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POLYNOMIAL STABILITY FOR A SYSTEM OF COUPLED
STRINGS

ŁUKASZ RZEPNICKI AND ROLAND SCHNAUBELT

Abstract. We study the long-time behavior of two vibrating strings
which are coupled at a common boundary point by a damper. We show
that the classical solutions converge polynomially with a uniform rate,
where the decay exponent depends on number theoretic properties of
the quotient of the wave speeds of the two springs. The proof is based
on a resolvent characterization of polynomial stability due to Borichev–
Tomilov and Batty–Duyckaerts.

1. Introduction

In this paper we investigate the long-term behavior of two string equations
which are coupled by a boundary damper, see (1.1) and (1.8). Their asymp-
totic properties heavily depend on the ratio d = c2/c1 of the wave speeds ck
of the two strings. The case of rational d was studied in [19] and [12]. In our
main result Theorem 4.2 we show the polynomial convergence of all classical
solutions to 0, to a constant or to an at most linearly growing solution, re-
spectively, depending on the chosen boundary and interface conditions. The
convergence rate is determined by a irrationality measure of d, which de-
scribes how fast d can be approximated by (appropriate) rational numbers,
cf. Section 3. We also see that the obtained decay rate is almost sharp. Such
diophantine properties of a parameter have been used before in the stability
theory of evolution equations in e.g. [1], [14], [15] or [26], where other prob-
lems were treated by different methods. However, our system seems to be
the first one exhibiting an explicit dependance of the (polynomial) decay on
such number theoretic quantities.

In recent years there has been an important progress in the understanding
of stability properties of linear evolution equations beyond the well studied
case of exponential decay. In a Hilbert space, Gearhart’s theorem character-
izes the exponential convergence to 0 of all (mild) solutions by the bounded-
ness of the resolvent R(λ,A) for Reλ ≥ 0, where A is the generator governing
the problem. But damping mechanism in wave type equations often lead to
weaker decay properties, see e.g. the discussion in [2].
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Logarithmic decay of all classical solutions u (i.e., u(0) ∈D(A)) was chara-
caterized in terms of resolvent estimates in the pioneering work [18]. For a
bounded semigroup T (⋅) with generator A on a Hilbert space X, one has
the polynomial decay ∥T (t)(I − A)−1∥ ≤ ct−1/α for t ≥ 1 and some α > 0
if and only if the spectrum of A belongs to the open left half plane and
∥(is −A)−1∥ ≤ c ∣s∣α for real s with ∣s∣ ≥ 1. The sufficiency of the conditions
on A was shown in [8], whereas their necessity is true even in a Banach space
X by [6]. (See [3] and [20] for earlier contributions.) The sufficiency fails in
L1-spaces in general, see [8]. Still in Banach spaces the resolvent condition
implies the corresponding decay up to a logarithmic correction, as shown in
[6] also for more general rates. In the recent papers [4] and [5] these results
have been refined in various directions. In these papers one finds plenty of
references concerning applications to PDEs, see also [2], [3], [6], [8], [20].

In this work we establish the polynomial decay of the system of two strings

∂ttu(t, x) = c2
1∂xxu(t, x), x ∈ (−1,0), t ≥ 0,

∂ttv(t, x) = c2
2∂xxv(t, x), x ∈ (0,1), t ≥ 0, (1.1)

u(0, x) = u0(x), ∂tu(0, x) = u1(x), x ∈ (−1,0),
v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ (0,1),

with the wave speeds ck =
√
Tk/mk and initial functions u0, u1, v0, v1. The

mass and tension densities m1,m2 > 0 and T1, T2 > 0 are given constants. In
(1.8) we add to (1.1) some of the boundary and interface conditions

u(t,−1) = 0, (1.2)
∂xu(t,−1) = 0, (1.3)

v(t,1) = 0, (1.4)
∂xv(t,1) = 0, (1.5)

T1∂xu(t,0) = T2∂xv(t,0), ∂tu(t,0) − ∂tv(t,0) = −kT1∂xu(t,0), (1.6)
u(t,0) = v(t,0), T1∂xu(t,0) − T2∂xv(t,0) = −k∂tu(t,0), (1.7)

for t ≥ 0 and a damping constant k > 0.
This system was introduced in [11], where a mechanical interpretation

of the interface damping was given and in particular the case c1 = c2 was
studied. The long-time behavior of this system was further investigated in
[19]. There it was seen that the quotient d = c2/c1 plays a crucial role in the
analysis of (1.1). If it is a rational number of the right type, see (2.19), then
the energy of all solutions decays exponentially. For other rational numbers
there are time periodic solutions and thus no decay. For irrational d, con-
vergence of the solutions was shown without providing rates. Actually, the
paper [19] contains some errors in details, partly fixed in [12], see Section 2.

Let d be irrational. As in [19], we complement (1.1) by the combinations

Case I ∶ (1.2) and (1.4) and (1.6),
Case II ∶ (1.2) and (1.5) and (1.6),
Case II ∶ (1.3) and (1.5) and (1.6),
Case IV ∶ (1.2) and (1.4) and (1.7),
Case V ∶ (1.2) and (1.5) and (1.7),
Case VI ∶ (1.3) and (1.5) and (1.7).

(1.8)
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We note that the long-time behavior in case III was not studied in [19] and
[12]. In the next section we see that in each case the system is governed by
a generator Aj on a suitable Hilbert space Hj . In the cases I, IV and V the
spectrum of Aj belongs to the open left half plane, whereas in the other cases
0 is an isolated eigenvalue of Aj . More precisely, in II and VI we only have
a nontrivial kernel of Aj , but AIII also has a proper generalized eigenvector
for λ = 0. Accordingly, we show polynomial decay to 0, respectively to a
constant, for j ≠ III, and to an at most linearly growing solution if j =
III, see Theorems 4.2 and 4.3. It is crucial for our approach to obtain the
boundedness of the solution semigroup, respectively of its restriction to the
kernel of the spectral projection for the spectral set {0}. This fact is fairly
standard for j ∈ {I, IV, V }. For j ∈ {II, V I} one can use ideas from the
recent paper [7] about a certain parabolic-hyperbolic system in one space
dimension. The case III, however, requires a detailed analysis of the spectral
projection, cf. Proposition 2.2.

The main results heavily depend on the decay behavior of a complex func-
tion ∆j(is) as s→ ±∞, see (2.12), since the resolvent (is−Aj)−1 is bounded
by c ∣∆j(is)∣−1 thanks to Proposition 2.2. The map ∆j(is) is a linear com-
bination of products of sin(cks) and cos(cks) for k ∈ {1,2}. Therefore its
decay is determined by the rate with which one can approximate d by frac-
tions p/q of the type odd/odd, even/odd or odd/even, depending of the case
j, see (3.2). We call the optimal rate µj(d), and it is closely related to the
irrationality measure on d, which has thoroughly been studied in number
theory as discussed in Section 3. One has µj(d) ≥ 2 for every irrational d
and equality holds if d algebraic by Roth’s theorem [22].

Depending on µj(d), we can then compute the decay rate of ∆j(is) to 0
in Lemma 3.1 in a rather delicate way where we crucially use the structure
of ∆j(is). It is furrther shown that the obtained rate is almost optimal.
Astonishingly one can discuss the six cases more or less in parallel. In the last
section we then prove our main results, also using the results of [6] and [8].
For classical solutions, Theorem 4.2 gives almost optimal polynomial decay
rates in terms of the irrationality measure of d. For instance, if µj(d) = 2,
we have the decay cεt

− 1
2
−ε for all ε > 0 and solutions starting in the unit

ball of D(Aj), and we know that this exponent is almost sharp. Based on
somewhat different number theoretic results, in Theorem 4.3 we finally show
decay by t−1/2 times a logarithmic correction, for a.e. d.

2. Basic properties of the solution semigroup

We rewrite the system (1.1) with the boundary conditions in (1.8) as an
evolution equation of first order in time for the states (u, ∂tu, v, ∂tv) = w =
(w1,w2,w3,w4) in the product space

H =H1(−1,0) ×L2(−1,0) ×H1(0,1) ×L2(0,1)
which is equipped with its canonical norm ∥ ⋅ ∥H. We mostly work in smaller
state spaces which include the Dirichlet conditions from (1.8); namely in

HI = {w ∈ H ∣w1(−1) = 0 = w3(1)},
HII = {w ∈ H ∣w1(−1) = 0},
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HIII = H, (2.1)
HIV = {w ∈ H ∣w1(−1) = 0 = w3(1), w1(0) = w3(0)},
HV = {w ∈ H ∣w1(−1) = 0, w1(0) = w3(0)},
HV I = {w ∈ H ∣w1(0) = w3(0)}

for the respective cases j ∈ J ∶= {I, II, III, IV, V, V I}, noting that H1(a, b)
embeds into C([a, b]). We endow HI , HIV , and HV with the scalar product

⟨w, z⟩E = 1

2
∫

0

−1
(T1w

′
1z

′
1 +m1w2z2)dx + 1

2
∫

1

0
(T2w

′
3z

′
3 +m2w4z4)dx.

They are Hilbert spaces because of the Dirichlet conditions imposed in (2.1).
Note that the square of the induced norm

∥w∥2
E = ⟨w,w⟩E = T1

2
∥w′

1∥2
2 +

m1

2
∥w2∥2

2 +
T2

2
∥w′

3∥2
2 +

m2

2
∥w4∥2

2

is equal to the system’s energy given by

E(t) = 1

2
∫

0

−1
(m1(∂tu)2 + T1(∂xu)2)dx + 1

2
∫

1

0
(m2(∂tv)2 + T2(∂xv)2)dx.

For ∥⋅∥E we can check dissipativity of the generators below. The spaces HII ,
HIII , and HV I are equipped with the modified scalar product

⟪w, z⟫E = 1

2
∫

0

−1
(T1w

′
1z

′
1 +m1w1z1 +m1w2z2)dx

+ 1

2
∫

1

0
(T2w

′
3z

′
3 +m2w3z3 +m2w4z4)dx,

whose induced norm is denoted by 9 ⋅9E . Also these spaces are Hilbertian.
For each j ∈ J , on Hj the norms ∥ ⋅ ∥E resp. 9 ⋅9E , are equivalent to ∥ ⋅ ∥H.

In every case the generator corresponding to (1.1) is a restriction of the
operator matrix

A =
⎛
⎜⎜⎜
⎝

0 I 0 0
c2

1Dxx 0 0 0
0 0 0 I
0 0 c2

2Dxx 0

⎞
⎟⎟⎟
⎠

with domain

D =H2(−1,0) ×H1(−1,0) ×H2(0,1) ×H1(0,1)
in H. In view of the boundary and interface conditions in (1.8), we define

D(AI) = {w ∈ D ∩HI ∣w2(−1) = 0 = w4(−1), T1w
′
1(0) = T2w

′
3(0),

w2(0) −w4(0) = −kT1w
′
1(0)},

D(AII) = {w ∈ D ∩HII ∣w2(−1) = 0, w′
3(1) = 0, T1w

′
1(0) = T2w

′
3(0),

w2(0) −w4(0) = −kT1w
′
1(0)},

D(AIII) = {w ∈ D ∣w′
1(−1) = 0, w′

3(1) = 0, T1w
′
1(0) = T2w

′
3(0),

w2(0) −w4(0) = −kT1w
′
1(0)},

D(AIV ) = {w ∈ D ∩HIV ∣w2(−1) = 0 = w4(1),
T1w

′
1(0) − T2w

′
3(0) = −kw2(0) = −kw4(0)},

D(AV ) = {w ∈ D ∩HV ∣w2(−1) = 0, w′
3(1) = 0,

T1w
′
1(0) − T2w

′
3(0) = −kw2(0) = −kw4(0)},
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D(AV I) = {w ∈ D ∩HV I ∣w′
1(−1) = 0 = w′

3(1),
T1w

′
1(0) − T2w

′
3(0) = −kw2(0) = −kw4(0)},

and set Ajw = Aw for w ∈ D(Aj). Some of the above equations for w2

and w4 are not explicitly stated in (1.8). They arise from differentiating
the Dirichlet conditions on w1 and w3 in (1.8) with respect to time t, and
are thus implicitly contained in the system. Observe that the restriction
Aj ∶D(Aj) → Hj actually maps into Hj for each j ∈ J .

We look for solutions (u, v) ∈ C2(R+, L
2(0,1))2 ∩C(R+,H

2(0,1))2 of the
problem (1.1) with the boundary conditions given by (1.8). Existence and
uniqueness of such solutions are established in Proposition 2.2 below.

This and most of the other results in this section are contained in [19]
and [12] in a somewhat different form since there the wave equations (1.1)
were rewritten as a first order system. However, the precise expression for
the resolvent of Aj is needed later on. Moreover, the transformation to the
first order system has a one- or two-dimensional kernel in Cases II, III, and
VI which was overlooked in [19] and [12]. In addition Case III was treated
only partly there. We thus give most of the proofs within our framework.

We first show dissipativity and deal with the kernels of AII , AIII and
AV I . For our main results we have to describe the spectral projection for
the set {0} of these operators, which will be achieved for j = III only in
Proposition 2.2. In the cases II and VI we argue as in [7].

Lemma 2.1. a) The operators Aj are injective and dissipative on Hj for
j ∈ {I, IV, V }.

b) Let j ∈ {II, V I}. Then the operator Aj − I is dissipative on Hj.
Moreover, Aj has a one-dimensional kernel and a closed range with Hj =
ranAj⊕kerAj. The projections onto kerAj along ranAj are given by PIIg =
(0,0, φII(g)1,0) and PV Ig = (φV I(g)1,0, φV I(g)1,0) for the functionals φj
defined in (2.5) respectively (2.7). On ranAj the norm of Hj is equivalent
to ∥ ⋅ ∥E, and the part of Aj in ranAj is dissipative for ⟨⋅, ⋅⟩E.

c) The operator AIII − I is dissipative on HIII . The space of generalized
eigenfunctions of AIII for λ = 0 is spanned by (1,0,0,0), (0,0,1,0) and
(0,1,0,1), where the first two functions form a basis for kerAIII .

Proof. 1) We first treat the cases j ∈ {I, IV, V }. Let w ∈D(Aj). Integrating
by parts and using the boundary conditions at ±1 we compute

2 ⟨Ajw,w⟩E = T1∫
0

−1
(w′

2w
′
1 +w′′

1w2)dx + T2∫
1

0
(w′

4w
′
3 +w′′

3w4)dx

= T1∫
0

−1
(w′

2w
′
1−w′

1w
′
2)dx + T2∫

1

0
(w′

4w
′
3 −w′

3w
′
4)dx

+ T1w
′
1w2∣

0

−1
+ T2w

′
3w4∣

1

0
,

2 Re⟨Ajw,w⟩E = T1w
′
1(0)w2(0) − T2w

′
3(0)w4(0). (2.2)

In case I, the interface conditions in D(AI) then yield

2 Re⟨AIw,w⟩E = −T 2
1 k ∣w′

1(0)∣2. (2.3)

Similarly, the conditions corresponding to (1.7) imply

2 Re⟨Ajw,w⟩E = −k ∣w2(0)∣2 (2.4)
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for j ∈ {IV, V }. So these operators are dissipative. If Ajw = 0, then the
functions w1 and w3 are affine, whereas w2 and w4 vanish. The interface
equations further yield T1w

′
1(0) = T2w

′
3(0), and this number equals 0 if

j ∈ {I, V }. Finally, the relations in Hj show that also w1 = w3 = 0, and hence
Aj is injective for j ∈ {I, IV, V }.

2) We next look at the cases j ∈ {II, III, V I}. Let w ∈ D(Aj). As in
(2.2)–(2.4) we compute

2 Re⟪Ajw,w⟫E

= T1w
′
1(0)w2(0) − T2w

′
3(0)w4(0) +m1 Re∫

0

−1
w2w1 dx +m2 Re∫

1

0
w4w3 dx

≤ T1w
′
1(0)w2(0) − T2w

′
3(0)w4(0) +

m1

2
(∥w1∥2

2 + ∥w2∥2
2) +

m2

2
(∥w3∥2

2 +∥w4∥2
2)

≤ m1

2
(∥w1∥2

2 + ∥w2∥2
2) +

m2

2
(∥w3∥2

2 + ∥w4∥2
2).

Consequently, Aj − I is dissipative.
Let Ajw = 0. As above, then w1 and w3 are affine, whereas w2 and

w4 are zero. The Neumann conditions in the domains imply that w1 and
w3 are constant. The Dirichlet conditions in Hj now yield that kerAII is
spanned by (0,0,1,0) and kerAV I by (1,0,1,0), whereas kerAIII has the
basis {(1,0,0,0), (0,0,1,0)}.

Morever, a function w ∈ D(AIII) satisfies AIIIw = (a1,0, b1,0) for some
numbers a, b ∈ C if and only if all components wj are constant and w2 = a1
is equal to w4 = b1.

3) To establish the asserted decompositions in b) for j ∈ {II, V I}, we first
introduce the bounded linear map

φII ∶ HII → C; φII(g1, g2, g3, g4) = g3(0) − g1(0) +
kT2

c2
2
∫

1

0
g4(x)dx. (2.5)

First, let f = AIIw belong to the range of AII . We then deduce the equations
w2 = f1, w4 = f3,

w1(x) = a(1 + x) +
1

c2
1
∫

x

−1
(x − s)f2(s)ds, x ∈ [−1,0],

w3(x) = b +
1

c2
2
∫

1

x
(s − x)f4(s)ds, x ∈ [0,1],

(2.6)

for complex numbers a and b, taking into account the boundary conditions
w1(−1) = 0 and w′

3(1) = 0. Note that

w′
1(0) = a +

1

c2
1
∫

0

−1
f2(s)ds and w′

3(0) = −
1

c2
2
∫

1

0
f4(s)ds.

The interface conditions in D(AII) then determine the parameter a and
imply that the vector f belongs to kerφII .

Conversely, let f ∈ HII be contained in the kernel of φII . We then define
w by w2 = f1, w4 = f3, and (2.6) with b = 0 and

a = f3(0) − f1(0)
kT1

− 1

c2
1
∫

0

−1
f2(x)dx = − T2

T1c2
2
∫

1

0
f4(x)dx − 1

c2
1
∫

0

−1
f2(x)dx,
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where we have used φII(f) = 0 in the second equation. One can now check
that w belongs to D(AII), and we have AIIw = f by construction. There-
fore, ranAII = kerφII is closed and the map PIIg = (0,0, φII(g)1,0) is the
bounded projection onto kerAII along ranAII .

Let g ∈ ranAII . We clearly have ∥g∥2
E ≤ 9g9 and also ∥g1∥H1 ≤ c ∥g′1∥L2

since g1(−1) = 0, for some constants c > 0. Due to φII(g) = 0, we can then
bound ∣g3(0)∣ by c (∥g′1∥L2 + ∥g4∥L2). Hence, the norm 9 ⋅9 is equivalent to
∥ ⋅ ∥E on ranAII . The dissipativity of the part of AII in ranAII is proved as
in (2.3).

The remaining assertions for AV I are similarly shown using the functional

φV I ∶ HV I → C; φV I(f) =
T1

kc2
1
∫

0

−1
f2(s)ds+ T2

kc22
∫

1

0
f4(s)ds+f1(0) (2.7)

and the projection PV Ig = (φV I(g)1,0, φV I(g)1,0). �

We next describe the spectrum of Aj and compute its resolvent. Take
j ∈ J , f ∈ Hj , and λ ∈ C ∖ {0}. We introduce the numbers

al =
Tl
cl
, ωl =

λ

cl
, cl =

√
Tl√
ml
, d = c2

c1

for λ ∈ C and l ∈ {1,2}, and the functions

gj ∶ C→ C; gj(z) =
⎧⎪⎪⎨⎪⎪⎩

sinh(z + ω1), j ∈ {I, II, IV, V },
cosh(z + ω1), j ∈ {III, V I},

hj ∶ C→ C; hj(z) =
⎧⎪⎪⎨⎪⎪⎩

sinh(ω2 − z), j ∈ {I, IV },
cosh(ω2 − z), j ∈ {II, III, V, V I}.

The function sinh corresponds to Dirichlet conditions at x = −1 for gj and
at x = 1 for hj , whereas cosh is used in the Neumann cases. We further set

Uλ(x) =
−1

c1λ
∫

x

−1
sinh(ω1(x − r))(λf1(r) + f2(r))dr, x ∈ [−1,0],

Wλ(x) =
−1

c2λ
∫

1

x
sinh(ω2(r − x))(λf3(r) + f4(r))dr, x ∈ [0,1].

(2.8)

All solutions w ∈ D to λw − Aw = f satisfying the boundary conditions at
x = ±1 for Case j in (1.8) are given by

w1 = α(λ)gj(ω1 ⋅) +Uλ, w2 = λw1 − f1 on [−1,0],
w3 = β(λ)hj(ω2 ⋅) +Wλ, w4 = λw3 − f3 on [0,1], (2.9)

for some numbers a(λ), b(λ) ∈ C. Since f belongs to Hj , these functions w2

and w4 satisfy the Dirichlet conditions at x = ±1 in D(Aj).
We next impose the interface conditions induced by (1.6) for j ∈{I, II, III}

and by (1.7) for j ∈ {IV, V, V I}. They are satisfied if and only if the solution
w fulfill the equations

λa1α(λ)g′j(0) + T1U
′
λ(0) = λa2β(λ)h′j(0) + T2W

′
λ(0),

λα(λ)gj(0) + λUλ(0) − f1(0) − λβ(λ)hj(0) − λWλ(0) + f3(0)
= −k(λa1α(λ)g′j(0) + T1U

′
λ(0))).
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if j ∈ {I, II, III}, as well as
λα(λ)gj(0) + λUλ(0) = λβ(λ)hj(0) + λWλ(0),
λa1α(λ)g′j(0) + T1U

′
λ(0) − λa2β(λ)h′j(0) − T2W

′
λ(0)

= −k(λα(λ)gj(0) + λUλ(0) − f1(0)).
if j ∈ {IV, V, V I}. (For w2 and w4 we employ (2.9) and f ∈ Hj .)

We thus obtain a solution w ∈ D(Aj) to λw − Aw = f if and only if the
coefficients (a(λ), b(λ)) solve the system

Mj(λ)(
α(λ)
β(λ)) = ( −T1U

′
λ(0) + T2W

′
λ(0)

−λUλ(0) + λWλ(0) − kT1U ′
λ(0) + f1(0) − f3(0)

),

Mj(λ) = λ( a1g
′
j(0) −a2h

′
j(0)

gj(0) + a1kg
′
j(0) −hj(0) ) ,

(2.10)

in the cases j ∈ {I, II, III}, respectively

Mj(λ)(
α(λ)
β(λ)) = ( −λUλ(0) + λWλ(0)

−T1U ′
λ(0) + T2W ′

λ(0) − kλUλ(0) + kf1(0)
),

Mj(λ) = λ( gj(0) −hj(0)
a1g

′
j(0) + kgj(0) −a2h

′
j(0)

)
(2.11)

for j ∈ {IV, V, V I}. The determinant of Mj(λ) is given by

detMj(λ) = −λ2∆j(λ), j ∈ {I, II, III}, (2.12)

detMj(λ) = λ2∆j(λ), j ∈ {IV, V, V I},
∆I(λ) = [sinh(ω1) + a1k cosh(ω1)]a2 cosh(ω2) + a1 cosh(ω1) sinh(ω2),

∆II(λ) = [sinh(ω1) + a1k cosh(ω1)]a2 sinh(ω2) + a1 cosh(ω1) cosh(ω2),
∆III(λ) = [cosh(ω1) + a1k sinh(ω1)]a2 sinh(ω2) + a1 sinh(ω1) cosh(ω2),
∆IV (λ) = [a1 cosh(ω1) + k sinh(ω1)] sinh(ω2) + a2 sinh(ω1) cosh(ω2),
∆V (λ) = [a1 cosh(ω1) + k sinh(ω1)] cosh(ω2) + a2 sinh(ω1) sinh(ω2),

∆V I(λ) = [a1 sinh(ω1) + k cosh(ω1)] cosh(ω2) + a2 cosh(ω1) sinh(ω2).
If ∆j(λ) = 0 for some λ ≠ 0, the above observations yield a non-zero

solution w ∈ D(Aj) of λw − Ajw = 0, and thus λ is an eigenvalue of Aj .
Otherwise we have constructed a unique solution w ∈D(Aj) of the equation
λw − Ajw = f for the given function f ∈ Hj , where the map f ↦ w is
continuous in Hj . Hence, λ ≠ 0 belongs to the resolvent set if ∆j(λ) ≠ 0.

Observe that the functions ∆j are positive on (0,∞), so that the resolvent
of Aj exists for λ > 0, and that it is compact. Because of these properties and
Lemma 2.1, Aj is invertible for j ∈ {I, IV, V } and 0 is an isolated eigenvalue
of Aj for j ∈ {II, III, V I}.

We state these facts and several consequences in the next basic propo-
sition, using the following notation. The spectrum of a closed operator B
is denoted by σ(A) and its point spectrum by σp(B). We write C− = {λ ∈
C ∣ Reλ < 0}.

Proposition 2.2. a) The resolvent of Aj is compact, and we have

σ(Aj) = σp(Aj) = {λ ∈ C ∖ {0} ∣∆j(λ) = 0}, j ∈ {I, IV, V },
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σ(Aj) = σp(Aj) = {0} ∪ {λ ∈ C ∖ {0} ∣∆j(λ) = 0}, j ∈ {II, III, V I}.

b) For j ∈ {I, IV, V } the operator Aj generates a contractive C0–semigroup
Tj(⋅) on Hj.

c) Let j ∈ {II, III, V I}. Then 0 is an isolated eigenvalue of Aj. Let Pj
be the corresponding spectral projection and A1

j be the restriction of Aj to
D(Aj) ∩ kerPj. Then PII and PV I are given as in Lemma 2.1 and PIII by
(2.14). We have σ(A1

j) = σ(Aj) ∖ {0}.
For j ∈ {II, IV } the operator Aj generates a bounded C0–semigroup Tj(⋅)

on Hj. The restriction of Tj(⋅) to ranPj = kerAj is constant and that to
kerPj = ranAj is contractive for ∥ ⋅ ∥E and has the generator A1

j .
On kerPIII the norm of HIII is equivalent to ∥ ⋅ ∥E. The operator AIII

generates a C0–semigroup TIII(⋅) on HIII with linear growth. The restriction
of TIII(⋅) to ranPj is affine in t and that to kerPj is contractive for ∥ ⋅ ∥E
and has the generator A1

III .
c) In each case, for every w0 = (u0, u1, v0, v1) ∈D(Aj) the unique solution

(u, v) of (1.1) with the boundary conditions of (1.8) is given by w(t) =
(u(t), ∂tu(t), v(t), ∂tv(t)) = Tj(t)w0 for t ≥ 0.

d) Let d = c2/c1 ∉ Q. Then σ(Aj) ⊆ C− for j ∈ {I, IV, V } and σ(A1
j) ⊆ C−

for j ∈ {II, III, V I}. The resolvent is bounded by

∥R(is,Aj)∥ ≤
c

∣∆j(is)∣
(2.13)

for a constant c > 0, all s ∈ R with ∣s∣ ≥ 1, and j ∈ J .

Proof. 1) Assertion a) was shown above, and we have seen that (0,∞) be-
longs to the resolvent set for each j ∈ J . Hence, Lemma 2.1 and the Lumer–
Phillips theorem show that Aj generates a C0–semigroup on Hj which is
contractive for j ∈ {I, IV, V }. Part c) is deduced from the generation prop-
erty by a standard calculation.

Let j ∈ {II, V I}. The operator Aj has no proper generalized eigenvector
for λ = 0 since kerAj ∩ ranAj = {0}. Moreover, the projections Pj from
Lemma 2.1 map onto kerAj and commute with Aj . They thus coincide with
the spectral projection of Aj for {0} which implies the assertion σ(A1

j) =
σ(Aj)∖ {0}. Clearly, Tj(⋅) leaves invariant the decomposition Hj = ranAj ⊕
kerAj and its restrictions to ranAj and kerAj are generated by A1

j and 0,
respectively. Since A1

j is dissipative for the equivalent norm ∥ ⋅ ∥E on ranAj
by Lemma 2.1, the semigroup Tj(⋅) is bounded on ranAj and hence on Hj .

2) We next prove part c) also for j = III. Take a number ε > 0 such that
∆III is non-zero on B(0,2ε) ∖ {0}. The spectral projection PIII is given by

PIIIf = 1

2πi
∫
∣λ∣=ε

R(λ,AIII)f dλ = 1

2πi
∫
∣λ∣=ε

⎛
⎜⎜⎜
⎝

α(λ) cosh(λ(⋅ + 1)/c1)
λα(λ) cosh(λ(⋅ + 1)/c1)
β(λ) cosh(λ(⋅ − 1)/c2)
λβ(λ) cosh(λ(⋅ − 1)/c2)

⎞
⎟⎟⎟
⎠

dλ.

for f ∈ HIII , where we use (2.8)–(2.10) and Cauchy’s integral theorem and
formula. (Observe that the integrands of Uλ and Wλ vanish at λ = 0.)
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Equation (2.10) next yields

(α(λ)
β(λ)) = 1

λ2
ϕ(λ)z(λ),

where the factors are given by ϕ(λ) = λ/∆III(λ) for λ ∈ B(0,2ε) ∖ {0} and

z1(λ) = cosh(λ/c2)(−T1U
′
λ(0) + T2W

′
λ(0)) + a2 sinh(λ/c2)(−λUλ(0)

+ λWλ(0) − kT1U
′
λ(0) + f1(0) − f3(0))

z2(λ) = ( cosh(λ/c1) + a1k sinh(λ/c1))(−T1U
′
λ(0) + T2W

′
λ(0))

− a1 sinh(λ/c1)(−λUλ(0) + λWλ(0) − kT1U
′
λ(0) + f1(0) − f3(0))

for λ ∈ C. Note that z is holomorphic on C. The power series of sinh and
cosh imply the expansion

∆III(λ) = (a1

c1
+ a2

c2
)λ + a1a2k

c1c2
λ2 +O(λ3) = (m1 +m2)λ + km1m2λ

2 +O(λ3)

near λ = 0, so that ϕ has a holomorphic extension at 0 with ϕ(0) = 1
m1+m2

.
Moreover, its derivative is given by

ϕ′(λ) = ∆III(λ) − λ∆′
III(λ)

∆III(λ)2
= −km1m2λ

2 +O(λ3)
(m1 +m2)2λ2 +O(λ3) ,

ϕ′(0) = −km1m2

(m1 +m2)2
.

By means of Cauchy’s integral formula, we can now evaluate the above ex-
pression for PIIIf and derive

PIIIf = ( d

dλ
)∣λ = 0

⎛
⎜⎜⎜
⎝

ϕ(λ)z1(λ) cosh(λ(⋅ + 1)/c1)
λϕ(λ)z1(λ) cosh(λ(⋅ + 1)/c1)
ϕ(λ)z2(λ) cosh(λ(⋅ − 1)/c2)
λϕ(λ)z2(λ) cosh(λ(⋅ − 1)/c2)

⎞
⎟⎟⎟
⎠

(2.14)

= −km1m2

(m1 +m2)2

⎛
⎜⎜⎜
⎝

z1(0)1
0

z2(0)1
0

⎞
⎟⎟⎟
⎠
+ 1

m1 +m2

⎛
⎜⎜⎜
⎝

0
z1(0)1

0
z2(0)1

⎞
⎟⎟⎟
⎠
+ 1

m1 +m2

⎛
⎜⎜⎜
⎝

z′1(0)1
0

z′2(0)1
0

⎞
⎟⎟⎟
⎠
.

To compute the vectors z(0) and z′(0), we first infer from (2.8) the identities

U ′
λ(0) = −

1

c2
1
∫

0

−1
cosh(λr/c1)(λf1(r) + f2(r))dr,

W ′
λ(0) =

1

c2
2
∫

1

0
cosh(λr/c1)(λf3(r) + f4(r))dr,

(2.15)

and hence

z(0) =
⎛
⎝

T1
c21
∫ 0
−1 f2 dr + T2

c22
∫ 1

0 f4 dr
T1
c21
∫ 0
−1 f2 dr + T2

c22
∫ 1

0 f4 dr

⎞
⎠
= (m1 ∫ 0

−1 f2 dr +m2 ∫ 1
0 f4 dr

m1 ∫ 0
−1 f2 dr +m2 ∫ 1

0 f4 dr
) .

We further compute
d

dλ
U ′
λ(0) = −

1

c2
1
∫

0

−1
( 1

c1
sinh(λrc1 )(λf1(r) + f2(r)) + cosh(λrc1 )f1(r))dr,
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d

dλ
U ′
λ(0)∣λ=0 = −

1

c2
1
∫

0

−1
f1 dr,

d

dλ
W ′
λ(0)∣λ=0 =

1

c2
2
∫

1

0
f3 dr.

As a result,

z′1(0) =m1∫
0

−1
f1 dr +m2∫

1

0
f3 dr + km1m2∫

0

−1
f2 dr +m2f1(0) −m2f3(0),

z′2(0) =m1∫
0

−1
f1 dr +m2∫

1

0
f3 dr + km1m2∫

1

0
f4 dr −m1f1(0) +m1f3(0).

Therefore a function f ∈ HIII belongs to kerPIII if and only if 0 = z1(0) =
z′1(0) = z′2(0); i.e.,

m1∫
0

−1
f2 dr +m2∫

1

0
f4 dr = 0,

m1 +m2

m2
∫

0

−1
f1 dr + m1 +m2

m1
∫

1

0
f3 dr = 0, (2.16)

f1(0) − f3(0) + km1∫
0

−1
f2 dr = 0.

We can now show that the norm ∥ ⋅ ∥E is equivalent to 9 ⋅9E on kerPIII .
Let f ∈ kerPIII . We use the equations

fl(x) = fl(0) + ∫
x

0
f ′l (r)dr (2.17)

for l ∈ {1,3} and x ∈ [−1,0], resp. x ∈ [0,1]. Formulas (2.16) then yield
m1 +m2

m2
f1(0) +

m1 +m2

m1
f3(0) = −

m1 +m2

m2
∫

0

−1
∫

x

0
f ′1(r)dr dx

− m1 +m2

m1
∫

1

0
∫

x

0
f ′3(r)dr dx,

f1(0) − f3(0) = −km1∫
0

−1
f2 dr.

Here the coeffcient matrix in front of the vector (f1(0), f3(0)) is invertible.
We can thus bound ∣f1(0)∣ and ∣f3(0)∣ by c ∥f∥H for a constant c > 0. The
claimed equivalence then easily follows from (2.17).

As in (2.3) we see that AIII is dissipative for ∥ ⋅ ∥E . Its restriction A1
III to

kerPIII thus generates a bounded semigroup that coincides with the restric-
tion of TIII(⋅) to kerPIII . Moreover, for w0 ∈ ranPIII the solution TIII(t)w0

is a linear combination of functions (1,0,0,0), (0,0,1,0), and t(0,1,0,1)
by Lemma 2.1. Altogether we have shown assertion c).

3) We now look at the purely imaginary non-zero eigenvalues of AIII . By
part a), is ∈ R ∖ {0} is an eigenvalue if and only if

0 = ∆III(is) = −a1a2k sin( sc1 ) sin( sc2 )
+ i[a2 cos( sc1 ) sin( sc2 ) + a1 sin( sc1 ) cos( sc2 )].

Hence, s/c1 or s/c2 have to be a zero of sin. In the first case, the second
summand of Im ∆III(is) vanishes and cos(s/c1) has absolute value one. As
a result, also sin(s/c2) has to be zero. Here we can interchange the role of
s/c1 and s/c2, so that both numbers must belong to πZ. This means that
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is ∈ R ∖ {0} is an eigenvalue of AIII if and only if s = c1kπ = c2lπ for some
integers k and l, which is equivalent to d ∈ Q.

4) Let d be irrational. The spectral assertions in d) follow from part a)
as well as formula (4.4) of [19], Theorem 1 of [12] for j = IV , and step 3)
for j = III. Let f ∈ Hj , s ∈ R ∖ {0}, and w = R(is,Aj)f . Observe that
sinh(is) = i sin s and cosh(is) = cos s. We first take j ∈ {I, IV, V }. Formulas
(2.9)–(2.12) and (2.15) with λ = is imply the inequalities

∥w∥E ≤ c (∥w′
1∥L2 + ∥w2∥L2 + ∥w′

3∥L2 + ∥w4∥L2) (2.18)

≤ c (∣sα(is)∣ + ∥U ′
is∥L2 + ∥sUis∥L2 + ∥f1∥L2 + ∣sβ(is)∣ + ∥W ′

is∥L2

+ ∥sWis∥L2 + ∥f3∥L2)

≤ c

∣∆(is)∣
(∥U ′

is∥∞ + ∥W ′
is∥∞ + ∥sUis∥∞+ ∥sWis∥∞ + ∥f1∥∞ + ∥f3∥∞)

+ (∥U ′
is∥L2 + ∥sUis∥L2 + ∥f1∥L2 + ∥W ′

is∥L2 + ∥sWis∥L2 + ∥f3∥L2).
Here and below, the constants c > 0 only depend on the given constants.
Combined with equation (2.8), Lemma 3.3 of [7] shows that

∥sUis∥∞, ∥U ′
is∥∞ ≤ c (∥f1∥H1 + ∥f2∥L2).

The maps Wis are treated similarly. Hence, (2.13) is true for j ∈ {I, IV, V }.
In Cases II, III, and VI one has to add the norms ∥w1∥L2 and ∥w3∥L2 in
(2.18), which can be absorbed using ∣s∣ ≥ 1. �

For completeness we also state the results from [19] and [12] for rational
d = c2/c1. We write d = o/e if d = p/q for coprime integers with odd p and even
q, and analogously for the other two cases. Purely imaginary eigenvalues of
Aj exist if any only if

Case I ∶ d = o/o, Case II ∶ d = o/e, Case III ∶ d ∈ Q,
Case IV ∶ d ∈ Q, Case V ∶ d = e/o, Case VI ∶ d = o/o. (2.19)

(Case III was treated in the proof of Proposition 2.2.)

3. The core estimates and irrationality measures

We now consider irrational d = c2/c1 > 0, so that ∆j(is) ≠ 0 for s ∈ R∖{0}
by Proposition 2.2. Because of (2.13), we need lower bounds for ∣∆j(is)∣ to
control the growth of the resolvent of Aj along iR. Such bounds depend on
the rate of simultaneous convergence of sequences (sn/c1) and (sn/c2) to the
set of zeros of sine or cosine as ∣sn∣ → ∞ We are thus led to certain number
theoretic properties of the ratio d = c2/c1.

Let r > 0 be irrational. We define its irrationality measure µ(r) as the
supremum of all θ > 0 such that

∃ infinitely many p, q ∈ N with ∣r − p
q
∣ < q−θ, (3.1)

see e.g. Appendix E in [10] or Chapter XI in [13]. Theorem 1 of [25] or
Exercise E.1 in [10] give a formula for µ(r) in terms of the continued fraction
of r. The larger µ(r) the better one can approximate r by rationals and, as
we see below, the faster ∆j(isn) will tend to 0 for certain ∣sn∣ → ∞.

A famous result by Roth [22] says that µ(r) = 2 for algebraic r. One
always has µ(r) ≥ 2, see Theorem 185 in [13]. It is known that µ(e) = 2,
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µ(π) ≤ 7.6063, and µ(ln 2) ≤ 3.5746, for instance; see [9], [23], resp. [21].
There are numbers with µ(r) = ∞, see Example 1 of [25] or §11.7 in [13]. One
can construct r with a prescribed irrationality measure due to Corollary 4
of [25]. We have µ(r) = 2 for a.e. r by Theorem E.3 in [10].

However, the eigenvalue results (2.19) indicate that maybe one should
not look for approximations by any rationals, but only by those in one of
the classes odd/odd, odd/even, or even/odd. We thus define the restricted
irrationality measures µoo(r), µoe(r), and µeo(r) as the supremum of all
θ > 0 satisfying (3.1) with p/q = o/o, p/q = o/e, respectively p/q = e/o.
Clearly, these numbers are less or equal µ(r), and at least one of them has
to be equal to µ(r). It is known that µoo(r), µoe(r), µeo(r) ≥ 2, and hence
they are all equal to µ(r) if µ(r) = 2, see [24] or Theorem II in [17].

The continued fraction [a0, a1, . . . ] of r allows to relate these numbers.
We first recall that only the convergents of r can approach it faster than
quadratically, see Theorem 184 in [13]. If all quotients an are even integers,
then the convergents belong to only two of the classes o/o, o/e and e/o
(determined by initial an), see Lemmas 1 and 2 of [17]. So, if e.g. o/o is left
out and µ(r) > 2, then µoo(r) = 2 and one of the other two classes is equal
to µ(r) > 2. We set

Case I ∶ µI = µoo(d), Case II ∶ µII = µoe(d),
Case III ∶ µIII = µ(d), Case IV ∶ µIV = µ(d),
Case V ∶ µV = µeo(d), Case VI ∶ µV I = µoo(d).

(3.2)

The next lemma contains the core estimate to treat the case of irrational
ratios d. It also shows that this estimate is almost optimal.

Lemma 3.1. Let j ∈ J , d = c2/c1 be irrational, and µj in (3.2) be finite.
Take any η > 0. Then the following assertions are true.

a) There exists a constant cη > 0 such that

∣∆j(is)∣ ≥
cη

∣s∣(2µj−2)+η
(3.3)

for all s ∈ R with ∣s∣ ≥ 1.
b) There are numbers s̃n ∈ [1,∞) with s̃n →∞ and a constant c̃ > 0 with

∣∆j(is̃n)∣ ≤
c̃

∣s∣(2µj−2)−η
(3.4)

for all n ∈ N. In (3.4) we can take η = 0 if µj = 2.

Proof. We do not relabel subsequences of (sn), and write κ or κl for positive
constants only depending on the given numbers Tj , mj , and k.

1a) For λ = is and s ∈ R, we can rewrite the maps ∆j from (2.12) as

∆I(is) = a1a2k cos( sc1 ) cos( sc2 ) + i[a2 sin( sc1 ) cos( sc2 ) + a1 cos( sc1 ) sin( sc2 )],
∆II(is) = −a2 sin( sc1 ) sin( sc2 ) + a1 cos( sc1 ) cos( sc2 ) + ia1a2k cos( sc1 ) sin( sc2 ),

∆III(is) = −a1a2k sin( sc1 ) sin( sc2 ) + i[a2 cos( sc1 ) sin( sc2 ) + a1 sin( sc1 ) cos( sc2 )].
∆IV (is) = −k sin( sc1 ) sin( sc2 ) + i[a1 cos( sc1 ) sin( sc2 ) + a2 sin( sc1 ) cos( sc2 )],
∆V (is) = a1 cos( sc1 ) cos( sc2 ) − a2 sin( sc1 ) sin( sc2 ) + ik sin( sc1 ) cos( sc2 ), (3.5)

∆V I(is) = k cos( sc1 ) cos( sc2 ) + i[a1 sin( sc1 ) cos( sc2 ) + a2 cos( sc1 ) sin( sc2 )].
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Suppose that condition (3.3) does not hold. Then there exists a number
η̄ ∈ (0,1/3) and a sequence (sn) in R with ∣sn∣ ≥ 1 and ∣sn∣ → ∞ such that

∣∆j(isn)∣ ≤ ∣sn∣−(2µj−2)−3η̄ (3.6)

for all n ∈ N and some j.
We write ∆j(is) = ∆

(1)
j (is) +∆

(2)
j (is), where ∆

(1)
j (is) is the real part of

∆j(is) if j ∈ {I, III, IV, V I} and the imaginary part if j ∈ {II, V }. In each
case, the formulas (3.5) yield the expression

∆
(1)
j (isn) = ±κ1ϕj(sn/c1)ψj(sn/c2), (3.7)

for functions ϕj , ψj ∈ {sin, cos} and a non-specified sign. Estimate (3.6) then
implies that at least (a subsequence of) one of the sequences (sn/c1) and
(sn/c2) approaches the set of zeros N(1, j) of ϕj , respectively N(2, j) of ψj .
Here we have

Case I ∶ N(1, I) = πZ + π
2 , N(2, I) = πZ + π

2 ,
Case II ∶ N(1, II) = πZ + π

2 , N(2, II) = πZ,
Case III ∶ N(1, III) = πZ, N(2, III) = πZ,
Case IV ∶ N(1, IV ) = πZ, N(2, IV ) = πZ,
Case V ∶ N(1, V ) = πZ, N(2, V ) = πZ + π

2 ,
Case VI ∶ N(1, V I) = πZ + π

2 , N(2, V I) = πZ + π
2 .

We now look at ∆
(2)
j (isn) which is in all cases of the form

∆
(2)
j (isn) = τ1

j κ2ϕ̃j(sn/c1)ψj(sn/c2) + τ2
j κ3ϕj(sn/c1)ψ̃j(sn/c2), (3.8)

where τ lj ∈ {1,−1}, as well as ϕ̃j = sin if ϕj = cos and analogously in the

other cases. If (ϕj(sn/c1)) tends to 0, the second summand in ∆
(2)
j (isn)

vanishes and the numbers ∣ϕ̃j(sn/c1)∣ converge to 1 as n → ∞. Therefore
also ψj(sn/c2) has to approach N(2, j). The roles of ϕj and ψj can be
interchanged here. Hence, ϕj(sn/c1) and ψj(sn/c2) tend to 0 as n→∞.

We can thus find non-zero integers kn and ln satisfying ∣kn∣, ∣ln∣ → ∞ and
null sequences (δn) and (εn) bounded by π/2 such that

sn
c1

= knπ + ξj
π

2
+ δn and

sn
c2

= lnπ + ζj
π

2
+ εn (3.9)

for all n ∈ N. Here we have set
Case I ∶ ξI = 1, ζI = 1, Case II ∶ ξII = 1, ζII = 0,
Case III ∶ ξIII = 0, ζIII = 0, Case IV ∶ ξIV = 0, ζIV = 0,
Case V ∶ ξV = 0, ζV = 1, Case VI ∶ ξV I = 1, ζV I = 1.

(3.10)

It follows

c1knπ + c1ξj
π

2
+ c1δn = c2lnπ + c2ζj

π

2
+ c2εn,

2kn + ξj
2ln + ζj

− d = 2

π(2ln + ζj)
(dεn − δn).

The assumption on d now implies that

∣2kn + ξj
2ln + ζj

− d∣ ≥ 1

∣2ln + ζj ∣µj+η̄
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for all n ≥ nη and some index nη ∈ N, cf. (3.1), (3.2) and (3.10). After drop-
ping finitely many members of the sequences, we then obtain the inequality

∣dεn − δn∣ ≥
c̄

∣ln∣µj−1+η̄
(3.11)

for all n ∈ N, j ∈ J, and a constant c̄ > 0.
c) We claim that the sequences (δn) and (εn) satisfy the estimates

0 < lim inf
n→∞

∣εn∣
∣δn∣

≤ lim sup
n→∞

∣εn∣
∣δn∣

< ∞, (3.12)

∣εn∣, ∣δn∣ ≥
c̄′

∣ln∣µj−1+η̄
(3.13)

for a constant c̄′ > 0 and all n ∈ N. We suppose that this claim was wrong.
First, there could be a subsequence such that limn→∞

∣εn∣
∣δn∣

= 0. Because
of (3.11), the numbers δn then have to satisfy (3.13) for all sufficently large
n ∈ N and some c̄′ > 0. Observe that ∣ϕj(sn/c1)∣ ≥ ∣δn∣/2 and ∣ψj(sn/c2)∣ ≤ ∣εn∣
for all sufficiently large n by (3.9), (3.10) and the Taylor series of sin and
cos at their zeros. Similarly, the numbers ∣ϕ̃j(sn/c1)∣ and ∣ψ̃j(sn/c2)∣ tend
to 1 as n → ∞ and are thus contained in [1/2,1] starting from some index
n0. We now use these facts and (3.9) to infer from (3.8) the lower bound

∣∆j(isn)∣ ≥ ∣∆(2)j (isn)∣ ≥
κ3

4
∣δn∣ − κ2 ∣εn∣ ≥

κ3

8
∣δn∣ ≥

κ3c̄
′

8 ∣ln∣µj−1+η̄
≥ κc̄′

∣sn∣µj−1+η̄

for all sufficiently large n. But this inequality contradicts (3.6).
Second, if limn→∞

∣εn∣
∣δn∣

= ∞ was true for a subsequence, we infer a contra-
diction in a similar way. Hence, the relations (3.12) are fulfilled, and then
(3.11) implies the inequality (3.13).

d) As we see in step 2), in ∆
(2)
j (isn) cancellations may occur. So we look

at the term ∆
(1)
j (isn). Since the arguments approach the zero set of the

functions ϕj and ψj , from (3.7) and (3.13) we derive the lower bound

∣∆j(isn)∣ ≥ ∣∆(1)j (isn)∣ ≥
κ1

4
∣δn∣ ∣εn∣ ≥

κ1(c̄′)2

4 ∣ln∣2µj−2+2η̄
≥ κ(c̄′)2

∣sn∣2µj−2+2η̄

as above for all n ∈ N. But this inequality cannot be true because of (3.6).
So assertion (3.3) is shown.

2a) By the assumption on d, for all η > 0 and j ∈ J there are kn, ln ∈ N
such that

∣dn∣ ≤
1

∣ln∣µj−η/2
, where dn ∶=

2kn + ξj
2ln + ζj

− d, (3.14)

for all n ∈ N. Due to [24] we can put here η = 0 if µj(d) = 2.
To indicate the cases, we now denote the (positive) prefactors κ2 and κ3

of ∆
(2)
j (is) in (3.8) by αj and βj , respectively. (Only αII and βV differ

from the corresponding factors in (3.5), which are equal to −αII and −βV ,
respectively.) Recall the numbers ξj and ζj from (3.10). We set

bj ∶= d +
αj

βj
, δn ∶= ( d

bj
− 1)π

2
dn(2ln + ζj), εn ∶=

π

2bj
dn(2ln + ζj) (3.15)
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for n ∈ N. By the estimate (3.14) there exists a constant c̃ > 0 with

∣δn∣, ∣εn∣ ≤
c̃

∣ln∣µj−1−η/2
(3.16)

for every n ∈ N, so that ∣δn∣, ∣εn∣ ≤ π/2 for all large n. Following (3.9), we
next define the numbers

s̃n ∶= c1knπ + c1ξj
π

2
+ c1δn. (3.17)

Equations (3.15) then yield the formulas

s̃n = c2lnπ + c2ζj
π

2
+ c2εn and αjεn + βjδn = 0 (3.18)

for all n ∈ N.
b) As in part 1c) we estimate

∣∆(1)j (is̃n)∣ ≤ κ1 ∣ϕj(s̃n/c1)∣ ∣ψj(s̃n/c2)∣ ≤ κ1 ∣δn∣ ∣εn∣ ≤
κ1c̃

2

∣ln∣2µj−2−η
, (3.19)

for all n ∈ N, using (3.7), (3.17), (3.18) and (3.16). In ∆
(2)
j (is̃n) from (3.8)

our construction will lead to a cancellation. Set

σ(1)n ∶=
⎧⎪⎪⎨⎪⎪⎩

1, kn even,
−1, kn odd,

σ(2)n ∶=
⎧⎪⎪⎨⎪⎪⎩

1, ln even,
−1, ln odd,

ρj ∶=
⎧⎪⎪⎨⎪⎪⎩

1, j ∈ {III, IV },
−1, else,

for n ∈ N. We insert (3.17), (3.18) and (3.10) into the respective formulas in
(3.5). Applying carefully the translation rules for sine and cosine, we arrive
at the expression

∆
(2)
j (is̃n) = ρjσ(1)n σ(2)n [αj cos(δn) sin(εn) + βj sin(δn) cos(εn)].

The power series for sine and cosine, (3.18), and (3.16) thus imply

∣∆(2)j (is̃n)∣ ≤ ∣αjεn + βjδn∣ +O(∣δn∣3 + ∣εn∣3) = O(∣ln∣−3µj+3+3η/2).

So the term (3.19) dominates in ∆(is̃n) = ∆
(1)
j (is̃n) +∆

(2)
j (is̃n) and yields

assertion (3.4). �

4. Main results

Lemma 3.1 and Proposition 2.2 imply the crucial resolvent estimates.
Throughout we use the standard norm of H.

Proposition 4.1. Let j ∈ J , d = c2/c1 be irrational, and µj in (3.2) be finite.
Take any η > 0. Then the following asserstions are true.

a) There exists a constant Cη > 0 such that

∥R(is,A)∥ ≤ Cη ∣s∣(2µj−2)+η (4.1)

for all s ∈ R with ∣s∣ ≥ 1.
b) There are numbers s̃n ∈ [1,∞) with s̃n →∞ and a constant C̃ > 0 with

∥R(is̃n,A)∥ ≥ C̃ ∣s∣(2µj−2)−η (4.2)

for all n ∈ N. In (4.2) we can take η = 0 if µj = 2.
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Proof. The first assertion follows directly from (2.13) and (3.3). For the
lower estimate, we take the numbers s̃n → ∞ from Lemma 3.1. Let n ∈ N.
To bound the norm of the resolvent, we use the functions

χ̃n ∶ [−1,0] → R; χ̃n(x) =
⎧⎪⎪⎨⎪⎪⎩

cos(s̃nx/c1), j ∈ {I, II, III},
sin(s̃nx/c1), j ∈ {IV, V, V I},

χn = ∥χ̃n∥−1
L2
χ̃n

and write wn = R(is̃n,A)(0, χn,0,0). Since ∥χn∥L2 = 1, it follows

∥R(is̃n,A)∥ ≥ ∥wn∥H ≥ ∥wn2 ∥L2 . (4.3)

In each case, formulas (2.9) and (2.8) yield

wn2 (x) = is̃nwn1 (x) = is̃nα(is̃n)gj( is̃nc1 x) −
i

c1
∫

x

−1
sin ( s̃n

c1
(x − r))χn(r)dr

for x ∈ [−1,0]. By Lemma 3.3 of [7], the second summand is uniformly
bounded by c ∥χn∥L2 = c. The first one is given by

Gn,j(x) ∶= is̃nα(is̃n)gj( is̃nc1 x) =
⎧⎪⎪⎨⎪⎪⎩

is̃nα(is̃n) cos( s̃nc1 (x + 1)), j ∈ {III, V I},
−s̃nα(is̃n) sin( s̃nc1 (x + 1)), else.

Using the notation in (3.8), from formulas (2.10), (2.8), and (2.15) we derive
the lower bound

∣s̃nα(is̃n)∣ ≥
1

∣∆j(is̃n)∣
(∣ψ̃j( s̃nc2 )

T1

c2
1
∫

0

−1
cos( s̃nc1 r)χn(r)dr∣

− ∣a2ψj( s̃nc2 )[
−i
c1
∫

0

−1
sin( s̃nc1 r)χn(r)dr +

kT1

c2
1
∫

0

−1
cos( s̃nc1 r)χn(r)dr]∣)

for j ∈ {I, II, III} and x ∈ [−1,0]; whereas (2.11) , (2.8), and (2.15) yield

∣s̃nα(is̃n)∣ ≥
1

∣∆j(is̃n)∣
(∣a2ψ̃j( s̃nc2 )

−i
c1
∫

0

−1
sin( s̃nc1 r)χn(r)dr

− ∣ψj( s̃nc2 )[
T1

c2
1
∫

0

−1
cos( s̃nc1 r)χn(r)dr − ik

c1
∫

0

−1
cos( s̃nc1 r)χn(r)dr]∣)

for j ∈ {IV, V, V I}.
In the above expresssions the integrals are bounded by ∥χn∥L2 = 1. As

in part 1c) of the proof of Lemma 3.1 the numbers ∣ψ̃j( s̃nc2 )∣ tend to 1 and
ψj( s̃nc2 ) to 0 as n→∞. We thus obtain an index n0 ∈ N such that

∣s̃nα(is̃n)∣ ≥
κ

∣∆j(is̃n)∣ ∥χ̃n∥L2

∫
0

−1
χ̃n(r)2 dr = κ

∣∆j(is̃n)∣
∥χ̃n∥L2

for all n ≥ n0. Moreover, a substitution and equation (3.17) lead to the
inequality

∫
0

−1
cos2( s̃nc1 r)dr = c1

s̃n
∫

0

−s̃n/c1
cos2(t)dt ≥ 1

π(kn + 1) ∫
knπ−π/2

0
cos2(t)dt

= 2kn − 1

π(kn + 1) ∫
π/2

0
cos2(t)dt ≥ γ > 0,

for some γ > 0 and all n, and analogously

∫
0

−1
cos2( s̃nc1 (r + 1))dr ≥ γ̃ > 0.
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Similar inequalities are valid if we replace here cos by sin. Summing up, we
have shown that

∥Gn,j∥L2 ≥ c

∣∆j(is̃n)∣
for all j ∈ J , all sufficiently large n and a constant c > 0 independent of n.
Lemma 3.1 and (4.3) then imply (4.2). �

The above estimates and the results [6] and [8] imply our main theorem.
Recall that 2µj−2 ≥ 2 and that here equality holds for a.e. d by Theorem E.3
in [10]. Moreover, TIII(t)PIIIw0 is constant in x and affine in t.

Theorem 4.2. Let j ∈ J , d = c2/c1 be irrational, µj in (3.2) be finite, and
Tj(⋅) the C0-semigroup on Hj generated by Aj. Take any β ∈ (0, (2µj −2)−1)
and γ > (2µj − 2)−1. There are constants cβ, c > 0 and times tn = tn(j) ≥ 1
tending to ∞ such that the following assertions hold.

a) Let j ∈ {I, IV, V }. The semigroups then satisfies

∥Tj(t)A−1
j ∥ ≤ cβt−β for all t ≥ 1,

∥Tj(tn)A−1
j ∥ ≥ ct−γn for all n ∈ N.

b) Let j ∈ {II, III, V I} and Pj be the spectral projectionm of Aj for {0}
from Proposition 2.2. For j ∈ {II, V I} we obtain

∥Tj(t)w0 − Pjw0∥ ≤ cβt−β ∥Ajw0∥ for all t ≥ 1, w0 ∈D(Aj),
∥Tj(tn) − Pj∥B(D(Aj),Hj)

≥ ct−γn for all n ∈ N.
Moreover, we have

∥TIII(t)w0 − TIII(t)PIIIw0∥ ≤ cβt−β ∥AIII(I − PIII)w0∥,
∥TIII(tn)(I − PIII)∥B(D(AIII),H) ≥ ct

−γ
n ,

for alle t ≥ 1, w0 ∈D(AIII), and n ∈ N.
Proof. Let j ∈ {I, IV, V }. Part a) follows directly from Theorem 2.4 of [8]
and Proposition 4.1 since Tj(⋅) is bounded on Hj and σ(Aj) ∩ iR = ∅ by
Proposition 2.2.

Let j ∈ {II, III, V I}. In these cases we use the restriction A1
j of Aj to

kerPj ⊆ Hj which has the analogous properties as the generators in part a).
The restriction T 1

j (⋅) of Tj(⋅) to kerPj is generated byA1
j , see Proposition 2.2,

and hence satisfies estimates as in a). For j ∈ {II, V I} we further have
Tj(t)Pj = Pj and AjPj = 0. The result follows. �

In the above theorem we do not quite get the decay rate β = (2µj − 2)−1

since µj was defined by a supremum. At least for a.e. d we can close this
gap up to a logarithmic correction. Theorem 32 in [16] implies that for each
η > 0 we have

∣d − p
q
∣ ≥ 1

q2 ln1+η q
(4.4)

for a.e. irrational d > 0 and all rationals p/q with q ≥ qη for some qη ∈ N. On
the other hand, for a.e. irrational d one finds fractions pn/qn with

∣d − pn
qn

∣ ≤ 1

q2
n ln qn

for all n ∈ N, so that (4.4) is essentially sharp.
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Theorem 4.3. For a.e. irrational d = c2/c1 and all ε > 0 there is a constant
cε such that

∥Tj(t)A−1
j ∥ ≤ cε

ln(t)1+ε

√
t

, j ∈ {I, IV, V },

∥Tj(t)w0 − Pjw0∥ ≤ cε
ln(t)1+ε

√
t

∥Ajw0∥, j ∈ {II, V I},

∥TIII(t)w0 − TIII(t)PIIIw0∥ ≤ cε
ln(t)1+ε

√
t

∥AIII(I − PIII)w0∥,

for all t ≥ 1 and w0 ∈ D(Aj), where Pj is the spectral projection of Aj for
{0} from Proposition 2.2.

Proof. As in Lemma 3.1 one shows the lower bound

∣∆j(is)∣ ≥
cη

s2 ln(∣s∣)2+2η
(4.5)

for all ∣s∣ ≥ 1, j ∈ J and η > 0. To this aim, we suppose that the opposite
inequality is true for some η̄ > 0 and a sequence (sn) with ∣sn∣ → ∞, cf. (3.6).
We use (4.4) to replace (3.11) by

∣dεn − δn∣ ≥
c̄

∣ln∣ ln(∣ln∣)1+η̄/2
.

Arguing as in Lema 3.1, we then arrive at a contradiction and infer (4.5).
Proposition 2.2 now yields the estimate ∥R(is,Aj)∥ ≤ c′η s2 ln(∣s∣)2+2η for

∣s∣ ≥ 1. Based on Theorem 1.3 of [5], we finally derive the assertions as in
the previous theorem. �
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