KIT | KIT-Bibliothek | Impressum
Open Access Logo
§
Verlagsausgabe
DOI: 10.5445/IR/1000078434
Originalveröffentlichung
DOI: 10.3390/rs10010002

Geospatial Computer Vision Based on Multi-Modal Data—How Valuable Is Shape Information for the Extraction of Semantic Information?

Weinmann, Martin; Weinmann, Michael

Abstract:
In this paper, we investigate the value of different modalities and their combination for the analysis of geospatial data of low spatial resolution. For this purpose, we present a framework that allows for the enrichment of geospatial data with additional semantics based on given color information, hyperspectral information, and shape information. While the different types of information are used to define a variety of features, classification based on these features is performed using a random forest classifier. To draw conclusions about the relevance of different modalities and their combination for scene analysis, we present and discuss results which have been achieved with our framework on the MUUFL Gulfport Hyperspectral and LiDAR Airborne Data Set.


Zugehörige Institution(en) am KIT Institut für Photogrammetrie und Fernerkundung (IPF)
Publikationstyp Zeitschriftenaufsatz
Jahr 2018
Sprache Englisch
Identifikator ISSN: 2072-4292
URN: urn:nbn:de:swb:90-784344
KITopen ID: 1000078434
Erschienen in Remote sensing
Band 10
Heft 1
Seiten 2
Bemerkung zur Veröffentlichung Gefördert durch den KIT-Publikationsfonds
Schlagworte geospatial computer vision; multi-modal data; 3D point cloud; shape information; hyperspectral imagery; feature extraction; semantic classification; semantic information
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft KITopen Landing Page