t, v)‖L2(U ;L2(D)6) ≤ C‖u− v‖L2(D)6

almost surely for almost all t ∈ [0, T ] and all u, v ∈ L2(D)6.

[W5] J : Ω × [0, T ] → L2(D)6 is strongly measurable, F-adapted and we assume J ∈
L2(Ω× [0, T ]×D)6.

First, we need an Itô formula that is appropriate to deal with weak solutions. Our result
is a version of [85], Theorem 4.2.5 that additionally allows a term with the skew-adjoint
operator M in spite of the fact that our weak solution is not in D(M). Our proof relies
on a more straightforward regularisation technique than the original one using the spectral
multipliers Sn we defined in section 4.1.

Lemma 4.2.2. Let X0 ∈ L2(Ω×D)6 and Y ∈ L
q+2
q+1 (Ω× [0, T ]×D)6 +L2(Ω× [0, T ]×D)6

and Z ∈ L2(Ω× [0, T ];L2(U ;L2(D)6)) be F-adapted. If

〈X(t), φ〉L2(D)6 =〈X0, φ〉L2(D)6 +

∫ t

0

−〈X(s),Mφ〉L2(D)6 + 〈Y (s), φ〉L2(D)6 ds

+

∫ t

0

〈
Z(s), φ dW (s)

〉
L2(D)6 (4.2.1)

almost surely for all t ∈ [0, T ] and all φ ∈ D(M)∩Lq+2(D)6 and if we additionally have the
regularity X ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω× [0, T ]×D)6, then the Itô formula

‖X(t2)‖2L2(D)6 − ‖X(t1)‖2L2(D)6

=

∫ t2

t1

2 Re〈X(s), Y (s)〉L2(D)6 + ‖Z(s)‖2L2(U ;L2(D)6) ds+ 2

∫ t2

t1

Re
〈
X(s), Z(s) dW (s)

〉
L2(D)6

(4.2.2)

holds almost surely for all 0 ≤ t1 ≤ t2 ≤ T. Moreover, we get the additional regularity
X ∈ L2(Ω;C(0, T ;L2(D)))6.
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Proof. Let 0 ≤ t1 ≤ t2 ≤ T. We plug in φ = SnΦ for Φ ∈ C∞c (D)6 into the equation

〈X(t2), φ〉L2(D)6 =〈X(t1), φ〉L2(D)6 +

∫ t2

t1

−〈X(s),Mφ〉L2(D)6 + 〈Y (s), φ〉L2(D)6 ds

+

∫ t2

t1

〈Z(s), φ dW (s)〉L2(D)6 .

Note that by Lemma 4.1.5, Sn and M commute. Moreover, R(Sn) ⊂ D(M). Consequently,
since Sn is self-adjoint and Φ is chosen arbitrarily, we obtain

SnX(t2)− SnX(t1) =

∫ t2

t1

MSnX(s) + SnY (s) ds+

∫ t2

t1

SnZ(s) dW (s)

almost surely. Thus, we can apply the Itô formula for Hilbert space valued processes (see
e.g. [24], Theorem 4.32) to the functional u 7→ ‖u‖2L2(D)6 to get

‖SnX(t2)‖2L2(D)6 − ‖SnX(t1)‖2L2(D)6

=

∫ t2

t1

2 Re〈SnX(s),MSnX(s)〉L2(D)6 + 2 Re〈SnX(s), SnY (s)〉L2(D)6

+ ‖SnZ(s)‖2L2(U ;L2(D)6) ds+ 2

∫ t2

t1

Re
〈
SnX(s), SnZ(s) dW (s)

〉
L2(D)6

almost surely. Since M is skew-adjoint, the first term on the right hand side drops. In all
the other terms we can pass to the limit. Thereby, we need that Snu → u for n → ∞ in
Lq+2(D)6 and L

q+2
q+1 (D)6 (see Lemma 4.1.3). This finally yields

‖X(t2)‖2L2(D)6 − ‖X(t1)‖2L2(D)6

=

∫ t2

t1

2 Re〈X(s), Y (s)〉L2(D)6 + ‖Z(s)‖2L2(U ;L2(D)6) ds+ 2

∫ t2

t1

Re
〈
X(s), Z(s) dW (s)

〉
L2(D)6

(4.2.3)

almost surely. Together with X ∈ Lq+2(Ω× [0, T ]×D)6 ∩L2(Ω× [0, T ]×D)6, this identity
implies u ∈ L2(Ω;L∞(0, T ;L2(D)))6 by a classical Gronwall argument.

It remains to show the almost sure continuity in time. From (4.2.1) we know that there
exists Ω̃ ⊂ Ω with P(Ω̃) = 1 such that t 7→ 〈X(t), φ〉L2(D)6 is continuous on Ω̃ for every
φ ∈ D(M)∩Lq+2(D)6. In particular, t 7→ X(t) ∈ L2(D)6 is weakly continuous on Ω̃. On the
other hand, by (4.2.2), there exists another set Ω̃2 ⊂ Ω̃ such that t 7→ ‖u(t)‖2L2 is continuous
on Ω̃2. Let t ∈ [0, T ] and (tn)n ⊂ [0, T ] with tn → t as n → ∞. As argued before, we both
have X(tn) → X(t) weakly in L2(D)6 on Ω̃2 and ‖X(tn)‖L2(D)6 → ‖X(t)‖L2(D)6 on Ω̃2 as
n→∞. This implies

‖X(tn)−X(t)‖2L2(D)6 = ‖X(tn)‖2L2(D)6 + ‖X(t)‖2L2(D)6 − 2 Re
〈
X(tn), X(t)

〉
L2(D)6

n→∞−−−−→ ‖X(t)‖2L2(D)6 + ‖X(t)‖2L2(D)6 − 2 Re
〈
X(t), X(t)

〉
L2(D)6 = 0

on Ω̃2, which proves the desired continuity.

At first, we assume G ≡ 0 and solve (WSEE) without retarded material law. The reason for
this simplification is that we make use of the monotone structure of the rest of the equation.
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We start with a Galerkin approximation with the spectral projection Pn we defined in section
2. We investigate the truncated equationdun(t) =

[
PnMun(t)− PnF (un(t)) + PnJ(t)

]
dt+ PnB(t, un(t)) dW (t),

un(0) = Pnu0

(4.2.4)

in the range of Pn. To solve this equation, we derive some properties of the nonlinearity
u 7→ F (u) = |u|qu as a mapping from Lq+2(D)6 to L

q+2
q+1 (D)6 with q > 0 and some properties

of its truncation u 7→ Fn(u) = Pn|u|qu as mapping on the range of Pn. We start with the
monotonicity.

Lemma 4.2.3. The mapping F : Lq+2(D)6 → L
q+2
q+1 (D)6, u 7→ |u|qu satisfies the estimate∫

D

Re
〈
F (v)(x)− F (u)(x), u(x)− v(x)

〉
C6 dx ≤ −C‖u− v‖q+2

Lq+2(D)6 (4.2.5)

for some constant C > 0 and for all u, v ∈ Lq+2(D)6.

Proof. Clearly, ‖F (u)‖
L
q+2
q+1 (D)6

= ‖u‖Lq+2(D)6 and therefore F has the claimed mapping

properties. The estimate (4.2.5) is a direct consequence of Lemma 4.4 in [29].

Since we often use Itô’s formula, we need to know the differentiability properties of F.

Lemma 4.2.4. The nonlinearity F : Lq+2(D)6 → L
q+2
q+1 (D)6, u 7→ |u|qu is real continuously

Fréchet differentiable with Re〈F ′(u)v, v〉L2(D)6 ≥ 0 and

|F ′(u)v(x)| . |u(x)|q|v(x)|

for all u, v ∈ Lq+2(D)6 and x ∈ D. In particular, it is locally Lipschitz continuous, i.e.

‖F (u)− F (v)‖
L
q+2
q+1 (D)6

.
(
‖u‖qLq+2(D)6 + ‖v‖qLq+2(D)6

)
‖u− v‖Lq+2(D)6 .

Moreover, if q ∈ (1,∞), it is twice real continuously differentiable with

F ′′(u)(v, v)(x) . |u(x)|q−1|v(x)|2

for all u, v ∈ Lq+2(D)6 and all x ∈ D.

Proof. It is well-known that F : Lq+2(D)6 → L
q+2
q+1 (D)6 is real continuously Fréchet differ-

entiable with
F ′(u)v = q|u|q−2 Re〈u, v〉C6u+ |u|qv

for every u, v ∈ Lq+2(D)6 (see e.g. given [48], Corollary 9.3). Consequently, we also have

Re
〈
F ′(u)v, v

〉
L2(D)6 =

∫
D

q|u(x)|q−2
(

Re〈u(x), v(x)〉C6

)2
+ |u(x)|q|v(x)|2 dx ≥ 0.

Moreover, we estimate

F ′(u)v(x) ≤ C|u(x)|q|v(x)|
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for some C > 0. For the second derivative, we start with a formal calculation for F ′′ and
get

F ′′(u)(v, w) =q|u|q−2
(

(q − 2)|u|−2 Re〈u,w〉L2(D)6 Re〈u, v〉L2(D)6u+ Re〈w, v〉L2(D)6u

+ Re〈u,w〉L2(D)6v + Re〈u, v〉L2(D)6w
)
.

For sake of readability, we do not rigorously show that F : Lq+2(D)6 → L
q+2
q+1 (D)6 is twice

Fréchet differentiable with this derivative. However, to give an impression how to prove this,
we check that last term in F ′(u)v, namely

u 7→ [v 7→ |u|qv] : Lq+2(D)6 → B(Lq+2(D), L
q+2
q+1 (D)6),

is Fréchet differentiable with derivative G(u)(v, w) = q|u|q−2 Re〈u,w〉C6v. Let u, v, w ∈
Lq+2(D)6 with v, w 6= 0. Then Hölder’s inequality together with the mean value theorem
yields∥∥|u|qv−|u+ w|qv −G(u)(v, w)

∥∥
L
q+2
q+1 (D)6

≤
∥∥|u|q − |u+ w|q − q|u|q−2 Re〈u,w〉C6

∥∥
L
q+2
q (D)6

‖v‖Lq+2(D)6

.
∥∥∫ 1

0

Re〈|u+ θw|q−2(u+ θw)− |u|q−2u,w〉C6 dθ
∥∥
L
q+2
q (D)6

‖v‖Lq+2(D)6

≤
∫ 1

0

∥∥|u+ θw|q−2(u+ θw)− |u|q−2u
∥∥
L
q+2
q−1 (D)6

dθ ‖w‖Lq+2(D)6‖v‖Lq+2(D)6 .

Hence, we showed

‖w‖−1
Lq+2(D)6

∥∥v 7→ |u|qv−|u+ w|qv −G(u)(v, w)
∥∥
B(Lq+2(D)6,L

q+2
q+1 (D)6)

.
∫ 1

0

∥∥|u+ θw|q−2(u+ θw)− |u|q−2u
∥∥
L
q+2
q−1 (D)6

dθ (4.2.6)

for all u,w ∈ Lq+2(D)6 with w 6= 0.

It remains to prove that this quantity tends to 0 as w → 0 in Lq+2(D)6. Let (wn)n be a
sequence in Lq+2(D)6 with wn → 0 as n→∞ and let (wnk)k be an arbitrary subsequence.
Hence, there exists another subsequence, still denoted with (wnk)k such that wnk → 0 almost
everywhere for k →∞ and such that |wnk | ≤ g for some g ∈ Lq+2(D)6. We also have

|u+ θwnk |q−2(u+ θwnk)− |u|q−2u→ 0

almost everywhere as k →∞. Together with the bound∣∣∣|u+ θwnk |q−2(u+ θwnk)− |u|q−2u
∣∣∣ ≤ |u|q−1 + |wnk |q−1 ≤ |u|q−1 + gq−1,

for θ ∈ [0, 1] and the fact that u ∈ Lq+2(D)6, we get∫ 1

0

∥∥|u+ θwnk |q−2(u+ θwnk)− |u|q−2u
∥∥
L
q+2
q−1 (D)6

dθ → 0

as k →∞. All in all, this shows that the left hand side of (4.2.6) tends to 0 as w → 0 and
we established the Fréchet differentiability of u 7→ [v 7→ |u|qv] with derivative G(u). The
claimed estimate for F ′′(u)(v, v)(x) is immediate. This closes the proof.
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Now, we can come back to our truncated equationdun(t) =
[
PnMun(t)− PnF (un(t)) + PnJ(t)

]
dt+ PnB(t, un(t)) dW (t),

un(0) = Pnu0.

This is a stochastic ordinary differential equation in R(Pn) ⊂ L2(D)6 with a locally Lip-
schitz nonlinearity which can be seen by Lemma 4.1.7 and Lemma 4.2.4. Indeed, let
u, v ∈ PnL2(D)6. Then, we can estimate

‖PnF (u)− PnF (v)‖L2(D)6 = ‖PnF (Pnu)− PnF (Pnv)‖L2(D)6

.n ‖F (Pnu)− F (Pnv)‖
L
q+2
q+1 (D)6

.n
(
‖Pnu‖qLq+2(D)6 + ‖Pnv‖qLq+2(D)6

)
‖Pnu− Pnv‖Lq+2(D)6

.n
(
‖u‖qL2(D)6 + ‖v‖qL2(D)6

)
‖u− v‖L2(D)6 .

Hence, there exists an increasing sequence of stopping times (τ
(m)
n )m∈N with 0 < τ

(m)
n ≤ T

almost surely, a stopping time τn = limm→∞ τ
(m)
n and an adapted process un : Ω× [0, τ)→

R(Pn) with continuous paths that solves (4.2.4). Moreover, we have the blow-up alternative

P
{
τn < T, sup

t∈[0,τ)

‖un(t)‖L2(D)6 <∞
}

= 0. (4.2.7)

The next result shows τn = T almost surely for every n ∈ N and a uniform estimate for un.

Proposition 4.2.5. We have τn = T almost surely for every n ∈ N and un additionally
satisfies

sup
n∈N

E sup
t∈[0,T ]

‖un(t)‖2L2(D)6 + sup
n∈N

E
∫ T

0

∫
D

|un(t, x)|q+2 dxdt <∞.

Proof. Lemma 4.2.2 applied to un, the self-adjointness of Pn and P 2
n = Pn yield

‖un(s)‖2L2(D)6 − ‖Pnu0‖2L2(D)6

=2

∫ s

0

Re
〈
un(r),−|un(r)|qun(r) + J(r)

〉
L2(D)6 dr

+ 2

∫ s

0

Re
〈
un(r), B(s, un(r)) dW (r)

〉
L2(D)6 +

∫ s

0

‖PnB(r, un(r))‖2L2(U ;L2(D)6) dr

almost surely for every s ∈ [0, τ
(m)
n ]. This expression simplifies to

‖un(s)‖2L2(D)6 + 2

∫ s

0

∫
D

|un(s, x)|q+2 dxdt− ‖Pnu0‖2L2(D)6

≤
∫ s

0

2 Re
〈
un(r), J(r)〉L2(D)6 + ‖B(r, un(r))‖2L2(U ;L2(D)6) dr

+ 2

∫ s

0

Re
〈
un(r), B(s, un(r)) dW (r)

〉
L2(D)6 (4.2.8)

almost surely for every s ∈ [0, τ
(m)
n ]. Since the second term on the left hand side is positive,

we can drop it for a moment. We first take the supremum over [0, τ
(m)
n ∧ t] for t ∈ [0, T ] and
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afterwards the expectation value and estimate the remaining quantities term by term. We
start with the deterministic part using [W4] and [W5].

E sup
s∈[0,τ

(m)
n ∧t]

∣∣∣ ∫ s

0

2 Re
〈
un(r), J(r)〉L2(D)6 + ‖B(r, un(r))‖2L2(U ;L2(D)6) dr

∣∣∣
. 1 +

∫ t

0

E1
s≤τ(m)

n
‖un(s)‖L2(D)6‖J(s)‖L2(D)6 + ‖un(s)‖2L2(D)6 ds

. 1 +

∫ t

0

E sup
r∈[0,s∧τ(m)

n ]

‖un(r)‖2L2(D)6 ds+ ‖J‖2L2(Ω×[0,T ]×D)6 .

The stochastic part can be estimated with the Burkholder-Davies-Gundy inequality.

E sup
s∈[0,t∧τ(m)

n ]

∣∣∣ ∫ s

0

Re〈un(s), B(s, un(s)) dW (s)〉L2(D)6

∣∣∣
≤ CE

(∫ τ(m)
n ∧t

0

∣∣〈un(s), B(s, un(s)〉L2(U,L2(D)6)

∣∣2 ds
)1/2

≤ C̃E
(

sup
s∈[0,t∧τ(m)

n ]

‖un(s)‖L2(D)6

(
1 +

∫ t∧τ(m)
n

0

‖u(t)‖2L2(D)6 dt
) 1

2
)

≤ 1

4
E sup
s∈[0,t∧τ(m)

n ]

‖un(s)‖2L2(D)6 + C̃2
(

1 +

∫ t

0

E sup
r∈[0,s∧τ(m)

n ]

‖u(r)‖2L2(D)6 ds
)
.

Thereby, we used ab ≤ 1
4a

2 + b2 for all a, b ≥ 0 in the last step. Putting these estimates
together, we get

E sup
s∈[0,t∧τ(m)

n ]

‖un(s)‖2L2(D)6

. 1 + ‖u0‖2L2(D)6 + ‖J‖2L2(Ω×[0,T ]×D)6 +

∫ t

0

E sup
r∈[0,s∧τ(m)

n ]

‖un(r)‖2L2(D)6 ds

for all t ∈ [0, T ]. Consequently, Gronwall yields

E sup
t∈[0,τ

(m)
n ]

‖un(t)‖2L2(D)6 . 1 + ‖J‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)6

with an estimate that is independent of n ∈ N. Now, we can go back to (4.2.8) and deal
with the term we dropped at first. The estimate of E sup

t∈[0,τ
(m)
n ]
‖un(t)‖2L2(D) implies

E
∫ τ(m)

n

0

∫
D

|un(s, x)|q+2 dx dt . 1 + ‖J‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)6

We use Fatou’s Lemma to pass to the limit m → ∞ in these estimates. Note that one can
interchange sup and lim inf in an upper estimate, since lim inf can be written in the form
sup inf and supremums can be interchanged, whereas sup inf ≤ inf sup. Hence, we have

E sup
t∈[0,τn)

‖un(t)‖2L2(D)6 + E
∫ τn

0

∫
D

|un(s, x)|q+2 dxdt

. 1 + ‖J‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)6 . (4.2.9)
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Consequently, we also have τn = T almost surely. Indeed, there exists N ⊂ Ω with P(N) = 0

such that Ω \
(
N ∪ {τn = T}

)
can be decomposed into disjoint sets{

τn < T, sup
t∈[0,τn)

‖un(t)‖2L2(D)6 <∞
}
,
{
τn < T, sup

t∈[0,τn)

‖un(t)‖2L2(D)6 =∞
}
.

The first set has measure zero by (4.2.7) and the second one has measure zero since (4.2.9)
implies supt∈[0,τn) ‖un(t)‖L2(D)6 < ∞ almost surely. Pathwise uniform continuity on [0, T ]

follows from Lemma 4.2.2. This closes the proof.

In Proposition 4.2.5, we derived uniform estimates for un. As a consequence, Lemma 4.2.5
yields the uniform boundedness of F (un) in L

q+2
q+1 (Ω × [0, T ] × D)6. Thus, by Banach-

Alaoglu, there exists u ∈ L2(Ω;L∞(0, T ;L2(D)6)), N ∈ L
q+2
q+1 (Ω× [0, T ]×D)6, B̃ ∈ L2(Ω×

[0, T ];L2(U ;L2(D)))6 and subsequences, still indexed with n such that

a) un → u as n→∞ in the weak∗ sense in L2(Ω;L∞(0, T ;L2(D)))6,

b) un → u as n→∞ in the weak sense in Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω× [0, T ]×D)6,

c) F (un)→ N as n→∞ in the weak sense in L
q+2
q+1 (Ω× [0, T ]×D)6,

d) B(·, un)→ B̃ as n→∞ in the weak sense in L2(Ω× [0, T ];L2(U ;L2(D)))6.

Since un is for every n ∈ N an adapted solution of the ordinary stochastic differential
equation (4.2.4) in PnL

2(D)6, we have un ∈ L2
F(Ω × [0, T ] × D)6. Consequently, since

L2
F(Ω× [0, T ]×D)6 is a closed subspace of L2(Ω× [0, T ]×D)6, it is also weakly closed. This

implies u ∈ L2
F(Ω× [0, T ]×D)6, which means that u is also adapted.

Testing (4.2.4) with ρφ for arbitrary ρ ∈ Lq+2(Ω×[0, T ]) and φ ∈
⋃∞
n=1R(Pn), the symmetry

of Pn and the skew-symmetry of M yield

E
∫ T

0

〈un(t)− u0, φ〉L2(D)6ρ(t) dt

=E
∫ T

0

∫ t

0

−〈un(s),MPnφ〉L2(D)6 + 〈−F (un(s)) + J(s), Pnφ〉L2(D)6 dsρ(t) dt

+ E
∫ T

0

∫ t

0

〈B(s, un(s)), Pnφ〉L2(D)6 dW (s)ρ(t) dt.

By weak convergence, we can pass to the limit and obtain

E
∫ T

0

〈u(t)− u0,φ〉L2(D)6ρ(t) dt

=E
∫ T

0

∫ t

0

−〈u(s),Mφ〉L2(D)6 + 〈−N(s) + J(s), φ〉L2(D)6 dsρ(t) dt

+ E
∫ T

0

∫ t

0

〈B̃(s), φ〉L2(D)6 dW (s)ρ(t) dt.

Thereby, we used Pnφ = φ for n large enough since φ ∈
⋃∞
n=1R(Pn) and that linear and
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bounded operators are also weakly continuous. Since ρ was chosen arbitrarily, we finally get

〈u(t)− u0, φ〉L2(D)6 =

∫ t

0

−〈u(s),Mφ〉L2(D)6 + 〈−N(s) + J(s), φ〉L2(D)6 ds

+

∫ t

0

〈B̃(s), φ〉L2(D)6 dW (s) (4.2.10)

almost surely for every t ∈ [0, T ]. Hence, by density (see Lemma 4.1.6), this holds true for
every φ ∈ D(M) ∩ Lq+2(D)6. To show that u is a weak solution of (WSEE) with G ≡ 0,

it remains to prove N = F (u) and B̃ = B(·, u). This will be done by adapting a standard
argument for stochastic evolution equations with monotone nonlinearities (see [85], proof
of Theorem 4.2.4, page 86) to our situation. To do this, we just need an Itô formula for
Ee−Kt‖u(t)‖2L2(D)6 , although Mu(t) /∈ L2(D)6. Thereby, we use the abbreviation 〈·, ·〉Lp for
the duality

(
Lp(D)6, L

p
p−1 (D)6

)
.

Lemma 4.2.6. For any K > 0, un and u satisfy the Itô formulae

E e−Kt‖u(t)‖2L2(D)6 − E‖u0‖2L2(D)6

= E
∫ t

0

2e−Ks Re
〈
u(s),−N(s) + J(s)

〉
Lq+2 + e−Ks‖B̃(s)‖2L2(U ;L2(D)6) ds

− E
∫ t

0

Ke−Ks‖u(s)‖2L2(D)6 ds

and

E e−Kt‖un(t)‖2L2(D)6 − E‖Pnu0‖2L2(D)6

= E
∫ t

0

2e−Ks Re
〈
un(s),−F (un(s)) + J(s)

〉
L2(D)6 + e−Ks‖PnB(s, un(s))‖2L2(U ;L2(D)6) ds

− E
∫ t

0

Ke−Ks‖un(s)‖2L2(D)6 ds

almost surely for all t ∈ [0, T ].

Proof. These formulae are immediate by Lemma 4.2.2, the Itô product rule and the fact
that the expectation of a stochastic integral is zero.

Proposition 4.2.7. If we assume [W1] − [W5], the equation (WSEE) with G ≡ 0 has a
unique weak solution u in the sense of Definition 4.2.1.

Proof. Throughout this proof, we write H = L2(D)6 to simplify the notation. We need to
show N = F (u) in L

q+2
q+1 (Ω× [0, T ]×D)6 and B̃ = B(·, u) in L2(Ω× [0, T ];L2(U ;H)). Let

ψ ∈ L∞(0, T ) be nonnegative. Then, weak convergence yields

E
∫ T

0

ψ(t)‖u(t)‖2L2(D)6 dt

= lim
n→∞

E
∫ T

0

Re
〈
ψ(t)

1
2u(t), ψ(t)

1
2un(t)

〉2
L2(D)6 dt

≤
(
E
∫ T

0

ψ(t)‖u(t)‖2L2(D)6 dt
) 1

2

lim inf
n→∞

(
E
∫ T

0

ψ(t)‖un(t)‖2L2(D)6 dt
) 1

2

, (4.2.11)
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which implies

E
∫ T

0

ψ(t)‖u(t)‖2L2(D)6 dt ≤ lim inf
n→∞

E
∫ T

0

ψ(t)‖un(t)‖2L2(D)6 dt.

Let K > 0 and φ ∈ L2(Ω;L∞(0, T ;L2(D)6))∩Lq+2(Ω× [0, T ]×D)6. Then, the Itô formula
from Lemma 4.2.6 gives

Ee−Kt‖un(t)‖2H − E‖Pnu0‖2H

=E
∫ t

0

2e−Ks Re
〈
un(s),−F (un(s)) + J(s)

〉
H

+ e−Ks‖PnB(s, u(s))‖2L2(U ;H) ds

− E
∫ t

0

Ke−Ks‖un(s)‖2H ds

=E
∫ t

0

e−Ks
(

2 Re
〈
un(s)− φ(s), F (φ(s))− F (un(s))

〉
H

+ ‖B(s, un(s))−B(s, φ(s))‖2L2(U,H)

−K‖un(s)− φ(s)‖2H + 2 Re
〈
φ(s), F (φ(s))− F (un(s))

〉
H
− 2 Re

〈
un(s), F (φ(s))− J(s)

〉
H

− ‖B(s, φ(s))‖2L2(U ;H) + 2 Re
〈
B(s, un(s)), B(s, φ(s))

〉
L2(U ;H)

+K‖φ(s)‖2H

− 2K Re
〈
un(s), φ(s)

〉
H

)
ds.

Next, by [W4], we can choose K large enough such that

‖B(s, un(s))−B(s, φ(s))‖2L2(U,H) −K‖un(s)− φ(s)‖2H ≤ 0.

Together with Lemma 4.2.3, we get

Ee−Kt‖un(t)‖2H − E‖Pnu0‖2H

≤E
∫ t

0

e−Ks
(

2 Re
〈
φ(s), F (φ(s))− F (un(s))

〉
H
− 2 Re

〈
un(s), F (φ(s))− J(s)

〉
H

− ‖B(φ)‖2L2(U ;H) + 2 Re
〈
B(un), B(φ)

〉
L2(U ;H)

+K‖φ(s)‖2H − 2K Re
〈
un(s), φ(s)

〉
H

)
ds.

The limit limn→∞ ‖Pnu(0)‖H = ‖u(0)‖H (see Lemma 4.1.2) and (4.2.11) combined with
Fubini and the weak convergence un → u in Lq+2(Ω× [0, T ]×D)6 as n→∞ yield

E
∫ T

0

ψ(t)
(
e−Kt‖u(t)‖2H − ‖u0‖2H

)
dt

≤ lim inf
n→∞

E
∫ T

0

ψ(t)
(
e−Kt‖un(t)‖2H − ‖Pnu0‖2H

)
dt

≤ lim inf
n→∞

E
∫ T

0

ψ(t)

∫ t

0

e−Ks
(

2 Re
〈
φ(s), F (φ(s))− F (un(s))

〉
H

− 2 Re
〈
un(s), F (φ(s))− J(s)

〉
H
− ‖B(φ)‖2L2(U ;H) + 2 Re

〈
B(un), B(φ)

〉
L2(U ;H)

+K‖φ(s)‖2H − 2K Re
〈
un(s), φ(s)

〉
H

)
dsdt

≤ E
∫ T

0

ψ(t)

∫ t

0

e−Ks
(

2 Re
〈
φ(s), F (φ(s))−N(s)

〉
Lq+2

− 2 Re
〈
u(s), F (φ(s))− J(s)

〉
Lq+2 − ‖B(s, φ(s))‖2L2(U ;H)

+ 2 Re
〈
B̃(s), B(s, φ(s))

〉
L2(U ;H)

+K‖φ(s)‖2H − 2K Re
〈
u(s), φ(s)

〉
H

)
dsdt.
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On the other hand, by Lemma 4.2.6, we also have

E
∫ T

0

ψ(t)
(
e−Kt‖u(t)‖2H − ‖u0‖2H

)
dt

=E
∫ T

0

ψ(t)

∫ t

0

2e−Ks Re
〈
u(s),−N(s) + J(s)

〉
Lq+2 + ‖B̃(s)‖2L2(U ;L2(D)6) ds

−
∫ t

0

Ke−Ks‖u(s)‖2L2(D)6 dsdt.

Inserting this equality in the left hand-side of the estimate from above, we end up with

0 ≤ E
∫ T

0

ψ(t)

∫ t

0

e−Ks
(

2 Re
〈
φ(s)− u(s), F (φ(s))−N(s)

〉
Lq+2

− ‖B(s, φ(s))− B̃(s)‖2L2(U ;H) +K‖φ(s)− u(s)‖2H
)

dsdt (4.2.12)

and we still have the freedom to choose a nonnegative ψ ∈ L∞(0, T ) and an arbitrary
φ ∈ L2(Ω;L∞(0, T ;L2(D)6)) ∩ Lq+2(Ω × [0, T ] × D)6. At first, we choose φ = u, which
implies

0 ≤ −E
∫ T

0

φ(t)

∫ t

0

‖B(s, u(s))− B̃(s)‖2L2(U ;H) dsdt

which can only hold true if B̃(s) = B(s, u(s)) almost surely for almost every s ∈ [0, T ] with
equality in H = L2(D)6. Next, we plug φ = u − εφ̃v with ε > 0, φ̃ ∈ L∞(Ω × [0, T ]) and
v ∈ Lq+2(D)6 ∩ L2(D)6 into (4.2.12). Then dividing both sides by ε yields

0 ≥ E
∫ T

0

ψ(t)

∫ t

0

e−Ks
(

2φ̃(s) Re
〈
v, F (u(s)− εφ̃(s)v)−N(s)

〉
Lq+2

+ ε−1‖B(s, u(s)− εφ̃(s)v)−B(s, u(s))‖2L2(U ;H) −Kεφ̃(s)‖v‖2H
)

dsdt

Next, we let ε→ 0. Clearly, we have

ε−1‖B(s, u(s)− εφ̃(s)v)−B(s, u(s))‖2L2(U ;H) ≤ εCφ̃(s)‖v‖2H
ε→0−−−→ 0

by [W4] and as a consequence, the expression

E
∫ T

0

ψ(t)

∫ t

0

e−Ks
(
ε−1‖B(s, u(s)− εφ̃(s)v)−B(s, u(s))‖2L2(U ;H) −Kεφ̃‖v‖

2
H

)
dsdt

converges to 0 as ε→ 0 with the dominated convergence theorem. It remains to investigate
the first term. Lemma 4.2.4 yields

‖F (u(s)− εφ̃(s)v)− F (u)‖
L
q+2
q+1 (D)6

≤ Cεφ̃(s)
(

2‖u(s)‖qLq+2(D)6 + εqφ̃(s)q‖v‖qLq+2(D)6

)
‖v‖Lq+2(D)6 ,

which implies

lim
ε→0

E
∫ T

0

ψ(t)

∫ t

0

e−Ksφ̃(s) Re
〈
v, F (u(s)− εφ̃(s)v)

〉
Lq+2 dsdt

=E
∫ T

0

ψ(t)

∫ t

0

e−Ksφ̃(s) Re
〈
v, F (u(s))

〉
Lq+2 dsdt
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and consequently

0 ≥ E
∫ T

0

ψ(t)

∫ t

0

2e−Ksφ̃(s) Re
〈
v, F (u(s))−N(s)

〉
Lq+2 dsdt.

Instead of φ̃, we could insert −φ̃. Hence, the above inequality is only true for arbitrary φ̃ if
we actually have equality. With Fubini, we can rewrite it as

0 =

∫ T

0

ψ(t)E
∫ t

0

2e−Ksφ̃(s) Re
〈
v, F (u(s))−N(s)

〉
Lq+2 dsdt

for all nonnegative ψ ∈ L∞(0, T ), which particularly implies

0 = E
∫ T

0

2e−Ksφ̃(s) Re
〈
v, F (u(s))−N(s)

〉
H

ds

for all φ̃ ∈ L∞(Ω×[0, T ]) and all v ∈ Lq+2(D)6. Hence, we can conclude F (u(s, x)) = N(s, x)

almost surely for almost every t ∈ [0, T ] and x ∈ D. This shows that u is a weak solution.

It remains to prove uniqueness. Let u, v ∈ L2(Ω;C(0, T ;L2(D)))6 ∩ Lq+2(Ω × [0, T ] ×D)6

be weak solutions of (WSEE) to the initial value u0. Since both u and v are weak solutions,
we have

〈u(t)− v(t), φ〉H =

∫ t

0

−
〈
|u(s)|qu(s)− |v(s)|qv(s), φ

〉
H

ds

+

∫ t

0

−
〈
u(s)− v(s),Mφ

〉
H

ds

+

∫ t

0

〈
B(s, u(s))−B(s, v(s)), φ dW (s)

〉
H

almost surely for every t ∈ [0, T ] and for every φ ∈ D(M) ∩ Lq+2(D)6. Applying Lemma
4.2.2 yields

E‖u(t)− v(t)‖2H =2

∫ t

0

E
〈
−u(s) + v(s), |u(s)|qu(s)− |v(s)|qv(s)

〉
H

+ E ‖B(s, u(s))−B(s, v(s))‖2L2(U,H) ds

almost surely for every t ∈ [0, T ].We know from Lemma 4.2.3 that the first term on the right
hand-side is negative and can be dropped in an upper estimate. By the Lipschitz continuity
of B, we end up with

E‖u(t)− v(t)‖2H .
∫ t

0

E‖u(s)− v(s)‖2H ds

for every t ∈ [0, T ]. Hence, we get E‖u(t) − v(t)‖2H = 0 for every t ∈ [0, T ] by Gronwall’s
Lemma. This proves the claimed uniqueness.

Finally, we add a nontrivial retarded material law G by a perturbation argument.

Theorem 4.2.8. If we assume [W1] − [W5], the equation (WSEE) has a unique weak
solution u in the sense of Definition 4.2.1.
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Proof. Let T0 ∈ (0, T ]. By Proposition 4.2.7 the equationdu(t) =
[
Mu(t)− F (u(t)) + (G ∗ v)(t) + J(t)

]
dt+B(t, u(t)) dW (t),

u(0) = u0

has for v ∈ L2(Ω;C(0, T0;L2(D)6)) a unique solution u =: Kv ∈ L2(Ω;C(0, T0;L2(D)6)).

Indeed, by [W3],

t 7→
∫ t

0

G(t− s)u(s) ds ∈ L2(Ω× [0, T ]×D)6

and thus G ∗ v satisfies [W5]. In the following, we will show that K is a contraction on
X := L2(Ω;C(0, T0;L2(D)6)) if we choose T0 > 0 small enough. For given v, w ∈ X, we
calculate with Lemma 4.2.2 that

‖Kv(s)−Kw(s)‖2L2(D)6

=

∫ s

0

2 Re
〈
Kv(r)−Kw(r), F (Kw(r))− F (Kv(r)) + (G ∗ (v − w))(r)

〉
L2(D)6

+ ‖B(r,Kv(r))−B(r,Kw(r))‖2L2(U ;L2(D)6) dr

+ 2

∫ t

0

Re
〈
Kv(r)−Kw(r), B(r,Kv(r))−B(r,Kw(r)) dW (r)

〉
L2(D)6 .

In the following estimates, we take the supremum over [0, t] for t ∈ [0, T0] and afterwards
the expectation. We now estimate the occurring quantities term by term.∫ s

0

Re
〈
Kv(r)−Kw(r), (G ∗ (v − w))(r)

〉
L2(D)6 ds

≤
∫ s

0

1

2
‖Kv(r)−Kw(r)‖2L2(D)6 +

1

2

∥∥∫ r

0

G(r − λ)(v(λ)− w(λ)) dλ
∥∥2

L2(D)6 dr

≤
∫ s

0

1

2
sup
λ∈[0,r]

‖Kv(λ)−Kw(λ)‖2L2(D)6 dr

+
T0‖G‖2L1(0,T ;B(L2(D)6))

2
sup

λ∈[0,T0]

‖v(λ)− w(λ)‖2L2(D)6

for all s ∈ [0, T0]. We can drop the contribution of F, as〈
Kv(r)−Kw(r), F (Kw(s))− F (Kv(s))

〉
L2(D)6 ≤ −α‖Kv(r)−Kw(r)‖q+2

Lq+2(D)6

for all s ∈ [0, T0] and some α > 0 by Lemma 4.2.3. Moreover, by [W4], we have∫ t

0

‖B(s,Kv(s))−B(s,Kw(s))‖2L2(U ;L2(D)6) ds ≤ C2

∫ t

0

sup
r∈[0,s]

‖Kv(r)−Kw(r)‖2L2(D)6 ds.

Last but not least, the Burkholder-Davies-Gundy inequality and [W4] yield

E sup
s∈[0,t]

∣∣∣ ∫ s

0

Re
〈
Kv(r)−Kw(r), (B(r,Kv(r))−B(r,Kw(r))) dW (r)

〉
L2(D)6

∣∣∣
≤ CE

(∫ t

0

∥∥〈Kv(r)−Kw(r), B(r,Kv(r))−B(r,Kw(r))
〉
L2(D)6

∥∥2

L2(U)
dr
)1/2

≤ CE sup
s∈[0,t]

‖Kv(s)−Kw(s)‖L2(D)6

(∫ t

0

‖B(r,Kv(r))−B(r,Kw(r))‖2L2(U ;L2(D)6) dr
)1/2

≤ 1

4
E sup
s∈[0,t]

‖Kv(s)−Kw(s)‖2L2(D)6 + C̃2

∫ t

0

E sup
r∈[0,s]

‖Kv(r)−Kw(r)‖2L2(D)6 ds.
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All in all, we derived

E sup
s∈[0,t]

‖Kv(s)−Kw(s)‖2L2(D)6

≤
∫ t

0

2(1 + 2C̃2 + C2)E sup
λ∈[0,r]

‖Kv(λ)−Kw(λ)‖2L2(D)6 dr

+ 2T0‖G‖2L∞(Ω;L1(0,T ;B(L2(D)6)))E sup
λ∈[0,T0]

‖v(λ)− w(λ)‖2L2(D)6

for every t ∈ [0, T0]. Hence, Gronwall implies

E sup
s∈[0,t]

‖Kv(s)−Kw(s)‖2L2(D)6

≤ 2T0‖G‖2L∞(Ω;L1(0,T ;B(L2(D)6)))

(
E sup
λ∈[0,T0]

‖v(λ)− w(λ)‖2L2(D)6

)
e2(1+2C̃2+C2)T0 .

Now, we choose T0 > 0 small enough to ensure that K is a contraction. Then, by Banach’s
fixed point theorem, there exists a u1 ∈ L2(Ω;C(0, T0;L2(D)6)) solving (WSEE) on [0, T0]

and from Ku1 = u1 we deduce u1 ∈ Lq+2(Ω× [0, T0]×D)6. Clearly, by continuity in time,
we have u1(T0) ∈ L2(Ω×D)6 and ω 7→ u1(ω, T0) is strongly FT0

-measurable.

Next, given v ∈ L2(Ω;C(T0, 2T0;L2(D)6)), we consider the equationdy =
[
My − F (y) +

∫ T0

0
G(· − s)u1(s) ds+

∫ ·
T0
G(· − s)v(s) ds+ J

]
dt+B(·, y)dW,

y(T0) = u1(T0)

for t ∈ [T0, 2T0]. By Proposition 4.2.7, we have a unique solution y := K2v. This de-
fines an operator K2 : L2(Ω;C(T0, 2T0;L2(D)6)) → L2(Ω;C(T0, 2T0;L2(D)6)). However,
K2v − Kw2 can be estimated in the very same way as above since the additional term∫ T0

0
G(· − s)u1(s) ds vanishes in this difference. As a consequence, K2 is a contraction

on L2(Ω;C(T0, 2T0;L2(D)6)) and has a unique fixed point u2. Inductively, we construct
un ∈ L2(Ω;C((n− 1)T0, nT0;L2(D)6)) solvingdy(t) =

[
My(t)− F (y(t)) +

∫ t
(n−1)T0

G(t− s)y(s) ds+ f(t)
]

dt+B(t, y) dW (t),

y((n− 1)T0) = un−1((n− 1)T0)

with f(t) = J(t) +
∑n−1
k=1

∫ kT0

(k−1)T0
G(t − s)uk(s) ds and stop when nT0 ≥ T. Finally, the

process u :=
∑b TT0

c+1

n=1 un1[(n−1)T0,nT0) solves (WSEE) on [0, T ] and satisfies

u ∈ L2(Ω;C(0, T ;L2(D)6)) ∩ Lq+2(Ω× [0, T ]×D)6.

By construction, u is unique on every interval [(n− 1)T0, nT0), which implies uniqueness on
[0, T ].

4.3. Existence and uniqueness of a strong solution

In this section, we will discuss the following stochastic Maxwell equation

(MSEE)

du =
[
Mu− |u|qu+G ∗ u+ J

]
dt+

∑N
j=1

[
bj + iBju

]
dβj ,

u(0) = u0
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on L2(D)6 with a monotone polynomial nonlinearity and a retarded material law. We derive
existence and uniqueness of a strong solution that satisfies

Mu ∈ L2(Ω;L∞(0, T ;L2(D)6)) + L
q+2
q+1 (Ω× [0, T ]×D)6.

As in the previous section, we start with G ≡ 0 and we add a nontrivial G at the very end.
In a deterministic setting, one would try to estimate ‖u′(t)‖2L2(D)6 and then use the equation

u′(t) = Mu(t)− |u(t)|qu(t) + J(t) +

∫ t

0

G(t− s)u(s) ds

to control Mu. However, solutions of stochastic differential equations are not differentiable
in time. Our first idea to overcome this problem was to derive an estimate for

‖Mu(t)− |u(t)|qu(t) + J(t)‖2L2(D)6

with Gronwall’s Lemma, but we failed since the Itô formula for this quantity contains the
term

N∑
j=1

‖Dvv(|v|qv)(u(t))
(
B(t, u(t)), B(t, u(t))

)
‖2L2(D)6 ,

which we could not estimate properly. Here B(t, u(t)) is the abbreviation of the noise term.
Hence, we had to choose the special noise

∑N
j=1

(
bj(t)+iBju(t)

)
dβj(t) and use the rescaling

transformation

y(t) = u(t)e−i
∑N
j=1 Bjβj(t)

to get rid of the multiplicative noise in the same way as Barbu and Röckner in [13] and [14]
(see also [15] and [16]). The difference to our approach is that the authors have natural a
priori estimates before transforming the equation and they solely transform to solve the new
equation with purely deterministic techniques. Moreover, they only use multiplicative noise.
We use the transformation to get better a priori estimates and we consider an equation that
also has additive noise.

As in the previous section, we write F (u) := |u|qu. Before we start, we explain our solution
concept.

Definition 4.3.1. A weak solution u is called strong solution of (MSEE) if it additionally
satisfies

Mu ∈ L2(Ω;L∞(0, T ;L2(D)6)) + L
q+2
q+1 (Ω× [0, T ]×D)6.

Note that in case of a bounded domain D ⊂ R3, this integrability property reduces to
Mu ∈ L

q+2
q+1 (Ω× [0, T ]×D)6. We make the following assumptions.

[M1] Let q ∈ (1, 2] and D ⊂ R3 be a bounded C1- domain or D = R3.

[M2] Let u0 be strongly F0-measurable with

E‖Mu0‖2L2(D)6 + E‖u0‖2(q+1)

L2(q+1)(D)6 <∞.
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[M3] Let G ∈ L∞(Ω;W 1,1(0, T ;B(L2(D)6))), such that ω 7→ G(t)x is for all x ∈ L2(D)6

and all t ∈ [0, T ] strongly Ft-measurable.

[M4] Let J ∈ L2(Ω;W 1,2(0, T ;L2(D)6)) be F-adapted.

[M5] Let bj ∈ L2(Ω;W 1,2(0, T ;L2(D)6)), j = 1, . . . , N, be F-adapted. If q ∈ (1, 2), we
additionally assume bj ∈ L

2(q+2)
2−q (Ω × [0, T ] × D)6 and bj ∈ L∞(Ω × [0, T ] × D)6 if

q = 2. Moreover, if q = 2, we assume that there exists ñ ∈ N such that we have

Pn
(
bje
−i

∑N
l=1 Blβl

)
= bje

−i
∑N
l=1 Blβl

for all n > ñ. Here, we use the operator Pn defined in Section 4.1.

[M6] Let Bj ∈W 1,∞(D) for j = 1, . . . , N.

At first, we assume G ≡ 0 and solve (MSEE) without retarded material law as in the
last section. This term will be added at the very end with a perturbation argument. The
reason for this simplification is that we make use of the monotone structure of the rest of
the equation. We start with a rescaling transformation such that the multiplicative noise
vanishes. We end up with

(TSEE)

dy(t) = [My(t)− |y(t)|qy(t) +A(t)y(t) + J̃(t)] dt+
∑N
i=1 b̃i(t) dβi(t),

u(0) = u0,

where A(t), J̃ and the new additive noise
∑N
j=1 b̃j dβj are given by

A(t, x)y(t, x) : = 1
2

N∑
j=1

Bj(x)2y(t, x) +

N∑
j=1

iβj(t)

(
∇Bj(x)× y2

−∇Bj(x)× y1

)
,

J̃(t, x) : =

N∑
j=1

(
− ibj(t, x)Bj(x) + J(t, x)

)
e−i

∑N
n=1 Bn(x)βn(t),

b̃i(t, x) : = bi(t, x)e−i
∑N
j=1 Bj(x)βj(t)

for t ∈ [0, T ], x ∈ D and i = 1, . . . , N. First, we show that a solution of (TSEE) can be
transformed to a solution of (MSEE).

Proposition 4.3.2. An adapted stochastic process u : Ω × [0, T ] → L2(D) is a strong
solution of (MSEE) with G ≡ 0 if and only if the adapted process y(t) := e−i

∑N
l=1 Blβl(t)u(t)

satisfies

i) E supt∈[0,T ] ‖y(t)‖2L2(D)6 + E
∫ T

0

∫
D
|y(t, x)|q+2 dx dt <∞,

ii) My + i
∑N
j=1 βj

( ∇Bj×y2

−∇Bj×y1

)
∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞(0, T ;L2(D)6))

and solves the equation (TSEE).

Proof. We assume that u is a solution of (MSEE) in the sense of Definition 4.3.1 with the
described regularity properties. At first, we calculate d(ei

∑N
j=1 Bjβj(t)) with Itô’s formula
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and obtain

ei
∑N
j=1 Bjβj(t) − 1 =

N∑
j=1

∫ t

0

iBje
i
∑N
l=1 Blβl(s)dβn(s)− 1

2

N∑
j=1

∫ t

0

B2
j e
i
∑N
l=1 Blβl(s)ds.

Therefore, Itô’s product rule yields

〈y(t), x′〉L2(D)6 − 〈u0, x
′〉L2(D)6 = 〈u(t), ei

∑N
l=1 Blβl(t)x′〉L2(D)6 − 〈u0, x

′〉L2(D)6

=

N∑
j=1

∫ t

0

−〈u(s), 1
2B

2
j e
i
∑N
l=1 Blβl(s)x′〉L2(D)6 + 〈bj(s) + iBju(s), iBje

i
∑N
l=1 Blβl(s)x′〉L2(D)6 ds

+

∫ t

0

〈Mu(s)− |u(s)|qu(s) + J(s), ei
∑N
l=1 Blβl(s)x′〉L2(D)6 ds

+

N∑
j=1

∫ t

0

〈u(s), iBje
i
∑N
l=1 Blβl(s)x′〉L2(D)6 + 〈bj(s) + iBju(s), ei

∑N
l=1 Blβl(s)x′〉L2(D)6dβn(s)

almost surely for every x′ ∈ C∞c (D) and for every t ∈ [0, T ]. As a consequence, we have

y(t)− u0 =

∫ t

0

e−i
∑N
l=1 Blβl(s)M

(
ei

∑N
l=1 Blβl(s)y(s)

)
− |y(s)|qy(s) ds

+

∫ t

0

e−i
∑N
l=1 Blβl(s)J +

N∑
j=1

1
2B

2
j y(s)− ibj(s)Bje−i

∑N
l=1 Blβl(s) ds

+

N∑
n=1

∫ t

0

bn(s)e−i
∑N
l=1 Blβl(s)dβn(s) (4.3.1)

almost surely for every t ∈ [0, T ]. Here, we used that u ∈ Lq+2(Ω × [0, T ] × D)6 implies
|y|qy ∈ Lq+2(Ω×[0, T ]×D)6. Since we want to derive an equation for y, we have to commute
the exponential function with M. Therefore, we compute

My(t) = M(e−i
∑N
l=1 Blβl(t)u(t))

=

(
curl(e−i

∑N
l=1 Blβl(t)u2(t))

− curl(e−i
∑N
l=1 Blβl(t)u1(t))

)
=

N∑
j=1

−iβj(t)
( ∇Bje−i∑N

l=1 Blβl(t) × u2(t)

−∇Bje−i
∑N
l=1 Blβl(t) × u1(t)

)
+

(
e−i

∑N
l=1 Blβl(t) curl(u2(t))

−e−i
∑N
l=1 Blβl(t) curl(u1(t))

)

=

N∑
j=1

iβj(t)

(
−∇Bj × y2(t)

∇Bj × y1(t)

)
+ e−i

∑N
l=1 Blβl(t)Mu(t).

Together with y(t) := e−i
∑N
l=1 Blβl(t)u(t), this implies

e−i
∑N
l=1 Blβl(t)M

(
e−i

∑N
l=1 Blβl(t)y(t)

)
= My(t) +

N∑
j=1

iβj(t)

(
∇Bj × y2(t)

−∇Bj × y1(t)

)
.

Inserting this into (4.3.1) finally proves that y solves (TSEE). The other direction follows
the same lines.

We solve (TSEE) by a refined Galerkin approximation of the skew-adjoint operator M . To
do this, we truncate the equation with the spectral multipliers Pn and Sn−1 we defined in
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Section 4.1 and we end up withdyn(t) = [PnMyn(t)− PnF (yn(t)) + PnA(t)yn(t) + PnJ̃(t)] dt+
∑N
i=1 Sn−1b̃i(t) dβi(t),

yn(0) = Sn−1u0.

(4.3.2)
The operator PnM is linear and bounded and as we have shown in the previous section, the
nonlinearity PnF : Pn(L2(D)6)→ Pn(L2(D)6) is locally Lipschitz continuous. Thus, we get
an ordinary stochastic differential equation in Pn(L2(D)6). Note that we had to use Sn−1

for the truncation of the stochastic part and for the truncation of the initial data since we
need to estimate these terms in Lp(D)6 uniformly in n. Note that such an estimate is not
available for Pn in general. In the next proposition, we derive a priori estimates for the
solution exploiting the monotone structure of the equation.

Proposition 4.3.3. The truncated equation (4.3.2) has for every n ∈ N a unique, pathwise
continuous solution yn : Ω× [0, T ]→ L2(D)6 that additionally satisfies

E sup
t∈[0,T ]

‖yn(t)‖2L2(D)6 + E
∫ T

0

‖yn(t)‖q+2
Lq+2(D)6dt

≤ C
(
‖J̃‖2L2(Ω×[0,T ]×D) +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D) + ‖u0‖2L2(D)

)
(4.3.3)

for some constant C > 0 only depending on N,T and supj=1,...,N ‖Bj‖L∞(D), but not on
n ∈ N.

Proof. First, we define the stopping time

τm := inf
{
t ∈ [0, T ] : |βi(t)| > m for some i = 1, . . . , N

}
and solve the equationdy

(m)
n = [PnMy

(m)
n − PnF (y

(m)
n ) + PnA

(m)ymn + PnJ̃ ] dt+
∑N
i=1 Sn−1b̃i dβi,

u(0) = Sn−1u0,
(4.3.4)

where the truncated linear operator A(m) is given by

A(m)(t)y(t) :=

N∑
j=1

iβj(t ∧ τm)

(
∇Bj × y2(t)

−∇Bj × y1(t)

)
+B2

j y(t).

By Lemma 4.2.4 and Lemma 4.1.7, this is an ordinary stochastic differential equation in the
closed subspace R(Pn) ⊂ L2(D)6 with locally Lipschitz nonlinearity. The stopping time τm
is necessary at this point since it ensures βj(·∧τm) ∈ L∞(Ω×[0, T ]).We need this truncation
to be able to apply the classical results for stochastic ordinary differential equations.

There exists a stopping time τ (m,n) with 0 ≤ τ (m,n) ≤ T almost surely, an increasing
sequence of stopping times (τ

(m,n)
k )k with τ

(m,n)
k → τ (m,n) almost surely as k → ∞ and

adapted processes y(m)
n : Ω× [0, T ]→ PnL

2(D)6 with

y(m)
n ∈ C(0, τ

(m,n)
k ;L2(D)6)
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almost surely such that y(m)
n solves (4.3.4) on [0, τ

(m,n)
k ]. Moreover, we have the blow-up

alternative

P
{
τ (m,n) < T, sup

t∈[0,τ(m,n))

‖yn(t)‖L2(D)6 <∞
}

= 0. (4.3.5)

To show the a priori estimate, we use the Itô formula from Lemma 4.2.2 and get

‖y(m)
n (t)‖2L2(D)6 − ‖Sn−1u0‖2L2(D)6

=2

∫ t

0

Re
〈
y(m)
n (s),−|y(m)

n (s)|qy(m)
n (s) +A(m)(s)y(m)

n (s) + J̃(s)
〉
L2(D)6 ds

+ 2

N∑
j=1

∫ t

0

Re
〈
y(m)
n (s), Sn−1b̃j(s)

〉
L2(D)6 dβj(s) +

N∑
j=1

∫ t

0

‖Sn−1b̃j(s)‖2L2(D)6 ds.

Using the skew-symmetry of the cross-product and the fact that both Bj and βj are real-
valued, we calculate

〈
y(m)
n (s), iβj(s ∧ τm)

( ∇Bj × y(m)
n,2 (s)

−∇Bj × y(m)
n,1 (s)

)〉
L2(D)6

= −
〈
iβj(s ∧ τm)y(m)

n (s),

( ∇Bj × y(m)
n,2 (s)

−∇Bj × y(m)(s)
n,1

)〉
L2(D)6

=
〈
iβj(s ∧ τm)

( ∇Bj × y(m)
n,2 (s)

−∇Bj × y(m)
n,1 (s)

)
, y(m)
n (s)

〉
L2(D)6

,

which implies

Re
〈
y(m)
n (s), iβj(s ∧ τm)

( ∇Bj × y(m)
n,2 (s)

−∇Bj × y(m)
n,1 (s)

)〉
L2(D)6

= 0

for all s ∈ [0, τ
(n,m)
k ]. Hence, the expression from above simplifies to

‖y(m)
n (t)‖2L2(D)6 + 2

∫ t

0

∫
D

|y(m)
n (s, x)|q+2 dx dt

=‖u0‖2L2(D)6 + 2

∫ t

0

Re
〈
y(m)
n (s), J̃(s) +

N∑
j=1

B2
j y

(m)
n (s)

〉
L2(D)6 ds

+ 2

N∑
j=1

∫ t

0

Re
〈
y(m)
n (s), Sn−1b̃j(s)

〉
L2(D)6 dβj(s) +

N∑
j=1

∫ t

0

‖Sn−1b̃j(s)‖2L2(D)6 ds (4.3.6)

almost surely for all t ∈ [0, τ
(m,n)
k ]. Since the second term on the left-hand side is positive,

we can drop it for a moment. Afterwards, we take the supremum over time and then
the expectation. We estimate the remaining quantities term by term and start with the
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deterministic part.

E sup
s∈[0,t∧τ(m,n)

k ]

∣∣∣ ∫ s

0

2 Re
〈
y(m)
n (r), J̃(r) +

N∑
j=1

B2
j y

(m)
n (r)

〉
dr +

N∑
j=1

∫ s

0

‖Sn−1b̃j(r)‖2L2(D)6 dr
∣∣∣

≤ E
∫ t∧τ(m,n)

k

0

2‖y(m)
n (r)‖L2(D)6‖J̃(r)‖L2(D)6 + 2N sup

j=1,...,N
‖Bj‖2L∞(D)‖y

(m)
n (r)‖2L2(D)6 dr

+

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6

≤
∫ t

0

E sup
r∈[0,s∧τ(m,n)

k ]]

‖y(m)
n (r)‖2L2(D)6

(
2N sup

j=1,...,N
‖Bj‖2L∞(D) + 1

)
ds+ ‖J̃‖2L2(Ω×[0,T ]×D)6

+

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6 .

The stochastic part can be estimated with the Burgholder-Davies-Gundy inequility. We
have

E sup
s∈[0,t∧τ(m,n)

k ]

∣∣∣ N∑
j=1

∫ s

0

Re
〈
y(m)
n (s), Sn−1b̃j(s)

〉
L2(D)6 dβj(s)

∣∣∣
≤ CE

( N∑
j=1

∫ t∧τ(m,n)
k

0

∣∣Re〈y(m)
n (s), Sn−1b̃j(s)〉L2(D)6

∣∣2 ds
)1/2

≤ CE sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖L2(D)6

( N∑
j=1

‖Sn−1b̃j‖2L2([0,T ]×D)

)1/2

≤ 1

4
E sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖2L2(D)6 + C2E

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D).

Putting these estimates together, we get

E sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖2L2(Ω×D)

. ‖u0‖2L2(D)6 + ‖J̃‖2L2(Ω×[0,T ]×D) +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)

+
(
N sup

j=1,...,N
‖Bj‖2L∞(D) + 1

) ∫ t

0

E sup
r∈[0,s∧τ(m,n)

k ]

‖y(m)
n (r)‖2L2(D)6 ds.

Consequently, Gronwall yields

E sup
s∈[0,t∧τ(m,n)

k ]

‖y(m)
n (s)‖2L2(D)6

.Bj ,N,T
(
‖J̃‖2L2(Ω×[0,T ]×D)6 +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(Ω×D)

)
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for every t ∈ [0, T ]. Next, we pass to the limit k →∞ with Fatou’s Lemma and get

E sup
t∈[0,τ(m,n))

‖y(m)
n (t)‖2L2(D)6

≤ lim inf
k→∞

E sup
t∈[0,τ

(m,n)
k ]

‖y(m)
n (t)‖2L2(D)6

.Bj
(
‖J̃‖2L2(Ω×[0,T ]×D) +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D) + ‖u0‖2L2(Ω×D)

)
. (4.3.7)

Note that this bound is independent of m and n. In particular, it implies τ (m,n) = T almost
surely. Indeed, there exists an N ⊂ Ω with P(N) = 0 such that Ω \

(
N ∪ {τ (m,n) = T}

)
can

be decomposed into disjoint sets{
τ (m,n) < T, sup

t∈[0,τ(m,n))

‖y(m)
n (t)‖L2(D)6 <∞

}
,{

τ (m,n) < T, sup
t∈[0,τ(m,n))

‖y(m)
n (t)‖L2(D)6 =∞

}
.

The first of these sets has measure zero by (4.3.5), whereas the second one has measure zero
since (4.3.7) implies supt∈[0,τ(m,n)) ‖y

(m)
n (t)‖L2(D)6 <∞ almost surely. As a consequence of

(4.3.6), we also get

E
∫ T

0

∫
D

|y(m)
n (s, x)|q+2 dx dt

.Bj
(
‖J̃‖2L2(Ω×[0,T ]×D)6 +

N∑
j=1

‖b̃j‖2L2(Ω×[0,T ]×D)6 + ‖u0‖2L2(D)

)
. (4.3.8)

We already know that y(m)
n is almost surely continuous on [0, T ) as a function with values

in L2(D)6. The pathwise continuity up to T follows from Lemma 4.2.2.

It remains to take the limit m → ∞. By uniqueness, we have y(m)
n (ω, t) = y

(k)
n (ω, t) for

almost all ω ∈ Ω, all t ∈ [0, τm] and for every k ≥ m. Moreover, for almost all ω ∈ Ω, there
exists m(ω), such that τm(ω)(ω) = T. Hence, the limit yn = limm→∞ y

(m)
n is well-defined,

adapted and satisfies (4.3.4). Again using Fatou’s Lemma yields analogous estimates to
(4.3.7) and (4.3.8) for yn. This closes the proof.

To obtain strong solutions, we need an estimate for Myn that is uniform in n ∈ N. We do
this in the following way. We derive an a priori estimate for∥∥∥PnMyn(t)− PnF (yn(t)) + Pn

N∑
j=1

B2
j yn(t) + Pniβj(t)

(
∇Bj × yn,2(t)

−∇Bj × yn,1(t)

)
+ PnJ̃(t)

∥∥∥2

L2(D)6

and afterwards we use the estimates from Proposition 4.3.3 to get a bound for Myn. To do
this, we have to show that the above quantity is an Itô process in PnL2(D)6.

Lemma 4.3.4. The stochastic process

Λn(t) := PnMyn(t)− PnF (yn(t)) + Pn

N∑
j=1

B2
j yn(t) + Pniβj(t)

(
∇Bj × yn,2(t)

−∇Bj × yn,1(t)

)
+ PnJ̃(t)
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is an Itô process with

dΛn =Pn

[
MΛn − F ′(yn)(Λn) +

N∑
j=1

(
iβj

(
∇Bj × Λn,2
−∇Bj × Λn,1

)
+B2

jΛn

)

− 1

2

N∑
j=1

B2
j

( N∑
k=1

−ibkBk + J
)
e−

∑N
l=1 Blβl·

+
( N∑
k=1

−i∂tbkBk + ∂tJ
)
e−

∑N
l=1 Blβl· − 1

2

N∑
j=1

F ′′(yn)(Sn−1b̃j , Sn−1b̃j)
]

dt

+

N∑
j=1

Pn

[
MSn−1b̃j − F ′(yn)(Sn−1b̃j) +

N∑
k=1

iβk

( ∇Bk × Sn−1b̃j,2

−∇Bk × Sn−1b̃j,1

)

+

N∑
k=1

B2
kSn−1b̃j + i

(
∇Bj × yn,2
−∇Bj × yn,1

)
− iBj

( N∑
k=1

−ibkBk + J
)
e−

∑N
l=1 Blβl·

]
dβj

almost surely on [0, T ].

Proof. With Lemma 4.2.4 and Lemma 4.1.7, one shows that PnF (yn) is an Itô process in
PnL

2(D)6 with

d(PnF (yn)) = Pn

[
F ′(yn)(Λn)+ 1

2

N∑
j=1

F ′′(yn)(Sn−1b̃j , Sn−1b̃j)
]
dt+

N∑
j=1

PnF
′(yn)Sn−1b̃j dβj .

Moreover, by the product rule,

PnJ̃(t, x) = Pn

( N∑
j=1

−ibj(t, x)Bj(x) + J(t, x)
)
e−i

∑N
l=1 Blβl(t)

is an Itô process in L2(D)6 of the form

d(PnJ̃)(t)

=Pn

(
− 1

2

N∑
j=1

B2
j

( N∑
k=1

−ibk(t)Bk + J(t)
)

+

N∑
k=1

−i∂tbk(t)Bk + ∂tJ(t)
)
e−i

∑N
l=1 Blβl(t) dt

− Pn
N∑
j=1

[
iBj
( N∑
k=1

−ibk(t)Bk + J(t)
)
e−i

∑N
l=1 Blβl(t)

]
dβj .

The remaining expression Λn + PnF (yn)− PnJ̃ is a function of the Itô processes

dyn(t, x) = Λn(t)dt+ Sn−1

N∑
j=1

b̃j dβj(t)

and βj , j = 1, . . . , N. Hence, we can calculate d(Λn + PnF (yn) − PnJ̃) with Itô’s formula.
Thereby, it is crucial that all occurring terms depend only linearly on yn and βj and conse-
quently the second derivatives vanish. This finally proves the claimed result.

Now we can derive an a priori estimate for Λn that is uniform in n ∈ N.
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Proposition 4.3.5. The process Λn satisfies the estimate

E sup
t∈[0,T ]

‖Λn(t)‖2L2(D)6 ≤ C
(
1 + E‖Mu0‖2L2(D)6 + E‖u0‖2L2(D)6 + E‖u0‖2q+2

L2q+2(D)6

)
with a constant C > 0 depending on J, bj and Bj for j = 1, . . . , N , but not on n ∈ N.

Proof. At first, we calculate ‖Λn(t)‖2L2(D)6 with the Itô formula from Lemma 4.2.2. We
obtain

‖Λn(t)‖2L2(D)6 − ‖Λn(0)‖2L2(D)6

=2

∫ t

0

Re
〈

Λn(s),MΛn(s)− F ′(yn(s))(Λn(s)) +

N∑
j=1

(
iβj(s)

(
∇Bj × Λn,2(s)

−∇Bj × Λn,1(s)

)
+B2

jΛn(s)
)

− 1

2

N∑
j=1

B2
j

( N∑
k=1

−ibk(s)Bk + J(s)
)
e−i

∑N
l=1 Blβl(s)

+
( N∑
k=1

−i∂tbk(s)Bk + ∂tJ(s)
)
e−i

∑N
l=1 Blβl(t)

− 1

2

N∑
j=1

F ′′(yn)(Sn−1b̃j(s), Sn−1b̃j(s))
〉
L2(D)6

ds

+

∫ t

0

∥∥∥MSn−1b̃j(s)− F ′(yn)(Sn−1b̃j(s)) +

N∑
k=1

iβk(s)

( ∇Bk × Sn−1b̃j,2(s)

−∇Bk × Sn−1b̃j,1(s)

)

+

N∑
k=1

B2
kSn−1b̃j(s) + i

(
∇Bj × yn,2(s)

−∇Bj × yn,1(s)

)

− iBj
( N∑
k=1

−ibk(s)Bk + J(s)
)
e−i

∑N
l=1 Blβl(s)

∥∥∥2

L2(D)6
ds

+ 2

N∑
j=1

∫ t

0

Re
〈

Λn(s),MSnb̃j(s)− F ′(yn)(Sn−1b̃j(s)) +

N∑
k=1

iβk(s)

( ∇Bk × Sn−1b̃j,2(s)

−∇Bk × Sn−1b̃j,1(s)

)

+

N∑
k=1

B2
kSn−1b̃j(s) + i

(
∇Bj × yn,2(s)

−∇Bj × yn,1(s)

)

− iBj
( N∑
k=1

−ibk(s)Bk + J(s)
)
e−i

∑N
l=1 Blβl(s)

〉
L2(D)6

dβj(s).

As we have seen before in the proof of Proposition 4.3.3, the term

Re
〈

Λn(s),MΛn(s) +

N∑
j=1

iβj(s)

(
∇Bj × Λn,2(s)

−∇Bj × Λn,1(s)

)〉
L2(D)6

vanishes. Moreover, by Lemma 4.2.4, we have

−Re
〈
Λn(s), F (yn(s))′Λn(s)

〉
L2(D)6 ≤ 0

almost surely for every s ∈ [0, T ] and we can drop this term in an upper estimate. We
split the remaining expression into a deterministic integral Idet and a stochastic integral
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Istoch. We take the supremum over time and afterwards the expectation. Further, we aim
to control the left-hand side with Gronwall. We start with an estimate for the deterministic
integral Idet. Using Cauchy-Schwartz and the assumptions on Bj , ∇Bj , ∂tbj , J and ∂tJ

from [M4]− [M6], we get

E sup
s∈[0,t]

|Idet(s)|

.
∫ t

0

‖Λn(r)‖2L2(D)6 +

N∑
j=1

‖Λn(r)‖L2(D)6‖F ′′(yn)(Sn−1b̃j(r), Sn−1b̃j(r)‖L2(D)6

+
∥∥MSnb̃j(r)‖2L2(D)6 + ‖F ′(yn(r))(Sn−1b̃j(r))‖2L2(D)6 +

N∑
k=1

‖βk(r)Sn−1b̃j(r)‖2L2(D)6

+

N∑
k=1

‖Sn−1b̃j(r)‖2L2(D) + ‖yn(r)‖2L2(D) dr.

The growth estimates for F ′ and F ′′ from Lemma 4.2.4 together with the uniform bound-
edness of Sn−1 on L2(D)6 yield

E sup
s∈[0,t]

|Idet(s)|

.
∫ t

0

‖Λn(r)‖2L2(D)6 +

N∑
j=1

‖|yn(r)|q−1|Sn−1b̃j(r)|2‖2L2(D)6 + ‖Mb̃j(r)‖2L2(D)6 + ‖b̃j(r)‖2L2(D)

+ ‖|yn(r)|qSn−1b̃j(r)‖2L2(D)6 +

N∑
k=1

βk(r)2‖b̃j(r)‖2L2(D)6 + ‖yn(r)‖2L2(D) dr.

In the following estimate, we have to distinguish the cases q ∈ (1, 2) and q = 2. We start
with the first one. Hölder’s inequality, the fact βk ∈ Lα(Ω;C(0, T )) for every α ∈ [2,∞) and
the boundedness of Sn−1 on Lp(D)6 for every p ∈ (1,∞) with norm independent of n yield

E sup
s∈[0,t]

|Idet(s)|

.
∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds+ ‖yn‖2(q−1)
Lq+2(Ω×[0,T ]×D)6‖b̃j‖4

L
4(q+2)

4−q (Ω×[0,T ]×D)6

+ ‖Mb̃j‖2L2(Ω×[0,T ]×D)6 + ‖yn‖2qLq+2(Ω×[0,T ]×D)6‖b̃j‖2
L

2(q+2)
2−q (Ω×[0,T ]×D)6

+ ‖b̃j(s)‖2L2+ε(Ω;L2([0,T ]×D))6 + ‖b̃j‖2L2(Ω×[0,T ]×D) + ‖yn‖2L2(Ω×[0,T ]×D)

for any ε > 0. In the case q = 2, the same argument yields

E sup
s∈[0,t]

|Idet(t)| .
∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds+ ‖yn‖2L4(Ω×[0,T ]×D)6‖b̃j‖4L8(Ω×[0,T ]×D)6

+ ‖Mb̃j‖2L2(Ω×[0,T ]×D)6 + ‖yn‖4L4(Ω×[0,T ]×D)6‖Sn−1b̃j‖2L∞(Ω×[0,T ]×D)6

+ ‖b̃j‖2L2+ε(Ω;L2([0,T ]×D))6 + ‖b̃j‖2L2(Ω×[0,T ]×D) + ‖yn‖2L2(Ω×[0,T ]×D)

for any ε > 0. At this point, we need the requirement Sn−1b̃j = b̃j for large enough n

from [M5] to get rid of Sn−1. Note that we already bounded ‖yn‖Lq+2(Ω×[0,T ]×D)6 and
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‖yn‖L2(Ω×[0,T ]×D)6 in Proposition 4.3.3 uniformly in n. Hence, it remains to estimate the
terms including b̃j . By the product rule for the curl operator, we have

Mb̃j(s) =
(
Mbj(s)

)
e−i

∑N
l=1 Blβl(s) +

N∑
k=1

iβk(s)

(
−∇Bk × bj,2
∇Bk × bj,1

)
e−i

∑N
l=1 Blβl(s),

which implies

‖Mb̃j‖L2(Ω×[0,T ]×D) .N,Bk ‖Mbj‖L2(Ω×[0,T ]×D) +

N∑
k=1

‖βkbj‖L2(Ω×[0,T ]×D)

≤ ‖Mbj‖L2(Ω×[0,T ]×D) + ‖bj‖L2+ε(Ω;L2([0,T ]×D))

for any ε > 0. Here, we again used the fact βk ∈ Lα(Ω;C(0, T )) for every α ≥ 2 and
Hölder’s inequality. It remains to bound ‖bj‖L2+ε(Ω;L2([0,T ]×D)), but this is immediate by
[M5], because we have both bj ∈ L2(Ω × [0, T ] × D)6 and bj ∈ L

2(q+2)
2−q (Ω × [0, T ] × D)6.

Altogether, we have

E sup
s∈[0,t]

|Idet(s)| . 1 +

∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds

and the estimate only depends on Bj , bj and J but not on n ∈ N. The stochastic term Istoch

can be controlled in the same way as in the proof of Proposition 4.3.3 with the Burkholder-
Davies-Gundy inequality and the assumptions on Bj , bj and J together with the growth
estimates for F ′ and F ′′. Thus, we end up with

E sup
s∈[0,t]

‖Λn(s)‖2L2(D) . 1 + E‖Λn(0)‖2L2(D) +

∫ t

0

E sup
r∈[0,s]

‖Λn(r)‖2L2(D)6 ds.

It remains to bound

Λn(0) = PnMSn−1u0 − PnF (Sn−1u0) + Pn

N∑
j=1

B2
jSn−1u0 − Pn

N∑
j=1

ibj(0)Bj + PnJ(0)

in L2(Ω×D)6 independent of n ∈ N. Since both bj and J are in L2(Ω;W 1,2(0, T ;L2(D)6)),

the corresponding initial data bj(0) and J(0) are contained in L2(Ω×D)6. As a consequence,
the uniform boundedness of Sn−1 on Lp(D)6 for every p ∈ (1,∞) and of Pn on L2(D)6 yield

E‖Λn(0)‖2L2(D) . 1 + E‖MSn−1u0‖2L2(D)6 + E‖|Sn−1u0|qSn−1u0‖2L2(D)6

+

N∑
j=1

‖Bj‖2L∞(D)‖Sn−1u0‖2L2(D)6

. 1 + E‖Mu0‖2L2(D)6 + E‖u0‖2(q+1)

L2(q+1)(D)6
+ E‖u0‖2L2(D)6 .

Finally, an application of Gronwall’s Lemma proves the claimed result.

In Proposition 4.3.3 and 4.3.5, we derived uniform estimates for yn and Λn. As a consequence,
we also get the uniform boundedness of F (yn) since

‖F (yn)‖
L
q+2
q+1 (Ω×[0,T ]×D)

. ‖|yn|q+1‖
L
q+2
q+1 (Ω×[0,T ]×D)6

= ‖yn‖q+1
Lq+2(Ω×[0,T ]×D)6 .

By Banach-Alaoglu, there exist y ∈ L2(Ω;L∞(0, T ;L2(D)))6, N ∈ L
q+2
q+1 (Ω × [0, T ] × D)6,

Λ ∈ L2(Ω;L∞(0, T ;L2(D)))6 and subsequences, still indexed with n such that
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a) yn → y for n→∞ in the weak∗ sense in L2(Ω;L∞(0, T ;L2(D)))6,

b) yn → y for n→∞ in the weak sense in L2(Ω× [0, T ]×D)6,

c) F (yn)→ N for n→∞ in the weak sense in L
q+2
q+1 (Ω× [0, T ]×D)6,

d) Λn → Λ for n→∞ in the weak sense in L2(Ω× [0, T ]×D)6,

e) Λn → Λ for n→∞ in the weak∗ sense in L2(Ω;L∞(0, T ;L2(D)))6.

Since yn is for every n ∈ N an adapted solution of the ordinary stochastic differential
equation (4.3.4) in PnL

2(D)6, we have yn ∈ L2
F(Ω × [0, T ] × D)6. Consequently, since

L2
F(Ω× [0, T ]×D)6 is a closed subspace of L2(Ω× [0, T ]×D)6, it is also weakly closed. This

implies y ∈ L2
F(Ω× [0, T ]×D)6, which means that y is also adapted.

In the next Lemma, we show that Λ has the correct form, that My(t) exists in the sense of
distributions and that we have y1 × ν = 0 on ∂D.

Lemma 4.3.6. The process y : Ω × [0, T ] → L2(D)6 additionally satisfies y(ω, t) × ν = 0

on ∂D for almost all ω ∈ Ω and t ∈ [0, T ]. Moreover, we have

My +

N∑
j=1

iβj

(
∇Bj × y2

−∇Bj × y1

)
∈ L2(Ω;L∞(0, T ;L2(D)6)) + L

q+2
q+1 (Ω× [0, T ]×D)6

and the identity

Λ = My −N +

N∑
j=1

B2
j y + iβj

(
∇Bj × y2

−∇Bj × y1

)
+ J̃

holds true.

Proof. Let φ : Ω× [0, T ]→ ∪∞n=1R(Pn) be a simple function. By weak convergence and the
skew-adjointness of M , we obtain

− 〈y,Mφ〉L2(Ω×[0,T ]×D)6

= − lim
n→∞

〈yn,Mφ〉L2(Ω×[0,T ]×D)6

= lim
n→∞

〈Myn, φ〉L2(Ω×[0,T ]×D)6

= lim
n→∞

〈
Λn + PnF (yn)− PnJ̃ − Pn

N∑
j=1

Bjyn − Pn
N∑
j=1

iβj

(
∇Bj × yn,2
−∇Bj × yn,1

)
, φ
〉
L2(Ω×[0,T ]×D)6

=
〈
Λ +N − J̃ −

N∑
j=1

Bjy −
N∑
j=1

iβj

(
∇Bj × y2

−∇Bj × y1

)
, φ
〉
L2(Ω×[0,T ]×D)6 .

Here, we were able to drop the Pn since Pnφ = φ for large enough n. By density of simple
functions and by the density of ∪∞n=1R(Pn) in D(M) and in Lp(D)6 for every p ∈ (1,∞)
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(see Corollary 4.1.6), we get

−〈y(t),Mψ〉L2(D)6

=
〈
Λ(t) +N(t)− J̃(t)−

N∑
j=1

Bjy(t)−
N∑
j=1

iβj(t)

(
∇Bj × y2(t)

−∇Bj × y1(t)

)
, ψ
〉
L2(D)6

(4.3.9)

almost surely for almost every t ∈ [0, T ] and for every ψ ∈ D(M) ∩ Lq+2(D)6. This holds
true especially for all ψ ∈ C∞c (D)6 and hence the definition of the weak version of the curl

operator in Chapter 2 yields

My(t) = Λ(t) +N(t)−
N∑
j=1

B2
j y(t)− iβj(t)

(
∇Bj × y2(t)

−∇Bj × y1(t)

)
− J̃(t)

almost surely for almost every t ∈ [0, T ]. This proves the claimed result in case that D = R3

since we then do not have boundary conditions. So we can assume D to be a bounded
C1-domain for the rest of the proof. We show y1 × ν = 0 on ∂D. Note that ψ = (0, φ) with
φ ∈ C1(D)3 is contained in D(M) ∩ Lq+2(D). We insert this into (4.3.9) and get

−〈y1(t), curlφ〉L2(D)3 = 〈Λ2(t) +N2(t)− J̃2(t)−
N∑
j=1

B2
j y2(t) + iβj∇Bj × y1(t), φ〉L2(D)3

= 〈− curl y1(t), φ〉L2(D)3

almost surely for almost every t ∈ [0, T ] and for all φ ∈ C1(D)3. By definition of the
tangential trace in Definition 1.1.2, this shows y1 × ν = 0 on ∂D almost surely for almost
every t ∈ [0, T ].

Consequently, we pass to the weak limit in (4.2.4) and obtaindy(t) = [My(t)−N(t) +A(t)y(t) + J̃(t)] dt+
∑N
i=1 b̃i(t) dβi(t),

yn(0) = u0

(4.3.10)

as an equation in L2(Ω;L∞(0, T ;L2(D)6)). So far, we showed y ∈ L2(Ω;L∞(0, T ;L2(D)6)).

However, Lemma 4.2.2 implies the pathwise continuity of t 7→ y(t) ∈ L2(D)6.

It remains to show N(t) = F (y(t)). But this proof is step by step the same as in Proposition
4.2.7 and uses the monotonicity of the deterministic part of the equation.

All in all, we showed that y ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω;C(0, T ;L2(D)6)) solvesdy(t) = [My(t)− F (y(t)) +A(t)y(t) + J̃(t)] dt+
∑N
i=1 b̃i(t) dβi(t),

yn(0) = u0

(4.3.11)

as an equation in L2(Ω;L∞([0, T ];L2(D)6)). Transforming the equation back with Proposi-
tion 4.3.2, we get the following result.
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Proposition 4.3.7. (MSEE) with G ≡ 0 has a unique strong solution u satisfying

u ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω;C(0, T ;L2(D)6))

and
Mu ∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞(0, T ;L2(D)6)).

Proof. By Lemma 4.3.6, we have

My +

N∑
j=1

iβj

(
∇Bj × y2

−∇Bj × y1

)
∈ L2(Ω;L∞(0, T ;L2(D)6)) + L

q+2
q+1 (Ω× [0, T ]×D)6.

Consequently, we can apply Proposition 4.3.2 and obtain a solution u of (MSEE) with G ≡ 0.

Uniqueness is immediate by Proposition 4.2.7 since our solution is also a weak solution of
the equation.

Last but not least, we want to add the term (G ∗ u), using our theory on weak solutions.
This leads to the main result of this chapter.

Theorem 4.3.8. (MSEE) has a unique solution u satisfying

u ∈ Lq+2(Ω× [0, T ]×D)6 ∩ L2(Ω;C(0, T ;L2(D)6))

and
Mu ∈ L

q+2
q+1 (Ω× [0, T ]×D)6 + L2(Ω;L∞([0, T ];L2(D)6)).

Proof. Let u ∈ Lq+2(Ω × [0, T ] × D)6 ∩ L2(Ω;C(0, T ;L2(D)6)) be the unique weak solu-
tion of (MSEE) from Proposition 4.2.8. The expression (G ∗ u)(t) =

∫ t
0
G(t − s)u(s) ds is

differentiable in time with

∂t(G ∗ u)(t) = G(0)u(t) +

∫ t

0

G′(t− s)u(s) ds.

Thus, by [M3], both (G ∗ u) and ∂t(G ∗ u) are contained in L2(Ω × [0, T ] ×D)6. Hence, u
is a solution of (MSEE) with the current G ∗ u+ J that satisfies [M4]. Consequently, u has
the regularity properties from Proposition 4.3.7. This closes the proof.

4.4. Remarks and discussion

In this section, we want to compare our results to the literature and we discuss some in-
structive special cases of our assumptions.

First, we want to mention that Roach, Stratis and Yannacopoulus already treated our equa-
tion in the deterministic setting in [88]. They claim in Theorem 11.3.14 that u′(t) = κ−1Mu(t)− κ−1|u(t)|qu(t) + κ−1(G ∗ u)(t) + κ−1J(t), t ∈ [0, T ],

u(0) = u0
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has a unique strong solution u ∈ Lq+2([0, T ]×D)6 with Mu ∈ L
q+2
q+1 ([0, T ]×D)6 if D ⊂ R3

is a bounded Lipschitz domain and κ : D → R6×6 is a uniformly bounded and uniformly
elliptic matrix with measurable dependence in space. Their idea is to make a Galerkin
approximation with respect to an orthonormal basis (hn)n of W 2(curl, 0)(D)×W 2(curl)(D)

that is also a basis of L2(D)6. However, besides many inaccuracies, they make two mistakes
which cannot be fixed in a direct way.

Beginning from (11.12) on page 239, they derive

lim inf
n→∞

∫ T

0

〈
(G ∗ un)(s), un(s)

〉
L2(D)6 ds ≤

∫ T

0

〈
(G ∗ u)(s), u(s)

〉
L2(D)6 ds

as n → ∞ as a consequence of the weak convergences of G ∗ un → G ∗ u and un → u

in L2([0, T ] × D)6 as n → ∞. However, such an argument is not available in the general
situation they discuss. Maybe one can fix this with strong assumptions on the convolution
kernel G (see e.g. [36]). Moreover, in their a priori estimate for the approximating problem,
they implicitly use

‖
n∑
j=1

〈u0, hj〉L2(D)6hj‖L2(q+1)(D)6 ≤ C‖u0‖L2(q+1)(D)6

with a constant independent of n ∈ N, which would mean in our notation that the norm
of Pn : L2(q+1)(D)6 → L2(q+1)(D)6 could be estimated independent of n. However, this is
not true in general. As far as we know, such a result is only known for the Fourier basis
hn(x) = einx on the torus. This is the main reason why we had to use the operators Sn that
are also bounded on Lp(D)6 uniformly in n.

Getting back to our result, we want to point out that the restriction to q ∈ (1, 2] only comes
from the Hölder estimate

‖F ′(yn)Sn−1b̃j‖L2(Ω×[0,T ]×D)6 ≤ ‖yn‖2qLq+2(Ω×[0,T ]×D)6‖Sn−1b̃j‖2
L

2(q+2)
2−q (Ω×[0,T ]×D)6

in the proof of Proposition 4.3.5. Hence, if one assumes bj ≡ 0 one gets the same result as
in Theorem 4.3.8 for all q ∈ (1,∞). In particular, this is true for the deterministic equation.
Especially, we gave a proof for the theorem of Roach, Stratis and Yannacopoulus if κ ≡ I

and D is a bounded C1-domain or D = R3.

Next, we want to comment on the odd-looking condition

Pn
(
bi(s)e

−i
∑N
j=1 Bjβj(s)

)
= bi(s)e

−i
∑N
j=1 Bjβj(s)

from [M5] for all s ∈ [0, T ], i = 1, . . . , N and for n ∈ N large enough in case that q = 2. We
need it in the proof of Proposition 4.3.5 for the estimate

‖Sn
(
bi(s)e

−i
∑N
j=1 Bjβj(s)

)
‖L∞(D)6 ≤ C‖bi(s)e−i

∑N
j=1 Bjβj(s)‖L∞(D)6

with a constant independent of n ∈ N. It might be possible to get this inequality without our
restrictive assumption in special cases. However, we want to point out that even in the case
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D = R3 the boundedness of Sn on L∞(D)6 is wrong since it would imply the boundedness
of the Hilbert transform on L∞(D). If the Bj are constant, the assumption reduces to
Pnbi(s) = bi(s) for all s ∈ [0, T ]. If D = R3, this means that the Fourier transform b̂i(s) is
compactly supported on a timely independent set. In case that D is a bounded C1-domain,
this means that bi is of the form

bi(s) =

M∑
k=1

b
(k)
i (s)hk, s ∈ [0, T ]

for some scalar-valued b(k)
i : Ω × [0, T ] → C. Here, (hk)k is the sequence of eigenvectors of

the Hodge-Laplacian, we introduced in section 4.1.

Last but not least, we want to discuss why we did not treat coefficients in front of the
Maxwell operator. Our approach is based on the interplay of M2, ∆H and the Helmholtz
projection PH . In fact, we showed M2 = ∆H on R(PH) and M2 = 0 on N(PH) = N(M).

One might say that we added a self-adjoint operator A =
(− grad div
− grad div

)
with N(A) = R(PH)

to M2 such that the sum, namely ∆H , generates a semigroup having generalised Gaussian
bounds. This was essential for the definition of (Sn)n and (Pn)n from Section 4.1. If we
now replace M by

Mε,µ

(
u1

u2

)
=

(
ε(x)−1 curlu2

−µ(x)−1 curlu1

)
with the same perfect conductor boundary condition u1 × ν = 0 on ∂D and with uniformly
bounded, positive definite and Hermitian ε, µ : D → C3×3. Hence, we have

M2
ε,µ

(
u1

u2

)
=

(
−ε(x)−1 curlµ(x)−1 curlu1

−µ(x)−1 curl ε(x)−1 curlu2

)
with the boundary condition u1 × ν = 0 and

(
ε−1 curlu2

)
× ν = 0 on ∂D. The operator

−M2
ε,µ is then positive and self-adjoint with respect to a weighted inner product on L2(D)6,

namely
〈v, w〉ε,µ :=

∫
D

ε(x)v1(x) · w1(x) dx+

∫
D

µ(x)v2(x) · w2(x) dx.

To adapt the our strategy from the setting with ε, µ ≡ I, we would need a weighted version
of the Helmholtz projection Pε,ν . We project orthogonally with respect to 〈·, ·〉ε,µ onto{

(u1, u2) ∈ L2(D)6 : div(εu1) = 0,div(µu2) = 0 and (µu2) · ν = 0 on ∂D
}
.

Analogously to A from above, we define

Aε,µ

(
u1

u2

)
=

(
− grad div(εu1)

− grad div(µu2)

)
.

One calculates that Aε,µ is symmetric with respect to 〈·, ·〉ε,µ. Moreover, M2
ε,µ, M2

ε,µ +Aε,µ

and Pε,µ have the same relationship as their counterparts with ε = µ = I.

Hence, to follow our proof strategy, one has to show that the semigroup generated by
M2
ε,µ +Aε,µ on the domain{

curlu1, curlu2, curlµ−1 curlu1, curl ε−1 curlu2 ∈ Lp(D)3,div(εu1) ∈W 1,p
0 (D),

div(µu2) ∈W 1,p(D), u1 × ν = 0, (µu2) · ν = 0, (ε−1 curlu2)× ν = 0 on ∂D
}
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satisfies generalised Gaussian bounds. However, even in case of smooth ε, µ and ∂D such a
result is unknown so far.



APPENDIX A

A note on pseudodifferential operators with rough

symbols

In the research that led to this thesis, we also looked at nonautonomous deterministic evo-
lution equations of the formu′(t) = A(t)u(t) + f(t), t ∈ [0, T ],

u(0) = u0

on a Banach space X with closed and densely defined operators (A(t))t∈[0,T ]. This equation
is said to have maximal regularity if for given f ∈ Lp(0, T ;X), there exists a unique solution
u ∈ W 1,p(0, T ;X) such that t 7→ A(t)u(t) ∈ Lp(0, T ;X). A typical question in this area of
research is how much regularity one has to assume on t 7→ A(t) to get maximal regularity.

One remarkable approach for commuting operators (A(t))t∈[0,T ] is by Gallarati and Veraar
(see [39]). They used the formula

u(t) = U(t, 0)u0 +

∫ t

0

U(t, s)f(s) ds,

where (U(t, s))0≤s≤t≤T is the evolution family generated by (A(t))t∈[0,T ] and proved that
the operator

f 7→
∫ ·

0

A(·)U(·, s) ds

is bounded on Lp(0, T ;X). Another approach is to use the formula

u(t) =e−tA(t)u0 +

∫ t

0

A(t)2e−(t−s)A(t)
(
A(t)−1 −A(s)−1

)
A(s)u(s) ds

+

∫ t

0

e−(t−s)A(t)f(s) ds,

that was introduced by Acquistapace and Terreni in [1]. In this setting, one mainly has to
show that the operator L defined by

Lf(t) =

∫ t

0

A(t)e−(t−s)A(t)f(s) ds

153
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is bounded on Lp(0, T ;X) and that the operator

(I −Q)g(t) := g(t)−
∫ t

0

A(t)2e−(t−s)A(t)
(
A(t)−1 −A(s)−1

)
g(s) ds

is invertible in Lp(0, T ;X). This method has been successfully used by [83] where the authors
proved maximal regularity under the so called Acquistapace-Terreni conditions on t 7→ A(t).
Roughly speaking the Acquistapace-Terreni conditions mean that the domain D(A(t)) is
allowed to vary in time, whereas D(A(t)ν) is fixed for some ν ∈ (0, 1] and t 7→ A(t) is Hölder
continuous of order µ with ν + µ > 1.

To prove the boundedness of L, the authors in [83] used the representation

Lf(t) = F−1
(
ξ 7→ A(t)R(2πiξ,−A(t))f̂(ξ)

)
to apply their theorems on boundedness of pseudodifferential operators on UMD Banach
spaces to L. However, as they have a quite general approach, they still need some Hölder
regularity of t 7→ A(t). However, we found a way to show the boundedness of L if t 7→ A(t) is
measurable in time solely assuming that the operators A(t)εB−ε and A(t)−εBε are bounded
on X for some ε > 0 and for some operator B that has a bounded H∞-calculus. Unfortu-
nately, we were not able to use this for a new theory on maximal regularity with domains
varying in time because we were unable to improve the known results on (I −Q). Though,
we want to present our approach to the boundedness of pseudodifferential operators with a
symbol that has a special structure in this thesis, since we believe it to be interesting on its
own.

Proposition A.0.1. Let 1 < p <∞, X be a UMD Banach space and Y Banach space. In
addition, let Y ∗ be a closed subspace of Y ′ that is norming for Y . Further, we assume that
a ∈ L∞(R× R,B(X,Y )) is weakly differentiable in the second component and that ∂ξa(t, ξ)

factorises as
∂ξa(t, ξ) = ξ−1φ1(ξ)T (t, ξ)φ2(ξ) (A.0.1)

for almost all t, ξ ∈ R, where T (t, ξ) ∈ B(X,Y ) satisfies the following conditions:

i) The map (t, ξ) 7→ T (t, ξ)x is strongly measurable for all x ∈ X.

ii) The set {T (·, ξ) : ξ ∈ R} ⊂ B(Lp(R;X), Lp(R;Y )) is γ-bounded.

Further we assume that φ1(ξ) ∈ B(Y ) with φ1(ξ)′(Y ∗) ⊂ Y ∗ and φ2(ξ) ∈ B(X) are linear
operators satisfying the square function estimates

1) ‖φ1(±ξ)′g‖γ(R>0,
dξ
ξ ,L

p′ (R;Y ∗)) . ‖g‖Lp′ (R;Y ∗),

2) ‖φ2(±ξ)f‖γ(R>0,
dξ
ξ ,L

p(R;X)) . ‖f‖Lp(R;X).

for all f ∈ Lp(R;X) and g ∈ Lp′(R;Y ∗). In this case, the pseudodifferential operator

Taf(t) = F−1(ξ 7→ a(t, ξ)f̂(ξ))(t)

that is well-defined on S(R, X) extends to a bounded operator from Lp(R;X) to Lp(R;Y ).
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Proof. At first, we assume that a(t, ·) is compactly supported for almost all t ∈ R. We use
integration by parts to obtain

Taf(t) =−
∫ ∞
−∞

∂ξa(t, ξ)

∫ ξ

0

f̂(µ)e2πiµt dµ dξ

=−
∫ ∞
−∞

∂ξa(t, ξ)S1(0,ξ)
f(t) dξ

=−
∫ ∞
−∞

φ1(ξA1)T (t, ξ)φ2(ξA2)(S1(0,ξ)
f)(t)

dξ

ξ

for f ∈ S(R, X), where S1(0,ξ)
is the operator associated with the Fourier multiplier 1(0,ξ).

Testing this expression with g ∈ S(R, Y ∗) yields

〈T af, g〉(Lp(R;Y ),Lp′ (R;Y ′ ))

= −
∫
R

∫
R

〈
φ1(ξ)T (t, ξ)φ2(ξ)(S1(0,ξ)

f)(t), g(t)
〉

(Y,Y ′ )

dξ

ξ
dt

= −
∫
R

∫
R

〈
T (t, ξ)φ2(ξ)(S1(0,ξ)

f)(t), φ1(ξ)′g(t)
〉

(Y,Y ′)

dξ

ξ
dt

= −
∫
R

∫ ∞
0

〈
T (t, ξ)φ2(ξ)(S1(0,ξ)

f)(t), φ1(ξ)′g(t)
〉

(Y,Y ′)

dξ

ξ
dt

−
∫
R

∫ ∞
0

〈
T (t,−ξ)φ2(−ξ)(S1(0,−ξ)f)(t), φ1(−ξ)′g(t)

〉
(Y,Y ′)

dξ

ξ
dt.

Note that Hille’s Theorem allows us to commute the integral operator S1(0,±ξ) and φ2(±ξ)
and therefore by Fubini and γ-Hölder, we have∣∣∣〈Taf, g〉(Lp(R;Y ),Lp′ (R,Y ∗))

∣∣∣
≤

∑
j∈{1,−1}

∣∣∣∣∫ ∞
0

〈
T (·, jξ)φ2(jξ)(S1(0,jξ)

f), φ1(jξ)′g
〉

(Lp(R;Y ),Lp′ (R,Y ′))
dξ

ξ

∣∣∣∣
=

∑
j∈{1,−1}

∣∣∣∣∫ ∞
0

〈
T (·, jξ)(S1(0,jξ)

φ2(jξ)f), φ1(jξ)′g
〉

(Lp(R;Y ),Lp′ (R;Y ′))

dξ

ξ

∣∣∣∣
≤

∑
j∈{1,−1}

‖T (·, jξ)(S1(0,jξ)
φ2(jξ)f)‖

γ(R≥0,
dξ
ξ ,L

p(R;Y ))
‖φ1(jξ)′g‖

γ(R≥0,
dξ
ξ ,L

p′ (R;Y ′))
.

Since Y ∗ is a closed subspace of Y ′, we can use the square function estimate 1) to obtain

‖φ1(jξ)′g‖
γ(R>0,

dξ
ξ ,L

p′ (R;Y ′))
= ‖φ1(jξ)′g‖

γ(R>0,
dξ
ξ ,L

p′ (R;Y ∗))
. ‖g‖Lp′ (R;Y ∗).

Moreover, by Lemma 2.2 in [39], Lp
′
(R, Y ∗) is norming for Lp(R;Y ) and thus taking the

supremum over all g ∈ S(R, Y ∗) with ‖g‖Lp′ (R,Y ∗) = 1 which is dense in the unit sphere of
Lp
′
(R, Y ∗) yields

‖Taf‖Lp(R;Y ) ≤
∑

j∈{1,−1}

‖T (·, jξ)(S1(0,jξ)
φ2(jξ)f)‖

γ(R>0,
dξ
ξ ,L

p(R;Y ))
. (A.0.2)

By assumption {T (·, ξ) : ξ ∈ R} ⊂ B(Lp(R;X), Lp(R;Y )) is γ-bounded. Therefore, we
can employ the theorem about γ-bounded pointwise multipliers (see [94], Theorem 5.2) in
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(A.0.2) to get

‖Taf‖Lp(R;Y ) ≤
∑

j∈{1,−1}

‖(S1(0,jξ)
φ2(jξ)f)‖

γ(R>0,
dξ
ξ ,L

p(R;X))
.

By Discussion 3.5 in [70] we know that the family {S1[0,ξ]
: ξ ∈ R} ⊂ B(Lp(R;X)) is R-

bounded and particularly γ-bounded since UMD spaces have finite cotype (see [71], Theorem
1.1). In conclusion, we can apply the multiplier theorem once again and this results in

‖Taf‖Lp(R;Y ) .
∑

j∈{1,−1}

‖φ2(jξ)f)‖
γ(R>0,

dξ
ξ ,L

p(R;X))
.

Using the square function estimate 2) and the density of S(R;X) in Lp(R;X) completes the
proof for symbols with compact support in the second component.

Note that the constants in the estimates from above do not depend on the size of the support
of a(t, ·). Hence, we can deal with the general case by approximation. Let a be a symbol
without compact support and ψ ∈ C∞c (−2, 2) be a cut-off function taking values in [0, 1]

with ψ ≡ 1 on [−1, 1]. Define an(t, ξ) := a(t, ξ)ψ( ξn ). Then an converges pointwise to a for
n→∞ and ‖an(t, ξ)‖B(X) ≤ ‖a(t, ξ)‖B(X) for all t, ξ ∈ R.

Thus, for f ∈ S(R, X) and g ∈ S(R, X ′), dominated convergence yields

〈Taf, g〉(Lp(R;Y ),Lp′ (R;Y ′)) =

∫
R

∫
R

〈
a(t, ξ)f̂(ξ), g(t)

〉
(Y,Y ′)

e2πitξ dξ dt

= lim
n→∞

∫
R

∫
R
〈an(t, ξ)f̂(ξ), g(t)〉(X,X′)e2πitξ dξ dt

= lim
n→∞

〈Tanf, g〉(Lp(R;Y ),Lp′ (R;Y ′)).

Using the result for compactly supported symbols, we conclude

|〈Taf, g〉(Lp(R;Y ),Lp′ (R;Y ′))| = lim
n→∞

|〈Tanf, g〉(Lp(R;Y ),Lp′ (R;Y ′))|

. ‖f‖Lp(R;Y )‖g‖Lp(R;Y ′)

for all f ∈ S(R, X) and g ∈ S(R, Y ′). This finishes the proof.

For an application of this theorem to a concrete situation, it is important that we demand
the square function estimate 1) only on a closed and norming subspace Y ∗ of Y ′, since
the functions φ1 and φ2 are nearly always induced by an operator having a bounded H∞-
calculus. If an operator B on Y has a bounded H∞-calculus then B′ doesn’t necessarily
inherit this property in non-reflexive spaces. Therefore, we have to introduce the moon-dual
space Y # and the moon-dual operator B# before we can give some examples for φ1 and φ2.

For a Banach space Z and an injective and sectorial operator B on Z with dense range the
moon-dual space Z# ⊂ Z ′ is defined by Z# = D(B′) ∩ R(B′) where the closure is taken
in the norm of Z ′. Moreover, one can define the moon-dual operator B# as the part of
B′ in Z#. The advantage of this construction is that B# is also an injective and sectorial
operator with dense range. Moreover, if B has a bounded H∞-calculus on Z, then B# also



157

has bounded H∞-calculus on Z# of the same angle. Last but not least, it is important
to note that Z# is still norming for Z. For more details and references on the moon-dual
operator, we refer to appendix 15 in [70]. Note that this construction is not needed if Z is
reflexive (for example if Z is UMD), since Z# and Z ′ coincide in this case.

Now, we can give the most important examples for functions φ1 and φ2.

Example A.0.2. Let A be a sectorial operator with 0 ∈ ρ(A) having a bounded H∞-calculus
of angle ω ∈ [0, π/2) on a Banach space Z with finite cotype and let φ ∈ H∞0 (Σθ) for some
θ ∈ (ω, π/2), i.e there are constants C > 0 and α > 0 such that

|φ(z)| ≤ C|z|α(1 + |z|)−2α

for all z ∈ Σθ. Then, the operators φA(ξ) = φ(|ξ|A) or alternatively φA(ξ) = φ(|ξ|−1A)

satisfy φA(ξ)′(Z#) ⊂ Z# and

1) ‖φA(±ξ)′x′‖γ(R>0,
dξ
ξ ;Z#) . ‖x

′‖Z#

2) ‖φA(±ξ)x‖γ(R>0,
dξ
ξ ;Z) . ‖x‖Z .

for all x ∈ Z and x′ ∈ Z#. In particular, the conditions 1.) and 2.) of Proposition A.0.1 are
fulfilled if we choose X = Z and Y ∗ = Z#.

Proof. The claimed result for the choice φA(ξ) = φ(|ξ|A) is an immediate consequence of
the square function theorem of Kalton and Weis (see [55]). If one chooses φA(ξ) = φ(|ξ|−1A)

instead, one can apply the same estimates, since for a function f ∈ γ(R>0,
dξ
ξ ;X) one always

has

‖f‖γ(R>0,
dξ
ξ ,X) = ‖f((·)−1)‖γ(R>0,

dξ
ξ ,X).

This follows from the observation that g 7→ g((·)−1) is an isometry on L2(R>0,
dξ
ξ ) and from

Corollary 6.3 in [94].

In concrete situations, one might use the following square function.

Example A.0.3. Let A be a sectorial operator with 0 ∈ ρ(A) having a bounded H∞-calculus
of angle ω ∈ [0, π/2) on a Banach space Z with finite cotype. Then the operators

φA(ξ) = (|ξ|A)ε(i|ξ|2ε +A2ε)−1

φ̃A(ξ) = (|ξ|A)ε(i+ |ξ|2εA2ε)−1

for ξ ∈ R satisfy the conditions 1) and 2) of Proposition A.0.1 if we choose X = Z and
Y ∗ = Z#.

Proof. We apply the example from above with the function φ(z) = zε(i + z2ε)−1 and we
plug-in |ξ|−1A and |ξ|A respectively.



158 APPENDIX A. A note on pseudodifferential operators with rough symbols

Using this special square function, we can derive a corollary that can be used in a con-
crete situation. First, we have to introduce some notation. Given a sectorial operator A
with 0 ∈ ρ(A) on a Banach space X, we define the spaces Xα for α ≥ 0 as the domain of
Aα. If α is negative, we define Xα as the completion of X with respect to the norm ‖Aα ·‖X .

Corollary A.0.4. Let 1 < p < ∞, ε ∈ (0, 1/2] and let X be a UMD Banach space.
Further let A be a sectorial operator with 0 ∈ ρ(A) having a bounded H∞-calculus of angle
ω ∈ [0, π/2) on X. Moreover, we assume that a ∈ L∞(R × R,B(X)) is a continuously
differentiable symbol in the second component and that the following sets are R-bounded
with a constant not depending on t.

i) {|ξ|1+2ε∂ξa(t, ξ) : ξ ∈ R} ⊂ B(Xε, X−ε),

ii) {|ξ|∂ξa(t, ξ) : ξ ∈ R} ⊂ B(X−ε, X−ε),

iii) {|ξ|∂ξa(t, ξ) : ξ ∈ R} ⊂ B(Xε, Xε),

iv) {|ξ|1−2ε∂ξa(t, ξ) : ξ ∈ R} ⊂ B(X−ε, Xε).

In this case, the pseudodifferential operator

Taf(t) = F−1(ξ 7→ a(t, ξ)f̂(ξ))(t)

that is well-defined on S(R, X) extends to a bounded operator on Lp(R;X).

Proof. We define φ(ξ) = (A|ξ|)ε(i|ξ|2ε +A2ε)−1 for ξ ∈ R. By Example A.0.3 we know that
φ(ξ) satisfies the conditions of Proposition A.0.1. Moreover, we can decompose ∂ξa(t, ξ) in
the following way taking advantage of the invertibility of A.

∂ξa(t, ξ) = ξ−1φ(ξ)
(
ξ|ξ|−εA−ε(i|ξ|2ε +A2ε)∂ξa(t, ξ)|ξ|−εA−ε(i|ξ|2ε +A2ε)

)
φ(ξ)

for all t, ξ ∈ R. Defining

T (t, ξ) := ξ|ξ|−2εA−ε(i|ξ|2ε +A2ε)∂ξa(t, ξ)A−ε(i|ξ|2ε +A2ε)

we just have to check that T fulfils the conditions in Proposition A.0.1. We calculate

T (t, ξ) =A−ε(ξ|ξ|2ε∂ξa(t, ξ))A−ε + iA−ε(ξ∂ξa(t, ξ))Aε

+ iAε(ξ∂ξa(t, ξ))A−ε +Aε(ξ|ξ|−2ε∂ξa(t, ξ))Aε.

Thus, the assumptions on the R-bounded sets imply that {T (t, ξ) : ξ ∈ R} ⊂ B(X) is
R-bounded with a constant not depending on t. It remains to check that this implies the
R-boundedness of {T (·, ξ) : ξ ∈ R} ⊂ B(Lp(R;X)). Indeed, let (rk)Nk=1 be a sequence of
independent Rademacher random variables, (fk)Nk=1 ⊂ Lp(R;X) and (ξk)Nk=1 ⊂ R. Then,
the result from above and Fubini yield
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E
∥∥ N∑
k=1

rkT (·, ξk)fk
∥∥p
Lp(R;X)

=

∫
R
E
∥∥ N∑
k=1

rkT (t, ξk)fk(t)
∥∥p
X

dt

=

∫
R

(
(E
∥∥ N∑
k=1

rkT (t, ξk)fk(t)
∥∥p
X

)1/p

)p
dt

.
∫
R

(
(E
∥∥ N∑
k=1

rkfk(t)
∥∥p
X

)1/p

)p
dt

= E
∫
R
‖
N∑
k=1

rkfk(t)‖pX dt = E‖
N∑
k=1

rkfk‖pLp(R;X).

In conclusion, the claim follows by Proposition A.0.1.

We want to apply this result to an operator that plays an important role in the proof
of maximal regularity for non-autonomous parabolic evolution equations. Given a family
(A(t))t∈[0,T ] of uniformly sectorial operators on a Banach space X with 0 ∈ ρ(A(t)) for all
t ∈ [0, T ], we consider the operator

Lf(t) = A(t)

∫ t

0

e−(t−s)A(t)f(s) ds. (A.0.3)

Further, we ask how much regularity the map t 7→ A(t) must have to guarantee the bound-
edness of L on Lp(R, X) for 1 < p <∞. This operator was already discussed by Portal and
Strkalj in [83] and by Haak and Ouhabaz in [43]. In both articles, the authors derived the
pseudodifferential operator representation formula (see for example [43], (2.9))

Lf(t) = F−1
(
ξ 7→ A(t)R(2πi,−A(t))f̂(ξ)

)
for t ∈ [0, T ] and f ∈ C∞c (0, T ;X) and applied their theorems for operator valued symbol
classes. Portal and Strkalj assumed Hölder continuity in the time component of the symbol
and Haak and Ouhabaz who only proved their theorem in a Hilbert space setting replaced
this by a quite similar Dini-continuity condition in the time component. As a consequence,
in both publications the authors needed a regularity condition on t 7→ A(t) to show maximal
regularity. Haak and Ouhabaz required that A(t) is a associated with a coercive sesquilinear
form a(t; ·, ·) : V × V → C on a Gelfand triple V ↪→ H ↪→ V ′ and that there exists a
non-decreasing positive function ω with

|a(t;u, v)− a(s;u, v)| ≤ ω(t)‖u‖V ‖v‖V

for all u, v ∈ V and with
∫ T

0
ω(t)
t dt < ∞ to prove Lp(0, T ;H) boundedness of L. This

requirement is in the same spirit as the Acquistapace-Tereni condition (see [83], section 5,
(AT)) Portal and Strkalj demand on t 7→ A(t) in order to achieve Lp(0, T ;X)-boundedness
in case that X is a UMD Banach space.

Applying Corollary A.0.4 we can prove Lp(0, T ;X)-boundedness of L only requiring mea-
surability. Note that the assumption 0 ∈ ρ(A(t)) for all t ∈ [0, T ] is not restrictive since the
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maximal regularity property is invariant under spectral shifts, i.e. the equationu′(t) = −A(t)u(t) + f(t), t ∈ [0, T ],

u(0) = u0

has maximal regularity if and only ifu′(t) = −(A(t) + µ)u(t) + f(t), t ∈ [0, T ],

u(0) = u0

has maximal regularity for one µ ∈ R.

Corollary A.0.5. Let X be a UMD Banach space, 1 < p <∞ and (A(t))t∈[0,T ] a uniformly
R-sectorial family of operators on X with 0 ∈ ρ(A(t)) for all t ∈ [0, T ]. More precisely there
exists ω ∈ [0, π/2) such that σ(A(t)) ⊂ Σω for all t ∈ [0, T ] and such that the sets

{|λ|R(λ,A(t)) : λ /∈ Σθ} ⊂ B(X) (A.0.4)

are R-bounded for all θ ∈ (ω, π) and t ∈ [0, T ] with a constant depending on θ but not
on t. Further we assume that there exist an invertible and sectorial operator A0 with a
bounded H∞(Σω)-calculus such that there is ε > 0 with ‖A−ε0 x‖X ' ‖A(t)−εx‖X and
‖Aε0x‖X ' ‖A(t)εx‖X for all x ∈ X and t ∈ [0, T ]. Then, strong measurability of t 7→
A(t)R(2πiξ,−A(t))x for all x ∈ X and ξ ∈ R is sufficient for operator

Lf(t) = F−1
(
ξ 7→ A(t)R(2πiξ,−A(t))f̂(ξ)

)
that is well-defined on C∞c (0, T ;X) to extend to a bounded operator on Lp(0, T ;X).

Proof. Defining a(t, ξ) = A(t)R(2πiξ,−A(t)) for t ∈ [0, T ] and a(t, ξ) = 0 for t /∈ [0, T ] we
have a ∈ L∞(R× R,B(X)) and ξ 7→ a(t, ξ) is continuously differentiable with derivative

∂ξa(t, ξ) = −2πiA(t)R(2πiξ,−A(t))2

for all t ∈ [0, T ]. So, we just have to check the R-boundedness of the sets i)−iv) in Corollary
A.0.4.

First, we have to show that for an R- sectorial operator B on X and α ∈ (0, 1) the set

{|ξ|1−αBαR(2πiξ,−B) : ξ ∈ R} ⊂ B(X) (A.0.5)

is also R-bounded. By functional calculus, we have

ξ1−αBαR(2πiξ,−B) =
1

2πi

∫
Γ

zαξ1−α

2πiξ + z
R(z,B) dz

=
1

2πi

∫
Γ

zα−1ξ1−α

2πiξ + z
(zR(z,B)) dz

for all ξ > 0 and for some path Γ = ∂Σθ with ω < θ < π/2. Applying Corollary 2.14 in [70]
yields the claimed result since the functions

hξ(z) :=
zα−1ξ1−α

2πiξ + z
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are uniformly in L1(Γ,dz) and {zR(z,B) : z ∈ Σθ} is R-bounded by assumption. Indeed a
substitution gives∫

Γ

|hξ(z)|d|z| = ξ−α
∫

Γ

|z|α

|2πi+ z
ξ |

d|z|
|z|

=

∫
Γ

|z|α

|2πi+ z|
d|z|
|z|

<∞.

Now, we prove the required R-boundedness of the following sets with a constant not de-
pending on t.

i) {|ξ|1−2εAε0∂ξa(t, ξ)Aε0 : ξ ∈ R} ⊂ B(X),

ii) {|ξ|1+2εA−ε0 ∂ξa(t, ξ)A−ε0 : ξ ∈ R} ⊂ B(X),

iii) {|ξ|Aε0∂ξa(t, ξ)A−ε0 : ξ ∈ R} ⊂ B(X),

iv) {|ξ|A−ε0 ∂ξa(t, ξ)Aε0 : ξ ∈ R} ⊂ B(X).

Exemplarily, we discuss i) and ii). The R-boundedness of the other sets follows in the very
same way. Exploiting the equivalence of the norms ‖Aε0 · ‖X and ‖A(t)ε · ‖X and accordingly
‖A−ε0 · ‖X and ‖A(t)−ε · ‖X as well as (A.0.5) with B = A(t), we obtain

R
(
{|ξ|1−2εAε0∂ξa(t, ξ)Aε0 : ξ ∈ R}

)
' R

(
{|ξ|1−2εAε0A(t)R(2πiξ,−A(t))2Aε0 : ξ ∈ R}

)
' R

(
{|ξ|1−2εA(t)εA(t)R(2πiξ,−A(t))2A(t)ε : ξ ∈ R}

)
' R

(
{A(t)R(2πiξ,−A(t))|ξ|1−2εA(t)εR(2πiξ,−A(t))A(t)ε : ξ ∈ R}

)
' R

(
{A(t)R(2πiξ,−A(t))|ξ|1−2εA(t)2εR(2πiξ,−A(t)) : ξ ∈ R}

)
. 1.

This implies i). Here, the independence from t is an immediate consequence of the indepen-
dence of t in assumption (A.0.4). Analogously, we have

R
(
{|ξ|1+2εA−ε0 ∂ξa(t, ξ)A−ε0 : ξ ∈ R}

)
' R

(
{|ξ|1+2εA−ε0 A(t)R(2πiξ,−A(t))2A−ε0 : ξ ∈ R}

)
' R

(
{|ξ|1+2εA(t)−εA(t)R(2πiξ,−A(t))2A(t)−ε : ξ ∈ R}

)
' R

(
{|ξ|R(2πiξ,−A(t))|ξ|2εA(t)1−εR(2πiξ,−A(t))A(t)−ε : ξ ∈ R}

)
' R

(
{|ξ|R(2πiξ,−A(t))|ξ|2εA(t)1−2εR(2πiξ,−A(t)) : ξ ∈ R}

)
. 1.

We want to mention that this corollary also implies the Lp-boundedness of L in the au-
tonomous case A(t) ≡ A. This famous result was initially shown by Lutz Weis in [102] and
reads as follows.
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Theorem A.0.6. Let A be a closed, densely defined and R-sectorial operator on a UMD
Banach space X. Then, the operator

Lf(t) =

∫ t

0

Ae−(t−s)Af(s) ds

that is well-defined on C∞c (0, T ;D(A)) extends to a bounded operator on Lp(0, T ;X) for
every p ∈ (1,∞). In particular, the corresponding evolution equationu′(t) = −Au(t)f(t), t ∈ [0, T ],

u(0) = 0.

has maximal Lp-regularity for every p ∈ (1,∞).

Proof. The proof is a combination of [102], Theorem 3.4 and Theorem 4.2.

Thus, our approach yields a completely new proof for this result under slightly stronger
assumptions. In addition to the assumptions of Weis, our proof needs that there exists an
operator A0 with bounded H∞(Σθ)-calculus with θ ∈ (0, π2 ) such that ‖Aεx‖X ' ‖Aε0x‖X
and ‖A−εx‖X ' ‖A−ε0 x‖X for some ε > 0.
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