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Abstract 

The main advantages of DCDC-specimens, completely stable crack 

extension and very high path stability due to the strongly negative T-

stress term call for an application in R-curve determination. In this report, 

it is studied whether the T-stress affects the R-curve of silicon nitride.  

For this purpose, we selected three Si3N4-ceramics, which showed very flat 

crack resistance curves in test with edge-notched 4-point bending speci-

mens. These materials were tested with DCDC-specimens. In contrast to 

the bending tests, the crack resistance decreased clearly. This effect can be 

understood as a consequence of the T-stress term.  
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1. What is the T-stress?  

The stresses in the vicinity of a crack tip are described by a series expansion with 

respect to the distance r from the tip and angular functions fij() as suggested by 

Williams [1]:  
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where the coordinate r has the origin at the crack tip, Fig. 1.  

 
Fig. 1 Geometrical data at a crack tip. 

The fracture mechanics description of failure at crack tips is mostly focused on the 

singular stress field governed by the stress intensity factor K. This loading parameter is 

the amplitude of the first series expansion term of (1.1) depending on the crack-tip 

distance r as 1/r
1/2

. The first regular stress term in the Williams series expansion [1] is 

the so-called “T-stress”. The Cartesian components of the first regular term are for 

traction free crack faces 
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Restricting the description on the singular stress term and the first regular term, the 

near-tip stress field of a cracked body can be described by  
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The angular functions are for mode-I loading: 
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On the prospective crack plane it holds simply fxx(0)=fyy(0)=1. 

Two important conclusions may be drawn from eqs.(1.3)-(1.6):  

I) Ahead of a crack, =0, the T-stress is negligible compared to the singular 

stress for r0. Nevertheless, it may be important for effects playing in some 

distance from the tip as e.g. diffusion effects. 

II) In the wake of a crack, =, all singular stresses disappear since fxx=fyy=0. 

This holds because of cos(/2)=0 in eqs.(1.5) and (1.6). With other words: All 

effects prevailing in the crack wake are affected by the T-stress exclusively.  

 

2. T-stress solutions 

In order to allow simple comparison of T-stresses for different test specimens, e.g. 4-

point bending with DCDC, it is of advantage to represent the T-stress in a normalized 

form. Normalization on the stress intensity factor K and the crack length a is possible 

by use of the biaxiality ratio  according to Leevers and Radon [2] 
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aT 
   (2.1) 

Results are plotted in Fig. 2a for the DCDC specimen as the symbols. The symbols 

represent FE results from [3]. For the mostly chosen geometry H/R=4, the biaxiality 

ratio may be expressed for 2a/R7 by a simple linear approximation 
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introduced in Fig. 2a as the straight line. 

The biaxiality ratio for a bar is according to [4] 
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This dependency is shown in Fig. 1b. The square indicates the relative crack depth of 

a/W1/3 at which the T-stress changes from negative to positive values. R-curve tests 

in 4-point bending exhibiting starter cracks of a0/W0.5 always show positive T-

stresses, i.e. a crack-parallel tension.  

Finally, Fig. 3 gives a comparison for the two test specimens. This figure makes clear 

that in a DCDC-test the T-stress plays a much stronger role than in a bending test. 
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Fig. 2 Biaxiality ratio; a) DCDC: symbols are finite element results [3], line according to eq.(2.2), b) 

result for the bending bar, by eq.(2.3).  

 

 

Fig. 3 Comparison of the DCDC-test specimen (black) with the bending bar (red). 

3. Stability properties of DCDC specimens 

DCDC-tests show excellent benefits in stability. The effect on stable crack propagation 

(i.e. the absence of accelerated extension and spontaneous fracture) and on plane crack 

development may be briefly addressed.  

3.1 Stable crack growth 

The fact that crack extension is stable in a large region of crack lengths is trivial and 

doesn’t need much explanation. A crack extends stably as long as the stress intensity 
factor decreases with increasing crack length. This is shown in Fig. 4a by the range 
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dK/da<0. At the beginning of crack formation and when the crack approaches the end 

faces, crack extension is unstable because of dK/da>0.  

Crack stability is in other “standard tests” missing as may be shown for the edge-

notched bending bar. The stress intensity for a crack in a 4-point-bending test is given 

in Fig. 4b. Here, the complete region 0<a/W<1 is unstable since dK/da>0 for any crack 

depth. 

 

      
Fig. 4 a) Crack stability in the region of dK/da<0 for the DCDC specimen, b) crack instability for the 

edge-cracked 4-point bending bar. 

3.2 Path stability 

A crack of initial length a0 is considered, which grows out of the initial straight plane 

by an angle of 0 (Fig. 5). The kink angle 0 may represent the influence of a disturb-

ing mode-II loading caused by a small unavoidable misalignment of the loading ar-

rangement. For small kink angles it holds 
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where KI and KII are the stress intensity factors for the initial crack situation. 

 

Fig. 5 General influence of the T-stress after crack kinking under mixed-mode loading. 
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In [5], Cotterell and Rice analysed the local crack path stability where the first devia-

tion from the initial straight crack plane was of interest. At small crack extensions, the 

deviation from the initial crack plane is illustrated in Fig. 5. For details see Section G2 

in [6]).  

The most important conclusion of [5] is illustrated in Fig. 5, namely, increasing devia-

tion from the prescribed kink angle for T>0 and decreasing deviations for T<0.  

Cotterell and Rice showed that crack path stability is only guaranteed for T<0. In 

nearly all fracture mechanics test specimens; however, the T-stress terms are positive, 

at least in the commonly used range of crack lengths.  

There are two exceptions for standard test specimens used for ceramics, namely, small 

cracks in bending bars with a relative crack length a/W<0.35 (specimen width W) and 

the DCDC specimen where the latter shows strongly negative T in the whole range of 

practically used crack lengths, Fig. 2a.  

From the mostly positive sign of the biaxiality ratio for DCDC test specimens and the 

unavoidable small misalignments, it has to be expected that path stability is guaran-

teed. 

4. Example of application: Prediction of bridging effects 

4.1 Frictional bridges 

The bridging effects by frictional or elastic crack-face interlocking were described in 

[4] (see Section B4) and in [6] (Section F1) by application of the bridging model by 

Mai and Lawn [7].  

In the schematic depiction of Fig. 6, a large grain is shown, acting as a frictional crack-

bridging event. The x-component of the thermal mismatch tractions mis is indicated. 

For a 3-dimensional analysis, we have to consider crack-face interlocking with a finite 

depth L in the order of L  D. The consequence is that mismatch stresses also act in y-

direction of Fig. 6 (y-component not plotted in Fig. 6b).  

The loads transferred by crack face interactions are localized at single grains. The 

bridging stress br for such an element can be expressed by 

 

else

for

for

for

ymisxmis

ymisxmis

ymisxmis

ymis

xmis

ymisxmis

br
0,0

0,0

0,0

0

)(

,,

,,

,,

,

,

,,













 











  (4.1) 

Consequently, the near-tip stresses at a bridging event in the crack wake are  

 Txmisx  ,  (4.2) 

 ymisy ,   (4.3) 



 6 

Equation (4.2) makes clear, that the compressive T-stress of the DCDC-specimens 

must increase the effect of frictional crack face bridging, whereas the tensile T-stress 

in 4-point bending tests must lower it.  

 

 

Fig. 6 Crack surface interactions due to a local frictional bridging event, a) geometric data, b) 

tractions, acting at an interlocking event (tractions in y-direction not plotted). 

4.2 Debonding 

Before a beta-crystal can be pulled out of the matrix and can show frictional bridging, 

this crystal must first be dissolved from its connection with the matrix. When the crack 

terminates the crystal-matrix interface, it is stopped, Fig. 7a. There are two possibili-

ties of crack propagation after further load increase. When the strength of the crystal-

matrix interface layer is strong enough, the crack-tip stress field will cause fracture of 

the crystal, Fig. 7b. In case of lower interface strength, the crack will kink and grow 

along the interface producing a bare neck around the crystal, Fig. 7c. When the crack 

tip has passed and the singular stresses are missing in the crack wake, the crack open-

ing displacements disappear leaving a closed frictional crystal-matrix contact.  

 

 
Fig. 7 a) Crack terminating an elongated -crystal; b) crystal cracking for high grain-boundary 

strengths, c) crack kinking with following debonding for lower interface strength. 
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Fünfschilling [12]. The effect of a debond of length , occurring for an angle smaller 

of a critical value, <cr, is shown in Fig. 8 by the black circles. The critical angle is 

indicated by the black triangle.  

Let us now look for the influence of a T-stress. In the approximation of Dundurs-

parameters ==0 (e.g. when the E-modulus and the Poisson ratios for a needle-like 

-crystal are identical), the stress intensity factors at the tip of the kink can be written 

as [4] 

   28
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where KI(a) is the mode-I stress intensity factor for the straight unkinked crack (0). 

Since T is negative and the absolute value increases with increasing crack length a, the 

kink stress intensity factors KI() and KII() and, consequently, the energy release rate 

G  KI
2 
+ KII

2
 decrease too. 

 

 
Fig. 8 Influence of T-stress on debonding, a) schematic of debonding, b) comparison with experi-

mental results for an MgLa-doped glass by Satet and Hoffmann [9-11] (black symbols and line), effect 

of T-stress indicated by the red symbols and line defining an apparent critical incidence angle cr,eff. 

The total energy release rate can be expressed in terms of the effective stress intensity 

factor Keff 
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Using the biaxiality  ratio proposed by Leevers and Radon [2] as a dimensionless 

representation of T  
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eqs. (4.4-4.6) can be rewritten in 
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For =0 the critical incidence angle cr results as 
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The kink length  as a function of the incidence angle is given by the zeros of 
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The conclusion from (4.4) and (4.5) on debonding behaviour are illustrated in Fig. 8 

together with experimental results by Satet and Hoffmann [9] showing cr58°: 

1) A kink developing in the case of an angle <cr remains smaller in a test speci-

men with strongly negative T-term (DCDC) than in bending. Debonding is 

suppressed although the  may fall clearly below the critical kink angle (Fig. 8). 

This can be interpreted as a smaller effective critical angle cr,eff<cr defined by 

the intersection of the linear red curve part. The consequence of the lower critical 

angle results in a lower number of crystals able to debond considerably. This 

number is proportional to 1-sin(cr). 

2) With increasing crack length the part of crystals with <cr able for debonding 

must show a smaller amount of debonding. The R-curve must decrease with 

respect to that obtained in a test with T0. 

Both effects should yield a decrease of the R-curve for a material that shows a flat 

plateau for specimens with negligible T-stress as for instance the 4-point bending tests. 

5. R-curve measurements via DCDC 

R-curves for two silicon nitride ceramics were determined in DCDC tests. The ma-

terials tested were a hot- isostatically- pressed silicon nitride with 8.5 wt% Lu2O3 and 

1.93 wt% MgO (denoted as MgLu), a hot- isostatically- pressed silicon nitride with 
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5 wt% Y2O3 and 2 wt% MgO (denoted as MgY) and a commercial silicon nitride with 

Y2O3 and Al2O3 content (SL200BG, CeramTec, Plochingen, Germany). 

Since the ratio of toughness to Young’s modulus, KR/E, in tests can become clearly 

larger than in the case of glass, we used shorter specimens (dimension W=6 mm, 

H=2 mm, R0.5 mm, and B=3 mm) in order to avoid any possible buckling effect. 

During load application the crack length was measured by use of an optical micros-

cope with large focal length. The results are shown in Fig. 9a. The data points are 

restricted to a0.9 mm for two reasons. First, the stress intensity factor solutions are 

all limited to a/R>2 and should not be extrapolated too much. On the other hand, spon-

taneous crack initiation results in a minimum initial crack length which was in our case 

also in the range of several 100 µm. From this point of view, the DCDC-specimen is 

not appropriate for the determination of the very steep initial R-curves for silicon 

nitrides. Nevertheless, this specimen gives information on the plateau behaviour of R-

curves. From the experiments clearly decreasing R-curves are visible. The same 

materials tested with pre-notched bending bars showed a distinct plateau as shown in 

Fig. 9b.  

It should be emphasized the results in Fig. 9a and 9b correspond to strongly different 

crack propagations a. A direct comparison is given by Fig. 10. 

 

       

Fig. 9 R-curves for two silicon nitrides containing MgO + Lu2O3 and MgO + Y2O3 and a commercial 

material SL200, a) DCDC-specimen, b) edge-notched bending bar. 
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Fig. 10 Direct comparison of the DCDC and edge-notched bending bar tests. 

For applications with critical tribological conditions Si3N4/SiC-ceramics were 

fabricated and investigated in DCDC tests. The analysed composite material is gas 

pressure sintered silicon nitride with 3 wt% Y2O3, 3.5 wt% Al2O3 as sintering aids and 

20 vol% silicon carbide. In this composite material the silicon nitride represents the 

matrix material and should show comparable behaviour to the commercial silicon 

nitride SL200BG. In this case lager specimens (dimension W= 40 mm, H= 4 mm, R = 

1 mm, and B= 4 mm) were used for the DCDC tests. The results of these tests and of 

the pre-notched bending bars are shown in Fig. 11. 

       
Fig. 11 R-curves for silicon nitrides containing 0 vol% and 20 vol% SiC, a) edge-notched bending bar 

SEVNB, b) comparison with DCDC results. 
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The T-stress increases with increasing crack length which results in a decrease in the R-curves 

at larger crack lengths. Crack-growth resistance KR versus T-stress are shown in Fig. 12. 

 

           
Fig. 12 Crack-growth resistance KR vs. T-stress. 
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