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The stability of the electroweak potential is a very important constraint for models of new physics. At 
the moment, it is standard for Two-Higgs doublet models (THDM), singlet or triplet extensions of the 
standard model to perform these checks at tree-level. However, these models are often studied in the 
presence of very large couplings. Therefore, it can be expected that radiative corrections to the potential 
are important. We study these effects at the example of the THDM type-II and find that loop corrections 
can revive more than 50% of the phenomenological viable points which are ruled out by the tree-level 
vacuum stability checks. Similar effects are expected for other extension of the standard model.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The discovery of a scalar boson at the Large Hadron Collider 
with a mass of around 125 GeV was a milestone for particle 
physics [1,2]. This state has all expected properties of the long 
searched-for Higgs boson, and all particles predicted by the stan-
dard model of particle physics (SM) have finally been found. More-
over, the measured mass itself lies in a particular interesting range: 
combining this information with the one of the measured top mass 
mt , one finds that the scalar potential of the SM becomes unstable 
at very high energies [3]. This is not a fundamental problem for 
the SM. The lifetime of the vacuum we are living in exceeds the 
age of the universe by many orders of magnitude because of the 
large separation of the two minima.

As soon as extensions of the SM with more scalars are con-
sidered, new vacua much ‘closer’ to ours can appear. Thus, it is 
necessary to check which combinations of parameters in these 
models provide a stable or at least sufficiently long-lived potential 
with correct electroweak symmetry breaking (EWSB). In supersym-
metric models it was already realised in the 80s that dangerous 
charge and colour breaking minima can occur in specific directions 
of the scalar potential [4–14]. In the recent years, these constrains 
were proven to be even too weak. Other dangerous minima were 
discovered with numerical methods [15–25] and the impact of 
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loop and thermal corrections was analysed [15,16]. In contrast, 
the vacuum stability of non-supersymmetric models is still mainly 
checked at tree-level. For instance, the tree-level potential of two-
Higgs doublet models (THDM) has been studied intensively in liter-
ature [26–34], and very compact conditions for the stability of the 
electroweak (ew) potential were found. These results where also 
generalised to other non-supersymmetric model [35–38]. However, 
it is often not checked how robust these conditions are against ra-
diative corrections.

It is known from the minimal supersymmetric standard model 
(MSSM) that radiative corrections can have an impact on the vac-
uum stability, but often the conclusion ‘stable’ or ‘unstable’ doesn’t 
change once a suitable renormalisation scale is chosen [16]. The 
reason is that in the MSSM all couplings in the scalar potential are 
O (g2), i.e. moderately small. This must not be the case in THDMs: 
since often, masses and not couplings are chosen as input, in prin-
ciple, any size of couplings can appear. Usually, the tree-level per-
turbativity constraints [39,40] are applied which filter out points 
with very large couplings � 4π . Nevertheless, quartic couplings 
O (10) are not rare. Thus, large loop effects due to these huge cou-
plings aren’t surprising at all. As we will see, for a large fraction of 
points these corrections stabilise the potential. Only in a few cases 
they destabilise it. This is similar to what has been observed in a 
singlet extension and the inert THDM, see Refs. [41–43].

This letter is organised as follows: in sec. 2 the chosen con-
ventions for the THDM are summarised and the used methods to 
check vacuum stability at the tree- and loop-level are explained. In 
sec. 3 the numerical setup is presented and the overall impact of 
the loop corrections is discussed. We summarise in sec. 4.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. THDM and vacuum stability

The scalar potential of a CP conserving THDM with softly bro-
ken Z2 symmetry reads1

V Tree = λ1|H1|4 + λ2|H2|4 + λ3|H1|2|H2|2 + λ4|H†
2 H1|2

+ m2
1|H1|2 + m2

2|H2|2 +
(

m12 H†
1 H2 + 1

2
λ5(H†

2 H1)
2 + h.c.

)
(1)

After EWSB, the neutral components of the two Higgs states re-
ceive Vacuum expectation values (VEVs) as

Hi =
(

H+
i

1√
2
(φi + iσi + vi)

)
i = 1,2 (2)

with 
√

v2
1 + v2

2 = v � 246 GeV and tan β = v2
v1

. The mass spectrum 
consists of superposition of these gauge eigenstates, i.e. (φ1, φ2) →
(h, H), (σ1, σ2) → (G, A) and (H+

1 , H+
2 ) → (G+, H+). Here, G and 

G+ are the Goldstone modes of the Z and W boson. The mixing 
in these sectors is fixed by tan β , while in the CP-even sector a 
rotation angle α defines the transition from gauge to mass eigen-
states. In practical applications, one can trade the physical masses 
mh , mH , mA and mH+ as well as tanα for the quartic couplings. 
The necessary relations are

λ1 = 1 + t2
β

2(1 + t2
α)v2

(
m2

H + m12tβ + t2
α(m2

h + m12tβ)
)

(3)

λ2 = 1 + t2
β

2(1 + t2
α)t3

β v2

(
m12 + m12t2

α + tβ(m2
h + m2

Ht2
α)

)
(4)

λ3 = 1

(1 + t2
α)tβ v2

[
m2

htα + 2m2
H+(1 + t2

α)tβ

+ m2
htαt2

β − m2
Htα(1 + t2

β) + m12(1 + t2
α)(1 + t2

β)
]

(5)

λ4 = 1

tβ v2

(
−m12 + m2

Atβ − 2m2
H+tβ − m12t2

β

)
(6)

λ5 = 1

tβ v2

(
−m12 − m2

Atβ − m12t2
β

)
(7)

with tβ = tan β and tα = tanα. This has the advantage that phys-
ical observables instead of Lagrangian parameters can be chosen 
as input. However, one needs to be careful since a randomly cho-
sen set of masses could easily correspond to a problematic set 
of quartic couplings: for very large couplings perturbativity will 
be spoilt and also unitarity can be violated. Therefore, the first 
constraints which are usually applied are those for tree-level uni-
tarity which, roughly spoken, remove points where combinations 
of λ’s are larger than 8π . The next set of theoretical constraints 
are those for a stable vacuum. The tree-level conditions to prevent 
unbounded from below (UFB) directions in the potential are [50]

λ1 > 0, λ2 > 0, λ3 + 2
√

λ1λ2 > 0 (8)

λ3 + λ4 − |λ5| + 2
√

λ1λ2 > 0 (9)

while the condition to have no deeper vacua than the ew one 
is [51]

1 We are using in the following the conventions of the model as implemented 
in SARAH [44–49]. Moreover, we use the arrangement of the Yukawa couplings of 
type-II. Since the main effects come from the scalar sector itself, the results are 
expected hardly to change for other variants of THDMs.
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ig. 1. Toy example for the running of λ1 including only Yt = 1.1, g3 = 1.15 and 
ifferent values of λ3. The dashed lines show the running at one-loop and the full 

ines at two-loop. (For interpretation of the colours in this figure, the reader is re-
erred to the web version of this article.)

m12

(
m2

1 −
√

λ1

λ2
m2

2

)[
tβ −

(
λ1

λ2

)1/4
]

> 0 (10)

hese conditions involve the tree-level quartic couplings which 
re calculated from the chosen masses and angles. However, it is 
ell known from the SM that for large field extension the tree-

evel potential gets unreliable. In this case one should consider the 
enormalisation group equation (RGE) improved potential where 
he parameters are replaced by their running, i.e. scale dependent, 
alues. The running of the quartic coupling in the SM is dominated 
y the contributions from the top quark which let it run negative 
t very high scales. In the THDM, the one-loop β-functions for λ1

nd λ2 are given by

(1)
λ1

= 24λ2
1 + 2λ3(λ3 + λ4) + λ2

4 + λ2
5 + . . . (11)

(1)
λ2

= 24λ2
2 + 2λ3(λ3 + λ4) + λ2

4 + λ2
5

+ 12λ2Y 2
t − 6Y 4

t + . . . (12)

here the dots indicate subdominant contributions involving g1, 
2. Thus, for large λ3,4,5 the slope of the running will change, i.e. 
1,2 increase with the energy scale. To exemplify this, we show in 
ig. 1 the scale dependence of λ1 in a toy example involving only 
1, λ3, Yt and g3. When starting with λ1 = −1, the coupling be-
omes already positive below 1 TeV for λ3 > 6. This points towards 
 stabilisation of the potential at not too high energies. Since the 
cale at which λ1 changes its sign is not far from the ew scale, 
n one-loop fixed order calculation can be expected to catch the 
ominant effects. Therefore, we will consider in the following also 
he one-loop effective potential

(1)
E P = V Tree + V (1)

CT + V (1)
CW (13)

ere, V (1)
CT is the counter-term (CT) potential which is discussed 

elow. The Coleman–Weinberg potential V (1)
CW is given by [52]

(1)
CW = 1

16π2

all fields∑
i

ri si Cim
4
i

(
log

m2
i

Q 2
− ci

)
(14)

ith ri = 1 for real bosons, otherwise 2; Ci = 3 for quark, other-
ise 1; {si, ci} = {− 1

2 , 32 } for fermions, { 1
4 , 32 } for scalars and { 3

4 , 56 }
or vector bosons.

The CT potential is calculated from V Tree with all parameters 
replaced by x + δx. δx are the CTs which are usually chosen to 
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Fig. 2. The scalar potential for v1 = 0 for two points which are unbounded from be-
low at tree-level. We compare here the tree-level potential (dashed red) with the 
RGE improved potential using two-loop running (green dot-dashed) and the one-
loop effective potential (full black). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.)

cancel all loop corrections to the masses and angles, i.e. the input 
values are the on-shell ones. One can derive a suitable set of CTs 
from the renormalisation conditions

T C T
i + ti ≡ 0 (15)

M2,CT
i j + δi j

ti

vi
− 	i j ≡ 0 (16)

Here, T C T
i and M2,CT are the first and second derivative of the CT 

potential, and ti and 	 are the loop corrections to the one- and 
two-point functions. The crucial point is that the derived CTs de-
pend on the ew VEVs, i.e. they give a cancellation between V CT
and V CW only at the ew minimum, but not at other positions of 
the potential.

Having all the machinery at hand, we can compare now the re-
sults for the tree-level, RGE improved2 and the one-loop effective 
potential. This is done in Fig. 2 for two points which suffer from 
UFB directions at tree-level in the direction v1 = 0, v2 → ∞. We 
see that the loop corrections have as expected a clear impact on 
the shape of the potential. In the first example, the value of λ2
is −1 and the other quartic couplings are not large enough to sta-
bilise the potential in the direction of v2. In contrast, in the second 
example with λ2 = −0.2 the UFB direction disappears at the loop-
level and the point becomes absolutely stable. Of course, also the 

2 We use the full two-loop RGEs as calculated with SARAH based on the generic 
results of Refs. [53–55].
Fig. 3. The scalar potential at tree- (top) and one-loop (bottom) for the parameter 
point λ1 = 2.4, λ2 = 0.03, λ3 = 9.8, λ4 = −4.1, λ5 = 0.7, m12 = −0.81 TeV2. Shown 
is 
V = [V (v1, v2) − V (vew

1 , vew
2 )] × 10−8 in units of GeV4 with the correct ew 

VEVs vew
1 = 160.1 GeV, vew

2 = 184.3 GeV.

situation is possible that the UFB direction disappears at the loop 
level, but new minima appear which are deeper than the ew one.

Similarly, we find that the tree-level check for deeper minima 
than the ew one, eq. (10), can lead to a wrong conclusion about 
the stability of a point. We show at one example in Fig. 3 how sig-
nificantly the shape of the scalar potential can change when going 
to the loop level. We see that the two global minima, which are 
at tree-level 25% deeper than the ew one, have completely disap-
peared at the one-loop level. Similarly, one can find also the oppo-
site: points which look stable at the tree-level become metastable 
at the loop-level. It is now interesting to see how big the fraction 
of points is where the conclusion about the stability changes at the 
loop-level.

3. Results

As we have seen, loop corrections can be very important to 
judge the stability of the THDM. Therefore, we are going to check 
now how often this can happen in a common parameter scan. 
For that purpose, we use Vevacious [56] to test the stability 
of the one-loop effective potential. We have generated the neces-
sary model files with SARAH.3 We also used SARAH to generate a
SPheno module [57,58] for the THDM which use the masses and 

3 We were using two model files. One with the possibility of additional charge 
and CP breaking VEVs, but found no difference compared to the results with only 
v1, v2.
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Table 1
Summary of our parameter set. r is the misidentification rate 
when using tree-level constraints. ‘Unstable’ at loop level includes 
UFB and metastability, i.e. ‘stable’ means absolutely stable.

Tree Loop r

Stable Unstable

UFB 15,975 9,157 6,818 57.3%
Meta 51 48 3 94.1 %
Stable 6,369 6,116 253 4.0 %

tanα as input. SPheno automatically translate this input into the 
tree-level couplings. In addition, we have modified the code to cal-
culate also the CTs for the λ’s which are necessary to keep the loop 
masses to their tree-level values. This information is then passed 
to Vevacious to check the vacuum stability of the one-loop ef-
fective potential. As data sample we have generated 400,000 points 
using the following parameter ranges4:

200 GeV < mH ,mA < 1000 GeV

500 GeV < mH+ < 1000 GeV

−106 GeV2 < m12 < 0

−1 < tanα < 0, 1 < tanβ < 1.5

Afterwards, points are discarded which violate the tree-level uni-
tarity limits or which fail the HiggsBounds checks [59,60]. The 
remaining 22,395 points can be categorised as shown in Table 1.
Thus, more than half of the points which are ruled out by the tree-
level UFB checks are valid at the loop-level. In general, there is a 
correlation between the size of the quartic couplings and the mass 
splitting between mH , mA and mH+ . Consequently, we find also 
a correlation between the maximal splitting between the heavy 
Higgs state and the size of λ1,2 which can be stabilised via loop 
corrections.5 This is shown in Fig. 4 where the misidentification 
rate r is given as function of min(λ1, λ2) and the maximal mass 
difference. r gives for the UFB and metastability check the ratio 
of points for which the result ‘unstable’ changes to ‘stable’ at the 
loop-level, while for stable tree-level points it is vice versa. For 
small (> −0.2) negative values of λ1,2, we find r ≈ 1 for the en-
tire range of mass differences. Only for a small island with very 
large mass differences points stay unstable at the loop-level. These 
points have in common that λ3 is O (4π), i.e. the loop corrections 
might not be under control any more. If we would have applied 
a stronger cut on |λi | as it might be necessary to really keep per-
turbativity under control [61], e.g. |λi | < 2π , this island wouldn’t 
appear and r = 1 would hold up to min(λ1, λ2) � −0.15. To test 
the usefulness of the check for metastability, the sample of points 
is significantly lower than for UFB, i.e. there is a non-negligible un-
certainty in the misidentification rate. Nevertheless, the obtained 
results suggest that in most cases it rules out points which are 
viable. On the other side, the fraction of points which is stable 
at tree-level but becomes unstable at loop-level is quite low. We 
show the distribution of points without UFB directions in Fig. 5. 
One can see that only for small |m12| and large mass differences 

4 We use small values of tanβ to improve the efficiency of the random scan. For 
larger values, it is more likely the quartic couplings violate the tree-level unitarity 
limits unless fine-tuned cancellations between different mass terms are present, see 
eqs. (3)–(7). The overall results are not affected by this choice.

5 This implies, of course, that the rate of misidentified points depends on the 
chosen parameter ranges and gets enhanced by the different lower limit of mH+
compared to mH , mA . Nevertheless, we think that the results are representative, 
because in literature often even bigger differences between the charged and heavy 
neutral masses are considered.
Fig. 4. The misidentification rate r as function of the maximal mass splitting of the 
heavy Higgs states and the size of λ1,2.

Fig. 5. Distribution of points without UFB: they gray points (blue squares) are stable 
(unstable) at tree- and loop-level. The red triangles are stable at tree- but unstable 
at loop-level, while green points are unstable at tree- and stable at loop-level. (For 
interpretation of the references to colour in this figure legend, the reader is referred 
to the web version of this article.)

between the heavy Higgs states, a point stable at tree-level can 
become unstable at loop-level.

Up to now, we have only studied the overall stability of the po-
tential. However, even a meta-stable vacuum is viable as long as 
the life-time exceeds the age of the universe. We have checked the 
points with deeper minima using the code CosmoTransition
[62] and found that the majority of points has a comparable short 
life-time. Only in about 5% of the cases, the tunnelling rate is suf-
ficiently small to consider these points long-lived at zero tempera-
ture. If thermal corrections are included, the fraction of long-lived 
points shrinks to 1%.

4. Conclusion

We have studied in this letter the effects of radiative correc-
tions to the vacuum stability conditions in THDMs. In these models 
large quartic couplings appear if large mass differences between 
the heavy Higgs states are considered. These large couplings cause 
important loop correction to the scalar potential. As consequence, 
we found that a large fraction of points which is ruled out by tree-
level conditions are revived at the loop level. This happened in 
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more than 50% of the cases for points failing the standard UFB 
checks, and even in more than 90% of the cases for the tree-level 
metastability check. Because of the importance of the UFB checks, 
more than 40% of all phenomenological viable points are misiden-
tified at tree-level. If no checks for vacuum stability would have 
been applied at all, the fraction of wrong points would be only 
∼ 30% for the considered dataset. Because of these large misiden-
tification rates, it seems necessary to push the standards of these 
theoretical constraints beyond the tree-level. It is also very likely 
that similar results would be found for other non-supersymmetric 
models if quartic couplings � 1 are used.
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