KIT | KIT-Bibliothek | Impressum | Datenschutz

Geospatial Computer Vision Based on Multi-Modal Data—How Valuable Is Shape Information for the Extraction of Semantic Information?

Weinmann, Martin 1; Weinmann, Michael
1 Institut für Photogrammetrie und Fernerkundung (IPF), Karlsruher Institut für Technologie (KIT)

Abstract:

In this paper, we investigate the value of different modalities and their combination for the analysis of geospatial data of low spatial resolution. For this purpose, we present a framework that allows for the enrichment of geospatial data with additional semantics based on given color information, hyperspectral information, and shape information. While the different types of information are used to define a variety of features, classification based on these features is performed using a random forest classifier. To draw conclusions about the relevance of different modalities and their combination for scene analysis, we present and discuss results which have been achieved with our framework on the MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set.


Verlagsausgabe §
DOI: 10.5445/IR/1000078434
Veröffentlicht am 08.01.2018
Originalveröffentlichung
DOI: 10.3390/rs10010002
Scopus
Zitationen: 25
Web of Science
Zitationen: 15
Dimensions
Zitationen: 24
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
KIT-Zentrum Klima und Umwelt (ZKU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 01.2018
Sprache Englisch
Identifikator ISSN: 2072-4292
urn:nbn:de:swb:90-784344
KITopen-ID: 1000078434
Erschienen in Remote sensing
Verlag MDPI
Band 10
Heft 1
Seiten 2
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagwörter geospatial computer vision; multi-modal data; 3D point cloud; shape information; hyperspectral imagery; feature extraction; semantic classification; semantic information
Nachgewiesen in Dimensions
Scopus
Web of Science
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page