
X =1.00

X =0.01
perf

lossSD
Software Design and Quality

A Graphical Approach to Modularization
and Layering of Metamodels

Bachelor’s Thesis of

Amine Kechaou

at the Department of Informatics

Institute for Program Structures and Data Organization (IPD)

Reviewer: Prof. Dr. Ralf Reussner

Second reviewer: Jun.-Prof. Dr.-Ing. Anne Koziolek

Advisor: Dipl.-Inform. Misha Strittmatter

Second advisor: Dr.-Ing. Erik Burger

16. May 2017 – 15. September 2017

Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Karlsruhe, 14.09.2017

. .

(Amine Kechaou)

Abstract

Modularity is a key aspect in software engineering as it comes with several bene�ts like

reusability, extensibility and maintainability. Although it is a well established concept, it

has not received much attention when it comes to model-driven software development.

Over time, metamodels tend to evolve and grow in complexity to encompass new aspects

and features. If modularization steps are not taken and metamodels are extended intrusively,

they can become di�cult to maintain and to extend. With the increased complexity, the

modularization can become even more challenging.

In this work, we present a novel approach to assist the modeler in the task of modular-

ization. Our approach addresses the problem from a graphical perspective. The proposed

tool support displays a layered structure, where each layer has certain level of abstraction,

and allows the modeler to organize metamodels inside the layers. In this layered structure,

the metamodels should only depend on metamodels with the same or a higher abstraction

level and should not take part in cyclical dependencies. The tool provides the modeler

with full control over the modularization process and full knowledge about the relations

between the metamodels, thus facilitating the modularization task greatly.

i

Zusammenfassung

Modularität ist ein wichtiger Aspekt der Softwaretechnik denn sie bietet mehrere Vor-

teile wie Wiederverwendbarkeit, Erweiterbarkeit und Wartbarkeit. Obwohl sie ein weit

etabliertes Konzept ist, wurde sie in der modellgetriebenen Software-Entwicklung kaum

untersucht. Im Laufe der Zeit wachsen Metamodelle und damit auch ihre Komplexität, um

neue Aspekte zu umfassen. Wenn die Modularität nicht berücksichtigt ist und Metamodelle

intrusiv erweitert werden, leidet ihre Wartbarkeit und Erweiterbarkeit. Mit der höheren

Komplexität wird die Modularisierung selbst auch schwieriger.

In dieser Arbeit stellen wir einen neuartigen Ansatz vor, um den Modellierer bei der

Metamodell-Modularisierung zu unterstützen. Unser Ansatz geht aus einer graphischen

Perspektive vor. Das entwickelte Werkzeug zeigt eine geschichtete Struktur, wobei jede

Schicht einen Abstraktionsgrad hat, und erlaubt den Modellierer Metamodelle innerhalb

von den Schichten zu gestalten. Dabei dürfen Metamodelle nur von Metamodellen mit

gleichem oder höherem Abstraktionsgrad abhängen und keine zyklische Abhängigkeiten

aufweisen. Das Werkzeug gewährt dem Modellierer volle Kontrolle bei der Modularisierung

und stellt alle benötigte Informationen über die Beziehungen zwischen den Metamodellen

zur Verfügung, um die Modularisierung deutlich zu erleichtern.

ii

Contents

Abstract i

Zusammenfassung ii

1 Introduction 1

2 Foundations 2
2.1 Model-Driven Software Development . 2

2.2 Modularity . 2

2.3 A Layered Structure for Modular Metamodels 3

2.4 Eclipse Modeling Framework (EMF) . 3

2.5 Sirius . 4

3 Metamodel Modularization with the MRS Graphical Editor 5
3.1 Motivating Example . 5

3.2 Concept . 7

3.3 User Guide . 8

4 Implementing the MRS Graphical Editor 9
4.1 The MRS Metamodel . 9

4.2 Usage Scenario . 9

4.3 Implementation Details . 21

4.3.1 Diagram Elements De�nition . 21

4.3.2 De�ned User Actions . 25

4.3.3 Properties Sheet . 27

5 Evaluation 29
5.1 Modular PCM . 29

5.2 Evaluation Session with the Smartgrid Metamodel 31

6 RelatedWork 37

7 Limitations and Future Work 38
7.1 Performance . 38

7.2 Usability . 39

7.3 New Features . 39

8 Conclusion and Outlook 40

iii

Contents

Bibliography 41

iv

List of Figures

3.1 Tree editor view of pcm.ecore . 6

3.2 Excerpt of the Ω (Quality) Layer in the modular PCM view [14] 6

3.3 pcmReliability after the �rst modularization attempt 7

4.1 Representation of the MRS metamodel 9

4.2 The MRS graphical editor with a blank MRS Model 10

4.3 The Ecore modeling project wizard . 11

4.4 The Load Resource dialog . 11

4.5 Simplistic EMF Pro�le . 11

4.6 Metamodels binded by a stereotype . 12

4.7 The MRS diagram after loading PCM . 13

4.8 Show/Hide elements from the diagram 14

4.9 pcm and pcmReliability . 15

4.10 Making the reliability subpackage visible 15

4.11 Making all classes of the reliability subpackage visible 16

4.12 The diagram after making the reliability subpackage and its contents visible 16

4.13 Detected cycle between pcm and pcmReliability 17

4.14 Problematic dependency detection . 18

4.15 Properties view . 19

4.16 Final result of the modularization with the MRS graphical editor 20

4.17 The MRS Viewpoint Speci�cation Model 22

4.18 Mapping import for the EPackage container 23

4.19 De�nition of the Dependency diagram element 24

4.20 External Java actions for the MRS graphical editor 25

5.1 MRS Diagram of mPCM . 30

5.2 Minimal class diagram of Smartgrid Topo 32

5.3 Class diagram of Smartgrid Input . 33

5.4 Class diagram of Smartgrid Output . 34

5.5 MRS Diagram of Smartgrid before proceeding with the dependency inversion 35

5.6 MRS Diagram of Smartgrid after the dependency inversion 36

v

1 Introduction

At the turn of the century and during the last decade, Model-Driven Software Development

(MDSD) has received great attention. Its proponents usually propound a faster development

and an increased software quality due to the raised level of abstraction that it provides since

models are a central part in the development process [20]. With an increased complexity

in the software system and the underlying metamodels, modularity becomes more and

more crucial as it enables better maintainability, reusability and extensibility.

For instance, the increase in complexity in the Palladio Component Model (PCM) [10]

expressed the need for a modular PCM [15]. Modularization e�orts led to the conception

of a layered reference structure for modular metamodels [14]. Metamodel modularization

based on this structure yields sub-metamodels, or modules, that are assigned to the layers

of the structure where each layer has a certain level of abstraction. The premise of the

layered structure is that modules should only depend on modules from the same layer or

a more abstract one and that cyclical dependencies between modules are forbidden.

However, metamodel modularization is often a challenging task since the modeler needs

to have a full grasp and a global understanding of the dependencies between the di�erent

modules. Unfortunately, such requirements are barely addressed and are not ful�lled by

the current tooling.

In this work, we present the MRS graphical editor, a graphical tool support for the

proposed modular reference structure. Its purpose is to provide a graphical representation

of the layered structure and the metamodels that it contains as well as to assist the modeler

in the modularization by providing substantial information about the module dependencies

and by automatically detecting the dependencies that violate the premise of the modular

reference structure.

In the next chapter, we take a step back to lay down the foundations of our work. The

concept behind our tool and insights about its implementation are presented respectively in

chapter 3 and chapter 4. We evaluated our work by using the tool with existing metamodels

in order to validate its correctness and applicability. The results of the conducted evaluation

are the subject of chapter 5. Finally, we discuss related work and other modularization

tools in chapter 6 and limitations of the MRS graphical editor in chapter 7 where we also

give a glimpse into possible future work.

1

2 Foundations

2.1 Model-Driven So�ware Development

Model-Driven Software Development (MDSD) can be viewed as an application of the

concepts of Model-Driven Engineering (MDE) to software development. The main aspect

of MDE is the combination and the use of Domain-Speci�c Modeling Languages (DSML)

and model transformations [13]. In a broader sense, a Domain Speci�c Language (DSL)

can be unterstood as a computer programming language of limited expressiveness focused on
a particular domain [4]. The abstract syntax of DSML is expressed through an underlying

metamodel. The metamodel is a model of a model; that is, it describes models.

In MDSD, models do not just describe the software, but are integral part of it. Model and

code coexist and evolve jointly and models are artifacts of the software [20]. Proponents

of MDSD usually argue for a faster development process and a better code quality and

manageability due to an increased level of abstraction. The promises made by model-driven

approaches and the prominance of the Uni�ed Modeling Language (UML) in the 90s led

to the emergence of the Model-Driven Architecture (MDA), a standardization initiative

by the Object Management Group (OMG) [3, 1]. In this respect, the OMG introduced the

MetaObject Facility (MOF) meta-metamodel as a standard meta-metamodel that is meant

to be aligned with the UML speci�cation.

2.2 Modularity

Modularity is a well established concept in the realm of software development. It describes

the degree to which a software is decomposed in separate modules that are to the most

extent loosely coupled, so that changes on one module a�ects as little as possible other

modules. Modularity comes with huge bene�ts. Parnas puts these in three categories [8]:

• Managerial: faster development and lesser communication between teams

• Product �exibility: The e�ect of changes on one module is minimal on others

• Comprehensibility: The system can be studied by studying one module at a time

Modularity enables key aspects like reusability, extensibility and maintainability [7].

Therefore, it is crucial to design a software system in a modular way.

These concepts usually hold for DSLs and metamodels too. Metamodels also tend to

grow more and more complex to de�ne more aspects than originally intended. Thus, the

need for modularity is as much signi�cant.

2

2.3 A Layered Structure for Modular Metamodels

2.3 A Layered Structure for Modular Metamodels

Over the years, the Palladio Component Model (PCM) [11, 10] has grown in complexity.

Many extensions were added to it, but usually in an intrusive and non-modular way. A need

for modularization was expressed [15] and has led to the conception of a layered structure

for modular metamodels [14]. Dubbed a modular reference structure for Component-based

Architecture Description Languages, its premise is to organize metamodels, i.e. modules,
inside this layered structure based on the following principles:

• Layers at the top hold more abstract metamodels, those at the bottom more speci�c

ones.

• A metamodel can only depend on metamodels from the same layer or a more abstract

one.

• Cyclical dependencies between metamodels are forbidden either inside a layer or

across layers

In their work, Strittmatter et al. propose four di�erent layers:

• Paradigm: the most abstract layer, holds basic structure but without semantics

• Domain: extends paradigm and adds domain semantics

• Quality: de�nes quality

• Analysis: provides concepts of analysis, solving or simulation.

The proposed layers are not strictly prescribed by the modular reference structure. They

can be further divided and other layers can be introduced.

2.4 Eclipse Modeling Framework (EMF)

EMF is an eclipse framework that adds modeling capabilities to the Eclipse environment

like describing models and code generation. At the core of EMF, the Ecore metamodel is

the metamodel which is used to describe EMF models. Ecore is itself an EMF model, which

makes it a meta-metamodel. It is equivalent to the Essential MOF (EMOF) speci�cation by

the OMG. In fact, the work on Ecore has greatly in�uenced OMG’s MOF, so that it led to

the speci�cation of EMOF as being a subset of the Complete MOF (CMOF)
1
. Our work

focuses on Ecore-based metamodels, but the idea behind it should also apply to EMOF

metamodels.

Multiple extensions and tools build on EMF. One of these is EMF Pro�les, an extension

mechanism for EMF models [6]. EMF Pro�les de�ne the emfpro�le metamodel that extends

the Ecore Metamodel. The metamodel de�nes three classes: Profile, a subclass of Ecore’s

EPackage, Stereotype, a subclass of Ecore’s EClass and Extension. A pro�le is basically a

container for Stereotypes that extend EClasses, either by referencing another EClass or

through so-called tagged values.
1http://www.omg.org/ocup-2/documents/Meta-ModelingAndtheMOF.pdf

3

http://www.omg.org/ocup-2/documents/Meta-ModelingAndtheMOF.pdf

2 Foundations

2.5 Sirius

Sirius is an Eclipse based framework that allows users to create graphical editors for their

metamodels by leveraging technologies like EMF and the Graphical Modeling Framework

(GMF)
2
.

Sirius comprises two main parts: the Sirius Tooling and the Sirius Runtime
3
. The former

is used by architects to specify the graphical editors, that is, which elements from the

metamodel are graphically represented, how do they look and how do they behave. The

latter is used by end users to use already de�ned graphical editors.

The Sirius Runtime contains two metamodels: the representation metamodel and the

description metamodel. The representation metamodel is the metamodel that de�nes the

diagram elements. The description metamodel de�nes the model that the architect creates

in order to specify a graphical editor. The Sirius Runtime takes as input both the modeler

description model and the business model, computes the representation model and renders

the diagram using GMF.

2https://www.eclipse.org/community/eclipse_newsletter/2017/june/article4.php
3https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html

4

https://www.eclipse.org/community/eclipse_newsletter/2017/june/article4.php
https://www.eclipse.org/sirius/doc/developer/Architecture_Overview.html

3 Metamodel Modularization with the MRS
Graphical Editor

3.1 Motivating Example

Over the years, the PCM has evolved to encompass new aspects and features such as

additional software quality attributes [15]. Various extensions were added to the PCM but

that was usually done in an intrusive manner. Such extensions weren’t added as loosely

coupled external modules, but the PCM itself was modi�ed to express the new features.

In this section, we are going to showcase how inconvenient it could become to modular-

ize an Ecore-based metamodel just by using the EMF tree editor. We do that by extracting

the reliability extension [2] from the PCM into a separate metamodel called pcmReliability.

The goal is to have two distinct metamodels pcm and pcmReliability so that pcm does not

depend on pcmReliability. The steps described in [14] are going to serve as an orientation

in what follows.

We �rst begin by importing the PCM
1

into the workspace in Eclipse and creating a new

Ecore modeling project called pcmReliability which is going to hold the new reliability

metamodel.

The PCM already contains the subpackage reliability which holds the foundations of

the reliability extension (Figure 3.1).

However, the PCM has been enriched with reliability attributes in various other parts.

These attributes usually take the form of references to FailureOccurenceDescription and

FailureType or their subclasses. We focus here on FailureOccurenceDescription and

related classes and extract these into pcmReliability. Classes related to FailureType should

also be extracted into the new reliability module, as it is the case in mPCM, a modular

prototype for PCM
2
, or even form their own metamodel (Figure 3.2). In our example, we

leave them in pcm to keep the example simple.

We �rst proceed by moving FailureOccurenceDescription, InternalFailureOccurrence-

Description and ExternalFailureOccurrenceDescription to pcmReliability (Figure 3.3).

Without much knowledge of the internal structure of the PCM, we immediately notice that

there is no way to determine outgoing dependencies from pcm to pcmReliability. We could

delete the classes of pcmReliability, validate the metamodel and see where did validation

errors occur, but that would be a quite unorthodox and inconvenient way to modularize

metamodels. Looking through all classes of pcm would also be too much time consuming.

1https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Core/trunk/PCM/org.

palladiosimulator.pcm/
2https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model/Modular_Prototype

5

https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Core/trunk/PCM/org.palladiosimulator.pcm/
https://svnserver.informatik.kit.edu/i43/svn/code/Palladio/Core/trunk/PCM/org.palladiosimulator.pcm/
https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model/Modular_Prototype

3 Metamodel Modularization with the MRS Graphical Editor

Figure 3.1: Tree editor view of pcm.ecore

Δ

Ω

Internal
Action

Resource
Demand

Performance

Failure
Type

Reliability

FailureTypes

Hardware
Failure

Software
Failure ∙ ∙ ∙

Failure
Occurence

Failure
Probability

Figure 3.2: Excerpt of the Ω (Quality) Layer in the modular PCM view [14]

6

3.2 Concept

Figure 3.3: pcmReliability after the �rst modularization attempt

3.2 Concept

In addition to the problems addressed in the previous section, the EMF Tree Editor obviously

doesn’t support the proposed modular reference structure (Section 2.3). It doesn’t o�er a

direct and explicit way to organize metamodels inside the layered structure. This can only

be done in a purely logical manner, for example by changing the name of the metamodel

so that it holds information about which layer it is assigned to. Moreover, the user has no

direct knowledge of whether the conditions of the modular reference structure are held

or not — that is, whether a metamodel references a metamodel from a lower layer or a

cyclical dependency exists between metamodels.

For all these reasons, we have designed the MRS graphical editor with two main goals:

it has to o�er a graphical support for the modular reference structure and has to facilitate

modularization operations. The tool is intended to be used mainly for two purposes: either

to design a modular metamodel from scratch or to modularize and refactor an existing

metamodel.

The MRS graphical editor o�ers a visual representation of a layered structure. This

is a global container that can be subdivided into layers. Layers in their turn contain

the metamodels, which are represented by smaller containers. The tool o�ers then a

visualization of the relations between the metamodels. If some class from a metamodel

references a class from another metamodel, an edge is drawn from the source metamodel

to the target metamodel thus indicating that the source metamodel depends on the target

metamodel. The same is also done if a stereotype extends a class from a metamodel with a

class from another metamodel.

The tool also assists the modeler in the modularization in various ways. It warns him

about possible violations of the conditions of the modular reference structure by highlight-

ing the problematic edges in a di�erent color. These are edges that take part in cycles and

edges that go from a metamodel to another one in a lower layer. Furthermore, the tool

facilitates modularization by delivering substantial information about the dependencies

between metamodels, i.e., the classes that are involved and the nature of the dependency

(e.g., a reference).

7

3 Metamodel Modularization with the MRS Graphical Editor

3.3 User Guide

To install the MRS graphical editor, please follow the instructions below:

1. Install Eclipse Oxygen Modeling Tools
3
.

2. Install EMF Pro�les from the update site
4
.

3. Install the MRS graphical editor from the update site at
5
.

Please note that the source code of the MRS graphical editor is available at https:

//github.com/kit-sdq/MRS-Editor. If you’d like to use the tool without installing it, but

rather by running it from the source code, follow steps 1 and 2 then import the mrs,
mrs.edit, mrs.editor and mrs.custom projects into the workspace. After that, launch an

Eclipse runtime instance and import mrs.design in the inner workspace.

To use the MRS graphical editor, proceed as follows:

1. Create a modeling project

2. Create a MRS Model in the project (New > Other > Mrs Model) and choose "Modular

Reference Structure" as the Model Object

3. Select the MRS Viewpoint (right-click on the project > Viewpoints Selection)

4. Open the representation of the Modular Reference Structure element if it was not

automatically opened. For a detailed description of the capabilities of the MRS

graphical editor, please refer the usage scenario provided in the next chapter.

3https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/oxygenr
4http://www.modelversioning.org/emf-profiles-updatesite
5https://sdqweb.ipd.kit.edu/eclipse/mrs-editor/nightly/

8

https://github.com/kit-sdq/MRS-Editor
https://github.com/kit-sdq/MRS-Editor
https://www.eclipse.org/downloads/packages/eclipse-modeling-tools/oxygenr
http://www.modelversioning.org/emf-profiles-updatesite
https://sdqweb.ipd.kit.edu/eclipse/mrs-editor/nightly/

4 Implementing the MRS Graphical Editor

4.1 The MRSMetamodel

The MRS graphical editor is a Sirius-based graphical editor for MRS models, that also

enables the manipulation of metamodels. An MRS model is in fact a model that conforms

to the MRS metamodel, an Ecore-based metamodel that we designed during this work to

depict the main aspects of the modular reference structure. As shown in Figure 4.1, the

MRS metamodel is composed of three EClasses: ModularReferenceStructure, Layer and

Metamodel. The root object of an MRS model is an instance of ModularReferenceStructure.

It can contain several Layers, which in their turn can contain several Metamodels. Other

than containing layers, the ModularReferenceStructure also references the loaded EMF

Pro�les through the loadedPro�les EReference.

The Metamodel EClass holds a reference mainPackage to an EPackage, which is the

main EPackage of the actual metamodel being represented. The visibleEClassi�ers and

visibleEPackages are references that are used to indicate which classes and packages from

the target metamodel are being displayed. This is particularly useful for the user to only

show the classes that he is interested in.

4.2 Usage Scenario

In what follows, we describe the MRS graphical editor as seen from a user perspective.

Figure 4.2 shows the editor just after creating a fresh MRS model. As to how to create an

MRS model, a thorough explanation is given in the user guide in Section 3.3. At the start,

the diagram includes an empty container called Modular metamodel, which is an instance

of ModularReferenceStructure. In this container several layers can be added via the Add
Layer palette entry. As stated earlier, a layer can in its turn contain several metamodels.

These can be essentially added in three di�erent ways:

Figure 4.1: Representation of the MRS metamodel

9

4 Implementing the MRS Graphical Editor

Figure 4.2: The MRS graphical editor with a blank MRS Model

a) Create Metamodel: This palette entry triggers the Ecore modeling project cre-

ation wizard (Figure 4.3) and allows the user to create an Ecore-based metamodel. It

then creates a corresponding instance of the Metamodel EClass and adds it to the

selected layer.

b) Load Metamodel: This palette entry prompts the user to select an Ecore �le

from the workspace (Figure 4.4) and adds to the chosen layer a new Metamodel that

references the selected Ecore metamodel through the mainPackage reference.

c) Load Pro�le: Here, the user is also prompted to select a resource from the

workspace. But this time, he is prompted to select a .emfpro�le_diagram �le. The

referenced EClasses in the selected EMF Pro�le are then inspected and their contain-

ing metamodels are added to the chosen layer. For the sake of example, consider the

simplistic EMF Pro�le MyPro�le provided in Figure 4.5. It contains a stereotype called

MyStereotype, which extends a class A with a class B. Classes A and B are contained

respectively in metamodels Metamodel1 and Metamodel2. When loading this pro�le,

both metamodels are automatically added to the chosen layer (Figure 4.6). They

are also linked by an edge going from Metamodel2 to Metamodel1 indicating that

Metamodel2 extends Metamodel1. The label on the edge indicates that this extension

is provided by the stereotype MyStereotype in MyPro�le.

Now that we have described the actions that can be taken by the user via the palette,

we are able to present the various capabilities of the MRS graphical editor, that make

metamodel modularization easier and more convenient. These include:

10

4.2 Usage Scenario

Figure 4.3: The Ecore modeling project wizard

Figure 4.4: The Load Resource dialog

Figure 4.5: Simplistic EMF Pro�le

11

4 Implementing the MRS Graphical Editor

Figure 4.6: Metamodels binded by a stereotype

• Detection of dependencies that violate the modular reference structure

• Providing substantial information about the nature of dependencies: which classes

are involved in the dependency and in what way

• Moving classes easily between metamodels by drag and drop

At this point, a closer de�nition of the term dependency in the context of the MRS

graphical editor and Ecore-based metamodels is required. In a general sense, metamodel

A depends on metamodel B, i.e. a dependency from A to B exists, if a loaded EMF pro�le

contains a stereotype that extends a class from A and references a class from B or if A
contains a EClass that references a EClassifier in B through the ESuperTypes reference,

the type of a EReference, the return type or parameters’ type of a EOperation or a generic

type.

To demonstrate the suggested capabilities, we resume with the example provided in

Section 3.1. We �rst proceed by loading the PCM metamodel through Load Metamodel.
In Figure 4.7 we see that the PCM (white rectangle) and several other metamodels (gray

rectangles) are added to Layer1. These are the metamodels on which the PCM depends

and are added automatically by the MRS graphical editor. Two types of metamodels are to

be distinguished:

• Metamodels represented by white rectangles are metamodels currently present in

the workspace

• Metamodels represented by gray rectangles are metamodels present in the target

platform (e.g. loaded plugins)

12

4.2 Usage Scenario

Figure 4.7: The MRS diagram after loading PCM

13

4 Implementing the MRS Graphical Editor

Figure 4.8: Show/Hide elements from the diagram

Although it is nice to have referenced metamodels as well automatically loaded, it can

be the case that those are not needed to be dealt with. For this matter, Sirius o�ers a way to

hide unwanted elements from the diagram. This can be achieved either via the element’s

context menu (Show/Hide > Hide element) or via the diagram’s context menu (Show/Hide)
and unselecting the unwanted elements (Figure 4.8). This only hides the elements from

the diagram and doesn’t actually delete them from the model.

Just as we did in Section 3.1, we also create here a new metamodel called pcmReliability,

but this time through the Create Metamodel action in the MRS graphical editor. For now,

since we are working with only one layer, pcm and pcmReliability will be in the same layer

(Figure 4.9).

When loaded to the diagram, the contents of metamodels are by default hidden. This

is why the pcm seems to be an empty container. The contents of a metamodel, i.e.

EClassifiers and subpackages, can be shown via the context menu’s entries Visible
EClass�ers and Visible EPackages. The reliability subpackage is selected to be the only

visible subpackage in pcm (Figure 4.10). All classes of the reliability subpackage are then

selected to be visible (Figure 4.11). The result can be seen in Figure 4.12.

Upon moving FailureOccurenceDescription, InternalFailureOccurrenceDescription

and ExternalFailureOccurrenceDescription to pcmReliability by drag and drop, the

MRS graphical editor immediately detects a cyclical dependency between pcm and pcmRe-
liability and the identi�ed cycle takes a red color (Figure 4.13).

14

4.2 Usage Scenario

Figure 4.9: pcm and pcmReliability

Figure 4.10: Making the reliability subpackage visible

15

4 Implementing the MRS Graphical Editor

Figure 4.11: Making all classes of the reliability subpackage visible

Figure 4.12: The diagram after making the reliability subpackage and its contents visible

16

4.2 Usage Scenario

Figure 4.13: Detected cycle between pcm and pcmReliability

17

4 Implementing the MRS Graphical Editor

Figure 4.14: Problematic dependency detection

More generally, a dependency is colored in the following manner:

• red, if it takes part of a cycle

• orange, if it goes from a layer to a layer underneath it

• black otherwise.

If a dependency both takes part of a cycle and points towards a lower layer, it takes

an orange color. This decision is justi�ed by the fact that the cycle can still be identi�ed

through at least one other red dependency. This way, the user is noti�ed about both

violations (Figure 4.14).

Finally, classes that are involved in a dependency are listed in the properties view under

the "List of dependencies" page. For that matter, the user only has to select an edge from

the diagram and the classes will be listed along with the dependencies’ nature following

the pattern in Listing 4.1.

18

4.2 Usage Scenario

Figure 4.15: Properties view

1 EClassifierFromMetamodelB (DependencyType in EClassFromMetamodelA)

Listing 4.1: Pattern for a dependency from metamodel A to metamodel B

A dependency can have one of the following types:

• Supertype

• EReference

• Return type of EOperation

• Parameter type of EOperation

• EGenericType

For example, Figure 4.15 serves as an example to show the list of dependencies for

the edge going from pcm to pcmReliability. Based upon this knowledge, the user can

then take the necessary action to modularize the metamodel. In our example, we could

move SpecifiedReliabilityAnnotation and InternalAction respectively from the sub-

packages qos_reliability and se� to pcmReliability since they inherit from respectively the

abstractions SpecifiedQoSAnnotation and AbstractInternalControlFlowAction. In addi-

tion, we delete the EReference in SoftwareInducedFailureType to InternalFailureOccurence

and only leave the opposite EReference. Manipulating this sort of details cannot be done

in the MRS diagram and should be done either in the EMF tree editor or the Ecore graphical

editor. The Ecore representation of a package (e.g. reliability) can be accessed through the

MRS graphical editor via a double click.

19

4 Implementing the MRS Graphical Editor

Figure 4.16: Final result of the modularization with the MRS graphical editor

20

4.3 Implementation Details

4.3 Implementation Details

The implementation of the MRS graphical editor has the following project structure, where

each project de�nes an Eclipse plugin:

• mrs contains the MRS metamodel and the generated model code.

• mrs.design contains the de�nition of the graphical editor.

• mrs.custom contains external Java actions and utility classes.

• mrs.edit and mrs.editor contain the generated edit and editor code.

The central part of Sirius-based graphical editors is the Viewpoint Speci�cation Model

(VSM). Figure 4.17 shows the VSM that we developed during the course of this work. This

�le is located under mrs.design/description. It de�nes the graphical representation of the

MRS model elements (1), the actions that the user can perform (2) and a custom properties

sheet (3) to hold information about the dependencies between metamodels.

4.3.1 Diagram Elements Definition

Section (1) in Figure 4.17 shows how diagram elements are de�ned. First of all, we de-

�ne the ModularReferenceStructure container as the global container to hold the layered

structure. It corresponds the root of the represented MRS model, i.e. an instance of the

ModularReferenceStructure EClass. This global container has a vertical stack layout.

That means that its children, the layers, are stacked vertically. The represented layers

are the ones referenced in the ModularReferenceStructure EClass in the layers feature.

Finally, metamodels are de�ned as containers inside layers. They are determined through

the metamodels feature from the Layer EClass. The Main Package container is the graphi-

cal representation of the main EPackage referenced in the mainPackage feature. We de�ne

two possible children for the Main Package container: EClassi�ers and EPackages. EClassi-
�ers are de�ned as nodes, as opposed to the EPackages which are de�ned as containers,

since they can contain further EPackages and EClassifers. Fortunately, Sirius allows such

recursive de�nition via the mapping import feature (Figure 4.18).

Since the main package of a metamodel may contain a large number of EClassi�ers
and EPackages, we decided to only display certain EClassi�ers and EPackages that are

selected by the user and store the user’s decision in the visibleEClassi�ers and visibleEP-
ackages references in the Metamodel EClass. Our �rst attempt was then to simply display

the elements referenced in these lists. Soon enough, it came to our attention that if a

EClassifier or a EPackage is externally renamed, for example in the EMF tree editor or

the Ecore graphical editor for the containing metamodel, visibleEClassi�ers or visibleEP-
ackages are left with a dangling reference to the old object. The fact of renaming an

object did not update the reference but actually created a new one. Thus, if the objects

from visibleEClassi�ers or visibleEPackages are directly displayed inside the main package

container, some invalid elements may as well be displayed. To counter this problem, we

implemented Java services that check which elements in the given lists are valid and by

21

4 Implementing the MRS Graphical Editor

Figure 4.17: The MRS Viewpoint Speci�cation Model

22

4.3 Implementation Details

Figure 4.18: Mapping import for the EPackage container

the same occasion delete the dangling references. A Java service
1

is simply a method that

is implemented externally in a Java class and can be called inside the VSM. Listing 4.2

shows the implementation of the Java service that is used to determine the EClassi�ers that

should be visible inside a EPackage and to delete the dangling references. A similar method

was also implemented to deal with the EPackages. These methods are implemented in the

Java class mrs.design.Services which is located in the mrs.design plugin.

1 /**
2 * Computes the EClassifiers that should be visible and removes all invalid references

in the visibleEClassifiers list

3 * @param ePackage the package being inspected. Can be a main package or a subpackage

4 * @param metamodel the metamodel containing the EClassifiers

5 * @return a list of the EClassifiers that should be visible inside ePackage

6 */

7 public Collection<EClassifier> getVisibleEClassifiers(EPackage ePackage, Metamodel

metamodel) {

8 // get the direct EClassifiers of ePackage

9 Collection<EClassifier> eClassifiers = ePackage.getEClassifiers();

10

11 //get all EClassifiers of the metamodel

12 Collection<EClassifier> eAllClassifiers = getEAllClassifiers(metamodel.

getMainPackage());

13

14 //get the list of the EClassifiers that should be visible inside the metamodel

15 Collection<EClassifier> visibleEClassifiers = metamodel.getVisibleEClassifiers();

16

17 Collection<EClassifier> result = new ArrayList<EClassifier>();

18 Collection<EClassifier> ghostEClassifiers = new ArrayList<EClassifier>();

19

20 for (EClassifier visibleEClassifier : visibleEClassifiers) {

21 //Mark invalid EClassifiers from the visibleEClassifiers list

22 if(!eAllClassifiers.contains(visibleEClassifier))

23 ghostEClassifiers.add(visibleEClassifier);

24

25 //Mark EClassifiers that should be displayed inside ePackage

26 if(eClassifiers.contains(visibleEClassifier))

27 result.add(visibleEClassifier);

1https://www.eclipse.org/sirius/doc/specifier/general/Writing_Queries.html#service_methods

23

https://www.eclipse.org/sirius/doc/specifier/general/Writing_Queries.html#service_methods

4 Implementing the MRS Graphical Editor

28 }

29

30 //Delete dangling references

31 visibleEClassifiers.removeAll(ghostEClassifiers);

32

33 return result;

34 }

Listing 4.2: Implementation of the getVisibleEClassi�ers Java service

Now that we’ve covered how the representation of the model element is de�ned, we are

able to present how the graphical representation of the dependencies between metamodels

is de�ned. The diagram element Dependency is responsible for this. It is a relation-based

edge, meaning that it does not represent a model element, but rather a relation that

we have to de�ne ourselves. Figure 4.19 shows how this edge is de�ned. Both source

and target elements are Metamodels. In the target �nder expression, we compute the

target candidates for a given source Metamodel. For this purpose, we implemented two

Java services: getExtendedMetamodels() and getReferencedMetamodels(). The method

getExtendedMetamodels() returns a set of the metamodels in the layered structure that

contain each at least one class that is extended by a stereotype that references a class

from the source metamodel. The stereotypes that are considered are the ones de�ned

in the EMF Pro�les that are referenced in loadedPro�les in the root model element. The

method getReferencedMetamodels() returns a set of the metamodels that contain at least

one EClassifier that is referenced by an EClass from the source metamodel. Finally,

the target �nder expression returns a union of both sets. It is also worth noting that

while these services inspect the dependencies of a metamodel, they also add referenced

metamodels to the structure. If they �nd a metamodel that is currently not loaded in

the modular layered structure, they create an instance of Metamodel in the same layer of

the metamodel being inspect and set its mainPackage to the main package of the found

metamodel. Thus, they e�ectively and automatically load referenced metamodels to the

layered structure, whether they are present in the workspace or in the target platform.

One of the main features of the MRS graphical editor is the detection of violations of

the rules of the modular reference structure. We implement this feature by providing

conditional styles to the Dependency edge. By default, edges have a black color. However,

Figure 4.19: De�nition of the Dependency diagram element

24

4.3 Implementation Details

Figure 4.20: External Java actions for the MRS graphical editor

if the edge goes from a metamodel to a metamodel in a lower layer, it gets painted with

an orange color. This check is performed in the edgeIsPointingDownwards() Java Service,

which takes an edge as parameter, retrieves the source and target metamodels and compares

the relative position of the corresponding layers in the list of layers. The result is true

if the index of the target layer is bigger than the index of the source layer and false

otherwise.

The second conditional style that we provide paints the edge with a red color if it is part

of a cycle. The edgeIsPartOfCycle() Java service takes the edge as a parameter, retrieves

the source and target metamodels and performs a breadth-�rst search starting from the

target metamodel and sees if it can reach the source metamodel. If that’s the case, it returns

true, otherwise false.

4.3.2 Defined User Actions

In this subsection we present how we have de�ned the actions that can be taken by the user

in a MRS diagram. While some actions are straightforward, like the Add Layer action since

it only creates an instance of the Layer EClass in the ModularReferenceStructure, others

required more e�ort. The Create Metamodel creates an instance of the Metamodel EClass

in the selected layer and passes it to the CreateMetamodel external Java action. External

Java actions are plugin extensions that use the org.eclipse.sirius.externalJavaAction

extension point and implement the IExternalJavaAction interface. We de�ne our external

Java actions in the mrs.custom plugin (Figure 4.20). Once called, the CreateMetamodel

external java action triggers the Ecore modeling project creation wizard, retrieves the

main package of the Ecore-based metamodel that the user has just created and sets it as

the main package of the Metamodel instance that it received from the VSM.

25

4 Implementing the MRS Graphical Editor

In a similar fashion, the LoadMetamodel action creates a Metamodel instance and passes it

as a parameter to the LoadMetamodel external Java action, that opens a LoadResourceFrom-

WorkspaceDialog which prompts the user to select an Ecore �le from the workspace.

The corresponding main package is then retrieved and assigned to the passed Metamodel

instance.

The Load Pro�le action directly makes a call to the LoadProfile external Java action,

which prompts the user to select an EMF Pro�le from the workspace. The external Java

action then adds the pro�le to the loadedPro�les list and adds the metamodels containing

the classes referenced in the pro�le to the selected layer. Retrieving the metamodels

wasn’t a straightforward task, since the EClasses that are referenced in the pro�le are

loaded via their corresponding registered package and not the actual main EPackage of

the corresponding metamodel. To get the actual metamodel, we had to �rst navigate from

the registered package to GenModel using the namespace URI of the registered package, in

order to retrieve the actual main EPackage. The method responsible for this is provided in

Listing 4.3.

1 public static EPackage getEcorePackageFromRegisteredPackage(EPackage registeredPackage,

TransactionalEditingDomain editingDomain) {

2 ResourceSet resourceSet = editingDomain.getResourceSet();

3 String nsURI = registeredPackage.getNsURI();

4 resourceSet.getURIConverter().getURIMap().putAll(EcorePlugin.computePlatformURIMap(

false));

5

6 Map<String, URI> ePackageNsURItoGenModelLocationMap = EcorePlugin.

getEPackageNsURIToGenModelLocationMap(false);

7 URI location = ePackageNsURItoGenModelLocationMap.get(nsURI);

8 Resource resource = resourceSet.getResource(location, true);

9 EcoreUtil.resolveAll(resource);

10 EPackage ecorePackage = ((GenModel) resource.getContents().get(0)).getGenPackages().

get(0).getEcorePackage();

11 return ecorePackage;

12 }

Listing 4.3: The method responsible for retrieving the actual main package based on the

registered EPackage

We also rede�ned the default behavior of deleting graphical elements from the MRS

diagram. First, the deletion of a Metamodel from the diagram only removes the correspond-

ing Metamodel instance from its containing Layer. Second, we also adjusted the behavior

for EClassi�ers and EPackages so that their deletion does not actually delete them from

their metamodels but only removes them from the visibleEClassi�ers and visibleEPackages
respectively.

Since Sirius does not o�er a default implementation for the drag and drop features,

we had to provide our own de�nitions for the drag and drop of Metamodels, EClassi�ers
and EPackages. The drag and drop of Metamodels is straightforward. It only changes its

container from the old layer to the new one. In the case EClassi�ers and EPackages, we �rst

check if both the source and target metamodels are present in the workspace, since we do

not want to modify target platform metamodels. If it is the case, the EClassi�ers and EPack-

26

4.3 Implementation Details

ages are moved to the target metamodel and the visibleEClassi�ers and visibleEPackages
lists are updated accordingly.

We deemed the drag and drop feature in the MRS graphical editor necessary for meta-

model modularization. To some extent, the user is also allowed to edit the EClassifiers

and the EPackages of the underlying metamodels in the MRS diagram by directly renam-

ing them or through their respective default properties sheet. To have full access to the

metamodels, the modeler still has to open either the EMF Tree editor or the Ecore graph-

ical editor. For this purpose, the MRS graphical editor o�ers a way to open the Ecore

graphical editor for any EPackage in the MRS diagram simply by double clicking on it. The

double click makes a call to the OpenRepresentation external Java action that opens the

representation of the package if it exists, or creates one and opens it if not. This external

Java action was actually not implemented during the course of this work, but priory as we

developed the Sirius-based PCM graphical editors. Along with this class, we also reuse

the SiriusCustomUtil from prior work. These two classes were for simplicity reasons

copied from org.palladiosimulator.editors.sirius.custom into mrs.custom but will

be eventually subject of a broader refactoring in the future.

The default properties view for Metamodels o�ers a way to edit the intrinsic properties

de�ned in the Metamodel EClass like the visible EClassi�ers and visible EPackages references.

When trying to edit these, multiple EClassifiers and EPackagess are shown in the dialog,

that are not necessarily part of the Metamodel being edited. In fact, all EClassi�ers and

EPackages from the metamodels loaded in the MRS diagram are displayed. For this

reason, we added the context menu entries Visible EClassi�ers and Visible EPackages for

Metamodels. When the user clicks on the context menu entry, the SelectVisibleItems

external Java action is called. It receives three parameters: the metamodel element,

the list of all EClassi�ers/EPackages inside this metamodel and the Reference ID of the

visibleEClassifiers/visibleEPackages in the Metamodel EClass. For this matter, we

implemented the Java services getEAllClassifiers() and getEAllSubPackages() that

retrieves all EClassifiers/EPackages inside a given EPackage by visiting recursively its

subpackages. For the Reference ID, we implemented Java services that simply return the ID

provided in the MrsPackage class. For the case of visibleEClassifier, the Reference ID is

given by MrsPackage.METAMODEL__VISIBLE_ECLASSIFIERS. Once the SelectVisibleItems

external Java action is called, it opens a FeatureEditorDialog2
and sets the value of the

reference given by the Reference ID to the result of the dialog.

4.3.3 Properties Sheet

One crucial functionality that we propose in the MRS graphical editor is that it gives

the user precise information about in which the metamodels depend on each other. This

information is delivered in the properties view, as we’ve seen at the end of Section 4.2. Since

its fourth version, Sirius o�ers a way to implement custom properties sheets directly in the

VSM. We use this functionality to deliver the custom properties sheet "List of dependencies"
that appears when the user select an edge from the diagram. We implemented the properties

sheet so that it displays a text area widget in a read-only mode and whose content is

2delivered in org.eclipse.emf.edit.ui.celleditor

27

4 Implementing the MRS Graphical Editor

delivered by the printDependencies() Java service. This service retrieves the source and

target Metamodels from the edge, computes all dependencies that go from the source to

the target metamodel and returns a String representation of these dependencies.

28

5 Evaluation

In this chapter, we present the results of the evaluation of the MRS graphical editor. Two

aspects are essentially worth validating: the correctness and the applicability of our tool. In

our context, we mean by correctness that the metamodels resulting from the modularization

are valid metamodels and are not corrupted. Besides, the information provided by the tool,

in regards to the dependencies between metamodels and the detection of violations to the

modular reference structure, must be correct and reliable. By applicability we mean that

the tool ful�lls the purpose it was designed for — that is, o�ering the user a convenient

way for metamodel modularization on the basis of the modular reference structure.

The usage scenario presented in chapter 4 validates to some extent the correctness and

the applicability of the MRS graphical editor. The process of extracting the pcmReliability
module takes advantage of the cyclical dependency detection and the information provided

by the properties sheet about how pcmReliability and pcm relate to each other, thus

e�ectively validating the applicability of the tool. The correctness follows from the fact

that the resulting pcm and pcmReliability are both valid Ecore-based metamodels and only

pcmReliability depend on pcm.

Further, we proceeded in the evaluation in two other ways. First, we tested our tool

using the prototypical modular PCM (mPCM)
1
. Second, we conducted a small evaluation

session using the Smartgrid metamodel
2

[9].

5.1 Modular PCM

The need for a modular PCM has to some extent led to the work on the modular reference

structure for architecture component-based architecture description languages. Prior to

our work on the MRS graphical editor, modularization work on PCM resulted in mPCM, a

prototypical modular PCM built on the basis of the modular reference structure. Figure 5.1

shows the resulting MRS diagram after loading the di�erent mPCM modules. The diagram

shows no violations to the modular reference structure, since mPCM was designed based

on it, which con�rms the correctness of the MRS graphical editor.

1https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model/Modular_Prototype
2https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model

29

https://sdqweb.ipd.kit.edu/wiki/Palladio_Component_Model/Modular_Prototype
https://sdqweb.ipd.kit.edu/wiki/Smart_Grid_Model

5 Evaluation

Figure 5.1: MRS Diagram of mPCM

30

5.2 Evaluation Session with the Smartgrid Metamodel

5.2 Evaluation Session with the Smartgrid Metamodel

Using the Smartgrid metamodel (Figure 5.2, Figure 5.3, Figure 5.4), we conducted an

evaluation session for the MRS graphical editor. Since we were accustomed to using the

tool, we decided to get someone without prior experience with it to try it out. Mr. Rüdiger

Heres kindly accepted to take part of the evaluation. Mr. Heres was provided with an

Eclipse environment, where the MRS graphical editor was installed and the Smartgrid

metamodel was imported into the workspace. He also was given a description of the MRS

graphical editor, a user guide as well as the following instructions:

1. Create a modeling project

2. Create a MRS Model in the project (New > Other > Mrs Model) and choose "Modular

Reference Structure" as the Model Object

3. Select the MRS Viewpoint (right-click on the project > Viewpoints Selection)

4. Add 3 layers via "Add Layer" palette entry and name them respectively "paradigm",

"domain" and "analysis" from top to bottom.

5. Load Smartgrid Topo to the domain layer and Smartgrid Input and Output to the

analysis layer.

6. Create a new metamodel called "base" in the paradigm layer.

7. Extract the classes Identi�er, NamedIdenti�er and NamedEntity into it.

8. Create a new metamodel called "typerepo" in the domain layer.

9. Extract the classes Repository, SmartMeterType, ConnectionType and NetworkN-

odeType into it.

10. Create a new metamodel called "graph" in the paradigm layer.

11. Extract the classes CommunicatingEntity, PhysicalConnection, PowerGridNode,

NetworkEntity and LogicalCommunication into it.

12. Eventually resolve problematic dependencies. Tip: Use the dependency inversion

principle: To reverse a dependency from class A to class B, create a class C that

references both A and B and delete the A to B dependency.

Without prior knowledge of the Smartgrid metamodel and the MRS graphical editor,

Mr. Heres successfully completed the evaluation task. He could easily add the layers

and the metamodels described in the instructions. The MRS diagram before proceeding

with the dependency inversion at the twelfth step is given in Figure 5.5. After that,

he used the information provided by the tool, that is, the highlighting of dependency

from graph to typerepo and the classes involved in it in order to resolve the problematic

dependency. The properties sheet indicated that the EClass PhysicalConnection in graph
had a EReference to ConnectionType in typerepo. With this information, he created a class

31

5 Evaluation

Figure 5.2: Minimal class diagram of Smartgrid Topo

ConnectionTypeApplication in typerepo, that references both PhysicalConnection and

ConnectionType and deleted the EReference from PhysicalConnectionto ConnectionType.

Figure 5.6 shows the MRS diagram of Smartgrid after the dependency inversion.

This evaluation task successfully validates the applicability of our tool. By this occasion,

we would like to thank Mr. Heres for participating in the evaluation and for his constructive

feedback. Mr. Heres praised how the tool immediately detected the violation to the modular

reference structure and how he directly had access to the information he needed to resolve

the problematic dependency. He also noted that the layout of the diagram should adjust

to the loaded metamodels and that re-sizing a layer should not a�ect the size of adjacent

layers. We gladly take note of these issues as part of future work. Particularly, the last

point is discussed further in chapter 7.

32

5.2 Evaluation Session with the Smartgrid Metamodel

Figure 5.3: Class diagram of Smartgrid Input

33

5 Evaluation

F
i
g
u

r
e

5
.4

:
C

l
a
s
s

d
i
a
g
r
a
m

o
f

S
m

a
r
t
g
r
i
d

O
u

t
p

u
t

34

5.2 Evaluation Session with the Smartgrid Metamodel

Figure 5.5: MRS Diagram of Smartgrid before proceeding with the dependency inversion

35

5 Evaluation

Figure 5.6: MRS Diagram of Smartgrid after the dependency inversion

36

6 RelatedWork

Modular programming is a well established concept in the realm of software development,

especially in object-oriented programming. Although the basic principles of modularity

also hold for DSLs and metamodels, modular metamodeling and metamodel modularization

have not received much of attention. Some works have touched on the subject, but with

a main focus on modularity at the model level. Garmendia et al. introduce a modular

structure that divides a model into modules based on a priory chosen modularity pattern

[5]. The proposed tool, EMF Splitter, allows the user to map the metamodel to a structure

comprised of so-called projects, packages and units by annotating
1

the original metamodel.

Although the tool adds a logical structure to the metamodel and separates the produced

models into modules, it doesn’t o�er a way to e�ectively modularize the underlying

metamodel since the information about the modularity pattern is only kept in the form of

annotations and the underlying metamodel is not a�ected.

Strüber et al. introduce the concept of export and import interfaces at the metamodel

level in order to enable information hiding at the model level [19]. The proposed Composite

EMF Models
2

de�ne these interfaces by extending the Ecore metamodel. Ecore-based

metamodels can then be encapsulated and equipped with the interfaces, thus producing

models that can only interact with each other through the suggested interfaces. Although

this o�ers defacto a separation of concerns at the model level, it brings modi�cations

to the underlying metamodel in an intrusive manner, due to the addition of the export

and import interfaces and does not explicitly address the question of modularity at the

metamodel level.

In other works, Strüber et al. propose a tool support for clustering metamodels [17] and

a tool support for model splitting [18, 16]. While the former employs clustering techniques

to split a monolithic input metamodel, the latter uses model crawling techniques and splits

the metamodel based on an input description. Our approach is fundamentally di�erent

in the way that it lets the user have a full control on the modularization by providing

substantial information about how metamodels relate to each other inside the layered

structure and by facilitating the manipulation of metamodels. As we discuss in chapter 7,

metamodel clustering techniques can be integrated in the future to the MRS graphical

editor as a way to assist the user in taking modularization decisions.

1
In a currently under development version of EMF Splitter, the mapping between metamodel elements and

the structure no longer uses the annotation process, but saves the information about the modularity

pattern in a model.

2http://www.mathematik.uni-marburg.de/~swt/compoemf/index.php

37

http://www.mathematik.uni-marburg.de/~swt/compoemf/index.php

7 Limitations and Future Work

We see a considerable improvement potential for the MRS graphical editor. The future

work can fall under three categories: the improvement of performance, the improvement

of usability and the introduction of whole new features.

7.1 Performance

One of the limitations encountered in the development of the MRS graphical editor with

the Sirius framework is that the Java services are meant to be stateless and the Viewpoint

Speci�cation Model (VSM) doesn’t o�er the possibility to hold a global state, where results

of computations can be temporary stored and used across the VSM. For this reason, some

computations are redundant and cannot take advantage of previous results. For example,

when looking for cycles, a breadth-�rst search has to be done on each edge in the diagram,

regardless of previous computations. During the breadth-�rst search, it would be more

convenient to mark all encountered edges that take part in the cycle so that they wouldn’t

have to be investigated anymore. We can also think of a completely other mechanism for

cycle detection where only one computation is done on the whole diagram on refresh, that

takes into account the previous state of the diagram and the changes that have been made.

Unfortunately, the diagram state cannot be stored in the VSM. We can think of storing

this sort of information in a separate �le or model, but that would bring the overhead of

reading the �le each time a change on the diagram is detected.

Another subject worth investigating is model integrity and consistency. In the current

state of the MRS Metamodel, the Metamodel EClass references the main package of the

target metamodel in the mainPackage EReference and EClassifiers and EPackages from

this metamodel in the visibleEClassi�ers and visibleEPackages EReferences. This raises

the question of how to keep MRS models consistent with the referenced metamodels,

in case these metamodels are modi�ed or deleted. For the time being, if the referenced

metamodel is deleted or not found, the corresponding mainPackage EReference is a null

reference. We also encountered the problem where, if a EClassifier or a EPackage is

renamed and it is referenced in visibleEClassi�ers or visibleEPackages, then we would get a

dangling reference to a EClassifier or a EPackage. We solved this problem by checking

the visibleEClassi�ers or visibleEPackages lists and deleting such invalid references when

determining which EClassifiers or EPackages should be displayed. Another approach

would be to keep the MRS model consistent using an external tool. Works on this subject

include Concordance, a framework for managing model integrity [12].

38

7.2 Usability

7.2 Usability

We can think of a various number of ways to improve the usability and the user experi-

ence in the MRS graphical editor. The following suggestions are derived from our own

experience with the tool and the feedback received at the evaluation:

• When re-sizing a layer, the size of other layers should not be a�ected. For example,

when extending a layer to the bottom, the layer underneath it should not loose in

size and should instead be displaced to the bottom with the same re-sizing amount.

• The Load Metamodel and Load Pro�le actions should allow multiple selection of

metamodels and pro�les.

• Provide a way to hide transitive dependencies from the diagram.

• To use the tool, the user usually has to create a modeling project, create a MRS Model

inside this project, select the MRS Viewpoint and then open the representation. An

improvement to the user experience would be to encapsulate these actions into a

single one where the user only has to click on a toolbar button and enter relevant

information like the project and model name. Everything else should be done

automatically.

• For the time being, layers are automatically added to the bottom of the structure.

The user should be able to add a layer between two layers. Furthermore, moving a

layer to another position would be an interesting feature to have.

7.3 New Features

The MRS graphical editor assists the modeler by giving him a global overview on the

way the metamodels in the layered structure are connected to each other. However, it

doesn’t make any assertions about how the metamodels should be modularized and leaves

modularization decisions completely up to the modeler. As a future work, we can think

of implementing a modularization assistant that inspects the metamodels in the layered

structure and makes suggestions to the modeler about which classes should form their own

module or how a violation to the modular reference structure should be �xed. Clustering

techniques applied to metamodels can be used for this purpose. The assistant would also

adapt itself according the choices of the modeler to make better predictions.

As part of future work, we can also take into account other aspects that depend on

the metamodel being modularized. Such aspects may include other metamodels, model

transformations, model editors and various other tools that build on the metamodel in

question.

39

8 Conclusion and Outlook

Metamodel modularization can often be challenging and non-self-evident. In this work,

we introduced a graphical tool that is intended to assist the modeler in the modularization

by providing visual support for the proposed modular reference structure. We deem our

approach a novel way to achieve metamodel modularization in the sense that it leaves the

modeler with full control over the modularization and with extended knowledge about

the relations between the metamodels in the layered structure. As to the future of the

tool, we consider optimizing its performance, improving its usability and extending it

with various new features like providing modularization suggestions based on metamodel

clustering techniques. The discussed related work in this �eld can form the basis for our

future work.

40

Bibliography

[1] Jean Bézivin. “In search of a basic principle for model driven engineering”. In:

Novatica Journal, Special Issue 5.2 (2004), pp. 21–24.

[2] Franz Brosch et al. “Architecture-based reliability prediction with the palladio com-

ponent model”. In: IEEE Transactions on Software Engineering 38.6 (2012), pp. 1319–

1339.

[3] Alan W. Brown, Jim Conallen, and Dave Tropeano. “Introduction: Models, Modeling,

and Model-Driven Architecture (MDA)”. In: Model-Driven Software Development.
Ed. by Sami Beydeda, Matthias Book, and Volker Gruhn. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2005, pp. 1–16. isbn: 978-3-540-28554-0. doi: 10.1007/3-540-

28554-7_1. url: https://doi.org/10.1007/3-540-28554-7_1.

[4] Martin Fowler. Domain-speci�c languages. Pearson Education, 2010.

[5] Antonio Garmendia et al. “EMF Splitter: A Structured Approach to EMF Modularity.”

In: XM@ MoDELS 1239 (2014), pp. 22–31.

[6] Philip Langer et al. “EMF Pro�les: A Lightweight Extension Approach for EMF

Models.” In: Journal of Object Technology 11.1 (2012), pp. 1–29.

[7] Bertrand Meyer. Object-oriented software construction. Vol. 2. Prentice hall New York,

1988.

[8] David Lorge Parnas. “On the criteria to be used in decomposing systems into

modules”. In: Communications of the ACM 15.12 (1972), pp. 1053–1058.

[9] Wolfgang Raskob et al. “Security of Electricity Supply in 2030”. In: Critical Infras-
tructure Protection and Resilience Europe (CIPRE). Den Haag, Netherlands, Mar. 2015.

url: https://publikationen.bibliothek.kit.edu/1000056115.

[10] Ralf H Reussner et al. Modeling and simulating software architectures: The Palladio
approach. MIT Press, 2016.

[11] Ralf Reussner et al. The Palladio Component Model. Karlsruhe Reports in Informatics,

ISSN: 2190-4782. Karlsruhe, 2011. url: http://digbib.ubka.uni-karlsruhe.de/

volltexte/1000022503.

[12] Louis M Rose et al. “Concordance: A Framework for Managing Model Integrity.” In:

ECMFA. Springer. 2010, pp. 245–260.

[13] Douglas C Schmidt. “Model-driven engineering”. In: COMPUTER-IEEE COMPUTER
SOCIETY- 39.2 (2006), p. 25.

41

https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1007/3-540-28554-7_1
https://doi.org/10.1007/3-540-28554-7_1
https://publikationen.bibliothek.kit.edu/1000056115
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000022503

Bibliography

[14] Misha Strittmatter et al. “A Modular Reference Structure for Component-based

Architecture Description Languages”. In: 2nd International Workshop on Model-
Driven Engineering for Component-Based Systems (ModComp). CEUR, 2015, pp. 36–

41. url: http://ceur-ws.org/Vol-1463/paper6.pdf.

[15] Misha Strittmatter et al. “Towards a Modular Palladio Component Model”. In: Pro-
ceedings of the Symposium on Software Performance: Joint Kieker/Palladio Days. Ed. by

Ste�en Becker et al. Vol. 1083. Karlsruhe, Germany: CEUR Workshop Proceedings,

Nov. 2013, pp. 49–58. url: http://www.kieker-palladio-days.org/.

[16] Daniel Strüber, Michael Lukaszczyk, and Gabriele Taentzer. “Tool Support for Model

Splitting using Information Retrieval and Model Crawling Techniques.” In: BigMDE@
STAF. 2014, pp. 44–47.

[17] Daniel Strüber, Matthias Selter, and Gabriele Taentzer. “Tool support for clustering

large meta-models”. In: Proceedings of the Workshop on Scalability in Model Driven
Engineering. ACM. 2013, p. 7.

[18] Daniel Struber et al. “Splitting models using information retrieval and model crawl-

ing techniques”. In: International Conference on Fundamental Approaches to Software
Engineering. Springer. 2014, pp. 47–62.

[19] Daniel Strüber et al. “Managing Model and Meta-Model Components with Export

and Import Interfaces.” In: BigMDE@ STAF. 2016, pp. 31–36.

[20] Markus Völter et al. Model-driven software development: technology, engineering,
management. John Wiley & Sons, 2013.

42

http://ceur-ws.org/Vol-1463/paper6.pdf
http://www.kieker-palladio-days.org/

	Abstract
	Zusammenfassung
	Introduction
	Foundations
	Model-Driven Software Development
	Modularity
	A Layered Structure for Modular Metamodels
	Eclipse Modeling Framework (EMF)
	Sirius

	Metamodel Modularization with the MRS Graphical Editor
	Motivating Example
	Concept
	User Guide

	Implementing the MRS Graphical Editor
	The MRS Metamodel
	Usage Scenario
	Implementation Details
	Diagram Elements Definition
	Defined User Actions
	Properties Sheet

	Evaluation
	Modular PCM
	Evaluation Session with the Smartgrid Metamodel

	Related Work
	Limitations and Future Work
	Performance
	Usability
	New Features

	Conclusion and Outlook
	Bibliography

