
Performance Evaluation of Priority Queues for
Fine-Grained Parallel Tasks on GPUs

Nikolai Baudis, Florian Jacob, Philipp Andelfinger
Institute of Telematics, Karlsruhe Institute of Technology

Email: nikolai.baudis@gmail.com, florian.jacob@student.kit.edu, philipp.andelfinger@kit.edu

©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works. doi:10.1109/MASCOTS.2017.15

Abstract—Graphics processing units (GPUs) are increasingly
applied to accelerate tasks such as graph problems and discrete-
event simulation that are characterized by irregularity, i.e., a
strong dependence of the control flow and memory accesses on the
input. The core data structure in many of these irregular tasks are
priority queues that guide the progress of the computations and
which can easily become the bottleneck of an application. To our
knowledge, currently no systematic comparison of priority queue
implementations on GPUs exists in the literature. We close this
gap by a performance evaluation of GPU-based priority queue
implementations for two applications: discrete-event simulation
and parallel A* path searches on grids. We focus on scenarios
requiring large numbers of priority queues holding up to a few
thousand items each. We present performance measurements
covering linear queue designs, implicit binary heaps, splay
trees, and a GPU-specific proposal from the literature. The
measurement results show that up to about 500 items per
queue, circular buffers frequently outperform tree-based queues
for the considered applications, particularly under a simple
parallelization of individual item enqueue operations. We analyze
profiling metrics to explore classical queue designs in light of the
importance of high hardware utilization as well as homogeneous
computations and memory accesses across GPU threads.

I. INTRODUCTION

Considering the increasing scale of networked systems in
Internet of Things applications and smart cities, the evaluation
of the complex behavior emerging from fine-grained interac-
tions among large numbers of entities is becoming increasingly
challenging and computationally demanding.

For many years now, the fine-grained parallelism of graphics
processing units (GPUs) has been applied to accelerate com-
putations where the operations and memory access patterns
are known a priori as in, e.g., linear algebra codes or signal
processing. In contrast, applications in the context of large-
scale networked systems – such as discrete-event simulation,
job scheduling, minimum spanning tree calculation, and path
search – frequently comprise computational problems of irreg-
ular and hard-to-predict structure. Priority queues as the core
data structure of many such applications have been studied
for many decades. However, due to the substantial differences
in the execution model between CPUs and GPUs, the relative
merit of classical data structures requires a reconsideration to
achieve high performance on GPUs.

In this paper, we evaluate the performance of GPU-based
priority queues, focusing on two applications: 1. Discrete-
event simulation of interacting entities, e.g., in a networked
system. 2. Finding the shortest path among multiple pairs

of cells on a grid, e.g., in an agent-based simulation. The
defining property of these applications is a substantial or full
independence across task instances, whereas each instance is
comprised of steps that provide only limited independence.

We explore priority queue implementations on different
levels of granularity: using a single GPU thread per queue,
groups of threads per queue, and applying the full GPU
resources to a single queue. The considered queue designs
are circular buffers, implicit heaps, splay trees, and the GPU-
specific parallel heap [1].

A challenge lies in the lockstep execution of groups of
threads on the GPU: highest performance depends on a mini-
mization of divergent branches and scattered memory accesses.
To study the priority queues with respect to these characteris-
tics, in addition to overall performance measurements of the
priority queue designs, we present profiling results to explore
the causes for the differences in performance.

Our measurement results can help guide future implemen-
tations of applications relying on GPU-based priority queues.
To allow the community to reproduce our results or to build
on the implementation, our code is made publicly available1.

II. BACKGROUND AND RELATED WORK

A. General Purpose Computation on GPUs

General Purpose Computation on Graphics Processing Units
(GPGPU) enables the use of the thousands of arithmetic units
of modern GPUs for parallel computations by scheduling large
numbers of threads that execute GPU functions called kernels.
In NVIDIA CUDA [2], which we use for our implementation,
threads are organized in warps, which are groups of 32
threads that execute in lockstep. Blocks of up to 1 024 threads
share low-latency memory and can be synchronized efficiently.
A hardware scheduler hides memory access latencies by
exchanging control among warps dynamically. Accesses to
adjacent locations in memory by threads within a warp are
coalesced, i.e., translated to a single memory transaction.
Due to the lockstep execution within a warp and memory
access coalescing, performance is reduced if threads within
a warp frequently execute divergent branches or scattered
memory accesses, which poses a challenge when considering
the dynamic nature of irregular computational tasks.

1https://github.com/gpupq/gpupq

B. Irregular Computations on GPUs

In the past years, many previous works have focused on
supporting the efficient execution of irregular computations
on GPUs. Generally, most proposed approaches aim to reduce
synchronization overheads and workload imbalances among
threads. This can be achieved by fetching new tasks during
execution of a kernel [3], [4], [5] and by minimizing the use
of atomics and centralized data structures in the distribution of
tasks to the GPU threads [6], [7], [8]. Recently, microarchitec-
tural modifications to the GPU hardware have been proposed
to support higher efficiency in the implementation of task
lists [9] and the scheduling of new work during execution
of a kernel [10].

In 2011, Barrientos et al. proposed a method for k nearest-
neighbors search for database query processing on GPUs based
on per-thread heaps [11]. In 2012, Merrill et al. presented
a parallelization of the breadth-first search problem achiev-
ing asymptotically optimal work complexity [12]. Since in
breadth-first search, a frontier of newly discovered vertices
can be processed without regard for a certain ordering, the use
of priority queues is not required. In the past years, multiple
framework have been proposed that provide generic operations
for implementing graph algorithms on GPUs [13], [14], [15].

C. Considered Applications

1) Parallel Discrete-Event Simulation: In discrete-event
simulations, a modeled system is represented by state variables
that are modified by events at discrete points in simulated
time. A sequential simulation performs a simple loop: among
the currently existing set of events (pending event set, PES),
the event with the lowest timestamp is selected and executed.
During execution, further events may be added to the PES.
This process is repeated until the PES is empty or a termination
condition is met. Since individual events may be associated
with only marginal computational costs, an efficient priority
queue design is crucial to achieve reasonable performance.

In parallel discrete-event simulations [16], the model is
partitioned into logical processes (LPs) that are executed on
separate processor cores and maintain a separate PES each.
Events are exchanged among LPs to reflect the interactions in
the modeled system. To maintain the causal ordering among
events, the model time is synchronized across LPs.

Frequently, parallel discrete-event simulators are bench-
marked using the PHOLD model [17], in which a fixed set
of simulated entities exchanges messages. When an entity
receives a message, the message is sent to a random entity
after being delayed by a random amount of simulated time.
This behavior is implemented as follows: an initial population
of events is enqueued into the PES. During execution of an
event, a new event is created with a time delta and a receiv-
ing simulated entity drawn from random distributions. Since
each event requires only minor computations and interactions
among entities are frequent, the PHOLD model exercises the
core components of the simulator, i.e., the priority queue
implementation and the synchronization mechanism.

2) A* Path Search: The A* algorithm [18] is an extension
to Dijkstra’s algorithm for finding shortest paths in a graph. To
reduce the number of considered vertices, A* applies a user-
supplied heuristic to select the candidate vertex that minimizes
the estimated distance to the destination vertex. The state of a
search is kept in two main data structures: the open and closed
list. The open list holds all discovered vertices that have not
been examined yet. Vertices are assigned a cost comprised of
the distance from the source vertex and the estimated distance
to the destination according to the heuristic. In each iteration,
the vertex v with the lowest cost is examined: neighbors of
v that are not in the closed list are stored in the open list,
and v is stored in the closed list. Pointers link vertices to their
neighbors with the lowest cost. Once the destination vertex has
been examined, the shortest path is traced backwards using the
neighbor pointers. Typically, the open list is a priority queue.

D. Priority Queue Design

A priority queue is a data structure that supports the
operations enqueue, i.e., inserting an item with a priority, and
dequeue, i.e., extracting the highest-priority item.

1) Priority Queues on CPUs: A variety of previous
works [19], [20], [21] evaluated priority queues using synthetic
benchmarks or concrete applications [22]. Generally, linear
data structures such as linked lists were found to perform well
only for miniscule queue lengths up to around 50 items. At
larger item counts, while the conclusions vary, heaps, splay
trees [23] or more complex proposals such as the calendar
queue [24] or ladder queue [25] achieved highest performance.

To handle increasingly large item counts, a number of
parallel priority queues have been proposed. Due to our
focus on single-GPU execution, we omit approaches targeting
distributed memory. The general ideas are: taking into account
the cache hierarchy of CPUs [26], a separation of items into
fully sorted high-priority items and lower-priority items with
partial sorting [26], [27], decoupling of enqueue and dequeue
operations [28], and splitting of a global queue into smaller
segments considered individually [29], [30].

2) Parallel Priority Queues on GPUs: In 2012, He et al. [1]
proposed a generic parallel priority queue design for GPUs.
The queue allows for bulk enqueue and dequeue operations at
the same time. The queue is structured similarly to a binary
heap, but holds multiple items per node. Heap operations

0 1 2 3

0 0 1 2

Extract

4 5 6 7

3 3 4 5

New Root

8 9

6 7

Insert

0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 3 4 5 6 7

0 1 2 3 4 5

3 4 0 1 3 7

Insert Buffer
0 1 2 3

0 2 5 6

Root Node

Fig. 1. Joint enqueue/dequeue operation in the parallel heap.

can be performed in parallel to an application’s operations
on the dequeued items. Enqueue and dequeue operations are
performed at the same time. This is accomplished by merging
the root node and the newly enqueued items into a sorted
buffer, dequeuing the smaller half, and retaining the larger half
as the new root node (cf. Figure 1). Now, the heap property
is restored over multiple enqueue-dequeue cycles by merging
newly enqueued items with existing items downwards along
the heap levels. The required merging steps can be parallelized
across multiple heap nodes.

Some previous works described GPU-based priority queues
when proposing methods for parallel discrete-event simula-
tion: In 2010, Park et al. presented a GPU-based simulator
that stores all LPs’ events in a global array. In each iteration,
events that are ready to be processed are marked. After a
thread identifies the earliest event of an LP, the event is
executed. Event management is simplified by the assumption
that each event creates exactly one new event. Thus, a newly
created event can take the place of its predecessor without
the need to determine a storage position and without mutual
exclusion among threads. We omit some later works that make
the same assumption [31], [32]. Wenjie et al. organize events
in a two-dimensional structure [33]. In their approach, each
new event is placed in a randomly selected column, linked
lists connecting each LP’s events in timestamp order. Both
Zhen et al. [34] and Andelfinger et al. [35] store each LP’s
events in a separate array. Parallel access to an LP’s queue
is performed using atomic operations. In [35], the number of
simulated entities assigned to each LP is adapted to balance
idle threads and the cost of queue operations.

Works applying priority queues for shortest path problems
on GPUs frequently focus on the single-source shortest path
problem [36], [37], [38], in contrast to the independent source-
destination pairs considered in our work. A focus of these
previous works is on item deduplication. A number of previous
works considered the execution of an individual search on a
GPU [39], [40]. Zhou et al. [41] use multiple thousand binary
heaps to hold intermediate results. The following previous
works consider the parallel execution of multiple searches
on a GPU. We omit previous works that do not describe the
queue implementation. Bleiweiss performed A* search on up
to 340 vertices, processing up to 115 600 searches in paral-
lel [42]. Priority queues were implemented as circular buffers
and implicit heaps, with heaps achieving best performance.
Demeulemeester et al. [43] followed their A* implementation.
Silva et al. performed up to 300 000 A* searches in parallel
on graphs of 400 vertices [44], implementing priority queues
as implicit heaps.

III. CONSIDERED PRIORITY QUEUE DESIGNS

In the following, we describe the considered queue variants.
For each queue, we state the thread assignment, i.e. the number
of GPU threads operating on each queue. An overview of the
memory layout of all queue variants is given in Figure 2.

1 2 3 4 7 5 6

H I

3 5 4 1 2

I H...

1

n

...

LP

(a) Circular buffers

1 2 3 4 7 5 6

I

1 2 3 5 4

I...

1

n

...

LP 1

2

4

3

1

2 3

(b) Implicit heaps

7 5 6

I

3 4 1 2

free

5 4

I

2 3 1

free...

1

n

...

LP 1

2

3 4
2

1 3

(c) Splay trees

71 51 61 52 42

I
11 12 21

22 31 32 41

(d) Parallel heap

Fig. 2. Considered queue implementations. Dark gray items have already
been enqueued.

A. Circular Buffers

In this queue design, a circular buffer (CB) is used to store
the items pertaining to each single LP linearly in a sorted
fashion. Each buffer maintains pointers to the first item in the
buffer and the position of the next new item. At first, new items
are appended without sorting to the end of the buffer. In the
following, we consider the enqueue operation for an item to
be finished once the item resides in the correct position in the
data structure. The required sorting step is performed before
further items are dequeued from the buffer. We consider the
following approaches:

Insertion Sort (CB-SEQ): Each new item is enqueued by
linearly traversing the existing items back-to-front or front-to-
back, moving items of lower priority by one position until the
correct position of the new item is found. Thread assignment:
1 thread per buffer.

Insertion Sort, Single Pass (CB-SEQ-SP): Several – in
our implementation eight – new items are sorted and stored
in a temporary cache located in low-latency memory. Now,
the existing items are linearly traversed front-to-back, each
thread handling one buffer. Contrary to CB-SEQ, all items to
be enqueued are processed in a single pass over the circular
buffer. However, while CB-SEQ terminates once the insertion
position is reached, CB-SEQ-SP traverses the entire circular
buffer. At each position, the new item in the buffer is the

INPUT: Q; e; s; k; t
Q0 ← −∞;Qs ←∞; i← s− k + 1
insert← False; shared finished← False
while i > −k+1 and finished == False do

for j ∈ {i, .., i+k−1} in parallel do
c← dummy; synchronizeThreads()
if j > 0 then

if c > e then copy← True; break
if j == s or Qj > e then

insert← True; insertpos← j
if t == k − 1 then finished← True
if copy == True then Qj ← c

synchronizeThreads()
if finished == True then break

i← i− k
if t == 0 and (s == 0 or Q0 > e) then

insert← True; insertpos← 0
synchronizeThreads()
if insert == True then Qinsertpos ← e

Symb. Description
Q Queue as sorted list
Qi Item at index i
e Item to be enqueued
s First empty Q index
k #Threads in the block
t Thread idx ∈{0,k−1}

Fig. 3. Parallel insertion algorithm (CB-PAR).

0 1 2 3 4 5 6 7

−∞ 7 9 11 12 15 ∞

−∞ 7 9 10 11 12 15 ∞

Input

Output

Fig. 4. Enqueuing ’10’ using CB-SEQ or CB-PAR as in Alg. III-A. Each
arrow shows where an input item considered by a thread is stored in the output
array. CB-SEQ performs these steps sequentially using a single thread, with
CB-PAR, thread block size k steps are executed at once.

higher-priority item of the existing item and the highest-
priority item in the cache. The other item is inserted into the
cache. Thread assignment: 1 thread per buffer.

Insertion Sort, Parallel (CB-PAR): We propose a simple
parallelization of the enqueue operation. Each buffer is han-
dled by an entire thread block of configurable size k. For
each new item, the buffer is linearly traversed back-to-front or
front-to-back with a step size of k. We describe the enqueue
process for back-to-front: at step i, thread t compares the item
at positions k × i + t (current) and k × i + t − 1 (left) with
the new item (new). In case new is of higher priority than
current and left, left is moved to the position with the next
higher index. In case new is of lower priority than current
and of higher priority than left, new is stored at the position
of current. In case both current and left have lower priority
than new, no action is taken. Read and write accesses to items
are separated by barrier synchronizations, i.e., it is enforced
that all threads must have completed the read operation at
the current position before the subsequent write accesses are
performed. In effect, CB-PAR performs the copying operations
on block granularity, in contrast to the thread granularity of
CPU-SEQ. Pseudo-code is provided in Algorithm III-A. An
enqueue operation example is displayed in Figure 4. Thread
assignment: k threads per buffer.

B. Traditional Tree-Based Queue Variants

Implicit Heap: Each LP’s items are stored in an implicit
binary heap. After an iteration, new items are appended at the
bottom of the heap and the heap property is restored. After
the highest-priority item is dequeued, the last item of the heap
becomes the new root. Now, items are swapped downwards

until the heap property is restored. As in the above approaches,
the fact that items of an implicit heap are packed tightly in
memory allows us to efficiently store each heap in a small
array per LP. Thread assignment: 1 thread per heap.

Splay Tree: Splay trees, proposed by Sleator and Tar-
jan [23], are binary search trees that heuristically adjust to
the access patterns to the tree’s items. Contrary to implicit
heaps, splay trees are typically implemented as pointer-based
data structures. We ported the C implementation by Sleator2

to CUDA. Since dynamic memory allocation on the GPU
is extremely expensive, we implemented a simple next fit
allocation scheme ([45], page 453): a call to malloc_()
performs a linear search in a circular buffer and returns the
first unused item. A pointer to the new item is stored to begin
subsequent searches after the position of the new item. A call
to free_() simply marks the corresponding item as unused.
Thread assignment: 1 thread per heap.

C. Parallel Heap

As a priority queue targeting GPUs explicitly, we imple-
mented the parallel heap according to He et al. [1]. We
implemented the required merging steps using the moderngpu
library3, which performs sorting based on parallel mergesort.
Contrary to the previous queue designs, the parallel heap is
designed to handle large item counts using bulk operations.
Thus, we handle items from all task instances, i.e., all simu-
lated entities or parallel A* searches, using a single queue. To
still determine the highest-priority item for each task instance,
we adapted the algorithm for dequeuing items from the root
node: after sorting the merged buffer, the smallest item per
task instance is marked. We parallelized this step using atomic
operations for the interaction among threads. Subsequently,
all marked items are dequeued from the queue. During the
merging step, which dominates the heap’s runtime, the thread
assignment is managed by the moderngpu library.

IV. MEASUREMENTS

A. Experimental Setup

We performed our experiments on a system equipped with
an 8-core Intel Core i7-6700 processor, 16 GiB of RAM using
an NVIDIA GeForce GTX 1060 with 6 GiB of GDDR5 RAM
and 1280 CUDA cores clocked at up to 1809 MHz. Prelim-
inary experiments were performed on an NVIDIA GTX 980
Ti with similar results. We report averages of three runs with
95% confidence intervals. Experiments with CB-SEQ and CB-
PAR were executed both with back-to-front and front-to-back
traversal of the circular buffers. Since applications can easily
select the preferable direction using runtime measurements,
we report the results achieved with the higher-performing
direction for each parametrization.

Parallel discrete-event simulation: To synchronize the
model time across simulated entities, we implemented the
YAWNS algorithm [46], which executes two alternating steps:

2www.link.cs.cmu.edu/link/ftp-site/splaying/top-down-splay.c
3https://github.com/moderngpu/moderngpu

first, the minimum timestamp tm among the remaining events
is determined. On the GPU, this step is performed in logarith-
mic time using parallel reduction. Event execution requires a
configurable lookahead value l, which is a lower bound on
the delta between an event’s timestamp and the model time
at its creation. For each simulated entity, the earliest event is
executed in case its timestamp is below tm + l.

The execution of an event is comprised of drawing two
uniformly distributed random numbers u1, u2 using CUDA’s
default random number generator XORWOW. u1 is trans-
formed to an exponential variate x with rate parameter λ using
the inverse transform: x := −ln(u1)λ−1. Given the current
model time t and the number N of entities, a new event is
created at timestamp tm+ l+x, targeting entity bu2Nc. When
decreasing λ, events become more sparse in model time and
the number of executable events per iteration decreases.

Events pertaining to a simulated entity reside in a separate
priority queue. During execution of events, each GPU thread
acts on a single simulated entity, i.e., if a simulated entity has
no events with timestamps below tm + l, the corresponding
thread remains idle. Since no conditional statements are re-
quired during the event’s execution, threads do not diverge.
Previous works have proposed sorting events to efficiently
support divergent event handlers (e.g., [47]).

A* path search on grids: We focus on quadratic grids
of 64×64 up to 1 024×1 024 cells, performing as many
parallel searches as possible given the graphics memory limits.
Such scenarios can be found in agent-based simulation and
multi-agent systems. We limited the grid size so that at the
largest considered size, a reasonable number of searches can
still be performed in parallel. On a grid of side length l,
we place l2×d quadratic obstacles uniformly at random, d
being a configurable parameter. The obstacle side length is
an exponential variate with parameter η, while enforcing a
minimum size of 1. Source and destination cells are chosen
uniformly at random on non-obstructed cells on the grid.

The open list is a priority queue of cells to be visited.
Contrary to PHOLD, we dequeue a configurable number n of
items at once. Since searches are performed separately, items
are not exchanged among priority queues.

As the heuristic guiding the selection of the next candidate
cells, we use the minimum distance between two cells on a
grid: h =

√
2dmin + dmax − dmin, with dmin and dmax being the

minimum and maximum of the x and y distance between the
current cell and the destination. Figure 5 shows two finished
searches, visualizing the found paths and the visited cells.

Since we focus on relatively small grids, one thread block
handles each search. Using multiple blocks and large numbers
of threads for each search could increase the performance for
large grids, but would shift the focus of our evaluation away
from enqueue operations towards item deduplication across
threads. Since synchronization of memory accesses within a
thread block can be performed during a kernel execution, in
our implementation, threads can interact without temporarily
yielding control to the CPU. In each iteration, we dequeue the
n cells with the lowest f value from the open list, f being

Fig. 5. Two A* searches on a 256×128 grid (cropped to conserve space;
all measurements were performed on quadratic grids). White lines: shortest
paths, dark areas around paths: visited cells. While the closed list contains
all visited cells, each open list contains all unvisited neighbors around the
already visited cells around the open list’s contour. The figure illustrates the
potentially large memory demand of the closed list.

the sum of the distance from the source to the current cell and
the estimated distance from the current cell to the destination.
Groups of 8 threads examine each cell’s neighborhood. The
grid is held in texture memory to benefit from caching based
on spatial locality. To limit the degrees of freedom in our
measurements and to focus on the performance of the priority
queue implementations, we perform our experiments with a
fixed n of 8 (i.e., 64 threads per block). The thread block size
during priority queue operations is configured separately.

In each iteration, each thread stores up to one new unob-
structed cell in a buffer. Newly found cells are enqueued in the
open list. Lookup tables are maintained to efficiently discard
cells already in the open or closed list.

The memory demands of the A* search limit the number of
parallel searches. By using 2-byte half-floats to store distances,
we reduced the memory requirements to 16 byte per queue
item. The data structures with the largest memory requirements
are the closed lists, which can grow close to the overall grid
dimensions in cases where no path exists between source and
destination, and the lookup tables for avoiding duplicate work.

B. Application Performance

In the following, we present measurement results com-
paring the priority queue implementations for discrete-event
simulations and A* path searches. The presentation of the
measurement results is structured with reference to three key
performance-determining aspects:

1. Occupancy of the GPU’s hardware resources. Large
numbers of warps are required to exploit the GPU’s cores
and to enable hiding of memory access latencies.

2. Thread Divergence within a warp. Conditional branches
taken only by a subset of threads are executed by all threads,
discarding the results of inactive threads.

3. Memory Accesses not served from caches. If there are
insufficient warps to hide memory access latencies, warps may
stall for multiple hundred clock cycles on a memory access.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 1 4 16 64 256 1024 4096 16384

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-PAR32
CB-PAR64

CB-PAR128
CB-PAR256

Fig. 6. PHOLD performance of the circular buffer parallel insertion sort with
1 024 LPs and λ = 10−3, varying the number of threads per block acting on
a queue. Due to the small difference between configurations, 32 threads per
block were used in all further experiments.

The differences in observed performance among the queues
result from the tradeoffs among the three aspects in the queue
designs, in light of a given scenario.

1) Parallel Discrete-Event Simulation: We measured the
performance of discrete-event simulation of the PHOLD model
with 1 024 and 32 768 simulated entities, varying the average
number of events per LP. The largest considered number of
events across all LPs was 6.7×107. The number of events
that can be processed in parallel depends strongly on the
ratio between the lookahead and the rate parameter λ of
the exponential distribution. We configured a fixed lookahead
of 10 units of simulated time and varied λ. The considered
parameter combinations were chosen according to our previous
works in GPU-based simulation [35], [48] to cover cases of
low utilization where the GPU could be outperformed by
a single CPU core, up to configurations approaching full
GPU utilization. Initially, events with timestamps according to
the configured exponential distribution are assigned uniformly
at random to LPs. Each configuration was terminated when
60 seconds wall-clock time or 220 × 1000 executed events
were reached. The key performance metric in discrete-event
simulation is the number of events executed per second wall-
clock time (event rate).

Block Size: We first consider the number of threads per
block (block size) used when performing queue operations.
For CB-SEQ, CB-SEQ-SP, heaps, and splays, we observed no
substantial dependence of the performance on the block size.
Thus, a block size of 256 threads was used in all experiments.
With CB-PAR, the block size determines the number of
threads operating on each queue. With larger block size, more
items of each queue are read and written in parallel, while
occupying more hardware resources per queue and increasing
the synchronization overhead among threads. Figure 6 shows
our measurement results with 1 024 LPs and λ = 10−3,
varying Events per LP. We see that for item counts of 256
and below, 32 threads per block achieved highest performance,
while for larger numbers of events per LP, using 64 threads
per block was beneficial. However, the benefit is slight and in
our experiments with larger LP counts, 32 threads per block
achieved the highest performance in most cases. Thus, all
remaining runs were performed at 32 threads per block.

Overall Performance: Figure 7 compares the discrete-event

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 1.6e+07

 1.8e+07

 1 4 16 64 256 1024 4096 16384

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(a) λ = 10−1

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 1 4 16 64 256 1024 4096 16384

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(b) λ = 10−3

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 64 128 256 512 1024 2048 4096 8192 16384

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(c) λ = 10−5

Fig. 7. Event rates achieved for PHOLD with 1 024 LPs. In general, the
CB variants perform best for low queue lengths, but for larger queue lengths,
they are outperformed by the heap variants. CB-PAR shows good performance
because there are only 1 024 queues. With a small λ, more Events per LP are
needed to achieve the same event density and simulation performance.

simulation performance across the queue variants for 1 024
LPs. The parallel heap will be evaluated separately. Generally,
since the number of concurrently executable events depends
on the event density in model time, higher events per LP
increase the performance. However, the increase in the cost
of queue operations at some point outweighs the increase
in parallel event executions. Above a certain event count
threshold, the measurement results adhere to the expected
asymptotic behavior of the queue variants: the performance
with circular buffers diminishes roughly linearly with the
events per LP, while the tree-based variants show only minor
decreases in performance, indicating the logarithmic cost of
their queue operations. With 1 024 LPs and all configured
values of λ, the circular buffer with parallel insertion achieved
high performance up to about 256 events per LP. Above
these event counts, the tree-based variants achieved highest
performance. The sequential approaches based on circular
buffers performed best at up to 16 events per LP. With the
very low event density in simulated time with λ = 10−5, all
absolute event rates are quite low. We have previously shown

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 1 4 16 64 256 1024

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(a) λ = 10−1

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 1 4 16 64 256 1024

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(b) λ = 10−3

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 64 128 256 512 1024 2048

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(c) λ = 10−5

Fig. 8. Event rates achieved for PHOLD with 32 768 LPs. While the results
are similar to Figure 7, here CB-SEQ outperforms CB-PAR across a wide
parameter range, since CB-SEQ achieves higher utilization at large numbers
of queues. The results of the parametrization from (a) marked with a rectangle
are discussed in more detail in Table I.

that optimistic synchronization can improve performance in
such situations [48].

With 32 768 LPs (cf. Figure 8), due to the increase in
parallelism, the absolute event rates increase substantially. The
curves maintain the general shape of the previous results.
However, at λ = 0.1, CB-SEQ increasingly outperform the
other priority queue variants up to about 128 items per LP.
CB-PAR performed best only in rare cases. Again, when
approaching the largest feasible event count given the memory
capacity, implicit heaps achieved highest performance. The
additional memory requirements for memory allocation with
splay trees limited the events per LP to 1 024.

In Table I, we explore the causes for the observed results
using metrics from profiling runs for that parametrization
using the CUDA profiler nvprof. We focus on the kernel
that performs the enqueue operation, which dominates the
runtime with most queue variants. For the comparison, we
selected the results marked by a rectangle in Figure 8 (a), since
the queue implementations achieved similar performance for
this parametrization, highlighting the differences in the causes

for the observed performance. To cope with the overhead of
profiling, the profiling runs were terminated after 220 events
for DRAM Transactions, and after 10×220 events for the other
profiling metrics.

Due to the additional costs of splay operations when de-
queuing items, the runtime with splay trees is not as strongly
dominated by the enqueue step.

The metrics’ definitions are provided in Table II, taken
from the CUDA programming guide [2]. The Relative Cost
of Enqueuing is the fraction of overall execution time spent
in the kernel that performs the enqueue operation. Theoretical
Occupancy shows how many warps could fit in the limited
number of GPU registers, while Achieved Occupancy shows
the average number reached at execution time. Both values
are relative to the maximum number supported by the GPU.
Frequent divergent branches reduce the Warp Execution Effi-
ciency, as threads that do not take a branch are passive. We
instrumented the code to derive the number of DRAM Trans-
actions per Executed Event and the number of Comparisons
per Executed Event. These metrics are determined across an
entire run, not only for the enqueue step. DRAM Transactions
per Executed Event shows how frequently the queue has to
perform memory accesses, which in addition to indicating
algorithmic properties is subject to caching and coalescing.

Occupancy: Since circular buffers with sequential insertion
sort (CB-SEQ) schedule only one thread per queue, whereas
circular buffers with parallel insertion sort (CB-PAR) schedule
32 threads per queue, the theoretical and achieved occupancy
with CB-SEQ is much higher than with CB-PAR.

Thread Divergence: With CB-PAR, the threads within a
warp perform nearly the same steps. Hence, CB-PAR achieves
much higher warp efficiency than CB-SEQ. Heaps achieve
the highest warp execution efficiency. Since the heap depth
increases only logarithmically with the number of items, there
is only little variance across threads in the traversed number
of items. Since at each depth, all threads compare a parent
node with its children and potentially swap two nodes, thread
divergence is low. In contrast, since in the worst case, CB-
SEQ, CB-SEQ-SP, and CB-PAR consider all items in the
queue, the potential for thread divergence is high. Due to the
divergent splay operations depending on the access patterns to
the stored items, splays achieve much lower warp efficiency
than heaps.

Memory Accesses: Due to the smaller number of item
comparisons required, heaps and splays require much fewer
overall instructions than the other queue variants. Neverthe-
less, CB-SEQ outperformed heaps, demonstrating the tradeoff
between caching of memory accesses and asymptotic behavior.
Figure 9 shows DRAM Transactions per Executed Event when
varying the number of events per LP. Since in CB-SEQ, each
thread iterates linearly over adjacent items, most item accesses
can be served from the cache. In an implicit heap, the offset
between parent and child nodes increases exponentially with
the heap depth, resulting in frequent cache misses once parent
and child nodes reside in separate cache lines. Accordingly,
DRAM Transactions per Executed Event is lower with CB-

TABLE I
PROFILING METRICS FOR ONE ITEM ENQUEUE OPERATION IN PHOLD WITH 32 768 ENTITIES, 128 EVENTS PER LP AND λ = 0.1. ALL CIS ARE <1%

Metric CB-SEQ CB-SEQ-SP CB-PAR Heaps Splays
Relative Cost of Enqueuing 0.78 0.84 0.80 0.69 0.43

Instructions Executed 1.23×107 1.85×107 1.37×107 6.05×105 2.89×106
Instructions per Cycle 0.81 0.93 0.90 0.04 0.20

Theoretical / Achieved Occupancy 1.0 / 0.43 1.0 / 0.24 0.5 / 0.24 1.0 / 0.97 0.75 / 0.65
Warp Execution Efficiency 0.17 0.76 0.78 0.83 0.18

Global Hit Rate 0.70 0.48 0.77 0.28 0.35
DRAM Transactions per Exec. Event 48.83 89.72 55.92 66.16 86.27

Comparisons per Exec. Event 63.94 97.36 129.30 12.77 26.35
Event Rate 2.61×107 1.85×107 2.76×107 2.04×107 1.49×107

TABLE II
DEFINITIONS OF CUDA PROFILING METRICS [2]

Metric Description
Theoretical Occupancy Max. num. of warps supported per multiprocessor

Achieved Occupancy Ratio of avg. active warps per active cycle to
max. num. of warps supported on a multiprocessor

Warp Exec. Efficiency Ratio of avg. active threads per warp to max. num.
of threads per warp supported on a multiprocessor

DRAM Transactions Device memory read/write transactions
Global Hit Rate (Cache) hit rate for global loads

SEQ for small numbers of events per LP. At larger event
counts, the benefit of CB-SEQ’s more frequent cache hits is
dwarfed by the linear dependence of the overall item accesses
on the number of events per LP. The tradeoff between caching
and the number of comparisons is also visible in the Global
Hit Rate and Comparisons per Event metrics for CB-SEQ and
heaps in Table I. We assume that the low Executed IPC of
heaps is a result of the frequent cache misses.

Splays perform larger numbers of comparisons than heaps,
but require fewer DRAM transactions. We suspect that the
cause is that in contrast to the rapidly increasing offset between
parent and child nodes in implicit heaps, in our pointer-based
splay implementation, parent and child nodes may still reside
in the same cache line independently of the tree depth.

Comparing the DRAM transactions between CB-SEQ and
CB-PAR shows the effects of the coarser granularity of CB-
PAR: CB-SEQ terminates once the insertion position has
been found, whereas CB-PAR operates on a granularity of 32
threads, i.e., typically, a number of items will unnecessarily
be considered.

Parallel Heap: Contrary to the previous queue variants,
the parallel heap is intended for bulk enqueue and dequeue
operations on large item counts and thus maintains the heap
property across all LP’s items. As described in Section III-C,
if all events are stored in a single queue, an additional step is
required to select the earliest event per LP. In our experiments,
this step required around 10% of the total runtime. As shown
on an example in Figure 10, the parallel heap performance
was substantially lower than the other queue variants.

We additionally explored the raw performance of the par-
allel heap under idealized conditions by dequeuing all items
from the root node in bulk. The same number of new items
is then created according to PHOLD. Figure 11 shows mea-
surement results under these idealized conditions for λ = 0.1.
The parallel heap achieves rates up to 1.52×108 items per

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 32 64 128 256 512D
R

A
M

 T
ra

n
s
.
p
e
r

E
x
e
c
.
E

v
e
n
t

Events per LP

CB-SEQ
Heaps

Fig. 9. DRAM transactions per executed event, PHOLD with 32 768 LPs,
λ = 10−1. While the linear item accesses of CB-SEQ frequently request
cached items, the increasing spread between parent and child nodes in the
implicit heaps results in frequent cache misses. Still, the heaps’ logarithmic
dependence of the item accesses on the item count leads to fewer DRAM
transactions above 256 events per LP.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 1 4 16 64 256 1024

E
v
e
n
t
R

a
te

 [
E

v
e
n
ts

/s
]

Events per LP

Items per Heap Node: 32768
65536

131072
262144

Fig. 10. PHOLD performance of the parallel heap with 32 768 LPs, λ = 0.1.
Because this heap is working at a node granularity of a large number of items
and puts all items in a single heap, the changes in effort are more discrete than
in other queues, which results in more jagged curves. The overall performance
is substantially lower than with the other considered queues.

second, demonstrating its potential for applications allowing
bulk operations. Still, with larger numbers of heap nodes, the
performance decreases below the level achieved using the best-
performing of the other queue variants. We cannot conclude
whether the limited performance of the parallel heap could be
improved by optimizations to our implementation or whether
the parallel heap is inherently unsuited for the considered small
item counts per entity. Since the computational cost of event
handling in PHOLD is low, we did not implement parallel
execution of enqueue and dequeue operations with the applica-
tion code. Applications with large item processing costs would
benefit from executing these steps in parallel. Future work
could consider a finer-grained parallel heap implementation to
support multiple parallel heaps concurrently, e.g., using one
thread block per parallel heap.

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1 4 16 64 256 1024

It
e
m

s
 P

ro
c
e
s
s
e
d
/s

Number of Populated Heap Nodes

Events per Heap Node: 262144
32768
1024

Fig. 11. Performance of the parallel heap for bulk operations adapted to the
granularity of the heap. Under these idealized conditions, the parallel heap
outperforms the previous approaches. However, with our implementation, this
is only the case for small numbers of populated heap nodes.

TABLE III
A* SEARCHES FINISHED PER SECOND WITH THE LARGEST FEASIBLE

NUMBER OF PARALLEL SEARCHES (PAR.) AT OBSTACLE DENSITY 0.2 AND
η = 1. ∅LEN.: AVG. QUEUE LENGTH, ∅INS.: AVG. INSERTION POSITION.

Scenario Searches per second
Size Par. ∅Len. ∅Enq. CB-SEQ CB-SEQ-SP CB-PAR Heaps Splays
642 32768 57.6 0.30 49016.2 36104.9 37088.5 35009.4 32656.0
1282 8192 114.3 0.37 10676.8 8177.7 12412.0 12436.6 11428.9
2562 2048 235.7 0.43 960.5 906.6 2620.9 2956.3 2601.8
5122 512 322.6 0.45 48.9 43.0 327.9 314.7 249.9
10242 128 532.8 0.35 3.8 3.5 41.7 40.6 24.4

2) A* Path Search: We varied the grid side length in powers
of two between 64×64 and 1 024×1 024 and configured ob-
stacle densities of 0.1, 0.2, 0.4, with exponentially distributed
sizes with η = 1 and a minimum size of 1. Since the results
were similar for the different obstacle densities, we focus on
a density of 0.2. The number of parallel path searches was
increased up to the graphics memory capacity.

Table III lists the number of path searches per second wall-
clock time achieved using the different priority queue imple-
mentations. The average open list length emerges from the
grid size, the obstacle placement and the A* implementation
(e.g., the number of open list items considered in parallel,
deduplication, and the chosen heuristic). ∅Enq. denotes the
average relative position within the priorities of the existing
items at which a new item resides. We observe that circular
buffers achieved best performance for 64×64 grids. CB-SEQ
performed best as it benefits the most from low item counts
and large numbers of parallel queues. With larger grids, queue
lengths increase and the number of parallel agents decreases.
Hence, CB-PAR and implicit heaps outperformed the other
approaches, both to a similar degree. This is consistent with
the PHOLD results, where for item counts up to about
530, CB-PAR and Heaps achieved similar performance. At
a grid size of 1 024×1 024, 128 parallel searches sufficed to
exhaust the graphics memory. Although higher absolute A*
performance might be achievable when employing more than
64 threads per search, we maintained this configuration for
comparability across grid sizes. At 1 024×1 024 cells, CB-
SEQ and CB-SEQ-SP were outperformed by more than one
order of magnitude.

The results suggest that the overall performance depends

 0

 10000

 20000

 30000

 40000

 50000

 60000

 64 256 1024 4096 16384

P
a
th

s
 p

e
r

S
e
c
o
n
d

Number of Parallel Searches

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(a) 64×64 grid.

 0

 500

 1000

 1500

 2000

 2500

 3000

 32 64 128 256 512 1024 2048

P
a
th

s
 p

e
r

S
e
c
o
n
d

Number of Parallel Searches

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(b) 256×256 grid.

 0

 50

 100

 150

 200

 250

 300

 350

 32 64 128 256 512

P
a
th

s
 p

e
r

S
e
c
o
n
d

Number of Parallel Searches

CB-SEQ
CB-SEQ-SP

CB-PAR
Heaps
Splays

(c) 512×512 grid.

Fig. 12. A* searches finished per second with 0.2×size2 obstacles. The
rightmost points are determined by memory limits and correspond to Table
III. At 64×64, CB-SEQ benefits the strongest from larger agent counts. With
grids larger than 64×64, the incline indicates further that performance gains
could be achieved with larger memory capacity.

strongly on the number of parallel searches, i.e., further
speedup would be possible given larger graphics memory
capacity. To investigate this observation further, Figure 12
shows the A* performance when varying the number of
parallel searches. The rightmost data points correspond to the
results of Table III. At 64×64 grids, CB-SEQ benefits strongly
from larger numbers of parallel searches and outperforms the
other approaches at 8 192 and 16 384 parallel searches. We
suspect that this is caused by the highly variable queue lengths
across parallel A* searches: since threads within a warp act
on separate queues and may diverge to a large degree, large
numbers of warps are required to compensate.

With 256×256 grids, the results indicate that a larger
graphics memory capacity would enable substantial perfor-
mance increases. The same trend was observed with larger
grids. With CB-SEQ as our best-performing queue for a grid
size of 64×64, we achieved an average time to completion
for a path search of 20.4µs. Bleiweiss [42] and Silva [44]
achieved similar results of about 10-20µs in 2008 and 2011,
but considering much smaller vertex counts.

C. Discussion

The measurement results showed that priority queues based
on circular buffers frequently outperformed binary heaps and
splay trees for item counts up to around 500. Whether op-
erations on individual priority queues should be parallelized
depends on the number of parallel queues. While parallel per-
queue operations more frequently achieve efficient coalesced
memory accesses, occupancy may be reduced substantially.

In discrete-event simulations, the number of items per queue
depends on the simulation model. Here, we experimented with
arbitrarily chosen item counts of up to 16 384 per queue,
and up to 6.7×107 items in total. In A* path searches, the
effective queue size emerges from the grid size, the chosen
heuristic, and the placement of obstacles. Since the open
list contains only discovered cells for which neighbors have
not been examined, with two-dimensional grids, we observed
average queue sizes of only up to about 500 items, suggesting
queues based on circular buffers. While the performance
measurements results were quite similar for the two considered
applications, future work could consider further distributions
of item priorities and different GPU architectures. During our
implementation and experimental design, some measurements
were performed on an NVIDIA GTX 980 Ti based on the
Maxwell architecture. We observed the same trends as with
the NVIDIA GTX 1060 based on the Pascal architecture used
in our final measurements.

Ideally, the implementer of a priority queue-based algorithm
should not be required to select an optimal queue variant
for each problem and instance. Autotuning approaches, which
have previously been shown to be highly beneficial in the
GPU context [49], [35], might help in selecting a suitable
queue. Switching among the insertion methods for circular
buffers comes at no runtime cost. Switching to a tree-based
design, however, would require a reorganization of the items
in graphics memory.

In discrete-event simulations, many threads may remain
idle in cases where the event density in simulated time is
low. The literature proposes two solutions: first, merging
queues of multiple simulated entities increases the probability
of having events that can safely be executed [35]. Second,
applying optimistic synchronization instead of the conservative
approach used in this paper has been shown to increase the
performance at low event densities [48].

Our A* results indicate that the graphics memory capacity
limits the performance for all but the smallest considered
problem sizes, since larger numbers of parallel agents could
utilize the GPU’s cores more fully. If, as we assumed in
our experiments, searches consider separate source-destination
pairs and thus cannot be considered in aggregate, efforts to
decrease the size of the largest data structures such as the
closed list could unlock substantial performance gains.

Future work could consider alternative memory layouts to
further increase the opportunities for memory access coalesc-
ing across problem instances. For instance, in preliminary
experiments, we achieved promising results by interleaving

the nodes of multiple separate heaps in graphics memory.

V. CONCLUSIONS

We presented a performance study of priority queues for
fine-grained parallel tasks on GPUs. Contrary to previous
works, we focused on large numbers of small-scale problem
instances as represented by the per-entity computations in
parallel-discrete-event simulations and large number of A*
path searches in the context of agent-based simulations and
multi-agent systems. The considered queue variants were sim-
ple linear circular buffers, tree-based queues with sequential
access and a GPU-specific proposal from the literature.

The overall queue performance is dominated by three as-
pects: occupancy of the GPU hardware, divergence across
threads, and uncached memory accesses. Our main obser-
vations are as follows: with circular buffers, the hardware
utilization at low numbers of parallel queues can be increased
by parallelizing individual enqueue operations using a separate
thread group per queue, at the cost of limiting the utilization at
higher numbers of queues. Due to their cache-friendly memory
access patterns, circular buffers frequently outperformed tree-
based queue variants up to about 500 items per queue for
the two considered applications. At larger item counts, due
to the logarithmic asymptotic behavior of heaps and a highly
homogeneous behavior across threads, heaps outperform the
other approaches.

Since the relative performance of the queue variants was
shown to vary substantially depending on the application
parametrization, an attractive direction for future work is the
automated selection of suitable queue variants at runtime
through autotuning. We hope that future studies and applica-
tions can benefit from our publicly available implementation.

REFERENCES

[1] X. He, D. Agarwal, and S. K. Prasad, “Design and Implementation of
a Parallel Priority Queue on Many-Core Architectures,” in International
Conference on High Performance Computing. IEEE, 2012, pp. 1–10.

[2] NVIDIA Corporation, NVIDIA CUDA C Programming Guide. Version
8.0, NVIDIA Corporation, 2017.

[3] T. Aila and S. Laine, “Understanding the Efficiency of Ray Traversal
on GPUs,” in Proceedings of the Conference on High Performance
Graphics. ACM, 2009, pp. 145–149.

[4] S. Solomon and P. Thulasiraman, “Performance Study of Mapping
Irregular Computations on GPUs,” in IEEE International Symposium
on Parallel & Distributed Processing, Workshops and PhD Forum
(IPDPSW). IEEE, 2010, pp. 1–8.

[5] S. Tzeng, B. Lloyd, and J. D. Owens, “A GPU Task-Parallel Model with
Dependency Resolution,” Computer, vol. 45, no. 8, pp. 34–41, 2012.

[6] S. Tzeng, A. Patney, and J. D. Owens, “Task Management for Irregular-
Parallel Workloads on the GPU,” in Proceedings of the Conference on
High Performance Graphics. Eurographics Association, 2010, pp. 29–
37.

[7] R. Nasre, M. Burtscher, and K. Pingali, “Atomic-Free Irregular Com-
putations on GPUs,” in Proceedings of the 6th Workshop on General
Purpose Processor Using Graphics Processing Units. ACM, 2013, pp.
96–107.

[8] C.-C. Kao and W.-C. Hsu, “An Adaptive Heterogeneous Runtime
Framework for Irregular Applications,” Journal of Signal Processing
Systems, vol. 80, no. 3, pp. 245–259, 2015.

[9] J. Y. Kim and C. Batten, “Accelerating Irregular Algorithms on GPGPUs
using Fine-Grain Hardware Worklists,” in 2014 47th Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE, 2014, pp. 75–87.

[10] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “ Dynamic Thread
Block Launch: a Lightweight Execution Mechanism to Support Irregular
Applications on GPUs,” in ACM SIGARCH Computer Architecture
News, vol. 43, no. 3. ACM, 2015, pp. 528–540.

[11] R. J. Barrientos, J. I. Gómez, C. Tenllado, M. P. Matias, and M. Marin,
“kNN Query Processing in Metric Spaces Using GPUs,” in European
Conference on Parallel Processing. Springer, 2011, pp. 380–392.

[12] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU Graph
Traversal,” in ACM SIGPLAN Notices, vol. 47, no. 8. ACM, 2012,
pp. 117–128.

[13] Z. Fu, M. Personick, and B. Thompson, “MapGraph: A High Level API
for Fast Development of High Performance Graph Analytics on GPUs,”
in Proceedings of Workshop on GRAph Data Management Experiences
and Systems, ser. GRADES’14. New York, NY, USA: ACM, 2014, pp.
2:1–2:6.

[14] J. Zhong and B. He, “Medusa: Simplified Graph Processing on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, June 2014.

[15] P. Zhang, M. Zalewski, A. Lumsdaine, S. Misurda, and S. McMillan,
“GBTL-CUDA: Graph Algorithms and Primitives for GPUs,” in 2016
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2016, pp. 912–920.

[16] R. M. Fujimoto, “Parallel Simulation: Parallel and Distributed Simula-
tion Systems,” in Proceedings of the 33nd Winter Simulation Conference.
IEEE Computer Society, 2001, pp. 147–157.

[17] ——, “Performance Measurements of Distributed Simulation Strate-
gies,” DTIC Document, Tech. Rep., 1987.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[19] W. M. McCormack and R. G. Sargent, “Analysis of Future Event
Set Algorithms for Discrete Event Simulation,” Communications of the
ACM, vol. 24, no. 12, pp. 801–812, 1981.

[20] D. W. Jones, “An Empirical Comparison of Priority-Queue and Event-
Set Implementations,” Communications of the ACM, vol. 29, no. 4, pp.
300–311, 1986.

[21] R. Rönngren and R. Ayani, “A Comparative Study of Parallel and
Sequential Priority Queue Algorithms,” ACM Transactions on Modeling
and Computer Simulation, vol. 7, no. 2, pp. 157–209, 1997.

[22] C. L. L. Hendriks, “Revisiting Priority Queues for Image Analysis,”
Pattern Recognition, vol. 43, no. 9, pp. 3003–3012, 2010.

[23] D. D. Sleator and R. E. Tarjan, “Self-Adjusting Binary Search Trees,”
Journal of the ACM (JACM), vol. 32, no. 3, pp. 652–686, 1985.

[24] R. Brown, “Calendar Queues: a fast O(1) Priority Queue Implementation
for the Simulation Event Set Problem,” Communications of the ACM,
vol. 31, no. 10, pp. 1220–1227, 1988.

[25] W. T. Tang, R. S. M. Goh, and I. L.-J. Thng, “Ladder queue: An O(1)
Priority Queue Structure for Large-Scale Discrete Event Simulation,”
ACM Transactions on Modeling and Computer Simulation (TOMACS),
vol. 15, no. 3, pp. 175–204, 2005.

[26] P. Sanders, “Fast Priority Queues for Cached Memory,” Journal of
Experimental Algorithmics (JEA), vol. 5, p. 7, 2000.

[27] S. Gupta and P. A. Wilsey, “Lock-Free Pending Event Set Management
in Time Warp,” in Proceedings of the 2nd ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation. ACM, 2014, pp. 15–26.

[28] T. Bingmann, T. Keh, and P. Sanders, A Bulk-Parallel Priority Queue
in External Memory with STXXL. Cham: Springer International
Publishing, 2015, pp. 28–40.

[29] T. Dickman, S. Gupta, and P. A. Wilsey, “Event Pool Structures
for PDES on Many-Core Beowulf Clusters,” in Proceedings of the
Conference on Principles of Advanced Discrete Simulation. ACM,
2013, pp. 103–114.

[30] H. Rihani, P. Sanders, and R. Dementiev, “Brief Announcement: Mul-
tiqueues: Simple Relaxed Concurrent Priority Queues,” in Proceedings
of the 27th ACM Symposium on Parallelism in Algorithms and Archi-
tectures. ACM, 2015, pp. 80–82.

[31] J. Sang, C.-R. Lee, V. Rego, and C.-T. King, “A Fast Implementation
of Parallel Discrete-Event Simulation on GPGPU,” in Proceedings of
the International Conference on Parallel and Distributed Processing
Techniques and Applications, 2013, p. 501.

[32] B. P. Swenson, “Techniques to Improve the Performance of Large-
Scale Discrete-Event Simulation,” Dissertation, Georgia Institute of
Technology, 2015.

[33] T. Wenjie, Y. Yiping, and Z. Feng, “An Expansion-Aided Synchronous
Conservative Time Management Algorithm on GPU,” in Proceedings of
the Conference on Principles of Advanced Discrete Simulation. ACM,
2013, pp. 367–372.

[34] L. Zhen, Q. Gang, G. Gang, and C. Bin, “A GPU-Based Simulation
Kernel within Heterogeneous Collaborative Computation on Large-Scale
Artificial Society,” International Journal of Modeling and Optimization,
vol. 4, no. 3, p. 205, 2014.

[35] P. Andelfinger and H. Hartenstein, “Exploiting the Parallelism of Large-
Scale Application-Layer Networks by Adaptive GPU-Based Simula-
tion,” in Proc. of the Winter Simul. Conf. IEEE, 2014, pp. 3471–3482.

[36] H. Ortega-Arranz, Y. Torres, D. R. Llanos, and A. Gonzalez-Escribano,
“A New GPU-Based Approach to the Shortest Path Problem,” in Int’l
Conf. on High Perf. Computing and Simul. IEEE, 2013, pp. 505–511.

[37] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-Efficient
Parallel GPU Methods for Single-Source Shortest Paths,” in Int’l Parallel
and Distributed Processing Symposium. IEEE, 2014, pp. 349–359.

[38] P. Zhang, E. Holk, J. Matty, S. Misurda, M. Zalewski, J. Chu, S. McMil-
lan, and A. Lumsdaine, “Dynamic Parallelism for Simple and Efficient
GPU Graph Algorithms,” in Proceedings of the Workshop on Irregular
Applications: Architectures and Algorithms. ACM, 2015, p. 11.

[39] J. T. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High-
Dimensional Planning on the GPU,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2010, pp. 2515–2522.

[40] C. McMillan, E. Hart, and K. Chalmers, “Collaborative Diffusion on the
GPU for Path-Finding in Games,” in European Conf. on the Applications
of Evolutionary Computation. Springer, 2015, pp. 418–429.

[41] Y. Zhou and J. Zeng, “Massively Parallel A* Search on a GPU,”
in Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, ser. AAAI’15. AAAI Press, 2015, pp. 1248–1254.

[42] A. Bleiweiss, “GPU Accelerated Pathfinding,” in Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hard-
ware. Eurographics Association, 2008, pp. 65–74.

[43] A. Demeulemeester, C.-F. Hollemeersch, P. Mees, B. Pieters, P. Lambert,
and R. Van de Walle, “Hybrid Path Planning for Massive Crowd
Simulation on the GPU,” in International Conference on Motion in
Games. Springer, 2011, pp. 304–315.

[44] A. Silva, F. Rocha, A. Santos, G. Ramalho, and V. Teichrieb, “GPU
Pathfinding Optimization,” in 2011 Brazilian Symposium on Games and
Digital Entertainment (SBGAMES). IEEE, 2011, pp. 158–163.

[45] D. E. Knuth, The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Redwood City, CA, USA: Addison Wesley
Longman Publishing Co., Inc., 1997.

[46] D. M. Nicol, “The Cost of Conservative Synchronization in Parallel
Discrete Event Simulations,” Journal of the ACM, vol. 40, no. 2, pp.
304–333, 1993.

[47] G. Kunz, D. Schemmel, J. Gross, and K. Wehrle, “Multi-Level Paral-
lelism for Time- and Cost-Efficient Parallel Discrete Event Simulation
on GPUs,” in Proceedings of the Workshop on Principles of Advanced
and Distributed Simulation. IEEE Computer Society, 2012, pp. 23–32.

[48] X. Liu and P. Andelfinger, “Time Warp on the GPU: Design and
Assessment,” in Proceedings of the 2017 ACM SIGSIM Conference on
Principles of Advanced Discrete Simulation. ACM, 2017, pp. 109–120.

[49] M. Tillmann, T. Karcher, C. Dachsbacher, and W. F. Tichy, “Application-
Independent Autotuning for GPUs,” in International Conference on
Parallel Computing, 2013, pp. 626–635.

