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Abstract

In this thesis, we investigate the Cauchy problem for the quasilinear stochastic evolution
equation

u(t) = [—A(u(t))u(t) + f(O)] dt +B(u(t))dW (t), te€[0,T],

u(0) = ug

in a Banach space X.

In the first part of the thesis, we concentrate on the parabolic situation, i.e. we assume
that —A(u(t)) is for every ¢ a generator of an analytic semigroup and that A(u(¢)) has a
bounded H*°-calculus. Under a local Lipschitz assumption on u — A(u) we prove existence
and uniqueness of a local strong solution up to a maximal stopping time that can be char-
acterised by a blow-up alternative. We apply our local well-posedness result to a second
order parabolic partial differential equation on R%, to a generalised Navier-Stokes equation
describing non-Newtonian fluids and to a convection-diffusion equation on a bounded do-
main with Dirichlet, Neumann or mixed boudary conditions. In the last situation, we can

even show that the solution exists globally.

In the second part of the thesis, we go to a special hyperbolic situation. We look at a Maxwell
equation on a domain D with perfect conductor boundary condition in chiral media with a

nonlinear retarded material law, i.e. we consider
t
A(u)u(t) = —Mu(t) + |u(t)|%u(t) — / G(t — s)u(s)ds.
0

Here, M (uy,us) = (curlug, —curlu;)? is the Maxwell operator on L?(D)3 x L?(D)3. To
solve this equation we apply a refined version of the monotonicity approach using the spectral
multipliers of the Hodge-Laplace operator, which is a componentwise Laplace operator with
boundary conditions comparable to those of M2. We show existence and uniqueness of a
weak solution u in the sense of partial differential equations and under stronger assumptions
we prove that u is a strong solution, i.e. Mu(t, z) exists almost surely for almost all ¢ € [0, T

and x € D.
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Introduction

Most of the laws of nature are modelled by time dependent partial differential equations
and in many real world problems from engineering, physics and chemistry these equations
are highly nonlinear. This poses severe difficulties for the mathematical investigation and

in many cases it is even unclear whether a unique solution exists or not.

In this thesis, we focus on quasilinear and semilinear equations. A partial differential equa-
tion for a quantity u is quasilinear if it is linear in the top order derivatives of u and it is
semilinear if the coefficients in front of the top order derivatives of u are independent of w.
A typical example is the reaction-diffusion equation

dru(t,r) =0 ) ag(t, @ ult, o), Vu(t,2))d;0;u(t, ) + F(u(t,x)), te€[0,T], =€ D,

u(0,z) = up(x), zeD,

on a domain D C R?. It is linear in the second order derivatives 0;0;u but nonlinear in u

and Vu. In the special case a;; = a;;(t, x) the above equation is semilinear.

As usual in the context of time dependent partial differential equations, we formulate the
problem as an ordinary differential equation of first order in time on a Banach space X

which contains the spatial dependency. This yields

u'(t) = —A(u(®))u(t) + F(u)(t), te]0,T],
u(0) = ug.

Here, A(u(t)) is a linear spatial differential operator for every ¢ and F'(u) is a nonlinear
term that only depends on lower order derivatives. In the literature A(u(t))u(t) is called the
quasilinear part of the equation, whereas F'(u) is the semilinear part. A common choice for

X is L9(D) or the distributional space W~14(D) if one is interested in weak solutions.

In the past, it turned out that for the well-posedness theory one has to distinguish parabolic
and hyperbolic equations that require completely different approaches. We define these
notions in the same way as Kato in [58]. We call (Q) parabolic if —A(u(t)) is a generator of

an analytic semigroup for every ¢t. Otherwise, we say that (Q) is of hyperbolic type.

Parabolic quasilinear equations have been studied for more than 30 years using strong lin-
earisation techniques relying on the solvability of non-autonomous equations under certain

Holder continuity assumptions (see e.g. [74], [103]) or relying on maximal LP-regularity (see
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e.g. [4], [5], [22], [87]). It is quite remarkable that due to parabolic smoothing it was possible
to develop a theory that covers many examples at once. A good overview about the abstract
theory and many descriptive examples can be found in [87]. Here, the authors consider (Q)
with A(u(t)) = — szzl aij (t,z,u(t, z), Vu(t,))8;0; and A(u(t)) = —div (a(u(t))Vu(t))
for several types of boundary condition. For equations of hyperbolic type, the situation is
completely different. Here, the solution strategy highly depends on the equation itself and

on the boundary condition.

In addition to the highly nonlinear behaviour many applications also have some uncertainty
concerning the external sources or the precise behaviour of the medium. To include this
randomness into the model, researches beginning with It6 in 1946 (see [50], [51]) replaced
the original partial differential equation by an equation that is perturbed with white noise.
This is the time derivative of a Brownian motion 3 : 2 x R>¢o — R on a probability space

Q). However, since  is not differentiable in time, we formally write

du(t) = [—A(u(t))u(t) + F(u)(t)] dt + [B(u)(t) + b(t)] dB(t), t € [0,T], W

Here one distinguishes between the additive noise b which is a random force and the mul-
tiplicative noise B(u) perturbing the medium. This equation is interpreted as an integral

equation in the Banach space X, i.e. u is a solution of (1) if and only if

u(t) —u(0) = /0 —A(u(s))u(t) + F(u)(s)ds + /0 B(u)(s) + b(s) ds(s)

almost surely for all ¢ € [0,T] in X. Here, the stochastic integral is a Banach space valued

Ito-integral in the sense of [100].

The main object of research in this thesis is (1) either in the parabolic or in the hyperbolic
situation. As in the deterministic setting we treat the parabolic case abstractly in a general
way, whereas in the hyperbolic case a general theory seems out of reach and we focus on a

special hyperbolic Maxwell equation.

First, we briefly describe our results in the parabolic setting and we compare them to
the existing literature. We develop an abstract theory for well-posedness of quasilinear
stochastic parabolic evolution equations up to a maximal stopping time 7. Furthermore,
we apply our abstract results to (1) with the elliptic operators A(u) = — Zﬁ\szl a;j(u)0;0;
and A(u) = —div(a(u)V) on R? and on a bounded domain D C R? with mixed boundary
conditions. If we restrict us to Dirichlet boundary conditions, we can show that under
additional assumptions the solution does not explode and exists on the whole interval [0, 7.
This improves the result of Hofmanova and Zhang in [46]. Moreover, we give an application
to fluid dynamics and prove well-posedness of a generalized stochastic Navier-Stokes equation

for non-Newtonian fluids.

Special quasilinear stochastic parabolic equations have been extensively studied in the litera-

ture in case of monotone coefficients (see e.g. [12,40,64,84]). In the same spirit is [73], where



the authors extend the results to locally monotone coefficients. Existence and uniqueness
of (1) with A(u) = —div(a(u)V) was proved by Hofmanova and Zhang in [46]. However,
as far as we know, there is no abstract theory comparing to the state of knowledge in the

deterministic parabolic situation.

In the hyperbolic case, we focus on a semilinear Maxwell equation in chiral media on a
domain D and we show existence and uniqueness of a weak solution wu, i.e. wu solves the
equation in the sense of distributions. Under additional assumptions we can even show that
u is a strong solution. The equation is motivated by [88] in Chapter 2 and 7. We choose
A(u(t)) = M with the Maxwell operator

1
M(ul) _ ( curl us )
Us —curlug
for three dimensional vector fields ui, us and we impose the perfect conductor boundary

condition u1 X ¥ = 0 on 9D. As semilinear part we choose
Pu)(t) = —[u(s)|"u(s) /Gt—r rydr +J(2)

with a power-type nonlinearity that describes the optical response, a nonlocal dispersive

memory term and an external current J. We end up with

du(t) = [Mu(t) — [u(t)|%u(t) + [ G(t — r)u(r) dr + J(t)] dt +[B(u)(t) + b(t)] dB(t),
u(0) = up.

In a deterministic setting there are good results for nonlinear Maxwell equations. Especially
of interest is the well-posedness of (1) with A(u(t)) = x(u(t))~1M with a positive definite
matrix function & : RS — R6%6. This models a material of Kerr type, i.e. with a polarisa-
tion P given by P(E) = |E|*E. The corresponding equation was studied by Miiller on R?
(see [80]) and by Spitz on a domain with perfect conductor boundary condition. They used
smooth initial data and made use of the fact that in a deterministic setting the time reg-
ularity increases with increasing space regularity. However, their technique is not available
in a stochastic setting, since solutions of stochastic differential equations are only Holder
continuous of order 8 < % and one has to find a different approach. For this reasons we focus
on the semilinear equation from above with x(u) = I and develop new tools to study nonlin-
ear Maxwell equations in a stochastic setting. As far as we know, there are no comparable
well-posedness results. One reason might be that in the absence of Strichartz estimates for
(e™),cr, even local solvability is a tricky issue. Moreover, there is no embedding of the
form D(M) < LP that helps to control the nonlinearity. Therefore, our research can be

seen as a start for the analysis of nonlinear stochastic Maxwell equations.
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Sketch of our approach to quasilinear parabolic equations

Our goal is to prove existence and uniqueness of a strong solution up to a maximal stopping

time 7 of the quasilinear parabolic stochastic evolution equation

du(t) = [ = A(u(®))u(t) + F(u) ()] dt + 352, Be(u)(t) dBi(t), t€[0,7),
u(0) =g

(QSEE)

in LP(0,7; E) for p > 2 and for a UMD Banach space F of type 2, in v(0,7; F) for a
UMD Banach space E and in LY(U; LP(0,7)) for p,q > 2. Here (Bx)r is a sequence of
independent Brownian motions on a probability space 2. We develop a framework with
maximal regularity estimates for the deterministic and the stochastic convolution as input

and a unified well-posedness theory in all the three spaces as output.

In the following, we explain our ideas for the construction of a strong solution using the
space LP(0, 7, E) with E = L1(U) for some g > 2. The core strategy remains unchanged in
the additional settings.

Van Neerven, Veraar and Weis investigated in [96,97] maximal regularity estimates for the
stochastic convolution. Together with the well-known deterministic maximal regularity this
leads to a well-posedness theory for semilinear stochastic evolution equations of the form

(SEE) du(t) =[—Au(t)+ Gu)(t)] dt + > 5, Be(u)(t) dBe(t), te[0,T],

Here, (A(w))weq is a family of closed and densely defined operators with common domain E'*
such that almost all A(w) have a bounded H*-calculus with bound independent of w € €.
Moreover, the initial value ug : Q — (E, E');_, /p,p 18 strongly Fo-measurable. We consider
Lipschitz continuous nonlinearities G : [0, 7] x E* — L4(U) and By : [0,T] x E* — [E, E']

with small enough Lipschitz constant.

1
2

Now, we are in a position to briefly describe our main assumptions for the quasilinear theory
and our strategy. We assume that the domain of the operators A(z), z € (E,E')1_y /.
is constant, i.e. there is a Banach space E'! such that D(A(z)) = E! for every z €

1
(E7E )1—1/19,17
exists L > 0 such that

. Moreover, we demand A to be globally Lipschitz continuous, i.e. there

|A(z) = AWllBEr By < Lllz =yl (B8, 1,0,

for every y,z € (E,E")1_1/p, and we assume that the operators A(z) have a bounded

H*-calculus with bound independent of z. As a first step, we consider

Fi(u(t)) = 0x( sup, u(s) = o)1, + lullzo o, ) (Afu()) — Aluo)yu(d),

where 6 : [0,00) — [0,1], A > 0, is a Lipschitz continuous cut-off function such that 6, =1

on [0,A] and )5 = 0 on [2\,00). This means that as long as wu(t) is close enough to wg



and |[u|zr(o,p1) is small, we have A(u(t))u(t) = A(uo)u(t) + Fi(u(t)). We prove that F}
has a Lipschitz constant proportional to A and thus, choosing A small enough, satisfies the
assumptions needed to solve (SEE) with A = A(ug) and G(u) = —F} (u)4F(u). The solution
u of (SEE) exists on [0, T]. However, u solely solves (QSEE) on the random interval [0, 7],

where 7 is a stopping time given by
m = inf {t € [0, 7] : lu(t) — woll(m,m1), ., + [ullLeumr) > A}

Since the interval [0,71] on which u solves (QSEE) might be larger than [0,71] we have to
extend it to a maximal interval [0, 7). We know that the set of stopping times o such that
there exists a unique solution u on [0, o] is non-empty, since 77 is contained in this set. We
show that the essential supremum 7 : © — [0,7] of this set exists and that 7 is also a

stopping time. Moreover, we prove that 7 is maximal and satisfies
IP{T < T, |lullr (0,751 < 00,u:[0,7) — (E,El)l,l/p’p is uniformly continuous} =0.

This condition implies that it is sufficient for global existence to show pathwise uniform con-
tinuity of u as a function with values in (E, El)l_l/pm and ||ul| »(0,r;51) < 00 almost surely.
Finally, we extend this result to quasilinearities u — A(u) that are Lipschitz continuous on

every ball in (E, El)l,l/p’p with a localisation technique.
Sketch of our approach to the nonlinear Maxwell equation with retarded material law

The other problem we address is the nonlinear stochastic Maxwell equation

du(t) = [Mu(t) — [u(®)|Tu(t) + (G *u)(t) + J(t)] dt +[b(t) + > ooy Br(u)(t)] dBe(t),

(2)
for a 6d vector field u = (u1, u2) with the retarded material law (G*u)(t) = fg G(t—s)u(s)ds
and the perfect conductor boundary condition u; X ¥ = 0 on dD. We consider a domain
D C R3, obviously in the case D = R?® the boundary condition drops. Here, (8;); is a
sequence of independent Brownian motions on a probability space 2. At first, we show that

(2) has a unique weak solution
u € L*(Q;C(0,T; L*(D)))* N LIT2(Q x [0,T] x D)°. (3)

This is done in two steps. First, we use a version of the Galerkin method from Réckner
and Prévot (see [85]) to solve (2) in the special case G = 0 and make use of the monotone
structure of the nonlinearity. The novelty is that we are able to deal with the term Mu,
despite the fact that u ¢ D(M). Afterwards, we include the retarded material law with

Banach’s fixed point theorem.

The proof of the existence and uniqueness of a strong solution that additionally satisfies

Mu € L*(Q; L®(0, T; LA(D)))® + L+ (Q x [0,T] x D)S
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is more tricky. Again, we start with G = 0 and add a non-trivial G at the very end. In a
deterministic setting, one would try to estimate ||u/(t)||z2(pys and then use (3) to control
Mu. However, solutions of stochastic differential equations are not differentiable in time. The
first idea was to derive an estimate for |Mu(t) — |u(t)|9u(t) + J(15)||%2(D)6 with Gronwall’s

Lemma, but we failed since the It6-formula for this quantity contains the term

1Dwo(Jv]*0) (u(t)) (Br (u(t)), Bi(u(t)) [ Z2(pye. (4)

we could not estimate properly. Hence, we choose the noise Zjvzl (bj(t) + iBju(t))dB;(t)

and use the rescaling transformation
y(t) = u(t)efizjvzl B;B;(t)

to get rid of the multiplicative noise and to avoid the difficulties from (4). The arising

equation has the form

dy(t) = [My(t) — ly(t)|%y(t) + A)y(t) + ()] dt+ S0 bi(t) dB;(t),
u(0) = uy,

(TSEE)

where A(t) is a nonautonomous operator having random coefficients, J is a new current and
b is a new additive noise. For ¢y € C2°(D) with supp® C [0,2] and ¢ = 1 on [0,1], we
define the spectral multipliers S, = ¥ (=27"Ap) and P, = 1jgon(—Ap). Here, Ay is the

Hodge-Laplacian on LP that is the component-wise Laplace operator with domain
{(ul,ug) € LP(D)° : curl uy, curl ug, curl curl uy , curl curluy € LP(D)3, divuy € WyP (D),
divug € Wl’p(D)7u1 X v =0,us-v=0,curlug x v =0 on aD}.

We show that P,, S, are self-adjoint on L2(D)% and commute with both Ag and M. Further,
we have ||Spul L (pys < Cllul|Lr(pye With a constant C' > 0 depending on p, but not on u and
n. Note that such an estimate is not applicable for P, in a general situation. We point out
that the uniform LP-boundedness of (S,,), is a consequence of the fact that the semigroup
generated by Ap satisfies generalised Gaussian bounds. The deep connection between Agy

and M originates from the formula
—A = curl curl — grad div,

which implies Ay = M? in the range of the Helmholtz projection Py and M? = 0 in the
range of I — Py.

We truncate (TSEE) with a refined Faedo-Galerkin approach, i.e. we solve
dyn(t) = PalMyn(t) = lyn(t)|%yn(t) + A(t)ya(t) + T(O] dt+ 3220, Subilt) dBi(8),
yn(0) = Spup.

P, and S, reduce the problem to an ordinary stochastic differential equation that can be

solved easily. Afterwards, we estimate

AN
||PnMyn(t) = Polyn()]Tyn(t) + PaA()yn(t) + PnJ(t)HLz(D)e



using It0’s formula, the monotone structure of the equation and the properties of P, and
Sy. This yields an estimate for My, that is uniform in n. Finally, we pass to the limit again
using the monotonicity of the nonlinearity and undo the transformation to get a strong

solution u of (2) such that Mu(t, x) exists almost surely for almost all ¢t € [0,7] and = € D.
Outline of this thesis

This thesis is organised as the follows. Chapter 1 contains an overview over the most
important definitions and theorems that are used frequently. In particular, we recall some
facts about vector calculus and the related Sobolev, Besov and Triebel-Lizorkin spaces.
Then, we collect important stochastic concepts like adaptivity and stopping times. We
introduce vy-radonifying operators and sketch the construction of stochastic integrals in UMD
Banach spaces. A short overview over sectorial operators and their functional calculi ends

this chapter.

In Chapter 2, we develop a framework with maximal regularity estimates for the determin-
istic and the stochastic convolution as input and a well-posedness theory for quasilinear
parabolic stochastic evolution equations as output. In Section 2.1, we recall three maximal
regularity concepts for stochastic evolution equations from the literature. The first one is
maximal regularity in the space LP(0,T; E) for a UMD Banach space F of type 2 and some
p > 2. Here, we follow [96]. Next, we consider maximal regularity in v(0,7T; E) for some
UMD Banach space E in the same way as [98]. Moreover, we treat maximal regularity
in spaces of the form L9(U;LP(0,T)) for U C R? which was treated in [8]. To get more
flexibility for applications we slightly generalise the last approach by allowing fractional
spaces of the form AP (L?(U; LP(0,T))) for some densely defined and invertible operator A
on LY(U) that has an R,-bounded H>-calculus. With these estimates for the stochastic
and the deterministic convolution, we show existence and uniqueness of a strong solution of

the equation

du(t) =[—Au(t)+ F(u)(t)] dt + > 57 Br(u)dBk(t), te€ (0,T),

in Section 2.2. Here, our strategy is a version of the argumentation in [96]. Our contribution
is that we treat the three settings from above in a unified way, that we allow a random initial
time o and that we allow F' and B to be memory terms with the Volterra property. This
means that the restriction F'(u)(,,5 only depends on u|[4 5. These novelties will be essential

in the treatment of the quasilinear equation

du(t) = [— A(u(t))u(t) + F(u)(t)} dt + Y po; Br(u)(t)dBk(t), te[0,7),

u(0) =g
in Section 2.3. Here, we follow the strategy we sketched above simultaneously in our three
settings. First, we show existence and uniqueness of a strong solution with a globally

Lipschitz continuous quasilinearity in Subsection 2.3.1 and we generalise this to a locally

Lipschitz continuous quasilinearity in Subsection 2.3.2.
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In Chapter 3, we apply our abstract results to quasilinear parabolic stochastic equations.
In these examples, we benefit from the extensive literature about elliptic operators, their
regularity properties and their functional calculi. In Section 3.1, we show that our theory
covers the most straightforward parabolic example A(u(t)) = — szzl a;;(u(t), Vu(t))0;0;.
In Section 3.2, we investigate the reaction-diffusion equation

du(t) = [div(a(u(t))Vu(t)) + F(u)(t)] dt + Y ey Br(u)(t) dBx(t), te€0,7),
w(0) =g

and we proof existence and uniqueness of a weak solution « in the sense of partial differential
equations, which means that the equation holds in a distributional sense. If we restrict
ourselves to a bounded domain with Dirichlet boundary conditions, we can even show that
u exists on the whole time interval [0,7]. Our last example in Section 3.3 is inspired from

fluid dynamics and we treat non-Newtonian fluids in a stochastic setting.

In Chapter 4, we consider the nonlinear Maxwell equation with retarded material law. In
Section 4.1, we show the existence of a sequence of orthogonal projections (P,), and of
related operators (Sy,), that commute with M and that satisfy S,z — x for n — oo with
convergence in LP for every x € LP?. We construct them with a spectral multiplier theorem
for the Hodge-Laplacian and we exploit the deep connection between the Hodge-Laplacian,
the Helmholtz-projection and M? to show the commutation property. In Section 4.2, we
use P, and S,, to show existence and uniqueness of a solution u in the distributional sense.
Under stronger assumptions, we show in Section 4.3 that the solution is more regular, i.e.
Mu(t, z) exists almost surely for almost all ¢t € [0,7] and = € [0,7]. We end this chapter
with a comparison to the results in the literature and with some remarks about the more

general situation with non-trivial electric permittivity ¢ and magnetic permeability .

In Appendix A, we present a byproduct of our research. We prove a theorem about bound-
edness of pseudo-differential operators on Banach spaces with a rough symbol that has a
special structure which allows us to apply square function estimates. In particular, we show

that given a UMD Banach space X the operator

Lf(t) = A(t) /O t e (=941 £(5) ds

which arises in the context of maximal regularity for nonautonomous deterministic evolution
equations is bounded on LP(0,T; X) for all p € (1,00). Here, we just require that ¢ — A(t)

is measurable in time.



CHAPTER 1

Preliminaries

The purpose of this section is to provide a short overview over the basic tools and notations
used in this thesis. For most of the proofs and further details, we give references to the

literature.

Before we start, we fix some notation. Given normed spaces X and Y, B(X,Y) denotes
the set of all linear and bounded operators from X to Y. We write C(a, b; X) for the space
of uniformly continuous functions on [a, b] with values in X equipped with its usual norm.
Given U C R? and a measure p on U, L(U,u; X) is the space of strongly measurable
f:U — X such that

Il = ([ 1@ dnte))" <o

with the obvious variation in the case ¢ = co. The ball with centre x € X and radius r > 0

is denoted by B(z,r) :={y € X : |z —yllx <r}

1.1. Vector calculus and related function spaces

In this section, we introduce the differential operators V, div and curl in a weak setting
and we provide some trace theorems. Throughout this section, let D C R? be a Lipschitz
domain. In the context of curl, we always choose d = 3. We define the cross product a x b
by

axXb:= (Clzbg — agbg, a3b1 — a1b3,a1b2 — agbl)T
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for a,b € C* and for smooth functions f: D — C, g: D — C% and h: D — C3, we set
grad f =V i= (91 ,...,0af)",

d
Af=> 0,

j=1

d
divg := Zaigia
i=1
curl h := (82h3 — 83h2, (93/11 - 61]13, 81]12 — 82h1)T.

Note that curl and A are formally symmetric operators, whereas the formal adjoint of grad

is —div, i.e. we have

/Vf1 ol dz = - /f1 )div fo(e) do
/curlgm 2(a >dx—/gl<> curl go(z) d,

/Ahl h2 d]?—/ hl Ahg d

for all smooth f;,g; and hj, j = 1,2, that are compactly supported in D. This leads us to

derivatives in a weak sense. For given u € L}, (D) with

[ wwydivote)da =~ [ j@)-0

for some f € Li (D)% and for all ¢ € C2°(D)?, we say that Vu exists in the weak sense and
Vu := f. For given v € LL _(D)? with

| o) Vo ae == [ oo as

for some g € L (D) and for all ¢ € C2°(D), we say that divov exists in the weak sense and

divv := g. Finally, for given w € Li (D)3 with

loc

/ w(x) - curl p(x) do = / h(z) - ¢p(x) dz

D D

for some h € Ll (D)3 and for all ¢ € C°(D)3, we say that curlw exists in the weak
sense and curlw := h. One can show that the classical derivative and the weak derivative of

smooth functions coincide and that this concept is a proper generalisation. As a next step,

we define Sobolev spaces that are associated with grad, div and curl. For ¢ € [1, o], we set
WD) := {u € LY(D) : Vu exists weakly with Vu € Lq(D)d},
Wq(div) (D):={ve LY(D)?: divo exists weakly with dive € Li(D)},
Wi(curl)(D) := {w € LY(D)? : curlw exists weakly with curlw € LY(D)?*}.

These spaces are Banach spaces equipped with the usual graph norm. In the same way, we

define higher order Sobolev spaces using higher order weak derivatives. However, since we

just need Sobolev spaces of order 2 in this thesis, we solely introduce

W24(D) = {ue W"I(D) : V(d;u) exists weakly with V(d;u) € LY(D)%i=1,...,d},
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equipped with the norm

d
|u|lw2.a(py == Z 10:0;ul| La(py + ||Vu||Lq(D)d + [lull a(p)-
i,j=1

Throughout this thesis, we use several well-known identities from vector-calculus.

Lemma 1.1.1. Letd =3 and let u: D — C and v,w : D — C3 be smooth. The following

identities hold true.
a) curl Vu = 0.
b) divcurlv = 0.
¢) curlcurlv = Vdive — (Avy, Avg, Avg)T.
d) div(v x w) = curlw - v — curlv - w.
e) div(uv) = udive + v - Vu.

In particular, these identities can be used to define traces for functions in WP (div)(D) and

WP (curl)(D). To motivate this procedure, we use Gauft Divergence Theorem to get
/ ¢-(f><u)da:/ y-(d)xf)da:/ div(é x f)(z) dz
8D 8D D
= / curl f(z) - ¢(x) dx — / f(x) - curl ¢(z) dz.
D D

for f,¢ € C1(D)3 and

vlg-v)do = [ div(vg)(a)do

8D D

= / Vip(z) - g(x)dx + / P(x) div g(x) dz.
D D

for g € CY(D)? and ¢ € C'(D). This leads to the following definition.

Definition 1.1.2. For g € WP(div)(D), we say g-v =0 on 0D, if
/ Viy(z) - g(z)dx + / Y(z)divg(x)de =0
D D

for all ) € CY(D). Last but not least, for d =3 and f € WP(curl)(D), we say f x v =0 on
oD, if
/ curl f(z) - ¢(x) dx — / f(x) - curld(z)dz =0
D D

for all ¢ € CY(D).
As a consequence, we can define the subspaces

WP(div,0)(D) := {u € WP(div)(D): w-v=0o0n dD}
WP(curl,0)(D) := {u € WP(curl)(D): uxv=0ondD}.
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For Lipschitz domains D with compact boundary, one can show that W?(div,0)(D) is
the closure of C°(D)? in WP(div)(D) and that WP(curl)(D) is the closure of C2°(D)3
in WP (curl)(D). This can be found amongst others in [80], Theorem 2.21 and Theorem
2.23.

In Chapter 3, we also consider parabolic equations with mixed boundary conditions. Hence,
it will be necessary not only to introduce the subspace of functions in W'?(D) that van-

ish on the boundary, but also the subspace of functions that vanish on a part of the boundary.

Definition 1.1.3. Let T' C 9D be open in the topology of OD. For q € [1,00], we define
WD) as the completion of

CRF(D) := {¢lp : ¢ € C(R?) and supp(¢) N (9D \T) = 0}
with respect to the norm ||¢||er,q(D) = [|[Vé|lLapy + |9l La(D)-

Since every smooth function f € Wll’q(D) satisfies flopp\r = 0, D \ T' is understood as
the Dirichlet part. In the special cases I' = 9D and T' = (), we write W14(D) := Walg(D)
and Wy9(D) := Wé’q(D). The first of these notations is justified, since C*°(D) N L(D)
is dense in Wh4(D) (see e.g. |[2], Theorem 3.22). As we discuss operators of the form
u — div(aVu) with domain W (D) we have to introduce the range of this operator, which
is the space Wy "4(D). Tt is defined as the dual space of WI}%(D) with respect to the
standard L2-duality, which means that

Uy V u(x)v(x) dr
( >( (z)v(z)

1,-9 =
Wb (D), Wy T (D)) »/D
if w e Wi (D) N LU(D) and v € W™ T (D).

Finally, we introduce Besov spaces and Triebel-Lizorkin spaces of positive order. Let s > 0
and p,q € [1,00]. We start with the special case D = R? since in this case, we are able to
use the Fourier transform for a neat definition. Let ¢ € C°(R?) with ¢ > 0, supp(¢) C
{3 < |z| <2} and with Yoo #(277x) =1 for all x € R\ {0}. We set ¢; := ¢(277+) and
¢ :=1— Z;i1 ¢;. Every ¢; can be associated with an operator ¢;(0) given by
0 (0)f == F (&= 0, (E)(F)E)).
Given p,q € [1,00], s > 0 and f € C>°(R?), we define
> 1/p

£l oy 2= 90(D) Flzaqany + (3129650 F 1)

j=1

11z ooy = o @) o + || (D2 12765001 17)
j=1

1/p

La(R4)

with the usual modification if p = co. We now define B (R%) and F; (R?) as the com-
pletion of C°(R9) with respect to the norms || - |

B: , (R9) and || - | Fs ,(R) respectively. In

Chapter 3, we also need Besov spaces on a bounded domain D. We set

1£1lBs 0y = inf {llgllB; , re) : g € B, (R?) and g = f a.e. in D}
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and we define B; (D) as the completion of C°°(D) with respect to this norm.

1.2. Basic stochastic theory

Throughout this thesis, let (Q,§,F = (F;)i>0, P) be a filtered probability space that satisfies
the usual conditions, i.e. Fy contains all P-null sets and the filtration is right-continuous.

We start with the definition of adaptivity for operator valued processes.

Definition 1.2.1. Given a Banach space X and a Hilbert space H, a stochastic process
W Qx[0,T] — B(H;X) is called adapted, if the random variable W(t)h : Q& — X s
strongly Fy-measurable for allt € [0,T] and all h € H. If additionally Wh : Q x [0,t] = X
is for all h € H strongly F; ® Borel(0,t)-measurable, W is called progressively measurable.

It is easy to see that any progressively measurable process is adapted. However, if W has
almost surely continuous paths, the converse also holds true. We want to remark that one
often makes this definition with H = C and with the identification B(C, E) = E. We need
these more general notions for the definition of the stochastic integral in Section 1.3. Next,

we introduce the Brownian motion relative to the filtration F.

Definition 1.2.2. An F-adapted process § : Q2 x [0,00) — R is called Brownian motion

relative to F, if the following conditions are satisfied.
a) B(0) =0 almost surely.
b) For almost all w € Q, the paths t — [(w,t) are continuous.

¢) For 0 < s <t, the increment 5(t) — 5(s) is a Gaussian random variable with mean 0

and variance t — s.
d) For 0 < s <t, the increment 5(t) — B(s) is independent of Fs.

It will be necessary to stop a stochastic process when it leaves certain balls around the initial
value. However, this time will differ from path to path and therefore we introduce stopping
times. 7 : Q — [0,7] is called F-stopping time, if {r < ¢} € F, for all ¢t € [0,T]. By the
right-continuity, this is equivalent to {r < ¢t} € F;. The o-algebra

Fr={AeF:An{t <7} e F, Vvt [0,T]}

is called o-algebra of 7-past and can be interpreted as the knowledge of an observer at the
random moment 7. The following well-known result will be used frequently. The proof can
be found e.g. in [60], Lemma 9.21 and Lemma 9.23.

Proposition 1.2.3. F, is a o-algebra and satisfies the following properties.
a) If T =t almost surely for some t € [0,T], we have F; = F;.

b) Given another F-stopping time o, we have Frpny = Fr N Fy. In particular, if 7 < o

almost surely, we have the inclusion F, C F,.
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c¢) If (X(,t))iejo,r) 5 a progressively measurable process with respect to F, the random

variable X (w) := X(w,7(w)) is Fr-measurable.
Throughout this thesis, we will use the notation
Ax[rp)i={(w,t) € Ax[0,T]: t € [r(w), pw))}

for some A C Q and some stopping times 7, u with 7 < p almost surely. Closed and open
random intervals are defined similarly. If we call a process u defined on Q x [r, u] adapted
or progressively measurable, we mean that ul(, , is adapted or progressively measurable as

process on [0, 7.

In the next Lemma, we show that an exit time of a stochastic process is a stopping time.

Results of these type are well-known, but we give a proof for convenience of the reader.

Lemma 1.2.4. Let X : Q x [0,T] — Rxso be an F-adapted process with almost surely

continuous paths, o an F-stopping time with values in [0,T] and X > 0. If we define
c=inf{te[0,T—0]: X(t+0)>A} AT,

then o + o is also an F-stopping time.

Proof. Since F is right-continuous, it is sufficient to prove {o + o < t} € F; for given
t € [0,T]. We start with

{a+5<t}: U {o0 <q1,0 < ¢} (1.2.1)
q1,92€Q>0,q1+g92<t

and prove that the sets {0 < ¢1,0 < g2} are contained in F;. For fixed ¢1,¢2 € Q>¢ with
q1 + q2 < t, the definition of & and the pathwise continuity of ¢t — X yield

(T<pt= | (Xews>A = |J {Xowg>A)
5€[0,q2) q€[0,42)NQ
Thus, we have
{o<q,0<q}= U ({a<q1}ﬂ{XU+q>)\}).
q€[0,g2)NQ

Moreover, Proposition 1.2.3 implies {X,44 > A} € Fuyq and since {0 < ¢1} € Fg, in any

case by definition of stopping times, we conclude

{U <q,0 < (]2} € U (}—ql N ]:'rJrq) C Fartes NV Fotgr C Frin(gi+a2.0+02) C Far+aa-
q€[0,42)NQ

Hence, the claimed result follows by (1.2.1). O

In Chapter 2, we construct a local solution of a quasilinear stochastic differential equation up
to an eventually small stopping time and we want to continue it to a solution on a maximal

random interval. Therefore, we need to maximise the set

{r:Q—10,T] | 7 is an F-stopping time and there exists a solution on [0, 7] }.
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However, we cannot take the pointwise supremum for every fixed w, since the supremum over
uncountably many stopping times is not necessarily a stopping time any more. To overcome

this difficulty, we introduce the essential supremum of a family of random variables.
Definition 1.2.5. Let A be a family of real-valued random variables on . Then, esssup A
s a random variable on Q) that satisfies the following properties.

a) For all X € A, we have X < esssup A almost surely.

b) If Y is a random variable with Y > X almost surely for all X € A, then we also have

Y > esssup A almost surely.

From this definition it is apparent that two different essential supremums coincide up to
a set of measure zero. However, it is not clear whether esssup A exists. It turns out the

following theorem is sufficient for our purpose.

Theorem 1.2.6. Let A be a nonempty family of nonnegative and bounded random vari-
ables on €. In this case, esssup A exists and if A is additionally closed under pairwise
mazximisation, there exists a sequence (X,), C A with X1 > X, almost surely and

lim,, o X,, = esssup A almost surely.
Proof. The proof can be found in [57], Theorem A.3. O

In particular, this theorem implies that the essential supremum of a set of [0, T]-valued

stopping times that is closed under pairwise maximisation is again a stopping time.
1.3. ~-radonifying operators and stochastic integration in

UMD Banach spaces

First, we introduce two important notions from the geometry of Banach spaces.

Definition 1.3.1. LetY be a Banach space and (1), an independent sequence of Rademacher

random variables. We make the following definition.

a) Y has type p € [1,00), if there exists C > 0 such that

=

N 1 N
(BI Y risly )" < (X llaall)
j=1 j=1

for all finite sequences (xj)jvzl

b) Y has the UMD property, if for all p € (1,00), there exists a constant C > 0 only
depending on p and Y, such that the following holds. Whenever (f,)N_, is a finite
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martingale, then for all scalars |e,| =1, n=1,..., N, we have

N N
n=1

n=1

Note that Hilbert spaces or Banach spaces that are isomorphic to closed subspaces of

Li(Uj; ), g > 2 are of type 2 and have the UMD property.

Next, we define the ~y-spaces. Let H a separable Hilbert space with orthonormal basis
(hn)nen, Y a Banach space and (7, )nen a sequence of independent standard-Gaussian dis-
tributed random variables. The Banach space ’y(f[ ;Y) of y-radonifying operators is the
closure of

{T: H — Y linear and of finite rank}

with respect to the norm

ITI oy = (B S T hall3) 2

n=1
Note that the norm is independent of the choice of the orthonormal basis. In the special case
Y = L9(O0, ) for some ¢ € (1,00), y(H;Y) is isomorphic to L4(U; H) via the isomorphism
LY(U; fI) >f=Tye ~(H; Y'), where Ty is defined by

for h € H and x € U. The equivalence of ||Tf||7(ﬁ,y) o~ ”fHL‘I(O-ﬁ) can be shown easily by
the Kahane-Khintchine inequality

o0 1/q oo
(BN Y mfalld) ™ =0 BN afully
n=1 n=1

for ¢ € [1,00). Throughout this thesis, we shortly write v(a,b;Y) := v(L?(a,b);Y) and
v([a,b] x H;Y) := v(L?(a,b; H);Y). For further details about y-radonifying operators, we

refer to the survey paper of Van Neerven (see [94]).

Before we introduce to the stochastic integral, we need a slightly different version of the

adaptivity, we defined in Definition 1.2.1 for stochastic processes.

Definition 1.3.2. Let p € [1,00). A finite linear combination of processes G : Q x [0,T] x
H — Y of the form

G =1 qxB(Hy)ur
with B € Fs, y € H and x € Y is called elementary adapted. For given F-stopping times
T, with 0 <7 < p < T almost surely, a process G : Q — ~([1,u] x H;Y) is called strongly
adapted, if there exists a sequence of elementary adapted processes (Gp)n with Gyl ) —

G1y, ) in probability in v([1,u] x H;Y') for n — oo. Moreover, for p € [1,00), we set

LY y([rp] x H;Y)) == {G : Q = ~([r, 4] x H;Y) : G is strongly adapted },
Ly y([7, ] x H;Y)) o= Lg(Qy([r, 4] x H;Y)) 0 LP(9([7, ] x H;Y)).
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At first this looks like a completely new concept of adaptivity. However, by [99], Proposition
5.6 and the remark below this result, any adapted X : Q x [, u] — v(H; X) in the sense of
Definition 1.2.1 that additionally satisfies X € LP(;~([r, u] x H; X)) is strongly adapted.
Next, we sketch the construction of the stochastic integral in a UMD Banach space Y. We in-

troduce the stochastic integral in the [t6 sense with respect to a cylindrical Brownian motion.
Definition 1.3.3. Given a Hilbert space H, a cylindrical Brownian motion is a bounded
linear operator W : L2(0,T; H) — L?(Q) with the following properties.

a) For all f € L*(0,T; H), the random variable W (f) is centred Gaussian.

b) For allt € [0,T] and f € L*(0,T; H) supported in [0,t], W(f) is Fi-measurable.

c) For allt € [0,T] and f € L?(0,T; H) supported in (t,T], W(f) is independent of F;.

4) We have BV (f) - W(g)) = (> )20 rstry for all f,g € L2(0,T; H).

An example of an L?(0, T; H)-cylindrical Brownian motion is a family (8, )nen of indepen-
dent real valued Brownian motions together with H = [?(N) and W uniquely determined
by the formula W (1o 4en) = Ba(t), n € N, where (e,), is the sequence of the standard unit

vectors in [2(N).

For an elementary adapted processes G : 2 x R>g x H — Y of the form
G = 1(8,t]><B<'7 y>H£E
with B € F5, y € H and x € Y, we can define the stochastic integral via
T
I1(G) = / GAW :=1gW (1 gh)r € X
0

and we can extend it to finite linear combinations of such processes. Van Nerven, Veraar

and Weis proved in [100] the following two-sided estimate for this stochastic integral.

Theorem 1.3.4. LetY be a UMD Banach space and G be an elementary adapted processes
iny(H;Y). Then, for all p € (1,00) one has the Ité-isomorphism

(G| 5v) ~p Gl Le @i (0,7)x H3Y))-

In particular, the stochastic integral can be continued to a linear and bounded operator
I:LE(Q;~([0,T] x H;Y)) — LP(Q;Y).

In this thesis, we also deal with adapted integrands in LP(Q x [0,T];v(H;Y)) for p > 2.

Here, we restrict ourselves to UMD Banach spaces of type 2 (details about type and cotype
of Banach spaces can be found in [82]), for which the embeddings

LP(0,T;y(H;Y)) — L*(0,T;v(H;Y)) — ~([0,T] x H;Y) (1.3.1)
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are bounded. Consequently, the stochastic integral I(G) is also defined for adapted processes
G e LP(Q2 x [0,T);v(H;Y)). Also relevant is stochastic integration for adapted integrands
in L™(Q; LY(U; LP(0,T;1*(N)))) for p,q > 2, r € (1,00) and some measure space (U, uz). In

this case, we can use

L™(Q; LY(U; LP(0, T; 13(N)))) <= L" (% LY(U; L*([0, T; 1*(N))))
=L"(Q; ([0, T] x I>(N); LY(U)))

to define the stochastic integral.

1.4. Sectorial operators and functional calculus

1.4.1. R-boundedness and H*-calculus

Let (rn)nen be a sequence of independent Rademacher random variables on a probability
space (Q, A,P), ie. P(r, =1) = P(r, = —1) = 1. Given the Banach spaces X and Y, a
family 7 C B(X,Y) is called R-bounded if there exists C' > 0, such that

N N
B> rTixglly < CEIY  riasllk
j=1 j=1

for all (T;)}L, C T and (2;)}L, € X with C independent of N € N. The least possible
constant C will be called R-bound of T or shortly R(T). Note that every R-bounded family
is uniformly bounded in B(X,Y), whereas the converse holds only if X, Y are Hilbert spaces.

For details, we refer to [21], [28] and [70].

An operator A with domain D(A) is called sectorial of angle 6 € (0,7/2) on a Banach space
Y, if it is closed, densely defined, injective and it has a dense range. Moreover, we require

that its spectrum is contained in the sector Xy = {z € C : | arg(z)| < 6} and that the set
{AR(N,A) : A ¢ 54} (1.4.1)

is for all ¢ € (0, 7) bounded in B(X) and the bound only depends on ¢. In this case, —A
generates a holomorphic semigroup on E. If the set in (1.4.1) is even R-bounded, one says

that A is R-sectorial.

For any holomorphic function f on X4, ¢ > 0, satisfying the growth estimate |f(z)| <

)
C% for some 6 > 0, the integral

fA) =1 [ fo)RE: A)

211 Se

exists. This integral defines a functional calculus for functions with the growth estimate
from above. We say that A has a bounded H*°(X,)-calculus, if there exists C' > 0 such that

1f (Al < Cllflle (1.4.2)
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is satisfied for all these functions. The least constant C' > 0 will be called bound of the H°-
calculus. In this case, the functional calculus f — f(A) can be extended to any bounded
holomorphic function on ¥, and (1.4.2) remains true. Moreover, if X is UMD, the bounded-
ness of the H*-calculus of A particularly implies that A is R-sectorial. Details on sectorial
operators, R-sectorial operators and the functional calculus can be found amongst others
in [44] and [70]. A list of operators having a bounded H*-calculus can be found in [96],
Example 3.2.

1.4.2. R,-boundedness and R,-bounded H*>-calculus

Throughout this section, let p € (1,00), U C R? and let u be a o-finite measure on U. More-
over, we shortly write LP(U) := LP(U, ). In Chapter 3, we discuss quasilinear stochastic
partial differential equations in spaces of the form L?(U; L9(0,T)). In his thesis, [8], Markus
Antoni found out that to estimate the deterministic and the stochastic convolution in this
space, one needs the notion of R,-boundedness and of an R,-bounded H *°-calculus. In what
follows, we just want to sketch these concepts. For more details, we refer to the mentioned
thesis and to [65] and [69].

A family T C B(L9(U)) is called R,-bounded if there exists C' > 0 such that

N N
H(Z |zjj|p)1/p||L4(U) = CH(Z |xj‘p)1/p||LL1(U)

j=1 j=1

for all (T;)3., C T and (x;)}, C L9(U;IP(N)), where C is independent of N € N. The
least possible constant C' will be called R,-bound of 7 or shortly R,(7). The notion of
Ro-boundedness coincides with the notion of R-boundedness we introduced in the previous
section. However, it is important to note that a single operator is R-bounded, but it is not
necessarily R,-bounded (see e.g. [32], Chapter 8). Nevertheless, many famous operators
from harmonic analysis, like the Riesz transform or the Hilbert transform are R,-bounded.
For us, the most important application of Rp,-boundedness is the following result on point-
wise multipliers in LY(U; LP(0,T)).

Proposition 1.4.1. Let S : [0,T] — B(LY(U)), such that t — S(t)z is for all v € LY(U)
strongly measurable. Then, the set T = {S(t) : t € [0,T]} is Rp-bounded if and only if there
exists C > 0 with

(/U(/OT‘S(t)f(:c,t)’Pdt>Zdu(w))é <C(/U(/OT’f(x7t)’pdt>ZdM(x))é (1.4.3)

for all f € LYU; LP(0,T)). In this case, the least possible C' in (1.4.3) is given by R,(T).
Proof. The proof can be found in [65], Proposition 2.12. O

From [56], Theorem 5.3 and Corollary 5.4, we know that if an operator A on L?(U) has a
bounded H(Xy)-calculus, then for each ¢’ > 6 the set

{£(A) A=z, < 1}
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is R-bounded. However, we cannot replace R- by R,-boundedness. Here, we need a new
concept. We say that a sectorial operator A on L?(U) has an R,-bounded H(Xg)-calculus
for some 6 € (0, §), if the set

{FA) I fll sy <1}
is Rp-bounded.

Proposition 1.4.1 implies that an R,-bounded operator S on L?(U) can be extended to a
bounded operator L1(U; LP(0,T)). Moreover, we can extend a closed operator A : D(A) —
L(U) to a closed operator A on LY(U; LP(0,T)). At this point we made an abuse of notation,
since we should distinguish between A and its extension. In detail, this extension procedure
is discussed in [8], section 2.4. We just want to point out that the extension of a closed
and densely defined operator is also closed and densely defined. Moreover, if A has an R,-
bounded H (Xy)-calculus, its extension to LY (U; LP(0,T)) has a bounded H>(Xy)-calculus
(see [8], Theorem 2.4.5).

Finally, we define the so called generalised Triebel-Lizorkin spaces associated to an operator
A on LY(U). Here, we do not discuss these spaces in full generality, but we restrict us to
the cases we need. Hence, we just discuss p,q € (1,00) and we assume that A has an R,-
bounded H*(Xg)-calculus for some 6 € (0,7/2). The generalised Triebel-Lizorkin spaces
were first introduced in [65] and their connection to parabolic stochastic partial differential

equations in LI(U) was detected by [8].

Definition 1.4.2. Let A be a closed and densely defined operator on LI(U) with 0 € p(A)
that has an Rp-bounded H> (Xg)-calculus and let o > 0, p,q € (1,00). We set

R T (/U (/Ooo |t17aAe*tAf}P%>%d’u>1/q

1fll g

and we define the generalised Triebel-Lizorkin space Fjop by

F§,p= {feLq(U): 1 f || o <oo}.

A,q,p

The name can be explained if we choose A = —A on L(R%). Then, the spaces Fg ,p coin-
cide with the classical Triebel-Lizorkin spaces F;%(R?) defined in section 1.1 (see e.g. [92],
Theorem 3). In section 2.5 in [8], Antoni characterised F , , as an interpolation space
between L(U) and D(A) with a new interpolation method he called /%-interpolation. We

1-1/p

don’t go into detail here, but we want to highlight a nice characterisation of F pA asa

q
trace space.

Proposition 1.4.3. Let A be a closed and densely defined operator on LY(U) with 0 € p(A)
that has an Rp-bounded H(3g)-calculus and let p,q € (1,00). Then

”x”TR = inf {”leLq(U;LP(O,T)) + ||A’U.)||Lq(U;Lp(07T)) | U)(O) =T, w S Lq(U; Wl’p(O,T))

and Aw € LU LP(O,T))}
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defines an equivalent norm on Fql;;(p. In particular, given w € LY(U;WYP(0,T)), such

that we also have Aw € L1(U; LP(0,T)), we are able to evaluate w at time t € [0,T] and we
1-1

have w(t) € qup,f(p.

Proof. The proof is a combination of [8], Proposition 2.5.3 and Theorem 2.5.4. O

Unfortunately, solutions of stochastic evolution equations are not differentiable in time.
However, we still want to evaluate them at a fixed time ¢. This will be guaranteed by the

following embedding result.

Lemma 1.4.4. Let A be a closed and densely defined operator on LY(U) with 0 € p(A) that
has an Rp-bounded H>(Xg)-calculus. Moreover, let p,q € (1,00) and o € (%, 1+ %) Then
the embedding

LUU;W1(0,T)) N {w: Aw € LIU; LP(0,T))} < C(0,T; Fo }{?)

18 continuous.

Proof. The proof is a combination of Theorem 2.5.4 and Theorem 2.5.9 in [§]. O

1.4.3. Functional calculus via LP-LP'-off-diagonal estimates

Many elliptic operators in both divergence and nondivergence form on LP(U) := LP(U, u)
have an R,-bounded H°°-calculus. In a pioneering work Kunstmann and Ullmann estab-
lished this property by showing LPo-LP1-off-diagonal estimates for the semigroup generated
by these operators (see [69]). For this result, we additionally need that (U, d) is a metric
space of homogeneous type, i.e. there exists C' > 1 and D > 0, such that

w(B(z, Ar)) < CAPpu(B(z,r))
for all z € U and A\, r > 0. Moreover, we define the annuli
Ag(z,7) := B(z, (k+ 1)r)\ B(z, kr)

for k € N. Then, their result reads as the follows.

Theorem 1.4.5. Let 1 <pg <2 <p; <00 andwy € (0,5). Let A be a closed and densely
defined operator on L?(U), such that A has a bounded H>(X,,)-calculus. Moreover, we
assume that the analytic semigroup generated by —A satisfies for all 0 € (wg, ) the off-

diagonal estimates

A L\ == —k
oy Laoarhy lmwoowy,oon wy < Con(Bla A=) 77 (14 k)=

a1

-4 < Cop(B(x, [A|7)) 7170 (1 4 k)~

HlB(%W%)e 1Ak(z,|)\\%)HB(Lpo(U),Lm(U))
for some Cyp > 0, kg > max{pio +d(1 - p%),l - p% + ;ie} and for all x € U, k € Ny and

A€ Xz _g. Then, for all p,q € (po,p1) and o € (wo, ), the operator A has an R-bounded
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H>(X,)-calculus on LI1(U) with bound depending on Cy, kg, p,q,wo and on the bound of the
H® -calculus on L*(U).

Proof. This statement can be found in [69], Theorem 2.3. The explicit dependence of the
constants is not mentioned in this theorem. However, the main tool for the proof of this result
is Proposition 2.5 in the same article and in this result, the dependency of the constants is
discussed. Hence, we get the claimed dependency by closely looking at the proof of Theorem
2.3. O

A detailed list of elliptic operators satisfying these LPo-LP1-off-diagonal bounds can be found
in [69], Section 3 and in [8], Section 2.3, Example A and B.

So far, we discussed operators A having several versions of a holomorphic functional cal-
culus. However, for some operators on LY(U), we can extend the functional calculus and
define f(A) : LY(U) — L9(U) for smooth f : [0,00) — R. For A = —A on L9(R?) such
a spectral calculus was developed by Hormander in [47]. Over the years, there were many
generalisations of this result. The most recent versions of such a spectral calculus are due
to Kunstmann and Uhl (see [68],[67]) and to Kriegler and Weis (see [61], [62]). We present
an application of their results that is sufficient for our purpose. We restrict us to U C R¢

equipped with the Lebesgue measure and with the Euclidean metric.

Proposition 1.4.6. Assume that A is a nonnegative self-adjoint operator on L?(U) and

assume that there exist constants ¢, C' > 0 such that

d 2 2
—tA < Cti(l—ﬁ)ezp( _ C\rflyl )

HlB(wﬂf%)6 B(%t%)HB(LPO(U),L%(U)) t2
for all x,y € U and all t > 0. Then, given f € C([0,2)) with 0 < f <1 and f =1

on [0,1], the operators S, = f(27"A) are bounded on LP(U) for po < p < pfﬂl and

sup,en ||SnllBLr () < 00

Proof. We apply Theorem 2.3 in [68]. We choose w € CZ°(4,1) such that 0 < w < 1 and
Spezw(27ix) =1 for all z € R\ {0}. It is sufficient to show that

K :=supsup ||z — w(z)f(2" "))
neN IeZ

C*(r) = SUp o — w(@)f(2'2)||cs @) < o0
S

for se N, s> %. Then, the quoted theorem implies

su;l\)I ISnllBLr @y < Cp() +1)
ne

for all p € (po, ;2%7). Since f and w are bounded by 1, [[z w(@)f(2'z)]lcr) < 1. The

derivative is given by w’f(2!) + 2lwf’(2!-). However, due to the assumptions on the support

of f and w, this term is only nontrivial on

(
(

,2), forl =2,
1), forl <1

N[

(;-nn0,27) =

LN
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This yields
2 = w(@) f2') ey < 1+ [0 lloo | flloo + 4w ool oo,

which is an estimate independent of [ € Z. Higher order derivatives can be estimated in the

same way. This yields the claimed result. O






CHAPTER 2

Parabolic stochastic evolution equations via maximal

regularity

In this chapter, we provide a unified approach to the well-posedness of semilinear and quasi-
linear parabolic evolution equations. We develop a framework with maximal regularity
estimates for the deterministic and the stochastic convolution as input and a theory about
quasilinear equations as output. The maximal regularity estimates are based on the work of
Van Neerven, Veraar and Weis in [96] and [98] and Antoni in [8]. Our unified approach to
semilinear equations is orientated to Van Neerven’s, Veraar’s and Weis’ approach in [96] and
[98] and contains beside the different presentation few generalisations, whereas the theory

about local well-posedness of quasilinear equations is completely new.

As before, let (€2, P) be a probability space with filtration F = (F;);>¢ satisfying the usual
conditions and W be a cylindrical Brownian motion in a Hilbert space H. Throughout this
section, let T be a stopping time with respect to F and F, the corresponding o-Algebra of

T-past.

Before we start, we shortly sketch our approach. Given a family of semigroups with random

dependency (e *4«))

wen,t>0 and with generators (—A(w))yeq all having the same domain
E1', such that w + A(w)z is for all x € E' strongly F,-measurable, the mild solution to the

linear equation
du(w,t) = [ Aw)u(w,t) + fw,t)]|dt + b(w,t) dW (t), t € [r(w),T],
w(w, 7)) = ur ()

is formally given by

t
e—(tfs)A(w)f(w’ s)ds + / e*(t*S)A(w)b(w’ s)dW (s)

™(w)

t
u(w, t) = e~ FTT@NAW,, () +/

7(w)
as long as t > 7(w). Therefore, to study the regularity properties of this mild solution, one
has to derive regularity properties for both the deterministic convolution

(€O Pty [

7(w)

n t
eI [, 5) ds o= / ¢TI [, 8) 15 ds (2.0.1)
0

25
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and the stochastic convolution

(e=O o b)(w,t) = /t e~ E=D4p(. ) dW (s)(w) = /t e~ DA )1 o r AW (5)(w)

. ’ (2.0.2)
for ¢ > 7. These operators are at first only defined for simple functions f on Q X [, 00) and
for adapted simple functions b on Q X [r, 00) x H. However, we can extend them by density
to operators on larger spaces. This will be the content of section 2.1. In section 2.2, we use

these results to investigate the well-posedness of the semilinear equation

(SEE) du(w, t) = [ — A(w, t)u(w, t) + F(u)(w, t)]dt + B(u)(w,t) dW(t), t € (1(w),T]

ww, T(w)) = ur(w),

that starts at the random time 7 with strongly F,.-measurable initial data w.. Here, we
allow F' and B to be memory terms that have the Volterra property, which means that
given a stopping time 7 with 0 < 7 < 7 < T almost surely the functions F(u)1[, 7 and
B(u)1j; 7 only depend on ulj; 7. We solve this equation with an iterative application of
the contraction mapping theorem on [(7 4+ nk) AT, (7 + (n + 1)k) A T] for a small enough

k > 0. Quasilinear stochastic equations of the form

(seg) d D = [ — A(u(w, £))u(w, £) + F(u)(w, £)]dt + B(u)(w, ) dW (1), >0,

u(w,0) = wug(w),

will be discussed in section 2.3. We reduce (QSEE) on small random intervals |7, 72] to an
equation of the form (SEE) with a nonlinear memory term and solve this with the theory
we derived before. Then, we put the solutions on all the random intervals together to a

solution up to a maximal stopping time that is characterised by a blow-up alternative.

2.1. Maximal regularity for the deterministic and the sto-

chastic convolution

In this section, we will discuss maximal regularity estimates in three different spaces. We
will consider the spaces LP(2 x [0,T); E) and L™(£2;v(0,T; E)) for a Banach space E and
L™(Q; LY(U; L*(0,T))). Each of these maximal regularity concepts has its own advantages.
For the maximal ~-regularity, we can assume E to be UMD, whereas we additionally need
that E is of type 2 in the first setting. For maximal regularity in L"(2; LY(U; L?(0,T))),
the assumptions on the operator A are most restrictive, since we have to assume A to have
an Rp,-bounded H*-calculus and not only an ordinary H°-calculus as in the other cases.
However, especially for p > ¢ > 2 this approach yields stronger results, since the space
LY(U; LP(0,T)) is smaller than LP(0,T; L4(U)) and v(0,T; LY(U)) = L4(U; L?(0,T)).
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2.1.1. Maximal LP-regularity of the deterministic and the stochastic

convolution in Banach spaces of type 2

In this section, we discuss the regularity of the stochastic and the deterministic convolution
based on the work of Van Neerven, Veraar and Weis in [96]. Additionally, we prove lower
order estimates that will be needed in what follows. Although, they are standard, we give the

details for convenience. This setting will be called [TT]. We make the following assumptions.

[TT1] Let p € (2,00) and let E, E' be UMD Banach spaces of type 2 and with a dense
embedding E' < E. Moreover, let the family

{Js5:6 >0} C B(LP( x (0,00);7(H; E)), LP(Q x (0,00); E))

defined by
t

) = 870 /(t—é)vo ble) dW(s)

be R-bounded.

[TT2] Let A : Q@ — B(E',E) be such that w + A(w)z is for all z € E! strongly F,-
measurable and such that 0 € p(A(w)) for almost all w € Q. Moreover, we assume
that A(w) is for almost all w € Q closed with D(A(w)) = E*, i.e there exists M > 0,
such that we have

M7 zlp < AW)z]lE < Mllz] g

for almost all w €  and all z € E'. Further, A(w) has for almost all w € © a bounded
H>-calculus of angle n € [0,7/2) with

[V (A(W)BE) < M| g~ (s,)
for all W € H>°(X,). Here, all the occurring constants are independent of w € €.

Note that the requirement that not only E but also E' is a UMD space of type 2 is not
restrictive, since by [TT2] they are isomorphic and both the UMD property and the type
of E are stable under isomorphisms. In particular, the interpolation spaces [E, E'] 1 and
(E, El)l,l/p’p also inherit the UMD property from F.

We start with maximal regularity estimates of the deterministic convolution (e*(‘)A * f)

-
So far, we can exclude the dependence on w and argue pathwise. The following purely de-

terministic theorem is sufficient for our purpose.

Theorem 2.1.1. Let 7 > 0. The on LP(7,00; E) well-defined deterministic convolution

t
@ ON ) = [ (s ds
satisfies (e~ (VA x f), € LP(1,00; E') and

H(e_(‘)A * f)THLP(T,OO;El) + H(e_(‘)A * f)T||C(’T,OO;(E,E1)1,1/:DYP) < CMRDHf”LP(T,oo;E)'

Here, C\yirp > 0 depends on p, E, n and M.



28 CHAPTER 2. Parabolic stochastic evolution equations via maximal regularity

Proof. The proof can be found in [102], Theorem 3.4. Note that our assumption on the
H*(X,)-calculus implies the R-sectoriality of A required in this theorem. O

In the sequel, it will be very helpful to know that the constant in a lower order estimate
of the deterministic convolution becomes smaller, if one reduces the size of the considered

interval.

Proposition 2.1.2. Let 7 > 0 and x > 0. We have

”(e_(.)A * Prellee ey < CkllfllLerrinp)

for all f € LP(7,7+ r; E) with a constant C' > 0 only depending on Sup;c(r 4, le™" 5

Proof. Using Hélder’s inequality and the boundedness of e~()4, we estimate

t
ey (O ey P

Taking the LP-norm implies the claimed result. O

Before we turn to the stochastic convolution, we want to mention a well-known trace esti-

(t—7)A

mate for [17,00) >t e~ Ur.

Proposition 2.1.3. Let 7 > 0. Then, there exists a constant C > 0, such that

(t—7 —(t—7)A

It — e~ )AuT||Lp(T7OO;E1) +t—e UT”C(T,OO;(E,El)l,l/p’p) < C||UTH(E,E1)171/p,p

for allu; € (E,E*)1_1/p,-

Proof. The estimate

It — Ae_(t_T)AuOHLp(T_,OO;E) + ||t — 3_(t_T)AUO”C(‘r,oo;(E,D(A))l—l/p,p)

< Clluoll(z,0(4))1 1,0,

is well-known and can be found e.g. in [75]. The claimed result then follows from the

equivalence of the norms ||A - ||g and || - || g1. O

Next, we provide estimates for the stochastic convolution. Thus, from now on, let 7 be an
F-stopping time. At first, we have to make sure that the stochastic integral in (2.0.2) is

well-defined, because it is not immediately clear that the integrand
(wv S) = 6_(t_S)A(W)b(w7 S)lT(w)<s§t

is adapted to F.
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Lemma 2.1.4. Letb: Qx|[r,00) = v(H; E) be F-adapted with b € LP(1,T;~v(H; E)) almost

surely. Then, the random variable
w = ei(tis)A(W)b(wv 8)1t2$>r(w)

is for all 0 < s <t strongly Fs—measurable.

Proof. Since w — A(w)z is for all x € E! strongly F,-measurable, w — R(\, A(w))z is for
all x € E strongly F,-measurable. Since the identity

e Wy = lim (2R(Z,Aw)))"

n—o0 t

tA(

holds true for all z € E and w — e '@z is also for all z € E and t > 0 strongly

Fr-measurable as pointwise limit of strongly F.-measurable functions.

t—s)A(w)

Now, we prove that for fixed s < ¢ the map w — e Tlesr(w) is strongly Fs-

measurable. Indeed, for every Borel set B C E and = € F we have
{emt=9421, ., e B} ={0eB,s<7}U{e 4 e B s>7}

Since the filtration F is right-continuous, we have both {s < 7} € F, and {s > 7} € F;.
Thus, we obtain {0 € B,s < 7} € F, and hence, Proposition 1.2.3 yields

{e=t=) 4 e Bs> 71} e Fr N Fy = Fopns C Fo.
Last but not least, we conclude that
w ef(tfs)A(”)b(w, 8)Lgsr(w)

is strongly Fs-measurable in the sense of Definition 1.2.1 as composition of strongly F;-

measurable functions. O

Now we are in the position to state the maximal LP-regularity result and the maximal in-

equality for the stochastic integral.

Theorem 2.1.5. The stochastic convolution

(e=OAob),(t) = /0 e 7D 8)1 (7,00 () AW (5)

is well-defined for all adapted b € LEY(Q x [1,00),v(H; E)) and we have

(. _t 1/
le= O 0b)-llzoaxcrocen + (E sup (e O4 o) [P oy )7

t€[0,00) 1=t/pp

< CMRS”b”LP(Qx(T,oo),'y(H;[E,El]%))

for all b € LE(Q x [1,00),~v(H; [E, E']
E.p,n and M.

)). Here, the constant Cyirs > 0 only depends on

N|=
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Proof. By Lemma 2.1.4, the stochastic convolution is well-defined. The proof follows the
line of the proof of Theorem 1.1 in [97]. There, the result is only shown for E = L?(u), but it
extends to the general situation under the additional assumption that (J5)s=o is R-bounded.

This extension is discussed in [96], Proposition 3.5. O

As for the deterministic convolution, we want to derive a lower order estimate that improves

if one lessens the size of the considered interval.

Proposition 2.1.6. Let kK > 0 and T > 0. Then, we have

(e 0 )|l o (rmntyiEy < CEY2 Bl Lo (@ [r. (rm)AT) ()

forallb e LP(Q X [1, (T + k) AT],v(H; E)) with a constant C > 0 only depending on E and
the bound of e~ ()4,

Proof. Since E has type 2, the space L?(0,t;v(H; E)) embeds into v([0,t] x H; E) (see e.g.
[99], page 11). Thus, the It6 isomorphism (see Theorem 1.3.4) yields

(e 0 b)r (t)]l Lo,y = lls = € b(8) Lr cox (ramyne | Lo @107 1: )

Sls— 67(t75)Ab(5)1rgsg(T+n)At||LP(Q;L2(0,T;7(H;E)))

for all t € [, (T + k) A T]. Since e~*4 is bounded on E uniformly in ¢, we have

[t = (€= 0 b) - (. 8) || Lo@xr(r4m)AT) EY)
S s) = b(8)1r<s<(rimntllrx(o, 11,22 (0,7 (H:E)))
< 51/2_1/p||(t7 5) = b(8) 1< s<(rtr)ntl Lr (@ x (0,772 ()

< &3] Lo ¢ 0,70 (11 1)) -

Here, we used Holder’s inequality and Fubini. This closes the proof. O

2.1.2. Maximal ~-regularity of the deterministic and stochastic convo-

lution in UMD Banach spaces

In this section, we discuss the regularity of the stochastic and the deterministic convolution
in a space of y-radonifying operators based on the work of Van Neerven, Veraar and Weis
in [98]. Additionally, we prove lower estimates that will be needed later on. Although they
are standard, we give the details for convenience. In what follows, this setting will be called

[GM]. Throughout this section, we make the following assumptions.

[GM1] Let r € (1,00) and let E, E' be UMD Banach spaces with property-(«) and a dense
embedding E! — E.

[GM2] We assume the mapping A : Q — B(E!, E) to be strongly F,-measurable such that
D(A(w)) = E* for almost all w € Q, i.e there exists M > 0, such that we have

M7 allpr < AW)z]lp < Mllz] g
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for almost all w € Q and all z € E'. Moreover, we assume 0 € p(A(w)) for almost
all w € Q and that A(w) has for almost all w € 2 a bounded H>-calculus of angle
n € [0,7/2) with

19 (A@) 5 < MI¥ ],y

for all W € H>°(X,). Here, all the occurring constants are independent of w € €.

We start with maximal regularity estimates of the deterministic convolution (e*(‘)A * f)T.
So far, we can ignore the dependence on w and argue pathwise. The following purely deter-

ministic theorem is sufficient for our purpose.

Theorem 2.1.7. Let 7 > 0. Then, the for simple functions f : Q X [1,00) = E well-defined

deterministic convolution
t
(e*(')A * f)'r(t) _ / e*(tfs)Af(s) ds
satisfies (e~ % f), € y(r,00; E') and

IO % Prllstrocizny + le™ 0% 5 Pllerrootezny) < Ovmpllflyrocim)-

Here, the constant Cyirp > 0 depends on p, E, n and M. Hence, we can extend f +—
(e=OA % ), to a bounded operator from ~(t,00; E) to (T, 00; EY).

Proof. The proof can be found in [98], Theorem 3.3. Note that our assumption on the
H>(X,)-calculus implies the y-sectoriality of A which is required in this theorem. O

Again, it will be very helpful to know that the constant in a lower order estimate of the

deterministic convolution becomes smaller, if one reduces the size of the considered interval.

Proposition 2.1.8. Let 7,k > 0. We have

”(ei(v)A * f)‘r”'y(T,T-i-mE) < Cﬁ||f||'y(7—,7—+n;E)

for all f € v(1,7 + k; E) with a constant C' > 0 only depending on M.

Proof. Let f € C®(r,7 + #; E) and g € C°(,7 4 #; E'). Then, t — f: e~ (=) Af(s5)ds is

also an F-valued function and we can estimate

T+kK t
—(t—s)A > ’
‘/T </T e f(s)ds, g(t) (E‘,E')dt
T+K T+K N
= ‘/ / <e*(t*5) f(s)lTSSStST“"mg(t)>(E,E’) dsdt’
<ty 5) = eI () cocicrinlly(rrinzm [ 8) = GOy ((rrsnzim)-

In the last inequality, we used the finite cotype of E and the corresponding ~-Hdolder in-
equality (see Corollary 5.5 in [55]). By assumption the A(w) have a bounded H°°-calculus
with w-independent bound. Thus, Remark 7.1 in [55] implies that the operators A(w) are
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—tA(w))

~-sectorial with an w-independent bound and in particular (e >0 is y-bounded. More-

over, v-Fubini (see Proposition 3.14 in [94]) for spaces with property-a yields

I(t,5) = e T F () e cuctcrinlly(rrimzm) S I S) = F(S)ly(irrinjzm)
= ([t = (s = f(8)) lvirirtmm(rr i)

= Hl/2||f||'y(‘r,7'+n;E)

and similarly

H(t7 S) = g(t)||’Y([T»T+K]2;E) 5 "{1/2||g||'y('r,r+n;E’)'

Since C°(7,7 + k; E) and C®(7,7 + k; E’) are dense in the spaces (7,7 + k; E) and
Y(T, T + K; E') respectively, we proved the claimed result. O

Before we turn to the stochastic convolution, we provide a trace estimate for [r,00) 3 ¢t —

6_(t_T)AU7—.

Proposition 2.1.9. Let 7 > 0. Then, there exists C > 0, such that

(t_T)AuTH'y(T,oo;El) + Ht — e_(t_T)Au'r||C(T,oo;[E,E1]%) < CHUTH[E,El]

[t — e

[SEN

for allu, € [E,E"];.

1
2
Proof. The estimate

[t = Ae™ D o]y 0y + 1 e’(t’T)AUoch,oo;[E,D(A)J%) < Clluolliz,pcan,

can be found in [98|, Theorem 3.8. The claimed result then follows from the equivalence of

the norms ||A - ||g and || - || 1. -

As in Lemma 2.1.4, we can show that the integrand of the stochastic convolution
(w7 5) = ei(tis)A(UJ)b(wv S)]-T(cu)<s§t
is strongly adapted to I in the sense of Definition 1.3.2. Hence, we are in the position to

state the maximal ~y-regularity result and the maximal inequality for the stochastic integral.

Theorem 2.1.10. The stochastic convolution
t
(=4 o0 b), (t) = /0 eI 5)1 7 0y () AW (5)

is for all adapted b € Li(Q; ([T, 00) x H; E)) well-defined and we have

—(- —(- r 1/r
IO Bl oy + (B up_ 1600801
€[T,00 2

< CMRS||b||LT(Q;W([T,oo)xH;[E,El]%))

with a constant Cyirs > 0 only depending on p,n and M.
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Proof. The proof follows the lines of the proof of Proposition 4.3 in [98]. O

As for the deterministic convolution, we want to derive a lower order estimate that improves

if one lessens the size of the considered interval.

Proposition 2.1.11. Let k > 0. Then, we have

H(ef(')A Ob)rllLr @iy (i) < 051/2||b||LT(Q;~,([T,r+n]xH;E))

for allb e L™(Q;~([1, (T + k) AT| x H; E)) with a constant C > 0 only depending on E and
on M.

Proof. Since E has property-(«), we can apply 7-Fubini (see Proposition 3.14 in [94]) and

the Ito-isomorphism (see Theorem 1.3.4) to obtain

Ht = (6_(')14 < b)T<t)1[T,T+I€] (t) HLT(SZ;’Y(O,OO;E))
=F Ht = (e_(.)A < b)‘r('v t)l['r,T+n] (t)H'y(O,DO;L"(Q,E))

~[|(t,8) = e T8 Ly cocirinl| L (95m((0,00) % (0,00) X HIE)) -

By assumption A(w) has a bounded H *°-calculus with w-independent bound. Thus, Remark
7.1 in [55] implies that the operators A(w) are 7-sectorial with an w-independent bound.
In particular, the set {e=*A«) : ¢ € (0,00)} C B(E) is y-bounded and therefore we can

estimate

H(ta 3) — e_(t_S)Ab(wa 8)17'<5§t§‘r+n||'y((0,oo)><(0,oo)><H;E)
S, 8) = b(8)Lrcs<t<r+raT v ((0,00)x (0,00) x H; E)

< KY2L () aT) (0,00 D)

almost surely, which yields the claimed result. O

2.1.3. Maximal L4(U; LP(0,T))-regularity of the deterministic and sto-

chastic convolution

In this section, we discuss the regularity of the stochastic and the deterministic convolution
based on the work of Antoni in [§]. In the maximal regularity settings above, we just had
to fix a state space E and a constant domain E' for the operators A(w). To adapt this
flexibility to Antoni’s approach, which was only developed in the space L(U;L?(0,T)),
we introduce a scale of possible state spaces and possible domains. This will be done by
choosing the state space as a fractional domain of an operator A that has an R,-bounded
H>-calculus on LY(U; LP(0,T')). In what follows, this setting will be called [LQ]. We make

the following assumptions.

[LQ1] Let r € (1,00), ¢ € (1,00), p € [2,00), U C R? and let u be a o-finite measure on U.
We choose H = I*(N) and W (t) = 3_°2 | ek (t) with a sequence () of independent
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Brownian motions relative to F and with unit vectors (ex)r C [*(N). Moreover, let A
be a closed and densely defined operator on L9(U) := L4(U, u) with 0 € p(A) that
has an Rp,-bounded H(X5)-calculus for some 77 € (0,7%). For given a € (%, 1], let
E% := D(A®) and denote by E*~! the extrapolation space of L(U) equipped with

the norm [[A*~ - || La(ury.

[LQ2|] We assume the mapping A : Q — B(E“, E“7!) to be strongly F,-measurable. More-
over, the operators A(w) are for almost all w € Q closed, densely defined with 0 €
p(A(w)) and have an Rp,-bounded H>(3,)) calculus with

Ry ({#(A@)) : [¥]l~(s,) <1} € BLAD))) < M

for some M > 0 and n € (0,7/2) independent of w € Q. Moreover, the operators
AYA=> AN~ Ao7IAT=> Ao~ 1 A1= are almost surely Rp-bounded with w inde-

pendent bounds.

As we have seen in section 1.4.2, A can be extended to an invertible operator Ap,; on
L9(U; LP(a,b)) that has a bounded H>°(X5)-calculus. In what follows, we write E*(a,b) :=
D(Ag ) and E®~Y(a,b) for the extrapolation space of L4(U;LP(a,b)) with respect to
1A e lLa@ize(asy-

Due to Proposition 1.4.1, the assumptions on the R,-boundedness from [LQ2] imply the
equivalences of the norms [|A” - || La(.1r(ap)) = || - [[Eo(ap) and [[A“ - || pa;Le(ap) =~
| - | ze~1(a,p) almost surely with w-independent estimates. Since both A and A particularly
have R,-bounded imaginary powers, we also get the norm equivalence | A9 - || La(U;LP(a,b)) =2

0
|| p,a,b

‘Rp-bounded.

“|lLa;Lp(ap)) for all @ € [a —1,a] and that the operators AP A=Y and A°A~? are

Note that the restriction « € (%, 1] is necessary, as for the proof of the trace estimates of
the deterministic and the stochastic convolution, we need to apply the embedding

{A%u € LUU; LP(a, b))} 0 LA(U; WP (a,b)) < Cla,bs Fy o)

A,q,p

from Lemma 1.4.4, which only holds true for o > %. Throughout this section, we frequently

use the estimate
ITfllawire(an)) < Rp(MfllLa:Lriab))

for any Rp-bounded operator I' from Proposition 1.4.1 without explicitly mentioning it.

We start with an estimate for the deterministic convolution (e~()4 x f) . Here, we can ig-
nore the dependence on w and argue pathwise. The following purely deterministic theorem

is sufficient for our purpose.

Theorem 2.1.12. Let 0 < 7 < T and let f: Q x [1,T] = E* be a simple function. Then,
the deterministic convolution

t

(=04 % f), () = / (=94 1(5)ds

T
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is well-defined, satisfies (A e~ x ), € LY(U; LP(1,T)). Additionally, we have

1A% (O s D)o llzaqwizoery + 1€ % elloagyme -1y < Ovrn A flzowszerir))-

Here, the constant Cyrp > 0 only depends on p,q, n, M and the R,-bounds of A*A~%,
A=A and A*~TAY. Hence, we are able to extend f — (e~ )4 x f). to a bounded
operator from E*~Y(1,T) to E*(,T).

Proof. The proof of the inequality
1A F)r | Loizw(riry) + 1A (€O 5 F)r |l Lowwer(rry) < Cntro |l fllLowize(rmy)
can be found in [8], Theorem 3.3.9. The claimed estimate in E*(r,T) then follows from
1A% (™ O S) o |z oy
_ HAaA—aAoz(e—(')A " Al_aAa_lf)'r||L0(U;LP(7—,T))
< Rp(A“A™Y) Curp | A A A fl| Lo Lo (r1))
<R, (AaA_a)éMRDRp (A“TTA YAl pasne (rr)-
In the same way, we get

e=% % DrllLawawenryy < Ouroll A fllawize (rir)
= éMRDRp(AaflAlia)||Aa71f||LQ(U;LP(T,T))

for f € E*~1(7,T). Hence, we can apply Lemma 1.4.4 to get the claimed trace estimate in
Fafl/p O

ANagp

In the sequel, it will very helpful to know that the constant in a lower order estimate of the

deterministic convolution becomes smaller, if one reduces the size considered interval.

Proposition 2.1.13. Let 0 <7 < T and k > 0, such that T + k <T. Then, we have

1= % f)rllpa-1(r,r4m) < Okl fllBa-1(r740)

for all f € E*~Y(1,7 4+ k) with a constant C > 0 only depending on M and the R,-bound
of A" TA= gnd A®"TAY™, but not on k.

Proof. From [8], Proposition 3.3.1, we get

(€= % £)rll Loqusnorrny) < CEIFllLo@sno(rortny)-
This together with the R,-boundedness of At A1~ and A~ 1A'=2 yields
1A%~ (e™ O )| LauiLo(rir4r))
= AT AT (e O % A7) | Lo (o))
< Ry (A AT COrl| AN AT f | aqu o 40
< Ry (A TTATT ) OrRy (AT AT ) AT f | aqu o () -
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Before we turn to the stochastic convolution, we give a trace estimate for t — e~ (=) 4,
Proposition 2.1.14. Let 0 < 7 <T. Then, there exists C > 0, such that
|t — Aaei(tiT)AuO||Lq(U;Lq(7-7T)) + It — ei(tiT)AUOHC Pl 1/p) < C||u0||Fa l/p

for all ug € F/f‘q;/p.

Proof. The estimate

[t = A% DA || ooy + |t e DA < Clluo o175
24P

uollor g
is a combination of [8], Proposition 3.2.12 and [65], Theorem 4.25. The claimed result then

follows from [|A® - || Law;Le(r,1)) = ||l Bo ey and A" ooy = - lpa-irr)- O

From now on let 7 be an F-stopping time with 0 < 7 < T almost surely. As in Lemma 2.1.4,

we can show that the integrand of the stochastic convolution

(w7 S) = e_(t_S)A(W)b(wa 8)1T(w)<5§t

is adapted to F. Hence, we are in the position to state the maximal regularity result and

the maximal estimate for the stochastic integral.

Theorem 2.1.15. The stochastic convolution
¢
(0% 0b),(0) = [ e )10 (5) AW )
0
is well-defined for all adapted b € L"(2; LY(U; LP(7,T;1?))) and we have

(. 1/r
IA%(e™ D% 0 b)- || 1 (Lo (uszo(ry)) + (B SUP)H( ~O4op), ||Ta 1/p) /

telr,

< CMRS||Aa_Eb|

L7 (Q;L1(U;LP (7,T512)))

with a constant Cyirs > 0 only depending on p,n, M and the R,-bounds of A“A~% and
A=12\Y2=e Hence, we can extend the stochastic convolution f — (e~ (V4 o b), to a
bounded operator from {Ao‘*%b € Ly( LY(U; LP(7,T51%))) } to the space L (Q; E*(7,T)) N
L™ (Q;C(7,T; Fqu))

Proof. Following the proof of [8], Theorem 3.4.10, we get

|AY2 (= o b)), Wir(ry) + A2 (e O o ),

(U;Wor(r,T)))
< Cuirs 10|l Lr (s Lo (U-Lr (. 7:2))) (2.1.1)
for o € (0,1) and b with Azb € L"(Q; L9(U; LP(7,T;12))). The estimate in the space
L™ (Q; B (, T)) then follows from
1A% (e 0 b) || L (sLausLr (r.1)))

= [A*A7*A% (=4 0 AVEO AT 2) | L upausie (r.)))

< Ry(A*A™) Curs | A% V2AY 2= N2 Lo pa (010 (e 02))

< Ry(A*A™) Curs Ry, (AT H2AY27) A2~ 1/2))

Lr(Q;La(U;Lp(7,T;12)))-
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In the same way, for o € (0, %), we get

(™% 0 b)r |l r(@uLawswosriry)

< CursRy (A7 V2AY2) [A7Y20] L po(winr (r. 1)) (2.1.2)
as a consequence of (2.1.1). To derive the trace estimate in FX";;/ P we have to distinguish
the cases a € (%, 3) and a € [5,1]. In the first case, (2.1.1) implies

Ie=O* 0 b)rllLr@szaiwen(rry)) < Cnars | A0l Lr(@upa(wsio (rr32)))
< Rp<Aa71/2Al/27a) HAa71/2b|

L7 (;La(U;LP (,T;12)))

and the embedding from Lemma 1.4.4 yields the claimed result. If on the other hand

o € [3,1], choose € € (0,1 — ]%) We use the same embedding and (2.1.2) to get

1

Ie=0 o b) P
L™ (G0 (r,T5FE 7))
A.q,p

T||LT Q:C(+.T:FO~Y/Pyy — HAail/2+E(€7(.)A <>b)7-||
(7 (’VA,q,p ))

.o
< ClA%(e™ M o b)ellr@uawinr iy + CIAT 2T O )l b —r
< C(Ry (A*A7) CrnsRy (422420

+ Rp(AaféAéfaD ||Aa7%f”LT(Q;LQ(U;LP(T,T;P)))~

This closes the proof. O

As for the deterministic convolution, we want to derive a lower order estimate that improves

if one lessens the size of the considered interval.

Proposition 2.1.16. Let K > 0 and T > 0. Then, we have

[A*"H(em O 0 b) o | Lo na(nr(r(remnry)) < CEYIAYT0] 1r (0L (U Lo (. (v m) AT 2)))

for all b € L™(Q; LY(U; LP(1, (T + k) A T;12))) with a constant C > 0 only depending on M
and the Ry-bound of A'=*A*~1 and A*~1A1=,

Proof. From Proposition 3.4.1 in [8], we get

(6= 0 b) - || Lr (Lo Lo (ra(rtrmyat))) < CEY 2Bl Lo na (U210 (r, (740 AT))

Using the w-independent boundedness of R, (A'~*A*"!) and R, (A*"1A*~%), the result is

an immediate consequence of this estimate. O

2.2. Semilinear parabolic stochastic evolution equations

In this section, we show well-posedness of semilinear parabolic stochastic evolution equations
in different spaces based on the known maximal regularity estimates for the stochastic and

the deterministic convolution. Since, these arguments are independent of the underlying
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setting, we work simultaneously in L?(0,T; E), (0, T; E) with a UMD Banach space F and
in LY9(U; LP(0,T)). In every single of these spaces, there are results for semilinear stochastic
equations (see [8], [96], and [98]). However, we not only give a unified approach to these
equations, we also make slight generalisations. We start the equation at an F-stopping time
7 with given initial date u, : & — TR that is strongly F,-measurable. Here, TR is the
trace space in our theory. It differs from setting to setting and will be introduced later
on. Moreover, we allow not only nonlinearities that are pointwise Lipschitz continuous, but
also nonlinearities that are Lipschitz continuous with respect to the norm of the maximal
regularity space. This allows us to deal with nonlinear memory terms, which will be crucial,
when we apply these results to quasilinear equations. Although our results are not to much
different from the originals, we still give most of the proofs to convince the reader of the

validity of our changes and to highlight the common structure of all three approaches.

As before, let (Q, ]P’) be a probability space with filtration F = (F;);>0 satisfying the usual
conditions and let W be a cylindrical Brownian motion in a Hilbert space H. Moreover, let

T > 0 and let 7 be an F-stopping time with 0 < 7 < T almost surely.
We consider the stochastic evolution equation

du(t) = [ — Au(t) + F(u)(t) + f(t)]dt + [B(u)(t) + b(t)| AW (t), te€ (7,T]

u(T) = ur,

(SEE)

(2.2.1)
on a generalized interval Q x [1,T] := {(w,t) € QA x [0,T] : 7(w) <t < T}.

The general framework consists of a Banach space X with an extension to the timeline
X (a,b) for some interval (a,b) C [0,T]. Moreover, we have a maximal regularity space
X1(a,b), a space X?(a,b) in which the stochastic part of the equations lives and a trace
space TR. We will choose them in such a way that the solution u of (SEE) always satisfies u €
X1, T),Au € X(1,T), B(u) € XI% (r,T) and u € C(7,T; TR) almost surely. Additionally,
r will be our integrability exponent with respect to €, i.e. for given u, € L"({; TR), we
want to show that the solution u satisfies u € L™ (Q; X*(7,T) N C(7,T; TR)).

To give an impression about the possible spaces, let A = A and X = L(R%). Then,
both X (a,b) = LP(a,b; LY(R?)) and X(a,b) = L%(RY; LP(a,b)) are possible choices with
the corresponding X (a,b) = LP?(a, b; W*4(R%)) or X!(a,b) = W24(R%; LP(a,b)). Here, TR
is given by Bg;,z/ P(R?) and quf/ P(R?) respectively. Equations in these spaces will be

discussed in depth in chapter 3.

In every setting discussed in the previous section, we will choose these abstract spaces

individually. We fix the notation in the following way.

[TT] Assume [TT1] and [TT2] from section 2.1.1. In this setting, we define X := E,
X(a,b) = LP(a,b; E), X*(a,b) := LP(a,b;EY), Xg(a,b) := LP(a,b;y(H;E)) and
1
Xfi(a,b) = LP(a,b;y(H; [E, B']
space (E;El)l,l/p,p.

). The trace space TR is the real interpolation

1
2
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[GM] Assume [GM1] and [GM2] from section 2.1.2. We set X := E, X(a,b) := v(a,b; E),
X1(a,b) :==v(a,b; E'), Xp(a,b) :=([a,b]x H; E), X2 (a,b) := v([a,b] x H; [E, E']1).

The trace space TR is the complex interpolation space [E; E']

1
2

1.
2

[LQ] Assume [LQ1] and [LQ2] from section 2.1.3. Here, we set X*(a,b) := D(A%_,),

p,a,b
X1, b) = A;;%(LQ(U;LP(a,b)))7 Xp(a,b) = A5 (L9(U; LP(a,b;1%(N)))) and
1 1
X7 (a,b) = Aia;f (L9(U; LP(a,b;1*(N)))). The trace space TR is the interpolation

space FX‘;;/ P in the sense of Definition 1.4.2.

The other assumptions are similar in every setting and can be formulated universally. How-
ever, before we can make them precise, we need to know what L% (Q; X*(7,p)) for i = 0,1
and L]}(Q;XEI(T, 1)) actually mean for given F-stopping times 7,p with 0 < 7 < p < T
almost surely. In the setting [GM], this is obvious by Definition 1.3.2. In [TT], we use the
same definition with the choice Y = E® for i = 0,1 and in [LQ], we take H = [?(N) and
Y = A'=*(L9(U)). This last choice makes sense because of

Al—a—i(Lq(U; Lr(r, u))) = (s AT (LA(D)))

P,T, [k

for i = 0,1, which is a consequence of (7, u; L4(U)) = L4(U; L?(a,b)). Now we can present

the universal assumptions.
[S3] u, : @ — TR is a strongly 7-measurable.

[S4] For any F-stopping time p with 7 <y < T almost surely, the mapping
F: {u € LY(Q; X (1, ) N O (7, 11; TR)) : u(T) = ur a.s.} — LY X (1, p))

is a Volterra map, i.e. for a given F-stopping time 7 with 7 <7 < p almost surely, the
restriction F'(u); 7 only depends on i, 7. This means that we have F(u)l; 7 =
F(v)1[, 7 almost surely, whenever uli, 7 = v1j;7 almost surely. Moreover, there
exist an F-measurable p : 1 — [0,00) and constants L}”,ZF, Cl(,i) >0,7=1,2, such

that F is of linear growth, i.e.

2
IF @) x () < o+ CO 61l x1 (rp) + CE N1l r TRy

and Lipschitz continuous, i.e.

IF(61) — F(62)llx(r
< L1~ ballxr(rg + Lellds — dallxrp + L2161 — dallcrpny

almost surely for all ¢1,¢2 € LYU(X (7, 1) N C(7, 15 TR)) with ¢1(7) = ¢2(7) = u,

almost surely with constants independent of p and w € .
[S5] For any F-stopping time p with 7 < g < T almost surely, the mapping
B {u€ LY@ X' (r, 1) N C(r, 15 TR)) s u(r) = ur a5} - LO(: X2 (7, 1)

is a Volterra map, i.e. for a given F-stopping time 7 with 7 < 7 < u almost surely, the

restriction B(u)j;7 only depends on uj, 7. This means that we have B(u)lp7 =
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B(v)1jg7 almost surely, whenever ulyyz = vljp 7 almost surely. Moreover, there
exist an F,-measurable p :  — [0,00) and constants Lg), Lg, C’g) >0,7=1,2, such
that B is of linear growth, i.e.
1B 3 <p+C5 I1llxr i + C5 Nl
Uy, o =P T l0LIX ) T 2 lIPHIC(rwTR)
"\

and Lipschitz continuous, i.e.

B - B 1

1) -~ B@a)l

< LPNé1 — dallxr(rp) + Lalldr — dallx(rp + L2161 — dollcirprry

almost surely for all ¢1,¢o € LA(X (7, 1) N C(7, 5 TR)) with ¢1(7) = ¢2(7) = u,

almost surely with constants independent of p and w € .
[S6] We assume f € LE(; X (7, T)) and b € LE(Q; X2 (7, T)).

We want to remark that it might be possible that 7(w) = T for some w € Q. For these
w we don’t need any assumptions on F and B, since (e~ (F(-,u) + M), (@, T) and
(e=O 4o (B(-,u) + b)))T (w,T) vanish in this case anyway. In the next Lemma, we collect

an important universal property of the spaces X (a,b) and X (a,b).

Lemma 2.2.1. Let u € X'(a,b). Then, [a,b] 3 t — |[ul|x(as) and [a,b] 3t — |lul|x1a,

are continuous.

Proof. Since the arguments are similar for ¢ — ||ul| x (q,¢) and ¢ = ||ul| x1(q,1), We just show the
continuity of [a,b] > ¢ > [|u|| x1(q,;)- In this proof, we have to distinguish the three different
settings. The continuity of ¢ — [|u|1s(q,) and t = [[A® " u| La,Lo(a,e)) is immediate by

the dominated convergence theorem.

For the ~-setting, let ¢ € [a,b] and (¢,), be a sequence with ¢, — t for n — oo. Defining
S, : L?(a,b) — L?(a,b), f 1., f and S : L?(a,b) — L?(a,b), f — 1(q,f, one can show
Sng — Sg for every g € L?(a,b) with L2-convergence. By Corollary 6.5 in [94], we get

Spu — Su in y(a,b; E) for n — oo and in particular, we have

||u||'y(a,tn;E) = ||Snu||'y(a,b;E) — ||SuH’y(a,b;E) = ||u||'y(a,t;E)7

for n — oo, which proves the claimed continuity. O]

Next, we introduce mild and strong solutions of (SEE).

Definition 2.2.2. Let u be another F-stopping time with ™ < p < T almost surely. A
process u : QX [1,u] = X is called a mild solution of (SEE) if it is strongly measurable,

adapted with u(7) = u, almost surely and

a) both the deterministic convolution (e_(')A *F(u)l[T,H])T and the stochastic convolution
(e=O40o B(u)l[T,M])T are well-defined.
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b) The identity

u(t) = e~ =14y 4 (e_(')A * (F(u) + f))) (t) + (e_(')A o (B(u) + b))) (t)

T T

holds almost surely for all t € [r, p].

Usually, one says that a process u is a strong solution if it is sufficiently regular and the

formula
u(t) —u, = 7/ Au(s)ds +/ F(u)(s) + f(s)ds +/ B(u)(s) + b(s) dW (s)

holds almost surely for all ¢ € [r,T]. However, this is not possible in all of our settings. So,
we have to explain what we mean with f: ds, since u € X*(7,T) does not necessarily imply

that Au is integrable in time.

Definition 2.2.3. Let u be another F-stopping time with 7 < p < T almost surely. A process
w: QX [r,u] = E is called a strong solution of (SEE) on [T, u] if it is strongly measurable,
strongly adapted with u(t) = u, almost surely, we have u € X*(r,u) N C(7, u; TR) almost

surely and u satisfies the following identities depending on the respective setting.

[TT] The identity

u(t) — uy = — / Au(s) ds + / Fu)(s) + f(s)ds + / B(u)(s) + b(s) AW (s)

holds almost surely for all t € [1,T] as an equation in E. Here, the integral over
time is an E-valued Bochner integral and the stochastic integral is well-defined as a

consequence of Theorem 1.3.4 and (1.3.1).

[GM] The equation
¢

u(t) —ur = —Au(1pry) + (F(u) + ) (1i7g) +/ B(u)(s) + b(s) AW (s)

T

holds almost surely for all t € [1,T| as an equation in E. Note that Au, F(u), f €
v(1,T; E) implies that they are linear operators from L*(7,T) to E. Moreover, the

stochastic integral is well-defined as a consequence of Theorem 1.5.4.

[LQ] The equality
A u(t, 2) =AY, (z) =
t t
- / A" Au(s, ) ds + / AT E(u)(s, ) + A f(s,2) ds
+ /t A" B(u)(s, ) + A*tb(s, x) AW (s)

holds almost surely for almost all x € U and for all t € [1,T] as an equation in
C. These deterministic integrals are well-defined, since A“ 1 Au, A" 1F,A*"1f ¢
LP(7, 153 L*(U)) almost surely.
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Under our assumptions the mild solution concept and the strong solution concepts coincide.
In the maximal LP-regularity setting [TT], this was shown in Proposition 4.4 in [96]. For
the maximal LP-regularity setting [GM], this result can be found in [98], Proposition 5.3.
In the setting [LQ)], a version of our result was proved in [8], Proposition 3.5.6. Adding the

operator A'~%, one can follow the proof step by step.

Proposition 2.2.4. Choose one of the settings [TT], [GM] or [LQ] and let [S3]-[S6] be
fulfilled. Moreover, let u be another F-stopping time with 7 < pu < T almost surely. A
process u : ) x [7, 4] — X with u(t) = u, almost surely and with u € X1 (0, u) N C (7, u; TR)
almost surely is a mild solution of (SEE) on [, u] if and only if u is a strong solution of
(SEE) on [r, p].

To establish existence and uniqueness of a strong solution of (SEE) on [r,T], we try to
find a mild solution with the regularity properties we demanded in Proposition 2.2.4 via the
contraction mapping theorem. It will emerge that we only get a solution on a smaller interval
[, (T4 k) AT] for some k > 0 small enough and we then have to iterate the procedure. From
now on, we write 7o := 7 and 7, := (7 + nk) AT for n € N. Clearly, 7,, is also a stopping

time as sum and minimum of stopping times.

We assume that we already constructed a strongly adapted solution w on [r,7,—_1] for some
n € N in the sense of Definition 2.2.3 and we want to extend u to [r,—1, 7). We therefore

consider the operator defined by

Koo(t) =m0 Au(n, ) + (O (F(o) + 1)) (1)

Tn—1

+ (V4o (BE)+D) @) (2.2.2)

Tn—1

almost surely for ¢t € [1,—1, 7,] and K, ¢(t) = u(t) for ¢t € [7,7,—1) on the set

E(k,n) := {¢ € LY X(r, Tn))| dp=uon Qx[r,7_1], ¢ € L" (X (1h_1,7T0)),

§ € Clrn 1,7 TR) a5, and B sup [ 6(t)]/g < o0}

tE[Tn—1,Tn]

endowed with the metric

||U - w”lh”’v" ::H’U - w| LT (XY (Th—1,Tn)) + 'uHU - wHLT(Q;X(T",l,Tn))

F(E s o) —wlli)

tE€[Tn—1,Tn]
for some p > 0.
In the following Lemma, we choose the open parameters x and pu, such that K, is a self-
mapping contraction on £(k,n). This is essentially a consequence of the maximal regularity

estimates of the deterministic and the stochastic convolution we mentioned in the previous

section. Summarizing section 2.1, there exist Cyirs, Cvrp > 0, such that we have

[(e"P40g)

(2.2.3)

<
Tn71| Lr (X! (Tn—1,70)NC (Tn—1,7;TR)) — CMRS“g”L"'(Q;Xé (Tn—1,7n))
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for all g € LT(Q;XéI(Tn—th)) and

(VA |~ ~
|| (6 © * g)frn,1| L™ (XY (Th—1,Tn)NC(Th—1,7n;TR)) < CMRD”gHLr(Q?X(Tnflen)) (224)
for all g € L"(Q; X(0,T)). Moreover, we have the lower order estimate
—()A 1/2
e 0 9), i @uxirns iy < C18 29l @i i) (2.2.5)
for all g € LT(Q;XI%(Tn,l,Tn)) and
(VA ~ ~
1™ #8),, e v < Corlller@x - (226)

for all g € L™ (Q; X (Tp_1,7n))-

Lemma 2.2.5. Choose one of the settings [TT|, [GM] or [LQ] and let [S3]-[S6] be fulfilled
with

Crro LY + Cyrs LY < 1
for i = 1,2. Further, we assume u, € L"(2,TR) and p € L"(Q). Moreover, we fix u > 0
such that

p> CurpLr + CursLp

and we choose k > 0 small enough such that
max {HCQLg)M + I{%Cng)/L, KOQL%?),U + R%Cng)u, K}CQZF + H%leg} < 1.

Then, the operator K, defined in (2.2.2) on E(k,n) is a self-mapping contraction, i.e. we
have K, (E(k,n)) C E(k,n) and

[t = K0l mn < 8l =0l ,n

for all u,v € E(k,n) with a constant 0 < § < 1.

Proof. For the time being we start with an arbitrary x > 0 and g > 0 that will be chosen
later on. The self-mapping property is immediate since we have K¢(7) = u, almost surely
by definition of K. Moreover, the linear growth of F' and B, together with the trace estimate

for ¢t — e_(t_T7L*1)Au(Tn,1) and the maximal regularity estimates mentioned above yield

Kol s < llutmn e F(O) pr(xin B f
1Kol pmg S Nu(mn—1)llzr@itr) + 1F (D) 2r (X (71 yrn)) T | (¢)|‘L"(Q;Xé(n,_1,rn))

S loller@) + lu(ra—Dllr@rr) + 191l r(@:x1 (r,m0)) + 1€l L (25 (770))
+ |9l - (2s0(rymn i TR))

S lellzr @) + lu(n—0) |l r@srry + 10l 2 ix (701 im0)) T 1Pl Lr (@0 (rn 1 i TRY)
+ l[ullzr@x1 (1)) + lullLr@ic(rmm_15TR))- (2.2.7)

In the last step, we used ¢ = w on Q x [7,7,_1]. Note that in the special case n = 1, this

estimate reduces to

1Kol

JYNN S ||p||LT(Q) + ||UT||LT(Q;TR) + ||¢HLT(Q;X1(T7L,1,T,1)) + ||¢HLT(Q;C(7n,1,T";TR))'
(2.2.8)
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To check that K is a contraction on £(k,n) we take u,v € £(k,n) and estimate the difference
|Ku — Kv||,,.,n Here, we are precise with the occurring constants to be able to choose x

and p correctly.

We start with a pathwise estimate of the deterministic convolution. Estimate (2.2.4), to-
gether with the Lipschitz continuity of F' assumed in [S4] and the Volterra property of F,
yield
1045 (F(w) = FO)), 11 (e + (=04 % (F(w) = F(0))
< Cmrp[|F(w) = F(0) | x (7 -1,7)

< Curo LW [Ju — 0]l x1(r, 7y + CMrDLE 4 — Vllc(r s TR

[FSTE—"

Tn—1

+ Cumrp Lp||u — VX (rp_1,mn)s
almost surely on 2. In the same way, by (2.2.6), we obtain

(e % (F(w) = F(©))).._ Nxtra 1)
< KO L u = vllx1(r, ) + KLY = vl (o, rmnrirm) + RC2Lp 0= vl x(r, s ),
almost surely on 2. This yields
(O s (F(u) = F(©)) e <(CrirnLiy) +£C LR ) [ = vl| r0:x (7 7))
+ (Crrp L + C LY i) u = vl (s rTR))
+ p(Cuvrp Lep™ 4+ KO Lp)|[u = vl Lr (@ (ru_y ) -
To estimate the stochastic convolution we combine the Lipschitz continuity of B assumed
in [S5], the Volterra property of B and estimate (2.2.3). We get

|| (e_(.)A < (B(u) - B(U)))'rn_l ||L“"(Q;Xl(Tnfl,‘rn))ﬂC(Tn,l,Tn;TR)

< s B = BO), o0
X (Thne1,Tn

< CMRSLg) [ = V|| (@ X1 (rn1mn)) + OMRSLBIU = V]| (@ X (71170

+CnsLP(E  sup  [ult) — v(®)50) "

tE[Trn—1,7n]

If we instead apply the lower order estimates, we obtain

plle™ % o (B(u) = B()) || Lr@:X (rn_1.,)
< /{1/201L§31)M||u —vllr@ix 1 (raai ) T K2CoLpplu — Vllzr@x i)

r 1/r
+ Hl/Qong)H(E sup ||u(t) — U(t)”TR) /

tE€[Tn_1,7n]
This yields
1(e=O4 6 (B(u) = B®)), lumn
<(CamsLip) + 82 C1Li 1) [ =l o @1 (1))
+ (CMRSL(;) + K%CQL('?)M) lu — V|| Lr (0 (rn 1 rasTR))
+ u(CursLpp™ + K%CJB) lu— vl

L™ (X (Th—1,Tn))"
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All in all, we proved ||Ku — K|, x,n < 0|/u — v||4,x,n, where § is given by
6 = max { Cump L) + #C LW 1+ Cums LG + w3 CLLG 1,
Crrn L) + KCoLE i+ Curs LY + 12 CoLY
CurpLep™ + kCoLp + CursLpp ™ + H%CIEB}-
To ensure § < 1 we have to choose p and x properly. Due to the requirement
Crnrp L + Curs LY < 1
for i = 1,2 some expressions are already smaller than 1. Next we fix p such that
pt > OmrpLp + CursLp
and last but not least, we choose x small enough such that
max {kCo L' 4+ k3 C1 LY 1, kCo LY i+ 13 CL LY 1, kCo L + £2C1 L} < 1.

This closes the proof. O

Applying the Lemma from above, we can construct a strong solution of (SEE) on the ran-

dom interval [7,T] step by step. This gives the main result of this section.

Theorem 2.2.6. Choose one of the settings [TT], [GM] or [LQ| and let [S3]-[S6] be fulfilled
with
CMRSLE;) + CMRSL(é) < 1.
If we additionally assume u, € L"(Q;TR) and p € L"(QY), there exists a unique strong
solution u of
(SEE) du(t) =[—Au(t) + F(u)(t) + f(¢)]dt + [B(u)(t) + b(t)|dWs, t € [1,T]
uw(t)  =ur,
and u has almost surely continuous paths on [1,T| viewed as a function with values in TR.
Moreover, we have the estimate

1/r

(Elluli ) + B swp [u@lfn)'"" < 0+ lurllom + o) (2:29)
clr,

for some constant C > 0 independent of u..

Proof. First, we choose p,x > 0 as in Lemma 2.2.5. Without restriction, we assume that
k = T/k for some k € N. Otherwise, we choose & slightly smaller. As before, we set 79 := 7

and 7, := (7 + nk) A T. This choice ensures 7, = T almost surely.

Lemma 2.2.5 yields the existence and uniqueness of a fixpoint u; of the operator K7 defined
in (2.2.2) in &(k, 1). In particular, by definition of K;, we have

t

w(t) = / eI (P(uy)(s) + f(s)) ds + / e~ =94 (Buy)(s) + b(s)) ATV (s)

T

+ e—(t—T)AuT
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for t € [r9,71]. Thus, u; is a mild solution on [, 1] with almost surely continuous paths as
a function with values in TR. Moreover, using the contraction property of K; applied to
any ¢ € £(k, 1) yields
uallpen = (K1 (W) e, < (K1 (u1) = Ki(@)[uea + 1K1 (9) ][
< Ollur — Yl + CEL ()

< Slluall 1 + Ci(1+ lurl| L ,rr) + [Pl 2 ()

for some Cy > 0 only depending on the choice of . The last estimate for K;(v¢)) was shown
in (2.2.8). Especially, since 6 < 1, we have the estimates

V< o1+ ful

(]E||u||TX1(T’T1)+E sup |lu(t)|ir) Lr () (2.2.10)

o rr(@TR) * [/l
for some C' > 0 independent of u, and p. We set u := u; on Q X [r,71]. In the same way,
we construct a strong solution ug € £(k,2) of (SEE) on the interval [r1, 72] with past u on
[7,71] as a fixpoint of Ks in £(k,2). As above we can show that there exists Cy > 0 such
that

r r 1/r
(E||U2HX1(71,72)+E sup HUQ(t)HTR)

te[T1,72]
= C2<1 +lluller@xr ey + luller@consrry) + ||PHU(Q>)
< CC (1 + [|ur| Lr(Q))- (2.2.11)

Lr@Tr) T+ 1P|

Here, we used (2.2.7) and (2.2.10). We set u = ug on [r1, 72]. Repeating this argument k
times, we obtain a unique strong solution u,, on every interval [r,_1,7,] for n = 1,...,k
as a fixed point of K, on &(k,n). Setting v = w,, on [7,—1,7,], we get a strong solution
u of (SEE) on [r,T] with the claimed regularity properties. (2.2.9) is a combination of
(2.2.10), (2.2.11) and the corresponding estimates for u,, n = 3, ..., k. The uniqueness is an

immediate consequence of the uniqueness of the u,, n =1,...,k. O

Next, we prove a very useful Lemma that ensures that if the initial data, the operators
and the nonlinearities coincide on some subset of Q of positive measure, the corresponding

solutions of (SEE) also coincide on this subset.

Lemma 2.2.7. Choose one of the three settings [TT], [GM], [LQ)], let u W e L™ (9; TR)
be strongly F,-measurable and set I' .= {u(Tl) = u(TZ)}. Moreover, let A1 and Ay be operator-
valued random variables that satisfy [TT2], [GM2] or [LQ2| respectively and that almost
surely coincide on T'. Let the nonlinearities Fj, Bj, j = 1,2 satisfy [S4]-[S6] with p; € L™(£2)
and with

CMRDL%? + CMRDLg; <1
fori,j = 1,2,. Moreover, we assume that Fy(vlr) = Fy(vlr) and Fy(vlp) = Fy(vlr)

almost surely. If the u;, i = 1,2, are the unique strong solutions of

du;(t) = [—Amu(t) + Fi(ug)(t) + f(t)]dt + [Bi(u;)(t) + b(t)]dW (t), te[r,T]
(@)

wi(t) =uy’,
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then uy(w,t) = uz(w,t) for almost allw € T and all t € [7(w),T).

Proof. We choose i, k as in the proof of Theorem 2.2.6 and we define the stopping times 7
and 7, as before. Since u; and us are strong solutions and in particular mild solutions, we

have
wi(t) =e~ DA (1) 4 (e O (Fy(ws) + £)), + (67O o (Bi(us) + 1)),
for i = 1,2 on [r,71] and in particular

ul(t)lp — ’LLQ(t)].F
=(e % s (Fy(uslr) — Fy(uplr))) (8) + (e- O o (By(uilr) — Bi(uzlr))) (t)

almost surely for all ¢ € [r,7]. Here, we made use of the fact that the initial data, the
nonlinearity and that the operators coincide on I'. Note that one can drag 1r into the

stochastic integral, since I' is F.-measurable and thus the integrand
e~ 94 (B (ur1r)(s) — Bi(ualp)(s)lr<s<y

is still adapted. Using the fixed point operator K on the space £(k,1) from the proof of

Theorem 2.2.6 and its contraction property, we obtain
luilr — uolr||p k1 = | K (u1lr)lr — K(uelr)lr|pe,1 < 0lluilr — wolr||pw

for some § € [0,1). This proves ulpr = v1r almost surely on |7, 71]. Repeating this procedure
inductively as in the proof of Theorem 2.2.6 finally yields ulp = v1lp almost surely on
[r,T]. O

As an easy application of this Lemma, we can prove existence and uniqueness of strong
solutions of (SEE) with initial data w, that is only integrable with respect to € and with
nonlinearities whose p is also only measurable. In [95], Theorem 7.1, and [89], Proposition
5.4, a similar result was proved for measurable initial data uyg. We adapt their arguments

to our situation.

Corollary 2.2.8. Choose one of the settings [TT], [GM] or [LQ] and let [S4]-[S6] be fulfilled
with
CMRDL;—Z;) + CMRDLg) < 1.

If we don’t demand anything on u, and p, but to be strongly F,-measurable, the equation

(SEE) du(t) = [=Au(t) + F(u)(t) + f(@)ldt + [B(u)(t) + b(t)]|dW (t), t € [r,T],

has a unique strong solution u on [r,T] with v € X'(7,T) N C(r,T; TR) almost surely.

However, u has not necessarily any integrability properties with respect to €.
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Proof. We define Ty, := {||u-|lrr < k,p < k}. Since both u, and p are strongly F,-
measurable, we have I'y, € F, and Q = U2 ;T. Hence, we have u,1p, € L"(Q2; TR) and
the nonlinearities F'(u)1p, and B(u)lr, satisfy [S4] and [S5]. Moreover, the F,-measurable
function in the linear growth condition is given by p1lp, € L"(2). As a consequence, Theorem

2.2.6 yields a unique strong solution u(*) of

du(t) = [—Au(t) + F(u)(t)1r, + f(t)]dt + [B(u)(t)1r, + b(t)|dWt, te (7,T]

u(r) = ur1p,,

with v®) € L7(Q; X' (7,T) N C(r,T; TR). Further, by Lemma 2.2.7 the processes u*) and

u(™) coincide almost surely on T'y, if m > k. Therefore, we can define the pathwise limit

u(w7 ) = klin’olo u(k) (wa )

for almost all w € Q. This limit is attained after finitely many k and we have u = uy on T'i.
Moreover, since all the u(*) are strongly adapted, u is also strongly adapted as almost sure
limit of strongly adapted processes. Clearly, since all the u; are strong solutions, w is also
a strong solution of (SEE) and we have u € X*(7,T) N C(7,T; TR) almost surely, because

each u(®) has this property. It remains to prove uniqueness.

Let v be another strong solution with initial data u, that satisfies v € X' (7, T)NC(7, T; TR)
almost surely. Defining the F-stopping time

Nk :lnf{t € [TvT] : ||uHXl(T,t) + ||U’HC(T,t;TR) > k}
Ainf{t € [7,T) : ||UHX1(T,t) + ||UHC(T,t;TR) > kAT,

we have limy_,o, 7 = T almost surely. To be precise, since u,v € X(7,T) N C(r,T; TR)
almost surely, for almost all w € € there exists k(w) such that v, (w) = T for m > k(w).
Thus, it is sufficient to prove that u and v coincide on [0, 7] for all k£ € N.

Since u and v are strong solutions, they are particularly mild solutions [, T] and hence, we

have

u(t)l[,,-’“k] — U(t)l[ﬂ#k]
= (6_(.)14 * (F(U) - F(“))l[‘r,uk])T(t> + (e_(.)A % (B(u) - B(U))l[‘r’#k])T(t)

almost surely for ¢ € [r,T]. The Volterra property of F' and B (see [S4], [S5]) implies
F(’LU)].[.,.M,C] = F(“’l[ﬂuk})l[r,uk] and B(w)l[w%] = B(wl[T,Mk])l[T,Mk] for w = u or w = v.

Thus, we have
() 0] (8) = v() 117, 1) (8)
:(6_(')’4 * (F(ul[ﬂuk]) — F(Ul[‘l',uk]))l[ﬁuk])-,—(t)

+ (7o (B(ulfr ) = B1iryug))Lir ) (t)

almost surely for ¢ € [r,T]. Using the same fixed point operator K as in (2.2.2) on the
interval [7, (T 4 k) A mg], we have ul(, 1 — v, = K(ulp,,,)) — K(v1;,,)). As in the
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proof of Lemma 2.2.5, we can choose x > 0 and p > 0, such that

lo =

Lo (X (1 () Ap)) “HU wl L (X (7, (7+K) Ak )
+ v = wllr e (r+m AuiTR))

<o(|lv -

| ixr e T I = 2l L @ixrrnny

+ v - w||Lr(ﬂ;c<r,(r+~)Auk;TR>>>

for some 6 € [0, 1), which proves u(t) = v(¢) almost surely for all ¢ € [, (7 + k) A ug]. In the
same way as in the proof of Theorem 2.2.6, we can iterate this procedure and get u(t) = v(t)

almost surely for all ¢ € [, ux]. This closes the proof. O

Finally, we give an analogous result to Lemma 2.2.7 in case that u, and p are not integrable

with respect to ).

Corollary 2.2.9. Choose one of the settings [TT], [GM] or [LQ), let uy M w0 TR be
strongly F. measurable and let A;, F; and B; as in Lemma 2.2.7, but with only F,-measurable

pi fori € {1,2}. Moreover, let uy and us be the unique strong solutions of

Buslt) = [ Asua) + Eiu)(0) + SOt + [Biu)(0) + O] AW (D), ¢ [T]
Ui(T) = uS"L)7
for i =1,2. Then, we have uy(w,t) = us(w,t) for almost all w € {u(l) (72)} and for all
t € [r(w),T].

Proof. We define I'y, = {||u(71)||TR <k,pr<k}n {||u72)||TR < k,p2 < k}. As we have seen

in the proof of Corollary 2.2.8, we have u; = ug ) and Uy = u;k) on I'y. Here, u( ) ¢

L™(Q, XY (r,T)NC(r,T; TR)) is the solution of the truncated equation

du®(t) = [~A® (1) + F () (0)1r, + F0)]dt + [Bi(ul®)(6)1r, +b(t)] dW (1),

ub(r) u1r,.

By Lemma 2.2.7, we have ugk) (w,t) = uék)(w t) for almost all w € {u(l) u(TZ)} NIy and all
t € [r,T]. Since U321 T'y, = Q, this implies u1 (w,t) = ua(w,t) for almost all w € {ug) = u(TZ)}
and all t € [r,T). O

2.3. Quasilinear parabolic stochastic evolution equations
In this chapter, we consider a quasilinear stochastic evolution equation of the form

du(t) = [=A(u(t))u(t) + F(u)(t) + f()] dt + [B(u)(t) + b(t)] AW (2), t € [0,T],
u(0)  =wy

(QSEE)
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for t € [0,T] with a cylindrical Brownian motion W on a Hilbert space H. Our main result
will be the existence and uniqueness of a strong solution of this equation up to a maximal
blow-up stopping time 7. We work in the same abstract framework as in the previous section
to deal with equations in LP(0,T; E) and ~(0,7T; E) with a UMD Banach space E and in
L2(U; LP(0,T)) in a unified way. As before, the general framework consists of a Banach space
X with an extension to the timeline X (a, b) for some interval (a,b) C [0, T, a corresponding
maximal regularity space X*(a,b) and a trace space TR. Again, we will choose these spaces
in such a way that the solution u of (QSEE) always satisfies u € X'(0,7), Au € X(0,7) and
u € C(0,7; TR) almost surely.

2.3.1. Globally Lipschitz continuous quasilinearity

In the semilinear theory of the previous section, the assumptions on w +— A(w) were uniform
with respect to w. The application of these result gives a quasilinear theory for operators
(w,y) — A(w,y) with uniform assumptions with respect to w and y and with a globally

Lipschitz dependence on y.

Before we start, we present our setting in detail. We begin with the assumptions that fit to
the maximal LP-regularity estimates in type 2 Banach spaces from section 2.1.1. Again, we
will denote this setting with [TT].

[TTQ1] Let p € (2,00), r = p and E, E* be UMD Banach spaces with type 2 or p = 2 and
E, E' Hilbert spaces. We assume the embedding E' < E to be dense and we assume
that the family

{Js5:6>0} C B(LP(Q2 x (0,00);v(H; E)), LP(Q x (0,00); E))

defined by

t
Tsb(t) = 6=/ / b(s) AW (s)
(t—=5)VvO0
is R-bounded.

[TT2| The mapping A : Qx (E, E')1_1,, — B(E', E) is such that w — A(w,y)z is strongly
Fo-measurable for all z € E* and y € (E, E')1_1/,,, with 0 € p(A(w,y)) almost surely.

Moreover, we assume D(A(w,y)) = E, i.e
[Aw,y)z]z = ||z]le

for almost all w € Q, all y € (E,E')1_1/,,, and all z € E' with estimates independent

of y, x and w.

[TTQ3] For all y € (E,El)l_l/m) and almost all w € Q, the operators A(w,y) are sectorial
and have a bounded H>(%,)-calculus of angle n € (0,7/2), i.e.

lo(Alw, y)lIse) < Cllollae=(=,)

with a constant C' > 0 independent of w and y.
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[TTQ4] There exists Cg > 0 such that for all z,y € (E, El)l,l/p’p and almost all w € Q, we

have

[A(w, 2) — A(w, YllsEr,6) < Collz —yllm.E1), ) ),

In this setting, we set X := E, X(a,b) := LP(a,b; E), X*(a,b) := LP(a,b; E') and we define
1

X2 (a,b) == LP(0,T;~(H; [E,El]%)). The trace space TR is the real interpolation space

(E§E1)171/p,p'

Next, we make the assumptions that fit to the maximal ~-regularity estimates in UMD

Banach spaces from section 2.1.2. Again, we will denote this setting with [GM].

[GMQ1] Let r € (1,00), E, E' UMD Banach spaces with property-(a) and a dense embedding
E' < E.

[GMQ2| The mapping A : Q X [E,El]% — B(E',E) is such that w — A(w,y)z is strongly
Fo-measurable for all € E' and y € [E, E']; with 0 € p(A(w,y)) almost surely.

Moreover, we assume D(A(w,y)) = E' almost surely, i.e we have
[Aw, )]z ~ [z]le

for almost all w € Q, all y € [E, El]% and all z € E' with estimates independent of

y,x and w.

[GMQ3] For all y € [E, El]% and almost all w € Q, the operators A(w,y) are sectorial and have
a bounded H*(X,)-calculus of angle n € (0,7/2), i.e.

lo(Alw, y)lIBE) < Cllolla=(=,)

with a constant C' > 0 independent of w and y.

[GMQ4| There exists Cg > 0 such that for all z,y € [F, E']1 and almost all w € 2, we have

1
2

R({A(w, 2(t)) — A(w, () : t € [a,b]} € B(El,E)) < Cg sup [12(t) = y(®)p.e,

t€la,b]

Here, we set X := FE, X(a,b) := v(a,b; E), XI%I(a7 b) :=~(0,T;~v(H; [E,El]%)) and we define

X1(a,b) :=~y(a,b; E'). The trace space TR is the complex interpolation space [E; E']

1.
2

Next, we make the assumptions that fit to the maximal regularity estimates in the space
L1(U; LP(0,T)) from section 2.1.2. In the sequel, this setting will be denoted with [LQ)].

[LQQ1] Let r € (1,00), p € (2,00), ¢ € (2,00), U C R? and u be a o-finite measure on U.
We choose H = I?(N) and W (t) = 3_72 | exf), for an sequence (f,)xen of independent
Brownian motions and with unit vectors (ex)x € [2(N). Moreover, let A be a closed and
densely defined operator on L4(U) := L4(U, ) with 0 € p(A) that has an R,-bounded
H*®(¥5)-calculus for some 7 € (0, 5). For given a € (%, 1], we denote E* := D(A®)

and E*~! as the extrapolation space of L9(U) with the norm [[A*~1 - || La(0y.
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[LQQ2| The mapping A : Q X FX‘;;/’) — B(E“, E“~1) is strongly Fo-measurable. More-
over, the A(w,y) are closed with 0 € p(A(w,y)) and A“A(w,y)™ %, A(w,y)*A™%,
Aw,y)* 1A= and A“ 1 A(w,y)! =@ are for almost all w € Q and all y € Foi/p

Asqp
Rp-bounded on LI(U) with bounds independent of w and y.

[LQQ3] For ally € F 1?,;;)/ P and almost all w € €2, the operators A(w,y) are sectorial and have
an R,-bounded H*(%,) calculus with

Ry ({9(Aw,9) : |6 (s, <1} € BILAV)) < M

for some M > 0 and 1 € (0,7/2) independent of w € Q and y € FX’;;/]D.

[LQQ4| There exists Cg > 0 such that for all z,y € F X’;’;/ P and almost all w € ©, we have

Ry ({4 (A(w, 2(1)) = Alw,y(1))A s ¢ € [a,6]} € BILI(D)))

< Cq sup [[2(t) = y(t)| po-1/r-
tela,b] Aap

The assumption on A imply that A can be extended to an operator A, ., on L4(U; LP(a, b))
that has a bounded H*°(X5)-calculus for some angle 0 < 77 < w/2. We choose X*(a,b) :=
D(A® ,)and X 1(a,b) = Al"2 (L9(U; LP(a,b))). The stochastic part B(u)+b is contained

p,a,b p,a,b
1 l—o{ . .
in the space X7 (a,b) :== A} 5 (L9(U; LP(a, b;1*(N)))). The trace space TR is the Triebel-

Fa_l/P

Aqp D the sense of Definition 1.4.2.

Lizorkin space

The other assumptions are similar in any of the above settings and can be formulated

universally.
[Q5] The initial value ug : Q@ — TR is strongly Fp-measurable.

[Q6] For any F-stopping time p with 0 < p < T almost surely, the mapping
F: Lg(9 X0, 1) N C(0, ; TR)) — Lg(€; X(0, 1))

is a Volterra map, i.e. for a given F-stopping time 7 with 0 < 7 < u almost surely, the
restriction F'(u)jo,7 only depends on uj 7. This means that we have F(u)lj7 =

F(v)1[p 7 almost surely, whenever uljpz = v1jo7 almost surely. Moreover, there

exist constants Lg), ZF7 C’g) >0, 7=1,2 such that F' is of linear growth, i.e.

IF(61)x 0,0 < C8 (14 61]lx10) +C2 (1+ 161l c0.prr))

and Lipschitz continuous, i.e.

(1) — F(d2)l x(0.)
< LW )61 — dallxro + Lellér — d2llx o + L2161 — d2llcioumrry

almost surely for all ¢1,¢2 € X1(0,u) N C(0,u; TR) with constants independent of
w € .
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[QT7] For any F-stopping time p with 0 < g < T almost surely, the mapping
B L(9: X1(0, 1) N C(0, 5 TR)) — LO(; X7 (0, 1)

is a Volterra map, i.e. for a given F-stopping time 7 with 0 < 7 < p almost surely, the
restriction B(u)|j0,7 only depends on ujg 7. This means that we have B(u)lpz =
B(v)1jp 7 almost surely, whenever uljg 7 = vlj 7 almost surely. Moreover, there
exist constants LE;?,ZB, Cg) >0,i=1,2, such that B is of linear growth, i.e.
2
1Bl 3 <CF 1+ 61llxi0mm) +C5 (1+ [é1lowurm)
X7 0,u)

and Lipschitz continuous, i.e.

B - B 1

1 B(¢1) (¢2)||X§(O,H)

<L) - bollx10.0) + LBll61 — b2l x0 + L)y — P2llc(0,uTR)

almost surely for all ¢y, o € LP(0, u; EY)NC(7,T; TR) with constants independent of
w € .

[QS] We assume f € L5(Q; X(0,T)) and b € L5(: X2 (0, T)).

As we have shown in section 2.1, the assumptions imply uniform maximal regularity esti-
mates for the deterministic and the stochastic convolution in all of the three settings. There
exists Cyrs, Cmrp > 0 such that for every F-stopping time p with 0 < u < T almost surely
and all y € TR, we have

(4 o g) |

prexi ey < Gmsloll o 4 )
1
for all g € L"(; X7 (1, T)) and

045,

LT (X1 (u,T)NC (11, T;TR)) < CumrD HgHLT(Q;X(M,T))

for all g € L"(Q; X (i, T)). As in the semilinear case, we require small Lipschitz constants

in [Q6], [Q7]. More precisely, we assume the following.
[Q9] Let the constants of [Q6] and [Q7] be small enough to ensure
Crrn LY + Carp LY < 1
for i =1,2.
We define strong solutions of (QSEE) in the same way as we defined strong solutions of

(SEE). The only difference is that we replace the autonomous operator by A(w,u(t)).

Definition 2.3.1. Let p be an F-stopping time with 0 < p < T almost surely. A process
u: Qx[0,u] = X is called a strong solution of (QSEE) on [0, u] if it is strongly measurable
and strongly adapted with w € X1(0, ) N C(0, u; TR) almost surely and if u satisfies the

following identity depending on the respective setting.
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[TT]

u(t) —ug = —/0 A(u(s))u(s)ds —l—/o F(u)(s)+ f(s)ds +/0 B(u)(s) + b(s) dW (s)

almost surely for all t € [0, 1] as an equation in E. Here, the integral over time is an
E-valued Bochner integral and the stochastic integral is well-defined as a consequence

of Theorem 1.3.4 and (1.3.1).
[GM]

u(®) ~ w0 = ~A@Wulr) + (Pla) + 1) + [ B@() +b(s) AW ()

T

almost surely for all t € [0,pu] as an equation in E. Note that A(u)u, F(u), f €
(0, ; E) particularly means that they are linear operators from L?(0,u) — E. More-

over, the stochastic integral is well-defined as a consequence of Theorem 1.5.4.
[LQ]

A u(t, ) =AY (T, 2) =
- /t AT A(u)u(s, z) ds + /t AT E(u)(s,z) + A1 f(s,2) ds
0 0
+/ AL B(w) (s, 2) + A% b(s, ) ATV (s)
0

holds almost surely for almost all x € U and for all t € [0,u] as an equation in
C. The deterministic integrals are well-defined, since A*~ 1 A(u)u, A* 1 F(u), A1 f €
LYU; LP(0, 1)) almost surely.

Even in the deterministic case, quasilinear evolution equations do not have global solutions
without further structural assumptions. Therefore, we now explain the concept of local so-
lutions. The following definition adapts the terms Van Neerven, Veraar and Weis introduced

in [95] to our situation.

Definition 2.3.2. Let 0,0, n € N, be F-stopping times with 0 < 0,0, < T almost surely
for all n € N.

a) We say that (u,(0n)n,0) is a local solution of (QSEE), if (0 )nen is an increasing

sequence with lim, ., o, = o almost surely such that
u € X'(0,0,)NC(0,0,; TR)
almost surely and such that u is a strong solution of (QSEE) on [0, 0,] for alln € N.

b) We call a local solution (u,(0y)n,0) of (QSEE) unique if every other local solution
(@, (0n)n,0) satisfies u(w,t) = u(w,t) for almost all w € Q and for all t € [0,0 A 7).

¢) We call a local solution (u,(0)n,0) of (QSEE) mazimal unique local solution if for
any other local solution (U, (G )n, ), we almost surely have & < o and U(w,t) = u(w, t)
for almost all w € Q and all t € [0,7).
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If the approximating sequence o, is not important for a result, we shortly write (u, o) for
the local solution. In the following, we establish a well-posedness result for the quasilinear
evolution equation (QSEE) up to a maximal stopping time. The next theorem is one of our

main results and will be proved during this section.

Theorem 2.3.3. Choose one of the settings [TT], [GM] or [LQ] and let [Q5]-[Q9] be ful-
filled. Then, the quasilinear stochastic evolution equation (QSEE) has a mazimal unique

local solution (u, (Tn)n,’r). Moreover, we have
]P’{T < T, |lullx1(0,7) < o0,u:[0,7) = TR is uniformly continuous} =0. (2.3.1)

If we additionally assume ug € L™(2; TR), the estimates

1/r
(Blluls0my) " < € (14 fuollr0yv0)

1/r

<]E sup U(t)H%R) < C™ (1A [luol Lo, Tr))
te(0,7,]

hold true for all n € N and for some C™ > 0 independent of ug.

Note that the blow-up criterion (2.3.1) can be used to show 7 = T on some paths. Indeed, if
one can show [|ul| x1(g,r) < oo and the uniform continuity of u : [0,7) — TR on a set QcQ,
then 7 = T almost surely on Q. This can be seen in the following way. Q can be decomposed

into a set N of measure 0 and
((NZ Nn{r= T}) U (ﬁ N {T < T, |lullx1 0,7y <o0,u:[0,7) = TR is uni. cont.})
u (ﬁ N {T < T, ||lul|x1(0,7y =00 or u: [0,7) = TR is not uni. cont.}).

The last set has measure zero by assumption and the second set has measure zero by the
blow-up criterion. Hence, we end up with Q = (Q N{r= T}) UN.

The proof of this theorem is rather technical and will be done in this section. As a start,
we need a Lemma that brings the Lipschitz estimates in [TTQ4], [GMQ4] and [LQQ4] into

the general framework.

Lemma 2.3.4. Choose one of the settings [TT], [GM] or [LQ]. In any case, we have

1£9llx(ap) < N Fllzos@pyll9llxa.b)

for all f € L*(a,b) and all g € X(a,b). Moreover, there exists Lo > 0 such that
[(A(y) = A(2))vl x (ap) < L Sup ly(t) = z() [ rrllv]l x1 (a,0)
cla,

almost surely for all y,z € C(a,b; TR) and all v € X(a,b) with constants independent of
w e Q and (a,b) C [0,T].
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Proof. The first assertion is trivial in [TT] and [LQ], since in both cases we can drag out
ffrom | fgllzr(apm) and | FATgll Lo(u;Lp(a,p)) With the || - || Lo (qp) norm. By assumption
[TTQ4], the second assertion is immediate in the setting [TT].

In [GM], we need a pointwise multiplier result in the space 7y(a, b; E). From [94], Theorem
5.2, we get

I(A() = Ao lyaam) < V({AED) = AW®) st € [0,6]} € BEE, ) [0l apsmr)

almost surely and

”ng'y(a,b;E) < ||fHL°°(a’b)||g||7(a,b;E)'
The well-known fact that all v(7) < R(T) for all T C B(E', E) (see e.g. [71], Theorem 1.1)
and [GMQ4] complete the argument.

It remains to show the last inequality in the setting [LQ]. By Proposition 1.4.1, we get

A (A(y) — A(2))vll Lo Lo (a,b))
= [|[A“M(A(y) — A(2)) A~ AV Lo Lo (a))
< Rp({Aafl(A(z(t)) —A(y(H))A™ st € fa,b]} C B(L%U))) IA“V|| La(UsLe (a,))-

Together with assumption [LQQ4], this closes the proof. O

Before we start, we briefly describe our strategy. First, we prove existence and uniqueness
of a strong solution v in a small ball around the initial value up to a stopping time 7 with
the semilinear theory, we developed in section 2.2. Consequently, the set of stopping times
o such that there exists a unique solution u on [0, o] is non-empty and hence, the essential
supremum 7 : Q — [0, 7] of this set exists. We then show that 7 is also a stopping time
and that there exists an increasing sequence of stopping times (7, )nen, With lim, oo 7 = 7

almost surely. Last but not least, we derive the blow-up alternative
IP’{T < T, |lullx1(0,7) < o0,u:[0,7) = TR is uniformly continuous} =0,

which helps us to prove that (u, (7,)n, ) is indeed a maximal unique solution.

We begin with the definition of a cut-off function ¢, that will enclose the processes in a

suitable ball around the initial value. Let

1 for t € [0, 1]
O(t)=4q—t+2 fortell,?2]
0 for ¢t € [2,00)

and define @, (f) := ®(%) which gives us a monotonously decreasing function bounded by 1

that equals 1 on [0, A] and vanishes on [2), 00). Moreover, @ is Lipschitz continuous with

@A) = Pa(s)| < ATt — s
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forallt, s > 0. Now we can define the desired cut-off function. For u, € TR, u € C(a,b; TR)N
X1(a,b) and t € [a,b], let

Ox(a,t,u,uy) = <I>,\(||uHX1(a7t) + sup |Ju(s) — ua||TR).

s€la,t]

Clearly, we have 0x(a,t,u,u,) = 0 if [Jul|x1(q + sup [|u(s) — uqllTr > 2A and if on the
s€la,t]

other hand |ul|x1(q,4) + sup |lu(s) — uq|[Tr < A, We obtain
s€|a,

Au(t))u(t) = A(ug)u(t) + Ox(a, t, u, uq) (A(u(t)) — Auq))u(t).
With this fact in mind, it is quite natural to consider the stochastic evolution equation

dut) = [~ Aluo)u(t) + Fa(u)(t) + F(8)] at + [Bu)(t) + b@)] dW (1),
u(0) = wup,

(2.3.2)

where F) is given by
Fx(u)(t) = 0x(0, ¢, u,u0) (A(uo) — A(u(t)))ult) + F(u)(t).

Since we want to sustain the local solution to a maximal time interval, it will be necessary to
consider not only the initial time zero but also, as in the previous section, an equation that

begins at a F-stopping time o with a given past u € X1(0,0) N C(0,0; TR) almost surely.

The following Lemma makes sure that the nonlinearity F )\ satisfies the assumptions of The-

orem 2.2.6, if one chooses A small enough.

Lemma 2.3.5. Choose one of the settings [TT], [GM] or [LQ)], let o, u be F-stopping times
with 0 < o < p < T almost surely and let u, : Q@ — TR be strongly F,-measurable. For
te[0,T], \>0andy € L%(Q;Xl(a7 @) N C(O’,M,TR)) with y(o) = uy, we define

On(0, 1, y(1), o) (A(us) — AW)y(t) if o <t <,
0 Jift < o.

Q)\,U (ya utf)(t) =

Then, @, maps
{v € L8(@: X" (0,0) N Clo, 155 TR))  y(7) = o } = LY X (0, 12))
and has the Volterra property we introduced in [S4]. Moreover, Q. is bounded i.e
1@ (1, U )| x (0, < 4CQN°
and Lipschitz continuous, i.e
1Qx,0 (U Ug) — Qx o (V,Uo)|| X (1)
< 6CQA (lu = vl x1(0,p0) + lu = vllcourr))

almost surely and for all u,v € LY (Q;Xl(a, T)NC(o,T; TR)). All in all, Qy  satisfies the

assumption [S4] of the previous section.
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Proof. The measurability properties of Q) , are immediate and ) , has the Volterra prop-

erty, since both (o, ,y(t),u,) and A(y(t)) only depend on yjo 4.

To prove the Lipschitz and the growth estimate we argue pathwise for fixed w € Q with
o(w) < p(w) <T. In order to keep the notation simple, we suppress the explicit dependence

on w. Let u,v € X' (o, u) N C (o, u; TR) with u(o) = v(o) = u, and define
ou = inf {s € [o, 4] : [[ullx1(0,6) + ||t = Uo|lc(0,5tR) = 2A} A
and similarly
oy =inf {s € [0, 1] : [Vl x1(0,8) + [V = o llcosrr) = 20} A p.

The definition of 0 (o, t, u, uy) ensures Qx o (u, uy)(t) = 0 for t > o, and Qx (v, us)(t) =0
for t > o,. In the following, we assume without restriction that o, > o,. First we prove the

growth estimate. #, < 1, Lemma 2.3.4 and the definition of o, yield

1@x.0 (s o) x (o) = 1@n.0 (s o)l x (0.0

<Lqg sup [u(t) = uelltrllullx1 (0.0,) < 4CQA*.

t€lo,0u]

For the Lipschitz estimate, we start with

Q0 (U, Us) — Q0 (v, Uo) | x (0,0)
<1(Or(0, - 1, ug) — Ox(0, - v, uq)) (A(u) = A(uo) ) ull X (,0.)
+[10x(0, v, u0) (Aw) — AV))ull x(0,0.)
+[10x(0, v, 10) (A(v) = Aug)) (u = V)| x(0,0,)-

Note that in the last step we used (o, t,v,u,) = 0 for ¢t > o,. The Lipschitz continuity of
0 and Lemma 2.3.4 yield

|| (9)\(0'7 LU, uy) — 05\ (o, ~,v,u0)) (A(u) — A(ua))uHX(U,Uu)

< sup |9A(U,t,u,ug)—GA(J,t,v,ug)| sup Lqg sup |Ju(t) — uo|ltr|vlx1(0,0.)
telo,0.] te(o,04] telo,04]

<AL s ’IIUI\Xua,s) +llu = usllo@.sr) = vllxt(a.s) = v = Usllc(o,siTr)
selo, T

sup |lu(t) — uo |l rrllull x1(0,0.)
tE[o‘,au]

<ACQA (Jlu = 0| x1 (o) + 1w = vllc(o,uTR))

In the last step, we used the definition of o, to estimate the terms not depending on the

difference u — v. Accordingly, we derive

||9>\(0, 0, ug)(A(u) - A(v) < 20 Ju — v||c(o,u5TR)

u”X(U,au)

and

HG,\(U, -,v,ug)(A(v) — A(ug)(u — U)HX(U’%) <20 |lu — | x1 (o)
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respectively. All in all, we proved

HQ)\,J(U7UJ) - Q)\,o(vvuo)Hx(o’u) < 6CQ)‘ (Hu - UHXl(O',M) + ||u - U”C((r,u;TR)) s
which is the claimed result. O
Next, we construct a local solution of (QSEE) starting from a random initial time o under
the assumption that we already solved the equation on the random interval [0,0]. We do

this by solving a version of (2.3.2) with given past u and restricting the solution to a random
interval on which the solution also satisfies (QSEE).

Proposition 2.3.6. Choose one of the settings [TT], [GM] or [LQ] and let [Q5]-[Q9] be
fulfilled. Let o be an F-stopping time with 0 < o < T almost surely and u be a unique strong
solution of (QSEE) on [0,0] with u € X1(0,0) N C(0,0, TR) almost surely. Moreover, we

assume A > 0 to be small enough to ensure
6CoA + CMRDL;E) + C'MRDLS;) <1
fori=1,2. Then, the equation

du(t) = [A(u(t))u(t) + F(u)(t) + f()] dt + [B(u)(t) + b(t)] AW (?)
u(0) =

(2.3.3)

has a unique solution u on [0,5] with u € X'(0,5) N C(0,5; TR) almost surely. Here, the
F-stopping time o is given by
& = inf {t € [0, 7] : |t — tiollc(ourr + Ul x1 @) > )\} AT.
If we additionally assume u € L™($; X1(0,0)) N L"(2; C(0,0; TR)) with
(Elells 0. +E sup [u®)lfin)'”" < O+ [0 01m),
for some C > 0 independent of u(0), we also have

r r \L/T ~
(Ellully 0,5 + ]EtS}(l)pj lu@®)ltr) "~ < C(1+ [w(0)]Lr,Tr))
€|0,0
for some C>0 independent of u(0).

Proof. Let @y, be defined as in Lemma 2.3.5. To construct a local solution, we first consider

the equation

dw(t)

—A(u(o))w(t) + FD(w)(t) + f()] dt + [B(w)(t) + b(t)] dW (t), t € [0, T]

w(o) = u(o),
(2.3.4)
where F() is given by

FO(y)(t) = Qao(y u(0)(t) + F(uljo,e) + ylior)) (1)
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for y € LY(Q; X' (0,T) N C(o,T;TR)) with y(o) = u(o). Clearly, ulj,) + ylp 7 €
X'(0,7)NC(0,T; TR) almost surely, and hence F(uljy ) + Yl 1)) is well-defined.

Lemma 2.3.5, together with [Q6], shows that FM) is a Volterra mapping. Let p be an F-
stopping time o < y < T almost surely. Then, for y € L (Q; X'(0,T) N C(0,T; TR)), we

have the linear growth estimate

IFD W) x(0u0) < Q0 (W, u(0) | x (1) + IF (ulo,0) + ¥1io.1)) L x (01
< 40N +C (14 [[ullx1 0.0y + 19l x1 (0))
2
+O (1 + [lull ooy + ¥l comrr)

almost surely and the Lipschitz continuity

| F) (u) — F(l)(v)HX(o,u)
<(6CA + L) Ju— vl x1(0,) + (6CQA + LEN [u = vllcouerry + Lrllu — vl x(0,)

almost surely. In particular, F(!) satisfies [S4] from the previous section with
= 40N + O3 (1 o (1
P Q + F ( + ||UHX1(O,J)) + F ( + ||UHC(O,<T;TR)) .

Note that due to the adaptivity of u on [0, 0], p is Fy-measurable.

We can apply Corollary 2.2.8 and obtain a unique strong solution w of (2.3.4) on [o, T
with w € X1(0,7) N C(0,T; TR) almost surely with w(c) = u(o) almost surely. Since both
t = [[w|x1(0,¢) and t = [Jw — u(0)||¢(o,1;Tr) are adapted and almost surely continuous (see
Lemma 2.2.1),

o = inf {t €lo,T]: lw—u(o)lcTr) + 1wl xi(on > >\} AT

is an F-stopping time by Lemma 1.2.4. Moreover, for o < t < ¢ the identity
Qoo (w,u(@))(t) = (A(u(0)) — Alw(t)))w(t)
holds. Defining u := w on [0, 5] finally gives us a strong solution of

du(t) = [A(u(®))u(t) + F(u)(t) + f(£)] dt + [B(u)(t) + b(t)] dW (t)
u(0)  =wup

on [0,5]. In case that u € L"(Q,C(0,0; TR)) N L"(Q, X1 (0,0)) with

r r 1/r
(Ellull: 0,0y + Etsﬁ)p] Ju@®)[lrr) " < C(1+ [[w(0)]|Lr.r))
€|0,0

we additionally get the claimed estimate for u on [0,5] as an immediate consequence of
(2.2.9). O

Now, we are in the position to prove the main theorem with the following strategy. We

already showed that the set I of stopping times 7 such that (QSEE) has a unique solution u
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on [0, 7] is non-empty. Hence, the essential supremum 7 of I in the sense of Definition 1.2.5
exists. This 7 will be our maximal stopping time that also satisfies the blow-up criterion.
However, at first it is unclear, whether 7 is a stopping time or not. This can be shown if I"

is closed under pairwise maximization (see Theorem 1.2.6).

Lemma 2.3.7. If (ui,71) and (u2,72) are unique local solutions of (QSEE) with u; €
XY0,7;) N C(0,7:; TR) almost surely for i = 1,2, then the equation (QSEE) has a unique
solution (u, 71 V 72) with u € X*(0,71 V 72) N C(0, 71 V 72; TR) almost surely.

If we additionally assume u; € L™(Q; X'(0,7;)) and Esup,c(q )

u(®)lltr < oo fori=1,2,
we also get u € L™(Q; X1 (0,71 V 1)) and Esup,e(o 7, vry) [u(t)]

R < 00.

Proof. Define u by
u(t) = Ul(t/\ 7'1) —+ Ug(t /\7'2) — ul(t ANTL A Tg)

for t € [0, 71 V 72]. Clearly, u is adapted as a composition of stopped adapted processes. By
uniqueness, we have uj(t) = ua(t) almost surely for every ¢ € [0, 71 A 72]. Hence, u = u3 on
{1 > 1} x[0,71) and u = uz on {7y < 73} x [0, 72). This proves that (u, 7 V 72) is a unique

solution of (QSEE) that inherits all the regularity properties from u; and ws. O

Proof of Theorem 2.3.3. We define the T' as the set of all F-stopping times 7 : Q@ — [0,7]
such that there exists a unique solution (u,7) with @ € X*(0,7) NC(0,7; TR) almost surely.

By Proposition 2.3.6, this set is non-empty ( start with o = 0, then the corresponding & is
in I"). Moreover, by Lemma 2.3.7, T" is closed under pairwise maximization, i.e. if 7,72 € T
we also have 7 V 75 € T'. Consequently, Theorem 1.2.6 yields the existence of 7 := esssup I’
and of an increasing sequence of stopping times (7,,), in I' with 7 = lim,_, o 7, almost

surely. In particular, 7 is an F-stopping time as almost sure limit of F-stopping times.

Each 7, belongs to a unique solution (u,7,). This can be used to ultimately define the
solution of (QSEE) on [0, 7). We set u = u,, on Q x [0, 7,,). Then, u is a well-defined strongly
adapted process on 2 x [0, 7) and (u, (Tr)ns 7') is a unique solution in the sense of Definition
2.3.2.

Next, we show that
Q={r<T, llull x1(0,7) < 00, w:[0,7) = TR is uniformly continuous}

is a set of measure zero. Assume IF’(Q) > (. Since u is pathwise uniformly continuous on §~2,
we can extend u on €2 to the closed interval [0, 7]. Moreover, since we have 7, — 7 almost
surely, we also have sup,¢(,, - [u(7n) — u(s)[ltr — 0 and [Ju| x1(s, ) — 0 almost surely for

n — oo on § by Lemma 2.2.1.

By Egorov’s theorem, there exists a subset A C Q of positive measure such that the limits

from above are uniform on A. In particular, there exists N € N such that

sup lu(w, 7n (w)) — w(w, s)[[rr + ulw, )l xt (ry @)0) < 3
s€[Tn (w),t]
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for allw € A and ¢ € [Tn(w), 7(w)], where A > 0 is chosen in the same way as in Proposition
2.3.6. The same Proposition shows that we can sustain the unique solution u from [0, 7]

to a unique solution @ of (QSEE) on [0, 7n] with
Tn = inf {t € [rn, T) : |u — try ||C(TN,t;TR) + ||ﬂ||X1('rN,t) > /\} ANT.

By uniqueness, u and @ coincide on [0,7 A Ty) and hence 7y € I'. However, on A we have
7y > 7 which contradicts the definition of 7 as essential supremum of I". All in all, we
proved P(Q) = 0.
If ug € L™ (Q; TR), we replace I" by
I = {a € I' : the unique solution u(?) corresponding to o satisfies
ul? € L7(9;X1(0,0)), E sup_[lu(t) g < o0}
te(0,0)

and repeat the argument step by step.

It remains to prove maximality of the solution. Let (2, (1 )n, 1) be another local solution of
(QSEE). By uniqueness of u, we get z = u on [0, 7 A ). Assume that there is a set of positive
measure A C Q with g > 7 on A. Then, for almost all w € A there exists n = n(w) € N
with pin(w) > 7(w). In particular, by definition of a local solution, u : A x [0,7] — TR is
pathwise almost surely uniformly continuous and we have [|ul|x1(p,r) < 0o on A. Thus the
blow-up criterion we derived above implies 7 = T almost surely on A. But this contradicts
1> 7 on A, since p is also bounded by T'. Hence, we established p < 7 almost surely, which

is the claimed result. O

We prove that if two different initial values coincide on a set of positive measure, the corre-

sponding solutions also coincide on this set.

Corollary 2.3.8. Let (ul, 71) and (uQ7 7'2) be the maximal unique strong solutions of (QSEE)
to the initial values u(()l) € TR and uéZ) € TR respectively. Then, we have 171(w) = Ta(w)
and uy (w, t) = ua(w,t) for almost all w € {u(()l) = u(()2)} and all t € [0, 71 (w)).

Proof. We define I' as the set of all F-stopping times 7 :  — [0, T such that the maximal
unique solutions (u1,71) and (ug,72) of (QSEE) to the initial values u(()l) and uéz) satisfy

up(w,t) = ug(w,t) for almost all w € {uél) = u(()z)} and for all ¢t € [0,7].

We first show that I' contains a stopping time that is almost surely strictly positive on

{u(()l) = uéz)}. Let A > 0 small enough as in the proof of Proposition 2.3.6 and let
g; = inf {t € [O,Ti) : Huinxl(o,t) + ||U1 - Uéi)HC(O,t;TR) > )\} A T

for i = 1,2. Clearly, o; is strictly positive. Then, u; is a strong solution of the semilinear
equation
dui = A )i + Fiug) + 1] de+ [B(uwg) + 8] AW (1), € [0,7]

_ (2.3.5)
wi(0) =u,
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on [0, 0;], where F;(w) = Qx0(w, ugo)) + F(w). Clearly, on {ugl) = u(()2)}, we have A(uél)) =
A(ué2)) almost surely and F; (w) = Fy(w) almost surely for every w. Consequently, Corollary
2.2.9 implies u;(w,t) = uz(w,t) for almost all w € {uél) = uéz)} and for all ¢ € [0,01 A o2].

In particular, we have o1 Aoy € T'.

As in the proof of Lemma 2.3.7, we can see that I' is closed under pairwise maximization.
Thus, Theorem 1.2.6 yields the existence of 1 := esssup[' and of an increasing sequence
of stopping times (7,)n in I' with lim, 7, = 7 almost surely. In particular, 7 is an

F-stopping time that is also almost surely strictly positive on {u(()l) = u((f)}.

It remains to show n = 7, = 7o almost surely on {uy = wvp}. Assume n < 74 A 7o on
{uél) = uéQ)}. Then, we have u,v € X1(0,7) N C(0,n; TR) almost surely on {uél) = uéQ)}
and
1 _ @y _ _
{ug” =g} ={ur(t) = ua(t) vt € [0,9]} UN
for some N C Q with P(N) = 0.
Let A > 0 as before and define
0; = inf {t € ) luillxr ey + llwe —us(n)lleo,err) > )\} AT

for i = 1,2. Then, u; is a strong solution of the semilinear equation

du; = [A(ui(n))ui + Fi(u;) + f} dt + [Bi(u;) + b dW(t), t€[0,T] (2.3.6)

on [n,0;] with initial data u;(n) and

Fl(w) (ai]-[o,o) +W]‘[U7T])

=F
Bi(w) := B(uilj,0) + wlie))

for all w € LY (Q;Xl(n,T) NC(n,T; TR)) with w(n) = u;(n) almost surely. Since we have
ur(w,t) = uz(w,t) for almost all w € {ugl) = u(()2)} and all ¢ € [0,7)], the A(u;(n)), the F; and

(1) (2
0

the B; coincide on {ug’ =y )} and we can apply Corollary 2.2.9 to get u;(w,t) = ua(w,t)

(()1) = uéz)} and all t € [0,01 A d2|. However, we have g1 A gy > 1 almost

for almost all w € {u
surely on {uél) = u((f)}, which cannot be since 1 was defined as the essential supremum of
I'. This proves n =74 A T on {u(()l) = uéz)}.

él) = uég)}. Assume 7 < 7 on

Last but not least, we show that 7 = 75 almost surely on {u
AcC {u(()l) = u(()z)} with P(A) > 0. Since u; and ug coincide almost surely on {u(()l) = uéQ)} X
[0, 72) and u; has a larger time of existence on A, we know that ug : [0, 72) — TR is uniformly
continuous and ||uz| x1(0,r,) < 00 on A. Hence, the blow-up criterion from Theorem 2.3.3
implies 79 = T almost surely on A, which contradicts 72 < 71 on A. Consequently, P(m <
1, uél) = u(()2)) = 0. In the same way, we show P(1; < 72, u(()l) = ugz)) = 0, which closes the

proof. O

2.3.2. Locally Lipschitz continuous quasilinearity

In the different versions of the assumptions 2—4 in the respective settings, we assumed a uni-

form boundedness of the functional calculus of A(u(t)) and a global Lipschitz condition on
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A. However, we established a local well-posedness theory only using local methods. There-
fore, we can generalize our result in the next section and allow local Lipschitz continuous
nonlinearities. In the same way as before, we have to distinguish our three settings. In every
setting, the assumptions 2-4 are replaced by the following weaker conditions. Afterwards we

shortly repeat our unified notation. We begin with the improvement in [TT].
[TTQ2*| The mapping A : Qx (E,E')1_1,, — B(E', E) is such that w — A(w, y)x is strongly
Fo-measurable for all z € E* and y € (E, E')1_1/,, and such that D(A(w,y)) = E'.
More precisely, for every n € N, there exists p(n) > 0 and C(n) > 0, such that
Cn) Hzllpr < ll(u(n) + Alw,y)zlls < C(n)||z||e
for almost all w € Q, all y € (E, E');_1,,, with lylleEt),.,,, <nandallz e E'.

[TTQ3*] For all n € N, there exists pu(n), C(n) > 0 such that the operators pu(n) + A(w, y) have
a bounded H*(X,,))-calculus of angle n(n) € (0,7/2) with

lp(1(n) + Alw, y)llsE) < C(n)||@lla=(s,)

for almost all w € Q, for all ¢ € H>(X,(,,)), and for all y € TR with |y[| g g1

<
1-1/p,p —
n.

[TTQ4*] For all n € N there exist Cg(n) > 0 such that
[A(w, 2) = A(w, Y)ller,B) < Co(n)llz - yllr
for almost all w € @ and all lyller),,,, ., IZlE®E),.,,, <"
In this setting, we set X := E, X(a,b) := LP(a,b; ), X'(a,b) := LP(a,b; E*) and we define
Xg(a,b) := LP(a,b;y(H;[E,E"Y1)). The trace space TR is the real interpolation space

1
2

(E,E")1_1/pp- Next, we give the refined assumptions for [GA].

[GMQ2*| The mapping A : Q x [E, El]% — B(E', E) is such that w +— A(w,y)x is for all x € E!
and y € [E,El]% strongly Fo-measurable and such that D(A(w,y)) = E'. More
precisely, for every n € N, there exists p(n), C(n) > 0, such that

Cr)~Hallp < (un) + Alw,y)zle < Cn)||z] g

for almost all w € Q, all y € [E,E's with ||lyllg,r, < n and all z € E' with
2

1
bl
estimates independent of w.

[GMQ3*] For all n € N, there exist u(n), C(n) > 0 such that the operators p(n) + A(w,y) have
a bounded H*(X,,))-calculus of angle n(n) € (0,7/2) with
lo(u(n) + Alw, y))lsE) < C()Sll (s,
for almost all w € Q and for all ¢ € H* (X)), y € [E,El]% with ||y||ig,g1], <n.
2

[GMQ4*] For all n € N there exist Cg(n) > 0 such that

R({Aw,2(6) - A(w,y(®) : t € [a,6]} < BE', E)) < Cq(n) sup y(0) =205

tela,b

for almost all w € Q and for all y, z € [E,E']; ;o with lylliz, 211, 2 12112, 21, 0 < 7
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Here, we set X := E, X(a,b) := v(a,b; E), XéI(a, b) :=~(0,T;~v(H; [E,El]%)) and we define
X1(a,b) :== v(a,b; E'). The trace space TR is the complex interpolation space [E; E'] 1. Last

but not least, we give the refined assumptions for [LQ].

[LQQ2*| The mapping A : Q x Ff:’;lp/ P — B(E~, E“71) is strongly Fp-measurable. Moreover,
the A(w,y) are closed and for any n € N there exists p(n), C(n) > 0, such that the
operators A ((n) + A(w, 5)~, ((n) + A(w,4))*A, ((n) + A(w, )™ A1 and
A" Hpu(n) + A(w,y)) = are Rp-bounded on L?(U) with R,-bound C(n) for almost
all w € Q and all Hy||F:);1p/p <n.

[LQQ3*| For every n € N, there exist u(n),C(n) > 0, such that the operators p(n) + A(w,y)
have an Rp-bounded H> (%, ,)) calculus n(n) € (0,7/2) that additionally satisfies
Ry ({t(A@. 1)) : [Wll=(s,,) <1} € BILIW))) < Cn)

1/p

for almost all w € Q and for all y € F{_ /" with [|y|| pa-1/» < n.
o Aq,p

[LQQ4*] For all n € N there exist Cg(n) > 0 such that we have

Rp({A“_l(A(w, 2(1)) — Aw, y()A™ € [a,b]} C B(Lq(U)))

< G sup (1) =yl

almost all w € Q and for all ||y|| a—1/p, [|2]| pa—1/p < 1.
Ava,p Aa,p

The assumption on A imply that A can be extended to an operator A, ., on LY(U; LP(a, b))
that has a bounded H*°(¥5)-calculus for some angle 0 < 77 < m/2. We choose X*(a,b) :=
D(A%, ) and X Y(a,b) = A 7% (L9(U; LP(a,b))). The stochastic part B(u)+b is contained

p,a,b p,a,b
in the space X} (a,b) := A;a(;(Lq(U LP(a,b;1*(N)))). The trace space TR is the Triebel-

Lizorkin space FX‘;; in the sense of Definition 1.4.2.

The local Lipschitz conditions on the nonlinearities are universal and can be formulated in

our general framework.

[Q6*] F has the same mapping properties as in [Q6]. More precisely, for every n € N there
exist Lg) (n), Lp(n), Cl(mi)(n) >0, 7= 1,2, such that F is locally of linear growth, i.e.

IF (60| x 00y < 8 (1) (14 61]lx10,)) +C () (1 + 161 ]l c0,r))

and locally Lipschitz continuous, i.e.

[£(d1) — F(é2)lx(0,0)
< LY (n)]o1 — B2l x1(0,) + Lr(0)||$1 — b2l x(0,0) + + LY (n)]|¢1 — ®2llc,usTR)

almost surely for all ¢y, 2 € LU(2; X1(0, n) N C(0, ; TR)) with ¢1(0) = ¢2(0) = ug
and supco ) [|¢illtr < n almost surely for ¢ = 1,2. The occurring constants are

independent of w € ).
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[Q7*] B has the same mapping properties as in [Q7]. More precisely, for every n € N, there
exist L(z)( ), EB(n), Cg) (n) >0, i =1,2, such that B is of linear growth, i.e.
1 2
1B@I g, = CB 0) (L I1lloom) +C5 () (L+ I6ill )
g \Ys

and Lipschitz continuous, i.e.
B - B
B0 =Bl 3

< LY )61 — d2llx1 (o) + L) |61 — dallx (0 + L2 )61 — b2lcourr)

almost surely for all ¢1, p2 € LR(2; X1 (0, n) N C(0, u; TR)) with ¢1(0) = ¢2(0) = ug
almost surely and with sup,¢(o ,j [[¢:[|Tr < n almost surely for i = 1,2. The occurring

constants are independent of w € Q.

As we have shown in Section 2.1, the assumptions imply maximal regularity estimates for the
deterministic and the stochastic convolution in all of the three settings. However, since the
occurring constants are uniform on balls in TR of radius n, we solely get uniform maximal
regularity estimates of A(y) for ||y||tr < n. More precisely, for every n € N, there exists
Cumrs(n), Cyrp(n) > 0 such that for any stopping time p with 0 < p < T almost surely, we

have

||(6_(.)A(y)Og)uHLT(QXl(H,T)ﬁC(MTTR)) Crrs(n )HQH QXZ(u,T))

for all |ly||tr < n and all g € L[TF(Q;XEI(#,T)) and

(™% «8) o o umoncturirny < Craro Iz @xger))

for all ||y|ltr < nandallg e L"(Q; X (u,T)). As before, we require small Lipschitz constants
in [Q6*], [Q7*]. More precisely, we assume the following.

[Q9*] Let the constants of [Q6*] and [Q7*] be small enough to ensure
Cuirn ()L (n) + Curp(n) LY (n) < 1
for every n € N and for ¢ = 1, 2.

Before, we start we comment on the local Lipschitz assumptions for F' and B. We have
to admit that [Q9*] is a lot more restrictive than [Q9]. The main difference is that even
in concrete situations, it is very difficult to calculate the constants Cyirp(n) and Cyvgrs(n)
precisely, usually one solely knows that these constants are increasing with n. In practice,
this means that we can just allow decreasing sequences L%) (n) and Lg) (n) that converge
to zero and even worse, we usually do not know anything about the rate of convergence we
have to require. At least, locally Lipschitz continuous lower order terms can be handled very

well. We make this precise in the following proposition.

Proposition 2.3.9. Let 6 € [0,1) and let
F o Lp(Q; [X (0, 1), X1(0, )]o) — Lip(% X
B+ Lg( [X(0, 1), X (0, w)]e) — Lg( X7 (0, 1))
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be Volterra mappings in the sense of [Q6] and [Q7]. Moreover, we assume that for every
n € N, there exists E(n) > 0 such that for every F-stopping time u with 0 < u < T almost

surely, we have

M1 — b2l (x(0.0),x1 (0,16

1F'(p1) — F(d2)llx0,0) < L(n
< L(n)[[é1 — d2llx (0., x1 0,10

1B(¢1) — B(e2)

1
X7 (0,n)

almost surely for every ¢1, ¢o € LY(Q; X1(0, 1) N C(0, u; TR)) with ¢1(0) = ¢2(0) = uy and
SUPseo,u 1#illTrR < n almost surely for i = 1,2. Then, F and B satisfy [Q6*], [Q7*] and
[Q9*].

Proof. For a,b,e > 0, we calculate
ab=as' b1 < (1 - 9)5@ﬁ + 07 b
Together with the properties of complex interpolation this yields

L(n)[lé1 = d2llixom,x10m)s < L)' dr = d2ll o0 L) 61 = dall%1 0,00
b~
< (1= 0)eL(n)|lp1 — bollx1(0,0) + 0 7 L(n)llp1 — bollx(0,)

for every € > 0. For given n € N, we choose € > 0 small enough such that
(1 —0)eL(n)(Curp(n) + Curp(n)) < 1.

This proves the claimed result. O

In the setting [TT], [X(0, 1), X1 (0, )]y is given by LP(0,u;[E, E']g), whereas in [GM] it
equals (0, u; [E, E']p). In [LQ], things are more complicated. Here, it coincides with a
fractional domain of the operator Ay, ¢, which is the extrapolation of A to L(U; LP(0, p1)).
More precisely, we have [X (0, u), X (0, u)]o = (Agollj'e), if « — 146 > 0. If on the other
hand o« — 1+ 6 < 0 it equals to completion of L4(U; LP(0, u)) with respect to the norm

JAS G paus o 0, -

To construct a solution of (QSEE) for a given Fy-measurable ug : Q — TR, we first investi-

gate the truncated equation

du(t) = [— Ap(u(®)ut) + Fo(u)(t) + f(t)] dt + [Bn(u)(t) + b(t)] dW (),

u(0)  =wuolr,,

(2.3.7)

where A, (w,y) := A(w, Ryy), Fu(y) == F(Rny), Ba(y) :== B(Ruy), I'n = {|luo|ltr < %}
Here, the cut-off mapping R,, : TR — TR is defined by

, if <n
Ry—1" Iyllrr (2.3.8)

Tl if [ylor > .
The idea to use such a truncation to extend global Lipschitz nonlinearities to local ones

was used several time in case of semilinear equations (see e.g. [19], Theorem 4.10, [89],
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Proposition 5.4, [95], Theorem 8.1). The following Lemma is well-known. However, since

we nowhere found a proof, we give it for convenience of the reader.

Lemma 2.3.10. Given n € N, the mapping R,, : TR — TR defined in (2.3.8) is Lipschitz,

1.€.
[Rnz — RoylTr < 2|z — yllTR-

In particular, A,, satisfies the assumptions 2 — 4 of the globally Lipschitz case in any of the
three settings and F,, and B, satisfy [Q6] and [QT] respectively.

Proof. Let z,y € TR. If they are both contained in ball of radius n around zero, there is
nothing to prove. So we start with the case that they are both outside this ball. Then
triangle inequality yields

_mx Ny
lzllte  llylltr

—I—n‘

<pll—=_ _ v vy
R = || lzlltr zllrw || o lellre  llyllTr ||Tg

n

lzllrr

< e 1z — yllor + lyllrr = llzlrr]|

lz[lTR

<2[|z — yl[TR-

If we have ||z||tr > n and ||y||Tr < n we estimate

nr _ xT _ Yy ny _
‘ Talirn yHTR = ”‘ Teller — Tellts || pg T ‘ Tellte yHTR
< lle =yl + 42 ]n — |2 1x]

< llz = yllrr + (lzllrr = n) < 2l = yllrr.

Since R,, maps into a ball around zero with radius n, all the local assumptions for A, F',B

become to global assumptions for A, F},,B,. O

We can apply Theorem 2.3.3 to the truncated equation (2.3.7) and obtain for every n € N
a unique maximal local solution (un, (Tnk)k,Tn). To do this, note that one can infix the

spectral shift from [TTQ2*], [GAQ2*], [LQQ2*], i.e. we actually solve

du(t) = [~ An(u(O)u(t) + Fu(w)(t) + ()] dt + [Ba(u)(t) + b(t)] AW (),
U(O) = Uolrn,

with A, (u(t))u(t) = (1(n)+ Ay (u(t)))u(t) and F,(u)(t) = Fo(u)(t)+ p(n)u(t). In each case,
the solution u,, of the truncated equation is a solution of (QSEE) on I'), X [0, 0,,), where oy,
is defined by

on =1y Anf {t € [0,7,) : [lun(t)|Tr > n}. (2.3.9)

Note that o, is indeed an F-stopping time, since 7, is one and entrance times of continuous
F-adapted processes into open sets are also stopping times by Lemma 1.2.4. In the following
Lemma, we show that the sequence (o), increases pathwise starting from a large enough
n € N.
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Lemma 2.3.11. There is a set N C Q with P(N) = 0 such that the sequence (on(w))neN
is for all w € Q\ N monotonously increasing beginning from some n = n(w) € N. Moreover,

we have ug(w,t) = w(w,t) for almost all w € Q, for alll > k > n(w) and all t € [0, op(w)).

Proof. Given w € Q, choose n = n(w) such that w € T',,. Since ||ug|Tr is almost surely
finite, this can be done for almost all w € Q. Let I > k > n. We first prove that we have
up(w, t) = uy(w,t) for almost all w € Ty, and all t € [0, 0% (w) A 0y(w)). Clearly, both uy and

u; solve

du(t) = [=Ai(u(®))u(t) + Fi(u)(t) + f(8)] dt + [Bi(u)(t) + b(t)] AW (1),
U(O) = Uol[‘n

(2.3.10)

in the strong sense on [0, o) and [0, ;) respectively and therefore the uniqueness result from

Corollary 2.3.8 directly yields the almost sure coincidence of u; and uy on T',, x [0,0; A o%,).
To prove the pathwise monotonicity of the stopping times on I';,, we distinguish the cases
T, =A, UA,UN with a null-set N,

Ap=Tun{ sup Ju(s)lem <1}
SE[O,TL)

and

Ap=Tn0{ sup [lw(s)llrr > 1}

s€[0,m)
We have oy = 7, on A, and o; = inf{t € [0,7) : ||w;(t)||rr > I} on A,. As an immediate
consequence, we get o < 73 = o0; almost surely on A, since 7; was chosen as the maximal
stopping time of a solution of (2.3.7) which coincides with the maximal time of existence of
(2.3.10) on T';,. On 7\”, we argue differently. Here, it suffices to note that by almost sure
coincidence of u; and ug on I',, X [0, 07 A o), we have

sup  Jlw(s)lrr = sup  ur(s)|Tr < F,
s€[0,0,N0y) s€[0,0,N0y)

whereas

sup |ui(s)||tr = 1.
s€[0,01)

Thus, we must have o, < o0; on A,. Putting these cases together, we finally proved the
claimed result, namely o5 < o7 almost surely on I',,. Last but not least, we choose N as the

union of all sets of measure zero we excluded in this proof. O

We proved that (0,),, is at least for large natural numbers pathwise almost surely monoton-
ously increasing and we know from the definition of (), that the sequence is bounded by

T. Therefore we can define the F-stopping time

@w= lim o,. (2.3.11)
n—oo
Moreover, we set
u(w,t) == lim wu,(w,t)1r, 10,0, (t)- (2.3.12)

n—oo
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for w € Q and ¢ € [0, ). Note that for given w and ¢, this limit is attained after finitely
many steps by Lemma 2.3.11. In particular, u is a strongly adapted process on Q x [0, u).
Since the u,, are strong solutions of (QSEE) on I',, X [0,0,), u is a good candidate for a local
solution of (QSEE) on € x [0, ). We just have to find a sequence of stopping times (g, )n
that approximates u such that u € C(0, j,,; TR) N X (0, i1,,) almost surely for all n € N
and such that v is a strong solution of (QSEE) on [0, u,,]. Note that o, does not need to
have this property, since we used the maximal stopping times 7,, in the definition of ¢,, and

therefore, we cannot preclude that o, is a blow-up time on some paths.

Theorem 2.3.12. Choose one of the settings and assume [TTQ1], [TTQ2*]-[TTQ4*] or
[GMQ1], [GMQ2*]-[GMQ4*] or [LQQ1], [LQQ2*]-[LQQ4*]. Moreover, we assume [Q5], [Q8]
and [Q6*], [Q7*], [Q9*]. Then, there is an increasing sequence of F-stopping times (ti, )n with

0 < py < T almost surely such that (u, (un)n,u) 18 the maximal unique solution of

du(t) = [=A(u(t))u(t) + F(u)(t) + f(8)] dt + [B(u)(t) + b(t)] AW (?)
u(0) = wup.

(QSEE)

Moreover, we have the blow-up criterion
P{u < T, |lul|x10,u) < o0, w:[0,p) = TR is uniformly continuous} = 0.

Proof. First we construct the sequence of stopping times (i, )nen. Recall the definition of
op in (2.3.9) and of p in (2.3.11). If we additionally set

Ok i= Tok Anf {t € [0,75) ¢ [[un|lTR > 1},

we have the pointwise almost sure convergences p = lim,,_, o, 0,, and o,, = limy_, oo o1 Since
the stopping times o,,, 0, are all bounded by T, the dominated convergence theorem yields
on — p for n — oo and o, — o, in L1(Q) for k — co. If we now choose for given n € N
the natural number k(n) such that ||, — 0yk(n)ll21 (@) < £, we obtain 0,4, — o in L'()
for n — co. Choosing a suitable subsequence still denoted by (0,1(n))nen yields o) — 0
pointwise almost surely for n — oco. Moreover, since (I';,),, is an increasing sequence with
2 = Upenly, we also have 0,1 (n) 11, — o pointwise almost surely for n — co. Unfortunately
this sequence is not necessarily increasing anymore. Therefore, we define

= a k(i) 11,
Hn ie?ll,..).(,n}o—m(l) r;

and prove that (i), is the sequence, we wanted to construct. Clearly, since 0,5, is an
F-stopping time for all n € N and since I';, € F, uy, is also an F-stopping time. Furthermore

the trivial bounds 0,5,y < pn < p for every n € N yield p,, — p almost surely.

It remains to check that u is a strong solution of (QSEE) on [0, uy,]. It is sufficient to
show that u is a strong solution of (QSEE) on I, x [0, 0] for all n,k € N. We have
u(w, t) = up(w,t) for almost all w € T, and all ¢ € [0,0,(w)) D [0, 0,k (w)] by definition of

u. Since uy, is a strong solution of the truncated equation (2.3.8) on [0, 7,,] and in particular
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a strong solution of (QSEE) on T',, X [0, 0,1], we conclude that u itself is a strong solution
of (QSEE) on Ty, x [0, 0]

Next, we prove
P{u <T, |lullx10,u) < o0, u:[0,u) — TR is uniformly continuous} = 0.

Since uniformly continuous functions on a bounded interval are always bounded, we only

need to prove P(Q,) = 0 for every n € N, where Q,, is given by

Q= {pu <T, ||lullx10,,) < oo, w:[0,u) = TR is uniformly continuous,
”u”C(O,/L;TR) € [nT_l’ %)}

We first show that for almost all w € {||ul|c(0,TR) € [25+, %)}, we have p(w) = 7, (w).

Clearly 7,, = 0, on {||ulc(0,utr) € 25+, %)} Furthermore the sequence (0)i>, increases

on the even larger set I',, by Lemma 2.3.11 and converges to u. Thus we have 7,, < p on
{lullomrry € (%5, 5)}-

On the other hand, we have 7,, > 1 on {||ullc(0,uTr) € [255, %)} since on this subset of €2,

u solves the truncated equation

dw(t) = [=An(w(t))u(t) + Fo(w)(t) + f(£)] dt + [Bn(w)(t) + b(t)] AW (2),

w(0) =wuplp,,

(2.3.13)

and 7, was defined as the maximal stopping. This finally proves 7,, = p on the set

{llullco,uTr) € 252, %)} and the above argument also shows u(w,t) = u,(w, t) for almost

all w € {||ullc(o,urr) € [, %)} and all t € [0, u(w)). In conclusion, we have

P{u < T, |lullx1(ou < oo, u:[0,1) = TR is uniformly continuous,

llullcoo,uTr) € ["T_l» %)}

=P{7, <T, [Junllx1(0,7,) < 00, Uy :[0,7,) = TR is uniformly continuous,
lunllc,m:tr) € 25+, %)}
and by Theorem 2.3.3 this quantity equals zero.

It remains to check that (u,(pn)n,p) is a maximal unique solution. Let (v, (ky)n, %) be
another local solution of (QSEE). We first prove that u and v coincide on € x [0, u A k).
Define the sequence (py,),, of F-stopping times by

pp :=1inf {t € [0, ) : |lullrr > n} Ainf {t € [0,K) : |v]|tr > n} ApAk

for n € N. Then both u and v solve the truncated equation (2.3.13) on I',, x [0, p,,) and this
equation is uniquely solvable up to a maximal stopping time, which implies u(w,t) = v(w, t)
for almost all w € T, and all ¢ € [0, p,,). Since p, — u A k almost surely for n — oo and
ux I, =0\ N for some set of measure zero N, we conclude that u and v coincide on

Q% [0, uA k). Maximality is then a consequence of the blow-up alternative we derived above.
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Indeed, if we had x > p on a set of postive measure A, then u : A x [0, 1) — TR would be
almost surely uniformly continuous and we had ||ul|x1(p,,) < 0o almost surely on A. But
this would imply g = T on A, which contradicts k > p on A, since k is also bounded by
T. O

The following corollary shows, that we can mix spatial regularity and regularity in time of

the maximal unique solution (u, (7p,)n,T)-

Corollary 2.3.13. Let the assumptions from Theorem 2.3.12 be fulfilled and let 6 € |0, %)
Then, the mazimal unique solution (u,(Tp)n,T) has the following additional reqularity de-

pending on the respective setting.
[TT] w e W9P(0,7,; [E, E']1_g) almost surely for every n € N.
|GM] u € y(W=92(0,7,); [E, EY)1_¢) almost surely for every n € N.

[LQ] uw e A= (LYU; W9P(0,7,))) almost surely for every n € N.

Proof. w is a strong solution of

du(t) = [ — A(ug)u(t) + ﬁ(u)(t) + f(t)] dt + [B(u)(t) + b(t)] dW(t), te|0,7,],

u(0) =g
(2.3.14)
in the sense of Definition 2.2.3 with

F(u)(t) = (A(uo) — A(u(t)))u(t) + F(u)(t).

Moreover, we have u € X*(0,7,)NC(0, 7,; TR) almost surely. In particular, u is also a mild
solution of (2.3.14), i.e.

U(t) — eftA(uo)uo + (67(')‘4(“0) * (ﬁ(u) + f))o (t) 4 (67(-)A(u0) o (B(u) + b))o (t)

almost surely for all ¢ € [0, 7,,]. By [S5], we have B(u) +b e X EI(O, Tp,) almost surely. Define

m =inf {t € [0, 7] : || B(u)+ b”X%(o Y > 1} ATy
H

s

and set I'; := {JJug||tr < 1}. Then, we have t — 1, B(u)(EAn)+b(tAnm) € L™(£; XI%I(O/TH))
and we can apply regularity results for the stochastic convolution in all the three settings.
At this point, it essential that we restrict us to I';, since on I'; the operator A(ug) has a
bounded H*-calculus that is uniform with respect to w. Under the assumptions for [TT],

we get
(=040 0 1, (Bu) (- Am) +( A m))), € L (W20, 75 B, E']1 )
by [96], Theorem 3.5. The analogous result for [GM] namely

(e’(')A(“O) o1, (B(u)(- Ami) 4 b(- A m)))o € L™ (Qv(W%(0,7,); [E, E']1-0))
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can be found in [98], Theorem 3.3. For [LQ] and
(7O 0 1p, (B)(- Am) +b(-Am)) ) € L™ (A (LU WOP(0,7,))))

we use [8], Theorem 3.4.10. It remains to pass to the limit [ — oo to get the claimed pathwise
regularity for the stochastic convolution. Here, we make use of the fact that for almost every

w € Q, there exists | = [(w) such that w € T'; and 7, = 7,.

For the deterministic convolution, we can argue pathwise. However, it is important to note
the estimates are not independent of w € €2, since both the bound of the functional calculus

and the norm of A(ug(w)) depend on ||Jug(w)||TR.

In [TT] complex interpolation together with Theorem 2.1.1 yields

—tA(uo) —()A(wo)  (F
He Y ug+ (e o) (F(u) + f)>0 HWe,p(O,Tn;[EvEl]lfg)

5”67“‘(“0)“0 + (e*(~)A(uo) % (ﬁ(u) + f))o lwie(0,m:2)

—tA(uop) —()A(uo) r
+ e A+ (70K« (F@) 4 1)) pagry

Sluolle.ev),-1)p., + I1F W) + fllLe o m)-
In [GM], Theorem 3.3 from [98] directly gives

—tA(uo) —()A(uo) 4 (F
He 0 Uug + (6 0) % (F(U) + f))o||'Y(W_Q'Q(O;Tn)§[E,E1]1—9)

S lluolliz, 1y, + I148(w) + flls0.msm)
and in [LQ], we use [8], Theorem 3.3.9, to get

HAa—Oe—tA(uo)uo_’_Aa—e (6_(‘)A(uo) * (ﬁ(u) + f))O HLq(U;WS,p(OJ—n))

S lluoll -z + [ASTHE () + Pl Lasze 0,7, -

A,q,p

Hence, it remains to estimate the right hand sides. This can be done in a unified way. The
|u(t)||Tr. We have

constant in the following estimate depends on sup¢o -,

luolltr + [[(A(uo) — A(w))u + F(u) + fllx(0.r)

S+ luolltr + sp [u(t) — wollrrllullx(0,7,) + lullx10,m) + NullcoriTr)
tel0, 1y

+ 1 Flx 07

and the right hand side is almost surely finite, since u is a strong solution on [0, 7,]. This

closes the proof. O






CHAPTER 3

Examples for quasilinear parabolic stochastic evolution

equations

In the following chapter, we apply the theory we developed in Chapter 3 to quasilinear
stochastic partial differential equations. At first, we tread quasilinear parabolic equations
in both nondivergence form, i.e. with principal part szzl ai; (-, u(t), Vu(t))0;05u(t), and
in divergence form, i.e. with principal part div(a(u(t))Vu(t)). In these examples we benefit
from the extensive literature about elliptic operators, their regularity properties and their
functional calculi. Applying Theorem 2.3.12, we show existence and uniqueness of a maximal
unique solution (u, (7, ), 7) in all the three settings. Using the blow-up characterisation from
Theorem 2.3.12, we can even prove global well-posedness of a divergence form equation on
a bounded domain with Dirichlet boundary conditions. The last example is inspired from
fluid dynamics. We treat non-Newtonian fluids in a stochastic setting and derive local

well-posedness.

3.1. A quasilinear parabolic equation in nondivergence

form on R¢

In this section, we discuss the most straightforward example, namely
du(t) = [327,_; ai;(ult), Vu(t)05u(t) + F(u)(t)] dt + 3252, B;(u)(t) dg;(t),

(3.1.1)
on R%. For simplicity, we restrict us to noise perturbation with respect to an independent
sequence of Brownian motions (8,), on a probability space (€2, P) relative to a filtration

F = (F¢)tejo,r) that satisfies the usual conditions.

First, we discuss this example in the settings [TT] and [LQ]. At the end of this section, we

treat it in [GM], since in this case, we will need different assumptions on the coefficients.

At first, we show existence and uniqueness of a maximal unique solution (u, (7,)n,7) for

(0]
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given initial data ug € Bip*P(RY) or ug € Fip?/P(RY). In the first case, u will be in
u € LP(0,7,; W24(R9)) almost surely and in the second case, we show that u is contained
in W249(R%; LP(0,7,)) almost surely for every n € N. For the treatment of this equation,
we essentially need that the operator v +— Z?,j:l a;;(-,v(t), Vo(t))0;0;u has the domain
W24(R?) for any fixed v and that it has a bounded H>-calculus. At first, we specify our

assumptions.

[E1] The coefficient matrix a = (a;j)i j=1,..d : R? x C x C? — C¥? is uniformly elliptic,

i.e.

essinf inf Re & a(z,y, 2)E = 6o > 0.
2€RA yeC,2eCH [¢|=1 & alz,y,2)€=d

Moreover, a is S-Hoélder continuous in the first and locally Lipschitz continuous in the
second and the third component, i.e. there exists a constant C' > 0 and for every

n € N, there exist constants L(n) > 0, L(n) > 0 depending on n such that
la(z,y.9) - a(@,2,2)| < Clz = &|° + L(n)ly — 2| + L(n)|§ - |
for all #,7 € R? and all |y|, |z, ||, |Z] < n. Further, we assume a(-,0,0) € L>=(R?).
[E2] We choose p, q € (2,00) such that 1 —2/p > d/q and r € (1, 00).

e either choose ug : Q — By, or ug : Q — Fyp . In both cases, we
E3] We either ch Q — B2 (R Q = F2,%?(R4). In both

require ug to be strongly Fyp-measurable.

[E4] The nonlinearities F and (B,,), satisfy [Q6*] and [Q7*] together with [Q9*]. If ug €
3352/ P(R?), we take the assumptions in the setting [TT], whereas we choose [LQ] if

ug € F;;Q/p(Rd). In any case, the underlying Hilbert space H is given by [?(N).

Note that the nonlinearities particularly fulfil [E4] if the are of lower order. This is a
immediate consequence of Proposition 2.3.9. We want to apply Theorem 2.3.12 with the
family of operators A(z) = — Zijzl a;;(+, 2, V2)0;0; in the settings [TT] and [LQ]. We only
have to check [TTQ2*] — [TTQ4*] and [LQQ2*] — [LQQ4*].

We first show that the operators A(z) have a holomorphic functional calculus and that they
have a constant domain W?24(R%). For elliptic operators in nondivergence form, these re-

sults are well-known.

Lemma 3.1.1. Let p,g € (1,00), M >0,0<60y <7/2,6>0,8>0 and a > 0. Moreover,

let
d

Bf(z) =~ bij(2)0;0;f(x)

4,J=1

with uniformly elliptic coefficient matriz b = (b;j)i j=1,....4, i-€.

essinf inf Re&Tb(x)€ =8 >0
zeR® [¢]=1

and with £Tb(x)€ € By, for all x € R? and £% € C?. Moreover, b additionally satisfies

biy () — by
sup [byy ()| + sup D) = bW gy
zER z,yERY |:L' - y| + |(£ - y|
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for all i,j = 1,...,d. Then, B is a closed operator on L(R?) with domain W?1(R?).
Moreover, given 6 € (0y,7/2), there exist i > 0 and K > 0 only depending on p,q, M, 00,9, 5

and o such that

K (1 + B)all paragr o)) < 12llw2a@amrmy < Kll(n+ Bzl Loage o) (3.1.2)

for all z € L4(R%;[P(N)) and such that

I1f (1 + B)llsramay < Kl fllme(sq)

for all f € H*(Zy).

Proof. In [6], Theorem 9.4 the authors show that elliptic operators in nondivergence form
have a bounded functional calculus if the coefficients are Holder continuous. In the mean-
time, there are more general versions (see e.g. [33]). However, we chose this result, since
the authors discussed the precise dependencies of the constants in detail. For the estimate
(3.1.2) we note that

(1 + B)x|| Larayrmy) < Cllzllw2.amae )

for some constant C' > 0 is immediate by Lemma 2.3.4 and by the boundedness of (b;;)i;.

The reverse estimate is more tricky. From [39], Remark 5.6, we know

1zl w2.a@any < Cll(p+ B)x| Lamra;

for all Muckenhoubt weights v € 4, and all z € W24(R%; v). The authors are also precise
with the constant C' > 0 depending on ¢,d,M,0 and on v in an Ag-consistent way. As
a consequence, we get the vector valued inequality (3.1.2) by extrapolation. This can be
found in [23], Corollary 3.12. For the precise estimate of the constant see also [38], Theorem
2.3. O

In particular, —(u + B) is the generator of a bounded analytic semigroup on L?(R9) of
angle m/2 — 6y which satisfies ||67(M+B)ZHB(L(I(Rd)) < M,, for some n € (0,7/2 — 6), some
My > 0 and for all z € X,,. It is quite remarkable that in this special situation, sectoriality
of 1 + B implies that e *(#+5) gatisfies the generalised Gaussian estimates we need for the

‘Rp-bounded holomorphic functional calculus of B.

Lemma 3.1.2. Let 1 < go < ¢1 < o0 and n € (0,7/2 — by). Then, there exist C > 0 and
b > 0 only depending on qo,q1, M,n,00,0,5 and o such that the operator B introduced in
Lemma 3.1.1 satisfies

1 blz—y|?

—2B —%(%—H)ef,ul{e(z)e* Re(z)

g o= Lo 1) B0 @020 @) < C2

for all z € 3,,. Here, ;1 > 0 is the same as in Lemma 3.1.1.
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Proof. This statement is due to Kunstmann in [66], Theorem 6.1. The proof is in the same
article in Corollary 3.5. and consists of an interpolation between the estimates in Theorem
3.1 and an application of Lemma 3.4. In Theorem 3.1, the precise dependency of the involved
constants on qo, q1, M, 7,0y,6 and « is mentioned. Interpolation preserves the dependency
of the constants and closely inspecting the proof of Lemma 3.4, we see that C' and b only

depend on the parameters from above. O

Now, we are in the position to check [TTQ2*], [TTQ3*] and [LQQ2*], [LQQ3*]. For the set-
ting [LQJ, we choose A := (I — A). Of course, (I — A) is an R,-sectorial operator on L?(R%)
with 0 € p(I—A) that has an R,-bounded H>°-calculus. This can be found in [69], section 3.

Proposition 3.1.3. For alln € N, there exist C(n) > 0,n(n) € (0,7/2) and p(n) > 0 such
that the following statements hold true.

a) For all u € Bg;,wp(Rd) with ||uHB§;2/p(Rd) < n the operators u(n) + A(u) have the
domain W24(R4) with

C(n)HI(u(n) + A(u)zllpageay < l2llwzaeay < Cn)||(1(n) + A(u))z[| Laay

for all x € W*4(R?) and they have a bounded H> (X, ,))-calculus with

[|f (pa(n) + A(U))HB(Lq(Rd)) < C(n)”fHHOO(Z,,(n))
for all f € H®(X,,))-

b) For all u € F;f/p(Rd) with Hu||quY;2/p(Rd) < n the operators u(n) + A(u) have the
domain W24(R?) with the same estimate as above. Moreover, (I —A)(u(n)+ A(u))~!
and (p(n) + A(u))(I — A)~t are R,-bounded with bound C(n). Further, they have an
Rp-bounded H> (X, )-calculus with

Ry ({(u(n) + A)  [1f 115,y < 1} € BILIRY)) < Cn).

In particular, the operators A(u) satisfy [TTQ2*], [TTQ3*] and [LQQ2*], [LQQ3*] respec-
tively.

Proof. By choice of p and ¢, functions in B;;Q/ P(R?) and in qu,;Z/ P(R?) and their first order
derivatives are a- Hdélder continuous for some o« > 0. Hence, we can apply Lemma 3.1.1
and Lemma 3.1.2 to A(u) and get the existence of 6, with 0 < 6, < w/2 and of constants
Cy > 0,Cy,by >0, > 0 such that

ILf (1w + A(u)IBLaray) < Cull fllze=(s,) (3.1.3)

for some > 0 with 6, < 7/2 —n and for all f € H>(%,) and

blz—y|?

d(1 _ 1
)e_ﬂu Re(z)e— Re(z)

| B(La0 (R), L1 (R)) < Cyuz™ 2100 o

) e—zA(u)

1
g o ga- ) B(y,|2|" %)

(3.1.4)
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for all z € 3,,. Again, by Lemma 3.1.1, we know that p,, + A(u) is invertible with

Ol (pa + A()) [ Laray < l@llwzo@ay < Cull (a + Aw) | Lo o).

We now show that these constants do not explicitly depend on u, but on |[u|ce(re) and
[Vl go (ray for some a > 0 and on the constants in [E1]. To do this, we have to estimate
the quantities M, d,a and 0y from Lemma 3.1.1 in this situation. The coefficient matrix
a(-, u, Vu) is uniformly elliptic with ellipticity constant dg, hence we can use 0 := dg. More-

over, by the Hélder continuity of a, u and Vu, we get

sup |a(x, u(z), Vu(z))|
rcRd

< sup la(z, u(z), Vu(z)) — alz,0,0)| + [la(:, 0,0)|| Lo re)
xTE

< L(Jlull oo (ray) l[ull Lo ety + LIV ll oo gty | Vel oo (g + [la(-, 0, 0)| oo
and
la(z, u(z), Vu(z)) — a(y, u(y), Vu(y))]
< Cle = yl? + L([Jull L= e)) lu(z) — ()| + L[Vt e rey) [Vu(z) — Vu(y)|
< Cle =yl + L(||ull oo gy ) |l oo reay |2 = 4| + L(| V]| Lo ga)) | Vul o (ray |2 — 3]
Sllullga gy | Vel o gy 12— Y17+ |z =y

Hence, we proved that M only depends on ||u||care) and [|[Vu||cara). It remains to inves-

tigate the dependency of the angle fy. Given x € R? and ¢ € C?, we estimate

Im&"a(w, u(z), Vu(@))€ < €7 a(z, u(@), Vu(@))E] < lla(, u, Vu) || g ga €]

< Ha('vu7 v’U')”LOC’(

< ; *) Re ¢ alz, u(x), Vu(x))E
0

which yields

||a(" u, VU)HL“’(IR{"’) )
do

for all z € R and all £ € C?. Consequently, 6 only depends on |[u|| e (ra) and ||Vl 1o ra).-

arg (¢"a(z, u(z), Vu(z))€) < arctan (

All in all, we showed that the constants in (3.1.3) and (3.1.4) only depend on |u||ce (ra) and
[Vl go (ray. However, using Sobolev embeddings, we get both [|ul|caga) + ||Vl ceray <
||u||B§;2/p(Rd) and [|ul| o ey + || VUl o @ey < Hu||qu’;2/p(Rd). Hence, C,, Cy, by, 04, 1, do not

depend precisely on u, but only on ||uHBa_2/p(Rd) or ||u||F2_2/p( This proves part a). The
a,p a,P

R)*
Rp-bounded functional calculus in b) is then an immediate consequence of Theorem 1.4.5.

It remains to show that (I —A)(u(n)+A(u)) ™! and (u(n)+ A(w))(I — A)~! are R -bounded
with bounds depending on n for all |u||tr < n. This follows from (3.1.2) and the discussion

about the dependence of the constants from above. O

It remains to show that our quasilinearity is locally Lipschitz with respect to the trace spaces
B33/ (RY) and Fyp/" (RY).
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Lemma 3.1.4. For all n € N, there exists a constant Co(n) > 0 such that

a) for ally,z € B2 2/p(Rd) with norm at most n and all v € W24(R?), we have

[A(z)v = Ay)vl|Lae) < Co)llz = yll g2-2/p gay IVl w2, Ra)-

b) For ally,z € C(a,b; F,i;z/p(Rd)) with norm at most n, we have
R, ({AG() ~ Aw)(T - &)+t lab]} € BLAEY, L9(RD))

< Cq(n) sup 2(t) = y(0)ll p2-2/v -
te(a,b] P

In particular, [TTQ4] and [LPQ4] are fulfilled.

Proof. We just prove b), part a) follows the same lines. Let y, z € C(a, b; F;;Q/p (R%)) with

norm at most n, let t1,--- ,ty € [a,b] and vy, ..., vy € W29(RY). We estimate

H(i (AG(t) - AN - ) )"
k=1

La(R4)
d N B 1/p
< 3 [ (X s ot Put)) = aus 20w, Pty (1 =)ol |
ij=1 k=1
d
< Z . slupN||aij(~,y(tk),vy(tk)) — aij (- 2(t), Va(tr))| oo (ra)
i,j=1"" "
N 1/p
| ooy = atur) 7
1 (R4
d ~
< Z (L(n)ly = 2l L (fa,p1xray + L) IVY = V2| Lo (0,5 xR3) )
N 1/p
| osr = 2yu) 7 o,
< (L(n) 4+ L(n)) su t 2-2/p 0;0;(1 — A) Loy
() + L)) sup, 9(6) = 20520 (Z| )

almost surely. From [49], Theorem 5.6.12 we know that 9;0;(I —A)~! is a bounded operator
on L(R<;[P). This finally proves the claimed result. O

Now, we are in the position to apply our abstract result to equation (3.1.1).

Theorem 3.1.5. If [E1]—[E4] are fulfilled, there is a mazimal unique local solution (u, (T )n, T)
of equation (3.1.1). Ifug: Q — B(?,;Q/p(]Rd), we have

w € LP(0,7,; W24(R%)) N C(0, 703 B2, 2P (RY) N WP (0, 7,0 W2 209(RY))
almost surely for every 0 € (0, %) and for every n € N. Moreover, T satisfies

P{r < T, |lull1o(0,r;w2a(mayy < o0, u:[0,7) — Bg;Z/”(Rd) is uniformly continuous} = 0.
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If on the other hand ug : 2 — F;;Z/p(Rd), we have
u e WHURY LP(0,7,,)) N C(0, 7 F2,/P(RY)) n W22 (RE WO2(0, 7))
almost surely for every 0 € (0, %) and for every n € N. Furthermore, T satisfies
P{r < T, [|ullw2a®arr(o,r) < oo, u:[0,7)— F;;Z/p(Rd) is uniformly continuous} = 0.

Proof. We apply Theorem 2.3.12 and Corollary 2.3.13 in [TT] with the spaces E = LI(R%),
E' = W24(R?) and with (E, E')1_1,p,, = Bg;wp(Rd). The assumption [TTQ1] is then sat-
isfied straight away, whereas [TTQ2*],[TTQ3*] are checked in Proposition 3.1.3 and [TTQ4%]

follows from Lemma 3.1.4.

In the setting [LQ], we apply the same results with the choice A = (I — A) and « = 0. Here,
[LQQ1] is also satisfied straight away and [LQQ2*], [LQQ3*] are checked in Proposition
3.1.3. The assumption [TTQ4*] follows from Lemma 3.1.4. This yields a solution u with

(I —A)u e LYRY: LP(0,7,))
almost surely for every n € N. Due to [49], Theorem 5.6.12 we know
{u:(I-A)ue LR, LP(0,7,))} = WU(RY LP(0,7,)),
which closes the proof. O

In particular, this theorem can be used to show that the solution (u, (7,,)n, ) is Holder con-
tinuous in time. A Sobolev embedding yields u € C8(0, 7,,; W2=20(R%)) if ug € B2,/ (RY)
and u € W22 (R% CF(0,7,)) if ug € Fyp, /P (RY) with 8= 0 — L for all 0 € (1,1).

Comparing this result with the known semilinear theory by van Neerven, Veraar and Weis
in [96] and by Antoni in [8], we must admit that we cannot deal with noise of the form
B(u)(t) = 0 - Vu with ¢ € [>(N)? with a small enough norm. The reason for this is that the
top-order Lipschitz constant in [Q7*] has to decrease to zero, since we have to fulfil [Q9%*]
and in general we cannot preclude that Cyirp(n) and Cygrs(n) increase with n and tend to

infinity. In particular, an estimate of the form
||(T -Vu—o- V’UHWZ,q(Rd;lZ(N)) < ||(T||12(N)||u — UHWz,q(Rd)

is not sufficient to fulfil [Q7*], no matter how small ||o[|;2(x)a is.

We want to point out that the setting [GM] is also applicable to this equation if we slightly
modify the quasilinear part. We choose E=L%(R%) and E* = W24(R¢). TR is then given
by Wh4(R?). Moreover, we have

v(a,b; WHI(R?)) = WH9(R?; L?(a, b)).

This setting has the advantage that we can choose the initial data in a larger space. Here,

one possibility is to allow the coefficient matrix (a;;);; to depend on u, but not on Vu and
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to choose ¢ > d. In this case, we can show the local Lipschitz estimate

R({AG(6) = A1) ¢ € [a,8]} € BOV*I(R?), LI(R?)))

< C(l12ll Lo (jap xra) + 1Yl oo ((a,p)xray) sup [[2(E) = y (&) lwra(ra),

tela,b

which implies [GMQ4*], since W1 4(R?) < L>(R?) for ¢ > d. The assumptions [GMQ3*|
and [GMQ4*] can be checked in the same ways as in the other settings. Here, we also make
use of the embedding W4(R9) — C*(R?) for some a > 0.

Another possibility is to take the quasilinearity of the form a;;(u) = a; ;(||ullw1.q(re)). Here,
we can exploit all the advantages of the setting [GM], since we are able to solve our quasi-
linear equation for all 1 < g < co and not only for g > 2 as in the other settings.

Theorem 3.1.6. Let the following assumptions be fulfilled.

a) The coefficient matriz a = (a;j)i j=1,...d : R0 — C¥*? is uniformly elliptic, i.e.
inf inf Re&La(y)é =y >0
essinf Inf e a(y)§ = do

and locally Lipschitz continuous, i.e. for everyn € N, there exists a constant L(n) > 0
such that

|aij(y) — ai;(2)] < L(n)ly — 2|
for all |y|,|z| <m and all i,5=1,...,d.
b) We require ug : Q@ — W14(R?) to be strongly Fo-measurable.
¢) The nonlinearities F' and (By,)y, satisfy [Q6*] and [Q7*] together with [Q9*].

Then, there exists a mazimal unique solution (u, (Tn)n,7) of (3.1.1) with
u € WHI(R% L2(0,7,)) N C(0, 7,; WH(RD))
almost surely for every n € N. Moreover, T satisfies

P{r < T, |ullw2arar2(0.-) < o0, u:[0,7)— WL9(R?) is uniformly continuous} = 0.

Proof. In this setting, the proof is simple. Since the coefficients do not depend explicitly on

x, we can apply the theory about elliptic operators with constant coefficients to

A(z)u = Z ai,j(HZ”WL'I(Rd))aiaju

(2]

to get [GMQ2*] and [GMQ3*]. Amongst others this can be found in [87], Theorem 6.1.8. All
the occurring constants in this result depend on the ellipticity and on the upper bound of the

coefficients. In our situation, this means that the constants depend on dg and L(||z ||y 1.a(ra))-
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It remains to show the Lipschitz estimate required in [GMQ4*]. Let y, z € C(a, b; W4(R%))

with norm at most n, let t;,--- ,tx € [a,b] and vy, ...,vx € W24(R?). We estimate

H ( iv: [(Ay(tr)) — A(z(tr)))v[?) 1/2‘
k=1

La(R4)

N

d

1/2
< 3 [ syt lwraea) = as (=) lwroga)rd50) |
ij=1

k=1

— La(R%)
d

< Z . .SU}P o slupN|a¢j(Hy(tk)|IW1,q(Rd)) — aij (ly(tr) lwra@ay) |1Vl w2.a®aaz o)
ij=1...,d k=1,...,

ij—l
< Z sgp . SUP L(n H|?J te)lwaay — 12(tk)[lwi.a Rd)“|UHW24 R4;12(N))
i,j=1 ,J = LN

< L(n) sup, ly(t) = 2(O)lwraray [vllw2.a@azv)-
tela,

This shows [GMQ4*] and hence, Theorem 2.3.12 is applicable. O

3.2. Weak solution of a quasilinear parabolic stochastic
equation in divergence form

In this section, we consider a convection-diffusion equation

du(t) = [div(a(u(t))Vu(t)) + F(u)(t)]dt + B(u)(t) dW (¢)(t), t€[0,T]
u(0) =y,

(DIV)

either on D = R? or on a bounded domain D C R, d > 2 with Dirichlet, Neumann or
mixed boundary conditions. We aim to show existence and uniqueness of weak solutions
in the sense of partial differential equations, which means that we treat this equation in
W~=14(D). On RY, both [TT] and [LQ] are applicable, whereas in the bounded domain case,
we just use [TT|. The reason for this lack of generality is that we make use of the great
progress within the last years concerning mixed boundary problems in W=14(D) for ¢ > 2
and these tools are not deeply enough investigated in a vector valued setting, which makes
it difficult to check the R,- boundedness assumptions needed in [LQ).

At the end of this section, we restrict ourselves to Dirichlet boundary condition and show
that under a global Lipschitz assumption on the diffusion matrix a(u), the solution does not
explode and exists on the whole interval [0, T']. This generalises the work of Hofmanova and
Zhang ([46]) on the torus to arbitrary bounded C'-domains. Moreover, our method does
not need initial data in the space C1*¢(D), but only in (W~19(D), Wol’q(D))l_l/m[,7 which

seems to be natural if one expects solutions that are pathwise in L?(0, T; Wy (D).

3.2.1. Local weak solution on R¢

We aim to show existence and uniqueness of a weak solution u in the sense of partial
differential equations. We will show u € LP(0, 7,; WE4(R)) 1 C(0, 7,3 Bap /P (R)) for ug €
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B;;l/p(Rd) which corresponds to the setting [TT]. If on the other hand wug € Fq{;l/p(Rd),
our solution u will be almost surely in W2(R%; LP(0, 7,,)) N C(0, 7 Fyp /P (RY)). This will
be proved by using the setting [LQ]. As before, (7,,), is an increasing sequence of stopping
times that converges to a maximal stopping time 7 almost surely. For simplicity we restrict
ourselves to noise with respect to an independent sequence of Brownian motions (5,,), on a

probability space (€2, P) relative to a filtration F = (F3);c[o,7]. We consider

du(t) = [div(a(u(t))Vu(t)) + F(u)(t)]dt + 3772, [B;(u)(t)]3;(t), te€[0,T],
u(0) =

(3.2.1)

and make the following assumptions.

[L1] a:C — R¥9 is uniformly positive definite, i.e.
essinf inf ¢Ta =Jg > 0,
Vel |€|:1§ ()¢ 0
and a is locally Lipschitz continuous, i.e. for every a > 0, there exists a constant
L(a) > 0 such that
la(y) — a(2)| < L(e)]y — 2|
for all |yl, |2| < a.
[L2] We choose p,q € (2,00) such that 1 —2/p > d/q.

L3| We either choose ug : 2 — BL2P(RY) or ug : Q — EL22/P(R4), In both cases, we
a.p a.p

require ug to be strongly Fy-measurable.

[L4] The nonlinearities F' and (B,,), satisfy [Q6*] and [Q7*] together with [Q9*]. If ug €
337;,2/ P(R?), we take the assumptions in the setting [TT], whereas we choose [LQ] if
ug € Fql,;z/p(Rd). In any case, the underlying Hilbert space H is given by [2(N).

We want to apply Theorem 2.3.12 with A(z)u = —div(a(z)Vu) in the settings [TT] and
[LQ]. We have to check [TTQ2*] — [TTQ4*] and [LQQ2*] — [LQQ4*]. Our starting point are

Gaussian estimates for the kernel of the semigroup generated by div(bVu).

Lemma 3.2.1. Let b € C*(R?)?¥9 be a real-valued and uniformly positive definite matriz

with (b(2)€,&)pa > 6|&|? for every € € R and every z € C. We define Lf := —div(bVf).

—tL

Then, the semigroup e is for every t > 0 an integral operator with kernel ki(x,y) that

clx— 2
satisfies the Gaussian estimate |ki(z,y)| < Ct—5%e— 9 and
3 A4 2 INM _elz—yl?
62 Vky(2,y)] < Ot 2 (14 [[b]| & gayaxat) €

for every x,y € R% and all t > 0. Here, the constants c, 5, M > 0 only depend on d,d,s and
|6/l (rayaxa, whereas the constant C > 0 only depends on d, o and ||b]| oo (raydxa.

Proof. The gradient estimate and a slightly weaker version of the Gaussian estimate for
k:(x,y) can be found in [11], Theorem 4.15. The claimed estimate for k:(z,y) can be found

in [25], Theorem 6.1. Both of the theorems above are precise with the constants. O
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As a consequence, we get that L has an R,-bounded functional calculus.

Proposition 3.2.2. The operator L from the previous Lemma has for every p,q € (1,00) an
Rp-bounded functional calculus. In particular, there exists a constant C > 0 only depending

on 0,d and ||| o (rayaxa such that
Rp({f(L) e (2,00 <1} C B(Lq(Rd))> <C.

Proof. By [69], Lemma 2.2 the Gaussian estimate on k; implies the L!-L*°-off-diagonal
estimates for semigroup e~*% that are required in Theorem 1.4.5. Hence, L has an R,-
bounded functional calculus whose bound only depends on the constants in the estimate of
k; from Lemma 3.2.1. O]

Again, using the Gaussian estimates from Lemma 3.2.1, one can derive a crucial property

of L, namely that the Riesz transform VL~2 associated to L is Rp-bounded.

Lemma 3.2.3. Let L be as in the previous results. Then, VL™/2 is an Rp-bounded operator
on L1(RY) for every q,p € (1,00) and R,(VL™'/2) only depends on q,p,d, 6]l (rayaxa and
8. In particular, the operators (I — A)"2(I+ L)z, (I —A)2(I+ L)z, I+ L)"2(I — A)2
and (I +L)2(I —A)~z are Rp-bounded with bounds depending on the same constants.

Proof. The boundedness of VL™'/2 on LI(R?) is shown in [11], Theorem 5.1. The precise
dependence of the constants is mentioned in Corollary 5.9 in the same article. The bound-
edness of of VL~1/2 on L4(R%;1?(N)) for all p,q € (1,00) is due to [10], chapter 8. The Riesz
transform is discussed therein in the remarks below Proposition 8.1. To get the result we

need, you shall choose the weight p = 1.

Since {P(N) is UMD, we can apply [49], Proposition 5.6.3 and Theorem 5.6.11 and the vector

valued boundedness of the Riesz transform to get

(I = A)2 (I + L)% fl| paqragr )
Spa ”(I+L)7%f”W1vq(Rd;lP(N))
= (I + L)_%f”L‘I(Rd;lP(N)) + V(I + L)_%f”Lq(Rd;ZP(N))
= I(Z+ L)% fll paragryy + VL2 LE (I + L) 72 fl| o gam oy
< T+ L)% fll aagn iy + Rp (VL 72) L2 (I + L) 72 £l o ooy

567\\b|\cs<md),d,p,q ”fHL‘J(]Rd;lP(N))

for every f € L(R%P(N)). Note that in the last step, we used the R,-boundedness of the
functional calculus of L from Proposition 3.2.2. As the adjoint of L is also a divergence
form operator with uniformly positive definite and Holder continuous coefficients, the same
argument shows that (I—A)% (I+L*)~2 is bounded on L4(R% IP(N)) for every p,q € (1,00).
By duality, this implies that (I + L)~2(I — A)2 is bounded on L?(R%[P(N)) for every



86 CHAPTER 3. Examples for quasilinear parabolic stochastic evolution equations

p,q € (1,00). It remains to estimate ||(I 4+ L)z (I — A)~= | B(La(rap(v)))- We calculate

1
<(I+L)2( ) fu >Lq(Rd;lp)
_1 oy 1
=(I+L)I-A)"2f,(I+L") 2g>(L‘1(JRd;lP),L‘1’(Rd;lp’))
1 1 L
:<(I_A) 2f+L(I A) Zfa (I+L) 2g>(Lq(]Rd;lp),Lq’(Rd;lp'))

1 *—l
=((I-A)"=f,(I+L") 2>(Lq]Rle)L‘1 (R%;17'))

V(I —A) 2,V +L *fg>(Lq(Rd;l,,)ﬁLq,(Rd;lp/)),

which yields the estimate

1 _1
I+ L)% (T = A)7* s ueetan))
1 ") =3
<IT = A) 2 llss @y I+ L7) "2 5o @agery)
—1 )3
F 10l e ey [V = A) ™2 || pamesny [V + L) | gL e y)-

1

The boundedness of V(I — A)~2 is due to [49], Theorem 5.6.3 and the boundedness of
V(I+L*)"2 was shown above. The boundedness of (I —A)~2 and (I+L*)"2 finally follows
from the R,-boundedness of the functional calculus (see Lemma 3.2.2). The remaining
operator (I — A)~2(I + L)z can be handled with duality in a similar way as above. This

proves our assertion. O

Now, we are in the position to check [TTQ2*], [TTQ3*] and [LQQ2*], [LQQ3*]. For the set-
ting [LQ], we choose A := (I —A). Of course, (I —A) is an R-sectorial operator on L?(R?)
with 0 € p(I—A) that has an R,-bounded H>°-calculus. This can be found in [69], section 3.

Proposition 3.2.4. For alln € N, there exist constants C(n) > 0 and n(n) € (0,7/2) such
that the following statements hold true.
a) For allu € By, 2/p(Rd) with ||ul] g1-2/
Wha(R?) with

Ry <7 the operators I+ A(u) have the domain
C(n) M + Aw)zllw-1a@ay < |2llwiaga < CO)I + A(w)z]lw -1

for all x € WH4(R?) and they have a bounded H™ (X, ,))-calculus with

£+ Al sw-1a@ayy < CO)fllE>(2,0)
for all f e H® (X))

b) For all u € Fqlp2/p(IRd) with ||u||F1 z/p(Rd) < n the operators (I — A)z (I 4+ A(u))~z,
(I—-A) "3 (I+A(u)?, (I+Aw)2(I-A)"% and (I+A(u)) "2 (I—A)? are R,-bounded
with bound smaller than C(n). Further, they have an R,-bounded H™ (%, )-calculus
with

Ry ({1 +A@W) : | fll= (s, < 1} € BLIR)) < C(n).

In particular, the operators A(u) satisfy [TTQ2*], TTQ3*] and [LQQ2*], [LQQ3*], respec-
tively.
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Proof. By choice of p and ¢, functions in B;;f/p(Rd) and in F,I{;z/p(Rd) are a- Holder
continuous for some o > 0. Hence, we can apply Lemma 3.2.3 and get the R, boundedness of
(I-A)z(I+A(u)~2, (I-A)"2(I+A(w)z, (I+A(w)z(I-A)"7 and (I+A(u) "3 (I-A)3
with bound C,, > 0. In particular, (I + A(u))~! : W=L4(R?) — W1(R?) is bounded with
bound smaller than C, := C2|(I — A)_%||B(Lq(Rd)’W1,q(]Rd))||<I - A)%||B(W—1,Q(Rd)’Lq(Rd)).

This proves
(1 + lla(u) o ayoxa) " 1T + A@)zw-ro@e) < ll2lwragey < Cull(T + A@w)zllw-raa).-

Moreover, by Proposition 3.2.2, there exist ¢, > 0,7, € (0,7/2) such that A(u) and espe-
cially (I + A(u)) have an R,-bounded functional calculus of angle 7, with bound c,.

Now, we show that these constants do not explicitly depend on wu, but on [|uce(ray and
on the constants in [L1]. To do this, we have to estimate the quantities J and [|a(u)||co &)
from Lemma 3.2.1 in our situation. The coefficient matrix a(u) is uniformly elliptic with
ellipticity constant dg, hence we can use § := §y. Moreover, by the local Lipschitz continuity
of a and the Hélder continuity of u, we get

sup, la(u(z))] < sup, la(u(z)) — a(0)] + |a(0)] < L(|lull Lo ey) [l L= (ma) + |a(0)]

and

la(u(@)) = alu())] < L(|lull Lo ay) lu(z) = w(@)] < Ll[ull g @a)) llull oo (RY)]a — y|*.

Hence, we get the |lu||caray < ||u||B;;z/p(]Rd) and [|ul| o ey < \|u||F(11;2/p( for some a >0

R4)
by applying Sobolev embeddings. In particular, the constants ¢, C,,, and C,, do not depend

precisely on u, but only on ||u||3172/p(]Rd) and Hu||F172/p( respectively. This closes the
a,p q,p

Rd)”
proof. O

It remains to show that our quasilinearity is locally Lipschitz with respect to the trace spaces
Byp”"(RY) and Fy, ™" (RY).

Lemma 3.2.5. For all n € N, there exists Cg(n) > 0, such that the following statements
hold true.
a) For ally,z € B;;Q/”(Rd) with ||y||B§;2/p(Rd), ||z||B;;2/p(Rd) <n and all v € WHI(RY),

we have

[A(z)v = AW)ollw-ra@e) < Co(n)llz =yl gi-2/0 gay [V wr.a®a)-

b) For all y,z € Cla,b; Fyp ™ "(RY) with [yl o, =2/ ey 112

have

loapr2m @y < n we

Ry ({(T = 8)7H(A(=(6) = Aly®) (I = A)7F s € [a,8]} € BLARY)))

< Cg(n) sup ||z(t) —y(t —2/p iy -
@(m) 51, 120) YOy
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In particular, [TTQ4*] and [LPQ4*] are fulfilled.

Proof. We prove b), part a) follows the same lines. Let y, z € C(a, b; Fql,;?/p(Rd)) with norm
at most n, let t1,--- ,ty € [a,b] and vy,...,on € WHI(RY). As [P(N) is UMD, Theorem
5.6.12 in [49] implies that both (I — A)~2 div and V(I — A)~2 are bounded on L?(R%;[?).

Thus, we have

H(iw - 8 AW - A - A)Fup)
k=1

La(R4)

< | (3 Hatoten)) — ate(e vt = 21 b))

k=1

Lq(Rd)d

(i |Uk|p>1/p‘

k=1

< sup Nla(y(tr) — a(z(tk)) [ oo eyexe

" k=1,..,.N La(R4)

(i |Uk|p)1/p’

< L(maX(HyHLOC([a,b]x]Rd)a ||ZHL°°([a,b]><Rd)))||y - Z||L°°([a,b]><]Rd) La(Rd)

N
Sd,p’q L(”)Hy - Z”c(a’b;pqlfpz/P(Rd)) H ( ; ‘”k‘p) Lq(Rd)'

This proves the claimed result. O

Now, we are in the position to apply our abstract result to (3.2.1) and get the main result

of this section.

Theorem 3.2.6. Set ¢ := #. If [L1] — [L4] are fulfilled, there is a mazimal unique
solution (u, (Tn)n,T) of (3.2.1) that is weak in the sense of partial differential equations, i.e.

the equation
t
(u(t) — uo, ¢>(Lq(]Rd),Lq’(Rd)) == /o (a(u(s))Vu(s), ¢>(Lq(Rd),Lq’(Rd)) ds
t
+/0 <F(u)($)7¢>(W*1«(I(]Rd),wl,q’(Rd))dS

t
+ /(; <B(u)(s)7 ¢>(LL1(]Rd)7Lq/(Rd)) ClVVS

holds almost surely for every t € [0,7,] and for every ¢ € CZ(RY). If ug € B;;,Q/p(]Rd), we

have
w € LP(0,7,; WHI(RY)) N C(0, 703 BL 2P (RY) N WP (0, 7,0 WH2049(RY))
almost surely for every 0 € (0, %) and for every n € N. Moreover, T satisfies
P{r < T, |lull1o0,rwramayy < oo, u:[0,7)— B;,;Q/”(Rd) is uniformly continuous} = 0.
If on the other hand ug € F,};Q/p(Rd), we have

uwe WHI(RY LP(0,7,)) N C(0, 73 Fi 2P (RY) n W20 (R WO (0, 7))
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for every 6 € (0, %) and for every n € N. Furthermore, T satisfies

P{r < T, |lullwramareo,r)) <00, w:[0,7) = F;;Q/p(Rd) is uniformly continuous} = 0.

Proof. First, we discuss the setting [T'T]. We apply Theorem 2.3.12 and Corollary 2.3.13 with
E =W-14(R?), E' = Wha(R?), TR = BL;2/P(R%) and X7 (a,b) = LP(a, b; LI (R% 12(N))).
The assumption [TTQ1] is then satisfied straight away, whereas [TTQ2*] and [TTQ3%
are checked in Proposition 3.2.4 and [TTQ4*] follows from Lemma 3.2.5. This yields a
strong solution v in W ~19(R%) with the claimed regularity properties. The claimed solution
formula is immediate by testing the functionals in W~149(R9) with ¢ € C2°(R?). We just
use the identity

<diV CL(’LL(S))VU(S), ¢>(W—1,q(Rd))W1,q’(Rd>) = _<a(u(5))vu(5)a v¢>(Lq(Rd),Lq’(Rd))'

In the setting [LQJ, things are more complicated. We choose A = (I — A) and o = 3.

The assumption [LQQ1] is then satisfied straight away, whereas [LQQ2*] and [LQQ3*] are
checked in Proposition 3.2.4 and [LQQ4*] follows from Lemma 3.2.5. However, Theorem
2.3.12 and Corollary 2.3.13 solely give us a solution with the claimed regularity properties
that satisfies

(1= )" ult,2)— (T = 8)Fuo () =
/(I—A)_%div(a(u)Vu)(s,aﬁ) ds—l—/ (I—A)_%F(u)(s,x) ds
0 0

+ [ 1= 8y B s, aw ()

almost surely for almost all + € R? and for almost all ¢ € [0,7,]. In this formula, the
regularization with (I — A)’% is needed to define the deterministic integrals over time
for fixed 2 € R?. To get rid of this regularization, we test this equation with a function
¢ € L9 (RY). We get

<(I - A)iéu(t) - (I - A)7%U0, ¢>(Lq(Rd),Lg’(Rd))
t
:/0 <(I —A)"2 div(a(u)Vu)(s),¢>(Lq(Rd)’Lq,(Rd» ds
t
= 8 EP5):6) gy

[ U= 20 B@66) g, ey TV

almost surely for all ¢ € [0,7,]. This holds true for all ¢ € L7 (R?) and we can insert
¢ = (I — A)z4) for some 1p € C°(RY).

Since (I — A)~2 is self-adjoint and the adjoint of (I — A)~2 div is given by —V/(I — A)~z,
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we finally end up with

<u(t) — ug, 7/’>(Lq(Rd)7L‘1/(Rd))
' t
:/0 _<a(u(s))Vu(S)7v¢>Lq(Rd)d8+/0 <F(U)(S)7'(/}>(W71,q(Rd)7W1,q/(]Rd))ds

+ / (Bu)(8):%) Loy Lo (may) AW (5)

0

almost surely for every ¢ € [0, 73,], which is the claimed result. O

In particular, this theorem can be used to show that the solution (u, (74,)n, 7) is Holder con-
tinuous in time. A Sobolev embedding yields u € C?(0, 7,,; W'=29(R%)) if ug € B;,f/p(Rd)
and u € W'~ (R%; CF(0,7,)) if ug € Fyp /" (R?) with =0 — L for all 0 € (L, 1).

Last but not least, we want to point out that we cannot apply the setting [GM] in the same
way. This is due to the fact that in this setting, we have TR = L?(R9) and in particular
a Sobolev embedding of the form TR < L*(R?) is not available. Thus, we need a mo-
dification of the coefficient matrix a similar to the one discussed at the end of the previous
section. We could treat a coefficient matrix of the form a(u) = a(||ul|pa(ray). We get the

following result with a slight modification of the proof of Theorem 3.1.6.

Theorem 3.2.7. Assume the following assumptions.

a) The coefficient matriz a = (ai;)i j=1,....d : R>0 — R¥*4 is uniformly elliptic, i.e.

ceey

essinf inf Re&Ta(z)€ =8y >0
st a0

and locally Lipschitz continuous, i.e. for everyn € N, there exists a constant L(n) > 0
such that

laij(y) — ai;(2)| < L(n)ly — 2|
forall0<y,z<mnandalli,j=1,...,d.
b) We require ug : Q — LI(R?) to be strongly Fy-measurable.
¢) The nonlinearities F' and (By)n satisfy [Q6*] and [QT7*] together with [Q9*].
Then, there exists a mazimal unique solution (u, (Tp)n,7) of (3.2.1) in W=14(R?) with
u € WHI(R? L2(0,7,)) N C(0, 7,,; LY(RY))
almost surely for every n € N. Moreover, T satisfies

P{r < T, ||lullwramer20,y) <00, u:[0,7) — L(R%) is uniformly continuous} = 0.
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3.2.2. Local weak solution on a bounded domain with mixed boundary

conditions

In this section, we discuss the convection-diffusion equation

du(t) = [div(a(u(t))Vu(t)) + F(u)(t)]dt + B(u)(t)dW(t)), t€[0,T],
u(0) = wup

(DIV)

on a bounded domain D C R?, d > 2, with Dirichlet, Neumann or mixed boundary con-
ditions. In this example, we focus on the the setting [TT], since important tools needed
for the setting [LQ] like the R,-boundedness of V(I — div(a(u)V))~2 are not deep enough

investigated in the literature in context of bounded domains.

In this section, we work in the spaces Wp?(D) and Wi, »4(D) from Definition 1.1.3 for some
I' € 9D that is open in the topology of dD. Then, TR will be a subspace of B;;Q/Z’(D) that
respects the boundary condition on I' and 9D \T'. Since we always work with 1 —2/p > d/q

every u € B1 2/p (D) is continuous on D. Hence, we are able to define

B;,;,Qr/p = {ue B, ,*P(D): ulap\r = 0}.

We will consider the quasilinear equation (DIV) in the space Wi (D) for q € [2,00),
which means, we try to find a weak solution in the sense of partial differential equations.
Remember, (u, (7,)n,7) is a local solution of (DIV) in the setting [TT] in the sense of
Definition 2.3.2 with the choice E = Wy "%(D) and E' = W}Y%D) if and only if the
identity

/D(u(t,m)—uo(x / / (s,2))Vu(s,)Vo(z)dz ds

+/< (1)), )y 0y oy

/ / () dz AW (s)

holds almost surely for all ¢ € [0, 7,] and for all ¢ € CR°(D).

At first, we look at (DIV) with a locally Lipschitz continuous diffusion matrix a. However,
we have to guarantee that the operators div(a(u(w,t))V) on Wy 4(D) have for almost every
w and for every ¢ the same domain W?(D). In the last decades, it turned out that this
property highly depends on D, its dimension and the regularity of the coefficient function.

Therefore, we introduce the following notation.
Definition 3.2.8. Let pu: D — R be uniformly elliptic and uniformly continuous. Then,
we define T,, as the set of all r € [1,00] such that the operator

2 Lz = —div(uVz) + 2 : WA (D) — Wi (D)

is a topological isomorphism and such that the norms of L,, and L;l only depend on r, the

ellipticity of p, its modulus of continuity and of ||p||Le(p)-
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Now, we can specify our assumptions.

[LD1] For every point € 0D, there exists two open sets U,V C R? and a bi-Lipschitz
transformation ® from U to V such that z € U and ®(U N (D UT)) coincides with
one of the sets {y € R : |y| < 1,5y < 0YU{y € R?: |y| < 1,51 = 0,2 > 0} and
{y € RY : ly| < 1}.

[LD2| a:C — R¥*4 is uniformly positive definite, i.e.

sinf inf €7 =6y >0,
ess in lglzlﬁ a(y)§ = do

and locally Lipschitz continuous, i.e. for every n € N, there exists a constant L(n) > 0
such that

la(y) — a(2)| < L(n)]y — 2|
for all |y|, |z] < n.

_z
[LD3] We choose p,q € (2,00) such that 1 —2/p > d/q and q € T, for all z € B;ypff(D).

[LD4] The initial value ug : 2 — B;’;’Zr/p (D) is a strongly Fo- measurable random variable.

[LD5] The nonlinearities F' and B satisfy [Q6*] and [Q7*] together with [Q9*] in the setting

. - 1_7
[TT] with the spaces E = W "%(D), E' = W%(D) and TR = B, ,+(D).

Before we proceed, we comment on our assumptions. We chose the requirement on the

domain [LD1] in order to guarantee the important interpolation results

(Wi (D), WE D11/ = By PD), (Wi (D), WED)]1 /2 = LY(D)

q,p,I"

from [42]. In particular, this representation of the real interpolation space makes sure that
up is in the usual space for initial values. Moreover, [LD3] implicitly contains assumptions
on the boundary of D and on the coefficient function a as well, since it is impossible to
ensure that

y > —div(a(u(t))Vy) +y : WD) — Wi (D)

is an isomorphism for all ¢ € (1, c0) if one just assumes [LD1] and [LD2]. Even in case of the
Dirichlet Laplacian, there are counterexamples (see [52], Theorem A). In general, one only
knows that a small interval (2 — ¢,2 + ¢) with € > 0 depending on the geometry of D and T’
and on the coefficient function p is contained in 7, (see [45], Theorem 5.6 and Remark 5.7).
Nevertheless, there are several situations, in which one can fulfil [LD3]. In the following, we

mention some of them.

If one assumes D to be a C''-domain that has either pure Dirichlet (A = ()) or pure Neumann
boundary (A = 0D) and one assumes p to be a uniformly continuous coefficient function,
one has g € 7, for all ¢ € (1,00). This is a classical result, which can be found in [3], section
15 or [79], page 156-157. Consequently, since we require 1 — 2/p > d/q and hence every

z € B;;?I{p (D) is even Holder continuous, we automatically have ¢ € Ty(.).

If D is just a Lipschitz domain with Dirichlet boundary (A = @) and the coefficient function

e is a symmetric, uniformly continuous matrix, then there is a ¢ > 3 with ¢ € 7,,. This only
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helps us if d = 2, 3 since then it is possible to choose p large enough to ensure 1 —2/p > d/q.
This is shown in [37], Theorem 1.1.

So far, we only gave examples for Dirichlet or Neumann boundary conditions. In case of
mixed boundary conditions, we exploit the very detailed work [30]. In the case d = 3, the
authors provide a wide range of geometries of D and I'" that permit the existence of a ¢ > 3
such that ¢ € 7,, where p is a real scalar valued function that is uniformly continuous.
Moreover, in Section 3, they provide many descriptive examples for the geometries, they

allow. The following Lemma adjusts these results to our situation.

Lemma 3.2.9. Let D C R? and ' C OD satisfy Assumption 4.2 in [30] and let a(u) be real

and scalar valued. Then, there exists ¢ > 3 such that q € Ty, for every z € B;;?F/p(D). In

particular, the norms of both I —div(a(2)V) and (I —div(a(2)V))~! depend on the constants

in Assumption 4.2, on the constants in [LD2] and on sup,¢cp |z(z)|.

Proof. By Theorem 4.8 in [30], there exists ¢ > 3, such that I — div(a(0)V) is a topological
isomorphism from W2%(D) to Wi »4(D). Since, we assumed a to be Lipschitz continuous
and p to be large enough such that 1—2/p > 3/q, the map = — a(z(z)) is Holder continuous.
In particular, the set {a(z) : z € B;;?F/p(D) : ||2HB;;2F/p < n} is compact in C(D). Hence
by Corollary 6.4 in [30], the map

{a(2) : z € By (D)} 3 s (I = div(uV)) ™! € B(Wy (D), WiI(D))

is bounded and Lipschitz continuous. In particular, this means

17 = div(a(2)V)) ™l gewi=r (), wtea (o)
< — div(a(z)¥)) ™ = (I = div(a(©) %)) gt oy o oy
+1( - div(a(O)V))71HB(erl,q(D)’er,q(D))

<C sup |a(z(z)) — a(O) + (I - div(a(0)V) ™ I sewyta(pywia o))

<CL(sup |z(2)]) sup la(z(x)| + [|[(I — div(a(0)V)) ! —1.q . .
("Leg‘ ( )|)xeg| (2(z))| + IIC (a(0)V)) HB(er (D), W 4(D))
On the other hand, we have
11— div(a(z)V)||B(WF1,q(D)7WF—1,q(D)) < 1+ [la(2)llLe<(p)
<1+ L(sup [2(z)]) sup [z(x)[ + sup |a(0)].
zeD xeD xeD
This proves that I —div(a(z)V) is a topological isomorphism from WI}’q(D) to W;l’q(D) for

every z and that the norms of both I —div(a(2)V) and (I —div(a(z)V)~! have the required

dependency on the coefficient function. O

Our goal is to apply Theorem 2.3.12 to the operators

A(u(t))u(t) = —div(a(u(t)) Vu(t)) + u(t)
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in the setting [TT]. In the following Lemma, we prove that A(u(¢)) has the needed mapping

properties like a timely constant domain and a bounded H °°-calculus.

Lemma 3.2.10. Under the assumptions [LD1]-[LD3|, the operators
A(2)u := —div(a(z)Vu) + u : Wll’q(D) N Wp_l’q(D)

are for all z € B;;?F/p(D) densely defined, closed with 0 € p(A(z)) and have a bounded H> -

calculus with bound and angle only depending on the constants L, dy and on ||z||3172/p(D).
a,p,T

We also have for every n € N a constant C(n) > 0 such that the local Lipschitz estimate

[A(z) — A(y)||B(W1}vP(D),W;1~P(D)) <Cn)|lz - yHBl_%F(D)

holds for all |\z||B;;?F/p(D), \\y||B;;?F/p(D) < mn. Last but not least, we have

1—2

(Wr "(D), W (D)1-1/pp = By (D)

and as a consequence, A satisfies [TTQ2*] — [TTQ4*] from the previous chapter.

_2 _

Proof. By choice of p and ¢, the Sobolev embedding B;yp}(D) < C!(D) holds true for some
_2

[ > 0. In the sequel, we write C; for the constant of this embedding. Given z € B;’p”’F(D)7

we obtain

la(2)llz () < esssup ja(z(x)) = a(0)] +|a(0)]

< L(Cy|z]| 1-2 Cillz]| 12
< L(Cllll g VOl s

q,p,I" a,p,I"

)]

In particular, the operator A(z) : Wh%(D) — Wi %(D) is well-defined and bounded.
Moreover, since we assumed ¢ € 7T (a(z)), Theorem 6.5 in [31] implies that A(z) with
D(A(z)) = Wp9(D) is a closed operator.

By Theorem 11.5 in [9], A(z) has a bounded H°-calculus of angle arctan (M&)
and the bound only depends on |a(z)||L~(py and dg (see also [34]). Note that the critical
assumption for this theorem is that A(z) possesses the square root property in L2(D), i.e.
the operator

(I —div(a(2)V))¥?: W?(D) — L*(D)
is a topolical isomorphism. This result can be found in [35], Theorem 4.1.
The claimed Lipschitz estimate for A is an immediate consequence of the Lipschitz continuity
of a and a Sobolev embedding. Indeed, we have
[A(z) — A(y)||B(WF1’7(D)7WF—W(D)) < la(z) - a(y))v||B(WFM(D),Lq(D))

S lla(z) = a)ll (D)
<CiL(Cin)lz =yl -2
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f H —=/P D7 —2/p D S .
or a ||Z||B;,p,24( )||1/HB;%2F/( )<n

It remains to check (Wi "9(D), W (D))1-1/p, = B;;}(D). By [42], Lemma 3.4, we have
the identity [Wy "?(D), WI}’Q(D)]l/Q = L(D). Using the reiteration formula between real

and complex interpolation (see e.g. [93], Theorem 1.10.3.2), it is sufficient to show

(LU(D), WpP(D))1_ap, = BL3P(D).

q,p,I"

This is done in [42], Remark 3.6. O

Next, we check that the spaces Wy (D) and W 9(D) fit in the setting of stochastic max-

imal LP-regularity.

Lemma 3.2.11. The spaces W(D) and Wi "9(D) are UMD Banach spaces with type 2.

Moreover, the family of operators
{Js5:6 >0} € B(LP(Q x (0, 00); y(H; W (D)), LP(2 x (0,00); Wy (D))

defined by

t

Jsb(t) == 0~ 1/2 /( e b(s) dW (s)

is R-bounded. In conclusion, these spaces satisfy assumption [TTQ1] of the previous section.

Proof. By Lemma 3.2.10 the spaces W;l’q(D) and Wll’q(D) are isomorph. In the proof
of the same Lemma, we checked [W{l’q(D),Wﬁ’q(D)]l/Q = L%(D) and hence, amongst
others A(0)'/2, provides an isomorphism between L94(D) and Wy "%(D). Moreover, the type
of Banach space, the UMD property and the R-boundedness of (Js)s>o are stable under
isomorphisms and the UMD space L?(D) is of type 2. Noting that by [97], Theorem 3.1,
the family is R-bounded on L? () x (0,00);v(H; LY(D))) completes the proof. O

Now, we are in the position to proof existence and uniqueness of a solution of (DIV) by

applying Theorem 2.3.12 to the operator A(z)y = —div(a(z)Vy) + y.

Theorem 3.2.12. Let the assumptions [LD1] — [LD5] be satisfied. Then, there exists a

mazimal unique local solution (u, (7y,)n,T) of (DIV) in W{l’q(D) such that we have

w € LP(0,7,; WE4(D)) N C(0, 73 BL-%P(D))

q,p,T
pathwise almost surely for every n € N. Moreover, T satisfies

1-2/p

apl (D) is uniformly continuous} = 0.

P{r <T, ||u||L,,(07T;Wg.q(D)) < oo, u:|0,7) = B
Proof. Writing

div(a(2)Vz) + F(z) = (div(a(2)Vz) — 2) + (F(z) + 2),
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we see that we can solve the equation

du(t) = |—A(u(t))u(t) + ﬁ(u)(t)] dt + B(u)(t)dW(¢), t€]0,T]
u(0) =g
with F(z) := F(z) + z for z € Wr9(D). By Lemma 3.2.10, the assumptions [TTQ2*]-

[TTQ4*] are fulfilled, whereas Lemma 3.2.11 guaranties [TTQ1]. All in all, Theorem 2.3.12
yields the desired result. O

3.2.3. Global weak solution with Dirichlet boundary condition

In this section, we investigate the convection diffusion equation with Dirichlet boundary
conditions (I' = (}) and we therefore restrict us to the space W(Z)l (D) that will be denoted
with Wy ?(D) in what follows. As usual in the literature, we write W~14(D) for W(Z;l’q(D).

We consider the equation

du(t) = [div(a(u(t))Vu(t)) + div(G(u(t)))]dt + B(u)(t) dW(t)), te€[0,T],
u(0) = ug

(GDIV)

and we strengthen the assumptions in order to prove that the local solution from Theorem

3.2.12 exists on the whole interval [0,7]. We require:
[GD1] D C R is a bounded C*'-domain.

[GD2] a: R — R¥*4 is bounded and uniformly positive definite, i.e.

inf inf 7 =3, >0
§2R|§|n:1§ a(y)€ = do

and a is globally Lipschitz continuous, i.e. there exists L > 0 such that
lay) — a(2)] < Lly — 2|
for all y,z € R.
[GD3] We choose p, q € (2,00) such that 1 —2/p > d/q.
[GD4| The initial value ug : Q — B;,;,Qo/ P(D) is a strongly Fp-measurable random variable.

[GD5] G : R — R? is Lipschitz continuous, i.e. there is a constant Lg > 0 such that
|G(y) = G(2)] < Laly — 2|
for all y,z € R.

[GD6] The driving noise W is an [2- cylindrical Brownian motion with the decomposition
W(t) = exB(t),
k=1

where (ey,)y is the standard orthonormal basis of [2(N) and (Bx)x is a sequence of

independent real-valued Brownian motions relative to the filtration (F):eqo,1)-
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[GD7] B = (Bn)n:Q x[0,T] x D x R — [?(N) is strongly measurable and w > B(w,t,x,v)
is for all t € [0,T], x € D and y € R strongly F;-measurable. Furthermore, B is of

linear growth, i.e.
i 9 1/2
(X IBuw.tzy)?) " <00+ 1y
n=1

and Lipschitz continuous in the last component, i.e. there is Lg > 0 such that
o 9 1/2
(Y 1Bulw.tiz.y) = Bulw o, 2)) < Lily — =
n=1

for all y,z € R, t € [0,T], x € D and almost all w € Q. Moreover, we assume

1Bn(w,ts Ol a2 eywd2 oy < CA+ 1 lwe2p))
for all f € Wy*(D), t € [0,T], x € D and almost all w € Q.

These assumptions are strictly stronger than [LD1]-[LD5]. a is not locally, but globally
Lipschitz and the nonlinearities div(G) and B are only of lower order. As we have already
mentioned in our remarks below the assumptions of the previous section, [GD1] and [GD2]

also imply g € T,z for every z € B;’;’Qo/p(D) and ¢ € (1,00).

All in all, Theorem 3.2.12 yields a local solution (u, (7,,)n,7) of (GDIV), i.e. an increasing
sequence of F-stopping times (7,,), with 0 < 7, < T and lim,,_,o 7, = 7 almost surely and
a process u : 2 x [0,7) — WyY(D) such that u solves (GDIV) on [0,7,] and

w € LP(0, 7,; WH4(D)) N C(0, 7; BL-2/P(D)) (3.2.2)

q,p,0
almost surely for every n € N.

In this section, we aim to prove that we actually have 7 = T almost surely. By the blow-up
alternative from Theorem 3.2.12, it is sufficient to show that v : [0,7) — B;;?O/p(D) is almost
surely uniformly continuous and satisfies ||u|| Lr(0,mwhi(D)) < almost surely. However,
this is not too easy, since (3.2.2) that originally comes from the abstract construction of a
solution of a quasilinear equation highly depends on n and to find uniform estimates for w,

we have to use the special structure of the equation.

Our first goal is to derive a uniform estimate in L*(€; L>°(0, 7,,; L*(D))) for w for all
a € [2,00) and to do this, we need a suitable version of the Ité formula that is useful
to deal with weak solutions of stochastic partial differential equations. There are several
versions of the following Lemma in the literature, see e.g. [63], Theorem 2.1. or [27], Propo-
sition A.1. The strategy is always the same. One approximates the It6 process in order to
apply the classical Itd formula, rearranges the equation into the form one wants to achieve
and at the end, one passes to the limit. However, as far as we know, there is no result that

covers our situation. Therefore, we sketch the proof for convenience of the reader.
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Lemma 3.2.13. Let (u,(7p)n, ) be the mazimal unique local solution of [GDIV]. Then,

for a > 2, the generalized It6 formula
[ lutt.a)l® = () da
/ / (o — Dlu(s, 2)|* (a(u(s, ) Vuls, ) + G(u(s, 2))) Vu(s, z) ds
+;/0 /Da|u(s,ac)|°‘_ u(s, ) Bi (s, z,u(s, z)) de dB(s)

0ot
+ %Z/ / ala = 1)|u(s, z)|*"*By(s, z, u(s, ))* dads
k=170 /D

holds almost surely for all t € [0,7,] and all n € N.

Proof. In what follows, we shortly write F(s,z) := a(u(s,z))Vu(s,z) + G(u(s,z)) and
Hy(s,x) := Bg(s,x,u(s,x)). With this notation, we get

w(t) — o = /t div F(s) ds + i/t Hio(s) dBe(s) (3.2.3)
0 = o

almost surely for all ¢ € [0,7,] as an equation in W~149(D). Next, we extend the functions
u, ug, F and Hj by zero to the whole space R?. Since we assumed Dirichlet boundary
conditions, we have u € LP(0, 7,,; Wh4(R%)) N C(0, 7p; B;;f/p(Rd)) almost surely. Moreover,

we define
= T A inf {t € 10,7 l[ull o oswracasyy + [l o opi-2/ogayy > z}.

Let (6 )m C C°(RY) be a Dirac sequence, i.e. 8, > 0, supp(6,) C B(0, L) and we have
Jga Om(x)dz =1 for every m € N. We convolute the equation (3.2.3) with d,, and obtain

m(t,z) —ul™(z) = /O div Fpy (s, z ds+2/ H™ (s,2) dBk(s) (3.2.4)

almost surely for every ¢ € [0,7;] and every = € R?. Here u,, uém), F,, and H lgm) denote the
convolution of the respective function u,ug, F' and Hy with §,,. In this step, we used the
well-known identity div(F) * d,, = div(F * d,,) and the fact that by stochastic Fubini, one
can interchange convolution and the stochastic integral. However, ¢t — w,,(t, z) is for every
x € R? an It6 process in R. So, we can apply Itd’s formula to | - |* and integrate afterwards

over RY. We obtain
/ |t (¢, x |adx—/ |u(m) |O‘dx+/ / ot (5, 2)|* 2y (s, 2) div Fy, (s, 2) dz ds

a—2 (m)
+kz_1/0 /Rdalum(s,ﬂcﬂ U (s,2)H,"™ (s,2) dz dBy(s)

I [f
+ = Z/ / ala — 1)|um(s,x)|a72H,£m)(s,x)2 dz ds.
250 Jre
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Further, integration by parts and V (|, (s, )|* 2w, (s, %)) = (@ —1)|tm (s, 2)|* "2V, (s, )
yield

/ |t (¢, )| do
]Rd

= [ @i = [ [ (= Do) Va2 5, 9) s
Rd
+Z/ /alum(svx)|a_2um(5am)H]£m)(S,l‘)dﬁk(s)da’:
k=1/R*JO
0ot
233 [ ] et = Dl 007 dr s
k=1

almost surely for all ¢ € [0, 7;]. Now, we can take the limit m — oo. Here, we make use of the
fact that d,, * f converges to f in WL4(R9) if f € WL4(R9), in LY(R?) with 1 < v < oo if
f € L7(R%) and uniformly if f € C.(R%). Note that as a consequence of [GD5] and [GD7], we
have F € L>(Q; LP(0,n;; LY(R?))) and (Hy)r € L>(; LP(0,n;; LY(R%; 1?(N)))). Moreover,
we have u € L*(Q; C([0,nm;] x R?)), which follows from 1 —2/p — d/q > 0 and a Sobolev
embedding. This yields

[t | "2Vt - Frpy =22 u|* 2V - F
o~ 22 H™)? 2255 QZHk

in L1(Q x [0,7m;] x R?). In the same way, one shows

|um|o‘72um gim mzee, |u|°‘72qu

in L2(Q x [0,7;] x R? x N), which implies the convergence of the stochastic integral. All in

all, we get

/ fut, 2)| — [uo ()| dx

/ / o — Du(s,z)|**(a(u(s, 2)) Vu(s, z) + G(u(s,z))) Vu(s, z) ds
+ alu(s, 2)|* u(s, z) Hy (s, 2) dz dB(s)
>/, :

0ot
+ %Z/ / ala = 1)|u(s,z)|**|Hy(s,2)> dads
k=170 /D

almost surely for all ¢ € [0,7;]. Since we defined u(s,-) = 0,up = 0,H(s,-) = 0 and
F(s,-) =0on R\ D, we get the claimed identity on [0,7;]. It remains to take [ — co. Due
to u € LP(0,7,; WH4(D)) N C(O,Tn;B;;?O/p(D)) almost surely, there exists [ = I(w) such
that m;(w) = 7, (w). Hence, this identity also holds true on the time interval [0, 7,]. This

finishes the proof. O

The following Lemma was used several times in the literature in comparable situations (see
e.g. [46], Theorem 3.1 or [27], Proposition 5.1). The difference is that we deal with Dirichlet



100 CHAPTER 3. Examples for quasilinear parabolic stochastic evolution equations

boundary conditions, whereas the references consider periodic boundary conditions on the

torus. Furthermore, we work on a random interval up to a stopping time.

Lemma 3.2.14. If we assume [GD1]-[GD7] and additionally ug € L*(Q2 x D) for some
o € [2,00), we have
a 1/
(B sup [u(®)l|fep)) " < Call+ [uo]lLo@xn))

o<t<T

with a constant C, > 0 independent of ug. Moreover, we have
1ull L2 (0,7 w2 () < ©°-
Proof. Let

=7 A {t € 10,7) 5 Jullzooawramay + lull o -2 gy = M -

We work on the interval [0,7,,] and apply the It6 formula from Lemma 3.2.13. This yields
[ oo [ uo) ds
D D
t
- / / ala — Du(s,z)|**Vu(s, 2) (G(u(s, ) + a(u(s, z))Vu(s,z)) dz ds
0o Jp
oo ot
+ Z/ / alu(s, z)|*2u(s, ) By (s, z, u(s, z)) dz dfx(s)
k=170 7D

100 t ala —1)|u(s, z)|*2 s,z u(s, x))?deds
£ 20 [t Do B s, (3.2.5)

almost surely for all ¢t € [0,7,,]. Next, we estimate Esupg<,<ir,.. [p [u(z,s)|* dz term by
term beginning with the stochastic integral. Applying the scalar valued Burkholder-Davis-

Gundy inequality, the assumptions on B and Hélder’s inequality, we get

E sup / / alu(r, z)|*2u(r, z) By (r, 2, u(r, x)) do dBy (r )’

0<s<t/\77m h—1

o0

< ]E(/Mnm Z (/ lu(r, 2)|*2u(r, 2) By (r, z, u(r, .’L‘))d:p)er>

B 1/2
S [ M 1 i 102 B )

nn
L Ol T 05 a0 07)

(
<E(
<s(f
(

(

1/2

1/2

ﬁ

()10 oy ()15, +||u(r)\|%a(D))dr)1/2

N 1/2
To(D)) d’”)

1/2 tANm 1/2
swp fulr)Gemy) (4 [ ey dr)

0<s<tANm

tADm
<E / ()20 oy (1 + ()]

<E
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Finally, the well-known estimate ab < ea® + —b2 for a,b,e > 0 yields

E sup / / alu(r, z)|*~? Re(u(r, ), By(r, z, u(r, z))> dx dBk(r)

0<s<t/\77m h—1

tANm
<5E s u)fup +C(1+E [ )

0<s<tANm

%(!(D) d’]")

for some constant C' > 0. We proceed with the deterministic terms in (3.2.5). Since a is

uniformly elliptic,
—a(a — Du(s, z)|*Vu(s, z)a(u(s, ) Vu(s,z) <0

holds almost surely for all s € [0,7,,] and all € D and the corresponding term can be
dropped in an upper estimate. Moreover, the divergence theorem of Gauss and u(¢t,x) = 0

almost surely all for ¢ € [0,7,,] and x € 9D yields

/ ala—1)u(s, z)|*Vu(s, z)G(u(s, z)) dz
D

o pulta) )
:/de(/o ala — 1)|E)°G(€) dg)dx

u(t,z)
_ /BD (/O ala — 1)|E[*G(s, &) dg)uda(x) —0.

The last remaining term can be estimated with the assumptions on B. We have

E sup i/s/Da(a—1)|u(r,m)|a_2|Bk(r,x7u(nm))dedr‘

OSSSt/\ﬂm k=1 0

tANm
< ]E/ / lu(r, 2)|*"2 + |u(r, z)|* do dr
0

¢
§1+/ sup /|usw|°‘dxdr
0 0<s<rANm

All in all; we proved
E sup / |u(z,s)[*de < 1 +E/ uo(x)adx—i—/t sup / |u(s, z)|* dedr

0<5<t A, D 0 0<s<rAmm

and hence, Gronwall yields,
E sup / lu(z, s)|*de < 1 —i—E/ |uo(x)| da
0<s<t AT D

for every ¢t € [0,T] and n € N with an estimate independent of m. We want to finish the proof
by applying Fatou’s Lemma to pass to the limit m — co. Here, we use that 7, — 7 almost
surely for m — oo. Note that one can interchange sup and liminf in an upper estimate,
since lim inf can be written in the form sup inf and supremums can be interchanged, whereas
supinf < infsup. Thus, we have

E sup / lu(z, s)|*dz < liminfE  sup /\u(x,s)|°‘dx

0<s<tJD m—=00  0<s<tANm
<1+ liminf]E/ |ug(z)|* do
m—r oo D

=1+ E[juo|Za(p)
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This proves the first claim. For the second claim, we have to look at (3.2.5) in the special

case a = 2. We get

t
) o) =l =2 [ [ Fuls.z)atu(s,a) Vas.o) do ds

+2;/0 /Du(s,a:)Bk(s,x,u(s,x))dxdﬁk(s)

0ot
+ Z/ / By (s, 2, u(s,z))* dzds
w—1J0 Jp
almost surely for all ¢ € [0, n,,]. Coercivity of a(u(s,x)) then yields
—/ Vu(s,z)a(u(s, z))Vu(s,z) de < —(50HVU(S)||2Lz(D).
D

As a consequence, we have

t [e°) t
b / IVu() 20 A <lluollZapy +2 3 / / w(s, @) Bi(s, @, u(s, @) dz By (s)
0 i—1J0 Jp

oot
+Z/ / By(s,z,u(s,z))* dzds
0o Jp

k=1

almost surely for all ¢ € [0,7) and with the estimates we did before, we get
1/2
(EIVullF20.yxpyds) "™ < (1 + [[uollL2xp))-

This finishes the proof. O

As a consequence of these estimates, we can extend u to a pathwise continuous function

with values in L?(D) on the closed interval [0, 7].

Lemma 3.2.15. If we assume [GD1]-[GD7] and additionally ug € L*(Q x D) the function
u: [0,7) — L?(D) is pathwise almost surely uniformly continuous and can be extended to a

continuous function on [0, T].
Proof. We know that v is an It6 process in W~12(D) and that we have

u(t) —ug = /0 div(a(u(s))Vu(s)) + div(G(u(s))) ds +/O B(u(s))dW (s)

for every ¢t € [0,7) and by Lemma 3.2.14, we have u € L?(0,7; W,*(D)) almost surely.
Moreover, by [GD7] and the It6 isometry, we obtain

t
||t ’_>/0 B(u(s))l[O,T)(s) dW(S)||L2(Q><[O,T];Wolv2(D)) = HB(U)]-[OJ')||L2(Q><[O,T]><N;W01’2(D))

S1+ ||U|\L2(Qx[o,r);wg'2(D)) <0

and thus, we also have t — fot B(u(s))dW (s) € L*(0,7;W,*(D)) almost surely. Conse-

quently, we have

t = ug + /O div(a(u(s))Vu(s)) + div(G(u(s))) ds € L*(0,7; W, *(D))
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almost surely. On the other hand, the fundamental theorem of calculus yields
t— ug+ /Ot div(a(u(s))Vu(s)) + div(G(u(s))) ds € WH2(0,7; W 12(D))
almost surely. Since the embedding
Wh2(0,7; W12(D)) N L*(0, 7; Wy (D)) < C(0, 7; L*(D))

is bounded (see e.g. [90], Chapter III , Proposition 1.2), the map
t
t— ug+ / div(a(u(s))Vu(s)) + div(G(u(s))) ds
0

is almost surely uniformly continuous on [0, 7) viewed as a function in L?(D). Clearly, by the
Burkholder-Davies-Gundy inequality, the same holds true for the stochastic integral. This
closes the proof. O

In the previous lemmas, we extended our local solution (u7 (T )ns 7') to the closed interval
[0, 7] and derived estimates for u on [0, 7]. As a consequence, we can apply a regularity re-
sult for quasilinear stochastic evolution equations in divergence form that yields additional
regularity properties for u. It turns out that u is even pathwise Holder continuous in space

and time.

Lemma 3.2.16. If we assume (GD1)-(GD7) and ug € L™ (2 x D) for every m € [2,00),
the process u : Q X [0,7] x D — R is pathwise Hélder continuous in space and time. More

precisely, there exists n > 0 such that

t — m
IE( sup  |u(t,x)| + sup [u(t, ) u(s,y)|2 ) < o0
te[0,7],z€D t,s€[0,7],z,yeD max{ [t — s|7, |z — y[?7}

for every m € [2,00).
Proof. By Lemma 3.2.14 and Lemma 3.2.15, we have
w€ L™ (€ L%(0,7; L™ (D)) N L*(2 % [0,7); Wy *(D))

for all m € [2,00) and w : [0, 7] — L?(D) is almost surely uniformly continuous. Moreover,

1-2/p
q,p,0

1—2/p > d/q. Thus, a slight variation of [26], Theorem 2.6 implies the claimed result.

our initial value ug € B, (D) satisfies ug = 0 almost surely on 0D, since we required
The only change we need is that we investigate the equation on the random interval [0, 7]
instead of [0,7]. However, in the proof of Theorem 2.6 one can replace T by 7 without
further difficulties, since they authors argue pathwise with a classical regularity result about
deterministic parabolic equations by Ladyzhenskaya, Solonnikov and Uralceva (see [72],
Theorem 10.1 in Chapter III). In [26], Theorem 2.6, 9D was assumed to be smooth, but
to apply Ladyzhenskaya’s result, a piecewise C''-boundary combined with the so called
condition A, that is explained in [72] on page 9, is sufficient. Note that our assumption of

a C''-boundary implies this condition A. O
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Finally, we can prove the main theorem of this section. We show that our local solution w is
indeed a global solution that exists on the whole interval [0,T]. For this proof, we compare
u with the solution z of a stochastic heat equation with the noise B(u)(t) dW(t). Then, we
investigate the regularity properties of u — 2z, which solves a non-autonomous determinis-
tic partial differential equation with a random parameter by applying results on maximal

regularity for both the stochastic heat equation and for the arising non-autonomous equation.

Theorem 3.2.17. If we assume (GD1)-(GD7), the local solution (u,(74)n,7) of (GDIV)

18 a global solution, i.e. we have T =T almost surely and the solution satisfies

we LP(0,T; Wh(D)) n C(0,T; BL%?(D))

q,p,0

almost surely.

Proof. We first check the theorem for ug € L>(£2; B;;?O/p(D)). By Theorem 3.2.12, there
exists a local solution (u, (7,)n, 7) of (GDIV) to the initial value ug. Since we chose 1—2/p >
d/q, we have ug € L™(2 x D) for all m € [2,00). As a consequence, Lemma 3.2.16 implies
that u : Q x [0,7] x D — R is pathwise almost surely uniformly continuous in space and

time and uljy ,; € L™(Q; L>(0,T; L™(D))).
Next, we consider the equation

dz(t) = Az(t)dt + B(u)(t)dW(¢)), te€][0,7],
z(0) =0.
By (GDT), we have B(u) € LP(2x [0, T];y(I?; LY(D))). Therefore the maximal LP-regularity

result for stochastic evolution equations, Theorem 2.2.6, yields a unique solution

ze LP(Q x [0, T); Wy (D)) N LP(Q; C(0,T; BL 4" (D))).

If we investigate the difference y := u— z on [0, 7], we find out that y pathwise almost surely

solves the deterministic non-autonomous parabolic equation

y'(t) = [div(a(u(t))Vy(t)) + div(G(u(t))) + div((a(u(t)) — I)Vz(t)), t<][0,7]

y(0) = up.
(3.2.6)
Note that any solution of this equation in L2(0,7; W, (D)) is unique by a classical result
of Lions for non-autonomous evolution equations governed by forms (see e.g. [90], Chapter
ITI, Proposition 2.3).

As a next step, we prove that this equation has deterministic maximal LP-regularity. We

estimate

| div(a(u(t))Va) - div(a(u(s)Va)lw-1a(p)

IN

I(a(u(t)) — a(u(s))) Vel L)

< sup [a(u(t, ) ~ a(u(s,2)) ]y )

N

< sup fu(t, @) — u(s, @)y,
zED
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and since u is pathwise almost surely uniformly continuous on [0, 7] x D (see Lemma 3.2.16),
the mapping [0,7] 3 t — div(a(u(t))V) € B(W, (D), W~14(D)) is almost surely contin-
uous. Moreover, as we have seen in Lemma 3.2.10, the operator div(a(u(t))V) has al-
most surely for fixed ¢+ € [0,7] a bounded H*°-calculus on W~19(D) and its domain is
given by WO1 "Y(D). Therefore, we can apply [86], Theorem 2.5 and obtain almost surely
the maximal LP-regularity of the non-autonomous equation (3.2.6). Moreover, we both have
div(G(u)) € LP(0,7; W~14(D)) and div((a(u) —I)Vz) € LP(0,7; W~14(D)). Indeed, [GD6]
and the regularity of z together with [GD2] imply

| div(G(u) ||l L 0,rw-1a(py) S NG(W)|Leo,mzap)) S 1+ [[ullLe(o,mLe(D)),

| div((a(w) = DVl oraw-ra(oy S Nalw) = DVzlloorizoo) S 12l oo oy

As a consequence of maximal regularity, we get

||y||Lp(0,-r;W01’q(D)) + ||y||c(077-;33;?(]/1’(p))
< Ounr ([ div(G(w)| e o,0w-1.a(py) + I div((a(u) — I)V2) || Lo, 7;w-1.9(D)))

S 1+ llullpeo,rzapy) + HZHLP(O77—;WOI’Q(D))

and thus y € LP(0,7; W, %(D)) N C(0,7; B;’;’zo/p(D)) almost surely. With the unique solv-

ability in L2(0,7; Wol’Z(D)) and u = y + z one sees that u is also pathwise almost surely
in the space LP(0,7; Wy4(D)) N C(OJ;B;;?O/”(D)). Hence the blow-up alternative from
Theorem 3.2.12 yields 7 = T almost surely, which is the desired result.

Last but not least, we have to deal with arbitrary initial values uy : 2 — B;,;,Qo/ P(D).
Defining A, := {||u0HB;;i{p(D) < n} and the truncated initial values ué”) :=wuply, , we can
apply the result we derived above and we get global solutions u,, of (GDIV) to the initial
value u" that pathwise almost surely satisfy u, € LP(0,T; WE%(D))NC(0, T; B;:O/p(D)).
By Corollary 2.3.8, the solutions u,, and u,, coincide on A, and therefore the pointwise
limit v = lim,, 0 Uy, is a well-defined adapted process. Moreover, since for almost all w €
there is an n(w) such that v(w,-) = Up)(w,-), v solves (GDIV) and has almost surely the
claimed regularity. However, by maximal uniqueness of the solution (u,7), we must have

7 =T and u(t) = v(t) almost surely for every ¢ € [0, T]. O

The reader may ask, why we could not prove

u € LP(Q x [0,T]; Wy (D)) N LP(2; C(0, T; By, 3/ (D)))

1-2/p
q,p,0

larity result for non-autonomous deterministic equations we used. The maximal regularity

under the additional assumption ug € LP(£); B (D)). This is due to the maximal regu-
constant Cyr highly depends on the modulus of continuity of the coefficient function which
is in our case given by a(u(w,t,z)). Therefore, Cyir depends on the modulus of continuity

of u itself, but this one differs from path to path and cannot be controlled uniformly in w.
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So, the best estimate, we can achieve is

[u(w, ')HLT’(&T;WOL(’(D)) = |ly(w,-) + 2(w, ')”Lp(o,T;WUlvq(D))

< COMR(W) (1 + [[u(w, ) Lo o,72a(0)) + 12(w, ) oo im0 ()

for almost w € Q, but it is impossible to control ||uHLp(QX[07T};W01,p(D)) in this way. One
would need a significantly stronger result on maximal LP- regularity for non-autonomous
deterministic equations with Cygr only depending on the upper bound and the ellipticity
constant of the coefficient function a(u(w,t,x)). Unfortunately, such a result is only known
for p = 2 by a classical result of Lions and for p € [2 — ¢,2 + ¢] for some small £ > 0 by a
recent result of Disser, ter Elst and Rehberg (see [31], Proposition 6.3). This can be used to
prove at least
ue LP(Q L7 (0, T; Wy " (D)))

for r,re €2 —¢,2+¢].

3.3. The incompressible Navier-Stokes system for genera-

lised Newtonian fluids

We now deal with a quasilinear stochastic model in fluid dynamics. This example is inspired

by Bothe and Priiss, who treated the same model in a deterministic setting (see [18]).

Throughout this section the divergence of a d x d matrix T is a vector field defined by
(divT); = 22:1 OxT; and V f is the Jacobian of the vector field f. We start with a universal

model for fluids, namely

du(t) = [—(u(t) - V)u(t) + div S(t) + f(t)]dt + [B(u)(t) — VH] AW (2), t € [0,T],
(FM) 5(®) = p(t) —p()1, t €[0,T7,
divu(t) =0, te][0,T],

Here, u : [0,7] x R* — C? is the macroscopic velocity. In this model the density p of a
perfect fluid is assumed to be constant and can therefore be chosen identically one. Together

with the continuity equation
Op(t,x) + divu(t,z) =0,

that holds in every mechanical model, this results in the restriction div(u(t)) = 0. Moreover,
as in every perfect fluid, the total stress tensor S : [0, 7] x R? — C%*? is a sum of the viscous

stress fi : [0,7] x R — C%*? and the hydrostatic pressure pI, where p is scalar-valued.

In the following, we discuss generalised Newtonian fluids that are characterised by the as-
sumption 11 = 2u(|€|3)E, where & = 1(Vu+VuT) is the symmetrised derivative of the veloc-
ity, the so called rate-of-strain tensor and | - |3 is the Hilbert-Schmidt norm on C4*¢. There

are many examples for this model, e.g. the Ostwald-de-Waele power-law u(s) = juos™/?~!
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for m > 1 and o > 0, the Carreau model u(s) = po(1 4+ 5)™/2~1 or the truncated Spriggs
law p(s) = uosm/Q_ll[So}oo)(s) for some sy > 0. For details about generalised Newtonian
fluids, we refer to Chapter 5 in the monograph of Armstrong, Bird and Hassager ([17]). Last
but not least, we would like to mention that a noise perturbation was discussed several times
in case of Newtonian fluids with 1z = po& (see e.g. [20], [76] and [96]). We want to generalise
these results to the quasilinear case. However, we must admit that we cannot deal with the
Kreichnan model of turbulence which is a noise perturbation of the form (o - V)u with a
small enough (o), C [2(N). The reason for this is the same as in Section 3.1 and we briefly

described this problem below Theorem 3.1.5.

As a first step, we derive a quasilinear evolution equation from (FM). Using the product

rule and div(u) = 0, we calculate

(div S); = div (u(|€]3)2€ — pI), = (u(I€]3) div(2E) + ' (IEB)V(IE]3) - 2E), —
d
(OkOsur + Ofus) + 1 (1€3) D (Orui + 0w (O + Ojup) OOy — O;p
gk, =1

= u(l€}3)

= n(l€}3)

- 102

d
Ofui + 1/ (1€13) D (Orui + Oyuy) (Oxu; + Ojun)Opdyu; — Oyp.
1 7,k,0l=1

=~
Il

All in all, we get the quasilinear system

du(t) = [-A(u®))ut) — Vp(t) — (u(t) - V)u(t) + f(t)] dt + [B(u)(t) — VD] dW (1),
divu(t) =0,
u(0) = ug
with
d
(A(z)u); = (\VHW 13) Zakul |VZ+VZ Z (O1zi + 0i21) (O zj + 0;21) OO
k=1 7,k,0l=1

We consider this equation in LP(R%)? and as usual in the context of fluid dynamics, we use

the Helmholtz decomposition
LIRY)? = LLR?Y) & VW H(RY),

where LL(R?) = {f € LI(RY) : div(f) = 0}. Note that this decomposition exists for all
q € (1,00) and induces the bounded Helmholtz projection P : LI(R%)? — L% (R9). Applying
P yields the evolution equation

du(t) =[-PA(u(t))u(t) — P(u(t) - V)u(t) + Pf(t)]dt + PB(u)(t) dW (),

(QNS)
u(0) = wg

in L4 (R?) for the velocity u.

In the following, we use the abbreviations B: _(R%) := {f € Bg’p(Rd)d : div(f) = 0}

q,p,0

and W24(RH)? := {f € W*R?) : div(f) = 0}. We treat (QNS) under the following

assumptions.
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[QN1] Let 1 : R>g — Ry be continuously differentiable such that p and ' are locally

Lipschitz continuous, i.e. for every n € N there exists C(n) > 1 such that

W' () = 1 ()] + (@) — uy)] < Cn)]z —y]
for all 0 < 2,y < n. Moreover, we assume p(s) + 2su/(s) > 0 for all s > 0.
[QN2] We choose p,q € (2,00) such that 1 —2/p > d/q.
[QN3] The initial value ug : Q@ — Bj;?,,/p (R9) is a strongly JFo- measurable random variable.

[QN3] The driving noise W is an [2- cylindrical Brownian motion of the form
W(t) = exB(t),
k=1

where (ey,) is the standard orthonormal basis of 12 and (81) is a sequence of inde-

pendent real-valued Brownian motions relative to the filtration (F):eqo,1)-

[QN4] The nonlinearity (PB,), is chosen in such a way that it satisfies [Q7*] together with
[Q9*] in the setting [TT].

[QN5] f € LP(Q x [0,T]; L9(R%)?) is strongly measurable and F-adapted.

We want to apply Theorem 2.3.12 in the setting [TT] with E = L4(R%), E' = W2:4(R%)
and H = I?(N). The trace space TR is then given by (E,E')1_1/,, = BZ,YP(RY). Due
to our assumptions, [TTQ1], [Q7*] and [Q8] are directly fulfilled. We now check [Q4*], i.e.
we have to prove that PA(z) has for every z € BE,;?J”(Rd) a bounded H*-calculus. In the
following Proposition, we restate a result of Bothe and Priiss (see [18], proof of Theorem
4.1). Unlike Bothe and Priiss we need the precise dependence of all involved constants from

z. Therefore, we need an additional argument.

Lemma 3.3.1. We assume [QN1] and [QN2]. Then, for every z € B;;?,;/”(Rd), there exists
v > 0,0 € [0,7/2) such that the operator v+ PA(z) has the domain W24(R?) and such that
it is R-sectorial in LL(R?) on the sector Xg. Moreover, 7,0, the bound C, > 0 in

R({AR(\ Y+ PA(2))} € BILL(RY)) < C,
for given v > 0 and the constant M > 0 in
M7 (v + PA())zl g ey < l2llyzagay < MI(y + PA(2))zll g me)

Jor all z € W24(RY) only depend on ||z|| go—2/» p,q and on the constants from [QN1].
q,p,0

(R?)”

Proof. Bothe and Priiss derive from [QN1] the strong ellipticity of A(z) (see [18], page 385).
In our case, A(z) only depends on Vz € B;;%(Rd)d”. Thus, it is sufficient to show that
given u € C¢ (Rd)d2 N L‘Z(Rd)”l2 for some o > 0 and a strongly elliptic operator of the form
B(u) = =3 =2 bs(u)DP with locally Lipschitz continuous coefficients bg : C& - Cixd,
the statement from above holds true with PA(:) replaced by PB(-) and 6,C,, M and
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p only depend on [ullo and on |lu|;,gayaz- The claimed result then follows directly by
2

Vz e B;,; (R4)4*4 and the Sobolev embedding
1-2 dydxd dyd? dyd?
By AR s 0(RY)Y 0 LURY)
for some o« € (0,1).

Note that Bothe and Priiss prove in [18], Section 5, that v + PB(u) has the maximal
regularity property in L% (R?) and that the domain of v+ PB(u) is given by W24(R%). This
implies the R-sectoriality of v+ PB(u) (see [102], Theorem 4.2).

We can follow the argument of Bothe and Priiss step by step, we just have to argue that

the spectral shift 7, the constant M in
MG + PB(w)z]| Ly gey < llellwzamey < M+ PB(u)z| 1 ray

and the maximal regularity constant of ¥ + PB(u) only depend on [lulla, [lul/;qgaye and

on the ellipticity and the local Lipschitz constants of B.

In [18], Theorem 5.1 Bothe and Priiss start with a constant coefficient elliptic operator B.
They prove that PB has the maximal regularity property, that the domain of PBis given by
W24(R?) and that all the involved estimates only depend on the bound and the ellipticity of
the symbol of B. In Corollary 5.2 in the same article, they show that one still has maximal
regularity, if one perturbs B with functions, whose supremum is smaller than some n > 0.

This 7 also only depends on the ellipticity and the bound of the symbol of B.

To deal with PB(u), their idea is to use the uniform continuity of bg(u) and convergence
at infinity to choose a radius § > 0 and finitely many balls B(z;,d), such that we have
|bg(u(z)) — bg(u(x;))| < nfor all x € B(x;,d) and |bg(u(x)) — bg(0)| < n for x ¢ U;B(x;,0).
Then, they localise the equation with a partition of unity subordinate to these balls, solve
locally and put the local solutions together. Closely inspecting their proof it turns out that
M, v and the maximal regularity constant only depend on the ellipticity and the supremum
of the symbol of B(u) and on the number of balls needed in this argument. The ellipticity
of the symbol is fixed by [QN1] and the supremum can be controlled by [|u||ce(gayaxa and
C(n) from [QN1]. So, it remains to estimate the number of balls by a quantity that can be

controlled by |||, and HU||Lq(Rd)d2'

Fix u € C*(RY)? N L9RY)% and by the local Lipschitz continuity of bg, there exists
C(|lu]loo) > 1 such that we have

bs(x) = bs(y)| < C(llulleo)lz =yl

for all |z|, |y| < ||lullsc. We divide R? in the two disjoint subsets {|u| > m} and {|u| <

— /e .
m} and we define § := (W) . The set {|u| > m} is closed and

bounded and hence compact. Then, by Vitali’s covering Lemma (see e.g. [41], Lemma 2.1.5),

there are disjoint balls (B(z;,d))i=1,.., v with radius 0 and centre z; € {|u| > m}
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such that

N

i=1

The balls (B(x,39))i=1,.. v are the sets we are looking for. Indeed, for = ¢ UN | B(z;,36),

we have |u(z)| < 4 and for z,y € B(x;,30), we have
[bs(u()) = bs(u(y))] < C(l[ulloo) ulla(30)™ < %52 < 4.
It remains to estimate the size of N. We have
U B(a;,8) C {|u\ > m}

Indeed, given y € B(x;,0) thereisi =1,..., N, such that

[u()] 2 Juza)l = [u(@:) = vW) = zeqursy — 14lled® = sequys — semars = et
Consequently, using that the B(x;,d) are disjoint, we get

A1C([[ul oo ) el
7]‘1

q
La(R4)d?

it = U ] < {1 > st} <
i=1

with Chebyshev’s inequality, where Cj is the volume of the unit sphere in R?. This finally

yields
4967 |[u]| ¢ lullz C(lulloc) ¥+
< La(Rd)d? e 0o
B Can?*a ’
which finishes the proof. O

Next, we conclude that the operators v + PA(2) also have a bounded H°-calculus. Our
proof of [TTQ3*] adapts the arguments of [53|, Proposition 9.5 to our situation. A key

ingredient is Sneiberg’s Lemma.

Lemma 3.3.2. Let (Xg)ge(0,1) and (Yp)oe(o,1) be complex interpolation scales of Banach
spaces and let S : Xg — Yy for each 0 € (0,1) be a bounded linear operator. If S is for some
0o € (0,1) an isomorphism between Xg, and Yy, then there is a 6 € (0,1) such that S is also
an isomorphism between X, andY,, for p € (6 — 0,00 + ). In particular, HS_1||3(YMX;L)

depends on ||S|5(x,.v.)» 1SI5(xs,.ve,): 157 1Bvey . x06,) and |1 — bol.

A proof can be found in [101], Theorem 3.6. The precise dependence of ||S~!|5(y, x,) on

the other parameters, namely

1S 1B(vay, Xa0) — IS0y, ay) 1t — ol

1S~ v, x.) < 1S]50x,.v, -
(¥ier %) X111 (X ag) — 1S~ 1 B(¥ay Xy 11 — bl

for |u — 6p| small enough is stated in Theorem 2.3 in the same article. The original proof is

due to Sneiberg (see [91]) in Russian language.
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Proposition 3.3.3. Given z € Bg;?o/p(Rd), the operator
u— A(2)u == yu + PA(2)u : W21(RY) — LZ(R?)
is tnvertible with
MY A(2)z| 2 wey < %z gy < MA(2)z| L ®a),

for all z € W24(R4). Moreover, A(z) has a bounded H>(Xy)-calculus and the angle § €
(0,7/2), the spectral shift v, M and the constant C' > 0 in

1F (A B2 @) < Cll flloo

only depend on ||z||Bzfz/p(Rd),p,q and on the constants from [QN1]. In particular, A(z)
satisfies [TTQ2*] and [TTQ3*| of the previous section.

Proof. By Lemma 3.3.1 A(z) = v + PA(z) is invertible and R-bounded on LZ(R?) on a
sector Xy, 0 € [0,7/2) and the occurring constants have the claimed dependency. It remains
to show that A(z) has a bounded H°-calculus.

Let (rn)n be a sequence of independent Rademacher random variables, v € (0,7) and

(Aj)jen C 3, be a dense sequence. For n € R, we define the norms

1(u)illx, s =1 rusllarzogey + BN rdiusllwegs

j=1 j=1
oo

1(u)slly, = =BIY  riusllwg o @e)
j=1

and the spaces

Xy = {(uy); € WEIRY) 5 ()], < oo}
Yy = {(uy); € WPIRY = [|(uy)sly, < oo}

Both (X,)),er and (Y,)),er form complex interpolation scales. We define the operator
Sn : Xn — Y’I’ (fj)j — ()\j — A(Z))fJ)J

Due to its Holder continuous coefficients, the operator A(z) : W1+24(R%) — W14(R9) is
bounded if || < § for some ¢ > 0 small enough. In particular, S, is bounded for |n| < é.
The R-sectoriality of A(z) on LZ(R?) implies that Sy is an isomorphism with Sy*(u;); =
(N — A(z))_luj)j. By the previous Lemma, [|So|l5(x0,v0)> IS0 ' 8(ve,x,) only depend on
the ellipticity and the Holder norm of the coefficients and hence they are determined by

[ By Sneiberg’s Lemma, there exists 8 > 0 such that S : X_g — Y_3 is

5252 o)
an isomorphism and the size of 3 and ||S~!(|y_, x_,) depend on p and ||z||3272/p(]Rd).
’ a,p

Especially, we have

E| ZTJ)‘J'(/\J' - A(Z))ilujHWa—ﬁvq(Rd) < ”S:EHB(Y,&X,B)E” eruj||wg—ﬁ=‘1(md)~
j=1

j=1
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This proves the R-sectoriality of A(z) on W;#4(R?) with domain W2~54(R?). Indeed, let
(Xj)é\’:l Cc C\ X%, and )\g_n) € M)k, mneN, j=1,...,N, such that )\;n) — Xj as n — oo.
Then, by Fatou and the holomorphicity of the resolvent, we have

E| ZTJ)\ R(\ A(2)) fillw- fa(ray < hmmfIEHZrj n)R()\(") (z))fj||W;ﬁ,q(Rd)
Jj=1
N
<15Z5llB0v_s.x_»)El erfj”vv;‘*vqmd)
j=1

for every (f_j);v:l C Wy Pa(RY).

If we now apply Corollary 7.8 in [54], we get that A(z) has a bounded H*(%,) calculus
on the space (W, #P(R%), W2=#P(R%))5 /5. Here (-,-), denotes Rademacher interpolation.
Working through the proof of Corollary 7.8 one sees that the bound of the calculus only
depends on the size of || and on ||S:é||5(y7ﬁ)xiﬂ). It remains to identify the Rademacher
interpolation space. Since the Helmholtz projection P commutes with I — A and I — A
has a bounded H>-calculus on W*P(R%)? for every a € R, p € (1,00), this is also true
for P(I — A) = I — A on W&P(R?). In this case, by Lemma 7.4 in [53], the Rademacher

interpolation spaces and the complex interpolation spaces coincide. This finally implies

(W P9(RY), W2H4(RY) 55 = (W P4(RY), WEP9(RY)), , = LL(RY)

B/2

which completes the proof. O

It remains to check the locally Lipschitz continuity of the quasilinear part, [TTQ4*], and
the locally Lipschitz continuity of the semilinear part, [Q6*]. Let y,z € B;;i,/p (R?) with
||y||Bz -2/p (Ray> ||Z||Bz -2/p (gay ST and u € W24(R9). Recall that

d
A(z)u = —p(| L2t |2 Zakuz (212 N (G + 0i20) (O + 020) OO

J,k, =1
With the Sobolev embedding Bap/* (RY) < CL(R)4, we estimate

[PA(y)u — PA(2)ul| s (ra)

< (M1 ZET ) = (| =572 )] e
1 (T ) — 1 (1B ) | oo itV e ity
1T ) | e gty V9 e gty Vy = P2 e g )il 2y

<C(Iyllzgo ey 2l mys VYl v ey, |V 2l o rayaxa) [V = V| poe ayacallully 20 gy

<C)Nly = 2l g2-2/r (ay [ ell w20 ey

Next, we estimate the semilinear part. Let u,v € W2:4(R9). Again using a Sobolev embed-



3.3. The incompressible Navier-Stokes system for generalised Newtonian fluids 113

ding, we get

|P(u- V) = P(v- V)l sy
< |[((w = v) - V)ull paays + [|(v - V)(u = 0)|| a(ray
< lu = vl poo (reya | V| parayaxa + [V Lo raya [ VU — V|| La(rayaxa
< (Il 252 ey + 100 22 ey 1t = Ul g2 -
Applying Proposition 2.3.9 we see that this estimate is sufficient to fulfil [Q6*]. All in all,

we proved that (z,u) — PA(2)u satisfies [TTQ4*] and u — P(u-V)u satisfies [Q6*]. Hence,
Theorem 2.3.12 can be applied to the equation

du(t) =[-PA(u(t))u(t) — P(u(t) - V)u(t) + Pf(t)] dt + Pg(u, Vu) dW (),
u(0) = up.

(QNS)

This yields a maximal unique local strong solution (u, (7,,)n,7) of (3.3) with

w e LP(0, 7,; W24(RY)) N C(0, 7; BEHP(RY)) N WOP(0, 7, W220:4(RY))

q,P,0

almost surely for every 6 € (0, %) and for every n € N. Moreover, T satisfies

P{r <T, lwll oo, w2 gayy <005 w:[0,7) = Bg;i{p(Rd) is uniformly continuous} = 0.
Finally, we want to remark that we do not know, whether we could also use the setting [LQ)]
or not. We would need that the operators A(z) have an Ry-bounded H*-calculus and we
failed to show this property. The setting [GM] is not applicable in this situation, due to
the fact that here TR is given by W12(R%) and hence a Sobolev embedding of the form
TR < W1 (R%) cannot hold. Consequently, we cannot show the local Lipschitz continuity

of y = PA(y)u in the same way as above.






CHAPTER 4

A nonlinear stochastic Maxwell equation with retarded

material law

In this chapter, we consider the semilinear stochastic Maxwell equation

du(t) = [Mu(t) = [u(®)|7u(t) + (G = u)(t) + J(t)] dt + [B(t, u(t)) + b(t)] AW (2),
'LL(O) = Up
(4.0.1)
in L?(D)% = L?(D)3 x L?(D)3 driven by a cylindrical Brownian motion W (t) with the
retarded material law

(G*u)(t) = /0/ G(t — s)u(s)ds

and the perfect conductor boundary condition u; x v = 0 on dD. Here, the Maxwell operator

M(ul) _ ( curl ug >
Usg —curluq

for 3d vector fields u; and us. We consider a bounded domain D or the full space D = R3,

is given by

obviously in this case the boundary condition drops.

This equation is a model for a stochastic electromagnetic system in weakly-nonlinear chiral
media and was derived in Chapter 2 in [88]. It has its origin in the deterministic Maxwell
system

O (Lu(t)) = Mu(t)+ J(t), t€]0,T]

u(0) = Uy
with constitutive relation

t

Lu(t,x) = k(x)u(t, z) + ; Ki(t —s,z)u(s,z)ds + /0 Ko(t — s, z)|u(s, z)|Tu(s, z) ds.

This material law consists of an instantaneous part xu with a hermitian, uniformly positive
definite and uniformly bounded matrix x : D — C8%6 3 linear dispersive part K; * u and a
nonlinear dispersive part Ko * |u|%u. This power-type nonlinearity is motivated by the Kerr-

Debye model. Note that in applications one would either take the nonlinearity |ui|9u; or

115
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|ua]9us to model either nonlinear polarisation or magnetisation. We take the two quantities

to study both phenomena at once. Using the product rule, we end up with

ku' = Mu— K1 (0)u — K3(0)|u|%u — (0. K1) * u — (0: K2) * |u|Tu + J,
u(0) = wup.

At this point, we introduce additional simplifications. Usually, one demands K;(0) : D —
C%%6 to be bounded and positive semi-definite and K»(0) : D — C5%° to be bounded and
uniformly positive definite. But for sake of simplicity, we choose K7(0) =0 and K5(0) = I.
However, the results are unchanged by this simplification and the proofs could be adjusted
easily. Next, we assume that the term (9;K3) * |u|9u can be neglected. This is typical for
a weakly nonlinear medium since one assumes that both the dispersion and the nonlinear
effects are weak.So, the combination satisfies (0;K3) * |u|9u << K3(0)|u|%u. Although, this
simplification seems to be motivated physically, we want to point out that our method cannot
deal with such a nonlinear term since it destroys the monotone structure of the equation.
Moreover, we choose k = I. We must admit that this simplification is also necessary at
this point since our methods cannot deal with coefficients so far. The problems one has
to overcome if kK # I are discussed in section 4.4 in detail. Setting G := —9, K7, we get a

deterministic version of equation (4.0.1).

In many applications, there is some uncertainty concerning the external sources or the precise
behaviour of the medium itself. In these cases, it is useful to model u as a random variable on
a probability space 2 and to impose a stochastic noise perturbation. Here, one distinguishes
between the additive noise b perturbing J and the multiplicative noise B(u) perturbing the

medium. A linear stochastic version of (4.0.1) was already discussed in [88], chapter 12.

However, as far as we know, there are no known results about a nonlinear stochastic Maxwell

equation. One reason might be that in the absence of Strichartz estimates for (et*)

LER, €VeN
local solvability is a tricky issue. Moreover, there is no compact embedding D(M) < LP
that helps to control the nonlinearity. Even the deterministic version of (4.0.1) has not
been treated rigorously so far. In [88], the authors profess to prove well-posedness, but their
argument ignores some severe complications. Since they claim to have better deterministic

results than ours, we discuss their approach in section 4.4 in detail.

4.1. The Hodge-Laplacian on a bounded C'-domain and

its spectral multipliers

In this section, we provide the spectral theory basics for our well-posedness proofs. We
discuss spectral multipliers of the Hodge-Laplacian Ay which is the componentwise Laplace
operator on LP(D)% with boundary conditions comparable to the boundary conditions con-
tained in D(M?). The method of finite dimensional approximation with a sequence of
orthogonal projections (P, ), is well-known in the literature about stochastic and determin-

istic partial differential equations. However, it turned out that we not only need P,z — =
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in L?(D)% for n — oo for all 2 € L?(D)% but also a comparable convergence property
in LP(D)%, p # 2. A sequence of orthogonal projections on L? that also approximates the
identity in L? can only be found in very special situations, e.g. the Fourier cut-off on the
torus. Hence, we have to construct another sequence of operators (S,,), that has the nec-
essary convergence property in LP(D)% p € (1,00), and that is not far away from being an
orthogonal projection, i.e. R(S,—1) C R(P,) C R(S,) for all n € N. In our construction, we
make use of the spectral multiplier theorems of Kunstmann and Uhl (see [68]) that work on
LP(D)S. They require that the semigroup generated by Ag satisfies generalised Gaussian
bounds. Here, we benefit from a work of Mitrea and Monniaux who already showed a version

of these tricky estimates in [78].

At first, we precisely introduce Ag. We consider the bilinear form
a(u,v) = / (curlw)(z) - (curlv)(z) dz Jr/ (divu)(z)(divv)(z) dz
D D

with form domain D(a) either given by V(1) := W?(curl, 0)(D) N W?(div)(D) or by V() .=
W2 (curl)(D) N W2(div,0)(D) equipped with the norm

[ulli = [l eurlul[Zapy + [ divul[Zapy + llullis p)

for i+ = 1,2. In both cases the form a is bilinear, symmetric and bounded. Moreover, a is

coercive in the sense that
a(u,u) = ||UH3/<1) - HUHQL?(D)

for all u € V@, i =1,2. Setting

D(AW) = {u e VY : curlewrlu € L2(D)3, divu € W, (D)},
DAY = {u e V? : curlcurlu € L3(D)?, curlu x v =0 on D, divu € WH2(D)},

it turns out that a with D(a) = V(1) is associated with the operator
AWM = curl curl — grad div = —A

on the domain D(A(M)), whereas a with D(a) = V() is associated with the operator
AP = curl curl — grad div = —A

on the domain D(A®)). To see this, use integration by parts for curl and div and exploit the
respective boundary conditions. In a more general setting, this can be found in [78], (3.17)
and (3.18). By the coercivity of the corresponding forms, the operators I + A®, i = 1,2,
are strictly positive. Moreover, the symmetry implies that they are self-adjoint on L?(D)3
(see e.g. [81], Proposition 1.24.). Since the embeddings V() < L?(D)? are compact (see

[7], Theorem 2.8), the embeddings D(A®) < L?(D)? are also compact for i = 1,2.

To simplify the notation in what follows, we combine A" and A to a self-adjoint operator
—Ap(ur,ug) = (AMug, A®uy) for (uy,uz) € D(AV) x D(A®) =: D(Ag). In particular,
the embedding D(Ap) < L?*(D)% is compact and I — Ay is positive. Hence, there exists
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an orthonormal basis of eigenvectors (h;);en to the positive eigenvalues (A;) en of I — Ag

with A\; — oo for j — oo.

The next proposition shows that the semigroups generated by —A® and Ay satisfy gener-
alised Gaussian estimates. We add an additional spectral shift since some of the theorems

we apply in what follows require strictly positive operators.

Proposition 4.1.1. The semigroups generated by —(I + AM), —(I + A®)) and —1 + Ay
satisfy generalised Gaussian (2,q) estimates for every q € [2,00), i.e. for every q € [2,00)
there exist C,b > 0 such that

—t I+A("’) _% %_1 75\.7@:“2 -
HlB(a:,t%)e ( ) B(y,t%)||B(L2(D)37Lq(D)3) < Ct ( 4)6 , 1= 1727
—t(I-A _3(1_1y _bla—yl?
e edye ( H)lB(y,t%>HB(B(D)G,LQ(D)G) <Ot

for allt >0 and all x,y € D.

Proof. In [67], the authors argue on page 239 that the semigroups generated by —AM and
—A®) satisfy generalised Gaussian (2, q)-bounds for every ¢ € [2,qp). Here, gp € [2,00)

denotes the supremum over all indexes p for which the boundary value problems

Au= fin D,

curlu, curlcurlu € LP(D)3, div(u) € W1P(D),
u-v =0, curl(u) x v =0 on 9D

and
Au= fin D,

curlu, curleurlu € LP(D)3, div(u) € W, (D),
uxv=0ondD

have a unique solution for given f € LP(D)3. This argument heavily makes use of iterative

resolvent estimate for the Hodge-Laplacian (see [78], section 5 and 6). By [77], Theorem

1.2 and 1.3, we know that ¢p = oo since D is a C'-domain in R?. Gaussian estimates are

preserved under negative spectral shifts in the generator of the semigroup. Hence, also the

semigroups generated by —(I + A1) and —(I + A®) satisfy generali(slt)ad Gaussian (2, q)-
e—tI+aM)

bounds. Last but not least, we remark that by e~ ‘(=2n) = (e—t(I+A(2))) these estimates

also hold true for the semigroup generated by —(I — Ag). O

For more details about these operators, we refer to [78], where they are discussed in a more

general differential geometric setting.

We define spectral multipliers with the functional calculus for self-adjoint operators on a
Hilbert space that have a basis of eigenvectors. Let ¥ € C5°(R) with supp(¥) C [3,2] and
> ez ¥(27'z) =1 for all # > 0. The operators P, : L*(D)® — L*(D)® and S, : L*(D)® —
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L?(D)S are defined by

Po(w)z =1jon(I = Am)z =Y (@, i) r2(pyshu,

ki <2m
Su(waz =Y ORI =Ax)z =Y > U2 N) (@, hi) 2o
l=—00 k=1l=—o0

for # € L?(D)% and n € N. Note that the last sum is in fact finite since only finitely many
eigenvalues of (I — Ag) are smaller than 2"*! and hence, ¥(27')\;) = 0 for all but finitely
many [ € Z and k € N. The next proposition summarises the most important properties of
S, and P, as operators on L?(D)°.

Proposition 4.1.2. P, and S,, satisfy the following properties.
i) P, is a projection, i.e. we have P2 = P, for all n € N.

ii) The operators Py, Sy, are self-adjoint with || P, | g(z2(pys) = 1SnllB(r2(pysy = 1 for every
n € N.

itt) P, and S,, commute for every n,m € N.

iv) The ranges of P, and S, are finite dimensional. Moreover, we have R(P,), R(S,) C
D(M) for every n € N.

v) We have R(S,—1) C R(P,) C R(S,), SpPn, = P, and P,S,_1 = Sn_1 for every
n € N.

vi) We have lim,, o, Ppx = lim,, oo Spx = x for every x € L?(D)S.

Proof. For this proof, we just need the properties of the functional calculus for the self-
adjoint and positive operator I — Ag on the Hilbert space L?(D). It remains to show iv)
and v). P, and S, have a finite dimensional range, since only finitely many eigenvalues of
I — Ay are smaller than 2"+, Moreover, let y = (y1,¥2) be in the range of 1jg on(I — Ap)
and in the range of >.;__ ¥(27(1 — Ap)). By functional calculus, we have y; € D(Ay)
and particularly y; € V@ for i = 1,2. Thus, curly; € L*(D)? fori=1,2and y; x v =0 on
0D, which shows (y1,y2) € D(M). Last but not least, we note that v) follows by

n

Z U(27h) = 1(g2m) + (27" ) Lgn gnt).

l=—0c0

This closes the proof. O
Moreover, the operators S, have the following property that will be crucial in what follows.

Lemma 4.1.3. For every p € (1,00), the operators S, are bounded from LP(D)® to LP(D)%
with a bound depending on p, but not on n € N. Moreover, we have S, f — f in LP(D)® as
n — oo for all f € LP(D)°.
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Proof. The first statement follows from the spectral multiplier theorem 5.4 in [68] as a con-
sequence of the generalised Gaussian bounds for the semigroup generated by I — Ag. One
could also argue with the more general Theorem 7.1 in [62]. The claimed convergence prop-
erty is then a special case from [61], Theorem 4.1. To apply this theorem the 0-sectoriality
of I — Ay and the boundedness of a Mikhlin functional calculus M® in L?(D)® for some
a > 0 are needed. The first property is checked in [78], Theorem 6.1, whereas the second
holds true with a > 4 by the generalised Gaussian bounds (see [61], Lemma 6.1, (3)). O

Next, we introduce two different Helmholtz projections on L?(D)3. The proof for the fol-

lowing statement is well-known and can be found amongst others in [59], section 4.1.3.

Proposition 4.1.4. Let D C R? be a bounded Lipschitz domain. Given u € L*(D)3, the

following decompositions hold true.

(1) There exists a unique p € Wy>(D) and U € W2(div)(D) with divi = 0 such that
u = u + Vp. The corresponding operator PI(Jl) : L?(D)? — L*(D)*,u — u is an

orthogonal projection.

(2) There exists a unique p € W'2(D) with [,p(z)dz = 0 and & € W?(div,0)(D)
with divu = 0 such that u = u + Vp. The corresponding operator Pl(f) : L?(D)3 —

L?(D)3,u ~ u is an orthogonal projection.

In particular, Pg(u1,us) = (Pl(i,l)ul,PI(f)ug) for ui,us € L*(D)? defines an orthogonal

projection on L?(D)°.

The Helmholtz projection Py is closely related to both M and Ap. For example, due to

div Pg) = 0, one calculates

(

— curl curl PI({U + grad div PI(})> <— curl curl PI(})
— curl curl PHQ) + grad div Pl(f) B

ApPy = ( ) = M?*Py,  (4.1.1)

— curl curl PI({2 )

which implies that M? = Ay on D(M)N Py L*(D)%). We use this connection to show some

powerful commutation identities.

Lemma 4.1.5. We have PuAyg = Ay Py on D(Ayg), MPy = PgM on D(M) and P, M =
MP,, S,M = MS, on D(M).

Proof. From |[78], section 3 or from [67], Lemma 5.4 we know that PI(})A(” = A(i)Pg) for
i = 1,2. This shows PuAy = APy on D(Ag) and by the properties of the functional
calculus, we also have S, Py = PyS,, and P,,Py = PyP,.

For the second statement, we first show that Mu = Py Mu for all u = (uy,u2) € D(M), i.e.

) )curl ug = curlus. Due to divcurlu; = 0 for

we have to show PI(LI2 curlu; = curlu; and Pl(ql
i = 1,2, we just have to show curlu; - v = 0 on D for u; € W?2(curl,0)(D). The definition

of uy x v =0 from Definition 1.1.2 a) together with curl V = 0 and div curl = 0 yield

/D Vo(z) - curlug (z) de = /D curl Vo(z) - uy(z)de =0 = /D o(x) div curl ug (x) do
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for every ¢ € C°°(D), which implies curlu; - v = 0 according to Definition 1.1.2 b).

As a consequence of curl V =0, we know M (I — Py) = 0. All in all, we get

MPy — PyM = MPy — M = M(Py —I) = 0.

Finally, by using M? = Ay on D(M) N Py (L?(D)%) together with M = M Py, we get

MP, = MPyligon(I = Ay) = M1 on)(I — M?) Py
= 19201 = M*)PyMPy = 1900 (I — Ag)M = P, M

on D(M). For S,M = MS,,, one may argue analogously. O

As a consequence, we get the following density relations.
Corollary 4.1.6. |J;2, R(P,) is dense in D(M) and in LP(D)® for any p € (1,00).

Proof. Let u € D(M). Using the commutation property of P, by Lemma 4.1.5 and vi) from
Proposition 4.1.2, we get

|Mu — MPyul r2(pys = | Mu — Py Mul|g2(pys == 0.

If on the other hand u € LP(D)S, we get S,u — u in LP(D)® as n — oo from Lemma 4.1.3.
This together with Proposition 4.1.2 v) proves the claimed result. O

We also consider the nonlinear Maxwell equation with retarded material law (4.0.1) on the
full space R? and hence, we need an analogue to the P, and S, in this different situation.
However, in the absence of boundary conditions, things are well known and far more easy.
We define

Pof = Snfi=F (€ Li_an 20)(€0)12n 20 (62) 1 [—20 201(€3) £ (€))

for f € L*(D)%. As M is a differential operator, it commutes with this frequency cut-off.
Moreover, P, and S,, satisfy the same properties as in Proposition 4.1.2 expect iv). Further,
as a consequence of the boundedness of the Hilbert transform on LP(R3), they are bounded
on LP(R?)®. This finally results in an analogue to Lemma 4.1.3 and Corollary 4.1.6. For
details, we refer to [41], Chapter 6.1.3. We end this section with a lemma showing the map-
ping properties of the projection P, as operator from L?(D)% to LP(D)% and as an operator
from L2(R3)S to LP(R3)S.

Lemma 4.1.7. Let either D be a bounded C'-domain or D = R3. For fited n € N,
p € [2,00) and q € (1,2] the operator P, : L9(D)% — L?(D)% and P, : L?*(D)® — LP(D)® is

linear and bounded with norm depending on n.
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Proof. This statement is trivial if D is bounded, since all norms on a finite dimensional
space are equivalent. In the other case, it is sufficient to show that P, : LY(R3)% — L?(R3)S
is bounded. The rest follows by duality. The Holder and the Hausdorff-Young inequality

yield
IPufllze@eys = 1€ = 1_an an)(€1)L{_an 9n1(E2)L{_an 2n] (&) F(E) |22 Re)s S | ]l
La— 1(]R3)6
< [ fllzagsye,
which finishes the proof. O

4.2. Existence and uniqueness of a weak solution

In this section, we will prove existence and uniqueness of a weak solution in the sense of

partial differential equations of

(WSEE) du(t) = [Mu(t) — [u(t)|Tu(t) + (G * u)(t) + J(t)] dt + B(t, u(t)) AW (#),

for any ¢ > 0. Here, we use F(u) := |u|?u and (G * u) fo (t — s)u(s)ds. This is done
in two steps. First, we use a version of the Galerkin method from Rocker and Prévot (see
[85]) to solve (4.0.1) in the special case G = 0 and make use of the monotone structure of
our nonlinearity. As this approach is well-known, we just discuss the different steps and
concentrate on how to deal with the additional term Muw, despite the fact that uw ¢ D(M).
Afterwards, we include the retarded material law with Banach’s fixed point theorem. Before

we start, we explain our solution concept.

Definition 4.2.1. We say that an adapted process u : Q x [0,T] — L?(D)% with
u € L*(Q;C(0,T; L*(D)))® N LIT2(Q x [0,T] x D)°
is a weak solution of (WSEE) if
¢
<u(t) — Uo, ¢>LQ(D)G :/ < - |u(3)|qu(s) + J(S) + (G * u>(3)7 ¢>L2(D)6 ds
0

t

b u6):28) oy 5+ [ (B0 W)

holds almost surely for all t € [0,T] and for all $ € D(M) N Li+2(D)S. Moreover, we call a
weak solution u unique if for any other weak solution v, there exists N C Q with P(N) =0
such that u(w,t) = v(w,t) for allw € Q\ N and all t € [0,T].

We make the following assumptions.
[W1] Let D C R3 be a bounded C'-domain or D = R3.

[W2] The initial value ug :  — L?(D)S is strongly Fo-measurable.
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[W3] Let G : Q x [0,T] — B(L*(D)%) such that x — G(t)z is for all z € L?(D)° strongly

measurable and F-adapted. Moreover, we assume

T
esssup/ |G (w, t)||B(L2(Dys) dt < oo.
weN 0

[W4] Let U be a separable Hilbert space and W a U-cylindrical Brownian motion. Moreover,
let B:Qx [0,T] x L?(D)S — L*(U,L?(D)®) be strongly measurable such that w
B(w,t,u) is strongly F;-measurable for almost all ¢ € [0,7] and all w € L?(D)°.

Furthermore, there exists a constant C' > 0 such that B is of linear growth, i.e.

IB(t,w)|| 222 (pyoy < C(L+ lJull2(pye)

and Lipschitz continuous, i.e.

||B(t, u) - B(t, v)||L2(U;L2(D)6) S CHU - UHLz(D)G
almost surely for almost all t € [0,7] and all u,v € L*(D)5.

[W5] J : Q x [0,7] — L?(D)° is strongly measurable, F-adapted and we assume J €
L3(Q2 x [0,T] x D)S.

First, we need an It6 formula that is appropriate to deal with weak solutions. Our result
is a version of [85], Theorem 4.2.5 that additionally allows a term with the skew-adjoint
operator M in spite of the fact that our weak solution is not in D(M). Our proof relies
on a more straightforward regularisation technique than the original one using the spectral

multipliers S,, we defined in section 4.1.

Lemma 4.2.2. Let Xo € L2(Qx D)® and Y € L1 (Q x [0, T] x D)S + L2(Q2 x [0,T] x D)®
and Z € L*(Q x [0,T); L*(U; L*>(D)®)) be F-adapted. If

(X(t), 9)L2(Dys =(Xo, ) L2(D)s +/0 —(X(8), M@)L2(pys + (Y (5),9) r2(p)ys ds
+ /0 (Z(5),6 AW(S)) 12y (4.2.1)

almost surely for all t € [0,T) and all ¢ € D(M)NLI2(D)% and if we additionally have the
regularity X € LI9T2(Q x [0,T] x D)* N L2(2 x [0,T] x D)8, then the Ité formula

1X (t2)lI72(pys = I1X ()17 2(pye
ta

— [ 2ReX (). Y (Do + 126N szom d+2 [ Re (X(5), Z(6) AW () 1y

tl tl

(4.2.2)

holds almost surely for all 0 < t; < ty < T. Moreover, we get the additional reqularity
X € L?(Q;0(0,T; L?(D)))S.
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Proof. Let 0 <t; <ty <T. We plug in ¢ = S, ® for & € C°(D)° into the equation

(X(t2), ®) 12 (pys =(X(t1), P)2(D)s + / 2 —(X(5), M@)r2(pys + (Y (5), ) L2(pys ds

t1
ta
+ [ 26,6 W ©)aco
ty
Note that by Lemma 4.1.5, S,, and M commute. Moreover, R(S,) C D(M). Consequently,
since 5, is self-adjoint and & is chosen arbitrarily, we obtain
12 ta
SpX (t2) — SpX(t1) = / MS,X(s)+ Sp,Y(s)ds + / SnZ(s)dW (s)
t1 t1
almost surely. Thus, we can apply the Ito6 formula for Hilbert space valued processes (see

e.g. [24], Theorem 4.32) to the functional u — ||u||2L2(D)6 to get

HSnX(tQ)”%z(D)S - HSnAX(tl)Hiz(D)6

ta
_ / RS, X (5), MS, X (5)) 12(pye + 2Re(Su X (), S, Y (5)) 12 (pys

t1
to
+ HSHZ(S)”%P(U;L?(D)G) ds + 2/ Re <SﬂX(S), SHZ(S) dW(s)>L2(D)6
t1
almost surely. Since M is skew-adjoint, the first term on the right hand side drops. In all
the other terms we can pass to the limit. Thereby, we need that S,u — wu for n — oo in
L9+2(D)S and L (D)0 (see Lemma 4.1.3). This finally yields

IX (E2)132 oy — IX (E) 132 (pye
to

= [ 2R Y ()i + 1206 sy 05 +2 [ Re(X(5) 205) AW )

t1 t1

(4.2.3)

almost surely. Together with X € L9T2(Q x [0,T] x D) N L2(2 x [0,T] x D)5, this identity
implies u € L2(2; L°°(0,T; L?(D)))% by a classical Gronwall argument.

It remains to show the almost sure continuity in time. From (4.2.1) we know that there
exists  C Q with P(€2) = 1 such that ¢ — (X(t),9)r2(pys is continuous on Q for every
¢ € D(M)NLI+2(D). In particular, t — X (t) € L2(D)S is weakly continuous on 2. On the
other hand, by (4.2.2), there exists another set 2, C Q such that ¢ — [u(t)||3, is continuous
on Qy. Let t € [0,T] and (t,), C [0,T] with t,, — t as n — oo. As argued before, we both
have X (t,) — X (t) weakly in L*(D)S on Qq and || X (t,)]|12(pys — || X (t)]|£2(pys on Qs as

n — oo. This implies

X (tn) = X122 pye = X E) L2 (pye + IXOIL2pye — 2Re (X (tn), X (1)) 12 o

T2 X @2 (s + IX (Ol Z2(pye — 2Re (X (2), X (1)) 12 pye =0
on QQ, which proves the desired continuity. O

At first, we assume G = 0 and solve (WSEE) without retarded material law. The reason for

this simplification is that we make use of the monotone structure of the rest of the equation.
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We start with a Galerkin approximation with the spectral projection P,, we defined in section

2. We investigate the truncated equation

dun(t) = [PaMuy(t) — PoF(un(t)) + PoJ(t)] dt + P, B(t, un(t) AW (t),
un(0) = Pyug

(4.2.4)

in the range of P,. To solve this equation, we derive some properties of the nonlinearity
+2

u— F(u) = |u|9u as a mapping from Li+2(D)® to Li+1 (D)% with ¢ > 0 and some properties

of its truncation v — F,(u) = P,|u|%u as mapping on the range of P,. We start with the

monotonicity.

Lemma 4.2.3. The mapping F : L2(D)% — L%(D)G, u > |ulfu satisfies the estimate

/DRe<F(U)(x) — F)(@), u(@) — v(@))go dv < ~Cllu — o4 s (4.2.5)
for some constant C > 0 and for all u,v € L1T2(D)S.

Proof. Clearly, || F(u )H at2 D)6 = |lullpa+2(pys and therefore F' has the claimed mapping

properties. The estimate (4.2.5) is a direct consequence of Lemma 4.4 in [29]. O

Since we often use It6’s formula, we need to know the differentiability properties of F.

Lemma 4.2.4. The nonlinearity F : L472(D)% — L%(D)ﬁ, u > |u|%u is real continuously
Fréchet differentiable with Re(F'(u)v,v)r2(pys > 0 and

[F' (w)v()] S fu(z)|?[o(2)]

for all u,v € L972(D)% and x € D. In particular, it is locally Lipschitz continuous, i.e.

”F(U) - F(D)HL%(D)G 5 (HUH%Q-FQ(D)G + ||IU||%<I+2(D)6) ”U — UHLHQ(D)G.

Moreover, if g € (1,00), it is twice real continuously differentiable with

F"(u)(v,v)(2) < |u()|" o)

for all u,v € L9T%(D)% and all x € D.

Proof. Tt is well-known that F': LT2(D)¢ — Lt (D)® is real continuously Fréchet differ-
entiable with

F'(u)v = qu|?? Re(u, v)csu + |ulfv
for every u,v € L9T2(D)% (see e.g. given [48], Corollary 9.3). Consequently, we also have
_ 2
Ro (F(1)0.0) o pyo = [ alua)l?* (Refule), e + fu(o)l o) P do > 0
Moreover, we estimate

Fl(u)v(z) < Clu(z)|*|o(z)|
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for some C' > 0. For the second derivative, we start with a formal calculation for F”' and

get
F (u) (v, w) =q|u|?? ((q — 2)|u| "2 Re{u, w)r2(pys Re(u, v) p2(pysu + Re(w, v) r2(pysu
+ Re(u, w) 12 (pysv + Re(u, v>L2(D)ew).
For sake of readability, we do not rigorously show that F : LI+2(D)¢ — L (D)% is twice
Fréchet differentiable with this derivative. However, to give an impression how to prove this,

we check that last term in F’(u)v, namely

q+2

u s [v e Ju|%] : L97%(D)% — B(LY"%(D), L++1(D)"),

is Fréchet differentiable with derivative G(u)(v,w) = q|u|972 Re{u, w)cev. Let u,v,w €

L972(D)% with v,w # 0. Then Hélder’s inequality together with the mean value theorem

yields
ap_ 0y _
(| JulT0—|u + w| % G(u)(v,w)HLg%(D)6
< [llul? ~ fu o w0l = > Refu, wyeo | ase - [ollzasaoe

1
< H /0 Re(|lu + 9w|‘1—2(u + Ow) — |u|Q—2u, w)ce A HL%(D)G ||’U||Lq+2(D)6

1
g/ [+ w|72 (u + Ow) — [u]7 || asz
0 La=

T (D)6 0 [|wl[a+2(pys [0l La+=(Dye-

Hence, we showed

—1
||w||Lq+2(D)6 ||v — Jul|fv—|u + w|% — G(u)(v, w)HB(Lq+2(D)67L%(D)6)

1
S / | Ju+ Ow|?2 (u + Ow) — \u|q*2u|| at2 dé (4.2.6)
0 La=1(D)s

for all u,w € L97%(D)% with w # 0.

It remains to prove that this quantity tends to 0 as w — 0 in LI72(D)S. Let (w,), be a
sequence in LI+2(D)® with w, — 0 as n — oo and let (w,, ) be an arbitrary subsequence.
Hence, there exists another subsequence, still denoted with (wy,, ) such that w,, — 0 almost

everywhere for k — oo and such that |w,, | < g for some g € L972(D)%. We also have
U+ Own, |92 (u + Ow,,,,) — [ul?%u — 0
almost everywhere as k — oo. Together with the bound
o4 B0, |72+ B0, = [l 2| < [l o [ < 4 g
for 6 € [0,1] and the fact that u € LIt2(D)°, we get

1
/ ||+ 0w, |72 (u + Owp, ) — |ul?u| ,do—0
0

q+2
L1 (D)
as k — oo. All in all, this shows that the left hand side of (4.2.6) tends to 0 as w — 0 and
we established the Fréchet differentiability of u — [v — |u|?v] with derivative G(u). The

claimed estimate for F”(u)(v,v)(x) is immediate. This closes the proof. O
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Now, we can come back to our truncated equation

dun(t) = [PaMuy(t) — PoF(un(t)) + P, J(t)] dt + P, B(t, un(t) dW(t),
This is a stochastic ordinary differential equation in R(P,) C L*(D)® with a locally Lip-

schitz nonlinearity which can be seen by Lemma 4.1.7 and Lemma 4.2.4. Indeed, let

u,v € P,L*(D)%. Then, we can estimate

| PoF'(u) — PoF(v)||2(pys = (| Po ' (Pau) — PpF(Pov)| L2(pys
S [1F(Paw) — F(Pyo)

[ a2
Lat1(D)s

Sn (HPnUH%qM(D)G =+ ||PnUH%q+2(D)6)||Pnu - PnUHLq+2(D)6
S (HU”%‘A(D)G + ||”||qL2(D)6)||U - UHLQ(D)“’-

Hence, there exists an increasing sequence of stopping times (Tﬁm))meN with 0 < Tr(Lm) <T

)

almost surely, a stopping time 7,, = lim,,_ 7™ and an adapted process u,, : Q x [0,7) —

R(P,) with continuous paths that solves (4.2.4). Moreover, we have the blow-up alternative

P{Tn <T, sup |[un(t)|lz2(pys < oo} =0. (4.2.7)
te[0,7)

The next result shows 7, = T" almost surely for every n € N and a uniform estimate for w,.

Proposition 4.2.5. We have 17, = T almost surely for every n € N and u,, additionally

satisfies

T
supE sup ||un(t)H%2(D)6 + SupE/ / |, (t, )72 da dt < oco.
neN  t€[0,T] neN 0 D

Proof. Lemma 4.2.2 applied to u,, the self-adjointness of P, and P? = P, yield

[un ()1 22(pys = [1PattollZ2(pys

— /0 R (un (1), ~Jn (1) T2 (1) + T (1)) e 0
+ 2/08 Re (un(r), B(s, un(r)) dVV(r)>L2(D)6 + /OS |P.B(r, Un(r))H2L2(U;L2(D)6) dr
almost surely for every s € [0, Tﬁm)]. This expression simplifies to
iy +2 [ [ Jun(o,2)72 ot = [Pyl
< [ 2Re (0. T oy + 1B Dz

+2 /OS Re <un(r), B(s,un(r)) dW(r)>L2(D)6 (4.2.8)

almost surely for every s € [0, TT(Lm)]. Since the second term on the left hand side is positive,

we can drop it for a moment. We first take the supremum over [0, A t] for t € [0,7] and
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afterwards the expectation value and estimate the remaining quantities term by term. We
start with the deterministic part using [W4] and [W5].

E sup
SE[O,TT(,,M)/\t]

/O 2Re (un(r), J(r)) 2y + | B(r, un ()72 w.22(p)ye) dr

t
<1+ / E1,_ om l[un(s) | z2(pye 1 ()| z2(pye + llun (3) 172 ye ds

t
<1+ /E sup  Nun(r)2aoye 45 + 1122 cx 0.2y
ref

Ovs/\TfLm”

The stochastic part can be estimated with the Burkholder-Davies-Gundy inequality.

E sup ‘/ Re(un(s), B(s,un(s)) dW(s))r2(pys
SG[O,t/\TT(Lm)] 0

TSN 5 N\1/2
< CE( / [ (5), B(s, un () 2,220y | s
0

tATm) 1
~ " 2
<CE( swp fun(s)lleaop (1+ / u(t) 3 oye ) )

s€[0,tAT™)]

t
E  sup ||un(s)||%2(D)a+C2(l+/]E sup ||u(r)lliz<p>sd8)~
0

s€[0,tATE™) r€[0,5AT™)]

<

A~ =

Thereby, we used ab < %a2 + b2 for all a,b > 0 in the last step. Putting these estimates
together, we get

E  sup  un(s)l72(pys
s€[0,tATS™)

t
S 1+ wolaoys + 11 Eseiorimys + [ B sup fualr) s ds
0 TE[O,S/\T,,(;")]

for all ¢ € [0, T]. Consequently, Gronwall yields

E sup fun(®)ll72mye S 1+ 11Z220x10,71x pys + 110l 72(pys
te[o,7$™)
with an estimate that is independent of n € N. Now, we can go back to (4.2.8) and deal

with the term we dropped at first. The estimate of Esup, o ,om ||un(t)||2L2(D) implies

T,,(Lm)
E / /D [n(5, 2|72 e dt S 1+ 72 agqmto 1100 + 10|20

We use Fatou’s Lemma to pass to the limit m — oo in these estimates. Note that one can
interchange sup and liminf in an upper estimate, since liminf can be written in the form

sup inf and supremums can be interchanged, whereas supinf < inf sup. Hence, we have

E sup ||un(t)||2L2(D)e +E/ /|un(s,x)|q+2dxdt
t€[0,7n) o Jp

S L+ I1172@xqo.m1xpys + [w0ll72(pys- (4.2.9)
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Consequently, we also have 1, = T almost surely. Indeed, there exists N C Q with P(N) =0
such that Q\ (N U {7, =T?}) can be decomposed into disjoint sets

{Tn < T, sup ||un(t)||2L2(D)s < oo}7 {Tn <T, sup ||Un(t)H%2(D)6 = oo}.
te[0,m) t€[0,m)

The first set has measure zero by (4.2.7) and the second one has measure zero since (4.2.9)
implies sup;c(o 7, |un(t)[|L2(p)s < oo almost surely. Pathwise uniform continuity on [0, 7]

follows from Lemma 4.2.2. This closes the proof. O

In Proposition 4.2.5, we derived uniform estimates for u,,. As a consequence, Lemma 4.2.5
yields the uniform boundedness of F(u,) in L%(Q x [0,T] x D)S. Thus, by Banach-
Alaoglu, there exists u € L2(Q; L(0,T; L%(D)%)), N € L+ (2 x [0,T] x D), B € L2(Q x
[0,T); L>(U; L*(D)))® and subsequences, still indexed with n such that

a) up — u as n — oo in the weak™ sense in L?(Q; L°°(0,T; L?(D)))S,

b) u, — u as n — oo in the weak sense in LI72(Q x [0,7] x D) N L?(Q x [0,T] x D)°,
¢) F(u,) = N as n — oo in the weak sense in L%(Q x [0,T] x D)8,

d) B(-,u,) — B as n — oo in the weak sense in L2(Q x [0, T]; L3(U; L*(D)))S.

Since u, is for every n € N an adapted solution of the ordinary stochastic differential
equation (4.2.4) in P,L*(D)% we have u,, € LZ(Q x [0,T] x D)5. Consequently, since
L2(Q2x [0,T] x D)% is a closed subspace of L?(Q2 x [0,T] x D)S, it is also weakly closed. This
implies u € L2(2 x [0,T] x D)8, which means that u is also adapted.

Testing (4.2.4) with p¢ for arbitrary p € L1"2(Qx[0,7]) and ¢ € |J,—, R(P,), the symmetry
of P, and the skew-symmetry of M yield

E/o (un(t) — uo, @) r2(pys p(t) dt
T t
:E/ / —(un(8), MPn) 12 (pys + (=F(un(s)) + J(5), Pady) 12 (pys dsp(t) dt
HE/ / (s, un(5)), Pad) 2(pys AW (5)p(t) dt.

By weak convergence, we can pass to the limit and obtain
T
[ {ult) — uo.6)acoysolt)
0
“E / / ) M) 2oy + (=N (5) + J(5), 8) 2 pye ds(t) di

+u«:/ / &) L2(pys AW ()p(t) dt.

Thereby, we used P,¢ = ¢ for n large enough since ¢ € |J;—, R(P,) and that linear and
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bounded operators are also weakly continuous. Since p was chosen arbitrarily, we finally get
t
(u(t) — uo, @) r2(Dys =/ —(u(s), M@)r2(pys + (=N (s) + J(s), #)L2(pys ds
0

+/ (B(s), ¢) 12(pys AW (s) (4.2.10)
0

almost surely for every t € [0,T]. Hence, by density (see Lemma 4.1.6), this holds true for
every ¢ € D(M) N L972(D)%. To show that u is a weak solution of (WSEE) with G = 0,
it remains to prove N = F(u) and B = B(-,u). This will be done by adapting a standard
argument for stochastic evolution equations with monotone nonlinearities (see [85], proof
of Theorem 4.2.4, page 86) to our situation. To do this, we just need an Itd formula for
Ee’KtHu(t)HQLQ(D)(s, although Mu(t) ¢ L?*(D)%. Thereby, we use the abbreviation (-, -)» for
the duality (L?(D)®, L7 (D)%).

Lemma 4.2.6. For any K > 0, u, and u satisfy the Ité formulae

E e u(t)|F2(pys — Elluoll7z(pys

t
= E/O 2¢” M Re (u(s), =N () + J(5)) pre + € “°IIB()|72(0r;12(pye) s

t
—E [ K o) e ds
and
E ¢ 0 un (1) 32y — Ell P32 s

¢
= E/O 2¢ %4 Re (un(s), —F(un(s)) + J(s)>L2(D)6 + e K| P, B(s, Un(S))HQLz(U;Lz‘(D)G) ds

t
- IEI/ Ke 58 |un(s)[|72(pys ds
0

almost surely for all t € [0, 7).

Proof. These formulae are immediate by Lemma 4.2.2, the It6 product rule and the fact

that the expectation of a stochastic integral is zero. O

Proposition 4.2.7. If we assume [W1] — [W5], the equation (WSEE) with G = 0 has a

unique weak solution u in the sense of Definition 4.2.1.

Proof. Throughout this proof, we write H = L?(D)° to simplify the notation. We need to
show N = F(u) in L%?(Q x [0,7] x D)8 and B = B(-,u) in L2(Q x [0,T]; L2(U; H)). Let
¥ € L*>(0,T) be nonnegative. Then, weak convergence yields

T
E [ w0z e

T 1 1 2
= lim E/O Re <1/)(t)5u(t),lb(t)iun(t»w(p)ﬁ dt

n—oo

1
2

T 1 T
(B[ vz dt) tmint (B [ Ol @lamp )’ @210

IN
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which implies

T T
E [ 6O o at < 1l E [ 00)fun (0= e .
0 n—oo 0

Let K >0 and ¢ € L2(Q; L>(0,T; L?(D)%)) N L1*2(Q x [0, T] x D)®. Then, the It6 formula

from Lemma 4.2.6 gives

Ee™ " un (t)[I% — EllPauoll?

=E /Ot 2¢ K5 Re (un(s), = F (un(s)) + J(s)>H +e 53| P,B(s, u(s))||2L2(U;H) ds
— E/Ot Ke 55 |u, (s)||% ds

<E [ (2Re (1, (5) = 6(5). F(6(5) = Flua () + Bl 0,(5)) = Bls. 06 s

= Kllun(s) = ¢(s)ll7; + 2Re (¢(s), F((5)) = Flun(s))) g — 2Re (un(s), F(4(s)) = J(5))
= 1B(s, &(s))l|720ary + 2Re (B(s,un(s)), B(s,6(5))) 1o .y + Kl o(3) |7

— 2K Re (uy (s), ¢(s)>H) ds.
Next, by [W4], we can choose K large enough such that
1B (s, un(s)) — Bls, ()| — Kllun(s) — 6(5) |3 < 0.
Together with Lemma 4.2.3, we get
Ee™ " |lun (t)][7r — Bl Pauol
<t | e (2Re (8(5), P(9(5)) — Flun(s)))yy — 2Re (un(5), F0(5) — J(5))
By + 2Re (Buta). BO)) 1a(yg) + Kll0(5) 3y — 2K Re (u,(5). 6(5)) ) .

The limit lim, o ||Pru(0)||g = [|u(0)||g (see Lemma 4.1.2) and (4.2.11) combined with
Fubini and the weak convergence wu,, — u in LIT2(Q x [0,T] x D)% as n — oo yield

/ ) e )l — o) dt
<liminf B / ) (e un (O — | Pariolly) dt
n—oo

<liminf B / b(t) / e (2Re (6(). F(6(5)) — Flun(5)))

— 2Re <un(8),F(¢(8)) - J(S)>H - HB(¢)”%2(U,H) +2Re <B(un)aB(¢)>L2(U;H)
+ K|o(s)|% — 2K Re (un(s), ¢(5)>H) dsdt

<[00 [ R (2Re (006) FlOL6) - N6,

—2Re <u(s ,F(6(8)) — J(5)> otz — |1B(s, ¢ ))||2L2 (U;H)
+2Re (B(s), B(s.0(5))) 12y + KN6() [ — 2K Re (u(s), 6(5)) , ) dsdt.
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On the other hand, by Lemma 4.2.6, we also have
T
B[ w0 )~ fuolf) o
T t _
“E [ 00) [ 27 Re u(s). =N () + T()) s + 1B o ds
t
- / KefKSHu(s)H%z(D)e dsdt.
0
Inserting this equality in the left hand-side of the estimate from above, we end up with
T t
0<E [0 [ e (2Re(0(5) — ulo). F0(5) ~ N())
0 0

~1B(s,8(5)) = BO)Zaqwamy + K0(5) — uls) %) dsdt (1:2.12)

and we still have the freedom to choose a nonnegative ¢ € L°(0,7) and an arbitrary
¢ € L2(Q; L>°(0,T; L3(D)%) N LI9T2(Q x [0,T] x D)%. At first, we choose ¢ = u, which

implies
T ¢ _
0< & [ 0(0) [ 15(s.u(s) = B(s) g dal

which can only hold true if B(s) = B(s,u(s)) almost surely for almost every s € [0, T] with
equality in H = L?*(D)%. Next, we plug ¢ = u — edv with e > 0, ¢ € L>(92 x [0,T]) and
v e LI2(D) N L?(D)° into (4.2.12). Then dividing both sides by ¢ yields

T t ~ ~
025 [ u) [ e (26(5) Re (0. F(u(s) = ed(0) = N(s)) .
B (s, u(s) = e(s)v) = Bls,u(®) 320 — Ked(s)llollfy ) ds e
Next, we let ¢ — 0. Clearly, we have
e[ B(s, u(s) — ed(s)0) = Bls, uls)l3z(ar) < £CO(s)olf =% 0
by [W4] and as a consequence, the expression
E / ") / I (1 B(s,uls) — 3(5)0) — Bl u(s))Baquan, — Kedlloly) dsd

converges to 0 as ¢ — 0 with the dominated convergence theorem. It remains to investigate
the first term. Lemma 4.2.4 yields

1F (u(s) — e(s)v) — F(u)|

< Czo(s (2||u %z pys + 9B(8) 01012 pye) 01| a2y

i
Lat1

which implies

T
i e ks —ed(s)v s
hrnIE/O w(t)/o (s )Re (v, F(u(s) — ed(s) )> oo dsdt

e—0

T t
_ e—Ks~S elv uls .
_E/O w(t)/o ¢(s) Re (v, F(u(s))) 40 dsdt
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and consequently
T t _
0> IE/ P(t) / 2¢ 56 (s) Re (v, F(u(s)) — N(5)), 41 dsdt.
0 0

Instead of %, we could insert —%. Hence, the above inequality is only true for arbitrary 5 if

we actually have equality. With Fubini, we can rewrite it as

T t
= e Ksh(s) Re (v u(s)) — s s
0*/0 wm/o 265 3(5) Re (v, F(u(s)) — N(5)) . ds t

for all nonnegative ¢ € L>°(0,T), which particularly implies
T ~
0= ]E/ 2¢” 5 (s) Re (v, F(u(s)) — N(s)>H ds
0

for all ¢ € L= (Qx[0,T]) and all v € LIT2(D)®. Hence, we can conclude F(u(s,z)) = N(s,z)

almost surely for almost every ¢ € [0, 7] and 2 € D. This shows that u is a weak solution.

It remains to prove uniqueness. Let u,v € L?(Q;C(0,T; L?(D)))% N LI2(Q x [0,T] x D)8
be weak solutions of (WSEE) to the initial value ug. Since both u and v are weak solutions,

we have

(u(t) = o(0) ) = [ (o) "uls) = [o(5) 5). ) 0
+/0 —(u(s) —v(s), M¢), ds
+ [ (Bl = Bls.os). 0 aW (),

almost surely for every ¢ € [0,7] and for every ¢ € D(M) N Li2(D)S. Applying Lemma
4.2.2 yields

E|lu(t) — v(t)ll% =2/0 E (—u(s) +v(s), [u(s)|"u(s) — [v(s)["v(5)) ;
+E|B(s,u(s)) — B(s,v(s)) 72, ds

almost surely for every ¢ € [0,7T]. We know from Lemma 4.2.3 that the first term on the right
hand-side is negative and can be dropped in an upper estimate. By the Lipschitz continuity

of B, we end up with

Eflu(t) — v(®)l7 5/0 Ellu(s) = v(s)||% ds

for every t € [0,7]. Hence, we get E|ju(t) — v(t)||% = 0 for every t € [0,7] by Gronwall’s

Lemma. This proves the claimed uniqueness. O

Finally, we add a nontrivial retarded material law G by a perturbation argument.

Theorem 4.2.8. If we assume [W1] — [W5], the equation (WSEE) has a unique weak

solution u in the sense of Definition 4.2.1.
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Proof. Let Ty € (0,T]. By Proposition 4.2.7 the equation
du(t) = [Mu(t) — F(u(t)) + (G =v)(t) + J(t)] dt + B(t, u(t)) dW (),
u(0)  =wuo
has for v € L?(Q; C(0,To; L2(D)%)) a unique solution u =: Kv € L%(Q; C(0, To; L?(D)%)).
Indeed, by [W3],
tn—>/Gt—s s)ds € L*(Q x [0,T] x D)8

and thus G x v satisfies [W5]. In the following, we will show that K is a contraction on
X = L?(Q;C(0,Ty; L*(D)")) if we choose Tp > 0 small enough. For given v,w € X, we
calculate with Lemma 4.2.2 that

[E0(s) = Ko(s) 3 oy
= [ 2Re (o) - Kulr), P () = FUU) + (G x (0= 0)(0) 2
1B Kv(r) = Blr, Kuw(m) sy &
-

+ 2/0 Re (Kv(r) — Kw(r), B(r, Kv(r)) — B(r, Kw(r)) dW (r))

In the following estimates, we take the supremum over [0,¢] for ¢ € [0,7Tp] and afterwards

the expectation. We now estimate the occurring quantities term by term.

/ “Re(Ko(r) — Kuo(r), (G # (v = w)(1)) 1o e ds

0

S/O %HKU(T) — Kw(r) |2 (pys + %H /0 Gr =N (A) = w(X) dA [y dr

S1
< / = sup [Kv() = Kw(\)|[2a pye dr
0 A€o,r]

TollGIIE 10,7522 (o))

! sup o(A) — w(W)2oe
)\E[O,TQ]

for all s € [0,Tp]. We can drop the contribution of F, as
(Kv(r) = Kw(r), F(Kw(s)) = F(Kv(s))) 12 pye < —allKv(r) = Kw(r)| 722 pe

for all s € [0,Tp] and some a > 0 by Lemma 4.2.3. Moreover, by [W4], we have

t t
/0 |B(s, Kv(s)) — B(S,KU)(S))H%Z(U;Lz(D)G) ds < 02/0 s%p] |Kv(r) — Kw(r)”%zw)a ds.
re|0,s

Last but not least, the Burkholder-Davies-Gundy inequality and [W4] yield

E sup ‘ /s Re (Kv(r) — Kw(r), (B(r, Kv(r)) — B(r, Kw(r))) dW(r))
s€[0,t]

< CE(/O |(Ev(r) = Kw(r), Blr, Ko(r) = B, Kw(m)) agpye oo dr)1/2

L2(D)s

t 1/2
< CE swp [[Ko(s) - Ku(s)l| oy / 1B, Ko(r) = Blr, Kuo(r) 222000 )
se|0,

e~ =

< 3B sup [Ko(s) - Kuw(s)|32(pyo + C* / E sup [Ko(r) = Ku(nlffapye ds.
s€|0,t re|0,s
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All in all, we derived

E sup ||Kv(s) —Kw(s)Hiz(D)s
s€[0,¢]

t
g/ 2(1+2C%* + C*HE sup ||Kv(\) — Kw()\)||2L2(D)6 dr
0 A€[0,r]

+ 210Gl 2~ .01 0,822 (0yoy) B sup [0(X) = w(N)[|72(pye
A€[0,T0]

for every t € [0, Tp]. Hence, Gronwall implies
E sup [[Kv(s) —Kw(s)||%2(D)6
s€[0,t]

2 2
< 2D0lGllf s o rsaaoyen (B 3p. 1000 = 0N 2y X120,
40

Now, we choose T > 0 small enough to ensure that K is a contraction. Then, by Banach’s
fixed point theorem, there exists a u; € L?(Q; C(0,Tp; L?(D)°)) solving (WSEE) on [0, Tp]
and from Ku; = u; we deduce u; € L972(Q x [0,Ty] x D)S. Clearly, by continuity in time,
we have u1(Tp) € L?(2 x D)% and w + u;(w, Tp) is strongly Fr,-measurable.

Next, given v € L2(Q; C(Ty, 2Ty; L?(D)%)), we consider the equation
dy = [My— F(y) + fOTO G(-— s)ui(s)ds + ng G(- — s)v(s)ds + J| dt + B(-,y)dW,
y(To) = ur(To)
for t € [Tv,2Tp]. By Proposition 4.2.7, we have a unique solution y := Kyv. This de-
fines an operator Ky : L%(Q; C(Ty,2To; L?(D)%)) — L2(Q; C(To, 2T0; L*(D)°)). However,

Ksv — Kws can be estimated in the very same way as above since the additional term

T . . o . :
o G(- — s)ui(s)ds vanishes in this difference. As a consequence, K, is a contraction

on L2(Q;C(Ty,2To; L*(D)°)) and has a unique fixed point us. Inductively, we construct
un € L*(Q;C((n — 1)To, nTy; L*(D)°)) solving

dy(t) = [My(t) = F(y(®) + [1,_y 7. Glt — s)y(s) ds + f(8)] dt + B(t,y) dW (@),

y((n = 1)Tp) = un—1((n — 1)To)

with f(t) = J(t) + ZZ;% (]ZT—OUTO G(t — s)ug(s)ds and stop when nTy > T. Finally, the

T
|41
process u := ZTLLE‘HH UnL[(n—1)Ty.n1,) SOlves (WSEE) on [0, 7] and satisfies
u € L*(Q;C(0,T; L*(D)%) N LI2(Q x [0,T] x D)°.

By construction, u is unique on every interval [(n — 1)Ty, nTp), which implies uniqueness on
[0,T7. O

4.3. Existence and uniqueness of a strong solution

In this section, we will discuss the following stochastic Maxwell equation
= [Mu— [ulfu+ Gxu+ J]dt + Zjvzl [bj +iBju] dB;,
u(0) =wg

(MSEE)
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on L?(D)® with a monotone polynomial nonlinearity and a retarded material law. We derive

existence and uniqueness of a strong solution that satisfies
Mu € L*(Q; L0, T; L2(D)%)) + L1 (Q x [0,T] x D).

As in the previous section, we start with G = 0 and we add a nontrivial G at the very end.

In a deterministic setting, one would try to estimate ||u’(t)]|2 12(pys and then use the equation

o' (t) = Mu(t) — |u(t)|9u(t) + J(t) + /0 G(t — s)u(s)ds

to control Mu. However, solutions of stochastic differential equations are not differentiable

in time. Our first idea to overcome this problem was to derive an estimate for

IMu(t) = [u®)|*ult) + TOlZ2(pye

with Gronwall’s Lemma, but we failed since the It6 formula for this quantity contains the

term

N
D 1Duu (0] %0) () (B(t ult)), B(t, ult) |72 (pye
j=1

which we could not estimate properly. Here B(t,u(t)) is the abbreviation of the noise term.
Hence, we had to choose the special noise Z;V:1 (bj(t)+iBju(t)) dB;(t) and use the rescaling
transformation

y(t) = u(t)e I Xi=1 Bibi®)

to get rid of the multiplicative noise in the same way as Barbu and Réckner in [13] and [14]
(see also [15] and [16]). The difference to our approach is that the authors have natural a
priori estimates before transforming the equation and they solely transform to solve the new
equation with purely deterministic techniques. Moreover, they only use multiplicative noise.
We use the transformation to get better a priori estimates and we consider an equation that

also has additive noise.

As in the previous section, we write F'(u) := |u|%u. Before we start, we explain our solution

concept.

Definition 4.3.1. A weak solution w is called strong solution of (MSEE) if it additionally
satisfies
Mu € L*(Q; L°(0, T; L2(D)®)) + L1 (Q x [0,T] x D).

Note that in case of a bounded domain D C R3, this integrability property reduces to
Mu € Lt (2 x [0,T] x D). We make the following assumptions.

[M1] Let g € (1,2] and D C R? be a bounded C*- domain or D = R3.

[M2] Let ug be strongly Fp-measurable with

(g+1)
E”MU()HLz )6 +EHUOHL2q(Q+1) (D)¢ < 0.
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[M3] Let G € L*°(Q; WH1(0,T; B(L*(D)"))), such that w — G(t)z is for all z € L*(D)S
and all ¢ € [0, T] strongly F;-measurable.
[M4] Let J € L?(Q; W12(0,T; L?(D)%)) be F-adapted.
[M5] Let b; € L?(;Wh2(0,T; L*(D)%)), j = 1,..., N, be F-adapted. If ¢ € (1,2), we
S (Q x [0,7] x D)6 and b; € L=(Q x [0,T] x D) if

q = 2. Moreover, if ¢ = 2, we assume that there exists n € N such that we have

additionally assume b; € L2

Pn (bje—iZfil Blﬂl) — bje_i ZLN=1 BB

for all n > n. Here, we use the operator P, defined in Section 4.1.
[M6] Let B € Wh(D) for j =1,...,N.

At first, we assume G = 0 and solve (MSEE) without retarded material law as in the
last section. This term will be added at the very end with a perturbation argument. The
reason for this simplification is that we make use of the monotone structure of the rest of
the equation. We start with a rescaling transformation such that the multiplicative noise

vanishes. We end up with

dy(t) = [My(t) — [y(t)|7y(t) + A)y(t) + J(E)] dt + 31 bi(t) dBi(t),
u(0) = wug,

(TSEE)

where A(t), J and the new additive noise Zjvzl Ej dj; are given by

1 a T) X Yo
A(t,x)y 523] y(t, ) +Zzﬁj ( (:U)xy1>’

Jj=1

N
Ttw) s =37 (= iby(t.) By (@) + I (t,@))e Ems P20,

=1

j
b(tyc) = bi(t, )*1211 ()85 (1)

fort € [0,T], x € D and ¢ = 1,..., N. First, we show that a solution of (TSEE) can be
transformed to a solution of (MSEE).

Proposition 4.3.2. An adapted stochastic process u : € x [0,T] — L?(D) is a strong
solution of (MSEE) with G = 0 if and only if the adapted process y(t) := e~* i Bubi(t)y(t)
satisfies
. T
i) Esup,cpom Hy(t)ll%%/j)ﬁ + Efo Ip ly(t, 2)|7*? de dt < oo,
.. . N . a+2 00
i) My+i3 ", B ( G402 ) € Lart (2 x [0,T] x D)° + L*( L=(0, T; L*(D)°))

and solves the equation (TSEE).

Proof. We assume that u is a solution of (MSEE) in the sense of Definition 4.3.1 with the
described regularity properties. At first, we calculate d(e’ 3551 Bib; (t)) with It6’s formula
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and obtain
N t N t
et e BiBi(t) _ 1 — Z/ iBjeiZl]ilBlﬁl(S)dﬂn(s) _ %Z/ szeizlfilBlm(s)dS'
j=1"9 j=170
Therefore, 1t6’s product rule yields
N
<y(t)a x/>L2(D)6 - <u07 :E/>L2(D)6 = <’U,(t)7 elzl=1 Blﬁl(t)$/>L2(D)5 — <UO, .’L'/>L2(D)6

N ot
= Z/ —(u(s), %BfeiZ{il Blﬁ’(s)x'>L2(D)s + (bj(s) +iBju(s),iBje’ ik Blﬁl(s)$/>L2(D)6 ds
0

t
+ / (Mu(s) — [u(s)|%u(s) + J(s), e’ Ziza BOE g i ds
0
N t N §
+ Z/O (u(s), z'BjeZ 2iz Blﬁl(s)xl>L2(D)6 + <b](5) + iBjU(S), e Xz Blﬁl(s)$/>L2(D)6dﬁn(8)

j=1

almost surely for every ' € C2°(D) and for every ¢t € [0,T]. As a consequence, we have

t
y(t) —uo =/0 eI B N (¢ 20 By (5)) — [y(s)] 7y (5) ds

t N
+ / e i SiL Bibi(s) 7 Z $B7y(s) — ibj(s)Bje_iZfil Bifi(s) 45
0

j=1
N t
. N
Y /0 by (s)e™t Tita Bibi(s) g, (s) (4.3.1)
n=1

almost surely for every t € [0,T]. Here, we used that u € L1 2(Q x [0,7] x D)% implies
ly|7y € LIT2(Qx[0,T] x D)®. Since we want to derive an equation for y, we have to commute

the exponential function with M. Therefore, we compute
My(t) = M(e™ 25 Pfty p))
( Curl(e_iz:ll\;l Blﬁl(t)uQ(t)> )

— curl(et Zity BBty (1))
N

>

=1

VB,e™  Zila Bibi®) 5 (1) e~ 1 XL Bibi(®) curl(uy (1))
t . .
) <—VBjeZ Z{\]zl Bipi(t) X ul(t)) (e" leil BiBi(t) Cur](ul (t)))

<.

Jj=1

—if3;(
I 1

Together with y(t) := et XL Bubi()y(t), this implies

N SN N VB; xy (t)
oS B (e B POy (0) <y + Y80 g ).
j=1

Inserting this into (4.3.1) finally proves that y solves (TSEE). The other direction follows
the same lines. O

We solve (TSEE) by a refined Galerkin approximation of the skew-adjoint operator M. To

do this, we truncate the equation with the spectral multipliers P, and S, _; we defined in
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Section 4.1 and we end up with

dyn(t) = [Pabyn(t) = PaF (yn()) + PuA®)yn(t) + Pad (O] dt + 3520, Samabilt) dBi(t),
yn(0) = Sp—1uo.
(4.3.2)
The operator P, M is linear and bounded and as we have shown in the previous section, the
nonlinearity P, F : P,(L?(D)%) — P,(L*(D)") is locally Lipschitz continuous. Thus, we get
an ordinary stochastic differential equation in P, (L?*(D)%). Note that we had to use S,_1
for the truncation of the stochastic part and for the truncation of the initial data since we
need to estimate these terms in LP(D)® uniformly in n. Note that such an estimate is not
available for P, in general. In the next proposition, we derive a priori estimates for the

solution exploiting the monotone structure of the equation.

Proposition 4.3.3. The truncated equation (4.3.2) has for every n € N a unique, pathwise
continuous solution y, : Q x [0,T] — L?(D)® that additionally satisfies

T
E sup [[yn()]32(pys +E / lyn (D42 pyodt
t€[0,T] 0

N
< (1 x@xoixm + 3 Wil axioixy + o3 (4.3.3)

j=1
for some constant C > 0 only depending on N,T and sup;_;  n || Bjlr~(p), but not on
n € N.

Proof. First, we define the stopping time
Tm = inf {¢ € [0,T] : |B;(t)] > m for some i =1,...,N}
and solve the equation

dy™ = [PuMy™ — PuF(y™) + Py Ay + P A+ N S, b dB, (43.0

u(0) = Sp_1uo,
where the truncated linear operator A™) is given by

N
Alm) (t)y(t) = Z iﬂj (t A Tm) (—VVBéjXXy;fEi)

Jj=1

) + BZy(t).

By Lemma 4.2.4 and Lemma 4.1.7, this is an ordinary stochastic differential equation in the
closed subspace R(P,) C L?(D)% with locally Lipschitz nonlinearity. The stopping time 7,,
is necessary at this point since it ensures 3;(- A7y, ) € L> (2% [0, T]). We need this truncation

to be able to apply the classical results for stochastic ordinary differential equations.

There exists a stopping time 7(™™ with 0 < 7(™") < T almost surely, an increasing
sequence of stopping times (T,im’n))k with T,Em’n) — 7(m7) almost surely as k — oo and
adapted processes yi™ : Q x [0,T] — P,L2(D)® with

y{™ € 00, 7™™; L*(D)°)
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almost surely such that y™ solves (4.3.4) on [O,Tkm’n)]. Moreover, we have the blow-up

alternative

P{Am’”) <T, sup |ly(®)llzeoy < oo} = 0. (4.3.5)
te[0,7(mm))

To show the a priori estimate, we use the It6 formula from Lemma 4.2.2 and get

g™ (Ol Z2(ye — 1Sn-110]Z2 (e

=2 [ Re (ol ).~ 1 () + AT ()87 (5) 4 T(5)) gy

+22/ Re (3 (), Sa-1b3(5)) 1 pyo 355 +2/ [80-185(5) 32y .

Using the skew-symmetry of the cross-product and the fact that both B; and ; are real-

valued, we calculate

VB; x y") (s)
(M) (&) 7 3. "
<Z/n (5)7151(5/\7'm)< VB, ><y( )( ))>L2(D)6

N VB; x 43 (s)
<zﬁj(s/\7'm) () (s), ( VB, xy(m)(s))>L2(D)6

)

:<Zﬁj(3/\7-m)< VB Xy(m)( Yn (s)>L2(D)6’

which implies

VB; x y3 (s)
Re (y{™ (s),i ~s/\Tm< ) =0
<y (s),1B;( ) ~VB; Xyil,l)(s) >L2(D)6

for all s € [0, T,E"’m)]. Hence, the expression from above simplifies to

t
1™ 112y +2 / / [y (s, )| 72 der dt

:||UOH%2(D)6+2/ Re (y{™(s), +ZBQy ))LQ(D)ﬁds

+22/ Re (4™ (5), Suo1b(3)) 12 o 4855 +Z/ 1815 (5)122(pye ds (4.3.6)

almost surely for all t € [0, T,gm’n)]. Since the second term on the left-hand side is positive,

we can drop it for a moment. Afterwards, we take the supremum over time and then

the expectation. We estimate the remaining quantities term by term and start with the
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deterministic part.

N s
swp | / 2Re (3 (r +ZBQ% r))dr ) / 150 -1;(r) 172 (pyo dr
j=1

€lo, t/\‘r(m n)]

(m,n)

ATy,
< ]E/O 20ly$™ (1)l L2(pys 1 ()| L2(pys + 2N sup IB5l1700 () 195™ (M) 172 s dr

I8 1

N

+ Z ||bj||%2(ﬂ><[O,T]><D)5
j=1

t
S/ E SUI? ) ||y(m)( )7 D)6(2N SUP HBj||2Loo(D) +1) ds + ”JH%Q(QX[O,T]XD)G
0 ref0,sary™™yn T e

N

+ Z ||bj||%2(ﬂ><[0,T]><D)5'
j=1

The stochastic part can be estimated with the Burgholder-Davies-Gundy inequility. We

have

N
E sup Z/ Re (y (™) (s), Sy 1b (5)),» D)adﬁg( )‘

s€f0,tari™™] j=170

(7n n)

< CIE Z/ | Re(y™ (s), Sn_1b;(s)) 12 (pys | ds)1/2

N - 1/2
<CE  sup [y (s)|r2(pye (Z ||Sn*1bj||%2([0,T]><D))

sE[O,t/\T,im’")]
1 S
ZE sup ||y£m)($)||%2(D)6 + CzEZ ||bj||2L2(Qx[o,T]xD)-

56[07t/\‘r;m’n)] j=1

Putting these estimates together, we get

E sup ||y7(1m)(5)“%2(9><D)
sE[O,t/\T]gm’n)]

N
S HU'O”%?(D)G + HJH%?(QX[O,T]XD) + Z Hij%Z(Qx[O,T]xD)
j=1
t
+ (N sup [|Bj|2ep) + 1)/ E - sup ™ ()] ds.
J=1 0 relo, s/\7'(m n)]

Consequently, Gronwall yields

E  sup g™ ()22
s€|o, t/\7'(m n)]

N

SBjN,T (”JH%?(QX[O,T]XD)G + Z ||bj||2L2(Q><[07T]><D)6 + HUOH%Q(QXD))
j=1
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for every t € [0,T]. Next, we pass to the limit kK — oo with Fatou’s Lemma and get

E  sup [y @)I72(pye
te[0,7(m:n))

<lminfE  sup  [Jy5™ (6)]22(pyo
k—o0 tG[O,‘r,im’")] )
~ N -~
<5, (713 0xt0m1x0) + 2 1 acaxio.rixmy + wolie@emy ). (4:37)
i=1

Note that this bound is independent of m and n. In particular, it implies 7("™) = T almost
surely. Indeed, there exists an N C Q with P(N) = 0 such that Q\ (N U {r(™™ =T}) can

be decomposed into disjoint sets

{rmm <, sy @)z < oo},

tG[O,T(""’"))
{romm <, sy @)z = oo}
te[0,r(m.m))

The first of these sets has measure zero by (4.3.5), whereas the second one has measure zero
since (4.3.7) implies sup;cpo rom.n) ||y7(1m)(t)||L2(D)s < oo almost surely. As a consequence of
(4.3.6), we also get

T
IE/ / |y,(lm)(s,x)|qu2 dzdt
0o JD

N
B, (”JH%?(QX[O,T]XD)G + Z 1651172 (@x 0,77 Dys + HUOH%Q(D)>' (4.3.8)

j=1

e

We already know that yp ~ is almost surely continuous on [0,7') as a function with values

in L?(D)%. The pathwise continuity up to T follows from Lemma 4.2.2.

It remains to take the limit m — oo. By uniqueness, we have y%m) (w,t) = yy(lk)(w,t) for

almost all w € Q, all t € [0, 7,,] and for every k > m. Moreover, for almost all w € Q, there
exists m(w), such that 7,,(,)(w) = T. Hence, the limit 3, = lim,, oo yr(lm) is well-defined,
adapted and satisfies (4.3.4). Again using Fatou’s Lemma yields analogous estimates to
(4.3.7) and (4.3.8) for y,,. This closes the proof. O

To obtain strong solutions, we need an estimate for My, that is uniform in n € N. We do

this in the following way. We derive an a priori estimate for

and afterwards we use the estimates from Proposition 4.3.3 to get a bound for My,. To do

this, we have to show that the above quantity is an It process in P, L?(D)S.

2

N
PuMyn(t) = PuF(ya(t)) + Pa S B2ya(t) + PaiB;(t) < VB X y”?(t))> + Pnj(t)’

—VBj X yn(t L2(D)®

Jj=1

Lemma 4.3.4. The stochastic process

N
A (t) := PuMyy(t) — PoF(yn(t)) + Py ZBJZyn(t) + Pnzﬂj(t)<

j=1

VBj X Yn Q(t) > ~
’ + P J(t
—VBj X yn,l(t) ( )
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18 an Ito process with

dA,, [MA — F'(y,) (M) +ZN:(157<VB XAX2>+B?An)

J=1

232(2 By + T )& T e

k=1
N

N
+ (Z —i0bi By, + atJ)ef XL Bibr _ %ZF//(yn)(Sn—lgh Sﬂ—lgj)} de

k=1

( VBk X Sn_lgjg )

N N
+N P, [ MS, b — F'(y)(Sp_1b;) + > i .
> [ 1bj = F'(yn)(Sn-1b;) ;Z/@k VB % S 1hy 1

j=1

N N
E B n ]b~ -+ ; B; x Yn,2 . . N B .

=1 A — v ; , j E —+ e Z = 181 .
P k:S J ’L( BJ % Un, > 'LBJ ( Zbk Bk: J) N, i| dﬂ]

almost surely on [0,T].

Proof. With Lemma 4.2.4 and Lemma 4.1.7, one shows that P, F'(y,) is an Itd process in
P, L?*(D)% with
N

d(PnF(yn)) = P |:F, yn n 2 ZFU yn n 1gja Sn—lgj):| dt“”ZPnF/(yn)Sn—l’l;J dﬂj
j=1

Moreover, by the product rule,
N
Pod(t,2) = P (Y ity (@) + Jt,2)) = S B0
J=1

is an Itd process in L?(D)" of the form
(P J)(t)

N N
=P~ 5 B b B+ () )+Z—z§tbk DBy +0,J(1)) e~ i B gy

j=1 k=1 k=1

N N
— P> [iBy (Y —ib(t) By + J(t))e T Blﬁl@)} ds;.
j=1 k=1

=

The remaining expression A, + P, F(y,) — P,J is a function of the Ito processes
N ~
dyn(t, ) = Ap()dt + Sp1 > b; dB;(t)
j=1

and B;, j = 1,..., N. Hence, we can calculate d(A,, + P, F(yn) — Pnj) with Ito’s formula.
Thereby, it is crucial that all occurring terms depend only linearly on y, and §8; and conse-

quently the second derivatives vanish. This finally proves the claimed result. O

Now we can derive an a priori estimate for A,, that is uniform in n € N.
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Proposition 4.3.5. The process A,, satisfies the estimate

E el 1A ()1Z2(pye < C(1+E|[MuolZ2(pyo +ElluollZa(pye + Elluol 754 pye)
telo

with a constant C > 0 depending on J,b; and B; for j=1,...,N, but not onn € N.

Proof. At first, we calculate ||An(1f)|\2L2(D)6 with the Ité formula from Lemma 4.2.2. We

obtain

1A (172D = 1An (0|72 Dy
N

t , VB: x An72(5)
/O Re <A (8), MAn(s) = F'(yn(s +j:1 (zﬂ] (—vg’j XAM(S)) +B§An(s))
1 N .
) ; BJQ(kZ_l _ibk(S)Bk + J(S))e_Z 2= BiBu(s)

_l’_
/~
M=

—i04bi(5) By + 00 (5) ) e~ EH B0

=
Il
—

e

Fﬂ(yn)(sn—lgj (5), S”_lgj (S))>L2(D)a
1

J

M Sy 1bi(s) = F'(yn) (Sn—1b;( +Z’f6k (

VBk X Snflgj,g(s) )
—VBk X Snflfl;jyl(s)

t
/
0

VBj X yn 2(s)
B2S,,_ b
Jrz k ! ( VB X yn1(s)
N
—_iB. _ —i N BiBi(s
ZBJ(; Zbk(S)Bk+J(S))e l v L2(D)S ds
VBk X Sn_lg',g(s)
+2Z/ Re ), MS,bs(s) — F' () (Sn—1b;( +Zzﬁk ( S %1(8)>
- n—1Y7,
VB X Yn, 2( ) )
+ B2S,,_ b
Z Ko ( VB; X yni(s)
N
_iB. _ —i 3L, BiBi(s) )
ZB]<; iby(s) By, + J (s ))e >L2(D)5 ds;(s).

As we have seen before in the proof of Proposition 4.3.3, the term

Re <An($), MA,(s) + iv: iB5(s) (—VVBéjxxAX;%ffi)) >L2(D)6

vanishes. Moreover, by Lemma 4.2.4, we have

—Re <An(s)7F(yn(s))/An(‘S»Lz(D)e <0

almost surely for every s € [0,7] and we can drop this term in an upper estimate. We

split the remaining expression into a deterministic integral I4e; and a stochastic integral
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Istoch- We take the supremum over time and afterwards the expectation. Further, we aim
to control the left-hand side with Gronwall. We start with an estimate for the deterministic
integral Iget. Using Cauchy-Schwartz and the assumptions on Bj;, VB;, 0:b;,J and 0;J
from [M4] — [M6], we get

E sup |lget(s)]
s€0,t]

t N N "
5/0 1A () 172 (pys +Z||An(r)||L2(D)6||F//(yn)(sn71bj(r)7Snflbj(T)HL%D)G
=1
+[|MSnbi (M7 2(pys + I1F W (1) (Sn1b5 (M) 172 ys +Z 185 (r)Sn—1b; (1) l[72 s

+Z||Sn 10 72y + 9 ()1 72(py dr-

The growth estimates for F’ and F” from Lemma 4.2.4 together with the uniform bound-
edness of S,,_1 on L?(D)® yield

E sup |lqet(s)]
s€[0,t]

/ AR (P72 G+Z|Ilyn N Sn1by (1)1 pyo + 1M (r) |72y + 105172

j=1

+ 1y (7)1 Sn-10; (1)1 72(pye +Zﬂk 2105 () Z2(pye + lya(r)172(p) dr

In the following estimate, we have to distinguish the cases ¢ € (1,2) and ¢ = 2. We start
with the first one. Holder’s inequality, the fact 8, € L*(Q; C'(0,T)) for every a € [2,00) and
the boundedness of S,,_; on LP(D)® for every p € (1,00) with norm independent of n yield

E sup [lqet(s)]
s€0,t]

t
< [ E sup ||[A.(r)]? ds + [|yn Q(Qq_l) bil[* ue
/0 0 A0y A5+ I by Bl s

L2 2q L2
+ ”]Mbj||L2(Q><[0,T]><D)6 + Hy”HL‘J‘*’?(Qx[O,T]xD)G”bJ”L?(ijq?) (@x[0.T]x D)8

+ ||bj(5)”%2+E(Q;L2([O,T]><D))6 + ||bj||2L2(Qx[o,T]xD) + ”ynH%?(QX[O,T]xD)

for any € > 0. In the case ¢ = 2, the same argument yields
t ~
2 2 4
E sup [lget(t)] 5/ E sup ||An(7")||L2(D)6 ds + Hyn”m(ﬂx[o,T]xD)ﬁ||bj||L8(Qx[o,T]xD)6
s€[0,t] 0 relo,s]
+ HMij%Q(Qx[O,T]xD)G + ||Z/n||j§4(§zx[o,T]xD)6HSn—lbj||2Loo(9x[o,T]xD)6
+ HbjH%HE(Q;Lz([o,T]xD))e + ||bj||2L2(Q><[O7T]><D) + Hyn||2L2(Qx[o,T]xD)

for any € > 0. At this point, we need the requirement Sn_lgj = b; for large enough n

from [M5] to get rid of S, ;. Note that we already bounded ||y, ||La+2(ax[0,r]xD)s and
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ynllL2(@x[0,7x D)s in Proposition 4.3.3 uniformly in n. Hence, it remains to estimate the

terms including b~] By the product rule for the curl operator, we have

N
DY — (M (s)) =i SNy BiBi(s) - —VBi xbj2\ _isN B
Mb;(5) = (Mby(s))e Zis B +;zﬂk<s>(v3kxbj,l cTm

which implies
" N
IMb; | L2 @x0.71x D) Sv.Bs 1Mbj ] L2 xo.r1xp) + 3 I1Bkbs 22 (x0.11% D)
P
< [[Mbjl2(@xio,r1x Dy + 165l 2+ ;22 (0,71 % DY)

for any ¢ > 0. Here, we again used the fact 8 € L*(Q;C(0,T)) for every a > 2 and
Holder’s inequality. It remains to bound [|b;||p2+<(0;z2(jo,7)x D)), but this is immediate by
2(g+2)

[M5], because we have both b; € L*(Q x [0,T] x D)® and b; € L™2-¢ (Q x [0,T] x D)S.
Altogether, we have

t
E sup |aet(s)| < 1+ / E sup [[An(r)][2spy0 ds
s€[0,t] 0 r€(0,s]

and the estimate only depends on B, b; and J but not on n € N. The stochastic term Isocn
can be controlled in the same way as in the proof of Proposition 4.3.3 with the Burkholder-
Davies-Gundy inequality and the assumptions on B;,b; and J together with the growth
estimates for I and F”'. Thus, we end up with
t
E sup [[An(8)22p) S 1+ E[An(0)lI72(p) +/ E sup [[An(r)|72(pys ds.
s€[0,t] 0 rel0,s]

It remains to bound

N N
An(0) = PaMS,_yug — P F(Sn_1uo) + Pn > BiSn_1ug — Po Y ibj(0)B; + P,.J(0)
j=1 j=1
in L?(2 x D)5 independent of n € N. Since both b; and J are in L*(Q; W'2(0,T; L?(D)")),
the corresponding initial data b;(0) and J(0) are contained in L?(€2x D)®. As a consequence,
the uniform boundedness of S,,_1 on LP(D)° for every p € (1,00) and of P, on L?(D)S yield

E[[An(0)lI72(p) S 1+ EIMSn_1uollZ2(pys + ElllSn—1uol|"Sn—1uoll72(p)e

N
+ > IBjll 7 () 1Sn-10l72(pye
j=1

S 1+E|[MuolZ2(pye + Elluol 20+ ElluolZa(p)e-

L2(Q+1)(D)6

Finally, an application of Gronwall’s Lemma proves the claimed result. [

In Proposition 4.3.3 and 4.3.5, we derived uniform estimates for ¥, and A,,. As a consequence,

we also get the uniform boundedness of F(y,,) since

+1
S |||yn|q+1||Lﬁ = ”y"”‘]ILqM(QX[O,T]xD)G'

F n q+2
|| (y )HL + a+1 (2x[0,T]x D)6

a+1 (x[0,T]x D)

By Banach-Alaoglu, there exist y € L?(€; L>(0,T; L*(D)))%, N € L%(Q x [0,T] x D)5,
A € L2(Q; L>(0,T; L?(D)))® and subsequences, still indexed with n such that
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a) Yy, — y for n — oo in the weak™ sense in L?(£2; L>°(0,T; L?(D)))S,
b) y, — y for n — oo in the weak sense in L?(Q x [0,T] x D)°,

¢) F(y,) — N for n — oo in the weak sense in L%(Q x [0,T] x D)5,
d) A, — A for n — oo in the weak sense in L?(Q x [0,T] x D)°,

e) A, — A for n — oo in the weak™ sense in L?(2; L°°(0,T; L?(D)))S.

Since y,, is for every n € N an adapted solution of the ordinary stochastic differential
equation (4.3.4) in P,L?*(D)5, we have y, € L2(Q2 x [0,T] x D)S. Consequently, since
L2(Q2x[0,T] x D)% is a closed subspace of L?(Q x [0,T] x D)8, it is also weakly closed. This
implies y € LZ(Q x [0,7] x D), which means that y is also adapted.

In the next Lemma, we show that A has the correct form, that My(¢) exists in the sense of

distributions and that we have y; x ¥ =0 on dD.

Lemma 4.3.6. The process y : 2 x [0,T] — L?(D)® additionally satisfies y(w,t) x v = 0
on dD for almost all w € Q and t € [0,T]. Moreover, we have

N

B, q+2

My+3_if; (VV A ) € L2 L(0, 75 L*(D)°)) + L# (2 x [0,7] x D)°
e 3 X Y1

and the identity

N B Xy
B B 2 . \v4 i 9 ~
A= My N—l—jElB]y—i—zﬁJ( ij1>+J

holds true.

Proof. Let ¢: Q x [0,T] — U, R(P,) be a simple function. By weak convergence and the

skew-adjointness of M, we obtain

— (Y, M@) 12 (ax[0,1)x D)®

=- nhjgo(ym M) 12(Qx[0,1)x D)5

nllnéo<M Yns @) L2(2x[0,7]x D)0

N N
. ¥ . VBJ X Yn,2
= lim <A” + PuF(yn) = Pnd — P, ; Bjyn — Pn j;zﬁj (—VBj % yml) ) §[)>L2(Q><[O,T]><D)6

n—oo

al o VB; Xy

~ ‘ X Y

(A+N—J- ZBjy - Zzﬂj (—VB» % y1> g ¢>L2(Qx[o,T]><D)6'
j=1 j=1 J

Here, we were able to drop the P, since P,¢ = ¢ for large enough n. By density of simple

functions and by the density of U, R(P,) in D(M) and in LP(D)S for every p € (1,00)

n=1
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(see Corollary 4.1.6), we get
—(y(t), M) 2 (pys

Ny VB, x ya(t)
= <A( )+ N(t ZBJ?J ;lﬁj(t) <—VBj % ;l(t)>’w>L2(D)6
(4.3.9)

almost surely for almost every ¢ € [0,T] and for every ¢ € D(M) N L9+2(D)%. This holds
true especially for all ¢ € C°(D)% and hence the definition of the weak version of the curl

operator in Chapter 2 yields

My(t) = Z Bry(t) — iB;( )<_VVBéjXXy;(2)) —J(t)

almost surely for almost every ¢ € [0, T]. This proves the claimed result in case that D = R3
since we then do not have boundary conditions. So we can assume D to be a bounded
C'-domain for the rest of the proof. We show y; x v = 0 on dD. Note that 1) = (0, ) with
¢ € CY(D)? is contained in D(M) N L972(D). We insert this into (4.3.9) and get

—(y1(t), curl §) 12(pys = (Aa(t) + Na(t ZB ya(t) +iB;V B X y1(t), ¢) L2(pys

= (—curlyi(t), ) L2(p)s

almost surely for almost every ¢t € [0,7] and for all ¢ € C*(D)3. By definition of the
tangential trace in Definition 1.1.2, this shows y; X ¥ = 0 on 9D almost surely for almost
every t € [0,77. O

Consequently, we pass to the weak limit in (4.2.4) and obtain

_ _ J Vb i
dy(t) = [My(t) = N(t) + A(t)y(t) + J ()] dt + 35,2, bi(t) dBi(?), (4.3.10)

as an equation in L?(Q; L>(0,T; L*(D)")). So far, we showed y € L?(Q; L>(0,T; L*(D)")).
However, Lemma 4.2.2 implies the pathwise continuity of t — y(t) € L?(D)°.

It remains to show N (t) = F(y(¢)). But this proof is step by step the same as in Proposition

4.2.7 and uses the monotonicity of the deterministic part of the equation.

All in all, we showed that y € LI+2(Q2 x [0,T] x D)5 N L*(Q; C(0,T; L*(D)")) solves

dy(t) = [My(t) = F(y(1) + A@)y(t) + J(O)dt + .1, bi(t) dBi(o),

yn(O) = Uo

(4.3.11)

as an equation in L2(; L>°([0,T]; L?(D)%)). Transforming the equation back with Proposi-
tion 4.3.2, we get the following result.
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Proposition 4.3.7. (MSEE) with G = 0 has a unique strong solution u satisfying
u € L72(Q x [0,T] x D) N L*(Q; C(0,T; L*(D)"%))
and

a2 6 2(0). 700 . T2(1)\6
Mu € La+1(Q x [0,T) x D)° + L*(Q; L>(0,T; L*(D)")).

Proof. By Lemma 4.3.6, we have

N
My + Zz’ﬂj( VE; Xy > € L3(Q; L0, T; L2(D)%)) + L1 (Q x [0,T] x D).
=1 —VB;j xuy

Consequently, we can apply Proposition 4.3.2 and obtain a solution u of (MSEE) with G = 0.
Uniqueness is immediate by Proposition 4.2.7 since our solution is also a weak solution of

the equation. O

Last but not least, we want to add the term (G * u), using our theory on weak solutions.

This leads to the main result of this chapter.
Theorem 4.3.8. (MSEE) has a unique solution u satisfying
u € LIT2(Q x [0,T] x D)’ N L*(;C(0,T; L*(D)%))

and
Mu € LE5 (Q x [0,T] x D)® + L2(Q; L=([0, T]; L(D)®)).

Proof. Let uw € Li2(Q x [0,T] x D)5 N L3(;C(0,T; L?(D)%)) be the unique weak solu-
tion of (MSEE) from Proposition 4.2.8. The expression (G * u)(t) = fg G(t — s)u(s)ds is

differentiable in time with
t
0,(G #u)(t) = G(O)u(t) + / G/t — s)u(s) ds.
0

Thus, by [M3], both (G * u) and 9;(G * u) are contained in L?(Q x [0,7] x D). Hence, u
is a solution of (MSEE) with the current G % u + J that satisfies [M4]. Consequently, u has
the regularity properties from Proposition 4.3.7. This closes the proof. O

4.4. Remarks and discussion

In this section, we want to compare our results to the literature and we discuss some in-

structive special cases of our assumptions.

First, we want to mention that Roach, Stratis and Yannacopoulus already treated our equa-

tion in the deterministic setting in [88]. They claim in Theorem 11.3.14 that

W (1) = 5 Mu(t) — s~ u(t) [fu(t) + 57 (G ) (6) + w0, L e [0,T)
u(0) = ug
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has a unique strong solution u € L972([0,T] x D)® with Mu € L%([QT] x D)% if D C R3
is a bounded Lipschitz domain and & : D — R5%6 is a uniformly bounded and uniformly
elliptic matrix with measurable dependence in space. Their idea is to make a Galerkin
approximation with respect to an orthonormal basis (hy,), of W?2(curl, 0)(D) x W2(curl)(D)
that is also a basis of L?(D)%. However, besides many inaccuracies, they make two mistakes

which cannot be fixed in a direct way.

Beginning from (11.12) on page 239, they derive

T T
liminf/o <(G*un)(s),un(s)>L2(D)6dsS/0 <(G*u)(s),u(s)>L2(D)6ds

n—oo

as n — oo as a consequence of the weak convergences of G * u,, - G *u and u, — u
in L?([0,7T] x D)® as n — oo. However, such an argument is not available in the general
situation they discuss. Maybe one can fix this with strong assumptions on the convolution
kernel G (see e.g. [36]). Moreover, in their a priori estimate for the approximating problem,

they implicitly use
n
[ Z<on hj)r2(pyshill L2 (pys < Clluol| L2ca+n (pyo
j=1

with a constant independent of n € N, which would mean in our notation that the norm
of P, : L*at1)(D)6 — [2a+1)(D)6 could be estimated independent of n. However, this is
not true in general. As far as we know, such a result is only known for the Fourier basis
hy(x) = €™ on the torus. This is the main reason why we had to use the operators S,, that

are also bounded on LP(D)% uniformly in n.

Getting back to our result, we want to point out that the restriction to ¢ € (1,2] only comes

from the Holder estimate

7 2 N2
||F‘/(yn)snflbj||L2(Q><[O,T]><D)6 < Hy”HL(zHQ(QX[O,T]XD)B”S”*lijL?(z‘qu?) (Qx[0.T]x DS

in the proof of Proposition 4.3.5. Hence, if one assumes b; = 0 one gets the same result as
in Theorem 4.3.8 for all ¢ € (1,00). In particular, this is true for the deterministic equation.
Especially, we gave a proof for the theorem of Roach, Stratis and Yannacopoulus if kK = I
and D is a bounded C'-domain or D = R3.

Next, we want to comment on the odd-looking condition

P, (b(s)e_iZ;'V:l BiBi)) = py(s)e™? 501 B;Bi(s)

3

from [M5] for all s € [0,7T],i=1,...,N and for n € N large enough in case that ¢ = 2. We

need it in the proof of Proposition 4.3.5 for the estimate
i SNV B.i(s —_i SN Bils
15 (bi(s)e_@j:l Pl )) e (pys < Cllbi(s)e™ 2= P11 e o

with a constant independent of n € N. It might be possible to get this inequality without our

restrictive assumption in special cases. However, we want to point out that even in the case
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D = R? the boundedness of S,, on L>(D)% is wrong since it would imply the boundedness
of the Hilbert transform on L*°(D). If the B, are constant, the assumption reduces to
P,b;(s) = b;(s) for all s € [0,T]. If D = R3, this means that the Fourier transform l;;(s) is
compactly supported on a timely independent set. In case that D is a bounded C'-domain,

this means that b; is of the form
M
bis) = > b (), s €1(0,T]
k=1

for some scalar-valued bl(»k) :Q x [0,T] — C. Here, (h)y is the sequence of eigenvectors of

the Hodge-Laplacian, we introduced in section 4.1.

Last but not least, we want to discuss why we did not treat coefficients in front of the

Maxwell operator. OQur approach is based on the interplay of M2, Ay and the Helmholtz

projection Py. In fact, we showed M? = Ay on R(Py) and M? = 0 on N(Py) = N(M).
: s s — grad di .

One might say that we added a self-adjoint operator A = (= irid Gv) with N(A) = R(Pg)

to M? such that the sum, namely Ay, generates a semigroup having generalised Gaussian

bounds. This was essential for the definition of (S,), and (P,), from Section 4.1. If we

Uy e(x) "t curlug
M., (u ) _ (_ B
2 w(z)~tcurl ug

with the same perfect conductor boundary condition u; X ¥ = 0 on 9D and with uniformly

now replace M by

bounded, positive definite and Hermitian ¢,z : D — C3*3. Hence, we have
5 (w1 —e(z) "t curl p(x) =t curluy
ME = —_ —_
H\ ug —p(x)~tcurle(x) 1t curl ug
with the boundary condition u; X v = 0 and (5_1 curl UQ) x v =0 on dD. The operator

—MZ2 , is then positive and self-adjoint with respect to a weighted inner product on L*(D)",

namely
(v,w)ey = / e(z)vy(x) - wr(z) de +/ w(@)ve(z) - we(x) de.
D D
To adapt the our strategy from the setting with €, u = I, we would need a weighted version

of the Helmholtz projection P ,. We project orthogonally with respect to (-, )., , onto
{(ul,ug) € L*(D)% : div(euy) = 0,div(pus) = 0 and (pug) - v = 0 on 8D}.
Analogously to A from above, we define
U —grad div(euy)
A = i .
Us — grad div(pus)

One calculates that A. , is symmetric with respect to (,-)c . Moreover, M2

2
EHTY Me,u +Acu

and P. ,, have the same relationship as their counterparts with ¢ = p = I.

Hence, to follow our proof strategy, one has to show that the semigroup generated by

M2, + Ac . on the domain
{ curluy, curl ug, curl =t curluy, curle ™! curlug € LP(D)?, div(eu;) € W, *(D),

div(pug) € WHP(D),uy x v =0, (pug) - v =0, (e curlug) x v =0 on 8D}



152 CHAPTER 4. A nonlinear stochastic Maxwell equation with retarded material law

satisfies generalised Gaussian bounds. However, even in case of smooth ¢, u and 0D such a

result is unknown so far.



APPENDIX A

A note on pseudodifferential operators with rough

symbols

In the research that led to this thesis, we also looked at nonautonomous deterministic evo-

lution equations of the form
u(t) = A(tu(t) + f(t), tel[0,T],
w(0) =g

on a Banach space X with closed and densely defined operators (A(t)):c[o,77- This equation
is said to have maximal regularity if for given f € LP(0,T; X), there exists a unique solution
u € WHP(0,T; X) such that ¢ — A(t)u(t) € LP(0,T; X). A typical question in this area of

research is how much regularity one has to assume on ¢ — A(t) to get maximal regularity.

One remarkable approach for commuting operators (A(t)):cjo,7) is by Gallarati and Veraar
(see [39]). They used the formula

u(t) = U(t,0)ug + /0 Ul(t,s)f(s)ds,

where (U(t,s))o<s<t<7 is the evolution family generated by (A(t)):c[o,r] and proved that

the operator
fro [ AOUC)as
0

is bounded on L?(0,T; X). Another approach is to use the formula
t
u(t) =e AWy, +/ A(t)2e~ (=940 (A" = A(s)"") A(s)u(s) ds
0

¢
+/ e~ (=904 f(5) ds,
0

that was introduced by Acquistapace and Terreni in [1]. In this setting, one mainly has to

show that the operator L defined by

Lt = [ LA t-040 £(5) s

153
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is bounded on LP(0,T; X) and that the operator

(I - Q)g(t) = g(t) / A(t)2e =4O (A1)~ — A(s)~V)g(s) ds

is invertible in L? (0, T; X'). This method has been successfully used by [83] where the authors
proved maximal regularity under the so called Acquistapace-Terreni conditions on t — A(t).
Roughly speaking the Acquistapace-Terreni conditions mean that the domain D(A(t)) is
allowed to vary in time, whereas D(A(t)Y) is fixed for some v € (0,1] and t — A(¢) is Holder

continuous of order p with v + pu > 1.

To prove the boundedness of L, the authors in [83] used the representation
Lf(t) = F (€= AWR(2rig, — A1) [(£)

to apply their theorems on boundedness of pseudodifferential operators on UMD Banach
spaces to L. However, as they have a quite general approach, they still need some Holder
regularity of t — A(t). However, we found a way to show the boundedness of L if t — A(t) is
measurable in time solely assuming that the operators A(t)°B~¢ and A(t) ¢ B¢ are bounded
on X for some € > 0 and for some operator B that has a bounded H°°-calculus. Unfortu-
nately, we were not able to use this for a new theory on maximal regularity with domains
varying in time because we were unable to improve the known results on (I — @). Though,
we want to present our approach to the boundedness of pseudodifferential operators with a
symbol that has a special structure in this thesis, since we believe it to be interesting on its

own.

Proposition A.0.1. Let 1 < p < oo, X be a UMD Banach space and Y Banach space. In
addition, let Y* be a closed subspace of Y' that is norming for Y. Further, we assume that
a € LR xR,B(X,Y)) is weakly differentiable in the second component and that Oca(t,§)

factorises as
Dealt, €) = €161 (T (1, ) (E) (A0.1)
for almost all t,& € R, where T'(t,£) € B(X,Y) satisfies the following conditions:

i) The map (t,€) — T(t,&)x is strongly measurable for all x € X.
it) The set {T(-,€): €& € R} C B(LP(R; X), LP(R;Y")) is y-bounded.

Further we assume that ¢1(§) € B(Y) with ¢1(€)'(Y*) C Y* and ¢2(§) € B(X) are linear

operators satisfying the square function estimates
1) H@bl(if),9||y(R>o,%7Lp'(R;y*)) < H!JHLP’(R;y*)a
2) H¢2(:tg)f||fy(R>o,%7Lp(]R;X)) < Hf||LP(R;X)~
forall f € LP(R; X) and g € )i (R;Y™*). In this case, the pseudodifferential operator
Taf(t) = FH(E = alt, ) f(€)(2)

that is well-defined on S(R, X) extends to a bounded operator from LP(R; X) to LP(R;Y).
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Proof. At first, we assume that a(t,-) is compactly supported for almost all t € R. We use

integration by parts to obtain

[e%) 13 . )
- / dea(t,€) /O Fn)emint dp de

- / Dealt, €)Sh,, o, (1) dé
d¢

__ / T (AN, 02(64) (51, 1)) E

for f € S(R, X), where Sy, is the operator associated with the Fourier multiplier 1 ¢).
Testing this expression with g € S(R,Y™) yields

(Taf:9) (Lr@y),Le' ®:Y"))

// ¢ (§T'(t,€) ¢2(€)(Sl(o,s>f)(t)’g(t)>(y’yl %dt

‘/ / (T(£:€)62(6) (5106 1) 616 9()) vy f «

// T(t,£)62(6) (510 1) (1) 01(6)'9(1) -y Céfdt
d¢

[ [ ()51 O 51(=€ 90 oy G .

Note that Hille’s Theorem allows us to commute the integral operator Sy, ,., and P2 (£E)

and therefore by Fubini and y-Hoélder, we have

’<Taf7 9) (Lr®;Y), L7 (R, y*))’

d
< / <T ]f ¢2(J§)(Sl<o Jg)f) ¢1(]§) >Lp(]R Y),L? (R,Y")) ;‘
je{1,—
dg
= .75 Sl(ojg)¢2(.7§)f) ¢1(]€) >Lp (R;Y),LP (R;Y")) f ‘
JG{I
< Z ||T OS2, 02GONN_ gt o 190G T g
je{1,—1} 20g > gD

Since Y* is a closed subspace of Y’, we can use the square function estimate 1) to obtain

. 12 — N/ < , .
I61GEY ol 5, 8 oy = 191G g oy & 19 e

Moreover, by Lemma 2.2 in [39], L (R,Y*) is norming for L?(R;Y) and thus taking the
supremum over all g € S(R,Y™) with [|g|| ;. g y+) = 1 which is dense in the unit sphere of
LY (R,Y™) yields

1 Tofllr vy < Z ||T(-,jf)(51(01j§)¢2(j5)f)||,Y(R dg
je{1,-1} e

P (A.0.2)

By assumption {T(-,€) : £ € R} C B(L*(R; X), LP(R;Y)) is y-bounded. Therefore, we

can employ the theorem about y-bounded pointwise multipliers (see [94], Theorem 5.2) in
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(A.0.2) to get

T fllr@yy < Z (81056, 92(3) )l

d§ .
R -= R;
je{l—1} (R0, LX)

By Discussion 3.5 in [70] we know that the family {S1,, : § € R} C B(LP(R; X)) is R-
bounded and particularly y-bounded since UMD spaces have finite cotype (see [71], Theorem

1.1). In conclusion, we can apply the multiplier theorem once again and this results in

T, fllormy) < j .
1T fllre@®y) S | > ||¢2(]§)f)||W(R>O,%7LP(R;X))

je{1,-1}
Using the square function estimate 2) and the density of S(R; X) in LP(R; X ) completes the

proof for symbols with compact support in the second component.

Note that the constants in the estimates from above do not depend on the size of the support
of a(t,-). Hence, we can deal with the general case by approximation. Let a be a symbol
without compact support and ¢ € C*(—2,2) be a cut-off function taking values in [0, 1]
with ¢y = 1 on [—1,1]. Define a,(¢,€) := a(t@ﬁb(%). Then a,, converges pointwise to a for
n — oo and ||an(t,§)||px) < lla(t, §)|lscx) for all ,£ € R.

Thus, for f € S(R, X) and g € S(R, X’), dominated convergence yields

<Tafag>(LP(]R;Y),LP/(]R;Y’)) :\/R\/R<a(t7g)f(g)ag(t)>(y7yl)€2ﬂ-it§ dfdt
~ lim / / (an(t,€) (), 9(8)) (x,xr) €™ de dt

n—oo
= nli_{I;O<Tan I g>(LP(]R;Y),LP’(]R;Y/))'

Using the result for compactly supported symbols, we conclude

(Tuf, g>(Lp(R;y)7Lp’ (R;y/))| = nh_{%o |(Ta,, [, g>(Lp(R;y)7Lp’ (R;Y’))|
S ||f||LP(R;Y)”g”LP(R;Y’)

for all f € S(R, X) and g € S(R,Y”). This finishes the proof. O

For an application of this theorem to a concrete situation, it is important that we demand
the square function estimate 1) only on a closed and norming subspace Y* of Y, since
the functions ¢; and ¢o are nearly always induced by an operator having a bounded H *°-
calculus. If an operator B on Y has a bounded H*-calculus then B’ doesn’t necessarily
inherit this property in non-reflexive spaces. Therefore, we have to introduce the moon-dual

space Y# and the moon-dual operator B# before we can give some examples for ¢ and ¢s.

For a Banach space Z and an injective and sectorial operator B on Z with dense range the
moon-dual space Z# C Z' is defined by Z# = D(B’) N R(B’) where the closure is taken
in the norm of Z’. Moreover, one can define the moon-dual operator B# as the part of
B’ in Z#. The advantage of this construction is that B# is also an injective and sectorial

operator with dense range. Moreover, if B has a bounded H*-calculus on Z, then B also
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has bounded H*-calculus on Z# of the same angle. Last but not least, it is important
to note that Z# is still norming for Z. For more details and references on the moon-dual
operator, we refer to appendix 15 in [70]. Note that this construction is not needed if Z is

reflexive (for example if Z is UMD), since Z# and Z’ coincide in this case.

Now, we can give the most important examples for functions ¢; and ¢s.

Example A.0.2. Let A be a sectorial operator with 0 € p(A) having a bounded H°-calculus
of angle w € [0,7/2) on a Banach space Z with finite cotype and let ¢ € HG®(Xg) for some
0 € (w,m/2), i.e there are constants C > 0 and o > 0 such that

[6(2)| < Cla|*(1 + [2]) 7>

for all z € S¢. Then, the operators ¢p4(€) = ¢(|€]A) or alternatively ¢p4(€) = ¢(|€]7LA)
satisfy oA (&) (Z#) C Z# and

1) 1194 @ |l ., 2, 24) S 'l 2
2) lloa(£8)zll, .o, 1,2y S llzllz-

for allx € Z and 2’ € Z#. In particular, the conditions 1.) and 2.) of Proposition A.0.1 are
fulfilled if we choose X = Z and Y* = Z#.

Proof. The claimed result for the choice ¢4(£) = ¢(|¢|A) is an immediate consequence of
the square function theorem of Kalton and Weis (see [55]). If one chooses ¢4 () = ¢(|¢|~LA)
instead, one can apply the same estimates, since for a function f € v(Rso, d?g; X) one always
has

_ -1
||fH'y(]R>O7%7X) = [I£(() )H'y(R>o,%,X)'

This follows from the observation that g — g((-)~!) is an isometry on L?(Ro, %) and from
Corollary 6.3 in [94]. O

In concrete situations, one might use the following square function.

Example A.0.3. Let A be a sectorial operator with 0 € p(A) having a bounded H> -calculus
of angle w € [0,7/2) on a Banach space Z with finite cotype. Then the operators

(1€1A)° (algf** + A%)~
(1€1A) (0 + [¢[*A%) ™"

ba(§)

ba(§)

for & € R satisfy the conditions 1) and 2) of Proposition A.0.1 if we choose X = Z and
Y* = Z#.

Proof. We apply the example from above with the function ¢(z) = 2°(i + 22¢)~! and we
plug-in |¢|71A and || A respectively. O
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Using this special square function, we can derive a corollary that can be used in a con-
crete situation. First, we have to introduce some notation. Given a sectorial operator A
with 0 € p(A) on a Banach space X, we define the spaces X for a > 0 as the domain of

A®. If «v is negative, we define X ¢ as the completion of X with respect to the norm ||A%- | x.

Corollary A.0.4. Let 1 < p < oo, € € (0,1/2] and let X be a UMD Banach space.
Further let A be a sectorial operator with 0 € p(A) having a bounded H®-calculus of angle
w € [0,7/2) on X. Moreover, we assume that a € L*(R x R,B(X)) is a continuously
differentiable symbol in the second component and that the following sets are R-bounded

with a constant not depending on t.

i) {[€]'+*0ca(t, €) : £ € R} C B(X®, X9,
it) {[§|0za(t,§) : § € R} C B(X ™%, X77),
iii) {|¢|9¢a(t,€) : € € R} C B(X*®, X7),

w) {|€'"*0a(t,€) : € € R} C B(X %, X7).

In this case, the pseudodifferential operator
Tuf(t) = F (€= alt, O F())(®)
that is well-defined on S(R, X) extends to a bounded operator on LP(R; X).
Proof. We define ¢(¢) = (A[¢])=(i]€]%¢ 4+ A%¢)~! for £ € R. By Example A.0.3 we know that

¢(§) satisfies the conditions of Proposition A.0.1. Moreover, we can decompose J¢a(t,§) in

the following way taking advantage of the invertibility of A.
Dea(t,€) = €7 ¢(€) (EIEIT" AT (il€]* + A**)Dealt, €)E] T AT=(il¢[* + A%)) ¢(€)
for all ¢,£ € R. Defining
T(t,€) = E|g| 72 AT (dl€]** + A*)d¢alt, ) AT (il¢]** + A*)
we just have to check that T fulfils the conditions in Proposition A.0.1. We calculate

T(t,€) =AT°(£|6]*Oealt, €))A™° +iAT°(€0¢a(t, §)) A°
+iA%(§ca(t, §) AT + A (€]¢]7* Oalt, §)) A

Thus, the assumptions on the R-bounded sets imply that {T'(t,£) : £ € R} C B(X) is
R-bounded with a constant not depending on ¢t. It remains to check that this implies the
R-boundedness of {T(-,€) : £ € R} C B(LP(R; X)). Indeed, let (ry)i_, be a sequence of
independent Rademacher random variables, (fx)_, C LP(R; X) and (£;)~_, C R. Then,

the result from above and Fubini yield
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N N
B YT = I T80
k=1 k=1
N P
= /R ((EHZmT(t,«swfk(t)HQ)”p) dt
=1
N p
r P N1/p
§/R<(EHI; S GLS! > dt

N N
=B [ 13 A0l dt =Bl S rifilf e
R k=1 k=1
In conclusion, the claim follows by Proposition A.0.1. O

We want to apply this result to an operator that plays an important role in the proof
of maximal regularity for non-autonomous parabolic evolution equations. Given a family
(A(t))¢cjo,r) of uniformly sectorial operators on a Banach space X with 0 € p(A(t)) for all

t € [0,7], we consider the operator

Lf(t) = A(t) /O t e~ (=AM £(5) ds. (A.0.3)

Further, we ask how much regularity the map ¢ — A(t) must have to guarantee the bound-
edness of L on LP(R, X)) for 1 < p < co. This operator was already discussed by Portal and
Strkalj in [83] and by Haak and Ouhabaz in [43]. In both articles, the authors derived the

pseudodifferential operator representation formula (see for example [43], (2.9))
Lf(t) = F~ (¢ At)R(2ri, —A)(©))

for t € [0,T] and f € C°(0,T; X) and applied their theorems for operator valued symbol
classes. Portal and Strkalj assumed Hélder continuity in the time component of the symbol
and Haak and Ouhabaz who only proved their theorem in a Hilbert space setting replaced
this by a quite similar Dini-continuity condition in the time component. As a consequence,
in both publications the authors needed a regularity condition on ¢t — A(t) to show maximal
regularity. Haak and Ouhabaz required that A(t) is a associated with a coercive sesquilinear
form a(t;-,-) : V xV — C on a Gelfand triple V- < H < V'’ and that there exists a

non-decreasing positive function w with

la(t; u, v) — a(s;u, )| < w(t)|Jullv]lvllv

for all w,v € V and with fOT

@ dt < oo to prove LP(0,T; H) boundedness of L. This
requirement is in the same spirit as the Acquistapace-Tereni condition (see [83], section 5,
(AT)) Portal and Strkalj demand on ¢ — A(t) in order to achieve LP(0,T’; X )-boundedness

in case that X is a UMD Banach space.

Applying Corollary A.0.4 we can prove LP(0,T; X)-boundedness of L only requiring mea-
surability. Note that the assumption 0 € p(A(t)) for all ¢ € [0,T] is not restrictive since the
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maximal regularity property is invariant under spectral shifts, i.e. the equation
w(t) =—A(t)u(t)+ f(t), tel0,T],
u(0) =ug
has maximal regularity if and only if
u'(t) = —(A(t) + pult) + f(t), t€][0,T],
u(0) =wug

has maximal regularity for one u € R.

Corollary A.0.5. Let X be a UMD Banach space, 1 < p < oo and (A(t))iepo,r) @ uniformly
R-sectorial family of operators on X with 0 € p(A(t)) for allt € [0, T]. More precisely there
exists w € [0,7/2) such that o(A(t)) C X, for allt € [0,T] and such that the sets

{AROLA()) A ¢ o) © B(X) (A.0.4)

are R-bounded for all 0 € (w,m) and t € [0,T] with a constant depending on 0 but not
on t. Further we assume that there exist an invertible and sectorial operator Ay with a
bounded H™(X,,)-calculus such that there is e > 0 with || Ay z||x ~ ||A({) °z||x and
|ASz||x ~ ||[A(t)*x||x for all x € X and t € [0,T]. Then, strong measurability of t —
A)R(2mi&, —A(t))x for all x € X and £ € R is sufficient for operator

Lf(t) = F7 (¢ = A@R(2ri€, ~A)1(©))
that is well-defined on C°(0,T; X) to extend to a bounded operator on LP(0,T; X).
Proof. Defining a(t,&) = A(t)R(2mi&, —A(t)) for t € [0,T] and a(t,&) = 0 for t ¢ [0,T] we
have a € L>®(R x R, B(X)) and £ — a(t,&) is continuously differentiable with derivative
Oca(t, &) = —2miA(t)R(2mi€, — A(t))?

for all ¢ € [0, T]. So, we just have to check the R-boundedness of the sets i) —iv) in Corollary
A.04.
First, we have to show that for an R- sectorial operator B on X and « € (0, 1) the set

{|€]'"“B*R(2mi€, —B) : £ € R} € B(X) (A.0.5)
is also R-bounded. By functional calculus, we have

1 Zaé-lfoz
l—a pa :

BYR(2 —-B)=— | ——R(%,B)d
€7 B Rnie,~B) = 5 [ TR B) b
1 Za—lgl—oz

=— [ ——=———(2R(%,B))d

omi Jy amic 42 CR(=B))dz
for all £ > 0 and for some path I' = 0%y with w < 6 < 7/2. Applying Corollary 2.14 in [70]

yields the claimed result since the functions

Za_lfl_a

hg(z) = W
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are uniformly in L'(T,dz) and {zR(z, B) : 2 € Xy} is R-bounded by assumption. Indeed a

substitution gives

|2 dlz| / [2|* dlz|
he(z)|d = | —/———F— <
/| e(z)ldlz| = & /|2m—|—€| 2| r 2w + 2| |2]

Now, we prove the required R-boundedness of the following sets with a constant not de-

pending on t.
i) {lel'~2 Ag0ealt, €)45 : € € R} C B(X),
i) {1¢[1+2 A *0ealt, ) 45" : € € R} € B(X),
i) {€]450ca(t,©)45° : € € R} C B(X),
iv) {[€]Ag 0eat, €)A5 : € € R} C B(X),

Exemplarily, we discuss ) and 7). The R-boundedness of the other sets follows in the very
same way. Exploiting the equivalence of the norms ||Aj - ||x and ||A(t)° - || x and accordingly
Ay € - || x and ||A(t)~¢ - || x as well as (A.0.5) with B = A(t), we obtain

R ({I€]' > A50¢al(t, ) A : € € R})

{|¢]' " ASA(t) R(2mig, —A(t))A§ : £ € R})

{|€]' " A1) A(t) R(2mig, —A(t))*A(t)" : € € R})
{A(t)R(2mig, —A(1))[€]' > A(t)*R(2mig, — A(t)) A(t)" : € € R})
{A(t) R(2mig, —A(t))|€]' 2 A(t)** R(2mi&, —A()) : € € R})

1

1

(
(
(
(

~R
R
R
R

1

A

1.

This implies 7). Here, the independence from ¢ is an immediate consequence of the indepen-

dence of ¢ in assumption (A.0.4). Analogously, we have

R ({|¢]""*° A5 “O¢a(t, ) Ag© € € R})
~ R({I£|1+25A EA( JR(2mi, —A(t)* A" : € € R})
)R

R ({I¢]" T A(t) " A(t)R(2mi&, — A(t))*A(t)~° : £ € R})
R ({|¢|R(2mi&, —A(1))|£[** ()~ R(2mig, —A(t)) A(t) " : £ € R})
R ({|¢|R(2mig, —A(1))|£*° A(t) > R(2mi&, —A(t)) : £ € R})

<1,

We want to mention that this corollary also implies the LP-boundedness of L in the au-
tonomous case A(t) = A. This famous result was initially shown by Lutz Weis in [102] and

reads as follows.
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Theorem A.0.6. Let A be a closed, densely defined and R-sectorial operator on a UMD
Banach space X. Then, the operator

Lf(t) = /O t Ae= (941 (5) ds

that is well-defined on C°(0,T; D(A)) extends to a bounded operator on LP(0,T;X) for

every p € (1,00). In particular, the corresponding evolution equation

u'(t) = —Au®)f(t), tel0,T],

has mazimal LP-reqularity for every p € (1,00).
Proof. The proof is a combination of [102], Theorem 3.4 and Theorem 4.2. O

Thus, our approach yields a completely new proof for this result under slightly stronger
assumptions. In addition to the assumptions of Weis, our proof needs that there exists an
operator Ag with bounded H*(%y)-calculus with 6 € (0, 5) such that ||A%z|x ~ [|Ajz|x

and ||A™%z||x ~ ||Ay “z| x for some € > 0.



"Wir stehen selbst enttduscht und sehn betroffen

Den Vorhang zu und alle Fragen offen.”

-Bertolt Brecht, Der gute Mensch von Sezuan, 1943
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