

25th European Fusion Programme Workshop

Advanced systems codes and integrated modelling for DEMO

Fabrizio Franza, November 29th 2017, Dubrovnik, Croatia

Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Germany

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Motivation to the Work

Development of a System/Design Code at KIT

Modular Integrated Reactor Analysis

Reactor Architecture Requirements Technology Physics Neutrons Fusion Alpha Auxiliary Radiation Ohmic Cond/Advect 1.4 400 200 (cm) 0 2 -200 0.6 -400 0.2 -600 Magnetic Field (T) 800 1000 1200 600 0.00232 6.03 12.1 r (cm) Constraints

Core Plasma Physics

- Power balance: $P_{\alpha}(n_e, T) + P_{aux}(T) + P_{oh} = P_{rad}(n_e, T) + P_{con}(n_e, T)$
- Particle balance: $n_e = n_{DT} + 2n_{He} + \sum Z_j n_j$
- Current balance: $I_p = I_{BS} + I_{CD} + I_{ind}$
- Plasma Profiles:
 - Pressure $p(\Psi) \leftarrow Equilibrium model$
 - Density $n_e(\Psi) \leftarrow$ prescribed (e.g. pedestal)
 - Temperature \rightarrow T(Ψ) \propto p(Ψ)/n_e(Ψ)

Wall Loading: Conduction/Advection

Peak heat flux on divertor targets

Transport model based on 2D source: Neutron Photon (Bremsstrahlung + Line + Synchrotron) Ζ Plasma + SOL domain 1.4 Finite element approx. $\rightarrow \mathcal{T}_h: \bigcup_{k=1}^{n_t} \mathcal{T}_k = \Omega_h$ 1.2

Wall Loading: Radiation + Neutrons

Reactor Neutronics

Karlsruhe Institute of Technology

Power Flow

Steady State system power balance $\sum_{i} P_{in,i} + \sum_{i} \dot{q}_{v,j} = \sum_{k} P_{out,k}$

Plasma:

- Core: $P_{\alpha} + P_{aux} + P_{oh} = P_{rad,Core} + P_{con}$
- Mantle: $P_{con} = P_{rad,mantle} + P_{sep}$
- Primary heat transfer system $P_{th} = P_{th,bb} + P_{th,div} + P_{th,vv}$
 - Blanket: $P_{th,bb} = P_{nucl,bb} + P_{rad,bb}$
 - Divertor: $P_{th,div} = P_{nucl,div} + P_{rad,div} + P_{sep}$
- Balance of Plant:
 - Gross electric power: $P_{elc,gros} = P_{th} \cdot \eta_{th}$
 - Net electric power: $P_{elc,net} = P_{elc,gros} P_{aux,elc} P_{pump,elc} P_{cryo}$

Application: DEMO Design (2015)

Application: DEMO Design (2015) – Plasma

- κ_X = 1.73, δ_X = 0.5
- **Grad-Shafranov equilibrium problem** $\Delta^* \psi = -2\pi \mu_0 r J_{\varphi}(r, \psi, I_p, \beta_p, l_i, q)$
- Power and Current balance
- Set operational limits
 - q₉₅ ≥ 3
 - P_{sep}/P_{LH} ≥ 1.3
 - $17 \le P_{sep}/R_0 \le 20 \text{ MW/m}$
 - Q ≥ 30
 - $\beta_N \le 4I_i$
- Variables

12

- Density at magn. axis n_{e.0}
- Xe concentration x_{Xe}
- W concentration x_w

Parameter (unit)	PROCESS	MIRA			
	4 4 0 7	4.00*			
Beta poloidal B _p (-)	1.107	1.00*			
Internal inductance l _i (-)	1.155	0.80*			
Plasma current I _p (MA)	19.6	19.6*			
Safety factor q95 (-)	3.24	3.38			
Fusion Power P _{fus} (MW)	2037	2161.8			
Fusion gain Q (-)	39.86	37.9			
CD power P _{CD} (MW)	50	56.3			
Radiation power P _{rad} (MW)	305.5	318.9			
Transport losses P _{con} (MW)	306.7	295.5			
Xe concentration (-)	3.891E-04	2.32E-04			
W concentration (-)	5.000E-05	3.275E-05			
*Input parameters					

05.12.2017 F. Franza, 25th European Fusion Programme Workshop, November 29th 2017, Dubrovnik, Croatia

Application: DEMO Design (2015) – Wall Loading

- Power loads
 - Neutron (n): 1741 MW
 - Radiation (γ): 319 MW
 - Transport (i+e): 176.4 MW
- Divertor
 - 66.1 MW (n)
 - 13.62 MW (γ)
 - 176.4 MW (i+e)
- Blanket

- Neutron (n): 1675 MW
- Radiation (γ): 305 MW
- Peak heat flux
 - Divertor: 18.7 (i+e) + 0.16 (γ) + 0.78 (n) MW/m²
 - Blanket: 0.24 (γ) + 1.49 (n) MW/m²

Application: DEMO Design (2015) – Neutronics

- DEMO 2015 radial build
- Blanket (HCPB 2015, [Hernandez 2016])
 - W armor 0.2/0.2 cm 100 % W
 FW 2.5/2.5 cm 70/30 % Eurofer/He
 BZ 23/52 cm 20/12/57/11 % Li₄SiO₄/Eurofer/Be/He
 BP 8.5/8.5 cm 45/55 % Eurofer/He
 BSS 43/60 cm 65/35 % Eurofer/He

Vacuum Vessel

Inner	5/5 cm	100 % SS316
Mid	45/80 cm	60/40 % SS316/H ₂ O
Outer	5/5 cm	100 % SS316

Toroidal Field Coils

- Case in 5/20 cm 100 % SS316L
- WP: 53/53 cm 18/2.9/7.3/11.7/16.8/43.2 % Epoxy/Nb₃Sn/Bronze/Cu/He/SS316
- Case out 45/20 cm 100 % SS316L

Application: DEMO Design (2015) – Neutronics

Application: DEMO Design (2015) – Scenario

Plasma Breakdown (BD)

- Coil specifications
 - Fixed position and size (DEMO 2015)
 - Imposed cable design
- "CREATE-like" approach:
 - Tech. limits on coil current
 - Tech. limits on coil magnetic field
 - Tech. limits on CS separation force
 - Tech. limits on PFC tot vertical force
- Physics constraints
 - Max stray field in BD region: 3 mT
 - Breakdown point (r = 9.8 m, z = 0 m)
 - BD region radius: a = 2 m

Application: DEMO Design (2015) – Scenario

Plasma Start of Flat-top (SOF) and End of Flat-top (EOF)

Application: DEMO Design (2015) – Scenario

Main results

Parameter (unit)	BD	SOF	EOF	Tech. Limit
Max current density CS (MA/m ²)	13.63	13.63	-13.63	13.63
Max current density PFC (MA/m ²)	9.3	-7.5	-9.3	9.3
Max magnetic field CS (T)	12.45	9.09	10.8	13.83
Max magnetic field PFC (T)	5.44	4.71	4.6	6.4
Max CS separation force (MN)	92.8	247.9	92.8	350
Max PFC vertical force (MN)	-416.7	159.6	-268.1	450

Flat-top length

$$U_{loop} = 0.053 \text{ V} \longrightarrow \frac{\Psi_{sof} - \Psi_{eof}}{\tau_{flat}} \approx U_{loop} \longrightarrow \tau_{flat} = 1.64 \text{ h} \le 2 \text{ h}$$

Application: DEMO Design (2015) – TF Coil

- Turn: LTS ENEA design: I_{op,max} = 81.0 kA, B_{peak} = 12.44
- Physics & Technology constraints
 - $B \le B_{peak}$
 - Toroidal field ripple ≤ 0.6 %
- Magnetic field (3D Biot-savart EFFI model)
 - Peak magnetic field (T): 12.41 T
 - Max toroidal field ripple (%): 0.81 % → TFC shape to adjust
- Lorentz forces (without PF Coil loads)
 - Inward net radial force (MN): -782 MN
 - Vertical separating force (MN): 496 MN
 - Out-of-plane force (MN): -10.08 (BD) -17.1 (SOF) -18.1 (EOF)
- Stored magnetic energy: 151.8 GJ

Application: DEMO Design (2015) – Summary

DEMO design as per MIRA simulation (≈ 23 min)

Parameter (unit)	MIRA	PROCESS
Fusion power (MW)	2152	2037
Poloidal beta (-)	1.00	1.107
Fusion Gain (-)	37.1	39.8
Peak Toroidal field ripple at plasma (%)	0.81	0.6
Thermal power (-)	2887	2699
Net electric power (MW)	465	500
Tritium Breeding Ratio (-)	1.22	n.a.
Pulse length (h)	1.64	2

Plasma + technology operational limits \rightarrow design drivers

Conclusion and Outlook

- Advanced multidimensional system/design codes
 - Parametrization of reactor components architecture
 - Reduce design iteration
- Modular Integrated Reactor Analysis (MIRA) under development at KIT
 - Reactor architecture
 - Plasma + SOL + Divertor (Core physics + Wall Loading)
 - Plasma magnetic equilibrium
 - Breeding Blanket (Neutronics)
 - Magnets technology (TF + PF Coils)
 - Power flow

Thank you for your attention!

- Future work
 - Investigate further DEMO designs
 - Including missing modules (e.g. Fuel cycle, cost estimation)
 - Optimization algorithm