Journal of Physics: Conference Series

PAPER « OPEN ACCESS Related content
An Interactive and Comprehensive Working Py e

Environment for High-Energy Physics Software T R

Takanori HARA and Belle 1l computing

with Python and Jupyter Notebooks group

- Belle Il Software
T Kuhr, M Ritter and Belle Il Software
To cite this article: N Braun et al 2017 J. Phys.: Conf. Ser. 898 072020 Group

View the article online for updates and enhancements.

This content was downloaded from IP address 129.13.72.197 on 15/01/2018 at 13:01

https://doi.org/10.1088/1742-6596/898/7/072020
http://iopscience.iop.org/article/10.1088/1742-6596/608/1/012026
http://iopscience.iop.org/article/10.1088/1742-6596/664/1/012002
http://iopscience.iop.org/article/10.1088/1742-6596/762/1/012007

CHEP IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

An Interactive and Comprehensive Working
Environment for High-Energy Physics Software with
Python and Jupyter Notebooks

N Braun!, T Hauth!, C Pulvermacher?, M Ritter3

! Karlsruhe Institute of Technology, Institut fiir Experimentelle Kernphysik,
Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany

2 High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba 305-0801,
Ibaraki, Japan

3 Ludwig-Maximilians University Munich, Excellence Cluster Universe, Boltzmannstr. 2,
85748 Garching, Germany

E-mail: nils.braun@kit.edu, thomas.hauth@kit.edu, christian.pulvermacher@kek.jp

Abstract. Today’s analyses for high-energy physics (HEP) experiments involve processing
a large amount of data with highly specialized algorithms. The contemporary workflow from
recorded data to final results is based on the execution of small scripts — often written in Python
or ROOT macros which call complex compiled algorithms in the background — to perform fitting
procedures and generate plots. During recent years interactive programming environments,
such as Jupyter, became popular. Jupyter allows to develop Python-based applications, so-
called notebooks, which bundle code, documentation and results, e.g. plots. Advantages over
classical script-based approaches is the feature to recompute only parts of the analysis code,
which allows for fast and iterative development, and a web-based user frontend, which can be
hosted centrally and only requires a browser on the user side. In our novel approach, Python and
Jupyter are tightly integrated into the Belle IT Analysis Software Framework (basf2), currently
being developed for the Belle II experiment in Japan. This allows to develop code in Jupyter
notebooks for every aspect of the event simulation, reconstruction and analysis chain. These
interactive notebooks can be hosted as a centralized web service via jupyterhub with docker and
used by all scientists of the Belle II Collaboration. Because of its generality and encapsulation,
the setup can easily be scaled to large installations.

1. Introduction

The Belle IT experiment is currently being assembled at the asymmetric electron—positron collider
SuperKEKB and is set to start taking data in 2017. It is the successor of Belle, which ran from
1998 to 2010, and used the same operating principle at the former KEKB collider to confirm
the violation of C'P symmetry in the B meson system. As a so-called B-factory, SuperKEKB
operates on the Y(4S) resonance, which allows it to produce and record data from a large number
of B mesons. With the upgrade the instantaneous luminosity will be increased by a factor 40 to
8 x 103°cm 25~ L. Ultimatively, Belle II is expected to record 50 times more collisions than Belle
and to significantly increase the sensitivity of various searches and measurements [1]. Both the
detector [2] and the software [3] used to process the data will be upgraded to take advantage of
technological developments and to be able to handle the greatly increased data rate.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1

http://creativecommons.org/licenses/by/3.0

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

The Belle IT analysis software framework (basf2) was developed based on the experience from
Belle as well as other high-energy physics experiments. It consists of independent C++ modules
joined together by a core library that takes care of configuration, exchange of data between
modules, I/O, etc. In this framework, each module is responsible for a task of relatively limited
scope and is compiled into a separate shared library. Configuration of basf2 is handled using
steering files written in Python 3, where a typical specimen might create a sequence of modules
(called “path”) and set appropriate parameters for them. Python makes it easy to pre-define
standard sets of modules for e.g. trigger simulation, which can be added using functions like
add_softwaretrigger reconstruction(). For physics analyses in particular, this is used to
wrap common reconstruction tasks, including combination of particle candidates, vertex fits and
application of cuts. As a result, analysts can write a high-level description of their reconstruction
and selection procedure, which will be performed using common and well-tested code.

This configuration interface is provided using Boost.Python [4] and will load the requested
module libraries on demand. Each module can define a set of parameters to modify its behaviour;
generalized support for many different parameter types (including lists, tuples and dictionaries)
is provided through C++ templates. Once event processing is started on a path of configured
modules it will block and only return the control flow to Python after processing is complete.

In addition to the configuration of modules themselves, basf2 also provides a Python interface
to the data exchanged between modules (i.e. their input and output data). As ROOT [5] is
already used for the I/O functionality of the framework, PyROOT can be used to access the
member functions of most classes without requiring further user action. Within the framework,
this allows creating basf2 modules in Python; this feature is used frequently to create tests or
prototypes.

In contrast to executing steering files via Python, Jupyter notebooks provide an enriched
working environment: A browser-based frontend to an interactive Python session is used to
execute commands and view results and visualizations, both of which can also be saved in the
notebook. Users benefit from syntax highlighting and tab-completion as well as integration with
data-science tools like ROOT, matplotlib or pandas.

2. Framework Integration of Jupyter Notebooks

The integration of Python into basf2 is already extensive, so using it with Jupyter notebooks is a
natural and easy next step. However, using basf2 with Jupyter notebooks directly is not always
very convenient: if a basf2 path is processed during a notebook execution and the process fails
(because of wrong configuration, software issues etc.), the notebook kernel will immediately be
killed and the logs of the process are lost. This does not work well with the quick turnaround
times that are normally achieved when working with the notebook interface. Additionally,
processing many paths during a notebook execution (also in parallel), which would suit to the
narrative character of the notebooks, is inconvenient and implies a large code overhead. As the
execution is given to the basf2 framework, all interactivity is lost during the process and there
is not much improvement compared to just using basf2 from the command line (excepting the
ability to store description, code and results in the same file).

The described drawbacks are solved by the Python package hep-ipython-tools [6]!, which
was developed as an interface from Jupyter notebooks for software used in high-energy physics
experiments. It decouples the calculation process from the Jupyter notebook kernel into an
abstract calculation object, which can be controlled interactively from the notebook. This
makes it possible to start multiple calculations at once and to monitor their progress while
continuing to work in the notebook. Abstracting the basf2 calculation together with additional
interactive widgets and convenience functions for an easier interplay between juypter and basf2

! The name was chosen when the Jupyter project was still called ipython [7].

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

not only improves the user experience but also accentuates the narrative and interactive character
of the notebooks.

The hep-ipython-tools package was developed in the context of the Belle I experiment, but
can easily be adopted by the software frameworks of other experiments.

3. Implementation Details

Because of the highly modular nature of basf2, more or less all information needed to process
a basf2 calculation is encapsulated in the path?. The main entity of the hep-ipython-tools,
the CalculationProcess — which is based on a multiprocessing.Process — therefore takes
a path as an input, prepares (e.g. adds statistics and analysis modules only meaningful in the
context of Jupyter notebooks) and runs it in a separate process. The way this calculation is
done (and whether one passes a path or some other object) is an implementation detail and
is decoupled from the generalized rest. The abstract Calculation object holds one or more?
possible different instances of a CalculationProcess and has convenience functions to control
the execution state of the CalculationProcess instances. The object is returned as a handle
to the user when one of the convenience functions to process a basf2 path is called.

The CalculationProcess also holds a reference to the Queue, which can be used to
communicate between the Jupyter notebook and the calculation process — keeping the interactive
character of the notebooks. It is used to transport progress information as well as calculation
results, e.g. statistics or output file names, which are generated during the calculation. It can be
fed with key-value pairs by every Python basf2 module in the processed path as well as before
and after the calculation.

Information from the calculation (e.g. stored in the communication queue) can either be
directly accessed in raw form or, to underline the interactivity, can be visualized using widgets
shipped with the hep-ipython-tools. A widget is a graphical element written in HTML and uses
JavaScript (especially via the ipywidgets Python [9] and the jQuery JavaScript [10] libraries)
for interactivity and animation using the information stored in the calculations or in the basf2
framework. They can be shown directly in Jupyter notebooks (as the frontend itself is also
written in HTML) and fit seamlessly into the workflow. The HTML, CSS and JavaScript code
for the widgets is generated on the fly using Python and the collected data.

Examples for these widgets include visualizations of the log output of the basf2 process, a
progress bar to show its execution status, an interactive basf2 path visualization with all modules
and their parameters, and tabular representations of the data entities exchanged between the
modules during calculation or the statistics of their process runtime.

To better explain the general picture, two examples of widgets are shown here. The first
one (see Figure 1), shows the data entities that are exchanged between modules through basf2
mechanisms. The entity names together with their number are collected by a Python basf2
module, which is added automatically to the path by the CalculationProcess object. The
data is then communicated via the Queue to the Jupyter notebook where it is used to generate
HTML code.

The second one (see Figure 2) can be used to show the log output of the processed calculations.
The CalculationProcess configures basf2 to write all its output into a temporary file, which
is created and deleted by the hep-ipython-tools, by including a specialized basf2 module into
the processing path. After the calculation is finished (no matter if successfully or not), the file
content is read, analyzed and corresponding HTML is generated.

2 There are some additional parameters like the maximum number of events to process or the random seed, which
are optional arguments to the CalculationProcess.

3 If more than one CalculationProcess is present, they will be processed in parallel when the calculation is
started. The process to create many different CalculationProcess resembles the grid search algorithm of the
sklearn package [8].

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

In [2]: calculations.show collectiens()
Process 0 Process 1 Process 2
Event 0 Event 1 Event 2 Event 3 Event 4 EventS Event & Event 7 Event 8 Event 9
BeamBackHits 2
CDCEBSimHits 4]
CDCHits 444

Figure 1. Screenshot of a part of a Jupyter notebook, showing a widget to visualize the
collections that are exchanged during basf2 module calculation. The user can choose interactively
between the three processes (which were calculated in parallel before) and different events.

In [3]: calculations.show_log()
Process 0 Process 1 Process 2

Hide DEBUG Hide ERROR Hide FATAL Hide INFO Hide RESULT Show WARNING Hide DEFAULT

[RESULT] Starting event processing, random seed is set to "309625147d5bfB56be2e9a443fc8d1dde6834d75edb6fcGdafedd57c2e0ac96”

... message repeated 1 times

[INFO] Conditions service retrieved 942 payloads for experiment O and run 0 listed under global tag production

[INFO] Found file: centraldb/dbstore_BeamParameters_rev_59449.root with correct MD5S checksum: 5416b99998451d4a96f5a72bb524e7d7
[INFO] Creating geometry for detector: Belle2Detector

Figure 2. Screenshot of another part of a Jupyter notebook — this time showing the log widget,
which visualizes the output to stdout of the three basf2 calculations. The user can choose, in
which detail (e.g. error or debug) the log should be shown.

More information and examples can be seen in the Jupyter notebooks that are also part of
this project [11] or in a screencast showing the core functionality [12].

4. Application: Full Physics Analysis with Jupyter Notebooks

The Belle IT analysis tools are an integral part of basf2 and are a Python-based library to facilitate
physics analysis in Belle I1. A rich set of utility functions allows the scientist to perform standard
analysis tasks like reconstruction of a possible decay or Monte-Carlo matching in a compact
fashion:

reconstructDecay(’J/psi — mu+ mu—', 2 < M < 4’, path=my_path)

matchMCTruth(’J/psi’, path=my_path)

The analysis tools therefore allow to express and process complex analysis steps in a compact
form within a Jupyter notebook. Furthermore, the resulting n-tuples can then be read in and
processed further in the same notebook.

Here, the scientist can take full advantage of the rich set of libraries available for scientific work
in Python. The SciPy [13] library includes matplotlib for plotting directly into the notebooks,
numpy [14] and pandas [15] for fast computations on large in-memory datasets and a multitude of
fitting and statistics functions. The popular machine-learning toolkit SciKit-learn [16] is closely
integrated with SciPy’s data structures. The well-known ROOT data analysis framework was
recently also extended with an integration to Jupyter notebooks [17]. ROOT can now output
its plots directly into notebooks and plots are interactive and support zooming and panning.

All the above-mentioned tools can also be employed with the classical approach using scripts
to perform the data analysis and storing the output plots in files. However, there are some

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

significant benefits in using notebooks which is increasingly attracting analysis users to switch
to this workflow.

The analysis notebook does not only
contain the source code, but also “tells
the story of the analysis” by including the
resulting plots, text cells with headings, = **®®***=°= =7 ==
formulas and explanation text to structure O ey
and describe each analysis step Figure 3.
This significantly increases the readability and
traceability of the analysis. The notebook
can also be easily shared with co-workers or
reviewers which can, due to the inlined plots,
quickly arrive at an understanding of the
analysis procedure.

Probably the biggest advantages of Jupyter
notebooks is the fast turn-around time
and the direct feedback between data and
visualization. The classical script-based
approach often requires to rerun the full script
to see the impact of minor modifications. In
contrast, if the analysis notebook is properly
structured into cells, changes in one cell
can be executed and the output of this one
cell checked immediately. This is especially
valuable in earlier stages of the analysis, where
an exploratory method aids in finding the best
possible analysis strategy, for example, when
the best quantity for a cut value needs to be
determined.

This advantage is even more tangible if the
input data is loaded in the first cell of the
notebook, for example from ROOT n-tuples or pandas dataframes. In contrast to scripts, which
load the input data every time, notebooks keep the data in memory, which significantly decreases
the processing time in case of multiple executions.

Organizing the contents of notebooks as the complexity of an analysis grows can be
challenging. We have found that the best way is to outsource mature analysis code into a
Python package and import it into the notebook. One additional consideration when working
with notebooks is the slightly more complex version control management. Because the entire
content (including figures) of notebooks is stored, the differences between two revisions can be
large, even when the changes to Python code are minor. One strategy which proved useful is to
execute Jupyter’s Clear function, which removes all text and plot output in a notebook, before

committing the changed notebook to version control. This can also be handled by a commit
hook.

~ JUPYTEr B2ipsikehort Las crecreeint s minutes ago unsaved changes)

pd.cut{BB, bins)).count()
Bbar, pd.cut{BObar, bins)).count()), values,
1=1] # bins[1:11)

Entries

100

0 wlee ™ Mo’y ot o . T i R L
. AT R

100 L
-150 .
-200

Difference between B, and B,

15 10 5 "] 5 10 15

Figure 3. Screenshot of a Jupyter notebook
showing an example analysis code and output
of simulated events.

5. Application: Outreach and Education

The possibility to create self-describing notebooks by interlacing code, documentation and plot
cells in one notebook makes them ideal for education and outreach purposes. Introductory text
can be followed by compact fragments of Python code to explain a specific functionality. The
learners can be encouraged to execute the code fragment themselves and modify the code slightly
to see the immediate impact in the form of changed text output or plots. Furthermore, practical

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

[~ =Y |~ =W Your browser
is the Ul

Central
Jupyterhub webservice
éﬂ" éﬁ" éﬂ" Distributed

docker| |docker| |docker| |docker Computing

Figure 4. Multiple users load their notebooks in their browser from the centrally hosted
jupyterhub service. In the backend, jupyterhub can instantiate multiple docker containers to
isolate the user’s code execution.

tasks can be placed inside the notebooks, which can be solved using the gained knowledge.

Within the Belle II collaboration, we have created multiple tutorial notebooks for new
collaboration members which have been successfully used in workshops and to give a first
orientation to students starting their bachelor or master thesis.

Due to the self-contained nature of notebooks, they are also a perfect medium to present
scientific methods and results to the interested public, for example by making notebooks of a
selected event reconstruction available on the experiment’s home page, as demonstrated by the
LIGO collaboration [18].

6. Application: Documentation

Similar to tutorials, notebooks can also be used to provide documentation for framework libraries
and tools. While this option is currently not used at Belle II, we might consider updating the
documentation as more people are using notebooks for their work.

Another area where notebooks are used successfully is bug reporting, where test cases can
be attached to issue tracker tickets. Complex bugs are intricate and only occur with a certain
event and often can only be properly identified by looking at one specific distribution. As our
notebooks can contain event generation, simulation, reconstruction and result plotting in one
compact file, they are ideal to isolate the issue, plot the problematic variable and forward this
notebook to experts for further examination.

7. Hosting Jupyter Notebooks with Jupyterhub and Docker
The jupyterhub project provides a scalable way to host Jupyter notebooks of the experiment’s
users on a central service. For the users, this has the advantage that they do not have to take
care of a local software installation, the notebooks can be accessed from anywhere and the
analysis input data is located on a high-performance (potentially distributed) storage backend.
For the administration team, jupyterhub provides an elegant way to separate users and
simplify software deployment: for each Jupyter user, a separate docker container instance is
created to execute the notebook code in an isolated fashion Figure 4. This way, the software
requirements of multiple different experiment groups can be met easily.
We successfully used the described setup to centrally host notebooks for tutorials and
workshops for up to thirty users. Larger hosting options, like CERN’s Service for Web based

CHEP IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 898 (2017) 072020 doi:10.1088/1742-6596/898/7/072020

ANalysis (SWAN) [19], exist and we expect that more research institutions will provide a
notebook hosting option to their users.

8. Conclusion

The hep-ipython-tools library was developed in the context of the Belle II software framework
and provides a common, experiment-independent basis to seamlessly integrate HEP frameworks
with Jupyter notebooks. At the core of this library lies the calculation object, which
encapsulates the framework execution and can exchange information between the running
framework process and the notebook. A set of optional notebook widgets have been developed to
give execution feedback to the user and to present the framework-specific results using Jupyter’s
unique visualization features. HTML and JavaScript output were used to generate interactive
content for the user. Overall the code necessary to achieve this tight integration is compact but
enables a wide range of possibilities with Jupyter notebooks.

Combined with Belle IT’s powerful, Python-based analysis tools, complete analyses can be
developed using Jupyter notebook and our users especially welcome the fast turnaround times.
Other applications include Jupyter notebooks for outreach and for internal tutorials and external
education of the interested public.

More and more scientists in the HEP field are moving to Jupyter notebooks for their software
development and data analysis needs. The popular ROOT data analysis framework recently was
extended by a Jupyter notebook integration and hosting services for notebooks, like CERN’s
SWAN, start to emerge. We expect the amount of such services to increase in the future
and, quite possibly, having a notebook hosting service will become a standard for every HEP
experiment in a few years time.

References

1] Urquijo P 2015 Nucl. Part. Phys. Proc. 263-264 15-23

2] Abe T et al. (Belle II) 2010 Belle II Technical Design Report Tech. rep. (Preprint 1011.0352)

] Moll A 2011 Journal of Physics: Conference Series (CHEP 2010) 331 032024

] Boost.Python website http://www.boost.org/doc/1libs/1_63_0/1libs/python/doc/html/ (last accessed
27 January 2017)

Brun R and Rademakers F 1997 Nucl. Instrum. Meth. A389 81-86

Braun N 2017 hep-ipython-tools repository

https://github.com/hep-ipython-tools/hep-ipython-tools

Jupyter Project 2015 The Big Split https://blog. jupyter.org/2015/04/15/the-big-split/

[8] GridSearchCV reference http://scikit-learn.org/stable/modules/generated/sklearn.model_
selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV (last accessed 24 January
2017)

[9] ipywidgets library https://github.com/ipython/ipywidgets (last accessed 24 January 2017)

[10] jQuery website https://jquery.com/ (last accessed 21 January 2017)

1] Braun N 2017 hep-ipython-tools examples

https://github.com/hep-ipython-tools/example-notebooks

[12] Braun N 2016 Screencast of the usage of hep-ipython-tools
http://www-ekp.physik.uni-karlsruhe.de/~nbraun/movie.mp4

3] SciPy website https://www.scipy.org/ (last accessed 24 January 2017)

4] Numpy website http://www.numpy.org/ (last accessed 24 January 2017)

5] Pandas website http://pandas.pydata.org/ (last accessed 24 January 2017)

6]

7]

w

[
[
[
[

=

ENE

=

scikit-learn website http://scikit-learn.org (last accessed 24 January 2017)

ROOT Notebook integration website
https://root.cern.ch/notebooks/HowTos/HowTo_ROOT-Notebooks.html (last accessed 24 January
2017)

[18] Signal Processing with GW150914 — LIGO Collaboration

https://losc.ligo.org/s/events/GW150914/GW150914_tutorial.html (last accessed 27 January 2017)

[19] SWAN website https://swan.web.cern.ch/ (last accessed 24 January 2017)

