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Abstract The identification of prototypical patterns is one of the major goals in
the classification of microarray data. Prototype-based classifiers are of special
interest in this context, since they allow a direct biological interpretation. In
this work we present prototype-based classifiers that rely on ordinal-scaled data.
Advantage of these ordinal-scaled signatures is their invariance to a wide range
of data transformations. Standard prototype-based classifiers can be modified
to this type of data by utilizing rank-distances and rank-aggregation procedures.
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In this study, we compare the proposed methods with standard classifiers. They
are examined in experiments with and without feature selection on a panel of
publicly available microarray datasets. We show that the proposed techniques
result in the construction of different signatures that improve classification
performance.

1 Introduction

In life sciences, microarrays allow researchers to investigate processes in cells
and tissues, e.g. with the goal of identifying prognostic markers or potential
targets for therapies. Microarrays can measure gene expression levels for thou-
sands of probes simultaneously by quantifying light intensities. Many steps
between preparation of organic samples to postprocessing are influenced by
different sources of noise so that the final data used for the classification may
be distorted. One of the robust transformations that can help here, is the sample-
wise transformation to an ordinal scale.
Figure 1 illustrates this transformation as well as the resulting class prototypes.
In some cases, small effect differences can result in a wider separation per fea-
ture. Such feature-wise separation further can accumulate across features which
in turn could produce ordinal-scaled prototypes profiles that are better suited
to distinguish the individual classes. Furthermore, it is known that classifiers
based on these rankings are invariant against feature-wise strictly monotone
data transformations (Lausser et al, 2016).

Many microarray datasets describe the gene expression of single samples
that are taken from a biological phenotype. The identification of a common
characteristic of a phenotype can provide researchers with new insights (Little
et al, 2009; Biehl, 2014). Hence, we focus on the prototype-based classifiers
that essentially solve the tasks of computing the common characteristic for each
class (Lausser et al, 2014). Furthermore, feature selection methods are applied
in order to identify those features (genes) that contribute most to the accuracy
of the classification in a robust way (Lausser et al, 2013; Schirra et al, 2016).
When developing prototype-based classifiers on ordinal-scaled data or rankings
we can apply additional distance metrics and methods to combine given input
rankings, namely rank aggregation. An overview on rank aggregation methods
can be found in Schalekamp and Zuylen (2009) and Dwork et al (2001) and a
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Fig. 1 Illustration of the difference between data types and computed prototypes. The y-axis in both
plots denotes features in the data. In the left plot, the x-axis shows ratio scaled values of the features.
In the right plot, the x-axis shows ordinal scaled values, i.e. the sample-wise rank transformation. A
sample profile is indicated by a thin colored line. A prototype profile is shown as a thick line. For
real-valued samples, the class’ prototype corresponds to a centroid. For rank transformed samples, the
class’ prototype is computed using Borda rank aggregation. The color of lines and points indicates
the class of samples or class of a prototype, respectively.

comparison of the methods for identifying signatures, i.e. sets of genes, can be
found in Burkovski et al (2014); Kraus et al (2015).

In the following we will present the formal framework for the prototype-
based classifiers, introduce the distance metrics, feature selection methods, and
aggregation methods, describe our experimental setting, report the results, and
finally discuss the performance of the rank-based classification methods.
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2 Methods

Microarrays are often used for analysing gene expression in tissues or other
biological samples. These arrays measure the expression of thousands of
genes simultaneously. Together with a limited number of samples this re-
sults usually in data sets of a very high dimensionality and low cardinality.
A sample, i.e. data point, is represented by a high-dimensional real valued
vector x = (x(1), . . . ,x(n))T ∈X ⊆ Rn. In a classification setting, each sam-
ple has a biological phenotype, e.g. cancerous vs. normal tissue – a label
y ∈ Y = {−1,1} from a set of labels. A dataset is described by a set of
i = 1 . . .k samples S = {(xi,yi)} with their respective label. In order to sim-
plify formal notation, samples can be divided into their respective class sets
T ψ = {(x,y) ∈ S |ψ = y}. The goal of the classifier, a mapping function
c : X −→ Y , is to predict labels of profiles x ∈ V ⊆ Rn. Each classifier c is
adapted beforehand to the data from the available training set S ⊃T .

In this article we use the empirical error rate in order to compare the per-
formance of the real- and ranked-based classifiers based on a test data set
V = S \T :

Remp(c,V ) =
1
|V | ∑

(x,y)∈V
I(c(x) 6= y). (1)

Here, we analyze the performance of original classifiers and their rank-based
counterparts based on rank-transformed profiles. The rank transformation con-
verts the profile’s domain X ⊆Rn into a permutation of the set {1, . . . ,n}n and
is derived by using the rank(x) := (rkx(x(1)), . . . ,rkx(x(n)))T function where
rkx is a feature-wise transformation of the values with regard to the vector x:

rkx(x(k)) =
∣∣∣{x( j)|x( j) > x(k), j = 1 . . .n,x = (x(1), . . . ,x(n))}

∣∣∣+1. (2)

We use π j for the rank-transformed sample j as π j = rank(x j). The rank-value
of a feature i of a sample x(i)j is denoted by π

(i)
j . For rank-based classification,

the rank transformation is applied to both training samples T and test samples
V :

Trk =
{(

rank(x),y
)
|(x,y) ∈T

}
and Vrk =

{(
rank(x),y

)
|(x,y) ∈ V

}
.

Rank transformations allow to use other distances than the conventional that
may be more suited for comparison of rankings as well as new methods for
determining the centroids in prototype-based classifiers by utilizing rank aggre-
gation methods.
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2.1 Prototype-based classifiers

The basic idea of prototype-based classifiers is to find reference points PT =

{(xi,yi)}|PT |
i=1 , derived from the training sample set T , that represent a class.

The principle of the prototype-based classifier is to compute the pairwise dis-
tances between the reference points, or prototypes, and the new unclassified
sample v ∈ V

DPT
v =

{
d(v,x) |(x,y) ∈PT

}
(3)

with d(·, ·) being the Euclidean distance in case of the original, real value-based
classifiers, or distances listed in Table 2 for rank-based classifiers. The decision
for the label y∈Y of the sample v is based on the neighbourhood NNk(v,PT )
limited to k closest prototypes

NNk(v,PT ) =
{
(x,y) ∈PT |

∣∣∣{di ∈ DPT
v | dr ∈ DPT

v : di > dr

}∣∣∣< k
}
.

(4)
and typically the majority-vote is utilized for the label decision

c(v,PT ,k,d(·, ·)) = argmax
y∈Y

∣∣{(x,y) ∈ NNk(v,PT )}
∣∣. (5)

The list of the analyzed prototype-based classifiers can be found in Table 1.

Table 1 The table lists the prototype-based classifiers that are analyzed in our experiments.

classifier prototype set PT k-neighborhood
k-Nearest Neighbor (k-NN)
(Fix and Hodges, 1951) PT = T k = 1,3,5,7

Nearest Prototype Classifier (NPC)
PT = {pψ}ψ∈Y
pψ = argmin

(x∗,y∗)∈T ψ

∑(x,y)∈T ψ d(x,x∗) k = 1

Representative Prototype Sets (RPS)
(Lausser et al, 2012) PT = argmin

P∗={(x,ψ)}ψ∈Y
P∗⊂T

Remp(cP∗ ,T ) k = 1

Nearest Centroid Classifier (NCC)
PT = {pψ}ψ∈Y
pψ = 1

|T ψ | ∑(x,y)∈T ψ x k = 1

The rank-based counterpart to the real value-based classifiers is based on the
ranked training set Trk. With respect to the classifiers k-NN, RPS, and NPC only
the distance computation changes. In both, training phase and prediction phase,
any distance d(·, ·) can be utilized in order to determine the prototypes or to
predict the label of the new sample, respectively Sect. 2.2. The rank aggregation
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methods, introduced in Sect. 2.3, play a major role in the NCC. Here, instead
of computing mean vectors, rank aggregation methods are used in order to
compute a rank-based centroid – the consensus ranking. Hence the computation
of the prototypes for NCC-ranked (NCCra) becomes:

P rk
T =

⋃
ψ∈Y

Pψ

T with Pψ

T =
{
aggr(T ψ

rk )
}
. (6)

2.2 Distance functions

The prototype-based classifiers we consider here use distances between profiles
in order to measure “closeness” to a prototype. Many distance metrics were
developed for real valued vectors - but only some were analyzed in the context
of rank-based data and classification. Cha (2007) suggests different families of
distance functions, namely Minkowski, L1, Intersection, and Fidelity, of which
we chose two from each family (see Table 2). These distances can be applied
to rankings by replacing xi by their ranked counterpart rank(xi). It is worth
noting, that values of rankings are always positive and thus Fidelity family
distances become applicable.

Table 2 Distance functions for computing the distance between a sample and a prototype.

Minkowski family L1 family
Euclidean distance:

deuc(xi,x j) =

√
∑
m
(x(m)

i − x(m)
j )2

Bray-Curtis distance:

dbra(xi,x j) =
∑
m
|x(m)

i −x(m)
j |

∑
m

x(m)
i +x(m)

j

Manhattan distance:
dman(xi,x j) = ∑

m
|x(m)

i − x(m)
j |

Soergel distance:

dsoe(xi,x j) =
∑
m
|x(m)

i −x(m)
j |

∑
m

max(x(m)
i ,x(m)

j )

Intersection family Fidelity family
Motyka distance:

dmot(xi,x j) = 1−
∑
m

min(x(m)
i ,x(m)

j )

∑
m

x(m)
i +x(m)

j

Hellinger distance:

dhel(xi,x j) =

√
∑
m
(

√
x(m)

i −
√

x(m)
j )2

Ruzicka distance:

druz(xi,x j) = 1−
∑
m

min(x(m)
i ,x(m)

j )

∑
m

max(x(m)
i ,x(m)

j )

Chord distance:

dcho(xi,x j) =

√√√√√∑
m

 x(m)
i√

∑l

(
x(l)i

)2
−

x(m)
j√

∑l

(
x(l)j

)2

2
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Table 3 Panel A lists the rank aggregation methods that are analyzed in our experiments. Panel B lists the feature selection algorithms used for our
experiments. We utilize following additional notation X

(i)
T = {x(i) |(x,y) ∈T } and YT = {y |(x,y) ∈T } in this context.

A Rank aggregation method consensus ranking score

Borda σσσborda = rank(sborda) s(i)borda =
(

1
|Π | ∑

πππ∈Π

πππ(i)
)

Copeland σσσcope = rank(−scope) s(i)cope =

(
∑
j 6=i

(
I(vi, j > li, j)+ 1

2 I(vi, j = li, j)
))

with vi, j = ∑
πππ∈Π

I(π(i) > π( j)) and li, j = ∑
πππ∈Π

I(π(i) < π( j))

Robust Rank Aggregation σσσrra = rank(srra) s(i)rra =

(
min

j∈1...|Π |

(
|Π |
∑

γ= j

(|Π |
γ

)(
π̂
(i)
( j)

)γ (
1− π̂

(i)
( j)

)|Π |−γ

))
with π̂ππ = πππ/n and resorted ∀ j : π̂

(i)
( j) ≤ π̂

(i)
( j+1)

Spearman’s footrule
optimal Rank Aggregation

σσσspear = argmin
σσσ

n
∑

i=1
∑

πππ∈Π

|π(i)−σ (i)| -

Weighted Borda σσσborda-w = rank(sborda-w) s(i)borda-w =
1
|Π |

|Π |
∑

l=1
wl ·π

(i)
l

B Feature selection algorithm score

Pearson correlation (COR) score(T ,i)
COR =

∣∣∣∣∣∣∣
∑

(x,y)∈T
(x(i)−mn(X (i)

T ))(y−mn(YT ))√
m
∑

j=1

(
x(i)j −mn(X (i)

T )
)2
·

m
∑

j=1
(y j−mn(YT ))

2

∣∣∣∣∣∣∣
Threshold number of misclassification (TNoM)
(Ben-Dor et al, 2000)

score(T ,i)
TNoM = max

d∈{−1,+1}
t∈R

∑
(x,y)∈T

I
(

y = sign
(

d ·
(

x(i)− t
)))

Signal-to-noise ratio (SNR)
(Yeang et al, 2001; Cuperlovic-Culf et al, 2005)

score(T ,i)
SNR =

∣∣∣∣∣mn
(
X

(i)
T −1

)
−mn

(
X

(i)
T +1

)
sd
(
X

(i)
T −1

)
+sd

(
X

(i)
T +1

)
∣∣∣∣∣
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2.3 Rank Aggregation Methods

The goal of rank aggregation methods is the computation of a consensus ranking
σσσ ∈ {1, . . . ,n}n which has least disagreements with input rankings. In our case,
the input rankings correspond to the ranked profiles Π = {rank(x)|(x,y) ∈Trk}
from the training set Trk. The disagreements are usually computed by the
Kendall-τ correlation coefficient between σσσ and the rankings in Trk (Kendall,
1938). However, finding an optimal σσσ using Kendall-τ is an NP-hard problem
(Dwork et al, 2001) and thus many rank aggregation methods use heuristics in
order to find a close to optimal consensus ranking. Here we consider a represen-
tative set of rank aggregation methods that utilize different heuristic approaches.
These methods have in common that they compute a score for a each feature and
the resulting consensus ranking is retrieved by ranking the score. To simplify
the notation we denote the aggregation function as aggr : Π 7→ {1, . . . ,n}n that
computes the consensus ranking σσσ given some input rankings from Π = Trk.
An overview of the utilized rank aggregation methods can be found in panel A
of Table 3 on the aforementioned page 7.

2.4 Feature selection

Gene expression data contains a large amount of measurements, i.e. genes or
features, that often do not result in an improved classification error. One can
reduce the high dimensionality by selecting a small subset of features that
may be considered informative for the chosen classifier. Feature selection is
a function that maps a training set T to a new training set T ′ with reduced
dimensionality,

f : T → i ∈I = {i ∈ Nn̂≤n|ik < ik−1,1≤ ik ≤ n}.
s : (I ,T )→T ′ (7)

Sample vector x will then be mapped to a lower-dimensional representation
x(i) = (x(i1), . . . ,x(in̂))T by using the derived index vector i = (i1, . . . , in̂)T .

Feature selection methods can be categorized by the type of knowledge they
utilize to select features. Purely data-driven algorithms only consider the know-
ledge derived from the data itself, i.e. the measurements and the associated class
labels. Model-based methods, like wrapper and embedded methods (Kohavi
and John, 1997; Ben-Dor et al, 2000), utilize the feedback from a classification
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algorithm to assess the predictive utility of the features. In our experiments
we apply purely data-driven methods. The different methods assign scores to
each feature based on the correlation between the feature vector and the class
labels (COR), the threshold number of misclassification (TNoM), or the signal-
to-noise ratio (SNR) to assess their importance (Panel B of Table 3). The best
features (highest score) are then selected based on the ranking of these scores.

3 Experimental Setup

Our goal is to test whether or not rank-based classifiers are able to outperform
the real value-based classifiers on the microarray datasets. An overview of the
datasets used to compare the performance is shown in Table 4.

To evaluate the performance we compute the empirical error rate Remp in
a cross-validation (Pierre A. Devijver, 1982) setting. We compare the rank-
based and real value-based variants of four prototype-based classifiers k-NN,
RPS, NPC, and NCC. For each classifier we use three different feature-selection
methods listed in the previous section and for each method five different number
of selected features (5, 50, 100, 250, 500). These threshold limits, in the context
of microarray data, represent a number of biomarkers used to distinguish a
class. If one wants to determine a set of highly informative biomarkers, a low
number of features is preferable. On the other hand, a couple of hundreds of
patterns are usually already enough to obtain accurate classification results
due to Covers’ theorem (Cover, 1965) and as shown in simulation studies
(Schirra et al, 2016). After feature selection all ranks are re-ranked. For real
value-based classifiers we use deuc as a distance metric and for rank-based
classifiers we utilize all distance metrics listed in Table 2. Rank-based classifiers
allow the use of a different distance metric for training and prediction, thereby
increasing the number of parameters. The NCC includes the parameter for the
rank aggregation method and we included all five presented rank aggregation
methods.

Here, we compute the error in a 10×10 cross-validation setting. In order to
report on sampling independent error identical training and test set splits are
used for all classifiers. Since we focus on the comparison of the rank-based (rk)
and real value-based (re) classifiers, we additionally report the error difference
between specific classifiers

Ediff = ERRre
10×10−ERRrk

10×10 (8)
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which we are using in our graphics. In case the real value-based classifier
outperforms the rank-based one the difference Ediff will be positive. All cross-
validation experiments are simulated with TunePareto (Müssel et al, 2012).

Table 4 The table lists the datasets and their description that we use in order to compare real value
and rank-based classifiers.

Id Citation GEO id Class Features Samples Class -1 Class 1

d1 Armstrong et al (2002) - Leukemia 12559 72 24 48

d2 Dyrskjøt et al (2003) - Bladder cancer 7071 40 20 20

d3 Kuner et al (2009) GSE10245 Lung cancer 54613 58 40 18

d4 Badea et al (2008) GSE15471 Pancreatic cancer 54613 78 39 39

d5 Sun and Goodison (2009) GSE25136 Prostate cancer 22215 79 40 39

d6 Alter et al (2011) GSE25507 Autism 54613 146 64 82

d7 Lu et al (2014) GSE53890 Brain cells 54613 41 20 21

4 Results

The empirical error rates Remp of the original classifiers on the real-value
datasets are reported in Tables 5–7. Figure 2 shows the direct comparison of the
real value-based and rank-based classifiers with respect to a feature selection
method. For each pair of classifiers the rectangle summarizes the performance
based on the sign of Ediff, i.e. compares the minimal error over all correspond-
ing parameters for each classifier and feature selection method. Clearly, almost
all real value-based classifiers outperform the rank-based classifiers when the
number of selected features in the feature selection step is very low (5 selected
features). However, with an increasing number of selected features, there are
more and more cases where rank-based classifiers become better with regard
to the empirical error rate. The tile plot in Fig. 2 reveals further specific infor-
mation about the applicability of the rank-based classifiers.

Results for k-NN classifiers: The classification error for the d1 dataset is
generally very low, i.e. is close to zero (see also Table 5), and therefore any
performance gain using rank-based classifiers is hardly achievable with regard
to the k-NN classifier. However, rank-based k-NN classifier is able to slightly
outperform the real value-based NCC, NPC, and RPS classifiers on d1. Ad-
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ditionally, the rank-based k-NN classifier outperforms any real value-based
prototype classifier on the d5 and d2 dataset with 250 features - even inde-
pendent of the choice of the feature selection method. It has, however, lower
performance when tested on the d4 dataset when compared to the real value-
based classifiers. However, in many cases the performance of the rank-based
k-NN classifier is better than any of the real value-based NCC, NPC, and RPS
classifiers.

Results for RPS classifiers: The rank-based RPS classifier, with any of the
applied feature selection methods, outperforms any other real value-based clas-
sifier when only 100 features are selected on the d2 and d3 datasets. However,
in many cases the real value-based k-NN classifier still has a better performance.
Yet, the rank-based RPS can outperform real value-based NCC, NPC, and RPS
classifiers in many cases.

Results for NPC classifiers: In rare cases, such as for dataset d7 and 250
features selected by the TNoM method and for dataset d5 and 250 features
selected by the SNR method, the rank-based NCP classifier returns better results
than any of the real value-based classifiers. But in the majority of simulations,
either another rank-based or real value-based classifiers have relatively better
performance.
Results for NCC classifiers: Similar to the other classifiers, the rank-based
NCC classifier, has too cases where it outperforms any other real value-based
classifier, like for d4 and d7 with 100 selected features. Furthermore, it has in
many cases better performance than its real value-based counterpart.

Classification of datasets: Simulation results show that rank-based classifi-
cation in many cases outperforms the real value-based classification methods
on the d5 dataset. In contrast, in the majority of cases real value-based classi-
fiers have better performance on the d3 and d4 datasets, but parameter settings
exist for which a rank-based classifier can get an edge over the real value-based
variants.

Parameter space: Figure 3 shows the performance of the rank-based NCC
classifier with regard to the parameters chosen in the simulation. We chose to
show the NCC parameters (Figures. for the other methods can be found in the
supplement) since it includes the choice of the aggregation method and the
distance metric that reveals many influences to classification performance. In
the figure we show the classification performance for 500 features.

The distance metric dhel has the lowest classification error when combined
with the Borda-based aggregation methods on the dataset d4. Even when com-
bined with Copeland or Spearman rank aggregation, the usage of the dhel metric
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is preferred over the other options. In contrast, the dbra,dman,dmot ,druz, and dsoe

distance metrics in combination with the Spearman aggregation method have
the lowest classification error on the d5 dataset. Similarly, the choice of one
of these distance metrics has a positive influence on the classification error de-
spite the choice of the aggregation method. Lastly, deuc and dcho have the best
performance in the d6 dataset when combined with the Copeland or Spearman
aggregation method. Notably, both deuc and dcho seem to be unsuitable when
used in combination with the Robust Rank Aggregation method.

Table 5 Error rates for the k-NN classifier on real valued datasets. The parameter combination of k
and feature selection method that results in the best error rate for individual feature number threshold
per dataset is shown in parenthesis.

k-NN Feature number threshold
Dataset 5 50 100 250 500

d1
0.015

(cor,k=1,3,5)
0.000

(tnom,k=1,3,5,7)
0.001

(snr/tnom,k=1)
0.001

(snr/tnom,k=1)
0.001

(cor/snr/tnom,k=1)

d2
0.078

(cor/snr,k=3)
0.055

(snr,k=1,3)
0.052

(snr,k=3)
0.06

(snr/tnom,k=1,3)
0.058

(snr,k=3)

d3
0.067

(tnom,k=5)
0.064

(tnom,k=1)
0.06

(tnom,k=1) 0.047 (cor,k=1) 0.045 (snr,k=1)

d4
0.091

(snr,k=3)
0.091

(cor/tnom,k=5,7)
0.091

(cor/snr/tnom,k=7)
0.09

(cor/snr/tnom,k=7 )
0.09

(cor/tnom,k=7)

d5
0.284

(snr,k=5)
0.305

(cor,k=5)
0.295

(cor,k=3)
0.316

(cor,k=5)
0.333

(snr,k=7)

d6
0.401

(tnom,k=7)
0.323

(cor,k=7)
0.294

(snr,k=3)
0.321

(cor,k=3)
0.326

(snr,k=5)

d7
0.102

(cor,k=7)
0.107

(tnom,k=3)
0.117

(cor,k=3)
0.122

(tnom,k=3)
0.154

(cor/snr/tnom,k=1,3)

5 Discussion and Conclusion

Simulation results suggest that rank-based classification methods are able to
outperform real value-based classification methods. The difference may be
very small and is not always significant. It is, however, surprising that for most
parameter combinations rank-based classification methods have a comparable
performance in our experimental setting. In this setting we focus on microar-
ray datasets – data that represents measurements of the gene expression level
via light intensity ratios. Such data-in every phase from processing biological
samples to its final numerical form is influenced by noise.
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Fig. 2 Summary of the simulation results regarding the sign of Ediff. Each row shows the summary
for a single dataset and each column shows the results for the selected number of features. Each tile
in the plot represents the difference of the best error between the real valued (y-axis) and rank-based
(x-axis) classification method combined with a specific feature selection method over all remaining
parameter combinations. A positive difference (orange/black) means that the method on the x-axis
has lower empirical error than the method on the y-axis. A negative difference (green/white) means
that the method on the y-axis has lower empirical error than the method on the x-axis.
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Fig. 3 Empirical error for the rank-based NCC classifier. Each row shows the summary for a single
dataset (500 features selected). The error is shown on the y-axis and is scaled to its range. The NCC
uses three parameters, namely the aggregation method (x-axis), the distance metric used to measure
the distance between the consensus ranking (centroid) and the sample ranking (ordered violin plots),
and a feature selection method (points in the violin plot on which the width of the violin plot is drawn).

In this regard, rank-transformation of the data values is a robust way to preserve
the order of the values and the limit the effect size when analyzing it.

The performance of the real value and ranked-based classification methods
depends on the dataset and the chosen parameters. Therefore no clear “winner”
method can be named. However, the rank transformation of the data allows the
application of additional distance metrics, such as rank aggregation methods
for centroid calculation of the NCC classifier. Again, there is up to now no way
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Table 6 Error rates for the NCC classifier on real valued datasets. The feature selection method that
results in the best error rate for individual feature number threshold per dataset is shown in parenthesis.

NCC Feature number threshold
Dataset 5 50 100 250 500

d1
0.021
(cor)

0.004
(tnom)

0.011
(snr)

0.012
(tnom)

0.012
(tnom)

d2
0.085
(cor)

0.082
(snr)

0.1
(cor/snr/tnom)

0.1
(cor/snr/tnom)

0.1
(cor/snr/tnom)

d3
0.069
(snr)

0.069
(tnom)

0.069
(cor/tnom)

0.069
(tnom)

0.069
(tnom)

d4
0.09
(snr)

0.077
(snr)

0.077
(snr)

0.083
(snr)

0.074
(cor/snr)

d5
0.291
(snr)

0.356
(snr)

0.362
(cor)

0.353
(tnom)

0.346
(tnom)

d6
0.408
(tnom)

0.342
(cor)

0.375
(snr)

0.402
(snr)

0.407
(snr)

d7
0.105

(cor/snr)
0.1

(tnom)
0.122
(tnom)

0.122
(tnom)

0.127
(tnom)

Table 7 Error rates for the NPC and RPS classifier on real valued datasets. The feature selection
method that results in the best error rate for individual feature number threshold per dataset is shown
in parenthesis.

NPC Feature number threshold
Dataset 5 50 100 250 500

d1
0.031
(cor)

0.006
(tnom)

0.011
(tnom)

0.014
(tnom)

0.031
(tnom)

d2
0.088
(cor)

0.095
(cor)

0.1
(cor/snr)

0.125
(cor)

0.148
(cor)

d3
0.067
(snr)

0.066
(tnom)

0.069
(tnom)

0.069
(tnom)

0.078
(tnom)

d4
0.094
(cor)

0.086
(snr)

0.087
(cor)

0.088
(cor/snr)

0.088
(cor)

d5
0.304
(snr)

0.371
(tnom)

0.357
(tnom)

0.357
(tnom)

0.343
(snr)

d6
0.393
(tnom)

0.369
(snr)

0.375
(tnom)

0.404
(cor)

0.41
(snr)

d7
0.093

(cor/snr)
0.115
(tnom)

0.137
(tnom)

0.141
(tnom)

0.149
(tnom)

RPS Feature number threshold
5 50 100 250 500

0.024
(cor)

0.015
(cor/tnom)

0.015
(snr/tnom)

0.014
(tnom)

0.014
(tnom)

0.095
(snr)

0.08
(cor)

0.09
(snr)

0.1
(cor)

0.128
(cor)

0.071
(tnom)

0.067
(tnom)

0.064
(tnom)

0.057
(tnom)

0.062
(cor)

0.103
(cor)

0.103
(cor)

0.106
(tnom)

0.095
(snr)

0.095
(snr)

0.332
(snr)

0.353
(cor)

0.323
(snr)

0.352
(snr)

0.339
(tnom)

0.402
(cor)

0.316
(snr)

0.308
(snr)

0.347
(snr)

0.373
(snr)

0.107
(cor/snr)

0.115
(tnom)

0.132
(tnom)

0.159
(tnom)

0.18
(tnom)

to tell which is the best aggregation method, but in our simulation study we
can say, that the Robust Rank Aggregation method is not competitive when
compared to the other aggregation methods.

We used feature selection methods in order to reduce the dimensionality of
the data and also to better observe their effects on the rank-based classification
methods. First, the number of features used plays an important role in rank
aggregation methods. The Copeland and Spearman aggregation methods have



16 Burkovski et al.

quadratic and cubic run-time complexity, respectively, which renders them less
applicable when the number of features used in a dataset is high. Second, the
number of features should not be too low, as can be seen in Fig. 2. Due to
the rank-transformation, the number of different rankings is d! where d is the
number of selected features. Thus, when using only 5 features for classification,
only 120 different prototypes or samples can be compared and therefore rank-
based methods have a relatively high empirical error. Furthermore, the relatively
accurate performance of the k-NN classifier is also due to the comparatively
low number of features used for classification.

Simulation results also reveal, that for some choice of distance function the
classification performance does not change. This is due to the fact that several
distance functions produce the same neighborhood topology and the prediction
of the label for a sample point only depends on the topology and not the scale
of the distance value itself. Thus, distance functions can be divided in distance
“classes” thus reducing the parameter space by allowing to use an exemplary
distance function from a distance class.

In conclusion, rank-based classification methods allow the usage of addi-
tional parameters which can be determined in the parameter tuning phase. Ad-
ditionally, they allow the computation of centroids in a new way. In our experi-
ments we applied the prototype-based classification methods – ranked and real
value-based variants – on microarray datasets and compared their performance.
In some cases, the rank-based methods outperformed the real value-based clas-
sifiers in terms of empirical error rate. Our experimental results suggest that
the application of rank-based prototype classifiers should be included when
dealing with microarray datasets.
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Comparison of classification methods

Figures 4–7 show the error distribution based on the parameter combination.
The plots are grouped by the number of features selected via a feature selection
method (columns) and dataset (rows). The y-axis shows the error and the x-axis
shows the according ranked-based classification method. The red line shows
the best error of real value-based classifier (achievable by selection of the best
suiting parameter). The violin plots indicate the density of parameters that are
associated with the classification error.

Similarly, Figs. 8–11 show the error distribution based on the parameter
combination for all rank-based classifier. The plots are grouped by the number
of features selected via a feature selection method (columns) and dataset (rows).
Thy y-axis shows the error and the x-axis shows the according all ranked-
based classification methods described in the main text. The red line shows
the best error of real value-based classifier (achievable by selection of the best
suiting parameter). The violin plots indicate the density of parameters that are
associated with the classification error.

Figures 12–15 show the classification error for different parameters of the
NCC classifier. Here, the classification error for all datasets and 500 of selected
features is shown.

Figure 16 shows the actual error difference between rank-based and real
value-based. The plots are grouped by the number of features selected via a
feature selection method (columns) and dataset (rows). Thy y-axis denotes the
real value-based classification methods and the x-axis shows the according
ranked-based in combination with a specific feature selection method, respec-
tively. Each tile corresponds the error difference between the best errors for
the respective classifiers. Positive difference mean that the real value-based
classifier has a lower error than the rank-based classifier. Negative difference
mean that the rank-based classifier has a lower error than the real value-based
classifiers.

Figure 17 shows a summary of all parameter combination comparisons per
feature number (columns) and dataset (rows). The bar plot shows the num-
ber of parameter combinations divided in three categories. “Positive” category
represents the number of parameter combinations where the real value-based
classifiers have a lower error than the rank-based classifiers. Similarly, “neg-
ative” category represents the number of parameter combinations where the
rank-based classifiers have a lower error than the real value-based classifiers.
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The “zero” category represents the number of parameter combinations where
real value and ranked-based classifiers have the same error.
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Fig. 8 Error distribution of all rank-based classifier with regard to the best real value-based k-NN
classifier.
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Fig. 9 Error distribution of all rank-based classifier with regard to the best real value-based NCC
classifier.
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Fig. 10 Error distribution of all rank-based classifier with regard to the best real value-based RPS
classifier.
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Fig. 11 Error distribution of all rank-based classifier with regard to the best real value-based NPC
classifier.
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Fig. 12 Influence of different parameters to the classification error of the NCC classifier.
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Fig. 13 Influence of different parameters to the classification error of the NCC classifier.
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Fig. 14 Influence of different parameters to the classification error of the NCC classifier.
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Fig. 15 Influence of different parameters to the classification error of the NCC classifier.
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Fig. 16 Error difference between the rank-based and real value-based classifiers.
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