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Abstract

The current thesis reports the application of light-induced ligation protocols

to prepare well-defined polymeric structures on the surface of nanodiamonds

(NDs). First, two light-triggered grafting-to strategies for the preparation

of polymer coated ND are introduced. Subsequently, the photochemical

synthesis of fluorescent glyco single-chain nanoparticles (SCNPs) and their

application for ND coatings is described.

In the first part, the photoenol Diels-Alder ligation is introduced as a synthetic

tool for the fabrication of polymer functional NDs (Chapter 3). Detonation

NDs were modified with o-methyl benzaldehyde (photoenol) groups. The

functionalization progress was monitored by ATR FTIR spectroscopy and

X-ray photoelectron spectroscopy (XPS). Upon UV irradiation, maleimide

terminal polymers were grafted to NDs. The polymer coated NDs were cha-

racterized in-depth using ATR FTIR spectroscopy, XPS and thermogravimetric

analysis (TGA). The photo-grafting efficiency increased with decreasing mo-

lecular weight of the polymer. Importantly, the photo-grafting of mannose

glycopolymers allowed for the generation of nanoparticles that bind to the

lectin concanavalin A (ConA).

In the subsequent chapter (Chapter 4), the Diels-Alder reactivity of thermally

annealed detonation NDs was exploited for the light-induced grafting of pho-

toenol terminal polymers. A thermal annealing procedure in vacuum allowed

for the generation of sp2 carbon surface structures on NDs under retention

of the diamond core as shown by XPS and X-ray diffraction (XRD) analy-

sis. A novel photoenol functional chain transfer agent (CTA) was designed

for the preparation of polymers with photoactive endgroups. Subsequent

reversible addition fragmentation chain transfer (RAFT) polymerization aff-

orded o-methyl benzaldehyde terminal polymers. Dienes generated by pho-

toenolization of the polymeric endgroups were trapped by the surface of the

graphitized NDs. In agreement with the results obtained in the previous

chapter, a chain-length dependency of the grafting efficiency was observed.
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Importantly, the co-grafting of different polymers allowed for the generation

multi-functional surfaces on NDs.

The final part of the thesis highlights the controlled immobilization of gly-

copolymeric nanoparticles onto HPHT NDs (Chapter 5). Mannose based

glycopolymers were synthesized via RAFT polymerization and modified with

tetrazole and alkene groups. Glyco SCNPs were prepared by UV irradia-

tion of highly diluted glycopolymer solutions that led to the formation of

fluorescent crosslinks as a result of nitrile imine mediated tetrazole-ene cy-

cloaddition (NITEC) reactions. A novel method to present size exclusion

chromatography (SEC) data for SCNPs as hydrodynamic diameter plots was

introduced. The obtained fluorescent glyco SCNPs were adsorbed onto HPHT

NDs. The surface coverage could be adjusted by altering the SCNP concen-

tration as shown in a photometric adsorption assay as well as with TGA.

Importantly, the hybrid particles were non-toxic, fluorescent and bind to

the lectin ConA. As a proof of concept, the hybrid particles were imaged in

macrophages using confocal fluorescence microscopy.

In conclusion, the presented strategies for the modification of NDs with functi-

onal polymers expand the synthetic possibilities to generate polymeric surface

structures with novel light-induced grafting-to protocols. Furthermore, no-

vel surface morphologies, such as co-grafted polymer systems and SCNP

decorated NDs, were introduced.
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Zusammenfassung

Die vorliegende Dissertation befasst sich mit lichtinduzierten Reaktionen für

die Darstellung von polymeren Oberflächenstrukturen auf Nanodiamanten.

Zuerst werden zwei photochemische Aufpfropfverfahren zur Oberflächen-

funktionalisierung von Nanodiamanten mit Polymeren vorgestellt. Ansch-

ließend wird die photochemische Darstellung von Einzelketten-Nanopartikeln

und deren Adsorption auf Nanodiamanten beschrieben.

Im ersten Teil wurde mit der Photoenol-Diels-Alder-Reaktion für die Herstel-

lung von polymerbeschichteten Nanodiamanten gearbeitet. Zunächst wurden

Detonations-Nanodiamanten mit o-Methylbenzaldehyd-Gruppen modifiziert

und mittels IR-Spektroskopie und Röntgenphotoelektronenspektroskopie

(XPS) untersucht. Polymere mit Maleimid-Endgruppen wurden unter UV-

Bestrahlung auf die Nanodiamanten gepfropft. Die polymerbeschichteten Na-

nodiamanten wurden mittels IR-Spektroskopie, XPS und Thermogravimetrie

(TGA) untersucht. Die Anzahl gepfropfter Polymere nahm mit abnehmender

Polymer-Kettenlänge zu. Zusätzlich wurde die photochemische Beschichtung

mit Mannose-Glykopolymeren und die Bindung der resultierenden Nanopar-

tikel mit dem Lektin Concanavalin A (ConA) gezeigt.

Anschließend wurde die Diels-Alder Reaktivität von getemperten Nanodia-

manten für das lichtinduzierte Pfropfen von Polymeren untersucht. Das Tem-

pern (900 ◦C) von Detonations-Nanodiamanten unter vermindertem Druck

generierte sp2-Kohlenstoffstrukturen auf der Oberfläche. Polymere mit o-

Methylbenzaldehyd-Endruppen wurden mittels reversibler Additions-Frag-

mentierungs Kettenübertragungs (RAFT)-Polymerisation hergestellt und un-

ter UV-Bestrahlung auf die graphitisierten Nanodiamanten gepfropft. Wie im

vorigen Projekt wurde eine Kettenlängenabhängigkeit der Effizienz der Aufp-

fropfreaktionen beobachtet. Außerdem wurde das Co-Pfropfen verschiedener

Polymere zur Darstellung multifunktionaler Oberflächen untersucht.

Im letzten Projekt dieser Dissertation wurde die kontrollierte Immobilisie-

rung von Glykopolymer-Nanopartikeln auf HPHT-Nanodiamanten unter-
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Zusammenfassung

sucht. Mannose-Glykopolymere wurden mittels RAFT-Polymerisation herge-

stellt und anschließend mit Tetrazol- und Alken-Gruppen modifiziert. Fluo-

reszente Glyko-Einzelketten-Nanopartikel wurden mittels lichtinduzierter

Nitrilimin-vermittelter Tetrazol-En Cycloadditionen (NITEC) hergestellt. Die

Nanopartikel wurden unter anderem mit Größenausschluss-Chromatographie

untersucht wobei eine Analysemethode zur Bestimmung von hydrodynamis-

chen Durchmessern vorgestellt wurde. Die Glyko-Einzelketten-Nanopartikel

wurden anschließend durch Adsorption auf die Oberfläche von HPHT-Nano-

diamanten aufgebracht. Die Oberflächenbedeckung konnte gezielt eingestellt

werden, wie mit UV/VIS-Spektroskopie und TGA nachgewiesen wurde. Die

Hybridpartikel waren nicht toxisch und konnten mittels Fluoreszenzmikro-

skopie in zellulärer Umgebung lokalisiert werden.

Die hier vorgestellten Strategien erweitern die synthetischen Möglichkei-

ten polymere Oberflächenstrukturen auf Nanodiamanten zu generieren mit

zwei photochemischen Aufpfropfansätzen. Außerdem wurden neuartige

Oberflächenstrukturen, wie co-gepropfte Polymere und Glyko-Einzelketten-

Nanopartikel-Strukturen auf Nanodiamanten erzeugt.
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1
Introduction

Diamonds are renowned for their appealing appearance in gemstones and

outstanding physical properties that led to many technological applications.

The rigidity of the diamond lattice, which consists as tetrahedrally bonded

carbon atoms, is the key to outstanding hardness and high thermal conducti-

vity that is exploited for modern cutting and polishing applications.1 The

genesis of natural diamond is deep below the earth’s surface (≥ 150 km) where

high temperatures and pressures are found.2 Due to the rareness of natural

diamond, its technical synthesis was highly desirable for a long time. In 1955,

General Electric developed the high pressure high temperature (HPHT) pro-

cess, which allowed for the preparation of diamonds from graphite at 3000 ◦C

and pressures of a few 10 kbar.3 Nowadays, around 200 tonnes of diamonds

are produced per year, which is more than ten times the amount of diamond

obtained from natural sources.3

In the realm of nanotechnology, nanodiamonds (NDs) have emerged as a nano-

sized version of bulk diamond. NDs are diamond nanoparticles that occur

naturally in meteorites.4 In the early 1960s, pioneering work in the synthesis

of NDs was conducted in the former USSR.5 In 1963, the so-called detona-

tion synthesis of NDs was discovered,5 which is still of great commercial

importance since high quantities can be prepared at moderate costs.
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1. Introduction

Figure 1.1. Graphical illustration of the projects described in the current thesis. Two
light-triggered grafting-to approaches for the modification of NDs are
introduced in Chapter 3-4. In Chapter 5 the photochemical synthesis of
single-chain nanoparticles and their immobilization onto NDs is descri-
bed.

In modern material design, the use of NDs in hybrid materials, such as ND

enforced polymeric networks6 and polymer coated nanodiamonds for bio-

medical applications,7 has gained increasing interest. The development of

efficient and versatile surface modification strategies is crucial for the fabri-

cation of polymer ND hybrid materials. In general, light-induced ligation

strategies have proven to be efficient for the modification of surfaces.8 Key

characteristics are high spatial and temporal control as well as mild reaction

conditions, e.g. ambient temperature and catalyst-free. Thus, photochemical

ligations are often employed for the modification of surfaces with sensitive ma-

terials, such as biomacromolecules. In the current thesis, the photochemical

design of polymer coated NDs is explored (Figure 1.1).

In Chapter 3 and 4 light-induced ligation methods to modify NDs with po-

lymers are introduced (Figure 1.1). Two synthetic approaches, one based on

photoactive NDs and the other on photoactive polymers, are investigated

in-depth. The light-triggered grafting-to protocols were studied in terms of

efficiency, functionality and modularity. Importantly, glycopolymer functio-

nal NDs with interesting lectin binding behaviour were prepared (Chapter 3).

Furthermore, the co-grafting of different polymers to prepare multifunctional

surfaces is highlighted in Chapter 4.

In the final part of the current thesis, light-induced ligations are applied to

2



prepare fluorescent glyco single-chain nanoparticles (SCNPs) for the modifi-

cation of HPHT NDs (Figure 1.1). The detailed investigation of experimental

conditions and resulting properties allowed for the preparation of hybrid

nanoparticles with structural motifs inspired by viruses. Furthermore, the

potential of the novel glyco-ND structures for biomedical applications is

discussed.
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2
Theoretical background

The current chapter covers the theoretical background relevant to the thesis

as well as a review of relevant literature. An introduction to nanodiamonds

(NDs), their structure and properties as well as the preparation of polymer

coated NDs is given in Section 2.1. In the following section, the concept

of reversible deactivation radical polymerization (RDRP) is introduced and

reversible addition fragmentation chain transfer (RAFT) polymerization is des-

cribed in detail (Section 2.2). Photochemical ligation methods with emphasis

on applications in polymer science are described in Section 2.3. In Section 2.4,

the synthesis of mannose glycopolymers as well as their outstanding proper-

ties are highlighted. Finally, the field of single-chain nanoparticles (SCNPs) is

introduced, including current advances in SCNP preparation and characteri-

zation (Section 2.5).

2.1. Nanodiamonds

Nanodiamonds (ND) are nanoparticles with extraordinary properties, such as

high biocompatibility, stable fluorescence and surface properties that allow

their facile modification. They occur naturally, however synthetic approaches

have been developed that have led to large scale availability (Section 2.1.1).9
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2. Theoretical background

In general, the word nanodiamond describes all carbon nanoparticles with a

diamond lattice structure. Due to different natural as well as synthetic origins,

ND material can differ in particle size and shape, elemental composition,

defect centres and surface functionalities.

2.1.1. Synthesis of nanodiamonds

A variety of ND synthesis methods have been developed.10–16 However, NDs

derived from the high pressure high temperature (HPHT) and detonation

synthesis are the most commonly investigated ND materials.17 In Chapter 3

and 4, detonation NDs were employed, whereas in Chapter 5 an application

of HPHT NDs is described. Thus, detailed descriptions of the synthesis of

detonation NDs and HPHT NDs are given in the following two sections.

Detonation nanodiamonds

The detonation synthesis of NDs is based on the following:18

i) An explosion generates a shock wave that forms high temperatures and

pressures.

ii) An atmosphere of negative oxygen balance (C/O > 1) prevents full

oxidation of the explosives and allows for the segregation of carbon.

iii) The diamond crystals are formed by self-assembly of carbon atoms

stemming from the explosives.

A typical explosive used for detonation synthesis is a mixture of hexogen and

trinitrotoluene (Scheme 2.1). The detonation is performed in an enclosed

chamber leading to high temperatures and pressures that allow the formation

of diamond. After the explosion, pressure and temperature drop rapidly into

the region where diamond is thermodynamically unstable. If the temperature

is sufficiently high to allow a high mobility of carbon atoms, a diamond-

graphite phase transition occurs, generating graphitic structures on the surface

of the diamond nanocrystals. Thus, to minimize non-diamond carbon in

the detonation soot, rapid cooling of the detonation mixture is crucial.18

6



2.1. Nanodiamonds

Scheme 2.1. ND synthesis via the detonation process. During the detonation of
explosives (e.g.TNT and hexogen) in an enclosed chamber diamond
nanoparticles are formed.

Different non-oxidizing media, such as inert gas, water and dry ice, have been

employed for the detonation synthesis. The amount of diamond carbon in

the detonation soot (material resulting from detonation process) depends on

the heat capacity of the medium with the following order: gas (40 wt.%) <

water (63 wt.%) < ice (75 wt.%). However, the water synthesis is the most

attractive economic approach and thus is commonly used for the commercial

production of NDs.19

The resulting detonation soot contains the desired NDs as well as graphite

micro- and nanoparticles and contamination from erosion processes of the

reactor wall, such as iron oxides and silicon dioxide. To remove non-diamond

carbon and metallic contamination, the detonation soot is treated with acid, e.g.

nitric acid (50-67 %).18 Detonation NDs are usually around 5 nm in diameter

and form strong aggregates of up to a few hundred nanometres, which are

difficult to break down.20 Typically, a disaggregation procedure is applied

prior to usage. Different disaggregation methods have been developed, with

ultrasound assisted disaggregation being the most commmonly employed

technique. Upon high power sonication, large aggregates can be broken down

to smaller core aggregates of close to 100 nm in diameter.20 However, complete

disaggregation is not achievable, which indicates that besides non-covalent

interactions covalent bonds bridge primary particles in core aggregates. In

order to completely disintegrate the ND aggregates, harsher disaggregation

methods need to be applied. For example, stirred media milling with micron-

sized ceramic beads allows the formation of single-digit NDs.20
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2. Theoretical background

High pressure high temperature (HPHT) nanodiamonds

HPHT NDs are prepared by milling diamond microcrystals obtained from

HPHT synthesis into nanometre sized particles. The HPHT synthesis of di-

amond is traditionally employed for the synthesis of macroscopic diamond

crystals.21 The synthesis of diamond from graphite starting material is perfor-

med in a hydraulic press in the presence of metal catalysts at high pressures

(7-10 GPa) and high temperatures (1500-2200 ◦C).17 Milling of the diamond

microcrystals allows for the preparation of nanodiamonds of different si-

zes. Density gradient ultracentrifugation can be employed to separate na-

nodiamonds by size and obtain nanodiamond samples with uniform size

distributions.22 Furthermore, high energy ball milling of HPHT NDs allowed

the preparation of ultrasmall nanodiamonds (≤ 10 nm).23

2.1.2. Fluorescence properties of nanodiamonds

The presence of vacancy centres in the diamond lattice leads to stable flu-

orescence.24 The most common vacancy centre is the nitrogen vacancy (NV)

centre (Figure 2.1). The typical process to introduce NV centres entails high

energy irradiation with e.g. electrons,24,25 or helium atoms,26 followed by

vacuum annealing at high temperatures (600-900 ◦C). High energy irradia-

tion induces the formation of vacancy centres, whereas the annealing process

leads to their migration until they are trapped by a nitrogen atom.9 The NV

centre exists in a neutral (NV0) and negatively charged (NV-) state with a

Figure 2.1. Diamond unit cell with a NV center (grey: carbon, red: nitrogen, yellow:
vacancy center).
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2.1. Nanodiamonds

zero-phonon emmision at 575 nm and 637 nm, respectively.27 The vacancy

centres in NDs are highly interesting for imaging applications28 as well as

magnetic sensing29,30 and quantum computing.31 An alternative to the irra-

diation/annealing treatment is the attachment of a fluorophore to the ND’s

surface. Covalent attachment of a fluorophore to the surface leads to fluores-

cent particles that can be imaged by confocal fluorescence microscopy.32–34

Detonation NDs show intrinsic fluorescence, which is much weaker than

the fluorescence of treated HPHT NDs, yet sufficient to be used for confocal

fluorescence imaging.7,35,36

2.1.3. Biocompatibility of nanodiamonds

For biomedical applications, such as drug delivery and imaging, the absence

of any cytotoxic effects of the employed material is crucial. Several in vitro and

in vivo studies demonstrated the biocompatibility of NDs and thus showed

the high potential of ND material for biomedical applications.37

In 2007, Schrand et al. investigated the cytotoxicity of 2-10 nm large NDs in
vitro. Cell viability assays showed that NDs are not toxic to a wide variety

of cell lines (neuroblastoma, macrophage, keratinocyte and PC-12 cells) and

cells could be cultured on ND-coated substrates without influencing the cell

morphology.38 In a further study by Schrand et al., the order of biocompati-

bility of different nano-carbon materials was established (in neuroblastoma

cells and macrophages): ND > carbon black > multi-walled carbon nanotubes

> single-walled carbon nanotubes.39 Similar results were obtained in a study

from Liu et al. where the cytotoxicity of carboxylated NDs (5 nm or 100 nm)

and carbon nanotubes on human lung A549 epithelial cells and HFL-1 normal

fibroblast cells was investigated. The investigated NDs did not reduce cell via-

bility or alter the protein expression profile, whereas carbon nanotubes were

found to be cytotoxic.40 Furthermore, Li et al. investigated the cytotoxicity

of detonation NDs on HeLa cells, reporting no cytotoxicity in complete cell

culture medium and cytotoxic effect when serum-free medium was used.41

Studies investigating the genotoxicity of NDs have shown that the investigated

NDs showed no genotoxic effects.42,43
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2. Theoretical background

In addition to in vitro experiments, in vivo experiments provided further

information about effects of ND administration to animal models. For instance,

Puzir et al. reported that subcutaneous injection of ND hydrosols in mice

showed no inflammatory effect after 3 months. Subsequent transmission

electron microscopy (TEM) experiments showed that ND aggregates were

formed, however adjacent cells were not damaged.44 The biodistribution of

NDs was investigated by Zhang et al. using radiotracer techniques. 188Re

labelled NDs were administered by intratracheal instillation to mice. After

variable time periods, the mice were sacrificed and the radioactivity of the

organs was measured. NDs were mainly distributed in the lung, followed by

the spleen, liver, bone and heart. Furthermore, signs for a dose-dependent

toxicity to lung, liver, kidney and blood were reported.45

Overall, toxicity studies have shown that ND administration does not lead to

apparent toxicity effects and thus NDs are a promising material for biome-

dical applications. However, a large variety of NDs with different sizes and

compositions have been prepared and thus continued studies are required to

ensure the safety of modern ND materials.

2.1.4. Surface chemistry of nanodiamonds

The fabrication method influences the morphology, structure and composi-

tion of the resulting NDs. For instance, the surface structure of detonation

NDs depends on the condensation medium used.46 However, due to oxida-

tive purification protocols most available ND material possesses an oxidized

surface, which is covered with a variety of functional groups (Figure 2.2).

Carboxylic acids, lactones, esters, ethers and alcohols are the most common

surface-expressed functionalities.18

Figure 2.2. Schematic representation of typical surface functionalities on NDs.

10



2.1. Nanodiamonds

2.1.4.1. General surface modification strategies

The modification of ND surfaces is of utmost importance for many applica-

tions. For instance, surface groups can enhance the colloidal stability and

introduce bioactive molecules for biomedical applications. Several synthetic

strategies have been developed to modify ND materials.

As mentioned above, most NDs are initially purified from contaminations

using an oxidative treatment. However, to increase carboxylic acid groups

and to homogenize the surface for further modification, often an additional

oxidation step using oxidizing acids or thermal air oxidation is performed.

Common oxidation mixtures include different combinations of concentrated

sulfuric acid, nitric acid and perchloric acid,47,48 piranha solution,27 hydrogen

peroxide,48 and a combination of hydrofluoric and nitric acid.49 An alterna-

tive to wet chemical approaches is the thermal oxidation with air/oxygen at

elevated temperatures (above 400 ◦C).50,51 The oxidation procedure removes

amorphous and sp2 carbon and generates an oxidized surface predominantly

consisting of carboxylic acid groups.49,50 The oxidation process is often ac-

companied with a size reduction of the NDs since surface layers are removed

when oxidized.52 Oxidized NDs are highly hydrophilic nanoparticles with a

negative zeta-potential and are the most common applied starting material

for further modifications.

A common approach to modify oxidized NDs is via esterification and amida-

tion reactions to attach alcohols and amines, respectively (Scheme 2.2).33,53

Coupling agents such as N,N’-dicyclohexylcarbodiimide (DCC) are typically

employed or alternatively, the carboxylic acid groups can be transformed into

acid chlorides to allow the ligation.54

Scheme 2.2. Schematic representation of the esterification/amidation of oxidized
NDs.
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2. Theoretical background

The reduction of ND surface groups is another common method applied prior

to further modification. Reducing agents such as BH3 and LiAlH4 are used to

obtain mostly hydroxy functional surfaces. Subsequently, the reduced surface

can be esterified with carboxyl functional molecules,55,56 an ether linkage can

be formed,57,58 or a silanization reaction can be performed (Scheme 2.3).59–61

(3-Aminopropyl)trimethoxysilane is a commonly used silanization reagent

to obtain amine functional NDs e.g. for subsequent coupling with amino

acids.59 The hydroxy groups on NDs can also be exploited to attach dopamine

derivatives.62

Furthermore, the controlled generation of graphitic structures on the surface

of NDs provides interesting conjugation sites for covalent C-C bond forma-

tion. Thermal annealing of NDs in the absence of oxygen (vacuum or inert

atmosphere) leads to the desorption of surface functional groups followed by

a shell to core, sp3 to sp2 phase transition. Controlling reaction parameters,

such as temperature and annealing time, allows for the preparation of surface

graphitized NDs.63 The sp2 carbon structures can then be employed to graft

organic molecules to the surface. For instance, the functionalization of anne-

aled NDs with aromatic diazonium salts was introduced from Krueger and

coworkers.54,64 Furthermore, Diels-Alder reactions with a thermally genera-

ted ortho-quinodimethane was shown to be an efficient surface modification

Scheme 2.3. Functionalization strategies to modify hydroxy functional NDs.
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2.1. Nanodiamonds

method.65 In the current thesis (Chapter 4), a photochemical approach for the

Diels-Alder grafting of polymers to annealed NDs is introduced.

2.1.4.2. Polymer functional nanodiamonds

The modification of NDs with polymers is an important area of research, since

it allows to significantly alter the ND properties for a variety of applications.

Polymers can be covalently attached to NDs or simply adsorbed to the surface

(Scheme 2.4). Covalent attachment yields highly stable coatings, whereas

non-covalent coatings might suffer from poor coating stability. In general,

polymer grafting can be categorized in three main approaches:

1. Grafting-from: monomers are polymerized starting from the surface

2. Grafting-to: polymer chains are attached to the surface via chemical

ligation methods

3. Adsorption: polymer chains are attached to the surface via non-covalent,

site-unspecific interactions

Scheme 2.4. Overview of different modification approaches to obtain polymer coated
NDs.
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2. Theoretical background

In grafting-from protocols, the polymer is grown from the ND surface. Typi-

cally, an initiator that allows for the site-specific polymerization of monomers

is first attached to the surface followed by the polymerization step. The

grafting-from approach is applicable to different polymerization techniques.

For instance, ring opening polymerization (ROP) has been performed from ND

surfaces, e.g. to prepare poly(caprolactone) (PCL)66 and poly(glycerol)67–69

coated NDs. Furthermore, atom transfer radical polymerization (ATRP) initia-

tors as well as chain transfer agents (CTAs) for reversible addition fragmen-

tation chain transfer (RAFT) polymerizations have been attached to NDs for

grafting-from experiments.7,70 High grafting densities are typically achieved,

however, the characterization of the polymeric structure is challenging.

In the grafting-to approach, a pre-made polymer is attached to the surface.

Compared to grafting-from protocols, the polymer can be easily characterized

prior to grafting. Moreover, the modular nature of the grafting-to process

allows for the facile preparation of polymer libraries allowing ready access

to a variety of coatings on the same ND material. However, compared to the

grafting-from approach, lower grafting densities are usually obtained. The

grafting-to approach has been applied for a variety of polymers and ligation

methods. For example, hydroxy terminal poly(ethylene glycol) (PEG) has

been grafted to oxidized NDs via esterification reactions.70 Cha et al. grafted

a PEG azo initator via radical coupling reaction to NDs.71 Azide functional

NDs have been used to attach dibenzocyclooctyne terminal RAFT polymers

via copper free click chemistry.72 Barras et al. modified hydroxy functional

NDs with dopamine terminal poly(N-isopropylacrylamide) (PNIPAM).62 Two

novel photochemical grafting-to approaches are described in Chapter 3 and

Chapter 4.

Polymer coatings on NDs can also be achieved by simple surface adsorption.

Non-covalent interactions, such as hydrogen bonds and electrostatic interacti-

ons, are typically the driving force for the adsorption process. Compared to

covalent grafting approaches, non-covalent coating procedures are simpler

and faster to perform and often yield particles with similar properties. Howe-

ver, since the adsorption process is not site-specific and polymers can adhere

to multiple ND particles, aggregation can occur. For instance, poly(ethylene

imine) was adsorbed onto oxidized NDs to obtain nanoparticles for gene
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2.1. Nanodiamonds

delivery.73 In another study, Lee et al. coated NDs via physical adsorption of

block copolymers and proteins for enhanced cellular uptake.74 The controlled

adsorption of polymeric single-chain nanoparticles (SCNPs) is introduced in

Chapter 5.
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2. Theoretical background

2.2. Reversible deactivation radical

polymerization

2.2.1. Overview

Reversible deactivation radical polymerization (RDRP), previously also often

referred to as controlled/living radical polymerization,a is a class of radical po-

lymerization techniques that allows for the synthesis of well-defined polymers

with narrow molecular weight distributions (MWDs) and good control over

molecular weight, endgroups and architecture.76 Typical features of RDRP are

a linear increase of molecular weight with conversion, low molecular weight

dispersities and "living" character that allows for chain extension experiments.

During the last 20 years, RDRP has developed into one of the most significant

synthetic approaches in soft matter material design due to its versatility and

ease of operation.77 The most common RDRP techniques are atom transfer ra-

dical polymerization (ATRP), nitroxide mediated polymerization (NMP) and

reversible addition fragmentation chain transfer (RAFT) polymerization.78

ATRP and NMP are based on the formation of dormant species that reduce

radical concentration and the number of termination events. In NMP a ni-

troxide radical is used to reversibly trap radicals into dormant alkoxyamine

species, whereas in ATRP the activation/deactivation process is based on or-

ganohalides that reversibly transfer halogen atoms usually to transition metal

complexes. The reader is here referred to extensive review articles about

ATRP79–83 and NMP.84–86 RAFT polymerization was employed in the current

thesis to prepare a variety of functional polymers and is thus described in

detail in the following sections.

a In 2010, IUPAC recommended the term reversible deactivation radical polymerization
and discouraged the use of the term controlled/living radical polymerization.75
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2.2. Reversible deactivation radical polymerization

2.2.2. Reversible addition fragmentation chain transfer

polymerization

RAFT polymerization is one of the most commonly used RDRP techniques

and was first described by CSIRO chemists in 1998.87 At the same time,

French scientists patented an equivalent technique using xanthates, which

was referred to as macromolecular design via the interchange of xanthates

(MADIX).88

The main experimental difference of RAFT to free radical polymerization

(FRP) is the addition of a specific CTA, often referred to as a RAFT agent. The

currently accepted mechanism for RAFT polymerization is depicted in Scheme

2.5. The formation of radicals is triggered by conventional radical initiators.

The most commonly employed initiator is 2,2‘-azoisobutyronitrile (AIBN).

However, a variety of thermal and photo-initiators are available. Once a

radical I· is formed, propagation with monomer M occurs to form a growing

chain radical Pn
·, which can enter the pre-equilibrium. Pn

· adds to the CTA

forming an intermediate radical which can fragment back to the starting

compounds or forward to form radical R·. Ideally, the forward fragmentation is

Scheme 2.5. Mechanism of RAFT polymerization with thiocarbonylthio CTAs.89
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2. Theoretical background

favoured, which occurs when R is a better leaving group than Pn. Subsequently,

radical R· reinitiates polymerization and propagates. The hereby formed

macro radical Pm
· enters the main equilibrium by addition to a macro RAFT

agent, where a macro radical Pn
· or Pm

· is released by fragmentation. This

process is repeated until termination occurs. The degenerative chain transfer

drastically increases the lifetime of propagating chains and provides equal

possibilities for chain growth leading to polymers with narrow MWDs.90

A variety of monomers can be polymerized via RAFT polymerization provi-

ding a suited CTA is used. One limitation in RAFT polymerization is the use

of monomers with nucleophilic groups, such as primary and secondary amines

that can cleave the thiocarbonylthio group.91 However, careful adjustment of

polymerization conditions allows for the controlled polymerization of amine

monomers in their protonated form.92 The selection of an adequate CTA de-

pends on the monomer reactivity and is crucial for an efficient RAFT process.

In general, monomers can be classified according to their reactivity into more

activated monomers (MAMs), including (meth)acrylates, (meth)acrylamides,

styrenes, acrylonitrile, and less activated monomers (LAMs) including 1-

alkenes, vinyl acetate and N-vinylpyrolidone.91 In an efficient RAFT process,

the addition of a radical to the C=S bond is favoured over the addition to

the monomeric C=C bond. The Z-group influences the stability of the in-

termediate radical and thus affects addition and fragmentation rates.91 For

the RAFT polymerization of MAMs, trithiocarbonates or dithiobenzoates are

typically employed, whereas xanthates and dithiocarbamates are used for

LAMs (Figure 2.3).91 On the other hand, the R-group of a CTA has to be a

good leaving group and the formed radical R· has to be capable of re-initiating

polymerization.91

Figure 2.3. Typical structure of thiocarbonylthio CTAs for RAFT polymerization.

In an ideal RAFT process, the polymerization rate does not differ from FRP

and can be described with the following equation:
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2.2. Reversible deactivation radical polymerization

Rp(t) = kp[M]

√
f kd[I]0e−kdt

kt
(2.1)

where kp and kt are the propagation and termination rate coefficients, re-

spectively, t the polymerizaton time, [M] and [I] the monomer and initiator

concentration, respectively, and f is the initiator efficiency.91 Consequently,

high monomer and radical concentrations lead to fast polymerization kine-

tics.

The endgroups of RAFT polymers

RAFT polymerization allows for the preparation of polymers with well-defined

endgroups. In Chapter 3 and 4, grafting-to experiments with endgroup functi-

onal RAFT polymers were conducted. Thus, a detailed discussion of the

structure of RAFT polymers and how to influence endgroup functionalities is

given here.

During RAFT polymerization monomer units are inserted between the thiocar-

bonylthio moiety and the R group yielding α,ω-functional polymers (Scheme

2.6). However, not all polymer chains posses this endgroup combination. The

polymerization is initiated by a radical initiator and thus endgroups deri-

ved from the initiator can also be found in the polymerization product. In

addition, bimolecular termination reactions occur between (macro)radicals

leading to polymers with different combinations of R and initiator endgroups.

In the case of disproportionation termination, unsaturated endgroups are for-

med. Importantly, the number of terminated chains without RAFT endgroups

corresponds to the number of radicals introduced during polymerization.91

Scheme 2.6. RAFT polymerization and common terminology for polymer endgroups.
Adapted from reference [93] with permission of The Royal Society of
Chemistry.
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Perrier described the number fraction of living chains (polymer chains with

RAFT endgroups), termed as "livingness" L, as:

L =
[CTA]0

[CTA]0 + 2f [I]0(1− e−kdt)(1−
fc
2

)
(2.2)

where [I]0 and [CTA]0 are initial concentrations of initiator and CTA, re-

spectively, the term 2f means that one initiator molecule forms 2 primary

radicals with the efficiency f , fc is the radical-radical coupling factor where

a value of 1 represents bimolecular termination and 0 disproportionation.91

In a typical RAFT polymerization, an excess of CTA compared to initiator is

used (typically around 1:10, [I]:[M]) allowing for a good control over polymer

structure and endgroups . Thus, the majority of chains possess endgroups

derived from the CTA (high number of living chains according to Equation

2.2), which is crucial for chain extension to form block copolymers or for

further modification reactions (see below).91

There are two general approaches to adjust the endgroups of RAFT polymers:

1) the modification of the R-group of a CTA to obtain α-functional polymers

and 2) the functionalization of the thiocarbonylthio endgroup to obtain ω-

functional polymers.

On the one hand, post-polymerization modification of the thiocarbonylthio

endgroups can be performed to obtain ω-functional polymers. One of the

most common approaches is the reduction of the thiocarbonylthio endgroups

to thiols, which can be exploited for subsequent modification steps.94–97 For

instance, Bulmus and coworkers performed the one-pot aminolysis (nucle-

ophilic reaction of amines with thiocarbonyl moiety) of the ω-endgroups of

RAFT polymers and thiol-ene modification with a (meth)acrylate functional

mannose and maleimide functional biotin.95 Another synthetic approach to

modify the ω-terminus of RAFT polymers is to conduct radical induced end-

group coupling reactions. For example, Maynard and coworkers performed

a radical cross-coupling reaction with a furan capped maleimide functional

azo-initiator to prepare maleimide terminal polymers for the subsequent atta-

chment to bovine serum albumin (BSA).98 In addition, the Barner-Kowollik
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2.2. Reversible deactivation radical polymerization

team has introduced a method to convert RAFT polymers into hydroxy termi-

nal polymers via a radical process.99 Dithioester endgroups formed hydroxy-

peroxy groups in the presence of an azo initiator at elevated temperature in

tetrahydrofuran (THF) and in the presence of oxygen, which were reduced

in a one-pot procedure with triphenlyphosphine to yield hydroxy endgroups.

Another approach to modify RAFT endgroups is by hetero Diels-Alder re-

actions with the thiocarbonyl endgroup.100–104 For instance, the ultrafast

conjugation of cyclopentadienyl capped polymers with electron-deficient di-

thioester RAFT polymers presents a powerful synthetic tool to modify RAFT

endgroups.102

On the other hand, R-group functional RAFT agents can be employed, which

lead to α-functional polymers. CTAs with reactive R-groups, such as azides,105

alkynes,106 or activated esters,107 are often employed for post-polymerization

endgroup modifications. For instance, Geest and coworkers compared the per-

formance of different protein reactive CTAs for polymer-protein conjugation.107

Pentafluorophenylester and pyridyl disulfide-functionalized CTAs were found

to be more efficient than a NHS-ester functional CTA. A contribution of

Xiao and coworkers showed the successful application of a dibenzocyclooc-

tyne functional CTA for RAFT polymerization and subsequent grafting onto

nanodiamonds.72 In the current thesis (Chapter 3 and 4), R-group functional

CTAs were designed and employed for grafting-to experiments on nanodia-

monds.
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2. Theoretical background

2.3. Photochemical ligations in polymer

chemistry

In polymer science, a photochemical reaction or a photochemically induced

reaction sequence that leads to a direct conjugation of a polymer to another

entity (e.g. small molecule, another polymer, surface group) is referred to as a

photochemical ligation. The advantage of light induced ligations compared to

thermal reactions is a high spatial and temporal control. Photochemical ligati-

ons are mainly employed to couple polymer chains to form block-copolymers,

to crosslink polymers intra- or intermolecularly and to attach polymers onto

surfaces.

When a sample is irradiated with light, the intensity decreases exponentially

on the way through the sample. A quantitative description of light absorp-

tion is given by the Beer-Lambert’s law (Equation 2.3). The absorbance (A),

which is calculated from the initial intensity (I0) and transmitted intensity

(I1), is proportional to the concentration of absorbing molecules (c) and to

the thickness of the sample (path length l), where ε is the molar extinction

coefficient.108

A = log(
I0
I1

) = ε · c · l (2.3)

The electronic states and transitions involved in photochemical processes can

be depicted in a Jablonski diagram (Scheme 2.7).109 Photon absorption leads

to a transition from the singlet ground state (S0) to an excited singlet state

(Sn). Subsequently, non-radiative or radiative deactivation can occur. Vibra-

tional relaxation (VR) is a non-radiative process from a higher vibrational

state to the lowest vibrational state of one electronic state, whereas internal

conversion (IC) is a spin-allowed relaxation from an excited electronic state

to a lower electronic state of the same multiplicity (also non-radiative). In-

tersystem crossing (ISC) describes a non-radiative, spin-forbidden transition

between two electronic states of different multiplicities. Excited states can also

be deactivated by radiative transitions. Fluorescence is a transition from an ex-

cited singlet state to its ground state under emission of light. Phosphorescence
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2.3. Photochemical ligations in polymer chemistry

Scheme 2.7. Jablonski diagram. Radiative and non-radiative transitions are depicted
with plain and dashed arrows, respectively.

describes the radiative transition from a triplet to a singlet state. Phospho-

rescence lifetimes are relatively long (up to hours) compared to fluorescence

lifetimes (0.5-20 ns).108

Apart from the above described deactivation mechanisms, an excited state

can also lead to a photochemical reaction. Typical reaction pathways ari-

sing from excited states are isomerization, dissociation, addition/insertion,

abstraction/fragmentation and dissociative excitation.108

A variety of photochemical ligations have been employed in polymer science,

including acyl sulfide ligation,110,111 anthracene dimerization,112,113 photoi-

nitiated thiol-ene reacion114 and alkyne-azide cycloaddition,115 thiol-quinone

methide reaction,116 and azirine ligation.117 The photoenol and tetrazole liga-

tion are employed in Chapter 3-4 and Chapter 5, respectively, and thus are

introduced in detail in the following two sections.
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2.3.1. Photoenol chemistry

The photochemical enolization of ortho-substituted benzophenones was first

described in 1961 by Yang and Rivas.119 They reported the UV induced enoli-

zation of o-methyl benzophenone and the trapping of the diene intermediate

with a dienophile (dimethyl acetylenedicarboxylate) in a [4+2]-cycloaddition.

The currently accepted mechanism for the photoenol ligation was established

from Porter and Tchir using flash photolysis experiments and is depicted in

Scheme 2.8.118,120 The light excitation of 2,4-dimethyl benzophenone leads

to a n → π∗ transition of the carbonyl group, followed by ISC forming an

excited triplet state. Internal H-abstraction leads to the formation of a bi-

radical, which upon rearrangement forms two enol isomers with relatively

long lifetimes (4 s and 250 s).118 The presence of two isomers suggests free

rotation around the central carbon atom in the triplet state. The E-isomer can

react in a Diels-Alder reaction with electron deficient dienophiles, which is

Scheme 2.8. Mechanism of the photoenolization of 2,4-dimethyl benzophenone and
subsequent Diels-Alder trapping.118

24



2.3. Photochemical ligations in polymer chemistry

nowadays known as the photoenol ligation. The reaction is irreversible due to

the rearomatization of the phenyl ring.

The photochemical generation of Diels-Alder reactive dienes via the photoeno-

lization process was rediscoverd by polymer scientists in the last decade. The

photoenol ligation was applied for the synthesis of block copolymers,121–123

cyclic polymers,124 polymeric networks,125,126 nanoparticles,127,128 and for

the grafting of polymers to planar129–132 and non-planar121,133 surfaces.

The application of photoenol chemistry for modular polymer-polymer liga-

tion was demonstrated by Langer et al. A dual functional CTA including an

o-methyl benzaldehyde moiety was prepared and employed to synthesize an

α,ω−functional RAFT polymer. Subsequently, a hetero Diels-Alder ligation

followed by a photoenol ligation to form a diblock and an amphiphilic triblock

polymer, respectively, was performed. This modular ligation sequence demon-

strated the potential of photoenol chemistry to generate complex polymeric

structures.123

The application of photoenol chemistry for the crosslinking of single polymer

chains to form single-chain nanoparticles (SCNPs)127,128 and intermolecular

crosslinking to prepare polymeric networks125,126 was demonstrated in several

studies. Light-triggered SCNP formation is described in detail in Section 2.5.

Spatially resolved network formation was achieved with e.g. direct laser wri-

ting (DLW). Quick et al. crosslinked maleimide multifunctional poly(methyl

methacrylate) (PMMA) with a tetra-functional o-methyl benzaldehyde cros-

slinker using a DLW setup with excitation at λ = 700 nm.125 Two-photon

absorption induced photoenolization of the o-methyl benzaldehyde groups

was followed by Diels-Alder crosslinking reactions. 3D microstructures with a

resolution down to 500 nm were fabricated. Residual o-methyl benzaldehyde

groups were used to modify the written 3D structures in a spatially resolved

fashion.

The spatially resolved surface modification via the photoenol ligation is a

versatile approach to obtain well-defined, functional surfaces.129–132 For in-

stance, Pauloehrl et al. prepared an o-methyl benzaldehyde functional silane,

which was immobilized onto silicon wafers. Spatially resolved modification of
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the surface with a maleimide functional ATRP initiator, PEG and a peptide

was achieved using a shadow mask.129

Furthermore, photoenol chemistry was employed for the modification of

micro- and nanoparticles.121,133 Kaupp et al. prepared an o-methylbenzalde-

hyde functional CTA for RAFT polymerization. The obtained photoactive

polymers were photografted to porous poly(glycidyl methacrylate) microsp-

heres. The advantage of spatial resolution in light-induced grafting protocols

was demonstrated by preparing Janus microspheres using a pickering emul-

sion approach.121 In another study, Stolzer et al. modified silver nanoparticles

with o-methylbenzaldehyde groups using a benzotriazole linker. Maleimide

terminal PEG and poly(carboxybetaine methacrylate) were successfully pho-

tografted to the surface of the silver nanoparticles.133

The photoenol ligation was also used for nanoparticle functionalization in

the current thesis. Two novel approaches for the grafting of polymers to

nanodiamonds via the photoenol ligation are described in Chapter 3 and

Chapter 4.

2.3.2. Tetrazole chemistry

In 1959, the thermal decomposition of 2,5-disubstituted tetrazoles under rele-

ase of nitrogen and formation of nitrile imine intermediates was introduced.134

In 1967, Sustmann and coworkers reported the use of light to trigger the

tetrazole cycloreversion reaction, which laid the foundation for modern te-

trazole photochemistry.135 Upon UV irradiation, tetrazoles release nitrogen

and form nitrile imines, which are 1,3 dipoles (Scheme 2.9). Subsequently,

the highly reactive nitrile imine intermediate can be trapped in a 1,3-dipolar

cycloaddition with a dipolarophile to form a fluorescent pyrazoline link. The

photo-induced reaction sequence is also known as the nitrile imine mediated

tetrazole-ene cycloaddition (NITEC) reaction. The reaction yields a fluores-

cent product from non-fluorescent starting materials (profluorescent reaction),

which can be exploited for the monitoring of the reaction progress via fluores-

cence spectroscopy. The generation of a fluorescent cycloadduct is also highly

interesting for imaging applications, as demonstrated in Chapter 5.

26



2.3. Photochemical ligations in polymer chemistry

Scheme 2.9. Mechanism of NITEC reaction. Irradiation of a diphenyl tetrazole leads
to a cycloreversion reaction forming a nitrile imine intermediate that can
be trapped with an alkene in a subsequent 1,3-dipolar cycloaddition.

The reaction of nitrile imines generated by photolysis of tetrazoles with alke-

nes was employed in several studies. However, it was shown that nitrile imines

can also react with a variety of nucleophiles, including carboxylic acids and

thiols.136–138 Thus, the NITEC reaction does not classify as a bioorthogonal

reaction. Nevertheless, it is a powerful tool for fast and efficient ligations with

the benefit of producing a fluorescent product.

In polymer science, the NITEC ligation was employed for step-growth poly-

merization,139,140 block-copolymer synthesis,141–143 crosslinking144–147 and

surface grafting.148,149 The application of photo-triggered tetrazole reactions

for SCNPs is discussed in section 2.5.

For instance, a diphenyl tetrazole functional trithiocarbonate CTA was pre-

pared and employed for the statistical RAFT copolymerization of acrylo-

nitrile and 1,3-butadiene. The tetrazole capped nitrile-butadiene rubber

(NBR) polymers were selectively coupled with a bismaleimide linker. Inte-

restingly, no side reactions with the double bonds from the NBR backbone

were observed.141 However, in another study, 1,2-polybutadienes were cros-

slinked with a tetrazole dilinker. It was shown that also non-activated double

bonds are addressable with NITEC reactions.144 The results obtained from

the two studies indicate that in the presence of activated and non-activated

double bonds, nitrile imines selectively react with the activated double bonds.

However, non-activated double bonds are also feasible to undergo NITEC

reactions, especially when large excess or high local concentrations (in the

case of networks) are employed.

The application of NITEC chemistry for spatially resolved surface encoding

was demonstrated in several studies.148–151 For example, cellulose (filter pa-

per) was functionalized with tetrazole groups. A shadow mask allowed for the
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Figure 2.4. N-substituted phenyl tetrazoles in order of their absorption maximum
λmax.

spatially resolved functionalization of the cellulose surface with a maleimide

functional tertiary bromine compound via NITEC reactions. Subsequently,

carboxybetaine acrylamide was polymerized from the patterned surface via
an ATRP process to obtain a non-fouling polymer layer.149

The red-shifting (bathochromic shifting) of photochemical ligation reactions

is of great importance for many applications. For instance, many biomole-

cules absorb UV light and high energy irradiation can cause cell damage.

Thus, low-energy (long wavelength) triggered photochemical ligations are

highly desirable. In order to red-shift the absorption, a variety of tetrazole

derivatives have been prepared. As shown by Lin and coworkers, the in-

troduction of auxochromic or conjugative substituents in para-position of

the N-phenyl moiety leads to a bathochromic shift in absorbance (Figure

2.4).152,153 Barner-Kowollik and coworkers showed that the introduction of a

N-pyrenyl substituent on the tetrazole ring could shift the absorption maxi-

mum even further (343 nm, Figure 2.4).142 Importantly, the pyrene-tetrazole
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group could be activated using visible light (blue LED, λ = 410-420 nm).

Upon blue light irradiation, pyrene-tetrazole terminal PCL was reacted with

maleimide capped PNIPAM and PEG to form well-defined block copolymers.

Using upconversion nanoparticles, the reaction could be triggered with near

infrared (NIR) light (λ = 974 nm).143 Through-tissue irradiation and coupling

of pyrene-tetrazole terminal PCL with a maleimide functional biotin deri-

vative under retention of biotin activity were performed, demonstrating the

suitability for biological applications.

29



2. Theoretical background

2.4. Glycopolymers

Glycopolymers are biomimetic macromolecules that are inspired from natural

carbohydrates and consist of a synthetic backbone with pendant carbohydrate

units. Carbohydrates play an important role in many biological processes,

such as inflammation, cancer cell metastasis and pathogen infection.154 The

motivation for the design of novel glycopolymeric materials is to mimic the

activity of carbohydrate structures with synthetic systems in order to expand

the knowledge about carbohydrate activity and generate novel materials for

biomedical applications. The key process for the bioactivity of carbohydrate

structures, such as natural glycoproteins or synthetic glycopolymers, is their

interaction with lectins.155

Glycopolymers are either prepared by the polymerization of sugar containing

monomers (glycomonomers) or the post-polymerization modification of functi-

onal polymers with carbohydrate units. The advantage of the first approach

is the use of well-characterized monomers (in terms of e.g. stereochemistry)

and polymers with high carbohydrate content are readily accessible. The post-

polymerization functionalization approach allows for the facile preparation of

glycopolymer libraries with different side group compositions starting from

the same precursor for comparative studies. Using modern polymerization

protocols, a variety of glycopolymer architectures are accessible, including

linear polymers, star polymers and glycopolymer coated nanoparticles (Figure

2.5).155–157

Glycopolymers with different sugar epitopes have been reported, including

glucose,158–163 fructose,164,165 galactose,166,167 and lactose.168–170 Extensive

Figure 2.5. Schematic representation of important glycopolymer architectures.
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reviews about glycopolymer syntheses and applications are reported in the

literature.154,155,157,171–178 The focus of the following sections is on mannose

based glycopolymers prepared via radical polymerization due to the relevance

in the current thesis (Chapter 3-5).

2.4.1. Synthesis of mannose monomers

Glycomonomers are not commercially available and thus a variety of synt-

hetic protocols have been developed to prepare them.155 Usually, a spacer

is incorporated between the vinyl and the carbohydrate unit. Chemical gly-

cosylations, which are coupling reactions of glycosyl donors and glycosyl

acceptors forming a new glycosidic bond, are the most common synthetic

methods to prepare glycomonomers (Scheme 2.10). The glycosyl donor is the

carbohydrate unit containing the anomeric centre where the glycosylation

occurs. A good leaving group (LG) on the anomeric centre is required for

glycoslylations to occur. A hydroxy group can act as a leaving group (Fischer

glycosylation), however more effective leaving groups have been developed,

such as acetates, halides or imidates (Scheme 2.10). Typically, an activator

(commonly a Lewis-acid) is used to cleave the leaving group off the glycosyl

donor to form an oxocarbenium ion. Subsequently, the glycosyl acceptor

reacts as a nucleophile with the activated glycosyl donor to form a glycosidic

bond.179 The glycosylation can be performed with vinyl containing glycosyl

acceptors or a linker molecule, which is modified in a subsequent step with a

polymerizable group.

BF3-catalyzed glycosylation of peracetylated mannose

A common starting material for mannose glycomonomer syntheses is pera-

cetylated mannose. The acetylation of mannose is typically performed with

acetic anhydride and a catalytic amount of H2SO4. The reaction can be perfor-

med on large scales, proceeds with full conversion and no chromatographic

purification steps are required.
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Scheme 2.10. Mechanism of chemical glycosylation and typical leaving groups of
glycosyl acceptors.

The BF3 catalysed glycosylation of peracetylated mannose is a key reaction

employed for glycomonomer syntheses as well as for the preparation of re-

active compounds for post-polymerization modifications. The mechanism is

depicted in Scheme 2.11. The promoter BF3 activates the acetyl leaving group

to form an oxocarbenium intermediate. Subsequently, the acetyl group in the

C-2 position forms a cyclic acyloxonium ion complex that shields, in the case

of mannose, the β-position and allows the acceptor only to attack from one

side. Consequently, only the α-anomer is formed.179

2-Hydroxy ethyl acrylates,180,181 acrylamides,182 or methacrylates183–186 are

commonly used as glycosyl acceptors (Figure 2.6). The deprotection of the

acetate protecting groups is typically performed on the polymer since the

deacetylation conditions (e.g. sodium methoxide in methanol) lead to the

partial cleavage of (meth)acrylate ester bonds and further purification is

required. However, deprotection on the polymer does not cleave the ester

bond close to the backbone. Furthermore, the polymerization of protected

sugars has the advantage of improved solubility in organic solvents, which is

important for the synthesis of amphiphilic multiblock copolymers.
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Scheme 2.11. Mechanism of BF3-catalyzed glycosylation of peracetylated mannose.

Figure 2.6. Common glycosyl acceptors used for the BF3-catalyzed glycosylation of
peracetylated mannose to prepare glycomonomers.

Furthermore, peracetylated mannose can be first glycosylated with a linker

molecule that bears a functional group that is modified with a polymerizable

functionality in a subsequent step. Typical linker molecules are depicted

in Figure 2.6. For example, Miura and coworkers used para-nitrophenol as

a linker. After glycosylation the nitro group was reduced to an amine and

coupled to acryloyl chloride to form a mannose acrylamide monomer.187 In

another study, 2-bromoethanol was used as a glycosyl acceptor. The bromo

group can be substituted with an azide group and subsequently coupled

with an alkyne functional monomer in a copper catalyzed azide alkyne cy-

cloaddition (CuAAC) reaction.188,189 Matsuoka and coworkers glycosylated

peracetylated mannose with 6-chloro-hexanol.190 Subsequently, the chloro

group was substituted with sodium azide, reduced to an amine and reacted

with acryloyl chloride to form an acrylamide glycomonomer.
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Mannose monomer synthesis via trichloroacetimidates

Scheme 2.12. Glycosylation of mannose trichloroacetimidate with 2-hydroxyethyl
methacrylate.

Trichloroacetimidates were introduced by Schmidt and Michel in 1980 and

are commonly used glycosyl donors for glycoside syntheses.191 For instance,

Song et al. prepared methacrylate monomers using trichloroacetimidate glyco-

syl donors.192 Mannose O-glycosyl trichloroacetimidate was prepared from

a reaction of trichloroacetonitrile with the free anomeric hydroxy group of

mannose under basic conditions (Scheme 2.12). Subsequent glycosylation

with 2-hydroxyethyl methacrylate in the presence of trimethylsilyl triflu-

oromethanesulfonate as a catalyst yielded a mannose monomer for radical

polymerization.

Shoda activation

A protecting-group free synthetic approach to mannose monomers was in-

troduced by Kimura and coworkers.193 The one-pot synthesis from non-

protected sugars is based on the so-called Shoda activation. 2-Chloro-1,3-

dimethylimidazolinium chloride (DMC) promotes a dehydrative condensation

reaction to form 1,6-anhydro mannose in aqueous media.194 In the presence of

aryl thiols, 1-thioglycosides are formed.195 The use of 4-aminothiophenol as a

nucleophile allowed the preparation of amine functional mannose that was

subsequently reacted with acryloyl chloride to form an acrylamide mannose

derivative.193
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Scheme 2.13. Protecting-group free glycosylation of mannose via the Shoda activation
and subsequent amidation reaction.

2.4.2. Radical polymerization of mannose monomers

Conventional FRP was initially used to prepare glycopolymers from vinyl

functional mannose compounds and is still employed for applications where

high control over polymer structure is not required.183,187,189,190,196–201 An

overview of mannose glycomonomers polymerized via FRP is depicted in Table

2.1. Protected glycomonomers are typically polymerized in organic solvents,

such as N,N-dimethylformamide (DMF)189 or dimethyl sulfoxide (DMSO).199

The deprotection of the sugar residues is then performed on the polymer.

Protecting-group free glycomonomers, deriving either from protecting-group

free syntheses or the deprotection of protected glycomonomers are highly

hydrophilic and thus polymerized in aqueous solutions,197 polar organic

solvents187,196,201 or mixtures of both.198

For instance, Williams and coworkers prepared statistical copolymers consis-

ting of 2-hydroxyethyl methacrylate (HEMA) and an acetyl protected mannose

monomer using FRP in DMF with AIBN as the radical initiator. The copoly-

mers were deprotected with sodium methoxide in DMF and showed mannose

density dependent lectin binding properties (Table 2.1, entry 1).189
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Table 2.1. Overview of mannose glycomonomers polymerized via FRP. I: Initiator; S:
Solvent; C: Catalyst.

Entry / Ref. Monomer
Polymerization conditions / polymer

structure

1 / [189]
I: AIBN; S: DMF / statistical copolymer

with HEMA

2 / [183]
I: AIBN; S: DMF / statistical copolymer

with HEMA

3 / [190]

I: ammonium persulfate; C: TMEDA;

S: water / statistical copolymer with

acrylamide

4 / [199] I: AIBN; S: DMSO / homopolymer

5 [187, 196,

201]

I: V-501; S: DMSO; surfactant: SDS

/ statistical copolymer with NIPAM,

N-tert-butylacrylamide , acrylic acid,

N,N-methylenebis(acrylamide);187,201

statistical copolymer with

acrylamide196
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Table 2.1. Continued from previous page.

Entry / Ref. Monomer
Polymerization conditions / polymer

structure

6 / [197]

I: ammonium persulfate; C: TMEDA;

S: water / statistical terpolymer with

acrylamide and a β-lactosyl monomer

7 / [198]
I: DODA-501; S: water/methanol, 2:1,

v:v / homopolymer

Reversible-deactivation radical polymerization (RDRP) techniques allow the

preparation of well-defined and complex glycopolymer structures (Section

2.2). In this context, different mannose monomers have been polymerized

using RAFT polymerization and ATRP (Table 2.2).

For instance, ABC triblock terpolymers have been prepared via RAFT po-

lymerization of an acetyl-protected mannose acrylate with n-butyl acrylate

and 4-vinylpyridine followed by a deacetylation step to obtain well-defined,

amphiphilic and pH responsive polymers (Table 2.2, entry 1). The terpolymers

were self-assembled into compartmentalized nanostructures with efficient

cellular uptake into macrophage cells.180

Obata et al. employed aqueous AGET ATRP with 2-azidopropyl 2-bromo-

2-methylpropanoate as an initiator. The obtained azide terminal mannose

glycomonomers were coupled to alkyne terminal poly(L-lactide) in a CuAAC

reaction. The block-copolymers self-assembled into complex aggregates as

shown from dynamic light scattering (DLS) measurements.185
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Table 2.2. Overview of mannose glycomonomers polymerized by RDRP techniques.

Entry /

Ref.
Monomer

Polym.

technique
Polymer structure

1 / [180,

181]
RAFT

ABC triblock terpolymer with n-butyl

acrylate and 4-vinylpyridine;180 4-arm

star polymer with diblock arms with

HEA181

2 / [186] RAFT diblock copolymer with DMAEMA

3 / [202,

203]
RAFT statistical copolymer with acrylamide

4 / [182] RAFT
diblock copolymer with pentafluorop-

henyl acrylate

5 / [184,

185,

192]

RAFT,184,185

ATRP185

statistical copolymer with pyridyl di-

sulfide ethyl methacrylamide;192 di-

block and statistical copolymer with

DMAEMA;184 and diblock copolymer

with PLLA185

6 / [188] ATRP
statistical copolymer with rhodamine

B methacrylate
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2.4.3. Mannose glycopolymers via post-polymerization

modification protocols

An elegant alternative to the polymerization of glycomonomers is the post-

polymerization modification of synthetic polymer scaffolds. A post-polymeri-

zation approach offers the possibility to prepare glycopolymer libraries with

different sugars and the same polymer scaffold. Furthermore, glyco monomers

often tend to self-polymerize and their syntheses contain tedious purification

steps. Post-polymerization protocols often allow the facile purification of the

reaction mixture using dialysis or precipitation.

The amidation reaction of a polymer with pendant carboxylic acid groups with

an amine functional sugar is a highly efficient modification method (Scheme

2.14, A). Bertin et al. prepared a triblock terpolymer with a N-hydroxysuccini-

mide ester functional block that was converted into a glycopolymer block by

an amidation reaction with an excess of D-glucosamine or D-mannosamine

under basic conditions.204 Full conversion was observed for the glucose de-

rivative, whereas only 60 % conversion could be obtained with the mannose

derivative. The limited conversion of D-mannosamine was explained with

steric hindrance at the axial amine position. The prepared terpolymers were

successfully employed for the preparation of micelles.

Scheme 2.14. Post-polymerization modification approaches for the preparation man-
nose glycopolymers. A: amidation204; B: CuAAC reaction.205–207
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Another efficient post-polymerization modification approach to mannose gly-

copolymers is the CuAAC functionalization of alkyne decorated polymers

with azide mannose (Scheme 2.14, B).205–207 α-Azido mannose can be prepa-

red from free mannose using 2-chloro-1,3-dimethylimidazolinium chloride

and sodium azide (Shoda activation). Gibson and coworkers optimized the

reaction conditions of the CuAAC and found that tris[(1-benzyl-1H-1,2,3-

triazol-4-yl)methyl]amine (TBTA) showed improved reaction kinetics.205

2.4.4. Applications of mannose glycopolymers

The increasing interest in glycopolymer based materials is due to their excep-

tional lectin binding properties.155 In addition to biomedical applications, the

structure-activity correlation of glycopolymers is an important research field.

The influence of polymer topography, sugar type, composition and density

on lectin binding are key areas of interest. A variety of lectin binding assays

has been developed to establish what polymer architecture and composition

is optimal for efficient binding.155 Cheap and easily available model lectins

are normally used for binding assays. Concanavalin A (ConA) is a commonly

used model lectin to investigate the bioactivity of mannose glycopolymers.

It is a plant lectin that can be extracted from jack beans. ConA consists of

238 amino acid residues and exists as a tetramer with four saccharide binding

pockets.208

Due to the tetrameric structure of ConA, it can bind to four mannose units. If

the mannose units are attached to more than one polymer chain, crosslinking

induced aggregation occurs (Scheme 2.15). The aggregation is accompanied

Scheme 2.15. Schematic representation of ConA-induced glycopolymer crosslinking.
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Figure 2.7. ConA turbidity assay to investigate the binding activity of glycopolymers
to ConA.

with an increase in particle size, which is manifested in an observable turbidity.

The turbidity is usually measured using UV-vis spectroscopy (Figure 2.7). The

turbidity assay allows for the fast and facile qualitative investigation of ConA

binding. Where quantitative information about lectin binding is required,

other assays such as precipitation assay and surface plasmon resonance (SPR)

are more suitable.181

The binding of single carbohydrate units to lectins is usually weak. However,

if the lectin possesses multiple binding sites (e.g. ConA) more than one ligand

of a multivalent system can bind (chelation). After the first ligand is bound,

the binding of a second ligand is enhanced due to decreased translational

and rotational entropy loss.209 Binding enhancements are also observed with

lectins that possess only one binding site due to several effects, such as statis-

tical rebinding (proximity/statistical effects) and receptor clustering.210 The

enhancement of binding properties of multivalent glyco ligands is known as

the glycocluster effect.211

Kiessling and coworkers reported an extensive study of multivalency on lectin

binding.210 Glycopolymers displayed up to 2000-fold more effective binding
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to ConA than α-methyl mannose. The binding efficiency increased with incre-

asing molecular weight and mannose density on the polymer backbone.210

Mannose glycopolymers as therapeutics

Glycopolymers have been investigated for therapeutics and drug delivery

applications due to their interesting lectin binding properties. For instance,

the use of glycopolymers for anti-viral therapeutics relies on the binding

and blocking of specific cell receptors that viruses use for receptor-mediated

endocytosis.172

For example, mannose glycopolymers have been investigated for the use as

therapeutics for human immunodeficiency virus (HIV). The surface of HIV is

decorated with the highly glycosylated protein gp120.212 The mannosylated

glycans on HIV bind to the lectin DC-SIGN on dendritic cells to escape the im-

mune response and induce their internalization.213 Haddleton and coworkers

have prepared mannose glycopolymers that inhibit the interactions between

gp120 glycoproteins on HIV and the lectin DC-SIGN for potential treatment

of HIV infection.214

Mannose glycopolymers for drug delivery systems

Glycopolymers are highly promising building blocks for drug delivery sys-

tems.180,183,215 In addition to their biocompatibility and high hydrophilicity,

which are key properties for the development of drug carriers, they possess

interesting targeting properties. Targeted drug delivery is the selective accu-

mulation or release of a drug in a specific part of the body. The aim is to

reduce the drug concentration and side effects in patients.216 Importantly, the

binding of glycopolymers to cell-specific lectins can induce receptor-mediated

endocytosis leading to accumulation in the specific cell type. Mannose glyco-

polymers are typically investigated for targeting macrophages and dendritic

cells, since mannose receptors are over-expressed on their cell surface.155,175

In this context, Giorgo and coworkers decorated azide functional micelles

with mannose units to target the CD206 receptor on macrophages. The
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self-assembled block copolymers consisted of a cationic PDMAEMA block

that allowed for the encapsulation of siRNA.217 Compared to mannose-free

micelles, a four-fold improvement in the delivery of siRNA to macrophages

was achieved. Furthermore, a 13 times higher cellular uptake in human

macrophages was observed compared to model breast cancer cells.

The potential of mannose glycopolymers to target dendritic cells was shown

in a study from de Geest and coworkers, where mannosylated nanogels were

investigted.182 Mannose receptors on dendritic cells allowed higher cellular

uptake of mannosylated nanogels compared to galactosylated nanogels as

shown by flow cytometry analysis.

Nanoparticles inspired by viruses

For the development of drug delivery systems, nature gives impressive ex-

amples that have inspired many scientists. Viruses are highly efficient in

penetrating cell membranes and releasing their cargo in host cells. They bind

to specific receptors on cells promoting cellular uptake and initiating pro-

ductive infection.218 Viruses are typically between 20-300 nm in size and exist

in different shapes. Their well-defined surface structure and chemistry allow

them to evade the body’s defence system and promote efficient internalization

into cells. In enveloped viruses, the outer membranes are typically decorated

with envelope glycoproteins that often protrude in a spike-like manner from

the surface. The viral surface topography including the so-called glycoprotein

spikes, is believed to play an important role for their success in invading

cells.219–221 For instance, HIV with its highly glycosylated envelope glyco-

proteins, binds to mannose receptors on macrophages and dendritic cells.219

Roux and coworkers have established the structure of envelope glycoprotein

spikes on AIDS retroviruses via cryo electron microscopy tomography (Fi-

gure 2.16).222 The envelope spikes on HIV consist of gp120 trimers and the

transmembrane envelope glycoprotein gp41. The investigated virions had dia-

meters close to 110 nm. The surface of simian immunodeficiency virus (SIV)

was covered with 73 ± 25 spikes, whereas HIV possessed only 14 ± 7 spikes

per particle. The glycoprotein spikes were 13.7 nm high with a head diameter

of 10.5 nm and the tripod-like legs were between 1.9 to 3.7 nm in diameter.
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Scheme 2.16. A: Tomographic images of mutant SIV (top) and wild-type HIV-1
(bottom). Arrowheads are pointed onto glycoprotein spikes. Scale
bars: 100 nm. B: Surface rendered model of SIV envelope glycoprotein
spike. Adapted from reference [222] with permission from Nature
Publishing Group.

The examples on mannosylated synthetic nanoparticles described in the pre-

vious section can be regarded as very simplistic virus mimics, where the

targeting ligands are inspired by viruses. However, much more complex sys-

tems have been developed to mimic the structure of viruses with the intention

to develop highly efficient drug delivery systems.

Viral glycoprotein structures have been mimicked using glycopolymer-protein

conjugates.188 A small library of glycopolymer-BSA conjugates was prepared

by modifying poly(propargyl methacrylate) with galactopyranoside and man-

nopyranoside azides using the CuAAC reaction followed by its conjugation

to BSA. The prepared glyco conjugates bound to recombinant rat mannose-

binding lectin and were capable of activating the complement system via the

lectin pathway.

The influence of nanoparticle surface roughness on cellular uptake was ex-

plored by Niu et al. Inspired by the surface topography of viruses, silica

nanoparticles (∼ 170 nm) were decorated with smaller silica nanoparticles

(∼ 6 nm) to generate a rough surface structures.223 The nanoscale surface

roughness enhanced the cellular uptake performance of the nanoparticles.

Mimicking both the surface topography and the lectin binding ability of vi-

ruses has the potential of providing nanoparticles that are highly efficient in
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invading specific cells.

Stenzel and coworkers described the controlled self-assembly of an ABC tri-

block copolymer consisting of a mannose glycopolymer block, a poly(n-butyl

acrylate) and a pH responsive poly(4-vinylpyridine) block.180 Different mor-

phologies resembling viruses were obtained by altering the pH value during

self-assembly. Spherical as well as elongated patchy particles were obtained.

The mannosylated nanoparticles were efficiently uptaken by RAW264.7 ma-

crophages. Flow cytometry experiments showed higher cellular uptake of

worm-like structures compared to a spherical structure. However, no signi-

ficant difference in cellular uptake between patchy and classical worm-like

structures was observed.

Several studies have demonstrated the high potential of mannose glycopo-

lymers for biomedical applications. In Chapter 5, a novel virus-inspired

mannose glycopolymer nanostructure is introduced and its potential for na-

nomedicine is discussed.
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2.5. Single-chain nanoparticles

Single-chain nanoparticles (SCNP) are polymeric nanoparticles consisting

of single crosslinked polymer chains. The first description of SCNPs can be

dated back to 1956, when Kuhn and coworkers described that the crosslin-

king of polymer solutions below a critical concentration leads to a decrease

in viscosity.224 However, until the development of modern polymerization

techniques in the late 1990s,225–227 which allowed the preparation of well-

defined functional polymers, SCNPs remained unstudied. Due to structural

similarities, SCNPs are often described as simple mimicries of folded protein

structures. Comparable to proteins, SCNPs consist of polymer chains with

intramolecular crosslinks that lead to a compact structure. However, the

precision of proteins to fold into a defined secondary, tertiary and quater-

nary structure arising from the monomer sequence has not yet been achieved

in SCNP systems. Polymeric nanoparticles of sizes below 10 nm in diame-

ter are easily accessible using the SCNP approach, which cannot be obtai-

ned from conventional preparation methods, such as nanoprecipitation and

emulsion polymerization.228 The size of SCNPs can be fine-tuned by altering

crosslinking density and polymer chain length.229 Furthermore, properties

and functionalities can be easily adjusted by varying the polymer composi-

tion. Several potential applications for SCNPs have been discussed, including

catalysis,230–232 sensors,233 and drug drug delivery systems.234

2.5.1. Synthetic strategies

The crosslinking of polymers in concentrated solutions leads to the formation

of networks due to intermolecular reactions. However, at concentrations below

the overlapping concentration of single chains, predominantly intramolecular

reactions occur and SCNPs are formed.

The intramolecular crosslinking of polymers can be performed either via the

selective point folding or repeating unit approach. In the selective point folding
approach, recognition units are placed at defined positions along the poly-

meric backbone.235 Using this synthetically challenging approach, structures

with defined folding points along the polymer chain can be prepared. Simple,
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but defined architectures, such as cyclic,236,237 and bicyclic structures,238,239

have demonstrated the potential of this approach. The aim of this research

field is to mimic the structure of proteins and prepare synthetic polymers with

functions arising from their folded structure.240 Synthetic tools that enable the

defined positioning of multiple recognition units along the polymer backbone

are required for the generation of protein-like structures. Recent advances

in the synthesis of sequence defined polymers demonstrate the possibility to

prepare polymers with a defined primary structure.241–244 The introduction

of selective point folding motifs in such systems will probably enable the

preparation of folded synthetic polymeric structures of unprecedented preci-

sion.

Synthetic avenues to SCNPs typically follow the so-called repeating unit ap-

proach, where the crosslinking units are placed randomly along the polymeric

backbone. The repeating unit approach is synthetically easier than the selective
point folding approach, however, yield less defined structures.235 Random,

crosslinking groups containing copolymers with controlled molecular weight

and low dispersities can be easily prepared using modern RDRP techniques

(see Section 2.2). The repeating unit approach leads to single-chain archi-

tectures with randomly distributed crosslinks and globular structures. This

approach was employed in Chapter 5 of the current thesis for the preparation

of glyco SCNPs.

Scheme 2.17. Schematic representation of different crosslinking approaches for the
preparation of SCNPs.
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The preparation of SCNPs can be further categorized into three general cros-

slinking strategies (Scheme 2.17). Firstly, a homofunctional crosslinker can

induce the single chain collapse, e.g. through dimerization reactions. Secondly,

a heterofunctional crosslinker can be employed and finally, the crosslinking

of single polymer chains can be performed using an external crosslinker.

Typically, highly diluted polymer solutions are used to prevent network for-

mation. However, the continuous addition method allows for the preparation

of SCNPs without the extensive use of solvent.245,246 The slow addition of

a concentrated polymer solution to a solution that triggers the crosslinking

reaction provides a low non-crosslinked precursor concentration at any time

and prevents intermolecular reactions.

Single polymer chains have been crosslinked via covalent,127,146,147,233,246–248

dynamic covalent,249–252 metal complexation,232,253 and non-covalent cross-

links.254–257

Due to the relevance for the current thesis (Chapter 5), the photochemically

driven single-chain collapse is discussed in detail in the following paragraphs.

Several studies have shown that the incorporation of photoactive groups,

which allow for crosslinking upon light irradiation, is an efficient approach

for the preparation of SCNPs.257–260

For instance, Berda et al. prepared a PMMA based polymer with o-nitrobenzyl

protected 2-ureidopyrimidinone (UPy) side group functionalities. Upon UV

irradiation the UPy groups were deprotected and the polymer chains collapsed

due to UPy dimerization. The formation of SCNPs based on intra-chain

hydrogen bonds was confirmed by size exclusion chromatography (SEC) and

AFM experiments.257

He et al. prepared SCNPs via the photodimerization of coumarin. UV irra-

diation (λ > 310 nm) of coumarin functional polymers led to a chain size

compaction as shown by SEC measurements. Interestingly, the crosslinking

was reversible. UV irradiation at shorter wavelengths (λmax = 254 nm) led to

de-crosslinking and the formation of a free coil structure.259

Light induced ligations based on photoenols and tetrazoles were introduced

in Section 2.3 and are efficient crosslinking methods for the preparation of

SCNPs as shown in several reports.128,138,146,147,260
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The application of photoenol chemistry for the preparation of SCNPs was

first described by Altintas et al.127 Polystyrene (PS) based polymers were

functionalized with o-methyl benzophenone and maleimide groups. Upon

UV irradiation (λmax = 320 nm) in highly diluted solutions, light-triggered

Diels-Alder reactions induced the formation of SCNPs. Blasco et al. transfer-

red the photoenol approach to fluorescent polymers based on poly(thiophene).

Interestingly, upon intramolecular crosslinking the fluorescence intensity was

blue-shifted and decreased in intensity, probably due to changes in chain

conformation.260 In another study, phenacyl sulfide and photoenol chemistry

were employed for the stepwise collapse of single polymer chains.128 A met-

hacrylate based polymer bearing lateral o-methyl benzaldehyde and phenacyl

sulfide groups was first irradiated at λmax = 355 nm where a thioaldehyde

group was formed from the phenacyl moieties that reacted with a dithiol cros-

slinker. Chain compaction was shown via SEC measurements. Subsequent

irradiation at λmax = 320 nm in the presence of a diacrylate linker allowed

further intramolecular crosslinking via photoenol Diels-Alder reactions that

led to a second, less pronounced compaction.128

Recently, crosslinking reactions based on the photolysis of tetrazoles have

gained increasing interest in the preparation of SCNPs.138,146,147 Willenba-

cher et al. reported the light induced crosslinking of tetrazole and alkene

functional PS polymers for the first time.146 Importantly, they demonstrated

that polymers that contain only tetrazole units and no alkene moieties can be

crosslinked upon UV irradiation via dimerization reactions of photo-generated

nitrile imines. The introduction of alkene groups to the system allowed for

the preparation of fluorescent SCNPs via NITEC reactions.146 Furthermore,

photo-triggered tetrazole ligations were employed for the preparation of water

soluble and degradable polymers.138,147 In Chapter 5 of the current thesis, the

preparation of NITEC SCNPs consisting of glycopolymers to obtain bioactive

and fluorescent nanoparticles is described.
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2.5.2. Characterization of single-chain nanoparticles

The intramolecular crosslinking of single polymer chains leads to a signifi-

cant reduction in size (often termed as chain collapse). Analysis methods

showing the size reduction (e.g. SEC, DLS, DOSY, TEM and AFM) in addition

to characterization methods that elucidate the change in chemical structure

(e.g. NMR, UV-vis, fluorescence, IR spectroscopy and mass spectrometry) are

typically used to prove the formation of SCNPs.

Size exclusion chromatography (SEC) is the most commonly used characteri-

zation technique for following the collapse of single chains into SCNPs. SEC

separates polymers by hydrodynamic volume, whereas large polymers elute

first followed by smaller molecules.261 Interchain crosslinking is manifested

in broad distributions and shoulders at lower retention time whereas the

successful formation of SCNPs leads to a signal shift towards higher retention

time and often a decrease in dispersity. SEC is often used as a relative method

showing the reduction in retention time, however, absolute size information

can be extracted from SEC data, which is described in Chapter 5 of the current

thesis.

Often apparent molecular weights, which are calculated from SEC calibration

data, are discussed. As the name suggests, the apparent molecular weight

does not represent the actual molecular weight. It serves as a measure of

hydrodynamic size, where reductions in apparent molecular weight represent

a decrease in hydrodynamic volume. Colmenero and coworkers derived an

equation for the description of apparent SEC molecular weight Mapp upon

SCNP formation:262

Mapp = c ·Mβ

β = (1 +αF)/(1 +αMHS)
(2.4)

The parameter αMHS is the Mark-Howink-Sakurada (MHS) exponent for the

linear precursor and αF is a parameter related to the fractal degree of the

SCNPs. For compact, uniform particles, β is estimated to be 0.56 and for

nanoparticles with a fractal behaviour similar to flexible, swollen chains, it
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is approximately one. The application of Equation 2.4 to values reported in

literature showed that β lies in the expected range (0.56 ≤ β ≤ 1). Furthermore,

the change in molecular weight dispersity (Ð) upon single chain collapse can

be described with the following equation:262

Ðapp = Ðβ2
(2.5)

Hence, single-chain collapse leads to a decrease in dispersity due to β ≤ 1.

In most cases, experimental data confirms this expectation, however, so-

metimes an increase in dispersity is observed, probably due to interchain

crosslinking.262

Dynamic light scattering (DLS) is a powerful technique to determine absolute

hydrodynamic diameter distributions of polymers or nanoparticles in solution.

In a DLS experiment, the scattering intensity at a constant angle is measured

over time. The collected data is analyzed using an autocorrelation function.

An exponential fit allows the calculation of the diffusion coefficient (D) and

using the Stokes-Einstein equation (Equation 2.6, T : temperature, kb: Boltz-

mann constant, η: viscosity of solvent) the hydrodynamic diameters (Dh) of

e.g. nanoparticles can be calculated.263 DLS is often employed for monitoring

the size compaction of the polymer chains upon SCNP formation.

D =
kb · T

3 ·π · η ·Dh
(2.6)

A recent article critically reviewed DLS values for SCNP systems reported in

literature.264 The diameters of SCNPs obtained from DLS measurements were

plotted against the SEC determined apparent molecular weights of the poly-

meric precursors. Significant data scattering was observed. For one apparent

molecular weight a range of different hydrodynamic diameters were repor-

ted, corresponding to a variety of densities. Varying amounts of crosslinks

and different chemical structures lead to different SCNP densities. However,

the magnitude of density scattering is remarkable and cannot exclusively

be explained by structural differences.264 Herein, another plot of literature

values was performed to assess the accuracy of DLS measurements for the

characterization of SCNP systems (Figure 2.8). SEC separates by size and
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2. Theoretical background

Figure 2.8. Hydrodynamic diameter of SCNPs and polymeric precursors determined
by DLS measurements in THF against the corresponding apparent mole-
cular weight determined by SEC in THF (black: T = n. a.;255 red: T = 40
◦C;265 blue: T = 35 ◦C232). The plotted values are summarized in Table
A.1 (Appendix).

hence,261 for the same measurement conditions (i.e. solvent and temperature)

one apparent molecular weight reflects one hydrodynamic volume. Thus,

an increase of hydrodynamic diameter with increasing apparent molecular

weight is expected for similar experimental conditions. However, the DLS

determined hydrodynamic diameters of literature reported values do not

strictly correlate with SEC determined apparent molecular weights as shown

in Figure 2.8. Even data obtained from the same instrument under the same

conditions do not reflect the expected correlation between SEC retention time

(or apparent molecular weight) and hydrodynamic diameter. Thus, the accu-

racy of hydrodynamic diameters from SCNP systems determined via DLS

needs to be reassessed.

Diffusion ordered NMR spectroscopy (DOSY) is a complimentary technique

to show the size reduction upon single-chain collapse.147,232,246 Similar to

DLS analysis, diffusion coefficients are obtained and a hydrodynamic radius

can be calculated using the Stokes-Einstein equation (Equation 2.6). Careful

consideration is advised for the calculation of hydrodynamic sizes from DOSY
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2.5. Single-chain nanoparticles

measurements, since information about the size distribution is not included

in the diffusion coefficients. A SCNP sample consists of nanoparticles with

varying sizes and can only be fully described with distributions data. However,

an increase of the diffusion coefficient clearly indicates the reduction in size

accompanied with SCNP formation.

The above described characterization methods are solution based and deliver

information about the size of polymer particles in the solvated state. On the

other hand, imaging techniques, such as atomic force microscopy (AFM) and

TEM can be employed to investigate size and shape of SCNPs in the solid

state. AFM and TEM experiments are usually performed after deposition of a

SCNP solution on a surface and subsequent drying. It should be noted that the

sample preparation step can influence the size and structure of the particles

and might lead to aggregation.

AFM is typically used as a complimentary method to solution based charac-

terization methods.254,266–268 In AFM experiments, the specimen is scanned

with a cantilever with a sharp tip. The force on the cantilever scanning the

surface is measured to generate an image. In pioneering work from Coates

and coworkers, the intramolecular olefin cross-metathesis crosslinking of

vinyl functional polymers was studied using AFM.266 Polymer solutions at

different stages of crosslinking were spin-casted on mica for subsequent AFM

visualization (Figure 2.9). The non-crosslinked polymer chains had extended

Figure 2.9. AFM height images visualizing the morphological changes accompanied
by the intramolecular crosslinking process of linear polymer chains (a)
to form SCNPs (b-d, increasing crosslinking density). Adapted with
permission from reference [266]. Copyright (2007) American Chemical
Society.
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2. Theoretical background

worm-like structures, whereas intramolecularly crosslinked polymer chains

were spherical. Importantly, with increasing crosslinking progress the poly-

mer surface extension decreased while the volume of the particles remained

constant, clearly showing the transition from a random coil to a spherical

structure.

Furthermore, transmission electron microscopy has been employed for ima-

ging SCNP in the solid state.229,253,259,268–272 Cryogenic TEM is an interesting

alternative to standard TEM methods. It allows imaging of nanoparticles

in solution and thus overcomes structural changes associated with sample

preparation. For instance, Meijer and coworkers have employed cryogenic

TEM to image the core of core-shell SCNPs in vitrified water.273

In addition to the size reduction, the elucidation of the crosslinking chemistry

is of great importance. In addition to standard characterization methods,

such as NMR, IR, UV-vis and fluorescence spectroscopy, recently high reso-

lution electrospray ionization mass spectrometry (ESI MS) experiments were

employed. A PMMA based polymer (Mn = 13100 g ·mol−1) with statistically

distributed glycidyl side group functionalities was crosslinked via intrachain

cationic ROP using B(C6F5)3 as a catalyst. ESI MS measurement revealed that

crosslinking occurs predominantly through bimolecular coupling compared

to propagation processes.274

In summary, an array of characterization methods are available for the charac-

terization of SCNPs. However, critical evaluation of literature reported data

indicated that most methods applied to determine SCNP sizes are only indica-

tive and further development of accurate and reliable size characterization

methods is required.264
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3
Grafting of functional polymers to

photoactive nanodiamonds

3.1. Motivation

Nanodiamonds (NDs) are non-toxic and versatile nanoparticles with high po-

tential for biomedical applications (Section 2.1). The modification of NDs with

polymers can improve colloidal stability and introduce (biological) functions.

Grafting-from and grafting-to strategies have been applied to coat NDs with

Parts of this chapter are adapted or reproduced from K. N. R. Wuest, V. Trouillet, A.
S. Goldmann, M. H. Stenzel, C. Barner-Kowollik, Macromolecules 2016, 49, 1712, with
permission from the American Chemical Society. K. N. R. Wuest designed and conducted
the experiments unless otherwise stated. V. Trouillet performed the XPS analysis. A. S.
Goldmann, M. H. Stenzel and C. Barner-Kowollik supervised the project and contributed
with scientific discussions.
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3. Grafting of functional polymers to photoactive nanodiamonds

polymers (Section 2.1.4.2). The light-triggered grafting of polymers to surfa-

ces has developed into an efficient and mild conjugation strategy that allows

for the preparation of defined surface structures,8 and is investigated in the

current chapter for the modification of NDs. The photoenol ligation is intro-

duced for the light-triggered Diels-Alder grafting of polymers to NDs, which

is a catalyst-free reaction that proceeds at ambient temperature. Photoactive

NDs were prepared by modification of the ND’s surface with o-methyl ben-

zaldehyde groups. Subsequent UV irradiation in the presence of maleimide

terminal polymers allowed for the surface functionalization via the photoenol

ligation. Mannose functional NDs were prepared and a lectin binding as-

say demonstrated the potential of the introduced synthetic approach for the

preparation of bioactive NDs.

3.2. Preparation of photoactive nanodiamonds

Scheme 3.1. Synthetic route from pristine NDs to photoenol functional NDs (ND-
PE). Adapted with permission from reference [275]. Copyright (2016)
American Chemical Society.

Detonation NDs (Section 2.1.1) were employed for the development of a light-

triggered polymer grafting-to approach. The structure of detonation NDs

consists of small primary particles (around 5 nm in diameter) that form larger

aggregates of up to a few hundred nanometres. The NDs were ultrasonica-

ted multiple times with a high power sonotrode to break large aggregates.

However, full disintegration is not possible using ultrasound and is also not
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3.2. Preparation of photoactive nanodiamonds

always desired depending on the application. The surface of detonation NDs

was functionalized with photoactive o-methyl benzaldehyde (photoenol, PE)

groups in four synthetic steps (Scheme 3.1).

First, the surface was oxidized in a mixture of concentrated HNO3/H2SO4

(9/1, v/v) at elevated temperature (90 ◦C). Acid treatment removes amorphous

as well as sp2 carbon structures and results in an oxidized, more homogene-

ous surface with an increased number of carboxylic acid groups.54 ATR FTIR

spectroscopy was employed to monitor the functionalization progress (Figure

3.1). After oxidation, a decrease of the absorption bands at 2920 cm-1 and

2850 cm-1 corresponding to C-H stretching vibrations was observed. In addi-

tion, the C=O stretching band at 1720 cm-1 is present in the spectrum of the

oxidized sample (ND-COOH) adjacent to an OH vibrational mode at 1624 cm-1

arising from surface-bound water.276 Next, the NDs were reduced using bo-

rane in THF, which led to a significant decrease of the C=O stretching band

at 1720 cm-1, indicating the successful reduction of carboxylic acid groups.

Additionally, an absorption band at 1248 cm-1 appeared, which could be assig-

ned to the C-H deformation vibration of secondary alcohols. In a subsequent

step the NDs were silanized with (3-aminopropyl)-triethoxysilane (APTES)

Figure 3.1. ATR FTIR spectra of samples from all synthetic steps to obtain photoenol
functional NDs (ND-PE). Adapted with permission from reference [275].
Copyright (2016) American Chemical Society.
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3. Grafting of functional polymers to photoactive nanodiamonds

to obtain amine functional NDs (ND-NH2). The surface expressed amino

functionalities were used to attach photoactive o-methyl benzaldehyde groups

via an EDC mediated amidation reaction. The successful decoration of the

NDs with photoenol groups was shown by the presence of the characteristic

photoenol IR bands at 1512 cm-1 and 831 cm-1 in the ATR FTIR spectrum.

Furthermore, X-ray photoelectron spectroscopy (XPS) analysis of the pho-

toenol functional NDs showed a strong Si 2p signal at 101.9 eV, confirming

the successful silanization reaction (Figure 3.2).

Figure 3.2. Si 2 p XP spectra of ND-OH and ND-PE. Adapted with permission from
reference [275]. Copyright (2016) American Chemical Society.
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3.3. Preparation of maleimide terminal polymers

3.3. Preparation of maleimide terminal polymers

Scheme 3.2. Synthetic route to maleimide terminal PS and PNIPAM. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.

Activated double bonds, such as maleimides, are very efficient in trapping

photo-generated o-quinodimethanes in Diels-Alder reactions, which was ex-

ploited in the current study for the grafting of polymers to ND-PE. Maleimide

terminal polymers were prepared via reversible addition fragmentation chain

transfer (RAFT) polymerization, which is a robust polymerization technique

that allows for the preparation of well-defined, endgroup functional polymers

(Section 2.2.2). First, a furan capped maleimide functional trithiocarbonate

chain transfer agent (CTA) was synthesized, wherein the maleimide functiona-

lity was attached to the R-group of the RAFT agent (CTA1, Scheme 3.2). The

RAFT polymerization of styrene and N-isopropylacrylamide (NIPAM) yielded

well-defined endgroup functional polystyrene (PS) and poly(N-isopropylac-

rylamide) (PNIPAM), respectively. Subsequent retro-Diels-Alder deprotection

of the furan capped endgroups at elevated temperatures (T ≥ 95 ◦C) led to ma-

leimide terminal polymers. Size exclusion chromatography (SEC) results are

depicted in Figure 3.3 showing well-defined polymers with low dispersities

(Table 3.1). Furthermore, the retro-Diels-Alder deprotection procedure led to

a small shift of the molecular weight distribution (MWD) to higher retention

times without any change in its shape (Figure 3.3).
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3. Grafting of functional polymers to photoactive nanodiamonds

Table 3.1. SEC and NMR characterization data of prepared endgroup functional
RAFT polymers.

Polymer
Mn

SEC /
g ·mol−1 ÐSEC Mn

NMR /
g ·mol−1 DPNMR

PS 6200 1.16 6200 55

Mal-PS 5800 1.16 - -

PNIPAM 6200 1.21 4700 37

Mal-PNIPAM 5800 1.21 - -

PManAcEMA 1 23400 1.21 12900 27

Mal-PManAcEMA 1 24300 1.24 - -

PManAcEMA 2 38000 1.30 20700 44

Mal-PManAcEMA 2 39000 1.30 - -

PManAcEMA 3 56200 1.24 42000 90

Mal-PManAcEMA 3 58800 1.24 - -

Figure 3.3. SEC results of PS (left, DMAC) and PNIPAM (right, THF) before (solid
line) and after deprotection (dashed line), respectively. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.
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3.3. Preparation of maleimide terminal polymers

1H NMR spectroscopy was employed to verify the formation of maleimide end-

groups. The thermal deprotection was accompanied with the disappearence

of signals corresponding to the furan protecting group, e.g. the olefinic proton

resonance at 6.52 ppm as well as the aliphatic proton signals at 5.25 ppm and

2.92 ppm (PNIPAM: Figure 3.4; PS: Figure B.7, Appendix). Furthermore, the

appearance of resonances at 6.75 ppm can be assigned to olefinic protons of

the newly formed maleimide moiety providing evidence of the successful

retro-Diels-Alder reaction.

In addition to PS and PNIPAM, mannose based glycopolymers were prepared

(Scheme 3.3). A fully acetylated mannose monomer was synthesized according

to a modified literature procedure.180 First, mannose was acetylated using

acetic anhydride, followed by a BF3 catalysed glycosylation reaction with

2-hydroxyethyl methacrylate (HEMA) yielding the mannose glycomonomer

ManAcEMA (Scheme 3.3). A detailed description of the reaction mechanism

is given in Section 2.4.1. Acetylated mannose is not bioactive as free hydroxy

groups are required for the binding to lectins. Therefore, the mannose units

need to be deprotected. However, deacetylation conditions may cleave the

ester bond in CTA1 and lead to the cleavage of the polymer from the sur-

Figure 3.4. 1H NMR spectra of PNIPAM polymer before (top) and after deprotection
(bottom). Adapted with permission from reference [275]. Copyright
(2016) American Chemical Society.
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3. Grafting of functional polymers to photoactive nanodiamonds

Scheme 3.3. Synthetic route to maleimide terminal PManAcEMA. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.

face. Hence, a novel RAFT agent with a more stable amide bond between

the maleimide and dithioester group was designed (CTA2, Scheme 3.3). To

obtain CTA2, an amine functional furan-capped maleimide compound was

reacted with 4-cyanopentanoic acid dithiobenzoate (CPADP). Secondary and

primary amines can cleave the dithiobenzoate group through a nucleophilic

substitution (aminolysis). In order to minimize aminolysis side reactions, the

amine was slowly added to mercaptothiazoline activated CPADP ensuring

low amine concentrations and allowing for the formation of CTA2 (Figure

B.5-B.6, Appendix).

The prepared chain transfer agent CTA2 controlled the polymerization of

ManAcEMA successfully. Glycopolymers of three chain-lengths were prepa-

red in order to investigate the effect of polymer chain length on resulting

grafting density (Mn = 12900 g ·mol−1, 20700 g ·mol−1and 42000 g ·mol−1,

Mal-PManAcEMA 1-3, Table 3.1). The retro-Diels-Alder deprotection of the

furan capped endgroups was successful as shown by SEC (Figure 3.5) and 1H

NMR spectroscopy (Figure B.8-B.10, Appendix). It should be noted that the

deacetylation of the mannose units on the glycopolymer was performed after

the grafting reaction on the NDs and is discussed in detail later. An overview

of all prepared polymers is depicted in Table 3.1.
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3.4. Light-triggered polymer grafting

Figure 3.5. SEC results (THF) of PManAcEMA 1-3 (right to left) before (solid line)
and after deprotection (dashed line). Adapted with permission from
reference [275]. Copyright (2016) American Chemical Society.

3.4. Light-triggered polymer grafting

Scheme 3.4. Schematic representation of the photo-grafting process. Upon UV irra-
diation dienes are formed on ND-PE, which are trapped by maleimide
terminal polymers.

Next, the light-induced grafting of the prepared maleimide terminal polymers

to photoenol functional nanodiamonds (ND-PE) was investigated (Scheme

3.4). Photo-grafting experiments were performed in a custom built photo-

reactor equipped with a commercially available UV lamp (Arimed B6, λmax

= 320 nm). In a typical grafting experiment, ND-PE was dispersed in THF

assisted by ultrasound, followed by addition of polymer and UV irradiation.

Subsequently, the resulting NDs were centrifuged followed by several wa-
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3. Grafting of functional polymers to photoactive nanodiamonds

shing cycles to remove unreacted polymer (dispersion in suitable solvent,

centrifugation, removal of supernatant).

In order to show successful photo-grafting, a control experiment was perfor-

med. A mixture of Mal-PS and ND-PE was divided into two samples. One

sample was irradiated at λmax = 320 nm whereas the control sample was

stirred in the dark for the same time period. After purification, the grafting

density was determined by thermogravimetric analysis (TGA) under oxidative

conditions. At temperatures around 350 ◦C the polymer decomposes whereas

the nanodiamonds are stable up to around 615 ◦C. The first decomposition

step corresponding to the grafted polymer was used to calculate the grafting

density in wt.% (mass polymer per mass sample). Importantly, only the irra-

diated sample contained polymer showing the success of the photo-grafting-

reaction (Figure B.11, Appendix). Next, the kinetics of the photo-grafting

process was investigated with Mal-PNIPAM and Mal-PManAcEMA 1 (Figure

3.6). An increase of grafting density with irradiation time was observed for

both experiments, levelling out after 2 h and 5 h for Mal-PNIPAM and Mal-

PManAcEMA 1, respectively. Further grafting experiments were performed

overnight to ensure maximum grafting density.

Figure 3.6. TGA determined grafting density against irradiation time. Black: Mal-
PNIPAM; blue: Mal-PManAcEMA 1. Adapted with permission from
reference [275]. Copyright (2016) American Chemical Society.
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3.4. Light-triggered polymer grafting

Figure 3.7. ATR FTIR spectra of ND-PE, polymers and polymer coated NDs. Adap-
ted with permission from reference [275]. Copyright (2016) American
Chemical Society.

Next, a series of ND-polymer core-shell particles was prepared by photo-

grafting the maleimide terminal polymers (Mal-PS, Mal-PNIPAM and Mal-

PManAcEMA 1-3, Table 3.1) to the photoactive NDs. ATR FTIR spectroscopy

is a powerful technique to investigate surface functionalities and hence was

employed to characterize the polymer grafted NDs. In the IR spectra of all

polymer coated ND samples the characteristic IR bands of the parent polymer

were present (Figure 3.7). For instance, the aromatic C-H vibration bands of

Mal-PS at 754 cm-1 and 695 cm-1 are visible in the IR spectrum of ND@PS.

The grafting of Mal-PNIPAM onto NDs led to the appearance of amide IR

bands at 1635 cm-1 and 1540 cm-1 as well as a symmetric – C(CH3)2 defor-

mation band at 1460 cm-1.277 The photo-grafting of Mal-PManAcEMA 1-3

yielded glycopolymer coated NDs where all hydroxy groups were acetylated.

Since the hydroxy groups are crucial for the bioactivity of the glycopoly-

mer, the mannose units on the PManAcEMA shell were deprotected using
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3. Grafting of functional polymers to photoactive nanodiamonds

sodium methoxide. The deprotecion was performed directly after the photo-

grafting experiment without prior purification providing a simple synthetic

approach. One acetylated sample was isolated for further characterization

(ND@PManAcEMA 2). The glycopolymer photo-grafting was accompanied

with the appearance of a carbonyl band at 1738 cm-1 corresponding to the

acetate groups as well as the carbonyl group on the acrylate based backbone.

Upon deprotection the carbonyl band at 1738 cm-1 decreased due to the loss

of the acetate groups.

Furthermore, XPS gave valuable insight on the surface structure of the poly-

mer coated NDs. XPS is a surface sensitive method, which provides informa-

tion about the surface composition to a depth of around 10 nm. The grafting of

Mal-PS did not lead to a significant change in the measured XP spectra due to

similar elemental composition of the ND core and polymer shell (both consist

mainly of carbon). However, the photo-grafting of hetero atom containing

polymers could be readily monitored via XPS. The PNIPAM grafting led to a

significant increase of the N 1s signal at 399.6 eV from 2.0 at.% to 3.0 at.% (Fi-

gure 3.8). It should be noted that the origin of the nitrogen in ND-PE is from

nitrogen defects in the ND lattice as well as from the silanization reaction with

APTES. However, the grafting of Mal-PNIPAM increased the nitrogen content

on the surface. The photo-grafting of the glycopolymers (Mal-PManAcEMA)

increased the oxygen content on the ND’s surface, leading to a higher intensity

ratio of the C-O, C-N (286.5 eV) and the C-H, C-C (285.0 eV) signals (Figure

Figure 3.8. N 1s and C1s XP spectra of selected ND samples. Adapted with permis-
sion from reference [275]. Copyright (2016) American Chemical Society.
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3.4. Light-triggered polymer grafting

Table 3.2. Grafting densities of polymer coated NDs determined via TGA.

Grafting density / Footprint /

Sample wt.% µmol · g−1 nm2

ND@PS 3.8 6.4 2.7

ND@PNIPAM 5.0 11.1 1.5

ND@PManEMA 1 5.5 6.9 3.8

ND@PManAcEMA 2 10.9 5.9 3.1

ND@PManEMA 2 7.9 6.4 4.2

ND@PManEMA 3 9.3 3.8 7.9

3.8). The deacetylation led to a decrease in carbonyl groups and an increase in

hydroxy groups which was in agreement with the deconvoluted C 1s signals.

Using TGA under oxidative conditions, the amount of grafted polymer (in

wt.%) could be directly determined. Using size information from dynamic

light scattering (DLS) and the molecular weight of the parent polymers, a

molar grafting density was calculated. In addition, the polymer footprint

(average surface area per polymer chain) was estimated using the surface area

of ND-PE, which was calculated from the DLS determined hydrodynamic

diameter of ND-PE assuming a spherical shape and the density of bulk dia-

mond (3.52 g · cm-3). It should be noted that due to the beforehand mentioned

assumptions, the polymer footprint is a rough estimation, however, it delivers

descriptive values that facilitates the comparison to other systems. The results

are summarized in Table 3.2.

Grafting densities between 3.8 wt.% and 10.9 wt.% and molar grafting densi-

ties between 3.8µmol · g−1 and 11.1µmol · g−1 were obtained. Importantly,

the grafting density in wt.% of ND@PManAcEMA 2 decreased from 10.9 wt.%

to 7.9 wt.% upon deacetylation corresponding to the weight loss due to the cle-

avage of acetate groups. The polymer footprint was estimated to be between

1.5 nm2 and 7.9 nm2 and lies in the order of magnitude of literature reported

values.7,278

Glycopolymers of three different chain lengths were photo-grafted to NDs.

The determination of grafting densities by TGA revealed that the photo-

grafting efficiency depends on the molecular weight of the grafted polymer
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3. Grafting of functional polymers to photoactive nanodiamonds

Figure 3.9. TGA results from polymers, ND-PE and polymer grafted NDs. Adap-
ted with permission from reference [275]. Copyright (2016) American
Chemical Society.

Figure 3.10. Left: Degree of polymerization vs. grafting density. Right: DLS result
of prepared nanodiamonds (number distributions). Adapted with per-
mission from reference [275]. Copyright (2016) American Chemical
Society.
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(Figure 3.10). The molar grafting density decreases with increasing polymer

chain length. The chain-length dependency of the grafting process can be

explained with steric effects. Larger polymers cover more space on the surface

resulting in higher polymer footprints and lower molar grafting densities.

The hydrodynamic diameter distributions of the hybrid particles were deter-

mined via DLS experiments (Figure 3.10). The number average hydrodynamic

diameters range between 170 nm and 290 nm. Upon photo-grafting, the

hydrodynamic diameter increased with exemption of ND@PManEMA 1 and

ND@PManEMA 2 that possessed a smaller hydrodynamic diameter than the

precursor, probably due to better dispersibility.

3.5. Lectin binding

The specific binding of carbohydrates to lectins on cell surfaces can promote

cellular uptake and thus glycopolymers are highly interesting for targeted

drug delivery applications (Section 2.4.4). Concanavalin A (ConA) is a lectin

that selectively binds to mannose and glucose units and serves in this study

as a model protein to evaluate the bioactivity of the glycopolymer coated

NDs. Since ConA has four binding pockets, the binding of glycopolymers

to ConA is accompanied with a crosslinking induced turbidity, which can

be monitored by UV-vis spectroscopy in a so-called turbidity assay. ConA

was added to glycopolymer functional NDs (dispersion in HEPES buffer)

and the binding was measured by the increase in absorbance at 420 nm. All

glycopolymer functional NDs bind to ConA (Figure 3.11), whereas the hybrid

particles with the smallest glycopolymer chains showed the steepest increase

in turbidiy followed by a decrease probably due to sedimentation of large

particles. No sedimentation of the particles with longer glycopolymer chains

was observed. A potential explanation is that the possibility of ConA binding

only to mannose units of one particle is higher when the glycopolymers are

longer and thus less aggregation occurs.
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3. Grafting of functional polymers to photoactive nanodiamonds

Figure 3.11. ConA turbidity assay. The absorbance at 420 nm was measured after
the addition of ConA to a ND@PManEMA 1-3 dispersion. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.

3.6. Conclusion

In conclusion, a novel light-induced grafting-to protocol for the modification

of NDs with functional polymers is introduced. The grafting-to protocol is

based on the photoenolization of o-methyl benzaldehyde groups attached to

NDs. The hereby formed dienes are trapped in Diels-Alder reactions with

maleimide terminal polymers. The approach is modular as shown by the graf-

ting of a variety of polymers (PS, PNIPAM and glycopolymers). Furthermore,

a correlation between molecular weight of grafted polymer and resulting

grafting density was observed. Higher molar grafting densities are achieved

with lower molecular weight polymers due to steric hindrance. Importantly,

glycopolymers with lateral mannose groups could be grafted to NDs and the

binding activity towards the lectin ConA was demonstrated in a turbidity

assay.
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3.7. Experimental section

3.7.1. Materials

Methyl 4-((2-formyl-3-methylphenoxy)methyl)benzoic acid (PE),131 4-(2-hy-

droxyethyl)-10-oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione,279 2-(((dode-

cyl-thio)carbonothioyl)thio)-2-methylpropanoic acid280 and 2-(2-(2-(2-amino-

ethoxy)ethoxy)ethyl)-3a,4,7,7a-tetrahydro-1H-4,7-epoxyisoindole-1,3(2H)-di-

one281 were prepared according to literature procedures.

Detonation nanodiamonds (< 10 nm particle size by TEM, > 97 % trace metals

basis, Sigma-Aldrich), EDC ·HCl (99+ %, Roth), D(+)-mannose (99+ %, Acros),

BF3OEt2 (98+ %, Alpha), acetic anhydride (99+ %, Acros), 4-cyano-4-((phe-

nylcarbonothioyl)thio)pentanoic acid (>97 %, Sigma-Aldrich), BH3 in THF

(1.0 M, Sigma-Aldrich), H2SO4 (96 %, Roth), HNO3 (67 %, Roth), HCl (37 %,

Roth), N,N’-dicyclohexylcarbodiimid (DCC, 99 %, Acros), 2,2’-azobis(isobuty-

lonitrile) (AIBN, VWR), (3-aminopropyl) triethoxysilane (APTES, 98 %, abcr),

2-hydroxyethyl methacrylate (HEMA, 97 %, Sigma-Aldrich), 4-dimethylami-

nopyridine (DMAP, 99 %, abcr), 2-thiazoline-2-thiol (98 %, Sigma-Aldrich),

chloroform-d1 (CDCl3, 99.8 %, EURISO-TOP), dimethyl sulfoxide-d6 (DMSO-

d6, 99.8 %, EURISO-TOP), 4-dimethylaminopyridine (DMAP, 99 %, Acros)

were used as received. N,N-Dimethylformamid (DMF), tetrahydrofuran (THF),

dichloromethane (DCM), diethyl ether, ethyl acetate and cyclohexane were

purchased as analytical grade (Sigma-Aldrich) and used as received. Styrene

(Sigma-Aldrich) was passed through a column of basic aluminium oxide

(Acros). N-Isopropylacrylamide (NIPAM, TCI, 98 %) was recrystallized twice

from hexane and stored at -20 ◦C prior to usage.

3.7.2. Instrumentation

Size exclusion chromatography (SEC)

THF system. A Polymer Laboratories PL - GPC 50 Plus Integrated System

was used, comprising an autosampler, a PLgel 5µm bead-size guard column

(50 ·7.5 mm) followed by three PLgel 5µm Mixed-C and one PLgel 3µm

71



3. Grafting of functional polymers to photoactive nanodiamonds

Mixed-E column (300 ·7.5 mm) and a differential refractive index detector

using THF as the eluent at 40 ◦C with a flow rate of 1 mL ·min−1. The SEC

system was calibrated using linear poly(styrene) (PS) standards ranging from

474 to 2.5 ·106 g ·mol−1. Calculation of the molecular weight proceeded via
the Mark-Houwink parameters for polystyrene, i.e. K = 14.1 · 10-5 dL · g-1, α

= 0.70.282 The samples were filtered through polytetrafluorethylene (PTFE)

membranes with a pore size of 0.2µm prior to injection.

DMAc system. A Polymer Laboratories PL-GPC 50 Plus Integrated System

was used, comprising an autosampler, a PLgel 5µm bead-size guard column

(50 ·7.5 mm) followed by three PLgel 5 × Mixed C columns (300 ·7.5 mm),

and a differential refractive index detector with a flow rate of 1.0 mL ·min−1.

N,N-dimethylacetamide (DMAC) containing 0.03 wt.% LiBr was used as an

eluent and the system was operated at 50 ◦C. The SEC system was calibrated

against linear poly(methyl methacrylate) standards with molecular weights

ranging from 700 to 2 ·106 g ·mol−1. The samples were filtered through po-

lytetrafluorethylene (PTFE) membranes with a pore size of 0.2µm prior to

injection.

UV-vis spectroscopy

UV-vis measurements were performed in a Varian Cary 100 Bio spectrometer

including a temperature control unit. All measurements were carried out in

quartz cuvettes.

Ultrasound systems

For the dispersion of NDs, a Branson Sonifier W450 (400 Watt) with a micro

tip was employed (referred to as high power sonotrode). A Bandelin Sonorex

Digitec ultrasound bath with temperature control was employed for mild

ultrasound treatments.
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Thermogravimetric analysis (TGA)

TGA was performed on a TGA Q5000 from TA Instruments. Pre-dried samples

were measured in air atmosphere (oxidative conditions) with the following

heating sequence:

1. Ambient temperature to 100 ◦C, 10 ◦C ·min-1

2. Isothermal at 100 ◦C for 10 min

3. 100 ◦C - 800 ◦C, 10 ◦C ·min-1

Electrospray ionization mass spectrometry (ESI MS)

ESI MS spectra were recorded on a Q Exactive mass spectrometer (Orbitrap)

equipped with a HESI II probe (ThermoFisher Scientific, San Jose, CA, USA).

The instrument was calibrated in the m/z range of 74-1822 by using a S2

premixed standard containing caffeine, Met-Arg-Phe-Ala acetate (MRFA) and

a mixture of fluorinated phosphazenes (Ultramark 1621). A dimensionless

sweep gas flow rate of 5 and a constant spray voltage of 4.6 kV were applied.

The capillary temperature was set to 320 ◦C. The S-lens RF level was set to

62.0. The samples were dissolved in a mixture of THF and MeOH (3:1), filtered

through polytetrafluorethylene (PTFE) membranes with a pore size of 0.2µm

and injected with a flow rate of 5µL ·min−1.

Nuclear magnetic resonance (NMR) spectroscopy

The synthesized compounds were analyzed via 1H and 13C NMR spectroscopy

using a Bruker Avance 400 (1H, 400 MHz; 13C, 101 MHz) spectrometer. Sam-

ples were dissolved in deuterated solvents. The δ-scale was referenced against

the residual solvent signal. Abbreviations used in the description of the ma-

terials synthesis include singlet (s), broad singlet (bs), doublet (d), triplet (t),

quartet (q), and multiplet (m).
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3.7.3. Synthetic procedures

Oxidation of nanodiamonds (ND-COOH)

According to a literature procedure,283 detonation NDs (500 mg) were dis-

persed in 10 mL of a 9/1 (v/v) mixture of H2SO4 (96 %) and HNO3 (67 %).

The reaction mixture was stirred at 90 ◦C for three days. Subsequently, the

NDs were washed with water and ultrasonicated with a high power sonotrode

for 1 h. This procedure was repeated one more time before the treatment

with 20 mL NaOH (0.5 M) at 90 ◦C for 1 h. After centrifugation, the NDs

were redispersed in 20 mL aqueous HCl (0.1 M) and stirred at 90 ◦C for 1 h.

Subsequently, the NDs were centrifuged and redispersed in 20 mL water and

sonicated with a high power sonotrode for 2 h. After centrifugation and drying

under reduced pressure oxidized NDs (ND-COOH), were obtained as a grey

powder.

Reduction of nanodiamonds (ND-OH)

ND-COOH (400 mg) were dispersed in 20 mL anhydrous THF using an ul-

trasound bath. 5 mL BH3 in THF (1 M) was added and stirred at 70 ◦C for

24 h. Subsequently, the reaction mixture was quenched with 5 mL HCl (2 M)

and washed with a 1/1 (v/v) mixture of acetone/water until neutral. After

centrifugation and drying under reduced pressure ND-OH were obtained.

Silanization of nanodiamonds (ND-NH2)

ND-OH (235 mg) were dispersed in 40 mL anhydrous THF. APTES (2.10 mL)

was added and stirred at ambient temperature for 48 h. The NDs were cen-

trifuged, washed with acetone and dried under reduced pressure to obtain

amine functional NDs (ND – NH2).
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Amidation of nanodiamonds (ND-PE)

ND – NH2 (150 mg) were dispersed in 50 mL THF and sonicated in an ultra-

sound bath for 1 h. Next, methyl 4-((2-formyl-3-methylphenoxy)- methyl)

benzoic acid (91.2 mg, 0.337 mmol, 1.00 eq), EDC ·HCl (77.6 mg, 0.405 mmol,

1.20 eq) and DMAP (16.5 mg, 0.135 mg, 0.400 eq) were added. The reaction

mixture was stirred at ambient temperature for 65 h. After centrifugation, the

NDs were washed twice with water and twice with THF to obtain photoenol-

functional NDs (ND-PE).

Synthesis of ManAcEMA

Acetylation of mannose. According to a literature procedure,180 two drops sul-

furic acid (96 %) were added to a suspension of mannose (5.00 g, 27.8 mmol,

1.00 eq) in acetic anhydride (26.2 mL, 28.3 g, 278 mmol, 10.0 eq) at 0 ◦C. The

reaction mixture was stirred at ambient temperature for 18 h. 100 mL water

was added and extracted with DCM. The organic phase was washed consecu-

tively with saturated NaHCO3 and water until the aqueous phase was neutral

and the organic phase was dried over Na2SO4. After removal of solvent un-

der reduced pressure peracetylated mannose (10.44 g, 26.7 mmol, 96 %) was

obtained.

1H NMR (400 MHz, CDCl3), δ (ppm) = 6.08 (s, 1 H, CH, anomeric center),

5.49-5.38 (m, 1H), 5.28-5.24 (m, 1 H), 5.37-5.33 (m, 2 H), 4.33-4.24 (m, 1 H),

4.16-4.01 (m, 2 H), 2.17, 2.16, 2.08, 2.04, 2.00 (5 s, each 3 H, acetyl groups).

Glycosylation with HEMA. According to a literature procedure,180 perace-

tylated mannose (3.00 g, 7.69 mmol, 1.00 eq) and HEMA (1.12 mL, 1.20 g,

9.22 mmol, 1.20 eq) were dissolved in 30 mL anhydrous DCM and cooled with
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3. Grafting of functional polymers to photoactive nanodiamonds

an ice bath. Subsequently, BF3OEt2 (4.74 mL, 5.45 g, 38.4 mmol, 5.00 eq) was

added dropwise and stirred at ambient temperature for 20 h. 20 mL water was

added and the resulting mixture was extracted with DCM, washed consecuti-

vely with water, saturated NaHCO3 solution, water and dried over Na2SO4.

The solvent was removed under reduced pressure and the crude product was

purified by column chromatography (cyclohexane/ethyl acetate, 7/3, v/v)

yielding ManAcEMA as a white solid (1.97 g, 4.28 mmol, 56 %).

1H NMR (400 MHz, CDCl3, Figure B.1), δ (ppm) = 6.17-6.08 (m, 1 H, C –– CH),

5.61-5.58 (m, 1 H, C –– CH), 5.34 (dd, J = 10.0, 3.4 Hz, 1 H, CH), 5.31-5.23 (m,

2 H, CH), 4.87 (d, J = 1.8 Hz, 1 H, CH, anomeric center), 4.38-4.31 (m, 2 H,

CH2), 4.26 (dd, J = 12.2, 5.4 Hz, 1 H, CH– OAc), 4.08 (dd, J = 12.2, 2.4 Hz, 1

H, CH– OAc), 4.01 (ddd, J = 9.9, 5.4, 2.4 Hz, 1 H, CH), 3.96âĹŠ 3.71 (m, 2 H,

CH2), 2.15, 2.09, 2.03, 1.98 (4 s, each 3 H, acetyl groups), 1.95 (dd, J = 1.3 Hz,

J = 1.3 Hz, 3 H, CH3).

13C NMR (101 MHz, CDCl3, Figure B.2), δ (ppm) = 170.75, 170.13, 169.98,

169.82, 167.23, 136.09, 126.18, 97.66, 69.56, 69.08, 68.75, 66.24, 66.04, 63.26,

62.54, 21.00, 20.84, 20.81, 18.41.

ESI-MS: [M + Na]+,[C20H28O12Na]+, theoretical: 483.147; experimental: 483.148

Synthesis of CTA1

According to a literature procedure,284 2-(((dodecyl-thio)carbonothioyl)thio)-

2-methylpropanoic acid (1.50 g, 4.12 mmol, 1.00 eq), 4-(2-hydroxyethyl)-10-

oxa-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione (1.29 g, 6.18 mmol, 1.50 eq)

and DMAP (0.101 g, 0.823 mmol, 0.200 eq) were dissolved at 0 ◦C in 75 mL

anhydrous THF. Subsequently, EDC ·HCl (2.37 g, 12.4 mmol, 3.00 eq) was

added and the reaction mixture was stirred at ambient temperature for 18 h.

The solvent was removed under reduced pressure and the residue was dis-

solved in DCM. The solution was washed with saturated NaHCO3 solution,
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brine and water, and dried over Na2SO4. The solvent was removed under

reduced pressure and the residue was purified by column chromatography

(cyclohexane/ethyl acetate, 1/1, v/v) yielding CTA1 as a yellow solid (897 mg,

1.61 mmol, 39 %).

1H NMR (400 MHz, CDCl3, Figure B.3), δ (ppm) = 6.50 (s, 2H, CH=CH), 5.25

(s, 2 H, CH-O), 4.24 (t, J = 5.4 Hz, 2 H, CO2 – CH2), 3.77 (t, J = 5.4 Hz, 2 H,

N – CH2), 3.24 (t, J = 7.4 Hz, 2 H, S – CH2), 2.86 (s, 2 H, CH-CON), 1.68-1.50

(m, 8 H, CH3 and CH2), 1.38-1.05 (m, 18H, CH2), 0.88 (t, J = 6.8 Hz, 3 H,

CH2 – CH3).

13C NMR (101 MHz, CDCl3, Figure B.4), δ (ppm) = 221.80, 175.91, 172.83,

136.67, 80.99, 62.31, 56.08, 47.67, 37.70, 37.17, 32.04, 29.76, 29.68, 29.58,

29.47, 29.23, 29.10, 27.94, 25.26, 22.82, 14.26.

ESI-MS: [M + Na]+,[C27H41NO5S3Na]+, theoretical: 578.204; experimental:

578.205; [2M + Na]+,[C54H82N2O10S6Na]+, theoretical: 1133.419; experimen-

tal: 1133.422.

Synthesis of CTA2

4-Cyano-4-((phenylcarbonothioyl)thio) pentanoic acid (650 mg, 2.33 mmol,

1.00 eq), mercaptothiazoline (277 mg, 2.33 mmol, 1.00 eq), DMAP (28.0 mg,

0.233 mmol, 0.100 eq) and DCC (577 mg, 2.80 mmol, 1.20 eq) were dissolved

in 10 mL anhydrous DCM and stirred at ambient temperature for 14 h. Subse-

quently, 2-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-3a,4,7,7a-tetrahydro-1H-4,7-

epoxyisoindole-1,3(2H)-dione (655 mg, 2.13 mmol, 0.95 eq) in 4 mL anhydrous

DCM was added dropwise (over 1 h to minimize aminolysis of the dithioben-

zoate group) and stirred at ambient temperature for 5 h. The precipitate was
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filtered off, and the solvent was removed under reduced pressure. The residue

was purified by column chromatography (ethyl acetate/cyclohexane, 1/4, v/v,

gradient to pure ethyl acetate) yielding CTA2 (205 mg, 0.368 mmol, 16 %).

1H NMR (400 MHz, CDCl3, Figure B.5), δ (ppm) = 7.90 (dd, J = 8.5, 1.3 Hz,

2 H, Ph), 7.59-7.53 (m, 1 H, Ph), 7.39 (dd, J = 8.4, 7.4 Hz, 2 H, Ph), 6.62 (s, 1H,

NH), 6.50 (s, 2 H, CH=CH), 5.25 (s, 2 H, CH-O), 3.86-3.41 (m, 10 H, CH2),

2.86 (s, 2 H, CH), 2.78-2.36 (m, 4 H, CH2), 1.95 (s, 2 H, N – CH2), 1.25 (s, 3 H

CH3).

13C NMR (101 MHz, CDCl3, Figure B.6), δ (ppm) = 222.81, 176.53, 170.80,

144.72, 136.70, 133.10, 128.69, 126.81, 118.90, 81.09, 70.49, 70.16, 69.78,

67.53, 47.64, 46.30, 39.54, 38.69, 34.33, 31.73, 29.83, 24.29.

ESI-MS: [M + Na]+,[C27H31N3O6S2Na]+, theoretical: 580.155; experimental:

580.156.

RAFT polymerizations

Preparation of PS. CTA1 and AIBN were dissolved in styrene ([M]:[CTA]:[I],

1000:10:1), degassed by four freeze-pump-thaw cycles and stirred at 60 ◦C

for 14 h. The polymerization was stopped by cooling with liquid nitrogen

and exposing to air. Subsequently, the polymerization mixture was precipi-

tated twice in methanol and the resulting polymer was dried under reduced

pressure.

Preparation of PNIPAM. NIPAM, CTA1 and AIBN ([M]:[CTA]:[I], 1000:10:1)

were dissolved in 5 mL DMF ([M] = 1.77 mol ·L−1) and degassed by four

freeze-pump-thaw cycles and the polymerization mixture was stirred at 60 ◦C

for 8 h. The polymerization was stopped by cooling with liquid nitrogen

and exposing to oxygen. Finally, the crude product was precipitated twice in

diethyl ether and dried under reduced pressure.

Preparation of PManAcEMA 1. ManAcEMA, CTA2 and AIBN ([M]:[CTA]:[I],

250:5:1) were dissolved in 1 mL DMF. The polymerization mixture was

degassed by four freeze-pump-thaw cycles and polymerized at 60 ◦C for 14 h.
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The crude product was precipitated twice in cold diethyl ether and dried

under reduced pressure.

Preparation of PManAcEMA 2. ManAcEMA, CTA2 and AIBN ([M]:[CTA]:[I],

250:5:1) were dissolved in 1 mL DMF. The polymerization mixture was

degassed by four freeze-pump-thaw cycles and polymerized at 60 ◦C for 22 h.

The crude product was precipitated twice in cold diethyl ether and dried

under reduced pressure.

Preparation of PManAcEMA 3. ManAcEMA, CTA2 and AIBN ([M]:[CTA]:[I],

500:5:1) were dissolved in 1 mL DMF. The polymerization mixture was

degassed by four freeze-pump-thaw cycles and polymerized at 60 ◦C for 16 h.

The crude product was precipitated twice in cold diethyl ether and dried

under reduced pressure.

Retro-Diels-Alder deprotection of polymer endgroups. The deprotection reactions

were performed in bulk and under reduced pressure (PS: 110 ◦C for 6 h,

PNIPAM: 95 ◦C for 10 h, PManAcEMA 1-3: 110 ◦C for 15 h).

Photo-grafting

General procedure. ND-PE was dispersed in THF (1 g ·L−1) and ultrasonicated

in an ultrasound bath for 1 h. Maleimide terminal polymer was added (final

concentration = 1 g ·L−1) and degassed by purging with nitrogen for 10 min.

Subsequently, the reaction mixture was irradiated with UV light (Arimed B6

lamp, distance to lamp = 15 cm, 1.57 mW · cm-2) at ambient temperature. The

NDs were centrifuged, washed four times with THF and dried under reduced

pressure.

Kinetic Study for the photo-grafting of Mal-PNIPAM and Mal-PManAcEMA 1.
ND-PE was dispersed in THF (1 g ·L−1) and ultrasonicated in an ultrasound

bath for one hour. Polymer was added (0.210 mmol ·L−1) solution and the

reaction mixture was degassed by purging with nitrogen for 10 min. The

resulting dispersion was irradiated with UV light (Arimed B6 lamp, dis-

tance to lamp = 15 cm, 1.57 mW · cm-2) at ambient temperature for different

time intervals (Mal-PNIPAM: 30 min, 60 min, 120 min, 240 min and 360 min;

Mal-PManAcEMA 1: 30 min, 60 min, 120 min and 900 min). The NDs were
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centrifuged, washed four times with THF, dried under reduced pressure and

analyzed by TGA. The results are depicted in Figure 3.6.

Deacetylation of glycopolymer coated nanodiamonds

The deprotection of acetylated glycopolymers was performed after the graf-

ting reaction without prior purification. A sodium methoxide solution in

methanol (25 wt.%, 260µL per 10 mg NDs) was added and stirred at ambient

temperature for 2 h. Subsequently, the reaction mixture was washed twice

with water and twice with THF and dried under reduced pressure.

ConA turbidity assay

The ConA turbidity assay was performed with ND@PManEMA 1-3. 150µL

ConA solution (2 mg ·mL−1 in HEPES buffer, pH = 7) was added to 500µL

ND@PManEMA dispersion (0.1 mg ·mL−1 in HEPES buffer) in a quartz cuvette,

mixed thoroughly and added immediately to the UV-vis spectrometer. The

absorbance at λ = 420 nm was measured over time. The starting point for data

acquisition was set to 0 min.
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4
Grafting of photoactive polymers

to graphitic nanodiamonds

4.1. Motivation

The surface modification of nanodiamonds (NDs) is commonly performed in

multi-step procedures involving initial oxidation or reduction followed by che-

mical reactions that lead to the attachment of the molecule of interest (Section

Parts of this chapter are adapted or reproduced from Wuest, K. N. R.; Trouillet, V.; Köppe,
R.; Roesky, P. W.; Goldmann, A. S.; Stenzel, M. H.; Barner-Kowollik, C. Polym. Chem.
2017, 8, 838-842, with permission from The Royal Society of Chemistry. K. N. R. Wuest
designed and conducted the experiments unless otherwise stated. R. Köppe helped
with thermal annealing. V. Trouillet performed the XPS analysis. S. Hurrle conducted
the XRD analysis. A. S. Goldmann, P. Roesky M. H. Stenzel and C. Barner-Kowollik
supervised the project and contributed with scientific discussions.
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2.1.4 and Chapter 3). An elegant alternative is the generation of graphene-like

carbon structures on NDs via thermal annealing. Typically, temperatures

above 700 ◦C are employed that lead to the desorption of surface groups follo-

wed by a sp3-sp2 phase transition.63 Importantly, the formation of sp2 carbon

structures starts at the surface and proceeds to the core. Hence, the prepara-

tion of surface graphitized nanoparticles with retention of the diamond core

is possible. Coupling reactions with diazonium salts,64,285 maleimides,286 as

well as thermally generated o-quinodimethanes65 have been performed on

surface graphitized NDs. The latter example is based on Diels-Alder reactions

with surface-expressed graphene structures. Importantly, the curvature of sp2

carbon structures increases the Diels-Alder reactivity.287 The increased reacti-

vity can be explained with strain relief due to sp2-sp3 rehybridization during

Diels-Alder reactions.288 Besides NDs,65 other curved sp2 hybridized carbon

structures, such as fullerenes289 and carbon nanotubes290 have successfully

been modified by Diels-Alder grafting. On the basis of the previous chapter,

the photoenol ligation was employed herein, however, o-methyl benzalde-

hyde groups were attached to polymer endgroups that allowed for the light

triggered Diels-Alder grafting onto graphitic NDs (grNDs). Furthermore,

co-grafting on NDs is investigated for the generation of complex polymeric

surface structures.

4.2. Annealing of nanodiamonds

Scheme 4.1. Schematic representation of the thermal annealing of NDs. Adapted
from Ref. [291] with permission from The Royal Society of Chemistry.

First, detonation NDs were thermally annealed to generate surface-expressed

dienophiles for photoenol grafting (Scheme 4.1). The selective surface graphi-

tization of detonation NDs was performed in vacuum at 900 ◦C for 2 h. X-ray

diffraction (XRD) measurements of the sample before and after annealing
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Figure 4.1. XRD patterns (left) and XP spectra (right) of NDs before and after thermal
annealing. Adapted from Ref. [291] with permission from The Royal
Society of Chemistry.

revealed the retention of the diamond diffraction pattern (Figure 4.1). X-ray

photoelectron spectroscopy (XPS) was employed to investigate the degree of

graphitization (Figure 4.1). The analysis of thin ND powder layers was con-

ducted using charge compensation. However, probably due to the particulate

properties of the sample, charge compensation was not completely successful.

The spectra were referenced to the characteristic sp3 component of NDs (C-C,

C-H, 285 eV) leading to a shift of 1.2 eV towards lower binding energy. Conse-

quently, graphitic carbon is graphically charge-overcompensated and appears

at 283.3±0.2 eV. Without energy corrections the sp2 component appears at

284.4± 0.2 eV. According to the XP spectra, the annealing process leads to a

significant increase in sp2 carbon from 9.8 at.% to 21.8 at.%. Interestingly, the

signals at 286.3 eV and 288.0 eV, which usually correspond to oxidized carbon

species (C-O, C-N and C=O, respectively) do not align with the oxygen and

nitrogen content of the sample. Hence, a further contribution to these signals

has to be assumed. Structural defects might contribute to the signals.292 Ho-

wever, further investigation is required in order to fully understand the origin

of these signals.
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4.3. Preparation of photoactive polymers

Scheme 4.2. Preparation of photoactive polymers. Adapted from Ref. [291] with
permission from The Royal Society of Chemistry.

A small library of o-methyl benzaldehyde terminal polymers was prepared

for the investigation of light-triggered Diels-Alder grafting on annealed NDs

(Scheme 4.2). First, hydroxy terminal poly(ethylene glycol) (PEG) (Mn =

2000 g ·mol−1) was reacted with a fourfold excess of 4-((2-formyl-3-methyl-

phenoxy)methyl)benzoic acid via a DCC mediated esterification reaction

(Scheme 4.2). The 1H NMR spectrum of the obtained photoenol functio-

nal PEG (PE-PEG) exhibits the proton signals corresponding to the introduced

photoactive endgroups including the aldehyde proton resonance at 10.75 ppm

(Figure C.12, Appendix). Additionally, the successful functionalization of

PEG was confirmed via electrospray ionization mass spectrometry (ESI MS)

(Figure 4.2). The main signals of the ESI MS spectra can be assigned to the

product PE-PEG. Double-charged species corresponding to adducts of PE-

PEG with two Na+ ions, for instance at m/z 1068.080 (exp.) (1068.081 (th.)),

were observed (Figure 4.2) and prove the success of the functionalization

procedure.
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Figure 4.2. ESI MS results of the functionalization of PEG with photoenol groups.
Adapted from Ref. [291] with permission from The Royal Society of
Chemistry.

Furthermore, a novel photoenol functional chain transfer agent (CTA) for

reversible addition fragmentation chain transfer (RAFT) polymerization was

prepared (CTA3, Scheme 4.2). 2-(Dodecylthiocarbonothioylthio)propionic

acid was reacted in two consecutive EDC mediated esterification reactions,

first with triethylene glycol, which acts as a spacer, and then with 4-((2-

formyl-3-methylphenoxy)methyl)benzoic acid. The successful formation of

CTA3 was confirmed via NMR spectroscopy (Figure C.15-C.16). In detail, the

proton resonances at 10.75 ppm and 2.59 ppm confirm the presence of the

o-methyl benzaldehyde group whereas resonances at 3.90 ppm - 3.28 ppm

and at 1.25 ppm can be assigned to the triethylene glycol spacer and the

aliphatic proton signals of the dodecyl group, respectively. In addition, ESI MS

experiments confirmed the successful formation of CTA3 with a signal at m/z

757.292 (exp) (757.287 (th.)) corresponding to the sodium adduct.

Subsequently, a small library of photoactive polymers was prepared via RAFT

polymerization. First, styrene and pentafluorostyrene (PFS) were polymerized

in bulk. Further, poly(N-isopropylacrylamide) (PNIPAM) polymers of three

chain lengths were prepared in DMF. Size exclusion chromatography (SEC)

of the photoenol terminal polymers revealed low dispersities (Ð ≤ 1.27) and

monomodal molecular weight distributions (MWDs) (Figure 4.3). The SEC

results as well as NMR determined molecular weight and degree of polymeri-

zation (DP) are summarized in Table 4.1.
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Figure 4.3. SEC results of the prepared polymers. A: PE-PEG in THF. B: PE-PS in THF.
C: PE-PPFS in THF. D: PE-PNIPAM in DMAC (1-3, right to left). Adapted
from Ref. [291] with permission from The Royal Society of Chemistry.

Table 4.1. SEC and NMR characterization data of photoenol terminal polymers.

Polymer
Mn

SEC /
g ·mol−1 ÐSEC Mn

NMR /
g ·mol−1 DPNMR

PE-PEG 3300 1.03 2400 48

PE-PS 9400 1.09 11700 105

PE-PPFS 7500 1.11 12400 60

PE-PNIPAM 1 9300 1.10 7600 61

PE-PNIPAM 2 18600 1.11 17000 144

PE-PNIPAM 3 30500 1.27 34800 301
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4.4. Photo-grafting

Scheme 4.3. Schematic representation of the photo-grafting of functional polymers
to NDs and proposed surface chemistry. Adapted from Ref. [291] with
permission from The Royal Society of Chemistry.

The annealing process described above led to the formation of sp2 carbon

on the ND’s surface. The photoenol ligation is based on the light induced

formation of o-quinodimethanes, which are dienes that can react in a sub-

sequent Diels-Alder reaction with suitable double bonds. Thus, an increase

of the available double bonds for the Diels-Alder reactions should increase

the grafting density. To investigate the effect of thermal annealing on the

Diels-Alder reactivity, non-treated as well as annealed NDs were irradiated

at λ = 320 nm in the presence of PE-PS. Subsequently, the samples were

freed from unreacted polymer and the grafting density was determined by

thermogravimetric analysis (TGA). During a typical TGA experiment, the

sample was heated at a constant rate of 10 ◦C ·min-1 to 800 ◦C in the pre-

sence of oxygen (air atmosphere) while recording the mass. The NDs were

completely oxidized at around 600 ◦C leading to full weight loss, whereas

the polymers decomposed at lower temperatures. The difference in the de-

composition temperature of ND and polymer allowed for the calculation of

the amount of grafted polymer. Importantly, the annealing process led to

a significant higher grafting density (13.7 wt.% compared to 3 wt.%, Figure

4.6 and Figure C.22, Appendix, respectively). Furthermore, with increasing

irradiation time, the grafting density increases, clearly showing the success of

the photo-grafting approach (Figure C.23, Appendix).

87



4. Grafting of photoactive polymers to graphitic nanodiamonds

Figure 4.4. ATR FTIR spectra of the prepared samples. Adapted from Ref. [291] with
permission from The Royal Society of Chemistry.

Next, the photoenol terminal polymers from Section 4.3 were photo-grafted to

grNDs and characterized via ATR FTIR spectroscopy (Figure 4.4). Characteris-

tic absorption bands of the corresponding polymers were found in the spectra

of all polymer coated NDs. For instance, the symmetrical CH2 stretching

vibration at 2868 cm-1 confirmed the successful grafting of PE-PEG. The

photo-grafting of PE-PS was accompanied with the appearance of absorption

bands at 2920 cm-1 and 2848 cm-1 that are characteristic for the CH2 bands

of PS.293 The photo-grafting of PE-PPFS onto NDs led to characteristic PPFS

absorption bands at 1503 cm-1 and 959 cm-1. Furthermore, the presence of

PPFS on the NDs could be confirmed via XPS (Figure 4.5). A strong fluorine

signal at 688.4 eV appeared upon photo-grafting of PE-PPFS. The grafting of

PE-PNIPAM to grND was accompanied with the appearance of characteristic

amide bands at 1645 cm-1, 1536 cm-1 and a symmetric – C(CH3)2 deformation

band at 1460 cm-1.277 In agreement with the ATR FTIR results, XPS confirmed

the successful PNIPAM photo-grafting. The content of nitrogen correspon-
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4.4. Photo-grafting

Figure 4.5. XP F 1s spectra of grNDs and grND@PPFS. Adapted from Ref. [291] with
permission from The Royal Society of Chemistry.

ding to amide functionalities increased upon photo-grafting from 1.1 at.% to

4.1 at.%, 4.5 at.%, and 4.9 at.% for PE-PNIPAM 1-3, respectively.

As described above, TGA was employed to determine grafting densities in

wt.% (mass of polymer per mass sample). Furthermore, the calculation of mo-

lar grafting densities as well as polymer footprints (surface area per polymer

chain) was performed. The grafting densities are summarized in Table 4.2.

Grafting densities up to 26.7 wt% and 21.7µmol · g−1 were obtained. Com-

pared to the grafting approach in Chapter 3, the direct grafting of photoenol

functional polymers to graphitic NDs led to significantly higher grafting den-

sities. The grafting densities for PE-PS and PE-PNIPAM were approximately

twice as high. The high grafting densities achieved here can be explained with

a higher densitity of reactive groups on the NDs. Compared to the simple

one step annealing approach to obtain grNDs, the immobilization of o-methyl

benzaldehyde groups was a four step procedure leading to less reactive surface

groups. It should be noted that the PE-PEG grafting density is unexpectedly

high (five chains per nm2). Additional adsorption could be the reason for the

high grafting density.
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4. Grafting of photoactive polymers to graphitic nanodiamonds

Figure 4.6. TGA results of the prepared samples. Adapted from Ref. [291] with
permission from The Royal Society of Chemistry.

Similar to Chapter 3, a chain length dependency of the grafting process was

observed (Figure 4.7). The grafting density of PE-PNIPAM correlated with

its molecular weight. Longer polymer chains led to lower molar grafting

densities. The decrease in molar grafting density is due to steric hindrance.

Longer polymers cover a larger area on the ND’s surface. However, the graf-

ting density in wt.% increases with increasing molecular weight, which is in

agreement with the nitrogen content determined via XPS (see above).

In the present study, detonation NDs were employed, which are aggregates

consisting of small primary particles (close 5 nm). To obtain information about

the size distributions of the respective ND samples, dynamic light scattering

(DLS) experiments were performed (Table 4.2, Figure C.24, Appendix). The

number average hydrodynamic diameter of grNDs was 166 nm. Further

disintegration of the aggregates using high power ultrasonication was not

possible. Covalent bonds are likely responsible for the close structure of ND

aggregates. Although not investigated here, the grafting-process should be
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4.4. Photo-grafting

Figure 4.7. TGA results. Grafting densities of PE-PNIPAM polymers vs. molecular
weight. The molar grafting densities (blue) as well as the polymer foot-
prints (green) were calculated from the weight grafting densities (black).
Adapted from Ref. [291] with permission from The Royal Society of
Chemistry.

Table 4.2. Characterization data of prepared polymer coated NDs. Hydrodynamic
diameters and grafting densities were determined via DLS and TGA mea-
surements, respectively.

Grafting density / Footprint /

Sample Dh / nm wt.% µmol · g−1 nm2

grND@PS 210 13.7 9.4 1.49

grND@PEG 347 16.4 82 0.21

grND@PPFS 192 9.9 6.5 2.64

grND@PNIPAM 1 201 20.2 21.7 0.79

grND@PNIPAM 2 219 24.6 13.2 1.29

grND@PNIPAM 3 205 26.7 8.7 1.95

grND@PNIPAM/PPFS 1 219 15.7 11.8 1.45

grND@PNIPAM/PPFS 2 210 13.5 10.8 1.58

grND@PNIPAM/PPFS 3 252 13.5 13.6 1.25
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4. Grafting of photoactive polymers to graphitic nanodiamonds

independent of aggregate size. In all experiments, the hydrodynamic diameter

increased upon photo-grafting due to the formation of a polymeric shell.

4.5. Co-grafting

So far, only the grafting of one polymer type to NDs was described. However,

the generation of multifunctional surfaces by grafting different polymer types

to the same surface in a modular approach might allow for the facile genera-

tion of complex surface structures with fine-tuned properties. For instance,

polymers with targeting properties and therapeutic polymers (e.g. drug con-

taining polymers) could be co-grafted to prepare nanoparticles for targeted

drug delivery. The ratio between the two polymers will probably influence

the efficacy of the system. Thus, a synthetic co-grafting approach and an

analytical method to characterize these structures is highly desirable.

As a proof of concept, the simultaneous co-grafting of PE-PNIPAM 1 and

PE-PPFS was investigated. PE-PNIPAM 1 was selected from the prepared

PNIPAM polymers due to the similar degree of polymerization (DP ≈ 60).

The polymer types were carefully chosen due to structural differences that

allowed for the investigation of the co-grafting ratio by XPS and ATR FTIR

spectroscopy. The exclusive presence of fluorine and nitrogen in PE-PPFS

and PE-PNIPAM, respectively, allowed for the XPS characterization of the

co-grafting ratio. Furthermore, the co-grafting ratio was quantified by com-

paring characteristic IR absorbance bands. PE-PNIPAM 1/PE-PPFS mixtures

with 25 %, 50 % and 75 % PE-PNIPAM (molar fractions) were prepared and

added to grND dispersions. Subsequent UV irradiation at λmax = 320 nm

and purification from unreacted polymer led to NDs with co-grafted surface

structures. Similar grafting densities were obtained with values in between

the homo-grafted systems (Table 4.2). The PNIPAM amide I vibration band

at 1636 cm-1 (A1) and PPFS band at 981 cm-1 (A2) were integrated to obtain

the ratio A1/A2, which was compared to a calibration curve established with

PE-PNIPAM/PE-PPFS mixtures of known ratios (Figure C.25 and C.26, Ap-

pendix). Importantly, the employed feedstock ratio for the photo-grafting

experiment correlated with the resulting co-grafting ratio on the ND’s surface.
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4.5. Co-grafting

Increasing the PE-PNIPAM 1 content in the feedstock leads to an increase

of grafted PE-PNIPAM 1 on the NDs (Figure 4.8). In agreement with the

ATR FTIR experiments are the observations from XPS. The fluorine to nitro-

gen ratio of the co-grafted NDs increased with increasing PPFS content in the

feedstock. However, quantification of the co-grafting ratio via XPS was not

possible since the information depth is deeper than the polymeric coating and,

thus, the measured signals are partially from the ND core and the origin of

the signal cannot be distinguished.

The co-grafting of bioactive polymers, such as glycopolymers, is highly inte-

resting for biomedical applications. Glycopolymers can be used as targeting

ligands for targeted drug delivery and promote accumulation of nanoparticles

in specific cell types (Section 2.4.4). The minimum amount of glycopolymer

required for efficient lectin binding as well as the influence of polymer chain

length ratio on bioactivity are key aspects for the development of co-grafted

systems for biomedical applications. Thus, the above introduced co-grafting

approach was investigated further for the generation of a polymeric shell

consisting of PNIPAM and a mannose glycopolymer. PNIPAM was selected

Figure 4.8. Feedstock ratio vs. co-grafting ratio (both molar fractions) and F/N ratio
determined via IR and XPS analysis, respectively. Adapted from Ref.
[291] with permission from The Royal Society of Chemistry.
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4. Grafting of photoactive polymers to graphitic nanodiamonds

for the co-grafting experiments since it is biocompatible and thermorespon-

sive. Above the lower critical solution temperature (LCST) PNIPAM collapses,

which could be exploited to influence the surface structure by altering the

amount of freely accessible carbohydrate units for lectin binding.

A novel CTA was designed for the preparation of photoenol terminal gly-

copolymers (CTA4, Scheme 4.4). CTA3 was not used in this study since

the photoenol group is attached to the trithiocarbonate moiety via two ester

groups, which might cleave during deprotection of the glycopolymer. CTA4

was prepared from 2-((4-(bromomethyl)benzyl)oxy)-6-methylbenzaldehyde

and in situ formed dodecyltrithiocarbonate anions in a substitution reaction.
1H NMR spectroscopy confirms the formation of the photoenol functional

RAFT agent (Figure C.27, Appendix). Subsequent RAFT polymerization with

CTA4 allowed for the preparation of photoenol terminal polymers. A glyco-

polymer (PE-PManAcEA, Mn= 39400 g ·mol−1) based on 2-(2’,3’,4’,6’-tetra-

O-acetyl-α-D-mannosyloxy)ethyl acrylate (ManAcEA) and three PNIPAM po-

lymers differing in molecular weight (PE-PNIPAM A-C, Mn= 3800, 12400

and 33400 g ·mol−1, Scheme 4.4 and Table 4.3) were prepared. Whereas the

molecular weight of the PE-PNIPAM polymers determined by SEC and NMR

are similar, a threefold higher molecular weight was calculated from 1H NMR

spectra compared to the SEC determined value. The SEC molecular weight

was calculated using PMMA as a standard and is not an absolute molecular

weight determination. Thus, values determined via 1H NMR spectroscopy

were used for further calculations. Importantly, the prepared PNIPAM series

Scheme 4.4. RAFT polymerization of NIPAM and ManAcEA to obtain photoenol
terminal polymers.
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4.5. Co-grafting

Figure 4.9. SEC results of the prepared polymers. Left: PE-PManAcEA. Right: PE-
PNIPAM A-C (right to left)

Table 4.3. SEC and NMR characterization data of prepared polymers.

Polymer
Mn

SEC /
g ·mol−1 ÐSEC Mn

NMR /
g ·mol−1 DPNMR

PE-PNIPAM A 4400 1.14 3800 29

PE-PNIPAM B 13000 1.08 12400 105

PE-PNIPAM C 30300 1.08 33400 291

PE-PManAcEA 13300 1.27 39400 87

consists of polymers of smaller, similar and a larger degree of polymerization

compared to the glycopolymer allowing for the investigation of chain length

ratio and resulting co-grafted structures.

To enable the quantification of the co-grafting ratio, a calibration curve using

different mixtures of PE-PNIPAM C and PE-PManAcEA was determined by

ATR FTIR spectroscopy (Figure C.32, Appendix). It should be noted that

the calibration curve for PE-PNIPAM C was used for all co-grafting systems

and the contribution of the endgroup to the IR spectra was assumed to be

negligible. The feedstock and co-grafting ratios are reported here as a weight

fraction.
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4. Grafting of photoactive polymers to graphitic nanodiamonds

Figure 4.10. PNIPAM feedstock ratio vs co-grafting ratio (weight fraction) determined
via ATR FTIR spectroscopy analysis.

Different feedstock ratios of PE-PNIPAM A-C and PE-PManAcEA were co-

grafted to grNDs and the co-grafting ratio was determined via ATR FTIR

spectroscopy (Figure 4.10). PE-PNIPAM is preferentially photo-grafted to

the ND’s surface. A significant increase of glycopolymer feedstock ratio is

required to obtain above 10 % glycopolymer content on the NDs.

TGA revealed grafting densities of 14.4, 15.7 and 18.5 wt.% for the co-grafting

(50 % feedstock ratio) of PNIPAM A-C, respectively (Figure C.33, Appendix).

The surface-expressed glycopolymers were deprotected using sodium met-

hylate, which led to a mass decrease of the polymer layer between 5.5 and

7.0 wt.% (Figure C.34 - C.36, Appendix). However, the absolute grafting

density of PE-PManAcEA in the co-grafting experiments with PNIPAM A-C

(50 % feedstock ratio) was below 1 wt.% according to the IR analysis, which

indicates that polymer chains were removed from the surface during deace-

tylation. TGA of the sample prepared from a 7 % PE-PNIPAM B feedstock

ratio revealed a total grafting density of 18.1 wt.% corresponding to 12.3 wt.%

PNIPAM, which is above the expected value (Figure C.37, Appendix). During

the grafting procedure, NDs were first dispersed using ultrasound and sedi-

mented particles were removed to obtain a homogeneous dispersion, which
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4.6. Conclusion

decreased the final ND concentration and explains the high PNIPAM grafting

densities. Even at a low PNIPAM feedstock ratio, PNIPAM is preferentially at-

tached to the surface (Figure 4.10). The reason for the preferential co-grafting

behaviour is not known yet and further investigation of the dependence of

co-grafting ratio on polymer structure and grafting conditions is required.

4.6. Conclusion

The modular and light-induced modification of surface graphitized NDs

(grNDs) is introduced. First, detonation NDs were annealed to generate

graphitic surface structures. A variety of photoenol terminal polymers (PEG,

PS, PPFS and PNIPAM) were prepared and grafted directly onto grNDs. Furt-

hermore, the co-grafting of PNIPAM and PPFS was investigated. The feed-

stock ratio was directly reflected on the co-grafting ratio as shown by IR

spectroscopy and XPS. A second set of photoenol polymers consisting of a

glycopolymer and three PNIPAM polymers of varying chain lengths was pre-

pared for further co-grafting experiments. The co-grafting of this system led

to a significant higher amount of PNIPAM in the co-grafted sample compared

to the employed feedstock ratio. In general, endgroup fidelity is important for

an efficient grafting-to process and poor photoenol termination of the glycopo-

lymer could have led to the preferential co-grafting behaviour. Furthermore,

an additional spacer between polymeric backbone and photoactive group as

employed in the first system (PNIPAM/PPFS) could increase glycopolymer

grafting efficiency. In addition, the solvent might affect the co-grafting ratio

since the accessibility of the polymer endgroup is influenced by the solubility

of the polymer. Further studies on the effect of polymer structure and reaction

conditions on co-grafting ratio are required to fully understand the co-grafting

process.

97



4. Grafting of photoactive polymers to graphitic nanodiamonds

4.7. Experimental section

4.7.1. Materials

Methyl 4-((2-formyl-3-methylphenoxy)methyl)benzoic acid131 and 2-(2’,3’,4’,6’-

tetra-O-acetyl-α-D-mannosyloxy)ethyl acrylate (ManAcEA)180 were prepa-

red according to literature procedures. Detonation nanodiamonds (purified,

grade G01) were purchased from PlasmaChem GmbH (Berlin) and used as

received. 2-(Dodecylthiocarbonothioylthio)propionic acid (DOPAT) was pro-

vided from Lanxess. Methoxy polyethylene glycol (PEG, Mn = 2000 g ·mol−1,

Sigma-Aldrich), triethylene glycol (TEG, Sigma-Aldrich), N,N’-dicyclohexyl-

carbodiimide (DCC, 99 %, Acros), 4-(dimethylamino)pyridine (DMAP, 99 %,

abcr), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) hydrochloride

(EDC ·HCl, 99+ %, Roth), 2,2’-azobis(isobutylonitrile) (AIBN, VWR), chlo-

roform-d1 (CDCl3, 99.8 %, EURISO-TOP), dimethyl-d6 sulfoxide (DMSO-d6,

99.8 %, EURISO-TOP) were used as received. N-Isopropylacrylamide (NI-

PAM, TCI, 98 %) was recrystallized from hexane before usage. Styrene and

pentafluorostyrene were passed through a column of basic alumina prior

to polymerization. N,N-Dimethylformamide (DMF), tetrahydrofuran (THF),

dichloromethane (DCM), acetonitrile, diethyl ether, ethyl acetate, and cy-

clohexane were purchased as analytical grade (Sigma-Aldrich) and used as

received.

4.7.2. Instrumentation

The description of the TGA, NMR spectroscopy, ESI MS, XPS, the sonotrode

and photoreactor including lamp can be found in Chapter 3, Section 3.7.

ATR FTIR spectroscopy.

IR spectra from polymer/ND powders were recorded on a Bruker Alpha ATR

FTIR spectrometer.
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4.7.3. Experimental procedures

Thermal annealing of NDs (grND)

The thermal annealing of pristine NDs (PlasmaChem, purified grade 01) was

performed in a quartz tube under reduced pressure (approx. 2 ·10-2 mbar,

dynamic vacuum) at 900 ◦C for 2 h. The following heating protocol was

applied:

1. Ambient temperature to 900 ◦C, heating over 2 h

2. Isothermal at 900 ◦C for 2 h

3. 900 ◦C - 500◦C in 2 h inside the turned off tube furnace

4. 500 ◦C to ambient temperature in 1 h outside the tube furnace

Synthesis of o-methyl benzaldehyde terminal PEG (PE-PEG)

MeO-PEG-OH (2000 Da, 700 mg, 0.35 mmol, 1.00 eq), DCC (144 mg, 0.70

mmol, 2.00 equiv), 4-dimethylaminopyridine (DMAP) (32.1 mg, 0.26 mmol,

0.750 eq) and methyl 4-((2-formyl-3-methylphenoxy)methyl)benzoic acid

(378 mg, 1.40 mmol, 4.00 eq) were dissolved in an anhydrous mixture of

DMF/DCM (10/1, v/v, 11 mL) and stirred for 20 h. The precipitate was re-

moved via filtration. Subsequently, the solvent was removed under reduced

pressure and the residue was precipitated three times in 35 mL cold diethyl

ether.

1H NMR (400 MHz, CDCl3), δ (ppm) = 10.75 (s, 1H, CHO), 8.08 (d, J = 8.3

Hz, 2H, Ph), 7.50 (d, J = 8.4 Hz, 2H, Ph), 7.36 (dd, J = 8.4, 7.6 Hz, 1H, Ph), 6.94
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- 6.80 (m, 2H, Ph), 5.23 (s, 2H, PhCH2O), 4.60 - 4.40 (m, 2H, COOCH2), 3.92 -

3.79 (m, 2H, COOCH2CH2), 3.64 (s, (C2H4O)n, 194 H), 2.59 (s, 3H, PhCH3).

Synthesis of CTA3

2-(Dodecylthiocarbonothioylthio)propionic acid (5.00 g, 14.3 mmol, 1.00 eq),

EDC hydrochloride (4.10 g, 21.4 mmol, 1.50 eq), DMAP (174 mg, 1.43 mmol,

0.100 eq) and triethylene glycol (42.8 g, 285 mmol, 20.0 eq) were dissolved

in 30 mL anhydrous DCM and stirred for 15 h. Subsequently, 150 mL satu-

rated NaHCO3 solution was added. The aqueous phase was extracted (3×)

with DCM. The combined organic layers were washed consecutively with

1 N HCl, water and brine and dried over Na2SO4. The solvent was remo-

ved under reduced pressure to obtain 2-(2-(2-hydroxyethoxy)ethoxy)ethyl 2-

(((dodecylthio)carbonothioyl)thio)propanoate (DoPAT-OH, 6.70 g, 13.9 mmol,

97 %).

1H NMR (400 MHz, CDCl3), δ (ppm) = 4.84 (q, J = 7.4 Hz, 1H, SCH), 4.39 -

4.26 (m, 2H, COOCH2), 3.82 - 3.55 (m, 10H, triethylene glycol spacer), 3.45 -

3.26 (m, 2H, SCH2), 1.68 (m, 2H, CH2CH3), 1.61 (d, J = 7.4 Hz, 3H, CH3CH),

1.48 - 1.15 (m, 18H, (CH2)9), 0.88 (t, J = 7.0 Hz, 3H, CH2CH3).

13C NMR (101 MHz, CDCl3), δ (ppm) = 222.2, 171.3, 72.6, 70.8, 70.6, 69.0,

64.9, 62.0, 48.1, 37.4, 32.1, 29.8, 29.8, 29.7, 29.6, 29.5, 29.2, 29.1, 28.0, 22.8,

17.0, 14.3.
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ESI-MS: [M + Na]+, [C22H42O5S3Na]+, theoretical: 505.209; experimental:

505.211.

DoPAT-OH (1.00 g, 2.13 mmol, 1.00 eq), DMAP (122 mg, 26.1 mmol, 0.100 eq),

EDC ·HCl (613 mg, 3.20 mmol, 1.50 eq) and 4-((2-formyl-3-methylphenoxy)-

methyl)benzoic acid (577 mg, 2.13 mmol, 1.00 eq) were dissolved in an an-

hydrous mixture of DCM/DMF (10/3, v/v, 13 mL) and stirred for 15 h. Sub-

sequently, 150 mL saturated NaHCO3 solution was added and the aqueous

phase was extracted three times with DCM. The organic layers were com-

bined and washed with 1 N HCl, water and brine. The organic phase was

dried over Na2SO4 and the solvent was removed under reduced pressure.

The crude product was purified by column chromatography (silica gel, ethyl

acetate/cyclohexane, 1/1, v/v) to obtain of CTA3 (1.12 g, 1.55 mmol, 73 %).

1H NMR (400 MHz, CDCl3), δ (ppm) = 10.75 (s, 1H, CHO), 8.09 (d, J = 8.3

Hz, 2H, Ph), 7.50 (d, J = 8.0 Hz, 2H, Ph), 7.36 (t, J = 8.0 Hz, 1H, Ph), 6.85 (m,

2H, Ph), 5.23 (s, 2H), 4.82 (q, J = 7.4 Hz, 1H, SCH), 4.56 - 4.44 (m, 2H, SCH2),

4.33 - 4.22 (m, 2H, PhCO2CH2), 3.90 - 3.81 (m, 2H, TEG), 3.78 - 3.62 (m, 6H,

TEG), 3.39 - 3.28 (m, 2H, TEG), 2.59 (s, 3H, PhCH3), 1.67 (m, 2H, CH2CH3),

1.59 (d, J = 7.4 Hz, 3H, CH3CH), 1.25 (m, 18H, (CH2)9), 0.87 (t, J = 6.8 Hz,

3H, CH2CH3).

13C NMR (101 MHz, CDCl3), δ (ppm) = 222.1, 192.1, 171.3, 166.3, 162.0,

142.4, 141.6, 134.5, 130.3, 130.1, 127.0, 124.8, 123.8, 110.5, 77.5, 77.4, 77.2,

76.8, 70.9, 70.9, 70.1, 69.4, 69.1, 65.0, 64.4, 48.1, 37.4, 32.1, 29.8, 29.8, 29.7,

29.6, 29.5, 29.2, 29.1, 28.0, 22.8, 21.6, 17.0, 14.3, 1.2.

ESI-MS: [M + Na]+, [C38H54O8S3Na]+, theoretical: 757.287; experimental:

757.292.
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Synthesis of CTA4

2-((4-(Bromomethyl)benzyl)oxy)-6-methylbenzaldehyde was prepared from 2-

hydroxy-6-methylbenzaldehyde and 1,4-bis(bromomethyl)benzene according

to a literature procedure.145 The product contained residual 1,4-bis(bromo-

methyl)benzene, which was used without further purification in the next

step, where equivalents were calculated respective to bromo groups in the

reaction mixture and the yield was calculated respective to the reactant 2-((4-

(bromomethyl)benzyl)oxy)-6-methylbenzaldehyde.

Dodecane thiol (5.10 g, 25.2 mmol, 1.50 eq), K3PO4 (5.34 g, 25.2 mmol, 1.50 eq)

were added to 20 mL THF and stirred for 20 min. Subsequently, carbon

disulfide (5.76 g, 75.6 mmol, 4.50 eq) was added and stirred for 60 min before

2-((4-(bromomethyl)benzyl)oxy)-6-methylbenzaldehyde (2.46 g, 7.71 mmol

contaminated with 9.09 mmol 1,4-bis(bromomethyl)benzene from previous

synthetic step, in total 16.8 mmol bromo groups, 1.00 eq) were added and

stirred over night. The reaction mixture was filtered and purified by column

chromatography (silica gel, cyclohexane/ethyl acetate, 9/1, v/v). CTA4 was

obtained as a yellow solid (3.20 g, 80 %).

1H NMR (400 MHz, CDCl3, Figure C.27), δ (ppm) = 10.72 (s, 1H, COH), 7.40

- 7.33 (m, 5H, aromatic CH), 6.88 (d, J = 8.4 Hz, 1H, aromatic CH), 6.83 (d, J =

7.6 Hz, 1H, aromatic CH), 5.14 (s, 2H, O-CH2), 4.63 (s, 2H, S-CH2-Ph), 3.37 (d,

J = 7.8 Hz, 2H, S-CH2), 2.58 (s, 3H, Ph-CH3), 1.80 - 1.63 (m, 2H, S-CH2-CH2),

1.44 - 1.36 (m, 2H, CH2), 1.26 (s, 19H, CH2), 0.88 (d, J = 6.8 Hz, 3H, CH3).

RAFT polymerizations

Preparation of PE-PS. AIBN and CTA3 were dissolved in styrene (1.50 g,

[AIBN]:[CTA]:[S], 1:10:3000) and degassed via four consecutive freeze-pump-
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thaw cycles. Subsequently, the polymerization mixture was stirred at 60 ◦C for

21 h. The resulting polymer was purified by precipitation in cold methanol

(3×).

Preparation of PE-PNIPAM 1. AIBN, CTA3 and N-isopropylacrylamide were

dissolved in DMF ([M] = 3.50 mol ·L−1, [AIBN]:[CTA]:[NIPAM], 1: 1:7.5:525,

2: 1:7.5:1050, 3: 1:7.5:2100) and degassed via four consecutive freeze-pump-

thaw cycles. Subsequently, the polymerization mixture was stirred at 60 ◦C

for 1 h 45 min. The resulting polymer was purified by precipitation in cold

diethyl ether (3×).

Preparation of PE-PNIPAM 2. AIBN, CTA3 and N-isopropylacrylamide were

dissolved in DMF ([M] = 3.50 mol ·L−1, [AIBN]:[CTA]:[NIPAM], 1:7.5:1050)

and degassed via four consecutive freeze-pump-thaw cycles. Subsequently,

the polymerization mixture was stirred at 60 ◦C for 4 h. The resulting polymer

was purified by precipitation in cold diethyl ether (3×).

Preparation of PE-PNIPAM 3. AIBN, CTA3 and N-isopropylacrylamide were

dissolved in DMF ([M] = 3.50 mol ·L−1, [AIBN]:[CTA]:[NIPAM], 1:7.5:2100)

and degassed via four consecutive freeze-pump-thaw cycles. Subsequently,

the polymerization mixture was stirred at 60 ◦C for 6 h. The resulting polymer

was purified by precipitation in cold diethyl ether (3×).

Preparation of PE-PPFS. AIBN and CTA3 were dissolved in pentafluorostyrene

(750 mg, [AIBN]:[CTA]:[PFS], 1:7.5:1050) and degassed via four consecutive

freeze-pump-thaw cycles. The polymerization mixture was stirred at 60 ◦C for

17 h. The resulting polymer was purified by precipitation in cold methanol

(3×).

Preparation of PE-PManAcEA. AIBN and CTA4 and ManAcEA were dissolved

in dioxane ([M] = 1.00 mol ·L−1, 1.50 g, [AIBN]:[CTA]:[ManAcEA], 1:7.5:750)

and degassed via four consecutive freeze-pump-thaw cycles. The polymeriza-

tion mixture was stirred at 70 ◦C for 6 h. The resulting polymer was purified

by precipitation in diethyl ether (2×).

Preparation of PE-PNIPAM A. AIBN, CTA4 and N-isopropylacrylamide were

dissolved in DMF ([M] = 3.50 mol ·L−1, [AIBN]:[CTA]:[NIPAM], 1:7.5:525) and

degassed via four consecutive freeze-pump-thaw cycles. Subsequently, the
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4. Grafting of photoactive polymers to graphitic nanodiamonds

polymerization mixture was stirred at 60 ◦C for 2 h. The resulting polymer

was purified by dialysis against water.

Preparation of PE-PNIPAM B. AIBN, CTA4 and N-isopropylacrylamide were

dissolved in DMF ([M] = 3.50 mol ·L−1, [AIBN]:[CTA]:[NIPAM], 1:7.5:1050)

and degassed via four consecutive freeze-pump-thaw cycles. Subsequently,

the polymerization mixture was stirred at 60 ◦C for 4 h. The resulting polymer

was purified by dialysis against water.

Preparation of PE-PNIPAM C. AIBN, CTA4 and N-isopropylacrylamide were

dissolved in DMF ([M] = 3.50 mol ·L−1, [AIBN]:[CTA]:[NIPAM], 1:7.5:2100)

and degassed via four consecutive freeze-pump-thaw cycles. Subsequently,

the polymerization mixture was stirred at 60 ◦C for 6 h. The resulting polymer

was purified by precipitation in cold diethyl ether (3×).

Photo-grafting

In a typical photo-grafting experiment, grNDs were dispersed in acetonitrile

(1 mg ·mL−1) and treated with ultrasound using a high power sonotrode for

1 h. Non-dispersed NDs were rejected. The polymer was added to obtain

a 1 mg ·mL−1solution and the reaction mixture was degassed by purging

with nitrogen for 15 min. The reaction mixture was irradiated with the Ari-

med B6 lamp under stirring overnight. The resulting reaction mixture was

washed with acetonitrile (4×) by consecutive centrifugation, ultrasound as-

sisted (ultrasound bath) redispersion cycles and dried under reduced pres-

sure. The grafting experiments with PE-PPFS and PE-PS were performed in

tetrahydrofuran (THF).

Calibration curve for co-grafting of PE-PNIPAM 1 and PE-PPFS

Solutions of different ratios of PE-PNIPAM 1 and PE-PPFS (15 - 90 %, molar

fraction) were prepared by mixing two stock solutions in THF (2 mg ·mL−1)

in the desired ratio. The solvent was removed under reduced pressure and IR

absorption spectra were recorded. The ratio of the integrals of the area from
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1690.2 - 1585.4 cm-1 and from 998.2 - 971.6 cm-1 was used for calibration

(Figure C.25 and C.26). The expirimental data was fitted with a linear fit:

y = −9.98 + 0.576x (4.1)

Co-grafting of PE-PNIPAM 1 and PE-PPFS

The co-grafting experiments were performed with PE-PNIPAM 1 and PE-

PPFS (25, 50 and 75 %, molar fraction). The photo-grafting procedure and

subsequent work-up was performed as described above for the homo-grafting

experiments.

Calibration curve for co-grafting of PE-PNIPAM A-C and PE-PManAcEA

Solutions of different ratios of PE-PNIPAM C and PE-PManAcEA ( 10 - 90 %,

weight fraction) were prepared by mixing two stock solutions in dichloro-

methane (2 mg ·mL−1) in the desired ratio. The solvent was removed under

reduced pressure and IR absorption spectra were recorded. The ratio of the

integrals of the area from 1780 -1700 cm-1 and from 1681 - 1595 cm-1 was

used for calibration (Figure C.32). The expirimental data was fitted with an

polynomial fit:

y = 0.951− 0.00207x − 7.157x2 (4.2)

Co-grafting of PE-PNIPAM A-C and PE-PManAcEA

The co-grafting experiments were performed with PE-PNIPAM A-C and PE-

PManAcEA (7, 12.5, 25 and 50 %, weight fraction). The photo-grafting pro-

cedure and subsequent work-up was performed as described above for the

homo-grafting experiments.
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4. Grafting of photoactive polymers to graphitic nanodiamonds

Deacetylation of PManAcEA shell on NDs

The deprotection of the acetate protecting groups of the glycopolymers was

performed after the co-grafting experiments. In a typical procedure, 10 mg

polymer coated NDs were dispersed in 10 mL anhydrous methanol and put

in an ultrasound bath for 1 h. Subsequently, 300µL sodium methoxide (25 %

in methanol) were added and stirred for 1 h. The NDs were centrifuged and

washed three times with water and one time with dichloromethane. The

samples were dried under reduced pressure and analyzed via TGA (Figure

C.34 - C.36, Appendix).
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Glyco single-chain nanoparticle

modified nanodiamonds

5.1. Motivation

The efficiency of viruses in entering cells and releasing their cargo has inspired

synthetic chemists for many years (Section 2.4.4). Viruses are highly optimi-

zed systems that often possess glycosylated surfaces consisting of glycoprotein

Parts of this chapter are adapted or reproduced from Wuest, K. N. R.; Lu, H.; Thomas,
D. S.; Goldmann, A. S.; Stenzel, M. H.; Barner-Kowollik, C. ACS Macro Lett. 2017, 6,
1168-1174, with permission from the American Chemical Society. D. Thomas assisted
with the DOSY measurements. H. Lu performed the cytotoxicity and confocal fluores-
cence microscopy experiments. A. S. Goldmann, M. H. Stenzel and C. Barner-Kowollik
supervised the project and contributed with scientific discussions.

107



5. Glyco single-chain nanoparticle modified nanodiamonds

spikes.219–221 In order to improve the efficacy of synthetic drug delivery sy-

stems, biomimetic nanoparticles with surface structures resembling viruses

are highly promising (Section 2.4.4). For example, one study showed the pre-

paration of a virus-like surface morphology on silica nanoparticles resulting

in an increased cellular uptake.223

Herein, the preparation of virus-like surface structures on nanodiamonds

(NDs) was investigated. Glycoproteins were mimicked by synthetic glyco-

polymers. A crosslinked glycopolymer structure was generated using the

single-chain nanoparticle (SCNP) technology. SCNPs are nanoparticles con-

sisting of intramolecularly crosslinked polymer chains and possess a more

compact, globular structure compared to their linear precursors (Section 2.5).

Linear glycopolymer chains were collapsed into SCNPs using light-triggered,

tetrazole based crosslinking reactions. The immobilization of the prepared

glyco SCNPs onto NDs to generate virus-like structures was investigated

using an adsorption assay and the bioactivity was examined via lectin bin-

ding experiments. The cytotoxicity of the nanoparticles was assessed and the

cellular uptake in macrophages was investigated using confocal fluorescence

microscopy.

5.2. Preparation of glycopolymers

In the current chapter, SCNPs based on mannose glycopolymers were prepa-

red via light-triggered tetrazole based intramolecular crosslinking reactions.

Upon UV irradiation, tetrazoles form nitrile imines, which react with suit-

able double bonds in a 1,3-dipolar cycloaddition, referred to as the nitrile

imine mediated tetrazole-ene cycloaddition (NITEC) (Section 2.3.2). Impor-

tantly, fluorescent pyrazoline derivatives are formed during NITEC reactions,

which provide instantaneous feedback of the reaction progress and constitute

potential labels for fluorescence imaging.

First, mannose glycopolymers were prepared via RAFT polymerization of

ManAcEMA (Scheme 5.1, see Chapter 3 for the monomer synthesis). 2-Cyano-

2-propyl benzodithioate (CPDB) was used as chain transfer agent (CTA). The

RAFT polymerization was conducted in DMF with AIBN as the initiator. A
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5.2. Preparation of glycopolymers

Scheme 5.1. Schematic overview of the synthetic route to glyco SCNP functional NDs.
Glycopolymers were prepared via RAFT polymerization of ManAcEMA.
Subsequently, the polymers P1-P3 were intramolecularly crosslinked to
form fluorescent SCNPs. Finally, the SCNPs were decorated onto NDs.
Reproduced with permission from reference [294]. Copyright (2017)
American Chemical Society.

one-pot polymerization-deprotection procedure was employed, where the

deacetylation agent (sodium methylate) was directly added to the reaction

mixture after polymerization. Two well-defined glycopolymers (A1 and A2)

with different molecular weights and low dispersities were prepared (Mn(A1)

= 18100 g ·mol−1and Mn(A2) = 35800 g ·mol−1; Ð = 1.12, Figure 5.1).

1H NMR spectroscopy confirmed full deacetylation (Figure 5.2). It should be

noted that the deacetylation procedure leads to the cleavage of the RAFT end-

group via a nucleophilic substitution reaction and subsequent thiol-Michael

addition with residual ManAcEMA monomer to form mannose endgroups.

Low molecular weight dispersities (Ð = 1.12) indicate that disulfide formation

between intermediate thiol endgroups did not occur. Compared to the poly-
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5. Glyco single-chain nanoparticle modified nanodiamonds

Figure 5.1. SEC results of glycopolymer A1 and A2. Adapted with permission from
reference [294]. Copyright (2017) American Chemical Society.

Figure 5.2. 1H NMR spectra of glycopolymer A1 (top) and after functionalization
with Tet and pMal (P1, bottom). Adapted with permission from reference
[294]. Copyright (2017) American Chemical Society.
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mers used in the previous chapters (Chapter 3-4), the polymer endgroup here

is not critical, since the subsequent grafting process onto NDs does not rely on

endgroups. The SCNPs were adsorbed onto NDs via non-covalent interactions

of the polymer side group functionalities with the ND’s surface (see below).

Next, crosslinking groups were attached to the glycopolymers A1 and A2

(Scheme 5.1). A carboxylic acid functional tetrazole derivative (Tet) as well

as a carboxylic acid functional furan protected maleimide derivative (pMal)

bearing a double bond for NITEC reactions were attached in an EDC mediated

esterification reaction to hydroxy groups of the glycopolymers. The two este-

rification reactions were performed simultaneously in a one-pot fashion. The

functionalization probably occurred predominantly at the primary hydroxy

group of mannose due to its higher reactivity compared to secondary hydroxy

groups. Three functional glycopolymers were prepared (Table 5.1). The de-

gree of functionalization, herein referred to as %Mal and %Tet, corresponds

to the molar ratio of functional groups per repeating unit and was determined

via 1H NMR spectroscopy (Figure 5.2). Resonances at 8.32–8.08 ppm and

7.21 ppm correspond to the aromatic protons of the tetrazole group, whereas

resonances 6.54 ppm and 5.12 ppm can be assigned to the pMal units. Integra-

tion of these signals and the comparison to the proton signals of the polymeric

backbone allowed for the calculation of the degree of functionalization. The

functionalized glycopolymers P1 and P2 possess the same functionalization

degrees (8 % Tet and 10 % pMal), yet differ in molecular weight. The EDC

coupling reactions were performed with 0.1 equivalents of each compound

(Tet and pMal, Scheme 5.1) resulting in quantitative yield for pMal and 80 %

yield for the Tet carboxylic acid. Additionally, a glycopolymer with higher

Tet content was prepared (P3, Table 5.1) in order to increase the crosslinking

density.

Table 5.1. SEC and NMR characterization data of prepared glycopolymers P1-P3.

Polymer
Mn

NMR /
g ·mol−1 DPNMR Mn

SEC /
g ·mol−1 ÐSEC %Tet %Mal

P1 32000 94 24400 1.20 8 10

P2 61000 180 45000 1.18 8 10

P3 66500 180 51500 1.25 20 8
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5. Glyco single-chain nanoparticle modified nanodiamonds

5.3. Light-induced synthesis of single-chain

nanoparticles

Glycopolymers P1-P3 were crosslinked via the photolysis of lateral tetrazole

groups and subsequent intra-chain cycloaddition reactions. In order to pre-

vent intermolecular reactions, highly diluted aqueous solutions (16.7 mg ·L−1)

were prepared and subsequently irradiated at λmax = 320 nm. Size exclusion

chromatography (SEC) was employed to monitor the SCNP collapse. Upon

photo-crosslinking of all glycopolymers (P1-P3), an increase in retention time

was observed clearly showing the reduction of hydrodynamic volume resulting

from SCNP formation (Figure 5.3).

Figure 5.3. Size exclusion chromatograms from polymeric precursors P1-P3 and
corresponding SCNPs. A shift of the SEC traces to higher retention times
indicates SCNPs formation. Adapted with permission from reference
[294]. Copyright (2017) American Chemical Society.
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The shift of size exclusion chromatography (SEC) traces to higher retention

times is clear evidence for SCNP formation, however absolute size information

from SEC data would be highly desirable. Based on the hydrodynamic volume

SEC analysis introduced by Gilbert and coworkers for the characterization of

starch,295 a facile method to obtain size distribution data from standard SEC

measurements of SCNP systems is presented in the following paragraphs. The

relation between hydrodynamic volume Vh and molecular weight M is given

by following equation (Na: Avogadro constant, [η]: intrinsic viscosity):295

Vh =
2[η]M

5Na
(5.1)

The Mark-Howink-Sakurada (MHS) equation describes the correlation bet-

ween instrinsic viscosity and molecular weight (Equation 5.2). The empirically

determined MHS parameters (α and K) have been determined for common

SEC operation conditions (solvent, temperature) and are reported in the lite-

rature.

[η] = KMα (5.2)

Combining Equation 5.1 and Equation 5.2 allows for the calculation of hydro-

dynamic diameter values (Dh) from molecular weights:

Dh = (
12KMα+1

5πNA
)

1
3 (5.3)

In the current study, the SEC system was operated with DMF (0.1 M LiBr) at

50 ◦C and it was calibrated with linear PMMA standards. Thus, MHS parame-

ters for PMMA at the above mentioned experimental conditions were used

in Equation 5.3. In theory, the Dh calibration could be implemented into the

SEC software, which is highly interesting considering hydrodynamic diameter

distributions of polymers are frequently needed. Herein, Equation 5.3 was

applied on apparent molecular weight distributions obtained from PMMA

calibration. The resulting SEC hydrodynamic diameter plots from P1-P3 and
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5. Glyco single-chain nanoparticle modified nanodiamonds

Figure 5.4. SEC hydrodynamic diameter distributions from polymeric precursors
and SCNPs. Adapted with permission from reference [294]. Copyright
(2017) American Chemical Society.

SCNP1-SCNP3 are displayed in Figure 5.4. The size distributions of all sys-

tems were shifted to lower diameters upon UV irradiation. Similar to average

molecular weight calculations, average diameter values were calculated using

Equation 5.4 (Hi : DRI detector signal).

Dh =
∑
Hi∑

(Hi/Di)
(5.4)

The results from the SEC hydrodynamic diameter analysis are summarized

in Table 5.2. SCNPs below 10 nm in diameter were obtained (7.1-8.8 nm).

The decrease in diameter is more significant for larger polymeric precursors

at the same functionalization degree (19 % compared to 7 % for P2-SCNP2

and P1-SCNP1, respectively). Furthermore, increasing the tetrazole content
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5.3. Light-induced synthesis of single-chain nanoparticles

Table 5.2. Summary of size information obtained from SEC and NMR experiments.
Hydrodynamic diameters (Dh) values were obtained from SEC measure-
ments in DMF and diffusion coefficients (Ddif f .) were determined by DOSY
experiments in D2O.

Precursor
DSECh /

nm
DDOSYdif f . /

m2 ·s−1 SCNP
DSECh /

nm
DDOSYdif f . /

m2 ·s−1

P1 7.7 6.98 · 10-11 SCNP1 7.1 1.00 · 10-10

P2 10.8 6.17 · 10-11 SCNP2 8.8 7.53 · 10-11

P3 11.6 6.92 · 10-11 SCNP3 7.6 1.05 · 10-10

in the precursor polymer (P3 compared to P2) leads to a larger decrease in

hydrodynamic diameter upon UV irradiation (35 %). Hence, SCNP size and

density could be altered by the variation of the polymeric precursor in terms

of molecular weight and crosslinker functionalization.

As a complimentary characterization method to SEC, diffusion ordered NMR

spectroscopy (DOSY) measurements were performed in D2O (Figure D.42,

Appendix). Upon UV irradiation an increase of the diffusion coefficients

correlating with a decrease in hydrodynamic volume was observed (Table

5.2). It should be noted that diffusion coefficients determined by DOSY

measurements do not contain information about the distribution and therefore

the assumption was made that the system was monodisperse.

The intra-chain crosslinking reactions are based on the photolysis of lateral te-

trazole groups leading to the formation of nitrile imine intermediates (Section

2.3.2), which can react in a NITEC reaction with the pMal double bonds or

dimerize (Section 2.5.1). Using 1H NMR spectroscopy the degree of NITEC re-

actions was estimated (Figure 5.5). The olefinic proton resonances from pMal

units decreased upon UV irradiation. A pMal conversion of 42 %, 63 % and

100 % was calculated for P1, P2 and P3, respectively. Full conversion of pMal

could be obtained for the tetrazole rich polymer P3 since a 2.5-fold excess of

Tet groups increases the possibility for NITEC reactions significantly.

Furthermore, UV-vis and fluorescence spectra of SCNP1-SCNP3 were recorded

(Figure 5.6). The prepared SCNPs possess a strong absorbance band at λmax
= 412 nm and fluoresce at λmax = 555 nm. The fluorescence arises from the

pyrazoline crosslinks formed during the NITEC reactions. Importantly, the
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5. Glyco single-chain nanoparticle modified nanodiamonds

Figure 5.5. 1H NMR spectra of polymeric precursors P1 before (top) and after UV
irradiation (SCNP1, bottom). Adapted with permission from reference
[294]. Copyright (2017) American Chemical Society.

Figure 5.6. UV-vis (solid lines) and fluorescence (λexc = 440 nm, dashed lines) spectra
from SCNP1-3. Adapted with permission from reference [294]. Copyright
(2017) American Chemical Society.
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fluorescence excitation and emission wavelengths are suitable for bio-imaging

applications (see below).

The binding of the prepared nanoparticles to lectins is important for potential

biomedical applications. Hence, a concanavalin A (ConA) turbidity assay was

performed (Figure 5.7). In a similar assay as reported in Chapter 3, the aggre-

gation of SCNPs in the presence of tetrameric ConA was monitored via UV-vis

spectroscopy. After addition of SCNPs to a ConA solution, the absorbance at

λ = 550 nm increased showing the successful binding of mannose functional

SCNPs to ConA.

Figure 5.7. ConA turbidity assay of prepared SCNPs. At t = 0, ConA was added and
the absorbance was monitored at λ = 550 nm using UV-vis spectroscopy.
Adapted with permission from reference [294]. Copyright (2017) Ameri-
can Chemical Society.

5.4. SCNP decorated nanodiamonds

The prepared glyco SCNPs were used for the functionalization of NDs with the

aim to mimic glycoprotein structures present on viruses. Compared to linear

polymers, SCNPs are more compact with a fixed globular topology and thus, it
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5. Glyco single-chain nanoparticle modified nanodiamonds

is proposed that their attachment to surfaces allows for the generation of spike-

like structures, which could influence cellular uptake efficiency. Experimental

studies have shown that morphology of nanoparticles (e.g. spherical, worm-

like)180,296 and their surface (e.g. smooth, rough)223,297 plays an important role

for their performance in biomedical applications. Herein, a simple synthetic

approach to glyco SCNP decorated NDs is presented. Detonation NDs as

used in the previous two chapters possess a nano-structured surface since they

consist of small (close to 5 nm in diameter) aggregated primary particles. Thus,

they are not suited for the generation and investigation of well-defined surface

structures. Furthermore, the cellular uptake is size dependent and narrow

size distributions are therefore important for the investigation of the effect

of surface structure. Hence, high pressure high temperature (HPHT) NDs

(Section 2.1.1) consisting of non-aggregated particles (∼ 60 nm in diameter)

were employed in the current study, which allow for the generation of defined

surface morphologies using sub 10 nm SCNPs as building blocks.

First, HPHT NDs were oxidized using an acid treatment to obtain HPHT-ND-

COOH with an oxidized surface. Subsequently, SCNP2 were adsorbed onto

the NDs. To investigate the adsorption process, a small scale (100µL) and

high throughput assay was developed. HPHT-ND-COOH were dispersed in

water and mixed with SCNP2 solutions to obtain mixtures of different SCNP2

concentrations while leaving the HPHT-ND-COOH concentration constant

(2 mg ·mL−1). The mixtures were shaken at ambient temperature for 3 h and

centrifuged. Subsequently, the concentration of SCNP2 in the supernatant

was measured and the amount of adsorbed polymer was calculated using a ca-

libration curve (Figure D.43, Appendix). With increasing SCNP concentration

the amount of adsorbed SCNPs increased and leveled out at around 11 wt.%

(Figure 5.8).

Next, NDs were coated with SCNPs at a concentration of 1 mg ·mL−1 and was-

hed several times with water to remove any free SCNPs. Thermogravimetric

analysis (TGA) revealed a grafting density of 9.3 wt.% (Figure 5.9, sample is

labelled as ND@SCNP-9%), which is slightly lower than the value obtained

from the photometric assay above, yet shows the formation of a stable SCNP

layer on the NDs. The mechanism of the interaction of glyco SCNPs with

NDs was not studied in the current project. However, hydrogen bonds are
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Figure 5.8. Uv-vis adsorption assay. The amount of adsorbed SCNPs was calculated
from the SCNP2 concentration in the supernatant using calibration data
(Figure D.43, Appendix). Adapted with permission from reference [294].
Copyright (2017) American Chemical Society.

Figure 5.9. TGA results of SCNP2, NDs and prepared hybrid particles. Adapted with
permission from reference [294]. Copyright (2017) American Chemical
Society.
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suggested to play an important role for the attachment of glyco SCNPs to

oxidized NDs. Holt and coworkers reported the adsorption of ethanol on

oxidized ND and provided experimental support via IR spectroscopic studies

for hydrogen bonds between the hydroxy groups of ethanol and the oxidized

surface of ND.276

In order to illustrate the NDs surface structure, following calculations were

performed. The footprint FP of an individual SCNP on the ND’s surface (ND

surface area per SCNP) was estimated using Equation 5.5. The density ρ of

bulk diamond, Mn of P2 (Table 5.2) and grafting density determined by TGA

(GD in wt.%) was employed for the calculation.

FP =
6 ·Mn

Dh(ND) ·NA · ρ
· (1−GD)

GD
(5.5)

A SCNP footprint of 33 nm2 was calculated for ND@SCNP-9% corresponding

to a circle of 6.1 nm. Compared to the hydrodynamic diameter of SCNP2

(8.8 nm), the footprint is slightly smaller. However, the hydrodynamic diame-

ter accounts for the solvation shell. Thus, full surface coverage is assumed,

which is in agreement with the observation that higher SCNP concentration

does not lead to a higher adsorption (Figure 5.8).

Next, the correlation between SCNP concentration and grafting density was

exploited to prepare patchy surface structures. An initial SCNP concentration

of 0.2 mg ·mL−1 and 0.1 mg ·mL−1 led to a grafting density of 6.0 wt.% and

2.8 wt.%, respectively (Table 5.3). In order to illustrate the surface structure,

the surface coverage SC was estimated using Equation 5.6. 62 % and 28 %

of the ND’s surface on ND@SCNP-6% and ND@SCNP-3% is covered with

SCNPs, clearly indicating patchy surface structures.

SC =
FPmax
FPi

(5.6)

dynamic light scattering (DLS) experiments were performed to obtain infor-

mation about the size of the hybrid particles (Table 5.3). The number average

hydrodynamic diameter of HPHT-ND-COOH is 57 nm. According to DLS

measurements the SCNP surface layer of fully covered NDs (ND@SCNP-9%)
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5.4. SCNP decorated nanodiamonds

Table 5.3. Summary of characterization data for SCNP decorated NDs. Grafting
densities were measured using TGA. Hydrodynamic diameters (Dh) values
were obtained from DLS measurements in water.

Sample
GD /
wt.%

FP /
nm2

SC /
%

Dnumberh
/ nm

D
intensity
h
/ nm

PDI

HPHT-ND-
COOH

- - - 57 97 0.108

ND@SCNP-3% 2.8 33 100 68 102 0.071

ND@SCNP-6% 6 50 65 72 111 0.083

ND@SCNP-9% 9.3 108 30 72 119 0.102

Figure 5.10. DLS results. Left: Number (dashed lines) and intensity weighted (solid
lines) hydrodynamic diameter distributions of HPHT-ND-COOH (black)
and ND@SCNP-9% (orange). Right: Overview of hydrodynamic dia-
meters from all ND particles. Adapted with permission from reference
[294]. Copyright (2017) American Chemical Society.

is 7.5 nm thick (Figure 5.10, Table 5.3), which is comparable to the SEC deter-

mined hydrodynamic diameter of SCNP2 (8.8 nm). The small discrepancy is

due to different solvents and assumptions in the calculation of these values.

In all three experiments, the hydrodynamic diameter of the NDs increased

upon SCNP adsorption. Interestingly, the increase in hydrodynamic diameter

directly correlated with the grafting density (Figure 5.10).

In order to investigate the lectin binding behaviour of the novel glycosylated

ND structures, a DLS based ConA binding assay was performed. The binding

of ConA to glycopolymers leads to aggregation, which was here monitored

via DLS hydrodynamic diameter measurements. The addition of ConA to
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5. Glyco single-chain nanoparticle modified nanodiamonds

Figure 5.11. DLS based ConA binding assay. At t = O ConA was added and the
hydrodynamic diameter (z-average is displayed) was measured over time.
Green: ND@SCNP-3%. Purple: ND@SCNP-6%. Orange: ND@SCNP-
9%. Adapted with permission from reference [294]. Copyright (2017)
American Chemical Society.

Figure 5.12. TEM of ND@SCNP-9% before (left) and after (right) the addition of
ConA. Adapted with permission from reference [294]. Copyright (2017)
American Chemical Society.

the glyco-ND dispersions led to an increase in hydrodynamic diameter (Fi-

gure 5.11). Interestingly, the rate of diameter increase is significantly lower

for ND@SCNP-3% compared to ND@SCNP-6% and ND@SCNP-9%, which

indicates that efficient binding is achieved above a certain surface coverage.

However, full surface coverage is not required as shown by almost identical

aggregation behaviour for ND@SCNP-6% and ND@SCNP-9%.
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To further prove the binding to ConA, transmission electron microscopy

(TEM) was performed (Figure 5.12). TEM images before the addition of ConA

show individual particles, whereas large aggregates of several micrometres

were observed after addition of ConA, which visualize the lectin binding

induced crosslinking.

The biocompatibility of nanoparticles is crucial for biomedical applications.

Macrophage cells were used to investigate the cytotoxicity of SCNP2 as well

as the SCNP2 decorated NDs, since macrophages possess mannose receptors

that can be exploited to target these cells. Mouse RAW 264.7 macrophage cells

were incubated with the nanoparticles for two days and the cell viability was

determined. The cell viability did not decrease upon addition of nanoparticles.

In contrast, cell proliferation was observed in some cases. Thus, all nanoparti-

cles are non-toxic against RAW 264.7 macrophage cells at a concentration of

100µg · mL−1 (Figure 5.13).

The prepared SCNPs are fluorescent from the pyrazoline crosslinks formed du-

ring NITEC crosslinking reactions, which allows for the imaging of the SCNPs

and SCNP modified NDs via confocal fluorescence microscopy. RAW 264.7 ma-

Figure 5.13. Cytotoxicity study of prepared nanoparticles in RAW 264.7 macrophage
cells at a concentration of 100µg ·mL−1. Adapted with permission from
reference [294]. Copyright (2017) American Chemical Society.
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crophage cells were incubated with nanoparticle dispersions for one hour and

imaged (Figure 5.14). The nanoparticles were distributed in the cytosol. The

cellular uptake could not be quantified, since the nanoparticles possess diffe-

rent fluorescence intensities. Whereas fluorescence intensities of the SCNPs

could be readily measured, the fluorescence of the hybrid particles could not

be quantified via fluorescence spectroscopy. Thus, the fluorescence intensities

from the microscopy experiments could not be compared. Nevertheless, the

fluorescence images demonstrate the ability to image the nanoparticles in

biological environments.

Figure 5.14. Confocal fluorescence microscopy images of macrophages incubated
with prepared nanoparticles for 1 h. Scale bar: 20µm. Top: fluorescence
images (λexc = 488 nm). Center: differential interference contrast (DIC).
Bottom: merged images. Adapted with permission from reference [294].
Copyright (2017) American Chemical Society.

5.5. Conclusion

In conclusion, a novel glycopolymer architecture consisting of intramolecu-

larly crosslinked chains (glyco SCNPs) was introduced and employed for the

controlled decoration of NDs. The SCNPs were prepared from tetrazole and
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alkene functional mannose glycopolymers. Upon UV irradiation of aque-

ous glycopolymer solutions, intramolecular crosslinks including fluorescent

pyrazoline bridges were formed. An SEC analysis method to obtain size distri-

bution data from standard SEC measurements was introduced. The bioactive

SCNPs were adsorbed onto NDs in a controlled fashion. Fully covered as

well as patchy surface structures mimicking viral surfaces were prepared.

Importantly, the hybrid nanostructures bind to the lectin ConA and are non-

toxic. Furthermore, confocal fluorescence imaging of the intrinsic fluorescent

nanoparticles was demonstrated.
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5. Glyco single-chain nanoparticle modified nanodiamonds

5.6. Experimental section

5.6.1. Materials

3-(1,3-Dioxo-1,3,3a,4,7,7a-hexahydro-2H-4,7-epoxyisoindol-2-yl) propanoic

acid (pMal)298 and 4-(2-(4-Methoxyphenyl)-2H-tetrazol-5-yl)benzoic acid

(Tet)299 were prepared according to literature procedures. 2-(2’,3’,4’,6’-Tetra-

O-acetyl-β-D-mannosyloxy)ethyl methacrylate (ManAcEMA) was prepared

as described in Chapter 3.

4-(Dimethylamino)pyridine (DMAP, 99 %, abcr), N-(3-dimethylaminopropyl)-

N’-ethylcarbodiimide hydrochloride (EDC·HCl, 99+%, Roth), 2,2’-azobis(iso-

butylonitrile) (AIBN, VWR), sodium methoxide (25 % in methanol, Sigma-

Aldrich), 2-cyano-2-propyl benzodithioate (Sigma-Aldrich), N,N-dimethyl-

formamide (DMF, anhydrous, Sigma-Aldrich), dimethyl sulfoxide-d6 (DMSO-

d6, 99.8 %, EURISO-TOP), D2O (Cambridge Isotope Laboratories), HPHT

nanodiamonds (MSY 0-0.1, Microdiamant AG) were used as received.

5.6.2. Instrumentation

TGA, DLS, UV-vis spectroscopy and the photoreactor are described in Chapter

3, Section 3.7.

Fluorescence Spectroscopy

Fluorescence spectra were recorded in deionized water (0.2 mg ·mL−1) on a

Cary Eclipse spectrometer.

UV-vis microplate reader

A Benchmark Microplate Reader (Bio-Rad) was used at a wavelength of 315 nm

with a reference wavelength of 655 nm.
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Transmission electron microscopy (TEM)

Samples were prepared by depositing one drop of a 0.2 mg ·mL−1 dispersion

of nanodiamonds in water onto a carbon coated copper grid. The grids were

dried overnight and measured on a FEI Tecnai G2 20 TEM at a voltage of

200 kV.

Size exclusion chromatography (SEC)

SEC was performed in DMF (0.1 M LiBr) on a Shimadzu modular system

comprising an auto injector and a differential refractive index detector. The

SEC system was equipped with three Phenomenex 5.0µm bead-size columns

(104, 103 and 102 nm). All samples were filtered (0.45µm PTFE) prior to in-

jection. Molecular weights were estimated relative to narrow molecular weight

distribution poly(methylmethacrylat) (100 to 1 x 106 g ·mol−1) calibration

standards.

SEC retention times were converted into hydrodynamic diameters using the

calibration data of the PMMA standards and the Mark-Houwink-Sakurada

parameters for PMMA in DMF (0.1 M LiBr) at 50 ◦C (K = 0.0002094 dL g-1 ;

α= 0.642).300 The calculations are described in detail in Section 5.3.

Nuclear magnetic resonance (NMR) spectroscopy

Standard NMR spectroscopy was performed as described in Chapter 3, Section

3.7.

Diffusion ordered spectroscopy (DOSY) was performed on a Bruker Avance

III 600.13 MHz spectrometer, equipped with a 5 mm BBFO probe. Samples

were dissolved in D2O at a concentration of 5 mg ·mL−1 and experiments

were performed at 298 K. Diffusion experiments were performed using the

stimulated echo pulse program with bipolar gradients for the suppression of

eddy currents. The addition of the 3-9-19 or "Watergate" element was used

to obtain water suppression.301 A linear ramp consisting of 16 steps with

gradient strengths from 2 % to 95 % was employed. Data was processed using

Topspin 3.5.
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5. Glyco single-chain nanoparticle modified nanodiamonds

5.6.3. Procedures

RAFT polymerizations

Glycopolymer A1. AIBN, 2-cyano-2-propyl benzodithioate and ManAcEMA

([I]:[CTA]:[M]; 1:7.5:900) were dissolved in DMF ([M] = 1.00 mol ·L−1) and de-

gassed by purging with nitrogen for 20 min. Subsequently, the polymerization

mixture was stirred at 60 ◦C for 15 h. The polymerization was quenched by

cooling with an ice bath and exposing to air. The polymerization mixture was

diluted threefold with DMF. Sodium methoxide (25 wt.% in methanol) was

slowly added to the solution (1 equivalent per acetate group) and stirred at

ambient temperature for 2 h. The reaction mixture was dialyzed against water

and lyophilized.

Glycopolymer A2. AIBN, 2-cyano-2-propyl benzodithioate and ManAcEMA

([I]:[CTA]:[M]; 1 :10:2000) were dissolved in in DMF ([M] = 1.00 mol ·L−1) and

degassed by purging with nitrogen for 20 min. Subsequently, the polymeriza-

tion mixture was stirred at 65 ◦C for 20 h. The polymerization was quenched

by cooling with an ice bath and exposing to air. The polymerization mixture

was diluted threefold with DMF. Sodium methoxide (25 wt.% in methanol)

was slowly added to the solution (1 equivalent per acetate group) and stirred

at ambient temperature for 2 h. The reaction mixture was dialyzed against

water and lyophilized.

Post-polymerization modification

In the following procedures the mannose repeating unit is defined as one

equivalent (1 eq).

Glycopolymer P1. Glycopolymer A1 (80.0 mg, 0.274 mmol mannose units) was

dissolved in 2 mL anhydrous DMF. Tet (8.11 mg, 0.0274 mmol, 0.1 eq), pMal

(8.46 mg, 0.0274 mmol, 0.1 eq), EDC hydrochloride (31.5 mg, 0.164 mmol,

0.6 eq) and DMAP (2.01 mg, 0.0274 mmol, 0.06 eq) were added and stirred at

ambient temperature for 2 d. Subsequently, the reaction mixture was dialyzed

consecutively against DMF and water and lyophilized.
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Glycopolymer P2. Glycopolymer A2 (80.0 mg, 0.274 mmol mannose units) was

dissolved in 2 mL anhydrous DMF. Tet (8.11 mg, 0.0274 mmol, 0.1 eq), pMal

(8.46 mg, 0.0274 mmol, 0.1 eq), EDC hydrochloride (31.5 mg, 0.164 mmol,

0.6 eq) and DMAP (2.01 mg, 0.0274 mmol, 0.06 eq) were added and stirred at

ambient temperature for 2 d. Subsequently, the reaction mixture was dialyzed

consecutively against DMF and water and lyophilized.

Glycopolymer P3. Glycopolymer A2 (80.0 mg, 0.274 mmol mannose units) was

dissolved in 2 mL anhydrous DMF. Tet (20.3 mg, 0.0684 mmol, 0.25 eq), pMal

(8.46 mg, 0.0274 mmol, 0.1 eq), EDC hydrochloride (36.7 mg, 0.192 mmol,

0.7 eq) and DMAP (2.34 mg, 0.0192 mmol, 0.07 eq) were added and stirred at

ambient temperature for 2 d. Subsequently, the reaction mixture was dialyzed

consecutively against DMF and water and lyophilized.

Preparation of single-chain nanoparticles

General procedure: The SCNP precursor (P1, P2 or P3) was dissolved in

MilliQ water (16.7 mg ·L−1) and stirred at ambient temperature in the dark for

2 h. Subsequently, the polymer solution was irradiated with UV light (Arimed

B6 lamp) for 2 h. The water was removed under reduced pressure to obtain

SCNPs (SCNP1, SCNP2 or SCNP3).

Oxidation of HPHT nanodiamonds (HPHT-ND-COOH)

According to literature,283 HPHT NDs were oxidized in H2SO4/HNO3 (9/1,

v/v) at 90 ◦C for 3 d. Subsequently, the NDs were stirred in 0.5 M NaOH at

90 ◦C for 1 h, centrifuged and redispersed in 0.1 M HCl. The dispersion was

stirred at 90 ◦C for 1 h. The NDs were centrifuged and washed multiple times

with MilliQ water until the supernatant was neutral (pH = 7) and dried under

reduced pressure.

Adsorption of SCNPs onto nanodiamonds

The adsorption assay and all following adsorption experiments were perfor-

med with SCNP2.
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5. Glyco single-chain nanoparticle modified nanodiamonds

To allow a small scale (100µL) and high throughput analysis, the adsorption

assay was performed on a 96 spot well plate and analysed via a UV-vis absor-

bance reader. First, a calibration curve at λ = 315 nm was acquired for SCNP2

in MilliQ water (Figure D.43):

A = 0.6529 · cs (5.7)

Oxidized HPHT NDs were dispersed in MilliQ water (4 mg ·mL−1) and soni-

cated in an ultrasound bath for 1 h. SCNP2 solutions of known concentrations

were added to the ND dispersion and diluted with MilliQ water to obtain a

final ND concentration of 2 mg ·mL−1 and known initial SCNP2 concentration

(c0). The mixtures were shaken at ambient temperature for 3 h and centrifuged

for 30 min (6000 rpm). The absorbance A of the supernatant (λ = 315 nm) was

measured to determine the SCNP2 concentration in solution cs. The amount

of adsorbed SCNPs in wt.% was calculated with following equation:

Graf ting density =
c0 − cs
cND

(5.8)

Further adsorption experiments were performed similar as described above,

however on a larger scale (5 mL). The hybrid nanoparticles ND@SCNP-9%,

ND@SCNP-6% and ND@SCNP-3% were prepared with a final SCNP2 con-

centration of 1 mg ·mL−1, 0.2 mg ·mL−1 and 0.1 mg ·mL−1, respectively. The

resulting NDs were purified from free SCNPs via four washing cycles with

water and dried under reduced pressure.

ConA assay for glyco single-chain nanoparticles

The ConA turbidity assay was performed with SCNP1, SCNP2 and SCNP3.

50µL of SCNP solution (1 mg ·mL−1 SCNPs in HBS buffer, pH = 7) was added

to 500µL ConA (0.1 mg ·mL−1 in HBS buffer) in a quartz cuvette, mixed tho-

roughly and added immediately to the UV-vis spectrometer. The absorbance

at λ = 550 nm was measured over time. The starting point for data acquisition

was set to 0 min.
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ConA assay for glyco single-chain nanoparticle coated nanodiamonds

The ConA binding of the prepared glyco NDs was investigated using DLS.

50µL ConA (0.1 mg ·mL−1 in PBS buffer, pH = 7) was added to 500µL of a

glyco ND dispersion (0.2 mg ·mL−1 in PBS buffer) and the hydrodynamic size

was measured over time. Oxidized HPHT NDs (HPHT-ND-COOH) were used

as a control sample. The starting point for data acquisition was set to 0 min.

Cell culture in vitro

Mouse RAW 264.7 macrophages were cultured in DMEM supplemented with

10 % fetal bovine serum and 2 mM Glutamax at 37 ◦C with 5 % CO2. Once

reached confluence, the cells were collected from cell culture flasks by tryp-

sin/EDTA treatment. Trypsin/EDTA was removed by centrifugation and the

cells were suspended in fresh medium and seeded into either 96 well cell cul-

ture plates for cytotoxicity test or 96 35 mm Fluoro-dishes for laser scanning

confocal microscopy.

Cytotoxicity

Cells were seeded in 96 well plates (8000 cell per well) with 100µL medium

and cultured for 1 d before nanoparticle loading. The nanoparticles were

dispersed in MilliQ water and sonicated in an ultrasound bath for 30 min. The

suspension (100µg · mL−1) was sterilised with UV light for 10 min and added

into the wells of the cell culture plate. Subsequently, the cells were cultured for

another 2 d. The WST-1 assay was employed to evaluate the cell viability after

nanoparticle treatment. The cells were washed with PBS twice and 100µL of

medium and 5µL WST-1 reagent was added to the cells and incubated for 2 h

at 37 ◦C. The supernatant (100µL) was transferred into new 96 well plates

and the absorbance was measured at λ = 450 nm (λref erence = 650 nm). Cells

loaded with sterile MilliQ water were used as control samples.
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5. Glyco single-chain nanoparticle modified nanodiamonds

Laser scanning confocal microscopy

Cells were seeded in 35 mm Fluoro-dishes (1 ·106 cells per dish) and cultured

for 2 d before nanoparticle loading. The nanoparticles were dispersed in

MilliQ water, sonicated for 30 min in an ultrasound bath and sterilised with

UV light for 10 min. Subsequently, the nanoparticles were added into the

dishes at a concentration of 100µg ·mL−1. After 1 h incubation, the cells were

washed with PBS (3x) and imaged under a LSM-780 (Carl Zeiss) laser scanning

confocal microscope. The experiments were carried out with a 40x objective

lens and emission was set from λ = 493 - 634 nm (λexcitation = 488 nm). The

images were acquired using the Zen 2012 software and analysed using ImageJ
software.
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6
Concluding remarks

Nanodiamonds (NDs) have emerged as a promising material for a variety of

applications, especially in the field of nano-medicine. Several studies have

shown their biocompatibility and potential for the delivery of drugs.302 Furt-

hermore, the cost-efficient synthesis of NDs has led to a large scale availability

with exciting possibilities for commercial products.17 The functionalization

of NDs with polymers provides an elegant approach to equip the nanoparti-

cles with properties and functions useful for drug carriers, such as colloidal

stability and ligands for cellular recognition.35 The present thesis addres-

ses the development of novel functionalization strategies for the generation

of complex surface structures with focus a on biomedical relevant systems.

Light-induced ligation protocols were used to modify NDs as well as for the

generation of glycopolymeric nanoparticles for the decoration of NDs. A

range of different polymers have been investigated for ND coatings including

bioactive mannose glycopolymers.

First, two light triggered grafting-to approaches for the modification of NDs

with polymers — both based on Diels-Alder reactions of photoenols — were

investigated. In the first part (Chapter 3) the photo-grafting of maleimide

terminal polymers onto o-methyl benzaldehyde functional nanodiamonds

was investigated. A variety of polymers were grafted onto the surface of NDs.

Importantly, glycopolymer coated NDs were prepared and the binding to the
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lectin concanavalin A (ConA) was shown. The second approach (Chapter

4) introduces the light-induced grafting of o-methyl benzaldehyde terminal

polymers onto graphitic NDs. Compared to the first approach the genera-

tion of the reactive NDs consisted of a simple annealing step (compared to

four synthetic modification steps) that yielded more reactive sites on the

surface resulting in higher grafting densities. In addition, the simultaneous

co-grafting of two polymers was investigated. Whereas the co-grafting of

poly(pentafluorostyrene) (PPFS) and poly(N-isopropylacrylamide) (PNIPAM)

yielded surface compositions tunable by the feedstock ratio, the co-grafting

of a glycopolymer with PNIPAM was accompanied with a preferential atta-

chment of PNIPAM.

In the last part of the current thesis (Chapter 5), light-induced ligations were

employed to prepare small (below 10 nm in diameter) glycopolymeric nano-

particles for the decoration of NDs. The preparation of so-called single-chain

nanoparticles (SCNPs) was based on the photolysis of lateral tetrazole groups

and subsequent intrachain crosslinking reactions. The glyco SCNPs constitute

a novel polymeric architecture for synthetic glycopolymers, with features re-

sembling natural carbohydrate structures. The size of the glyco SCNPs could

be adjusted and they possessed fluorescent properties useful for bio-imaging.

Inspired by the surface structure of viruses, the controlled decoration of NDs

with glyco SCNPs was investigated. An adsorption protocol was developed

that allowed for the facile preparation of non-toxic and fluorescent hybrid

structures. The fluorescence of the glyco SCNPs could be exploited to image

the glyco SCNP decorated ND in macrophage cells.

Over the course of the present thesis, convergent approaches for the prepara-

tion of polymer functional NDs were employed, in which the polymers and

ND precursors were synthesized independently and subsequently coupled.

The modular strategies allowed for the preparation of nanoparticle libraries

with varying functionalities. The synthetic basis for the generation of glycopo-

lymeric surface structures on NDs with interesting lectin binding properties

was established. The generation of mannosylated surfaces on NDs was inspi-

red from viruses. Mannosylated glycoproteins are present on many viruses,

for instance on HIV, dengue virus as well as ebola virus.218 The glycoproteins

protrude in a spike-like fashion from the surface and bind to cell surface
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expressed lectins such as L-SIGN and DC-SIGN.218 The binding of viruses to

receptors on cell surfaces is crucial for cell entry. The nanoparticles prepared

in the current thesis possess mannose ligands and their lectin binding behavi-

our was shown in binding assays with the model lectin ConA (Chapter 3 and

5). In addition, the hydrodynamic diameters of the prepared polymer functio-

nal NDs (68-72 nm, Chapter 5 and 170-347 nm, Chapter 3-4) are comparable

to sizes of viruses. In Chapter 3-4 detonation NDs were employed, which

consist of aggregated primary particles (close to 5 nm in diameter) and thus

complicate the investigation of surface structure–property relations. However,

co-grafting experiments (Chapter 4) demonstrated the ability to generate

mixed surface compositions, which could be exploited for the generation of

complex biomimetic surface structures. In Chapter 5, high pressure high

temperature (HPHT) NDs were employed that constitute a better defined tem-

plate, since aggregation does typically not occur. In contrast to the grafting-to

protocols where polymers were attached via the endgroups to the NDs, here,

the polymers were simply adsorbed onto the surface. Furthermore, SCNPs

were employed that possess a fixed globular structure compared to linear

polymers, which is closer to the morphology of glycoprotein spikes found on

viruses.

The introduced synthetic approaches to (glyco-)polymer functional NDs

should allow for the preparation of nanoparticle libraries for the investi-

gation of the influence of surface structure on cellular uptake. In this context,

the following points need to be considered. First of all, a suited template for

the generation of different surface morphologies needs to be selected. HPHT

NDs constitute a better defined template than detonation NDs since primary

particle sizes of HPHT NDs are available that are relevant for virus mimics.

Furthermore, a library of nanoparticles with different surface morphologies

should be prepared. The co-grafting approach (Chapter 4) could be employed.

However, the attachment of glyco SCNPs represents a more promising appro-

ach since surface immobilization of SCNPs will probably generate a different

surface morphology than linear polymer chains. Its modular nature should

allow for the preparation of nanoparticle libraries consisting of nanodiamonds

coated with glycopolymers of varying sizes, epitopes and distance between

"SCNP-spikes". Imaging techniques, such as electron microscopy, could be

employed to confirm the proposed morphologies. In the current thesis, man-
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nose ligands with a high potential for targeted cellular uptake were used. The

assessment of the cellular uptake in a variety of cells, including macrophages

and dendritic cells, which are known to possess mannose receptors, should

provide additional information about their targeting properties. Such nano-

particle libraries should allow for the in-depth investigation of the influence

of ND surface structure on cellular uptake.

High potential is seen for biomedical applications, however, the presented

light-triggered grafting approaches might also be employed for the design

of enforced networks. Light-triggered grafting protocols allow for a high

temporal and spatial resolution, which could be exploited for the generation

of 3D printed ND materials. The introduced functionalization strategies for

the preparation of polymer–ND hybrid particles are envisioned to enable the

development of exciting materials for a variety of applications.
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Appendix

A. Supporting information for Chapter 2

Table A.1. Literature reported apparent molecular weights and hydrodynamic diame-
ters of SCNP systems (precursors and nanoparticles). The data is plotted
in Figure 2.8.

Reference Mn
SEC / g ·mol−1 Dh

DLS / nm

[255] 24900 5.0

67900 12.6

48700 9.3

23600 4.8

28700 6.3

57000 7.3

20300 5.0

60100 11.8

39100 9.9

19100 4.4

23300 5.7

52500 6.3

[232] 40600 15.2

31000 8.5

[265] 15000 6.5

17400 6.1

19900 6.7

22500 5.3

26600 4.8
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Table A.1. Continued from previous page.

Reference Mn
SEC / g ·mol−1 Dh

DLS / nm

20700 5.3

22600 4.9

22800 4.6

24100 4.3

22000 5.5

22700 4.8

25600 4.5

23300 4.3
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B. Supporting information for Chapter 3

Figure B.1. 1H NMR (400 MHz) spectrum of ManAcEMA in in CDCl3. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.

Figure B.2. 13C NMR (101 MHz) spectrum of ManAcEMA in CDCl3. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.
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Figure B.3. 1H NMR (400 MHz) spectrum of CTA1 in in CDCl3. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.

Figure B.4. 13C NMR (101 MHz) spectrum of CTA1 in in CDCl3. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.
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Figure B.5. 1H NMR (400 MHz) spectrum of CTA2 in in CDCl3. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.

Figure B.6. 13C NMR (101 MHz) spectrum of CTA2 in in CDCl3. Adapted with
permission from reference [275]. Copyright (2016) American Chemical
Society.
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Figure B.7. 1H NMR (400 MHz) spectrum of Mal-PS before (A) and after deprotection
(B) in CDCl3. Adapted with permission from reference [275]. Copyright
(2016) American Chemical Society.

Figure B.8. 1H NMR (400 MHz) spectrum of Mal-ManAcEMA 1 before (A) and after
deprotection (B) in CDCl3. Adapted with permission from reference
[275]. Copyright (2016) American Chemical Society.
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Figure B.9. 1H NMR (400 MHz) spectrum of Mal-ManAcEMA 2 before (A) and after
deprotection (B) in CDCl3. Adapted with permission from reference
[275]. Copyright (2016) American Chemical Society.

Figure B.10. 1H NMR (400 MHz) spectrum of Mal-ManAcEMA 3 before (A) and after
deprotection (B) in CDCl3. Adapted with permission from reference
[275]. Copyright (2016) American Chemical Society.
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Figure B.11. TGA of ND-PE and control experiments, where a ND-PE/Mal-PS mix-
ture was divided into two vials and one vial was irradiated with UV
light at λmax =320 nm whereas the other sample was stirred in the dark
(control). The ND samples were purified and dried under reduced pres-
sure before the thermogravimetric analysis. Adapted with permission
from reference [275]. Copyright (2016) American Chemical Society.
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C. Supporting information for chapter 4

Figure C.12. 1H NMR (400 MHz) spectrum of PE-PEG in CDCl3. Adapted from Ref.
[291] with permission from The Royal Society of Chemistry.

Figure C.13. 1H NMR (400 MHz) spectrum of DOPAT-OH in CDCl3. Adapted from
Ref. [291] with permission from The Royal Society of Chemistry.
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Figure C.14. 13C NMR (101 MHz) spectrum of DOPAT-OH in CDCl3. Adapted from
Ref. [291] with permission from The Royal Society of Chemistry.

Figure C.15. 1H NMR (400 MHz) spectrum of CTA3 in CDCl3. Adapted from Ref.
[291] with permission from The Royal Society of Chemistry.
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Figure C.16. 13C NMR (101 MHz) spectrum of CTA3 in CDCl3. Adapted from Ref.
[291] with permission from The Royal Society of Chemistry.

Figure C.17. 1H NMR (400 MHz) spectrum of PE-PS in CDCl3. Adapted from Ref.
[291] with permission from The Royal Society of Chemistry.
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Figure C.18. 1H NMR (400 MHz) spectrum of PE-PS in CDCl3. Adapted from Ref.
[291] with permission from The Royal Society of Chemistry.

Figure C.19. 1H NMR (400 MHz) spectrum of PE-PNIPAM 1 in CDCl3. Adapted
from Ref. [291] with permission from The Royal Society of Chemistry.
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Figure C.20. 1H NMR (400 MHz) spectrum of PE-PNIPAM 2 in CDCl3. Adapted
from Ref. [291] with permission from The Royal Society of Chemistry.

Figure C.21. 1H NMR (400 MHz) spectrum of PE-PNIPAM 3 in CDCl3. Adapted
from Ref. [291] with permission from The Royal Society of Chemistry.
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Figure C.22. TGA of pristine NDs and of a sample resulting from a photo-grafting
experiment with PE-PS. Significant less polymer is on the surface of the
NDs compared to the experiment where graphitic NDs were employed.
Adapted from Ref. [291] with permission from The Royal Society of
Chemistry.

Figure C.23. Kinetic study of the photo-triggered grafting of PE-PEG to grNDs. Graf-
ting densities were determined by TGA. Reproduced from Ref. [291]
with permission from The Royal Society of Chemistry.
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Figure C.24. DLS results from prepared NDs. Adapted from Ref. [291] with permis-
sion from The Royal Society of Chemistry.

Figure C.25. ATR FTIR spectra of different ratios of PNIPAM 1 and PPFS and intega-
tion areas (A) for calibration. Adapted from Ref. [291] with permission
from The Royal Society of Chemistry.
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Figure C.26. Calibration plot used to determine the co-grafting ratio of PE-PPFS and
PNIPAM 1. Adapted from Ref. [291] with permission from The Royal
Society of Chemistry.

Figure C.27. 1H NMR (400 MHz) spectrum of CTA4 in CDCl3.
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Figure C.28. 1H NMR (400 MHz) spectrum of PE-PManAcEMA in CDCl3.

Figure C.29. 1H NMR (400 MHz) spectrum of PE-PNIPAM A in CDCl3.
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Figure C.30. 1H NMR (400 MHz) spectrum of PE-PNIPAM B in CDCl3.

Figure C.31. 1H NMR (400 MHz) spectrum of PE-PNIPAM C in CDCl3.
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Figure C.32. Calibration plot used to determine the co-grafting ratio of PE-
PManAcEMA and PNIPAM A-C.

Figure C.33. TGA of the co-grafted samples (50 % feedstock ratio).
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Figure C.34. TGA of the PE-PNIPAM A co-grafted sample (50 % feedstock ratio)
before and after deacetylation with sodium methylate.

Figure C.35. TGA of the PE-PNIPAM B co-grafted sample (50 % feedstock ratio)
before and after deacetylation with sodium methylate.
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Figure C.36. TGA of the PE-PNIPAM C co-grafted sample (50 % feedstock ratio)
before and after deacetylation with sodium methylate.

Figure C.37. TGA of the PE-PNIPAM B co-grafted sample (7 % feedstock ratio).
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D. Supporting information for Chapter 5

Figure D.38. 1H NMR spectrum of glycopolymer A1 in DMSO-d6. Adapted with
permission from reference [294]. Copyright (2017) American Chemical
Society.

Figure D.39. 1H NMR spectrum of glycopolymer A2 in DMSO-d6. Adapted with
permission from reference [294]. Copyright (2017) American Chemical
Society.
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Figure D.40. 1H NMR spectra of polymeric precursors P2 before (top) and after UV
irradiation (SCNP2, bottom) in DMSO-d6. Adapted with permission
from reference [294]. Copyright (2017) American Chemical Society.

Figure D.41. 1H NMR spectra of polymeric precursors P3 before (top) and after UV
irradiation (SCNP3, bottom) in DMSO-d6. Adapted with permission
from reference [294]. Copyright (2017) American Chemical Society.
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Figure D.42. DOSY results (600 MHz, D2O): A: P1 (black) and SCNP1 (red); B: P2
(black) and SCNP2 (red); C: P3 (black) and SCNP3 (red). Reprinted with
permission from reference [294]. Copyright (2017) American Chemical
Society.

Figure D.43. Calibration curve for SCNP2. The absorbance at 315 nm was measured
for different concentrations of SCNP2 in water and a linear fit was per-
formed on the obtained data. Adapted with permission from reference
[294]. Copyright (2017) American Chemical Society.
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Figure D.44. DLS results of HPHT-ND-COOH (black) and ND@SCNP-3% (blue). The
number (dashed line) and intensity weighted (solid lines) distributions
are shown. Adapted with permission from reference [294]. Copyright
(2017) American Chemical Society.

Figure D.45. DLS results of HPHT-ND-COOH (black) and ND@SCNP-6% (green).
The number (dashed line) and intensity weighted (solid lines) distri-
butions are shown. Adapted with permission from reference [294].
Copyright (2017) American Chemical Society.
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Abbreviations

AFM atomic force microscopy

AIBN 2,2‘-azoisobutyronitrile

APTES (3-aminopropyl)-triethoxysilane

ATRP atom transfer radical polymerization

ATR FTIR attenuated total reflectance fourier transform infrared

BSA bovine serum albumin

CPADP 4-cyanopentanoic acid dithiobenzoate

ConA concanavalin A

CPDB 2-cyano-2-propyl benzodithioate

CTA chain transfer agent

CuAAC copper catalyzed azide alkyne cycloaddition

DCM dichloromethane

DCC N,N’-dicyclohexylcarbodiimide

DC-SIGN dendritic cell specific ICAM-3 grabbing nonintegrin

DLW direct laser writing

DLS dynamic light scattering

DMAEMA 2-(dimethylamino)ethyl methacrylate

DMAP 4-dimethylaminopyridine

DMF N,N-dimethylformamide

DMSO dimethyl sulfoxide

DOSY diffusion ordered spectroscopy
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