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Abstract

The major problem regarding numerical simulation of multiphase flows in microfluidic
systems are discrepancies in the results with the ones obtained by the same numerical
approaches in larger scales. Several potential causes such as the effect of confining bound-
aries, large curvature of interfaces or small sizes of dispersed phases are reported elsewhere.
To determine the effect of these properties on numerical results, a sensitivity analysis on
the most important parameters affecting the fluid dynamics of a microfluidic multiphase
system is required.

The aim of this thesis is to compare the Volume of Fluid (VOF) and Phase Field methods
implemented in OpenFOAM package, in solvers interFoam and phaseF ieldFoam, respec-
tively, in terms of their basic suitability to simulate multiphase flows. For this purpose,
interFoam in foam-extend-3.1 and phaseF ieldFoam in OpenFOAM-1.6-ext are used. By
doing so, problematic parameters of microfluidic multiphase simulations can be identified.
The case study of interest is a two dimensional motionless air bubble in stagnant water.
This configuration is frequently discussed in literature as a validation case. The simplicity
of this case makes it suitable as a fast benchmark to achieve the target of this study. The
starting point of the research is therefore the comparison between the numerical results
obtained for this configuration with the ones reported in literature. For this benchmark
problem, mismatch between discretised surface tension force and pressure gradient and/or
inaccurate computation of interface curvature can lead to numerical errors, which manifest
as parasitic currents. These currents strengthen when there exist discontinuities in field
variables (e.g., density and pressure) at the interface between the air bubble and water.
Thus, in the second step, this error and its consequences such as motion of bubble and
distortion of its interface are characterised. To do so, several parameters such as spatial
and temporal resolutions of the numerical solvers, initial estimation for bubble interface
thickness and bubble diameter have been changed. The accuracy of the solvers is de-
termined based on their ability to predict the pressure difference between the gas inside
the bubble and the surrounding liquid and minimising the induced parasitic current and
bubble motion, while maintaining an appropriate bubble interface thickness.

The results show that the phaseF ieldFoam is more accurate in predicting most of the
characteristic properties of the considered multiphase system, compared to interFoam.
Under mesh refinement, the former code converges with equal densities and viscosities
but not for air-water system where the magnitude of spurious currents is independent
from grid size. Furthermore, it is revealed that phaseF ieldFoam requires at least six
computational cells across the thickness of bubble interface to provide accurate results.
It is also shown that to achieve convergence, satisfying common criteria on the group of
involved non-dimensional numbers (here, Courant and Cahn numbers) is not sufficient.
A further restriction originates from the computational time step. By refining the time
step, the diffusion number, which is shown to influence the solution significantly, can be
controlled and as a result, convergence of the results can be obtained.

Moreover, the main drawback of phaseF ieldFoam is illustrated to be in conserving the
mass of the gas phase inside the bubble as the solver tends to shrink the bubble size. This
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problem, however, could be overcome by a higher mesh resolution. On the other hand,
although interFoam does not suffer from problems in mass conservation, it is out of step in
prediction of the characteristic parameters as well as in eliminating the parasitic current
and unfavourable bubble motion. The adopted approach for tackling this problem is
beneficial for numerical simulation of three-dimensional microfluidic systems with complex
flow geometries, both for design and optimisation purposes.
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1. Introduction

1.1. Motivation of the Work

In fluid mechanics, if the dimensions of a channel are tens to hundreds of micrometers,
then it is labelled microfluidics. The smaller size, the less usage of expensive fluids
for experiments in a wide variety of applications, such as molecular analysis, biodefense,
molecular biology and microelectronics [1]. Multiphase flows, obvious from the name,
are flows consisting of more than one phase, i.e., state like air bubbles or oil droplets
in water. For different applications, e.g., measuring of ingredients of a mixture, it is
desirable to understand the behaviour of phases and interactions between them. Fig.
1.1 illustrates schematically a device for measuring phosphate concentration. The fluid
consists of phosphate and is on a microfluidic chip. The light originates from a light
source and traverses the chip and goes to a spectrometer where its altered wave frequency
can be measured. Based on the attenuation of the spectrum at a certain frequency, one can
correlate the concentration of phosphate in the fluid on the chip. If there are air bubbles,
they disturb the signal and diminish the accuracy of measurement. In worst cases, the
larger air bubbles can clog the microfluidic channel. Therefore, a better understanding of
bubble behaviour in microfluidics is necessary.

Figure 1.1.: Phosphate measurement.

To achieve this target, Computational Fluid Dynamics (CFD), specifically two different nu-
merical methods, i.e., Volume of Fluid (VOF) and Phase Field methods are evaluated
in this work. The mathematical framework of these two methods and their implementa-
tions in OpenFOAM which is an open source CFD software [2] will be explained in sections
2.2 and 2.3.
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2 1. Introduction

1.2. Some Concepts in Multiphase Flow Simulations

In the surface of a material, molecules have higher energy than in bulk because they are
not bounded from all spatial sides. This excess energy of the surface molecules is called
surface energy and tries to minimise the surface area. To phrase it differently, this is
the energy to create new surfaces. In multiphase flows, the size of interface between
two materials, where physical properties alter quickly, can be compared to the molecular
separation scale. Deep in the liquid, the nearness of molecules results in repelling between
them. But at the interface, because of fewer neighbours, there is an attraction between
the other molecules and it is called surface tension, defined as the normal force per
unit of length [3, 4], which is equal to surface energy density for a liquid. In this work,
physical properties of phases and their changes over interface are investigated by means
of OpenFOAM which uses finite volume method.

A sharp interface model means that the thickness of interface is zero like in Level-Set
method and there is a jump, i.e., discontinuity of physical properties from one phase to
another across the interface but in a diffuse interface model, a surface with a finite
thickness is defined and physical quantities have smooth but rapid transition in a thin
transition layer [5]. The motion and deformation of interface can be computed on fixed
grids [6].

Numerical methods, here for describing the motion of interface, have numerical errors
which cause non-physical velocities called parasitic currents expressed by Lafaurie et al.
[7] for the first time. Some authors such as Francois et al. [8] named these flows spurious
currents. In this work, some test cases, for example, an air bubble in equilibrium, Fig.
2.6, are simulated to quantify these errors. The origin of parasitic currents is imbalance
between pressure gradient and surface tension force as well as an inaccurate estimation of
interface curvature. In all test cases in this thesis, the initial velocity field is zero but at
the end of simulation, there is a non-zero velocity field and the maximum value of velocity
vectors, |Umax|, is regarded as the maximum parasitic current.

1.3. Literature Review

Continuum Surface Force (CSF) model, introduced by Brackbill et al. [9], is one possible
way for modelling surface tension effects on fluid motion. In this model

Fσ = (σKn +∇sσ)δ (1.1)

where the l.h.s represents the surface tension force and in the r.h.s., σ is the surface tension
coefficient, K the local mean curvature, n the unit vector normal to the interface, ∇s the
surface gradient and δ the delta function.

Lafaurie et al. [7] stated that a higher surface tension results in higher parasitic currents.
Harvie et al. [10] explained the origin of the parasitic currents in detail and found that
these currents cannot be always restricted by increasing space and time resolutions. Yokoi
[11] proposed a numerical method to simulate free surface flows with complicated moving
interfaces like droplet splashing. His framework is a density-scaled balanced CSF model
to reach the lowest parasitic currents, which will be explained in section 3.1.2.

Deshpande et al. [12] investigated the performance of interFoam which is a solver for two-
phase flow in OpenFOAM based on a modified VOF method. They found that this solver
compute the curvatures which deviates about 10% from the analytical value. Albadawi
et al. [13] also recognised that interFoam cannot deal appropriately with high surface
tension effects. Thus, they coupled this solver with a Level-Set method to capture the
interface and compute the surface tension more properly. In the Level-Set method, a
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1.3. Literature Review 3

signed distance function categorised two phases from each other. This function is positive
for one phase, negative for another and zero for the interface. Another extension of VOF
method is the Moment of Fluid for the simulation of interface dynamics [14]. In addition
to the interface reconstruction in VOF methods by tracking the cell-wise material volumes,
the Moment of Fluid method tracks the cell-wise material centroids. This eventuate in
obtaining more information about the interface reconstruction scheme where the volume
is conserved.

Acar [15] explained that the Phase Field method is a method for describing the diffuse
interface evolution which uses a 4th order diffusion equation. In this model, the interface
characteristics like thickness is controllable. Lee et al. [16] compared different types of
delta functions for Phase Field models in several numerical experiments and found that
the delta function δ(C) = |∇C| is the best in most cases where C is an order parameter for
phase identification. Jacqmin [6], for using the Phase Field method, appended the surface
tension force −C∇φ to the Navier-Stokes equations where φ the chemical potential of this
variable. In his calculations, the interface is advected by a continuum advective-diffusion
equation. Jacqmin [6] commented that Phase Field method is able and appropriate for
two phase flow singularities, micro-scale modelling and even for simulation in nano-scale,
which is the actual interface thickness. Moreover, He et al. [17] compared the CSF and
chemical potential gradient models for formulation of surface tension force and found
that the parasitic currents are lower by the latter model. As a drawback of Phase Field
simulations, however, Yue et al. [18] expressed the spontaneous shrinkage of a drop or
bubble while C of the bulk phases shifts from its values. This mass lost will be discussed
in section 3.2.2.
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2. Mathematical Framework and
Numerical Methods

2.1. The Navier-Stokes Equations for Two-Phase Flow in
Single Field Formulation

The continuity equation for two isothermal, immiscible, incompressible Newtonian fluids
is defined as in [13]

∇ ·U = 0 (2.1)

and the momentum equation

∂(ρU)

∂t
+∇ · (ρUU) = −∇p+∇ · τ + Fb + Fσ (2.2)

where U is the fluid velocity vector, ρ the fluid density, t time, p the fluid pressure, τ the
viscous stress tensor which is τ = µ[(∇U) + (∇U)T ] with µ as the fluid viscosity and Fb

are body forces acting on the fluid such as gravity force. In this work, the gravity force is
assumed to be zero but Fσ for multiphase flows is of interest. The phases are identified by
a phase indicator function X and physical properties such as density and viscosity depend
on this function. For this function there is a topological equation [19]

∂X

∂t
+ (U · ∇)X = 0 (2.3)

2.2. Volume of Fluid Method in OpenFOAM: interFoam

For free boundary configurations, e.g., interfaces between fluids, Hirt and Nicols [20] intro-
duced VOF method in 1979. This numerical method for multiphase flows reconstruct the
interface based on the values of an indicator function in the computational cells of a fixed
mesh (an Eulerian mesh), i.e., a rectangular grid despite of interface shape [21]. This phase
indicator function, i.e., a volumetric phase fraction function with the unit value for a
cell fully occupied by liquid and zero value for a cell only by gas. Cells with volume phase
fraction within these two distinct values are considered to specify the interface between
two phases. From the cell values, the interface can be reconstructed. Fig. 2.1 shows the
definition of an air bubble in water using VOF.

5



6 2. Mathematical Framework and Numerical Methods

Figure 2.1.: Fluid representation in VOF based on volumetric phase fraction.

VOF method is implemented in OpenFOAM in a few solvers and one of them is called
interFoam (IF) which is a solver for two incompressible, isothermal immiscible fluids [2].
The volumetric phase fraction in IF is alpha1 with alpha1 = 1 for liquid and alpha1 = 0
for gas. The physical properties, density ρ and viscosity µ can be written by using a
weighted average of two phases

ρ = ρlα+ ρg(1− α) (2.4)

µ = µlα+ µg(1− α) (2.5)

where α = alpah1 is the volumetric phase fraction which is adevected algebraically in IF.
It means that IF utilises a compressive scheme wherewith the r.h.s of Eq. (2.3) changes
with an artificial anti-diffusion term as follows [13]

∂α

∂t
+ (U · ∇)α = −∇ · (α(1− α)Uc) (2.6)

where Uc = Ul −Ug is the vector of relative velocity, where Ul and Ug are liquid and
gas velocities, respectively. The relative velocity is also determined as the compressive
velocity. The r.h.s of Eq. (2.6) is important at the interface because of α(1 − α) and
is to mitigate the numerical smearing of physical properties over the interface. Fig. 2.2
illustrates changes of physical properties in normal direction to interface. It is obvious
that with compression term, the solution is closer to the sharp interface.

 

Phase 2

Phase 1 Sharp interface

With compression term

Without compression term

Figure 2.2.: Schematic illustration of discontinuity in physical properties across interface
using VOF.

Furthermore, for higher compression a compressive factor, calpha, is defined like below [13]

Uc = min(calpha|U|, |Umax|)
∇α
|∇α|

(2.7)

6



2.3. Phase Field Method in OpenFOAM: phaseFieldFoam 7

In this work, calpha = 1 is always considered. For further information, a special method,
namely MULES, in IF is applied in order to integrate the Eq. (2.6). MULES stands for
multidimensional universal limiter for explicit solution.

Based on CSF model, for constant interfacial tension, σ, the surface tension force per unit
interfacial is calculated by fσ = σK(α)∇α where K(α) is the mean surface curvature using
updated α after Eq. (2.6) [13]. Hence, it is written K(α) = −∇ · n where n is defined
by n = ∇α/|∇α|. This model is implemented in momentum equation (Eq. (2.2)) in IF
and because of the spatial discretisation and curvature estimation, there exist parasitic
currents in the vicinity of interface [21].

2.3. Phase Field Method in OpenFOAM: phaseFieldFoam

In Phase Field method, the phase identification for two incompressible, viscous and isother-
mal fluids is based on an order parameter, C, with Cl = 1 and Cg = −1 where l and g
stand for liquid and gas, respectively [22]. Similar to VOF, cells with C within these val-
ues represent the cells belonging to the interface. Yue et al. [18] used Ginzburg-Landau
functional for the the mixing energy of the two phase system on the computational domain
Ω

F =

∫
Ω
λ

[
1

2
|∇C|2 + f(C)

]
dΩ (2.8)

where λ is the mixing energy density and f(C) is a double well potential function. The first
term in r.h.s of Eq. (2.8) is because of gradient energy and the second term because of bulk
energy of system. They can be calculated by λ = 3σε/(2

√
2) and f(C) = (C2 − 1)2/(2ε)2

where σ denotes the interfacial tension and ε the capillary width which is a scale for
interface thickness. The non-dimensional Cahn number Cn = ε/l relates the interface
thickness to a characteristic length l, e.g., the bubble or droplet diameter. In one dimension
(1D) for a planar interface, the variation of C at equilibrium is given by

C = tanh(
x√
2ε

) (2.9)

If −0.9 < C < 0.9 is taken as the diffuse interface, then the length normal to the surface
lC = 4.164ε expresses the interfacial thickness where the physical properties change rapidly
but smoothly. In Fig 2.3, C is plotted against the x direction which is normal to interface.
Here, ε = 1×10−5m and for −0.9 < C < 0.9, the interface thickness is lC = 4.164×10−5m.

-1

0

1

-0.1 0 0.1

C
 [

-]

x[mm]

 

-0.9

0.9

Phase 2

Phase 1

lC=4.164ε

Figure 2.3.: Order parameter across the diffuse interface in the Phase Field method.
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8 2. Mathematical Framework and Numerical Methods

The convective Cahn-Hilliard equation, which is the modified version of Eq. (2.3) for PFF,
governs the interface dynamics [23]

∂C

∂t
+ (U · ∇)C = κ∇2φ (2.10)

where κ the Cahn-Hilliard mobility (diffusion parameter) and φ chemical potential which
is the rate of change of mixing energy with respect to C, shortly φ = ∂F/∂C. The Eq.
(2.10) are coupled with Navier-Stokes equations in the solver phaseF ieldFoam (PFF) in
OpenFOAM-1.6-ext which uses Phase Field method. For PFF, the Eqs. (2.1) and (2.2)
represent mass and momentum conservation, respectively [23]. The density and viscosity
are dependent on the order parameter

ρ =
1

2
[ρl(1 + C) + ρg(1− C)] (2.11)

µ =
1

2
[µl(1 + C) + µg(1− C)] (2.12)

where ρl and ρg are density of liquid and gas phases and µl and µg are their viscosities.
Finally, it is important to mention that instead of CSF in IF, the surface tension force
here is modelled by Fσ = −C∇φ [22].

2.4. Definition of a Case in OpenFOAM

There are only text files in three directories to set up a case study in OpenFOAM. These di-
rectories are as follows: 0, constant and system. The results are also text files and written
in so-called time-directories. In the 0-directory, the initial conditions for all boundaries are
defined. In the constant-directory, the geometry and its boundaries together with number
of mesh cells are written in the polyMesh-subdirectory. Physical properties and turbulence
modelling as well as gravity are written in different files in the constant-directory. In the
system-directory, the solver, start/end time, time step and functions for post-processing
are written in controlDict file. Discretisation schemes, tolerances and algorithm controls
for different parameters in the solution are in other files in the system-directory [2].

Using Cartesian coordinates in OpenFOAM, one needs to define all parameters in a three
dimensional (3D) system. For two dimensional (2D) simulations, the length of domain in
the third direction is regarded in the order of magnitude of one computational cell size in
other directions. The focus of this work is on a 2D bubble and hence, the variations of
parameters in the third direction (z) are not considered.

2.4.1. Initial and Boundary Conditions

The phases in multiphase simulations are defined by alpha1 in IF and C in PFF, i.e.,
alpha1 = 0, C = −1 represent a domain filled with air and alpha1 = 1, C = 1 stand for
a domain filled with water. The cells with 0 < alpha1 < 1 and −1 < C < 1 remark the
interface between air and water to define an air bubble in water. Hence, it is required to
define the air bubble as a circle by means of variation of alpha1 and C. For this purpose,
a setF ieldsDict-file in the system-directory in IF is applied. As can be seen in Appendix
A.1, a cylinder in 3D is defined, which reduces to a circle in 2D. As seen in Fig. 2.4, there
are no specific cells for interface at the beginning of simulation, i.e., the cells only with
alpha1 = 0 or alpha1 = 1, but VOF causes smearing of the interface after running the
simulation. To diminish this smearing, IF uses a compression term explained in section
2.2.

8



2.4. Definition of a Case in OpenFOAM 9

Figure 2.4.: Initial conditions for an air bubble in water in IF using rectangular cells.

Unlike in IF, the interface thickness should be defined at the beginning of the simulation in
PFF using variable C with a predefined interface thickness. In other words, one of initial
conditions is that the domain is partitioned into three parts: water, air and interface
between them. Therefore, the setF ieldsDict-file cannot be implemented in PFF any more
for variation of C, because it is only for basic geometric shapes. For more complicated
non-uniform initial condition in OpenFOAM, a developed version of setF ieldsDict-file is
necessary. This utility is funkySetF ields and written as a command line. Eq. (2.13)
(Appendix A.2) represents how three zones using only one function are defined, which is
recognisable in Fig. 2.5. This function was written for 1D in the Eq. (2.9) and the 2D
version of it reads

C = tanh

{√
(x− xi)2 + (y − yi)2 − 0.5DB,i√

2ε

}
(2.13)

where xi and yi specify the initial spatial position of bubble centre and DB,i is the initial
bubble diameter.

Figure 2.5.: Initial conditions for an air bubble in water in PFF on rectangular cells.

2.4.2. Temporal Resolution

In numerical simulation, one of the important non-dimensional numbers is the Courant
number, Co, which is a scale for the movement of fluid in computational cells and a measure
for stability of the numerical method. It is defined by

Co =
|Umax|∆t

∆x
(2.14)

9



10 2. Mathematical Framework and Numerical Methods

where ∆t is the computational time step and ∆x is the mesh size. Courant numbers less
than unity means that the fluid particles stay in the same cell or move through only one
cell at each time step. On the other hand, with Co > 1, they can pass more than one cell at
each time step and this can influence negatively on convergence of the numerical method.
It is well-known that for multiphase simulations, Co must be lower than 1, otherwise the
interface smears due to discrepancy in numerical and physical propagation of information.
Therefore, for the case study here, bubble in equilibrium, the time resolution is chosen
not only by the time step but also by a maximum Courant number, maxCo, with a value
of 0.1 in controlDict-file. To satisfy the Courant criterion, selecting a flexible time step
results in less computational cost. For this purpose, adjustT imestep should be on and a
value for maxDeltaT , which is the upper limit for the time step [2] should be specified.
Shortly, it can be written that, the time step is the minimum of the ∆t obtained from Co
criterion and the upper limit.

∆t = min {∆tmaxCo, maxDeltaT} (2.15)

Diffusion number, D, is another non-dimensional number to be considered for the stability
of the numerical method [24]. It is defined by

D =
Γ∆t

(∆x)2
(2.16)

where Γ is the diffusion coefficient. For two-phase flows, the higher kinematic viscosity of
phases is taken as the diffusion coefficient which is in the case of an air bubble in water, the
kinematic viscosity of air, νa, where a stands for air. It will be explained in section 3.2.2
that, this number should not exceed one, in order to obtain results which are physically
reasonable. In conterolDict-file, dissimilar to maxCo, there is no option for D to be
predesignated; however the resultant ∆t from Eq. (2.15) is used to calculate this number.

2.5. Evaluation of Simulation Results and Related Errors

In this work, for post precessing, the utilities sample and swak4foam in OpenFOAM are
used. In the following sections, evaluation of some information with a short description of
their OpenFOAM codes is discussed. To reach this target, functions can be configured in
the controlDict-file in system-directory. These functions operate during the run-time and
write the data in the postProcessing-directory.

2.5.1. Parasitic Currents

For a bubble in equilibrium, errors in discretisation and approximation of curvature cause
imbalance between Fσ and ∇p in Eq. (2.2), which lead to parasitic currents, especially
around the interface. Appendix A.3 expresses the evaluation of the maximum parasitic
current using swak4foam utility. To attain this objective, a function is defined which
gives at each time step, the maximum magnitude of all velocity vectors in the whole
computational domain to investigate the worst possible magnitude for this numerical error.

|Umax| = max {|Um| : m = 1, ..., N} (2.17)

where m = 1, ..., N denote all cells in the whole computational domain. As already dis-
cussed in section 2.2, the largest parasitic currents are expected to be around the interface,
what is visible in Fig. 2.6 visualised using ParaV iew [25]. In this figure, the velocity field
inside and outside of an air bubble surrounded by water is shown, which is obtained by
the IF solver. Although the initial velocity is set to zero everywhere, however, because
of the asymmetric large parasitic currents, the bubble is distorted, moved from its initial

10



2.5. Evaluation of Simulation Results and Related Errors 11

place and even can exit the cyclic boundaries from one side and enter from another side
in some cases.

Figure 2.6.: Contour of parasitic velocity magnitude inside and outside of an air bubble
using IF, initially at equilibrium, surrounded by water in a 2D domain. Visu-
alisation is performed using ParaV iew.

Because parasitic currents show oscillatory behaviour in some simulations, they are evalu-
ated in this thesis by averaging over last time steps where the oscillation is negligible, i.e.,
when the steady state is reached. For instance, in Fig. 2.7, a typical trend for the max-
imum parasitic velocity as s function of computational time is shown . As it is revealed,
after an arbitrary time, in this case, t = 0.3 s, one can assume an average terminal value
for the maximum velocity.

Figure 2.7.: Averaging of the maximum parasitic current because of temporal oscillation.

2.5.2. Displacement of the Bubble

Appendix A.4 describes the function that has been written to find the position of the
bubble centre at each time step. The x and y positions of the bubble centre can be
expressed mathematically in Eqs. (2.18) and (2.19) as

xC =

∑N
m=1(1− αm)Vmxm∑N
m=1(1− αm)Vm

(2.18)

yC =

∑N
m=1(1− αm)Vmym∑N
m=1(1− αm)Vm

(2.19)

11



12 2. Mathematical Framework and Numerical Methods

where Vm is the volume of each cell and calculated by Vm = ∆x ·∆y. Because in this work,
the equidistant orthogonal grid is used, this term can be omitted from the Eq. (2.18) and
(2.19). The displacement of the bubble is then equal to the distance between two positions

of bubble centre at two consecutive time steps, that is, xD =
√
x2
C + y2

C . In sections 3.1

and 3.2, the influence of solvers and different numerical and physical parameters on the
parasitic currents and bubble displacement will be discussed in more detail.

2.5.3. Interface Thickness and Bubble Diameter

The interface thickness is of interest in this study, since it is one of the important pa-
rameters in characterisation of parasitic currents as well as in capturing the physics. The
thinner the interface, the more accurate the results of numerical simulations in estimat-
ing the physics. However, steeper gradients of physical properties, such as viscosity and
density for thinner interfaces result in larger parasitic velocities. Thus, a compromise in
selecting the bubble interface is a necessity. This, requires a numerical study of the effect
of interface on the fluid dynamics in the model. Appendix A.5 explains how a function can
take all points with an equal value of a parameter (such as alpha1 in IF and C in PFF)
and build a surface from these points in 3D (a curve in 2D). Because of this feature, it is
called isoSurface in OpenFOAM. Fig. 2.8 exhibits schematically an air bubble in water
in IF with three circles deduced from isoSurface. The distances between inner circle with
alpha1 = 0.1 and outer circle with alpha1 = 0.9 gives the interface thickness, which means
as delimiters for the interface, the values 0.1 and 0.9 are chosen. In this work, four points
on x axis gives two values for the interface thickness (x5−x1 and x3−x7 in Fig. 2.8), the
same from four points on y axis (y6 − y2 and y4 − y8 in Fig. 2.8). The average of these
four values is considered as the interface thickness. On the middle circle, alpha1 = 0.5
and twice of the average of distances of all points on this circle from the centre of bubble
results in the mean bubble diameter DB. The related error for the diameter is standard
deviation (STD) which helps to understand how the bubble shape deviates from a perfect
circle.

Figure 2.8.: Schematic illustration of isoSurface in IF for the bubble in equilibrium.

In a similar manner, the interface thickness and the mean bubble diameter is defined in
PFF by using C = −0.9, 0 and 0.9. In this work, the analytical solution for a circle
interface of bubble in equilibrium is approximated by the analytical solution of a planar
interface. In section 2.3, it was explained that for −0.9 < C < 0.9, the length of interface is
lC = 4.164ε in a Phase Field method. Therefore, if the initial bubble diameter is resolved

12



2.5. Evaluation of Simulation Results and Related Errors 13

by NB = DB/∆x where DB is the bubble diameter and ∆x the mesh size in x direction,
then by taking L = DB in the definition of Cahn number, the corresponding grid resolution
for the diffuse interface thickness can be calculated by [23]

NC ≈ 4
ε

∆x
= 4

Cn ·DB

∆x
= 4Cn ·NB (2.20)

Here, C = 0 is used to determine the mean bubble diameter.

2.5.4. Average Pressure Difference

To verify the accuracy of the simulation results, comparison between the theoretical pre-
diction and numerical simulation of the pressure difference between inside and outside of
the bubble is conducted. For this purpose, in the simulations an average value is required
for pressure in both phases. To calculate the average pressure difference between the air
bubble and water, it is required to subtract the outcomes of two functions reported in
Appendix A.6. The routine is to make a condition by means of an arbitrary threshold.
If this condition for a cell is fulfilled, then its information (pressure and volume) will be
taken. In cells where alpha1 > 0.99 in IF or C > 0.98 in PFF, j = 1, ..., Nw, the pressure
and volume come into account to reckon the average pressure of water, pavg,w where w is
the abbreviation of water

pavg,w =

∑Nw
j=1 pjVjxj∑Nw
j=1 Vj

(2.21)

Analogue for cells with alpha1 < 0.01 in IF or C < −0.98 in PFF, k = 1, ..., Na, to
calculate the average pressure of inside the air bubble pavg,a

pavg,a =

∑Na
k=1 pkVkxk∑Na
k=1 Vk

(2.22)

From Eqs. (2.21) and (2.22), the average pressure difference

∆pnumerical = pavg,a − pavg,w (2.23)

and its relative error

εp =

∣∣∣∣∆pnumerical −∆panalytical
∆panalytical

∣∣∣∣ (2.24)

can be written, where ∆panalytical derives from Young-Laplace equation, which in 2D for
the air bubble in water, is [3]

∆panalytical =
2σ

DB, analytical
(2.25)

where DB, analytical is the analytical (initial) bubble diameter.
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3. Bubble in Equilibrium

This chapter presents the comparison of two introduced methods, VOF and Phase Field
methods implemented in OpenFOAM whereby VOF solver is IF and Phase Field solver
is PFF. A case study, which is a static air bubble in stagnant water using IF and PFF
solvers will be described. The density ratio of water and air is high and this makes the case
study more critical than a case, such as with water and oil. Moreover, the small diameter
of the bubble lead to the problematic capillary numbers. The bubble in equilibrium is a
3D case study and in this thesis, for simplicity, a 2D circle, corresponding to an infinitely
stretched cylinder is simulated with the initial velocity of zero and without gravity field.
The motion of such a bubble is simulated to determine the parasitic currents.

3.1. Comparison with Test Cases from Literature

Before the results for an air bubble in micro scale is presented, it is meaningful to start with
two relatively easier case studies from literature. The goal is to compare the results of IF
and PFF with other authors’ findings. The first case study is chosen because the density
and viscosity ratios of two phases are equal to 1. It prevents from any possible influence
of different densities or viscosities of phases on the numerical results. The simplicity of
the second case, which is a simulation of a droplet in air, is because of its large scale and
this circumstance that only one time step is simulated.

3.1.1. Albadawi’s Case

Albadawi et al. [13] simulated in IF the 2D stationary bubble with the diameter of 1 cm
under zero gravity where the density and viscosity ratios assumed to be 1 (ρl/ρg = 1 and
µl/µg = 1). Popinet et al. [26] implemented this case study in order to affirm that for a
wide range of the non-dimensional Ohnesorge number, Oh = µl/(σρlDB)0.5, the spurious
currents are linear proportional to σ/µ. In other words, for an arbitrary invariant Oh, the

non-dimensional capillary number Ca = |Umax|
σ/µ is constant which means that the relative

effect of viscous and surface tension forces on the interface is constant and independent
on the mesh. Albadawi et al. [13] set Oh = 0.0316 and varied the grid resolution from
50 × 50 to 500 × 500, which means that the number of cells for bubble NB is 10 to 100.
Their time step was defined by ∆t = 0.1∆x and the end time of the simulation was 0.1 s.
They reported that they observed the same results with Co = 0.1 using the adaptive time
stepping.

15



16 3. Bubble in Equilibrium

In this work, Albadawi’s case study is replicated by means of IF and PFF with νl = νg =
0.001 m2· s−1. In Fig. 3.1, the capillary number is plotted at different grid resolutions
for the bubble. For convenience, the ∆x equivalent to NB is shown at the top horizontal
axis, which corresponds the mesh sizes (the bottom horizontal axis). Although Albadawi
et al. [13] used IF and showed an almost constant Ca number as it was expected. The
Ca numbers in this study using IF are not quantitatively identical with their results. A
possible reason can be the different OpenFOAM versions. Nevertheless, none of them show
the convergence with mesh refinement which is in agreement with the results by Popinet
et al. [26].

Cai et al. [23] recognised if the interface in PFF is resolved by at least six mesh cells,
then the numerical results do not depend on NC any more. Here, NC is chosen from 4 to
8 and to see the influence of density, two different values are given in PFF. PFF shows
the decreasing trends of Ca for both values of density which means that the maximum
parasitic current is not linearly proportional to the surface tension to the viscosity ratio
and finer meshes result in the lower parasitic currents. The curves are compared with the
1st and 2nd order decreasing trends. For ρl = ρg = 1000 kg ·m−3 can be seen that the
variation in capillary number obeys the 2nd order decreasing convergence trend.
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Figure 3.1.: Comparison of the terminal capillary number in IF and PFF with Albadawi’s
results for the air bubble in water in equilibrium with ρl/ρg = 1, µl/µg = 1
and Oh = 0.0316.

3.1.2. Yokoi’s Case

To minimise the parasitic currents in multiphase simulations such as capturing of droplet
splashing, Yokoi [11] on the basis of study by Francois et al. [8] offered a numerical method,
namely, the level set based density-scaled balanced CSF model. Previous researches [8,
9, 27] showed that the density scaling causes higher stability in calculation of the surface
tension force because it shifts the smoothed symmetrical δ function of CSF model to a
higher density region. The difference between CSF and balanced CSF models is in their
discretisation schemes. In the balanced CSF model, ∇α in fσ = σK∇α and ∇p in the
projection step should be discretised by the same strategy.

As a verification case study for his proposed numerical framework, Yokoi [11] simulated a
droplet in air in equilibrium with a diameter DD = 2 m, the liquid density ρl = 1 kg ·m−3,
the air density ρg = 0.001 kg ·m−3 and the surface tension coefficient σ = 1 kg · s−2. In
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3.2. A Sub-millimetre Air Bubble in Water 17

this thesis, his case is simulated by IF and PFF in order to compare the results of different
numerical methods only after one time step which is 1 µs. Because he assumed that
the liquid is inviscid, due to not having the numerical corruption, νl and νg in IF and
PFF is given 10−40 m2 · s−1, which is not exactly zero, but is an acceptable value for
this assumption. The 2D computational domain is a 4 m×4 m square and a rectangular
Cartesian grid is created on this domain for discretisation.

Fig. 3.2 illustrates the comparison between Yokoi’s results and the outcomes of IF and
PFF. This comparison is represented as a convergence study on the maximum parasitic
current. As can be seen in Fig. 3.2(a), IF like standard CSF model and density-scaled
CSF model present no convergence with grid refinement. On the contrary, the maximum
parasitic current shows the monotonically decreasing curves by PFF, the balanced CSF
and density-scaled balanced CSF models in Fig. 3.2(b). The two latter models show
the 2nd order of decreasing trend. This trend changes into a 1st order one, when mesh
refinement is implemented. On the other hand, for the same range of mesh size where the
two models cannot eliminate the parasitic current rapidly, PFF diminishes it by 2nd order.
Therefore, one can conclude that PFF is more suitable in damping this numerical error,
when finer grids are implemented.
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Figure 3.2.: Comparison of the maximum parasitic current in (a) IF and (b) PFF with
Yokoi’s results after one time step for an inviscid static droplet in equilibrium
with ρl = 1 kg ·m−3, ρg = 0.001 kg ·m−3 and ∆t = 1 µs.

3.2. A Sub-millimetre Air Bubble in Water

The previous case studies on the comparison of different solvers with other results in
literature, brought the knowledge that PFF can plausibly deal with the problem of parasitic
currents. The next case study, which is of interest to FESTO AG. & Co. KG, is a 2D
simulation of a motionless air bubble in stagnant water in micro scales. The computational
domain is defined as 1000 µm× 1000 µm× 1 µm. The gas phase is initialised in the form
of a circle (DB = 500 µm) in the centre of the domain, surrounded by the liquid phase for
the rest of the domain. This means that the length of the domain, l, in each direction (x
and y in Cartesian coordinates) is twice the bubble diameter, DB.

l

DB
= 2 (3.1)

All four boundary conditions are defined as cyclic. The time step is selected by checking
the criterion maxCo = 0.1 to find a value for ∆t and comparing it with maxDeltaT = 5 µs.

The physical properties are as follows:

1. Density:

i) air: ρa = 1.2 kg ·m−3 ii) water: ρw = 997 kg ·m−3
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18 3. Bubble in Equilibrium

2. Kinematic Viscosity:

i) air: νa = 1.531×10−5 m2 · s−1 ii) water: νw = 1×10−6 m2 · s−1

3. Surface tension coefficient: σ = 0.07286 kg · s−2

In the following sections, the effects of numerical parameters on the results of simulations
using IF and PFF based on the study in Cai et al. [23] will be presented. These parameters
are: mesh resolution ∆x, Cahn number Cn, temporal resolution ∆t, Cahn-Hilliard mobility
κ and bubble Diameter DB.

3.2.1. Influence of the Mesh Resolution

The domain inside the bubble is discretised with 25, 50, 75 and 100 quadrilateral cells
in both x and y directions on the main diameter. According to Eq. 3.1, the whole
computational domain is discretised with 50, 100, 150 and 200 quadrilateral cells in both
x and y directions. Fig. 3.3 shows the time evolution of the maximum parasitic current
and the non-dimensional displacement of the centre of bubble for both solvers. The steady
state values of these parameters are required for evaluating the accuracy of both solvers in
predicting parasitic currents. Therefore, the time evolution of them is studied at the first
step. Initially, the end time of the simulations was set as 0.15 s and after that as 0.2 s;
both were unsuccessful in providing a steady state solution. Finally, the simulation time
is assumed as 0.4 s to reach a steady state solution for both solvers. This value remained
fix for all cases throughout this thesis. For temporal resolution, maxDeltaT = 5 µs and
maxCo = 0.1 are chosen. Jacqmin [6] stated that κ ≈ O(ε2) which is the formulation for
the mobility factor as a function of capillary width. Here, κ = Gκε

2 where Gκ is chosen
as a constant value and equal to 0.1 m · s · kg−1 to ensure the stability of PFF.
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Figure 3.3.: Time evolution of (a) the maximum parasitic current and (b) the non-
dimensional displacement of centre of bubble in IF and PFF with DB =
500 µm, Cn = 0.02, ε = 10 µm and κ = 1× 10−11 m3 · s · kg−1.

As mentioned previously, the maximum velocity here in Fig. 3.3(a) is defined as the
maximum magnitude of velocity in the domain. The non-dimensional displacement in Fig.
3.3(b) is obtained by dividing the total displacement of the centre of bubble to its initial
diameter. Although the two figures are not related directly to each other, they should be
analysed simultaneously, because the more the bubble moves, the higher is the velocity
magnitude of the induced parasitic flow in the domain. As can be seen in Fig. 3.3(a),
the IF solver is not accurate in predicting the maximum parasitic current, regardless of
the mesh resolution. The maximum magnitude of parasitic currents reaches to a value of
approximately 1 m · s−1 for all of the mesh sizes in the steady state. The displacement
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3.2. A Sub-millimetre Air Bubble in Water 19

of the centre of bubble is not the same for all cases and varies from almost 10% of DB

for the cases with NB = 50, 100 to ca. 70% of DB for NB = 75 in the steady state.
Apparently, in the scale of microfluidic devices, since the flow is not dominated by inertia
and consequently the non-dimensional Weber number, ratio of inertia to surface tension
forces [3], is not large, the solver is not capable of damping the parasitic currents. The
accuracy of IF at high Weber numbers, however, is reported elsewhere [12, 28, 29, 30].

The PFF solver, on the other hand, shows a different behaviour to IF as a function of
the mesh size. Firstly, to reach a plateau, the solver requires longer simulation time
compared to IF. Secondly, the maximum parasitic current and the displacement of the
centre of bubble are orders of magnitude smaller than the data obtained by IF. As can be
seen in the graphs, the maximum parasitic current approaches 10 µm · s−1 for all cases.
Furthermore, the dimensionless bubble displacement is in the order of 10−8 − 10−10 times
of the bubble diameter, for all cases, expect for the grid with NB = 50, whose terminal
displacement is almost 1% of the bubble diameter. In the latter case, a jump in the
parasitic velocity magnitude as well as the displacement is observed at time t = 0.15 s.
This numerical effect is a consequence of the few number of cells adopted to capture the
interface which is shown as parameter NC in the graphs. According to Cai et al. [23],
the PFF solver is not suitable for simulations with NC < 4 and the same conclusion can
be derived from the results presented in this work. Therefore, the results obtained with
NB = 75, 100 which correspond to NC = 6, 8 respectively, at a constant Cahn number
Cn = 0.02 are reliable and clearly show that the PFF solver is successful in predicting the
state of the bubble with negligible parasitic currents.

Of interest, is the magnitude of the change of the maximum terminal parasitic velocity
obtained from the two solvers as a function of the mesh size. This is plotted in Fig. 3.4.
As can be seen, PFF predicts the maximum velocity almost five orders of magnitude less
that IF, for all of the resolutions. Moreover, for both solvers, the velocity magnitude is
approximately independent of the mesh size. As discussed before, the results obtained
from the cases with NC = 2, 4 are not reliable. Therefore, the increasing trend in the
velocity magnitude is not conclusive. The two curves are also compared with the 1st and
2nd order decreasing trends. It can be seen that the spurious currents do not obey the
decreasing convergence trends. Therefore, in the range of the mesh resolution investigated
in this study, it is concluded that PFF is very successful in reduction of parasitic currents
from the numerical simulation.
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Figure 3.4.: Terminal magnitude of the maximum parasitic current in IF and PFF with
DB = 500 µm, Cn = 0.02, ε = 10 µm and κ = 1× 10−11 m3 · s · kg−1.
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20 3. Bubble in Equilibrium

From this conclusion and also the results of sections 3.1.1 and 3.1.2, it is worthwhile to
mention that for ρl = ρg and µl = µg, PFF shows convergence with mesh refinement, while
for air-water system this cannot be achieved for the air bubble in water. If there is a large
scale water droplet in air, then PFF shows convergence.

To investigate the effect of mesh size on the accuracy of the solvers in interface capturing,
the phase fraction alpha1 for IF and the order parameter for phase identification C for PFF
are plotted along the horizontal diameter of the bubble in Fig. 3.5 by means of OpenFOAM
sample utility. For comparison, the theoretical value is also shown. As can be seen from
Fig. 3.5(a), the interface between gas and liquid is captured with considerable numerical
diffusion, especially for coarser grids. This numerical diffusion is sufficiently small when
the number of grid increases and for NB = 100, the difference between theoretical curve
and numerical prediction is quite small. For PFF, since the Cn number is fixed, the
interface thickness is given the same for all of the simulations. As can be seen from Fig.
3.5(b), by increasing NB and correspondingly NC , all of the curves predict the interface
thickness close to the theoretical value of the interface thickness which is 4.164ε.
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Figure 3.5.: Terminal phase distribution along the horizontal diameter of bubble in (a)
IF and (b) PFF with DB = 500 µm, Cn = 0.02, ε = 10 µm and κ =
1× 10−11 m3 · s · kg−1.

The results for verification of the average pressure difference obtained from IF and PFF
are shown in Fig. 3.6. From Eq. (2.25), this value is calculated as ∆p = 291Pa. For
simulations, an averaging on pressure over both liquid and gas domains is performed
discussed in 2.5.4. The relative error of pressure estimation is also reported. As can be
seen, the pressure difference cannot be estimated accurately by IF, even with the finest
resolution. The relative error between numerical and analytical predictions is ca. 10% and
almost similar for all of the values of NB. By putting this verification besides the accuracy
of IF solver in interface capturing and parasitic currents, one can conclude that the solver
is not precise enough in predicting a reasonable physics for a bubble in a microfluidic
channel. In contrast to IF, the PFF solver is able to estimate the pressure difference with
a reasonable error at higher values of NC , as illustrated in the Fig. 3.6(b). Although the
interface is diffusive here as well, the relative error between the numerical and analytical
predictions is less than 1%. It is worth mentioning that the 1st and 2nd order decreasing
convergence trend vs. grid size is not observed in the relative error obtained by both
solvers.
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Figure 3.6.: Terminal pressure distribution along the horizontal diameter of the bubble
in (a) IF and (b) PFF. (c) The non-dimensional terminal difference between
the average pressures of the air bubble and water in IF and PFF and (d)
its relative error where the exact value comes from Young-Laplace Eq. with
DB = 500 µm, Cn = 0.02, ε = 10 µm and κ = 1× 10−11 m3 · s · kg−1.

The effect of mesh resolution on estimating the terminal bubble diameter is shown in Fig.
3.7. For comparison, the non-dimensional standard deviation (STD) of the calculation is
also reported.
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Figure 3.7.: Comparison of (a) the terminal bubble diameter in IF with PFF and (b)
its non-dimensional STD with DB = 500 µm, Cn = 0.02, ε = 10 µm and
κ = 1× 10−11 m3 · s · kg−1.

Both solvers predict the diameter of the bubble with small relative error (less than 1%).
The corresponding error for IF is smaller than the one predicted by PFF. In addition,
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22 3. Bubble in Equilibrium

for IF, the error is sensitive to the mesh resolution and decreases by refining the mesh
size. On the other hand, the relative error of PFF is independent of the mesh size and is
bigger than the one for IF. It should be noted that IF predicts the terminal diameter of
the bubble bigger than its equilibrium size whereas PFF estimates a smaller bubble. The
reason of this shrinkage in bubble size using PFF solver will be discussed later in section
3.2.2.

Comparison of the STD of the bubble diameter, shows that the accuracy of PFF in pre-
dicting the sphericity of the bubble increases with mesh refinement and correspondingly
higher NC and the solver is more accurate compared to 1st and 2nd order convergence
trends. By contrast, the STD for IF becomes larger at finer grid sizes up to NB = 75
and decreases again for NB = 100. This is in correspondence to the maximum terminal
velocity for parasitic currents, which consequently changes the shape of the interface from
perfect circle. There is no dependency in the change of STD on the grid size, which shows
the variance and strong asymmetry in the fluctuation around the interface. Although the
STD in IF is higher than STD in PFF for NB = 50, 75 and 100 and this means that the
bubble distorts in IF more than in PFF, the bubble diameter (calculated by averaging, see
section 2.5.3) is more accurate in IF. Fig. 3.8 reflects different concepts of both methods.
In IF, the captured interface thickness is related to the grid size, therefore, it decreases
with mesh refinement and varies in a 1st trend with the grid resolution and its magnitude
reduces to below 10 µm for NB = 100 shown in 3.8(a). In PFF, however, the interface
thickness is finite and determined by Cn number which is here set as a fixed number and
its magnitude shows a very slow decreasing trend as a function of the grid size. In greater
detail, this trend is magnified and showed as the non-dimensional thickness in Fig. 3.8(b).
It can be concluded that the solver can predict the thickness close to the analytical value
obtained from planar approximation, which is explained in section 2.3, when the interface
is resolved with more mesh cells. As discussed before, the results obtained for NC = 2 and
NC = 4 are not reliable, however, they are reported here to show the decreasing trend of
the error.
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Figure 3.8.: (a) Comparison of the terminal interface thickness in IF with PFF. (b)
The non-dimensional terminal interface thickness in PFF with DB =
500 µm, Cn = 0.02, ε = 10 µm and κ = 1× 10−11 m3 · s · kg−1.

3.2.2. Influence of the Cahn Number and the Temporal Resolution

After investigating the effect of mesh resolution on both IF and PFF solvers and concluding
that PFF is more accurate in predicting the relevant parameters for NC > 4, in this section,
the effect of different Cn numbers on the physics of the bubble in equilibrium is presented.
According to Eq. (2.15), here ∆t = min{∆tmaxCo=0.1, 5µs}. Here, κ = Gκε

2 with
Gκ = 0.1 m · s · kg−1 is adopted. For all cases, NC = 8 is set, which according to the
results of the previous section, provides the smallest parasitic currents.
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3.2. A Sub-millimetre Air Bubble in Water 23

Figure 3.9 shows the time evolution of the maximum parasitic current and the non-
dimensional displacement of centre of bubble at different Cn numbers. As it has been
depicted by Fig. 3.9(a), the maximum parasitic velocity for the two cases of Cn = 0.02
and 0.04 does not exceed 0.0001 m · s−1 which is quite small and therefore, the displace-
ment of the centre of bubble is negligible, as shown in Fig 3.9(b). For Cn = 0.01, the
maximum parasitic velocity approaches 0.1 m · s−1 and hence, the bubble moves more
compared to the other two cases. This analysis mean that, although the mesh inside the
bubble is refined to keep NC constant and also the interface thickness reduces at smaller
Cn numbers, the parasitic velocity as well as the bubble motion is predicted less accurately.
This result is not expected, since the smaller the Cn number, the more computational cost
is required for the simulations.
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Figure 3.9.: Influence of the Cn number on the time evolution of (a) the maximum parasitic
current and (b) the non-dimensional displacement of centre of bubble in PFF
featuring varied κ with DB = 500 µm, NC = 8, ε = Cn ·DB, κ = Gκε

2 and
Gκ = 0.1 m · s · kg−1.

However, decreasing the Cn number leads to a better prediction of the pressure difference
between inside and outside of the bubble as well as the interface thickness, as is shown in
Fig. 3.10. Comparison of the theoretical prediction of the pressure difference and phase
distribution with numerical results reveals that the case with Cn = 0.01 provides the best
results with minimum numerical diffusion because Cn number is a scale for the interface
thickness.
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From the two latter parts of the analysis, one might attempt to conclude that, to reduce the
parasitic currents, the Cn number should increase and to capture the interface and pressure
difference more accurately, the Cn number should decrease. Thus, one might think of a
Cn number that lies among the investigated values to compromise the pros and cons of the
solver. Before finding a Cn number, one also may think of the effect of variable mobility
as κ = Gκε

2 on the results, since by increasing the Cn, κ increases and one expects more
diffusion in the results. To investigate the sensitivity of this analysis on variable κ, the
same simulation is performed using a constant value of κ = 2.5× 10−12m3 · s · kg−1, which
corresponds to the value of variable κ for Cn = 0.01. The results as the time evolution of
the maximum parasitic current and the non-dimensional displacement of centre of bubble
are shown in Fig. 3.11. Although there is a change in the time evolution in both curves,
the steady states of the parameters are very similar to the previous case (Fig. 3.9). Hence,
it is concluded that the increased level of diffusion in the results of higher Cn number is
not an influence of variable formulation for κ.
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Figure 3.11.: Influence of the Cn number on the time evolution of (a) the maximum
parasitic current and (b) the non-dimensional displacement of centre of
bubble in PFF featuring constant κ with DB = 500 µm, NC = 8 and
κ = 2.5× 10−12m3 · s · kg−1.

The next step of finding the suitable set of parameters will be finding a Cn number, which
takes the advantages of reduced parasitic currents at higher Cn numbers and more accurate
capturing of the interface and pressure difference at lower Cn numbers. Here a value of
Cn = 0.016 is selected. To investigate the effect of diffusion, the diffusion number, D is
calculated for all of the selected Cn numbers and the relative information are reported
in Table 3.1. As can be seen, with the same Cn number as 0.016, the diffusion number
changes from 3.56 to 0.478 when the time step from Eq. (2.15) varies from 3.72 µs to 0.5
µs when the maxDeltaT alters from 5 µs to 0.5 µs. This is a very important outcome,
which indicates the sensitivity of the PFF to time step itself and not only the dimensionless
groups of numerical parameters.

Table 3.1.: Diffusion number, (D), in PFF with DB = 500 µm, NC = 8, ε = Cn ·DB and
κ = 2.5× 10−12m3 · s · kg−1.

Nr. Cn[−] ε[µm] NB [−] Tn[−] 4x[µm] 4t[µs] D[−]

1 0.01 5 200 400 2.5 1.98 4.85

2 0.016 8 125 250 4 3.72 3.56

3 0.016 8 125 250 4 0.5 0.478

4 0.02 10 100 200 5 5 3.06

5 0.04 20 50 100 1 5 0.766
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3.2. A Sub-millimetre Air Bubble in Water 25

To illustrate the influence of diffusion number via change of time step, the simulations are
performed and the contour of parasitic velocity magnitude and velocity vectors are shown
for the two cases in Figs. 3.12 and 3.13, respectively. The main conclusions from these
figures are listed as follows:

• The maximum parasitic current for case 2 is approximately 3 cm · s−1 whereas in case
3, this value does not exceed 20 µm · s−1. The three orders of magnitude difference
between the predicted velocities in the two cases, clearly shows the suppression of
diffusion effects due to smaller time steps in case 3, in other words, smaller diffusion
number.

• Although the contour of velocity in case 2 looks like a symmetric field around the
centre of the bubble, velocity vectors in Fig. 3.12(b) exhibit a non-symmetric field
outside of the bubble. This non-symmetric field is the cause of distortion of the bub-
ble interface, regardless of accurate capturing of the interface thickness and pressure
difference.

• Contrary to case 2, in case 3, the velocity field is perfectly symmetric, both inside and
outside of the bubble. The vortices of parasitic currents are distributed symmetrically
all over the interface of the bubble. This results in a minimised net translational
motion of the bubble as well as the distortion of its interface.

Overall, it has been revealed that, to minimise the parasitic currents and capture the
interface and pressure difference accurately, the Cn number should decrease and at the
same time the time step should decrease in such a way to reduce the diffusion number as
much as possible which means that the time step restriction by maxCo is not sufficient
and D is important as well, see section 2.4.2.

(a) (b)

Figure 3.12.: Velocity field for the second case (a) and its vectors (b) using PFF with DB =
500 µm, NC = 8, Cn = 0.016, ε = 8 µm and κ = 2.5× 10−12m3 · s · kg−1.
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26 3. Bubble in Equilibrium

(a) (b)

Figure 3.13.: Velocity field for the third case (a) and its vectors (b) using PFF with DB =
500 µm, NC = 8, Cn = 0.016, ε = 8 µm and κ = 2.5× 10−12m3 · s · kg−1.

It is reported in section 3.2.1 that the PFF solver does not conserve the mass as accurate
as IF, since it always results in shrinkage of the bubble volume [18]. This shrinkage in the
bubble volume owes its origin from the modelling of the phase field method. Therefore, it is
suggested that to minimise this drawback, a plausible Cn number and a suitable mobility
parameter κ should be chosen. In order to study the effect of mobility on the bubble
shrinkage and consequently the mass conservation, the non-dimensional bubble diameter
at different Cn numbers is plotted in Fig. 3.14, for cases with constant κ and variable κ
as Gκε

2 with Gκ = 0.1 m · s · kg−1. It is depicted in this figure that, by increasing the
Cn number, the bubble shrinks more and this effect is more significant for the case of
variable κ. The maximum shrinkage occurs at Cn = 0.04, for which the assumption of
variable κ leads to almost 2% reduction in the bubble terminal diameter. Therefore, in
order to conserve mass, it is suggested that the value of Cn number should kept minimum.
However, as it has been described before, lower Cn numbers require finer grids and hence,
more computational time. Thus, a compromise is required in selecting the magnitude of
Cn number.
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Figure 3.14.: Influence of the Cn number and κ on the non-dimensional terminal bubble
diameter in PFF with DB = 500 µm, NC = 8 and Gκ = 0.1 m · s · kg−1.

To quantify the shrinkage of the bubble surface, Fig. 3.15(a) and the accuracy of the PFF
in conserving mass, the shift in the order parameter C vs. the Cn number should be
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3.2. A Sub-millimetre Air Bubble in Water 27

calculated. By definition, −1 < C < 1 and ideally, ∆C = 0. However, using a theoretical
method, Yue et al. [18] showed that the shift in C for a bubble in a 2D domain can be
calculated as

∆C = −
√

2

3
Cn. (3.2)

(a) (b)
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Figure 3.15.: Schematic illustration of (a) the shrinkage of an air bubble in water and (b)
its order parameter distribution in the normal direction to interface.

This change results in an interval for C as −1 − |∆C| < C < 1 − |∆C|. The theoretical
expected value for ∆C (i.e., zero), the theoretical approximation of it by Yue et al. [18]
and its calculated value from the simulations are plotted in Fig. 3.16. The simulations give
two different values, one for the air side and one for the water side of the interface, see Fig.
3.15(b). The average value of these two are plotted as well. It is worth-mentioning that the
corresponding values for ∆C are different on water and air sides, which is not similar to the
symmetric theoretical prediction in [18]. As illustrated, the average magnitude of ∆C and
its ingredients on both sides are less than the theoretical approximation proposed by Yue
et al. [18]. Hence, one can conclude that the PFF gives reasonable results in conserving the
mass, especially at smaller Cn numbers. Moreover, the shrinkage of the bubble interface,
obtained from simulations, in water side is negligible compared to its value in air side.
The reasoning for the asymmetry of ∆C values on both sides and very small values of that
in the water domain requires further research. Overall, one can conclude that, this curve
is another evidence for deviation of PFF from mass conservation at higher Cn numbers.
In addition, in selecting the suitable set of parameters for a simulation using PFF, the
theoretical calculations could be used as a reasonable upper limit of the error in ∆C.
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Figure 3.16.: Shrinkage of the bubble in PFF with DB = 500 µm, NC = 8 and κ =
2.5× 10−12m3 · s · kg−1

3.2.3. Influence of the Mobility

In order to investigate the sensitivity of the PFF solver to the mobility parameter κ, in
this section, the results of two different cases with three orders of magnitude difference in
κ are presented. These two values are κ = 10−11m3 · s · kg−1 and κ = 10−14m3 · s · kg−1.
The maximum parasitic current and the non-dimensional displacement of centre of bubble
are shown in Fig. 3.17. There is a difference between the terminal values of the two
cases. Three orders of magnitude change in κ, leads to almost to two orders of magnitude
variation in both |Umax| and xD/DB. Despite these changes, in both cases the maximum
parasitic current does not create considerable velocity magnitudes and also does not lead
the bubble to move significantly. It is depicted by these graphs that, increasing the mobility
parameter affects the parasitic currents. However, as long as this parameter is within the
range selected for this study, three orders of magnitude change in κ is not significant.
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Figure 3.17.: Influence of κ on the time evolution of (a) the maximum parasitic current
and (b) the non-dimensional displacement of centre of bubble in PFF with
DB = 500 µm, Cn = 0.02, NC = 8, NB = 100 and ε = 10 µm .

As a result, the change in mobility parameter does not affect the pressure difference pre-
diction and the interface thickness too. This can be seen in Fig. 3.18. The diffusive
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3.2. A Sub-millimetre Air Bubble in Water 29

pattern of the solver is more evident in the pressure difference curve in Fig. 3.18(a) for
κ = 10−11m3 · s · kg−1. However, no difference between the two cases can be distinguished
in the order parameter curve in Fig. 3.18(b). These results also confirm that the most
influencing parameter in minimising the parasitic currents and capturing the interface of
the bubble is the Cn number.
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Figure 3.18.: Influence of κ on the (a) pressure and (b) phase distribution along the hor-
izontal diameter of bubble in PFF with DB = 500 µm, Cn = 0.02, NC =
8, NB = 100 and ε = 10 µm.

3.2.4. Variation of the Bubble Diameter

In this section, the results of the comparison between the two solvers for different bubble
sizes are presented. It has been reported in the literature that the PFF solver, owing to
its tendency to shrink the bubble size, does not work below a critical size and could even
results in disappearance of the bubble [18]. To investigate the sensitivity of both IF and
PFF to the initial bubble size, four different diameters, namely, 250 µm, 500 µm, 750 µm
and 1 mm are selected and the fluid dynamics of them are studied, while the Eq. (3.1)
is valid for all of the cases. The temporal resolution is defined by maxCo = 0.1 and
maxDeltaT = 5 µs. The results of maximum parasitic current and bubble displacement
are shown in Fig. 3.19, for fixed values of Cn = 0.02, NC = 8 and NB = 100. As
expected, IF predicts a very large terminal parasitic velocity of about 1 m · s−1 for all of
the bubble sizes. Since the mass of the gas inside the bubble increases by increasing the
diameter, the inertia force required to move the bubble will be larger. Hence, the bigger
the bubble at the same velocity, the smaller the movement of the centre of bubble, as it
is depicted by Fig. 3.19(b). By contrast to IF, PFF predicts very small values for the
maximum parasitic current and consequently the motion of the centre of bubble, except
for the smallest bubble. Apparently, by decreasing the diameter to 250 µm, the maximum
parasitic current reaches to ca. 0.1 m · s−1, which is relatively high compared to the ones
for the other sizes. At the start of the simulation, the motion of the smallest bubble
calculated by PFF is comparable with the results of IF. This is somehow in agreement
with the theoretical prediction of the non-reliable results of PFF for smaller bubbles, as
reported elsewhere [18]. More specifically, the critical bubble diameter, below which PFF
finally results in disappearance of the bubble, reads

DB,crit =
(2
√

6

π
V ε
)1/3

(3.3)

where V is the volume of the whole computational domain. For all the cases investigated
here, one can see that ε = 0.02DB. In addition, lx = 2DB and ly = 2DB and hence,
V = 4DB

2. By substituting these values in Eq. 3.3, the critical diameter for all of the
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30 3. Bubble in Equilibrium

cases can be approximated as DB,crit = 0.5DB. Thus, the smaller the bubble, the less is
the distance between its actual and critical diameter and hence, the more the error in the
PFF solver. This trend is observed in Fig. 3.19 as the numerical error increases when the
bubble is smaller. Hence, one should pay attention in the accuracy of the solver, when
small bubbles are of interest.
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Figure 3.19.: Influence of the bubble size on the time evolution of (a) the maximum par-
asitic current and (b) the non-dimensional displacement of centre of bubble
in IF and PFF with Cn = 0.02, NC = 8 and NB = 100.

Finally, the verification of the accuracy of the solvers is performed by the comparison
between theoretical and numerical predictions of the pressure difference between inside
and outside of the bubble. The results are shown in Fig. 3.20. The slope of these lines
is supposed to be 2σ, according to the Young-Laplace equation. As it is illustrated in the
figure, the PFF solver shows a very good agreement with theoretical values, especially for
larger bubbles. For the bubble with DB = 250 µm, there is a small difference between
the results, whose reason is explained before. IF, however, shows a big discrepancy with
theoretical prediction of the pressure difference for all bubble sizes. Moreover, the slope
of the line, i.e., the value of surface tension, is predicted slightly different from the PFF.
Overall, it is concluded that, for the bubbles which are not close to a critical size, the PFF
solver is a good numerical tool to characterise their fluid dynamics in microfluidic devices.
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4. Conclusion

In this thesis, a thorough comparison between the Volume of Fluid (VOF) and Phase
Field methods implemented in OpenFOAM package has been conducted to investigate
the suitability of the methods for simulating multiphase flows. These methods are used
in solvers interFoam (IF) and phaseF ieldFoam (PFF), respectively. The case study
is a 2D motionless air bubble in stagnant water. The comparison between the solvers
is based on the sensitivity of the characteristic properties of a multiphase system and
induced numerical parasitic current on the most important parameters affecting the fluid
dynamics of such a system. The characteristic properties investigated are the bubble
interface thickness and the pressure difference between the gas inside the bubble and
the surrounding liquid. The parasitic current is characterised based on its maximum
velocity, distortion of bubble shape and also motion of bubble centre induced by it. The
investigated parameters include spatial and temporal resolutions of the numerical solvers,
initial estimation for the bubble interface thickness and diffusivity (only applicable in PFF)
and the bubble diameter.

The IF solver is not able to diminish the parasitic current sufficiently and cannot predict
a symmetric velocity field inside and outside of the bubble. Therefore, the bubble distorts
from its perfect circular shape assumed at the beginning of the simulation. Since these
deviations are non-negligible in some cases, the physical characteristic properties, such
as the pressure difference between inside and outside of the bubble are predicted with
large errors. These discrepancies cannot be removed by mesh refinement; although better
accuracy is seen in prediction of the interface thickness and diameter of the bubble as
the grid becomes finer. This indicates that the solver conserves the mass of both phases
accurately and the numerical diffusion of the VOF method could be mitigated by increasing
the mesh resolution; which in turn increases required computational costs.

The PFF solver, on the other hand, estimates the maximum parasitic current and the
displacement of bubble centre, orders of magnitude smaller than the values obtained by
IF. Thus, PFF is considered to be more accurate in predicting the equilibrium state of
the bubble with negligible parasitic currents. Nonetheless, one should pay attention in
selecting the spatial resolution of the grid required to estimate the interface at the start
of the simulation. It is shown that at least six cells for the resolution of diffuse interface
are needed to have an accurate prediction of the bubble state, and by doing so, the solver
performs quite well, almost regardless of the grid resolution outside of the interface region.
This good performance is observed in estimating the pressure difference between inside
and outside of the bubble, bubble habitat due to negligible parasitic velocity and bubble
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shape due to symmetry of the parasitic current. Therefore, it is concluded that the solver
is capable of capturing the essential physics involved.

The main disadvantage of PFF, however, appears in mass conservation for the gas phase
inside the bubble, since the solver has the intention to shrink the bubble. This problems
becomes more significant when the Cn number (a measure of the interface thickness)
increases. The problem is presumably due to numerical diffusive properties of the solver,
also observed in predicting the interface thickness. The other origin of this deviation is
inherited in the definition of the perfect interface as C = 0 inside the interval −1 < C < 1.
The appeared shift in the interval, i.e., ∆C results in another position for isoline C = 0,
which at the end of simulation is not in the same place as before and therefore, an error
appears in the final size of the bubble. In this study, the shrinkage of the bubble is
calculated smaller than its expected value from theoretical predictions. Moreover, from
theory, the shrinkage of the bubble is supposed to be symmetric in both gas and liquid
sides; whereas in this study, it is calculated much less in the water side. The reason for
this asymmetry is unknown and requires further studies. Due to the diffusive nature of the
solver, this issue becomes more notable for smaller bubbles and there exists a critical size
for the bubble diameter, below which the solver tends to disappear the bubble completely.
It is shown that for the considered cases in this thesis, the smaller the bubble, the closer
the actual and critical bubble sizes. Therefore, attention should be paid in the accuracy
of PFF, when small bubbles (which are typically present in microfluidic systems) are of
interest.

To overcome the issue regarding this shrinkage and consequently to conserve mass, refining
the mesh close to the bubble interface is suggested in this study. The latter is possible to
do by keeping the Cn number as small as possible. However, lower Cn numbers require
finer grids and hence, more computational time. Thus, one should compromise between
accuracy and hence consistency of PFF by selecting a smaller Cn number and required
computational resources. Obviously, the resources for 3D cases would be significantly
more. Nonetheless, the adopted 2D approach in this study is undoubtedly beneficial for
appointing an effective numerical tool to design and optimise microfluidic systems involving
multiphase flows.

32



Symbols and Abbreviations

Latin Symbols

Symbol Unit Description

C [−] Order parameter for phase identification
Ca [−] Capillary number
Cn [−] Cahn number
Co [−] Courant number
D [−] Diffusion number
DB [m] Bubble Diameter
DD [m] Droplet Diameter
F [N ·m] Mixing energy functional
Fσ [N] Surface tension force
g [m · s−2] Acceleration of gravity
Gκ [m · s · kg−1] Pre-factor in the relation between the mobility

and capillary width square
l [m] Length
lC [m] Interface thickness
n [−] Normal vector
N [−] Number of cells
NB [−] Number of cells for bubble
NC [−] Number of cells for interface
ND [−] Number of cells for droplet
Oh [−] Ohnesorge Number
p [Pa] Pressure
pavg [Pa] Average pressure
STDDB

[m] Standard deviation of bubble diameter
U [m · s−1] Velocity
|Umax| [m · s−1] Maximum parasitic current
(x, y, z) [(m,m,m)] Spatial Cartesian coordinates
xD [m] displacement of centre of bubble

Greek Symbols

Symbol Unit Description

α [−] Phase fraction
Γ [m2 · s−1] Diffusion coefficient
δ [m−1] Delta function
∆ [−] Difference
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ε [m] Capillary width
K [m−1] Curvature
κ [m3 · s · kg−1] Mobility
λ [N] Mixing energy density
µ [Pa · s] Dynamic viscosity
ν [m2 · s−1] Kinematic viscosity
ρ [kg ·m−3] Density
σ [kg · s−2] Interfacial tension coefficient
φ [N ·m−2] Chemical potential

Subscripts

Symbol Description

a Air
C Centre of bubble
D Displacement
g Gas
i Initial condition
l Liquid
w Water

Abbreviations

Abbreviation Description

1D One Dimensional
2D Two Dimensional
3D Three Dimensional
CAE Computer Aided Engineering
CFD Computational Fluid Dynamics
CSF Continuum Surface Force
IF interFoam
ISTM German: Institut für Strömungsmechanik
KIT Karlsruhe Institute of Technology
l.h.s Left-Hand Side
NSE Navier-Stokes Equations
PFF phaseFieldFoam
r.h.s Right-Hand Side
STD Standard Deviation
VOF Volume of Fluid
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Appendix

A. OpenFOAM Codes

The codes are based on codes in [31].

A.1. Initial Definition of a Bubble in interFoam

system/setFieldsDict

defaultFieldValues (volScalarFieldValue alpha1 1);
regions (cylinderToCell {

p1 (0 0 -0.5e-6);
p2 (0 0 0.5e-6);
radius 250e-6;
fieldValues (volScalarFieldValue alpha1 0);
}

);

Note: In the code, radius should be given which is half of the diameter. p1 and p2 are the
two ends of cylinder centre line.

A.2. Initial Definition of a Bubble in phaseFieldFoam

radius=250e-6
cx=0.0 The initial x coordinate of centre of bubble
cy=0.0 The initial y coordinate of centre of bubble
epsilon=1e-5 The interface width is the same as epsilon in constant/phaseFieldProperties
funkySetFields -time 0 -field C -keepPatches
-expression ”tanh((sqrt(sqr(pos().x-$cx)+sqr(pos().y-$cy))-$radius )/(sqrt(2)*$epsilon))”

A.3. Maximum Parasitic Current

In system/controlDict as a function
velocityExtreme {
type swakExpression;
outputControlMode timeStep;
outputInterval 1;
ValueType internalField;
verbose true
expression ”mag(U)”;
accumulations (max);

}
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A.4. Position of the Centre of Bubble

In system/controlDict as a function
xCentreOfBubble {
type swakExpression;
outputControlMode timeStep;
outputInterval 1;
ValueType internalField;
verbose true
expression ”(1-alpha1)*vol()*pos().x/sum((1-alpha1)*vol())”; //interFoam
expression ”(1-C)*vol()*pos().x/sum((1-C)*vol())”; //phaseFieldFoam
accumulations (sum);

}
Note: In y direction analogue to x direction.

A.5. Definition of the Interface

In system/controlDict as a function
interfaceMiddle {
type surfaces;
outputControl outputTime;
surfaceFormat raw;
fields ();
surfaces (interfaceMiddle {

type isoSurface;
isoField alpha1; //interFoam
isoValue 0.5; //interFoam
isoField C; //phaseFieldFoam
isoValue 0; //phaseFieldFoam
interpolate true;
}

);

}
Note: Analogue for interfaceNearToWater (alpah1 = 0.9 and C = 0.9) and for interface-
NearToBubble (alpah1 = 0.1 and C = −0.9).
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A.6. Average Pressure Difference

In system/controlDict as a function
pAverageWater {
type swakExpression;
outputControlMode outputTime;
ValueType internalField;
verbose true
variables (

”thresW=0.99;” //interFoam
”volWater=(alpha1>thresW?vol():0);” //interFoam
”volWater=(”pWater=(alpha1>thresW?p:0);” //interFoam
”thresW=0.98;” //phaseFieldFoam
”volWater=(C>thresW?vol():0);” //phaseFieldFoam
”volWater=(”pWater=(C>thresW?p:0);” //phaseFieldFoam
);

expression ”pWater*volWater/sum(volWater)”;
accumulations (sum);

}

In system/controlDict as a function
pAveragBubble {
type swakExpression;
outputControlMode outputTime;
ValueType internalField;
verbose true
variables (

”thresB=0.01;” //interFoam
”volBubble=(alpha1<thresB?vol():0);” //interFoam
”volBubble=(”pBubble=(alpha1<thresB?p:0);” //interFoam
”thresB=-0.98;” //phaseFieldFoam
”volBubble=(C<thresB?vol():0);” //phaseFieldFoam
”volBubble=(”pBubble=(C<thresB?p:0);” //phaseFieldFoam
);

expression ”pBubble*volBubble/sum(volBubble)”;
accumulations (sum);

}

43


	Preface
	Abstract
	Contents
	1 Introduction
	1.1 Motivation of the Work
	1.2 Some Concepts in Multiphase Flow Simulations
	1.3 Literature Review

	2 Mathematical Framework and Numerical Methods
	2.1 The Navier-Stokes Equations for Two-Phase Flow in  Single Field Formulation
	2.2 Volume of Fluid Method in OpenFOAM: interFoam
	2.3 Phase Field Method in OpenFOAM: phaseFieldFoam
	2.4 Definition of a Case in OpenFOAM
	2.4.1 Initial and Boundary Conditions
	2.4.2 Temporal Resolution

	2.5 Evaluation of Simulation Results and Related Errors
	2.5.1 Parasitic Currents
	2.5.2 Displacement of the Bubble
	2.5.3 Interface Thickness and Bubble Diameter
	2.5.4 Average Pressure Difference


	3 Bubble in Equilibrium
	3.1 Comparison with Test Cases from Literature
	3.1.1 Albadawi's Case
	3.1.2 Yokoi's Case

	3.2 A Sub-millimetre Air Bubble in Water
	3.2.1 Influence of the Mesh Resolution
	3.2.2 Influence of the Cahn Number and the Temporal Resolution
	3.2.3 Influence of the Mobility
	3.2.4 Variation of the Bubble Diameter


	4 Conclusion
	Symbols and Abbreviations
	List of Figures
	List of Tables
	Bibliography
	Appendix
	A OpenFOAM Codes
	A.1 Initial Definition of a Bubble in interFoam
	A.2 Initial Definition of a Bubble in phaseFieldFoam
	A.3 Maximum Parasitic Current
	A.4 Position of the Centre of Bubble
	A.5 Definition of the Interface
	A.6 Average Pressure Difference



