

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-

2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those

of the European Commission.

Breeding blanket multi-physics modelling for integrated DEMO design

Gandolfo Alessandro Spagnuolo

25th European Fusion Programme Workshop 27 – 29 November 2017, Dubrovnik (Croatia)

INSTITUTE FOR NEUTRON PHYSICS AND REACTOR TECHNOLOGY (INR) KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

EMERGENCY FIRE BLANKET KINCE K

KIT - The Research University in the Helmholtz Association

Outline

- Motivation
- Coupling procedure
- Developed methodologies
- Analysis & results
 - Neutronics
 - Thermal-hydraulics
 - Mechanics
- Summary

27.11.2017

2

- Open points
- Conclusion

Motivation

- Within the framework of the EEG 2015/11 10.1 concerning the "Tritium breeding blanket design and analysis", a research campaign dedicated to the development of an integrated simulation-design tool has been launched at Karlsruhe Institute of Technology (KIT);
- the research activity has been devoted:
 - to outline a procedure for the coupling neutronic, thermal-hydraulic and structural mechanical analysis using the well-known commercial software employed in the design of the BB with the great advantage of deploying the same geometry definition for all the analyses involved;
 - to optimise the DEMO BB design;
 - to propose new methodologies for the nuclear fusion components design.

Developed methodologies

- Two different approaches for the creation of the neutronic models have been investigated and applied:
 - Constructive Solid Geometry (CSG) based on one and two-dimensional surfaces representation;
 - HYBRID geometry representation using an Unstructured Mesh (UM) embedded in its legacy CSG.

Developed methodologies - CSG

Developed methodologies - CSG

Neutronic model of HCPB slice based on Constructive Solid Geometry (CSG).

11

	SERPENTINE TUBES CONFIGURATION		ELEMENT TYPE	NODE NUMBER	ELEMENT NUMBER		
	1	Armour	C3D8	17712	11118		
	2	FW	C3D8	63954	46625 29260 39004 11440 66400		
	3	FW_Coolant	C3D8	65925			
	4	Plates_North/South	C3D6	39764			
	5	Vertical_Plates	C3D8	18690			
	6	BZ_Tubes_1_3	C3D20	365968			
	7	BZ_Tubes_4_6	C3D20	365968	66400		
	8	BZ_Coolant_1_2	C3D15	149294	45460		
	9	BZ_Coolant_3_4	C3D15	156356	47104		
	10	BZ_Coolant_5_6	C3D15	145866	44092		
	11	PbLi_1	C3D10	141367	71034		
	12	PbLi_2	C3D10	161870	81215		
	13	PbLi_3	C3D10	161314	80773		
	14	PbLi_4	C3D10	161236	80694		
	15	PbLi_5	C3D10	161433	80825		
	16	PbLi_6	C3D10	141647 57270	71231 47866		
	17	BSS	C3D8				
	18	BSS_Coolant	C3D8	9504 7616			
		TOTAL		2385138	928157		
Motivatior	n 📡 Coupling) 🔊 Metho	odologies 📎	Analyses & resul	ts 📡 Sum		
11 27.11.2017 Gandolfo Alessandro Spagnuolo 25 th European Fusion Programme Wo Breeding blanket multi-physics modelling for integrated DEMO design Dubrovnik,							

Analysis - Neutronics

The correct definition of the cells and the conservation of the volumes has been checked by means of the stochastic volume estimation based on the ray tracing technique in order to demonstrate that the neutronic models represent faithfully the real geometry;

	CSG	HYBRID		
Overall Error	0.01%	Helical	-0.0035%	
[%]		Serpentine	-0.0005%	

- reflecting boundary conditions have been imposed in the poloidal and toroidal direction, while, for the radial direction, the VV has been included;
- a dedicated global neutron source model has been developed to simulate the actual neutron volumetric source of a fusion reactor. It has been identified the surface corresponding to the outboard equatorial module where the neutrons are biased in cosine and energy. The cosine distribution has been ranged in 10 subdivisions while:
 - the neutron energy has been sampled from 0.111 MeV to 14.2 MeV subdivided in 98 energy bins;
 - the photon energy has been sampled from 0.001 MeV to 50.0 MeV subdivided in 43 energy bins.

Мо	tivation	\sum	Coupling	\sum	Methodologies	\sum	Analyses & results	\geq	Summary	
13	27.11.2017	Gandolfo Alessandro Spagnuolo Breeding blanket multi-physics modelling for integrated DEMO design				lesign	25 th European Fusion Programme Workshop Dubrovnik, Croatia			

Results – Neutronics (CSG)

- The neutronic Monte Carlo calculation has been performed with the MCNP5 code running a statistically-relevant number particle histories (e.g. 1E+08). Run time ~ 20h;
- the power density deposition has been calculated on a superimposed mesh of 1.88E+06 voxel with a resolution lower than 3 mm in x, y and z direction;
- the 99.13% of the 1.88E + 06 mesh elements have a relative error lower than 5%, 0.82% between 5 and 10%, and only 0.05% greater than the 10%.

Results – Neutronics (HYBRID)

3D power density profile – Serpentine tube configuration

- The neutronic Monte Carlo calculation has been performed with the MCNP6 code running a statistically-relevant number particle histories (e.g. 1E+08). Run time ~ 11h;
- between the 86.9% and the 89.42% of the mesh elements have a relative error lower than 10%, 8.03-10.33% between 10 and 20%, and 2.56-2.78% with an error greater than 10%;
- for these preliminary analyses, no variance reduction technique has been used.

3D relative error profile – Serpentine tube configuration

Analysis – Thermal-hydraulics (CSG)

Results – Thermal-hydraulics (HYBRID)

Analysis – Mechanics (CSG)

Boundary conditions in normal operation (static)

The following set of mechanical boundary conditions along radial (x), toroidal (z) and poloidal (y) directions has been imposed to simulate the presence of the rest of the module as well as the attachment mechanical action.

Results – Mechanics (CSG)

Summary – Open Points

- A research campaign is currently on going for the verification and validation of the neutron source and boundary conditions used for the neutronic analysis;
 - the integration of HCPB slice as well as the nodalisation of the HCPB CAP has been already completed and integrated in the neutronic model "2015DEMO_HCPB_MCNP" using the CSG methodology.
- geometry parametrisation for multi-physics scoping analysis in order to analyse quickly the impact of geometry and/or material modifications;
- study of possible connection with system code for updating BB input parameters;

G.A. Spagnuolo et al., Development of HCLL DEMO First Wall design for SYCOMORE System Code, presented at ISFNT-13, 2017

Conclusion

- The capability of ANSYS to generate inputs based on CSG and UM representations suitable for neutronic analysis has been demonstrated;
- the coupling procedure between neutronic, thermal-hydraulic and structural calculations has been carried out and developed;
- the versatility of the coupling methodology has been investigated and demonstrated;
- the developed methodologies allow an extremely precise estimation of the power density profile providing important inputs to be used for the BB design.

THANKS FOR YOUR ATTENTION!

25th European Fusion Programme Workshop Dubrovnik, Croatia

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-

2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those

of the European Commission.

Breeding blanket multi-physics modelling for integrated DEMO design

Gandolfo Alessandro Spagnuolo

25th European Fusion Programme Workshop 27 – 29 November 2017, Dubrovnik (Croatia)

INSTITUTE FOR NEUTRON PHYSICS AND REACTOR TECHNOLOGY (INR) KARLSRUHE INSTITUTE OF TECHNOLOGY (KIT)

EMERGENCY FIRE BLANKET KINCE K

KIT - The Research University in the Helmholtz Association