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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract

Well-designed and intelligently controlled battery storage systems are crucial for the successful integration of solar photovoltaic
systems. The power variations in densely clustered systems such as those in residential areas could either be mitigated by small
batteries in each household or by a district-scale storage solution. In this context it is useful to understand the correlation between
individual array power outputs as a function of the distance between them. The study of correlation length and storage system
response time provides a basis for optimal system design, depending on the context. Although it has already been shown that for a
typical household storage system in Germany a dead time of 5 seconds in the control loop would lead to an small but non-negligible
economic effect, in off-grid systems with 100% renewable energy supply the effects would be more dramatic, since the voltage and
resulting power quality depends on the rapid response of the storage system to variations in power input. In order to characterise
these effects the fluctuations in power output from 68 spatially separated photovoltaic arrays (each with 10 kWp) installed on the
north campus of Karlsruhe Institute of Technology were analysed in detail with high-frequency data. This analysis was used to
create virtual clusters of photovoltaic systems with different separation distances that were then used as inputs to a 32 kWh storage
system on site. The effect of response time is studied by employing two sensors of different sampling rates. This allows one to
quantify the resulting power smoothing due to both correlation effects and battery control algorithms, thus providing a benchmark
for storage system integration in the local context.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under the responsibility of EUROSOLAR - The European Association for Renewable Energy.
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1. Introduction

The variable nature of renewable energy sources necessitates mitigation technologies capable of fast response
times. Battery energy storage systems combined with power electronics and communication and control infrastructure
are one of the leading candidates for this role, in particular when it comes to compensating fluctuations on short time
scales. Large-scale deployment of such systems, mostly with Li-ion battery technology [1], is currently under way,
and will ultimately allow a greater penetration of renewable energy on the grid.
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In general, solar photovoltaic (PV) plants display particularly large and fast changes in power output, with extreme
ramp rates occurring relatively often. The non-Gaussian statistics of the cloud-induced fluctuations in solar irradiation
have been studied before [2–4]: it has been shown that power ramp rates of up to 60% of peak power per second are
possible [5], but that the aggregation of multiple solar plants leads to a smoothing effect. Several models have sought to
characterise the spatio-temporal correlations of solar power variability in different contexts (see for example Refs. [5–
9]). Simply put, it has been shown [6,9–12] that the further apart the individual solar arrays are, the less correlated the
variations in power output become, and that this reduction in correlation is less pronounced for larger time increments.

However, apart from Ref. [12] and the recent analysis [4] using a spatially dense network of radiation sensors, there
are few studies focussing on very short time scales and distances, largely due to a lack of relevant data. To this end,
the authors performed a basic statistical analysis [13] of power fluctuations from the 1 MW solar park at Karlsruhe
Institute of Technology (KIT), which forms the basis for this work. Data collected over one year with a resolution of
1 Hz was analysed for fluctuation correlations at short time scales. The presence of battery systems on site provides
the ideal framework to examine the effects of these correlations in the storage context.

In residential areas, the power variations in densely clustered solar PV systems could either be mitigated by small
batteries in each household or by a district-scale storage solution. In the case of smaller or off-grid systems the effects
of very short-term fluctuations become important and can affect power quality, due to voltage flicker, for example.
Although decorrelation between arrays can help to mitigate these effects, the integration of a battery storage system
allows further control over ramp rates, thus facilitating higher PV penetration. Experience with prototype storage
systems has shown that in order to successfully smooth PV fluctuations one needs control algorithms with a cycle
time on the order of one fifth of a second or better.

Control systems always possess a certain amount of latency, which leads to unwanted power flows. A recent
simulation [14] showed that for a household storage system in Germany, a dead time of 5 seconds in the control loop
would lead to a monetary loss of roughly e15 per annum. However in reality these effects could be larger and should
be studied in an experimental setup. In off-grid systems with 100% renewable energy supply the effects would be
more noticeable, since the voltage and power quality depends on the rapid response of the storage system to variations
in power input.

The effects of both spatial correlation and battery response times are examined in what follows. Using the results
of Ref. [13], data from two array pairs with different correlations coefficients are selected as inputs for an AC-coupled
storage system equipped with current sensors of different sampling rates. This unique installation allows for the
comparison of control speed as well as a closer examination of spatially-induced correlation effects. In the next
section, a brief description of the PV and battery installations is given, as well as an outline of the test procedure
(more details of the correlation analysis can be found in Ref. [13]). The test results are presented in Section 3, and we
summarise and conclude in Section 4.

Nomenclature

ρ∆t
i j array pair correlation: two-point correlation coefficient between time series of power increments ∆Pi

and ∆Pj, for the time interval ∆t
∆Pi power increments for array i
P1(2)

PV PV power measured by sensor 1 (2)
P1(2)

batt battery power measured by sensor 1 (2)
Presidual residual power, difference between load target and sum of battery and PV power

2. Methodology

2.1. The 1 MW PV installation

Figure 1 depicts the layout of the “static solar-tracking configuration” 1 MWp PV installation at KIT, which has
been described in more detail in Refs. [13,15]. There are six different PV module types making up 102 separate arrays
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of roughly 10 kW each, installed at a variety of inclination and orientation angles, and four inverter types (labelled
A...D) connect the arrays to the institute grid, as summarised in Table 1. The distance between the centre points of
any two arrays ranges from 7.4 m to 251.6 m.

Table 1. Array numbers by orientation (rows), inclination (columns) and inverter type, where types A, B, C, D are green, magenta, blue and red,
respectively.

2◦ 15◦ 30◦ 45◦ 60◦

60◦ E 1, 2 3, 4 5, 6 7, 8
45◦ E 9, 10, 11 12, 13 14, 15 16, 17
30◦ E 18, 19, 20, 21, 22, 23 24, 25 26, 27, 28 29, 30, 31
15◦ E 32, (33), 34 35, 36, (37) 38, 39, 40 41, 42, 43
00◦ (S) 46, 47, 48 (44), 45 49 , 50 51 52, 53, 54 55, 56 57, 58
15◦ W 59, 60, 61 62, 63, 64 65, 66, (67) (68), 69, 70
30◦ W 71, 72, 73, 74, 75, 76 77, 78, 79 (80), 81, 82 83, 84, 85
45◦ W 86, 87, 88 89, 90 91, 92 93, 94
60◦ W 95, 96 97, 98 99, 100 101, 102

2.2. The 32 kWh AC-coupled storage system

An AC-coupled Li-ion battery storage system with 32 kWh capacity is installed in an air-conditioned container
next to the 1 MW PV field. The battery is connected via a bi-directional inverter with a rated power of 30 kW to the
AC-grid. The system topology is shown in Fig. 2: the central control unit is responsible for collecting measurement
signals from each of the system components and executing control algorithms that ultimately set a charge or discharge
target power for the battery. There are two current sensors of different sampling rates that measure the AC power
generated by the PV system as well as that flowing to or from the battery, providing four different power signals, as
shown in Table 2. Since the battery is essentially independent of the PV array, it is possible to run the battery control
algorithm with different sources for the PV power profile, i.e., either with real data from one of the 10 kW PV arrays
or else with a “virtual” PV input signal.

Table 2. Power values measured by the two different AC current sensors.

Sensor PV(1) Sensor PV(2) Sensor Batt(1) Sensor Batt(2)

Measured quantity P1
PV P2

PV P1
batt P2

batt
Sampling rate ≤ 50 Hz 1 Hz ≤ 50 Hz 1 Hz

2.3. Analysis of fluctuation correlations

The original fluctuation analysis was carried out using DC power data collected over the 2015 calendar year from
68 PV inverters of type A with a sampling rate of 1 Hz. After discarding the night time values and normalising the
power time series, the correlation matrices ρ∆t

i j of array pair correlations between the time series of power increments
∆Pi and ∆Pj were calculated for different time intervals ∆t and arrays i and j (see Ref. [13] for details of the calculation
procedure).

Figure 3 provides a graphical representation of the 68 × 68 symmetric correlation matrix for different time scales,
where the inverters are ordered by their number (cf. the green numbers in Table 1 – this is equivalent to an ordering by
orientation, see also Fig. 5). Roughly speaking, one can observe that correlation increases with time scale and distance,
since small distances are represented by elements close to the diagonal of the matrix. The effect of shadowing can
also be seen - a number of arrays show very little correlation with the others, even at large time scales.



382 James Barry et al. / Energy Procedia 135 (2017) 379–390
4 James Barry et al. / Energy Procedia 00 (2017) 000–000

Fig. 1. Schematic diagram of PV field layout, with array numbers and colours corresponding to those in Table 1. The two array pairs with high
(low) correlation coefficients are circled with solid (dashed) red lines, and the distance between them is indicated by the arrows (see Section 2.3).
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Fig. 2. Schematic diagram of the AC-coupled system, with power (communication) networks denoted by black (red) lines.

Fig. 3. Fluctuation correlation matrix at different time scales, using power time series data from 68 inverters of type A.
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Fig. 4. Contour plot of correlation as a function of array separation and time scale, using power time series data from 68 inverters of type A and the
exponential model in Eq. (1).

The relationship between distance and correlation at different time scales can be studied by fitting the measured
data with an exponential model [7,9], i.e.,

ρ∆t
i j = exp

(
di j ln(0.2)
1.5∆t v2

)
, (1)

where di j is the separation between array i and j, and v2 is a parameter representing the cloud speed. The results are
shown in the contour plot in Fig. 4, for time scales from 1 to 10 seconds. This allows one to read off the minimal
distance required for a certain level of decorrelation, for instance in order to reduce correlation to ρi j = 0.2 for 5
second fluctuation time increments, one should place the PV arrays at least 62 m apart. Note that these results depend
on the local conditions, since fluctuations are dependent on the characteristics of the climatic zone, which influences
the value of the parameter v2 [9].

In order to examine the effect of orientation and inclination more closely, it is useful to order the inverters by
either orientation or inclination angle, as in Fig. 5, where the correlation matrix for fluctuations of 5 seconds has been
ordered in two different ways. In both plots one observes that in general the arrays closer to the diagonal have higher
correlation factors, simply because their separation di j is lower. The plot on the left shows that orientation also plays
a role: two arrays both facing east or west are more correlated with each other than a combination of one facing east
and one facing west, as is to be expected. The plot on the right shows that a large proportion of the arrays inclined at
60◦ are correlated with each other, more so than for any other inclination angle.

2.4. Solar-storage cluster simulation

In the storage system context it is useful to focus on fluctuations of 5 seconds, since typical battery storage sys-
tems have response times of this order of magnitude. The analysis of fluctuation correlations is applicable in the
context of storage system design, since one can get a rough idea of the smoothing effects of aggregating several
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Fig. 5. Correlation matrix for fluctuations of 5 seconds, ordered by array orientation (left) and inclination (right) respectively. The orientation
angles are defined with respect to south, where negative (positive) values represent the easterly (westerly) direction.

PV arrays in a mini-grid, for instance. As an example of this, normalised power curves from array 63 and 70
(ρ∆t=5s

63−70 � 0.074, d63−70 � 168 m) are shown in the left panel of Fig. 6, along with their average, for a three minute
period of large cloud-induced fluctuations on 26 April 2015, whereas the right panel contains data from array 31 and
30 (ρ∆t=5s

31−30 � 0.86, d31−30 � 11 m). Here one can see that the combined power Plow
PV (left panel) shows a less dramatic

fluctuation per installed kWp than Phigh
PV (right panel), simply because the cloud reaches the arrays at different times.

The short pause of roughly 12 seconds could help the battery system to catch up; since most storage systems on the
market have a response time of anywhere between 5 and 15 seconds [16] this may or may not be enough to help
smooth the fluctuations.

In order to examine this effect more closely, two hours of data from the morning of 13 April 2015 was used as
an input to the AC-coupled storage system described in Section 2.2 above. Two different PV curves were created by
adding the normalised powers of array 63 and 70 (Plow

PV ) and array 31 and 30 (Phigh
PV ), and the result was scaled to have

a peak power of 15 kW (see Fig. 7). It is evident that these data represent an extreme case with large fluctuations. The
system was programmed to follow the load curve shown in Fig. 8, which is part of an example day taken from the VDI
load profiles in the category ÜWH (“Übergang, Woche, Heiter”), i.e. a mostly clear weekday in spring or autumn.
This fits with the PV data above, since one can see that although the number of fluctuations are large (characteristic of
the fast-moving clouds experienced in April in Germany), the prevailing weather conditions were in a sense “clear”
due to the high peak power measured from the PV arrays. In order to better match the energy consumption and
generation over the course of the day, the load profile was scaled to 4.5 times its original size.

2.5. Test procedure

In order to compare the response of the two different sensor types as well as the effects of fluctuation correlations,
the AC-coupled system was given the load profile in Fig. 8 as its power setpoint (Ptarget

load ), with the two different PV
profiles in Fig. 7 as the input power. The control algorithm then uses the battery to make sure that the system follows
the required demand curve, i.e.,

Ptarget
batt = Ptarget

load − P1(2)
PV , (2)
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Fig. 6. Comparison of power data from three minutes on 26 April 2015 for two different array pairs with different correlation coefficients and
separation distances.

Fig. 7. PV power profiles measured on the morning of 13 April 2015, from two different array pairs with low (left panel) and high (right panel)
correlation coefficients, see also Fig. 6.
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Fig. 8. Example load profile from the VDI standard, category ÜWH (see text for explanation).

where Ptarget
load is the VDI load shown in Fig. 8 and P1(2)

PV is the PV profile shown in Fig. 7 and measured by sensor 1(2)
respectively (cf. Table 2). The process variable input to the control loop is given by P1(2)

batt in each case. An additional
derating routine ensures that the charge (discharge) current and resulting power is reduced once the battery is full
(empty). The tests were performed with sampling frequencies of 5 Hz for sensor 1 and 1 Hz for sensor 2, for both PV
and battery powers, respectively.1

3. Results and discussion

The effects of fluctuations in load and generation profiles as well as battery response times depend largely on the
context in which the storage system is deployed. In general the variations in load are more prominent and faster
than those in the generated PV power. Indeed, in the grid-connected context one would expect the load-induced
fluctuations to play the major role [16], but considering the prevalence of extreme PV fluctuations it is reasonable that
both be taken into account. In the household scenario the main result of slow control algorithms is firstly a reduction
in self-sufficiency, since the grid is often called upon to make up the shortfall due to slow response times. At the same
time one also feeds more energy into the grid if the battery is too slow to take it up, which decreases self-consumption
ratio but may increase revenue from feed-in tariffs, if these exist.

Since the test described above did not include an explicit load, one can simply calculate a residual power

Presidual = P1(2)
PV + P1(2)

batt − Ptarget
load , (3)

1 Although sensor 1 can operate at an internal frequency of 50 Hz, the external control algorithm only changed the setpoint and process variable
at a rate of 5 Hz.
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(a) Sensor 1 as control input

(b) Sensor 2 as control input

Fig. 9. Residual power (difference between actual and target power at the grid), as well as energy deficit (energy from grid) and surplus (energy to
grid) that results from a finite response time.

which is the difference between the measured and target power produced at the “load” or strictly speaking at the grid.
If Presidual > 0, excess power is fed into the grid, whereas if Presidual < 0, power is drawn from the grid to make up the
deficit.

The results in Fig. 9 show that the effect of slow measurement and response time far outweighs the effects of
correlation. For the case of low correlation, the slower sensor (left panel of Fig. 9b) resulted in on average 446 Wh of
unwanted energy flows in either direction in the space of two hours, whereas the faster sensor (left panel of Fig. 9a)
only leads to an average of 55 Wh drawn from and fed into the grid in the same time interval. On the other hand, the
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highly correlated data (see the right panels of Fig. 9) shows on average 68 kWh (578 kWh) of unwanted energy flows
for sensor 1 (sensor 2), which means that the decorrelation effect decreases the residual energy by roughly 18% (23%)
for sensor 1 (sensor 2), respectively. Further studies will be performed with more input data, in order to verify this
effect, since the data shown here represent a period of large fluctuations.

4. Summary and Conclusions

The study of variations in PV power over short time scales provides useful information for the design of storage
systems with renewable energy, especially in cases where several PV arrays are installed close together (on the or-
der of tens of metres). In cases where a central storage unit is installed, knowledge of the decorrelation length of
characteristic cloud-induced fluctuations allows one to determine the appropriate battery response times. Correlations
between fluctuations at different time scales can lead to a reduction in the overall frequency of fluctuations, which in
turn reduces the requirements for mitigation. Battery systems designed to compensate variations in solar power (and
other renewable energy sources) need to be able to respond within a few seconds to fast changes in power. In the spe-
cific example shown here, the decorrelation effect was shown to improve the system’s overall energy efficiency over a
two hour period by roughly 20%, however, far more important to a system’s ability to provide renewable energy con-
sistently is the response time of the control loop. Reducing the sampling rate from 5 Hz to 1 Hz led to nearly a tenfold
increase in unwanted energy flows, which in the household context leads to a concomitant decrease in self-sufficiency
and self-consumption ratios.

Further studies with different load profiles and larger volumes of data will provide further insights into the prelimi-
nary results presented here. The correlation effects depend both on season and climate, so that one could try to develop
a model for different parts of the world (see also Ref. [9]). As emphasised before: the off-grid context provides the
more interesting test of such correlation effects, since here the voltage and power quality depends to a large extent on
the ability of the system to mitigate fluctuations. One would also expect such a mini-grid to contain closely spaced
PV arrays, so that the unique mixture of PV-battery installations at KIT provides a good benchmark for real world
scenarios.
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