

Second generation Piezo composite based single fibre transducers for a 3D USCT system

M. Zapf¹, K. Hohlfeld², P. Pfistner¹, S. Gebhardt², K. Schlote-Holubek¹, C. Imbraccio¹, K. v. Dongen³, H. Gemmeke¹, N.V. Ruiter¹

Karlsruhe Institute of Technology, Institute for Data Processing and Electronics, Karlsruhe, Germany¹ Fraunhofer Institute for Ceramic Technologies and Systems, Dresden, Germany²

TU Delft, Delft, The Netherlands³

INSTITUTE FOR DATA PROCESSING AND ELECTRONICS

KIT 3D USCT

3D Ultrasound Computer Tomography for early breast cancer diagnosis ...

- as harmless as diagnostic ultrasound
- as economical as X-ray mammography
- as sensitive as MRI (long term goal)

Current stage:

- pilot study 2012-13, University Hospital Jena
- study with 200 patients 2015-2017, University Hospital Mannheim

Clinical Trial Jena

- One conclusion from the Jena Study:
 - ROI to small, several patient breasts are not well "illuminated"
- Objectiv for improved imaging: new transducers with greater opening, random element distribution & good bandwidth

Motivation: Relation object size to transducer divergancy / opening angle

Better imaging: increased opening angle required additional to increased aperture radius

USCT 2.0 transducer performance: Pressure over frequency and angle

Transducer 79.4 4: 900µm wide rectangular piezo, 4x substructured, dice-and-fill

USCT II Transducers

"Raw" transducer without Polyurethane

Scheme: vertical cut

Design and specification

Transducerarray specification

Institute for Data Processing and Electronics

Design and simulation II: Finite element

red: Backing + filling PU + Tungsten (12 MRayl) red + bright blue: Piezofaserkompositscheibe (CeramTec Sonox 505 14.2 MRayl) grey: Matching (TMM4 ca. 6.3 MRayl) Blue: Water (1.5 MRayl)

(in 1cm distance)

IKTS production of piezo fibre discs

- PZT fibres Ø 450 µm
- Composite discs Ø 23 mm, thickness 0.40 to 2.05mm

2nd iteration Piezofibre Transducers

First batch had great variability of individual fibre performance¹

- Second batch of fibres with improved production process, significantly improved reliability
- 4x discs for six thicknesses
 - 400µm, 550µm, 750µm,
 1050µm, 1450µm, 2050µm
 - Corresponding to 1 to 4 MHz

Produced 24 piezofibre discs from one batch of fibres and moulding

Selected discs for prototypes

Production of prototypes

- Matching TMM4: ~370µm, ~6-7 MRayl
- Backing PU+Tungsten: 1cm thick, ~10-12 MRayl

Ground side surface covered with conductive silver glue Heraeus PC3000

Wires connected with Heraeus PC3000 (100°C curing)

Set of 6 prototypes

Impedance-Phase characterisation

quality control and reproducability check

Thickness of disc (in µm)	Center freq. (in MHz @max. Power, mean/std.)	BW (max. Power@ 3dB/6dB)	Phase (in degree@ max. Power)	Kt (mean/ std.)	Workin g (kt >0.1)
400	3.01 (0.24)	1.69/2.34	-69.98°	0.56 (0.17)	11/13
550	2.54 (0.07)	1.57 / 1.99	-72.24	0.84 (0.06)	12/13
750	2.06 (0.11)	1.23 / 1.34	-74.53	0.90 (0.01)	13/13
1050	3.56 (1.29)	0.17/0.17	-85.08	0.91 (0.03)	4/13
1450	3.34 (0.07)	1.62 / 2.54	-85.22	0.11 (0.24)	1/13
2050	2.53 (0.04)	1.25 / 1.73	-85.30	0.00 (0.00)	1/13

HP4194A characterisation station

Acoustical characterization

- 3-axis US characterization station
- Setup and parameters
 - Self-built system
 - Excitation voltage +-/100Vpp
 - Freq.-sweep with Chirps: 0.5MHz to 5.5MHz in 250kHz steps
 - Calibrated Onda HNC-400 hydrophone (up to 10MHz) + 20dB pre-Amp.
 - 16x averaging (4x SNR gain)
 - Digitization 400µs, 20MHz
 - Semicircle profile, measurement time ~ 6 hours

Left: acoustical pressure measurement container + (30 x 30 x 50 cm), right: AWG, Amp., DAQ, Osci, control PC

Transducer Prototypes

400µm (ele. 1)

550µm (ele. 4)

3 3.5

MF [MHz]

4.5 5 5.5

4

0.5

1.5 2 2.5

1

750µm (ele. 1)

Discussion & Results

Karlsruhe Institute of Technology

- Reliability
 - Secondary resonances dominate discs beyond 750µm: excluded
 - Reliablility of fibre disc production: kt > 0.1: **92%** for 400, 550, 750µm
 - Reliability of transducer prototypes: peak pressure < 0.3kPa @6cm): 65% (13/20)</p>

Performance

- Separation of side lobe is concern: phase inversion? Usable?
- 400, 550 and 750µm most interesting thicknesses for the application: expected pressure (~ 1-2kPascal@6cm), good bandwidth (~ 2MHz @6dB) & acceptable opening angle

2050µm fibre disc, 470µm wide

Next Steps and outlook

- Connectivity & Integration with electronics
 - Sputter process: Au and Cr/Au-layers (Adhesive improvment)
 - PCB design ready
- Substructuring (100µm fibres)
 - Ongoing work, bundleing questions open
- Improved substrate material
 - Tungsten filled ?

Thanks for your attention!

This project was partly funded as Sonderforschungsbereich/Transregio 39 »PT-PIESA« SFB/TR 39 as subproject K04.

Flex print PCB for integration of discs into electronics and housing

Ongoing work...

Appendix

Build up

Institute for Data Processing and Electronics

400µm Transducer Prototype

Element 3

300

250

200

150

100

50 Pa

Element 4

23 19.09.2017 M. Zapf - 3D USCT

Element 1

x 10⁶

1.5

2

2.5 f (Hz)

3

3.5

4

4.5

5

1600

1400

1200

1000

800

600

400

200

0

on Hydrophon

Pascal o

-80

Institute for Data Processing and Electronics

M. Zapf - 3D USCT

28

19.09.2017

Institute for Data Processing and Electronics

Phase 1: discs

Thicknes s of disc (in µm)	Center frequency (MHz, max. Power, mean/std.)	Bandwidth (max. Power@ 3dB/6dB)	Phase	Kt (mean/s td.)	Working (kt >0.1)
400	3.2088 (0.25724)			0.5605 (0.1706)	11/13
550	2.5530 (0.0503)			0.8438 (0.0626)	12/13
750	1.9469 (0.04931)			0.9061 (0.0149)	13/13
1050	1.4392 (0.03432)			0.9103 (0.0319)	4/13
1450	3.3209 (0.77073)			0.1193 (0.2415)	1/13
2050	2.5308 (0.03945)			0.0000 (0.000)	1/13

Phase 1:1050µm

Power

30

51 Power Watt/Volt

Frequency [MHz]

Institute for Data Processing and Electronics

Bisherige Ergebnisse der 3. Förderperiode (Highlights)

SFB/TR 39

- Auslegung und Simulation
 - PZFlex, Finite-Elemente-Simulation
 - Modell 1: Piezofaserkomposit

Rot: Backing Epoxid (EPO-TEK 301-2FL, 2,9 MRayl) Hellblau + Rot: Piezofaserkompositscheibe (CeramTec Sonox 505 14.2 MRayl) Blau: Wasser (1,5 MRayl)

(in 1cm distance)

16. Mitgliederversammlung des SFB/TR 39 | 27. Oktober 2016 | TP K04 | Kai Hohlfeld

Institute for Data Proceesing and Electronics

Design: Opening angle increase

Reduced transducer surface for a ROI of 20x20x15cm³

Transducer rectangular (0.9mm x 0.9mm) 100% soundpressure

Opening angle for f _{max} (3.5MHz) receiver*emitter	20%drop	50%drop	Sound pressure
3DUSCTII Transducer (0.9mm, rect)	14°	22 °	100%
Transducer 0.902mm round	16°	28 °	100%
Transducer 0.4mm rect	30°	54°	25%
Transducer 0.4561mm round	33 °	58°	25%

Transducer rectangular (0.4mm x 0.4mm) 25% soundpressure 3DUSCTII 1element 0.456mm round (planar) 3.5Mhz

Transducer round (diameter 0.456mm) 25% sound pressure

Institute for Data Proceesing and Electronics

Institute for Data Processing and Electronics

SFB/TR 39

Institute for Data Pressesing and Electronic

Seite 36

SFB/TR 39

Institute for Data Proceesing and Electronics

SFB/TR 39

Institute for Data Processing and Electronics

notitute for Data Proceesing and Electronics

SFB/TR 39

Institute for Data Proceesing and Electronics

SFB/TR 39

Institute for Data Processing and Electronics

SFB/TR 39

Institute for Data Pressesing and Electronics

Dresdner Prototyp #1 II

 Stand Juli: Strang nach Vorgaben gegossen und in 450, 500, 550, 600µm Dicke Scheiben geschnitten

Nächster Schritt Metallisierung, Polarisierung und Kontaktierung

