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Abstract. The impending Upgrade of the Belle experiment is expected to increase the
generated data set by a factor of 50. This means that for the planned pixel detector, which
is the closest to the interaction point, the data rates are going to increase to up to 28 Gbit/s.
Combined with data generated by the other detectors, this rate is too big to efficiently send out
to offline processing. In order to reduce the data rates online data reduction schemes, in which
background is detected and rejected, are going to be employed. In this paper, an approach
for efficient online data reduction for the planned pixel detector of Belle-II is presented. Its
central part is the NeuroBayes algorithm, which is based on multivariate analysis. It allows
the identification of signal and background by analyzing clusters of hits in the pixel detector
on FPGAs. The algorithm is leveraging the fact that hits of signal particles can have very
different characteristics, compared to background, when passing through the pixel detector.
The applicability and advantages in performance are shown through the D* decay. In Belle-II,
these decays produce pions with such a small transversal momentum, that they barely escape the
pixel detector itself. In a common approach like an extrapolation of tracks from outer detectors
to RoIs, these pions are simply lost, since they do not reach all necessary layers of the detector.
However, cluster analysis is able to identify and separate these pions from the background, thus
keeping their data. For that characteristics of corresponding hits, like the total amount of charge
deposited in the pixels, are used for separation. The capability for effective data reduction is
underlined by a background reduction of at least 90% and signal efficiency of 95%, for slow pions.
An implementation of the algorithm for usage on Virtex-6 FPGAs that are used at the pixel
detector was performed. It is shown that the resulting implementation succeeds in replicating
the efficiency of the algorithm, implemented in software while throughputs that suffice hard
real-time constraints, set by the read-out system of Belle-II, are achieved and efficient use of
the resources present on the FPGA is made.

1. Introduction
Envisaged luminosities for SuperKEKB are expected to generate extremely high hit rates for
the detectors close to the beam pipe [1]. This is especially true for the pixel detector (PXD) of
the Belle-II experiment, which is located closest to the interaction point. The generated data
rates are estimated to reach up to 28 Gbit/s. However underlying DAQ system cannot transmit
the data to offline processing with a sufficient rate. To solve this problem online data reduction
is used close to the PXD.
The primary mechanism to reduce data in the pixel detector is based on extrapolation of hits in
the outer detector layers to areas, so called Regions of Interest (RoI), inside the PXD. Only the
data of active pixels in these areas is kept. This way most of the interesting particle hits, called
signal, are kept while less interesting background is suppressed. However, this method leads to
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the loss of all interesting particles that are not even reaching the outer layers.
One important process in Belle-II is the decay of a B meson into a D*, an orbitally excited D
meson. As the B mesons are always produced in pairs, it is useful to do a full reconstruction
of the decay products of one B meson thus fixing the four-momentum of the other B. This
greatly simplifies reconstruction of the B from the so called signal side. Because of the large
branching fraction for the production, it is vital that the D* is correctly reconstructed. However
D* can decay into so called slow pions, earning its name from having very low energy. They
have such a low transversal momentum, that outer layers of the detectors are not reached. In
this case, RoI selection suppresses them. That is not acceptable for the Belle-II experiment since
reconstruction efficiency would be greatly decreased.
To solve this issue, an alternative approach is used. A machine learning algorithm, the
NeuroBayes, is executed online. It has the ability to predict whether a cluster of hits in the
PXD was due to a slow pion or background. This way pions can be saved, as they would have
been lost otherwise. To match Belle-II data reduction requirements, the algorithm has to be
implemented on FPGAs close to the pixel detector.
The NeuroBayes was designed to run on PCs. It has to be shown that porting the algorithm
onto FPGAs can achieve efficient separation of slow pions from background. Additionally the
throughput of the PXD has to be matched to avoid any overflow and loss of important data.
Since available FPGAs in the PXD DAQ are already used for other tasks, the resource demand
has to be sufficiently small to allow smooth integration.
This paper is organized in the following way. In Section II, a description of the PXD, RoI
selection and an estimation of the envisaged data rates are given. Section III concentrates on
the slow pion rescue mechanism. It encompasses the architecture used on FPGA and overview of
the NeuroBayes algorithm. Results of the implementation are shown in Section IV. A conclusion
and outlook are given in Section V.

2. Related Work
The H1-Level 2 Trigger of the HERA accelerator used neural networks to improve the suppression
of the background rate and increase of the signal efficiency [3]. At first it was deployed
on dedicated ASICs. In the following trigger upgrade FPGAs were used. It showed the
FPGA’s capability to host highly parallel and pipelined designs while meeting the hard timing
requirements [4].
Neural networks were also proposed for the z-vertex trigger for Belle-II [5]. Its goal is to improve
background suppression by estimating the z-vertex more accurately. Data from the central drift
chamber is used as an input for the network to make an estimation. The network is planned to
be implemented on an FPGA in order to meet throughput requirements.
Both approaches show that machine learning algorithms can be used online to improve
background suppression. Hard realtime constraints were met by using FPGAs. The NeuroBayes
algorithm, used for the slow pion rescue, is based on neural networks. However, it was originally
designed to improve particle identification. For that it uses custom preprocessing algorithms.

3. Belle-II Detector Context
3.1. DEPFET Pixel Detector DAQ
The PXD of Belle-II represents the two innermost detector layers and is part of the vertex
detector [2] (VXD). It is built based on DEPFET technology [6]. The DEPFET pixels are
arranged in 768x250 matrices located on separate modules called half ladder. These modules
are arranged in two cylindrical layers around the interaction point. Charge deposited by particles
is digitized by the DEPFET Current Digitizer ASIC [7] (DCD). They are are digitized into 8-bit
ADC and then sent to the Data Handling Processor [8] (DHP). At the DHP zero suppression,
common mode noise and pedestal fluctuation corrections are performed. The processed data
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is then passed on to the Data Handling Hybrid [9] (DHH), in which data of 5 half ladders is
concentrated. Additionally clusters of adjacent hits in the pixel matrices are build. Clusters
are then passed on to the Online Selection Nodes (ONSEN) [10]. In the ONSEN the data is
matched with RoIs and passed to offline storage. Tracks for RoI selection are delivered by the
data concentrator (DatCon).
The total amount of pixels in the PXD is at 7.68 million. Meanwhile a worst case occupancy of
3% can occur. As a result the generated data is going to reach about 1 MByte/event. However
the ONSEN has an output data rate of about 100 kByte/event, resulting in a required data
reduction of 90%.

3.2. RoI Selection
Data reduction in the PXD is achieved by definition of so called RoI. They define areas in the
PXD that are suspected to contain pixels that were hit by interesting particles. Data is only kept
for pixels located inside these areas. RoIs are defined by extrapolation of tracks to the PXD.
These tracks are constructed using hits in the four outer layers of the VXD, called the silicon
vertex detector (SVD). As a result particles need to have a certain transversal momentum to
reconstruct tracks. This means that at lest three hits have to be present at the SVD. Particles
not reaching the outer layers are considered as background. This way substantial data reduction
is achieved.

3.3. Slow Pions in the Pixel Detector
The D* decay is important for correct reconstruction of events in Belle-II. One possible product
of this decay are pions. They can have varying transversal momenta, shown in Fig. 1(a).
Most of the D* decays below 60 MeV/c include pions, making them even more important
for reconstruction. These pions are additionally called slow, earning their name from the low
momentum. Due to the low momentum there is a chance for these pions to not reach the outer
layers. To investigate that Fig. 1(b) is presented. It shows the layers of the VXD that are
reached by pions with a transversal momentum smaller 80 MeV/c. Considering a momentum of
60 MeV/c or less the third layer of the SVD is often times not reached. Less momentum leads
to even less pions reaching that three layers. This is important since particles need to reach
least three SVD Layers in the for RoI mechanism. As a result a slow pion rescue mechanism is
needed to avoid loss of data.

(a) D* Decay in Belle-II (b) Slow Pions reach into the SVD

Figure 1
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3.4. Slow Pion Rescue in the PXD DAQ
Considering the PXD DAQ system [13] only two viable options exist for the slow pion rescue
to be executed on. These are the DHH and the ONSEN. Both provide FPGAs for hosting the
rescue mechanism and are still close enough to the PXD. However the ONSEN is already tasked
with matching of pixel clusters to calculated RoIs. Implementation here could lead to tough
integration, since most of the resources are already in use. The DHH on the other hand has
around 50% CLBs and 30% DSPs available. For this reason it is chosen to host the slow pion
rescue. An overview of the resulting system is depicted in Fig. 2.

PXD DATA
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Slow pion rescueClustering
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Selection of Data in ROI
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Figure 2: Slow Pion Rescue in the PXD DAQ

4. Slow Pion Rescue Mechanism
4.1. Slow Pion Identification
Slow pions can be identified by using data from pixels clusters, they passed through. The
available data consists of the ADC for all pixels in a cluster, the layer and the positions of active
pixels in a half ladder. The most indicative characteristic is the digitized charge. Distribution of
charges deposited by particles in pixels of the PXD are depicted in Fig. 3 for different momenta
. Here four classes of particles are shown, the most important ones being pions and electrons,
that are seen as background. The occurrence of pions are indicated by the red arrow with pion
label. The area bellow the red horizontal line at about a cluster seed charge of 50 represents
the occurrence of electrons. It is observable, that pions typically deposit much more charge in
than electrons. Consequently slow pions can be separated from other particles, by introducing
a cut-off for the read out charge from pixels. This method was applied to simulation with the
help of basf2. The result was that by introducing this threshold about 50% of the simulated
pions could separated correctly from background.

4.2. NeuroBayes Machine Learning Algorithm
Motivated by the possibility of separating hits caused by slow pions from background seen in
Section 4.1, more advanced algorithms can be used to achieve high signal efficiencies. One such
algorithm is the NeuroBayes[11], which is based on multivariate analysis and was developed for
usage as a scientific tool in high energy physics.
The general flow of usage of the NeuroBayes is shown in Fig. 4. It consists of two main parts,
they are the Teacher and the Expert. The Teacher is used for generating a prediction model,
called the expertise. This model is used for predicting a class to a given set of input data. The
data used for the Teacher is typically historic, either taken from a real scenario or simulation.
Meanwhile training is conducted supervised. The model is then used by the NeuroBayes Expert.
The Expert’s task is to predict the correct class for the data given at the input. Its output is a
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Figure 3: Cluster Seed Charge over Momentum of Particles in the PXD

probability density function representing the algorithms trust into its classification decision. In
our case it is the probability for an analyzed particle cluster being a slow pion. The probability
is then typically mapped onto a binary value representing the classification decision.
In the slow pion rescue, only the expert is going to be executed on FPGAs. The teacher is used
offline beforehand. Here historic data corresponds to simulated clusters of hits in the PXD.
They were generated with the help of the basf2 simulation framework[12]. While current data
are pixel clusters passed on from the PXD to the expert.

Figure 4: Structural Overview of the NeuroBayes Algorithm

4.3. Architecture on FPGAs
The architecture of the slow pion rescue is depicted in Fig. 5. It consists of three major
components, the protocol handling, the feature extraction and the NeuroBayes Expert algorithm.
All parts are connected with each other in a pipelined way. This is the result of the required
throughput at about 1 processed cluster per clock cycle.

4.3.1. Protocol Handling The protocol handling’s task is straightforward, as it decodes data
packets of pixel data produced by the clustering on the DHH. Its main purpose is to decouple
both mechanisms, as the same packets can be passed on to the ONSEN without necessarily
being processed by the slow pion rescue. This allowed for easier integration into the DHH.
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Slow Pion Rescue

Protocol Handling Feature Extraction NeuroBayes Expert

Figure 5: Architecture Overview of the Slow Pion Rescue

4.3.2. Feature Extraction The feature extraction transforms data from the PXD into a
more suitable representation, before it can be used by the NeuroBayes Expert. For optimal
performance of the algorithm so called features are defined. These are separate data streams,
which are preprocessed independently. A feature has a distinct impact on the prediction made
by the algorithm, however, they can still be correlated with each other in some way. For the
slow pion rescue, 8 features have been found out to be reasonable. These are computed at the
feature extraction before being passed on the Expert. They are listed in the following:

• Sum of all pixel charges in a cluster

• Maximum pixel charge of a cluster

• Minimum pixel charge of a cluster

• Layer of the PXD containing the cluster

• Length of cluster in z-direction

• Length of cluster in r-φ-direction

• Total length of cluster

• Number of pixels in a cluster

4.3.3. NeuroBayes Expert The NeuroBayes Expert operates on multiple parallel input data
streams and can be partitioned into pipelined processing steps. Each input data stream is
corresponding to one of the predefined features. The first processing step of the Expert is
called binning and it is performed separately and in parallel for each input stream. The main
component of this step is the bin, which is an interval in the range of possible values a single
feature can assume. Bins do not overlap and are bounded by an upper and lower limit. Binning
assigns the current value of an input stream to a bin by checking whether it is within the bin’s
predefined interval. The assigned bin is than mapped onto a weight, which essentially represents
the influence of the selected bin on the prediction. In case that, the value of a feature is between
the limits of a bin, an interpolation of the weight is performed.
After the preprocessing all calculated weights are multiplied with a predefined vector. Each
entry in the vector contains a value that represents the importance of a feature compared to the
others. This accounts for one feature having more significance on the prediction than others.
The result of this multiplication is the probability density function.
The last step in processing of the Expert is the cut. Here the computed value of the probability
density function is compared to a predefined threshold. If the the value is above the threshold,
a 1 is returned indicating that this cluster was probably produced by a slow pion. Otherwise
a 0 is returned for background. The signal efficiency and background rejection rates vary with
the selected threshold value.
As this algorithm was originally written in FORTRAN and developed for usage on PCs all of
the mentioned processing components were implemented by hand in VHDL. Fortunately most of
the processing steps can be broken down into simple arithmetics i.e. additions, multiplications.
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4.4. Performance and Resource Demand
The slow pion rescue was implemented on a Virtex6 VLX75T, which is used at the DHH[14].
Due to the pipelined architecture, throughput is directly corresponding to the achievable clock
frequency. Making use of the FPGA’s capability to cascade inputs and outputs of DSPs, high
clock frequencies are be achieved. As depicted in Table.1 350 MHz are achieved. Hereby the
critical path was the signal propagation of the used shift registers in vector multiplications. The
clusters of hits delivered by the DHH, enter with a frequency of 200 MHz, that means that
there’s still some cushion for the future. The latency is however dependent on features used for
the NeuroBayes Expert. Each additional feature results in an increase of the latency by at least
1 clock cycle. For using 8 parallel input streams the achieved latency is at 12 clock cycles.
Regarding the resource demand, the FPGA’s DSPs are best used with one input at 25 bits and
the other at 18, as one DSP slice is sufficient for each feature. However when increasing either
input’s bitwidth by 1, at least another additional DSP slice is needed and latency increased to
7 cycles. Fortunately signal identification degrades only slightly, when bitwidth of the data is
bounded to these values. The difference of the output probability density function compared
to a reference implementation in software is negligible. The total number of CLBs used is at
around 2% of the available CLBs.

Throughput Latency DSPs CLBs Clock frequency

1 Cluster/s 13 cycles 9 2% 350 MHz

Table 1: Performance and Resource Demand of Slow Pion Rescue

4.5. Identification Efficiency
The capabilities of algorithms to identify desired particles is measured with 2 metrics, these are
signal efficiency and background rejection. In this case signal efficiency represents the algorithms
ability to correctly identify pions out of a given cluster of hits. On the other hand background
rejection represents the algorithms ability to correctly identify a cluster of hits that was not
produced by a pion, as background. Fig.6 shows the signal efficiency on the x-axis over the
achieved background rejection, on the y-axis. Overall 5 classes of pions with different momentum
are depicted with different colored lines. The momentum range is from 15 to 65MeV , these
pions are expected to not reach outer layers. It can be seen that overall an overall background
rejection of at least 88% can be achieved, this is in case the highest signal efficiency is selected.
The implementation behaves the best when momentum is between 25 and 55MeV . For the
targeted Background Rejection Rate of 90%, at least 95% Signal Efficiency is achieved.

5. Conclusion and Outlook
In this paper we showed, that using the NeuroBayes algorithm on FPGAs is a suitable solution
for identifying certain particles types, using the data from the Belle-II PXD. Under usage of
simulation data generated with the help of basf2, it was shown that the implementation can
achieve signal efficiency of at least 95% with a background rejection of 90%. Both are sufficient
to match the data reduction requirements set by the Belle-II experiment. Additionally the
implementation is suitable to be integrated into Belle-II. The resource demand is small enough
to allow for integration with the other components to be used on the DHH. To achieve the
strict throughput requirements set by the DAQ, a pipelined architecture is used. Not only is
it fulfilling the requirements, but it can reach even higher throughputs than demanded. Future
work is going to focus on further increasing the implementation’s signal efficiency and allowing
for easy adaptation in case of changes in the PXD.
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Figure 6: Signal Efficiency over Backround Rejection
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