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ABSTRACT

In this paper we propose a load-balanced GPU kernel for computing
the sparse matrix vector (SpMV) product. Making heavy use of the
latest GPU programming features, we also enable satisfying per-
formance for irregular and unbalanced matrices. In a performance
comparison using 400 test matrices we reveal the new kernel being
superior to the most popular SpMV implementations.
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1 INTRODUCTION

Applying a discretized operator in terms of a sparse matrix-vector
product (SpMV) is a heavily-used operation in many scientific ap-
plications. An example are the Krylov subspace methods relying
on the SpMV kernel to generate the Krylov subspaces in which the
solutions to linear and eigenvalue problems are approximated. At
the same time, the SpMV is a frequent bottleneck in complex ap-
plications, as it is notorious for sustaining low fractions of peak
processor performance. This is partly due to the low arithmetic
intensity making the SpMV kernel memory bound on literally all
modern architectures, the access overhead induced by storing only
the nonzero elements in the matrix, the (in many cases random) ac-
cess to the input vector. Given the importance of this building block,
significant effort is spent on finding the best way to store sparse ma-
trices and optimizing the SpMV kernel for different nonzero patterns
and hardware architectures [3, 6, 11]. For sparse matrices where
the nonzeros are distributed in a very structured fashion, it is often
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// input: A, x, y

// outut: y = y+A*x

void coo_spmv(int nnz, const int *rowidx,
const int xcolidx, const float xval
const float xx, float =*y)

for (int i = 0; i
yLrowidx[i]] +=
3}

< nnz; ++i) {
val[i] * x[colidx[il];

}

Figure 1: CO0 SpMV kernel design.

possible to derive problem-tailored storage formats, like, e.g., the
DIA format for matrices with a tridiagonal structure [6]. A simi-
lar situation is given if the pattern is not very structured, but the
nonzero elements are distributed equally across the rows (each row
contains a similar number of nonzero elements). Most challenging
are the sparsity patterns that are irregular (no recurring sub-pattern
can be identified), and unbalanced (the distinct rows have a very
different number of nonzero elements). Problems with these char-
acteristics are typical for, e.g., social network representations. For
these irregular problems, standard parallelization strategies, like
assigning rows to the parallel resources, inevitably result in heavy
load imbalance. Furthermore, unstructured sparsity patterns often
promote random memory access to the vector values.

In this paper we present a GPU implementation of the sparse
matrix-vector product (Section 3) that addresses the challenge of
overcoming the load imbalance in unstructured matrices. The ker-
nel is based on the coordinate (COO) format [6], leverages the
latest features of the CUDA programming model, and succeeds in
achieving high performance for unstructured matrices. In a com-
prehensive evaluation in Section 4 we identify the developed kernel
as competitive or superior to the existing routines. Prior to pre-
senting the new implementation, in Section 2 we review existing
efforts for optimizing the sparse matrix vector product on manycore
architectures.

2 RELATED WORK

2.1 Sparse Matrix Formats

In the BLAS and LAPACK [1] standard for dense linear algebra, ma-
trices are stored as a sequence of columns, with each column stored
as an array of its elements. This allows to easily locate or identify
any matrix entry in memory. For matrices where most elements
are zero, which is typical for, e.g., finite element discretizations,
storing all matrix entries results in significant storage overhead.
The computational cost of a matrix vector product increases as well,
as a result of explicitly multiplying the zero entries with vector
values. Sparse matrix formats aim at reducing the memory foot-
print (and computational) cost by storing only the nonzero matrix
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Figure 2: Different storage formats for a sparse matrix of dimension m X n containing nnz nonzeros along with the memory

consumption.

values. Some formats additionally store a moderate amount of zero
elements to enable faster processing when computing matrix vector
products. Obviously, storing only a subset of the elements requires
to accompany these values with information that allows to deduce
their location in the original matrix.

A straight-forward idea is to explicitly store only the nonzero
elements, along with the row and column index of each element.
This storage format, known as coordinate (COO [5]) format, allows
to determine the original position of any element in the matrix
without processing other entries.

Further reduction of the storage cost is possible if the elements
are sorted row-wise, and with increasing column-order in every row.
(The latter assumption is technically not required, but it usually
results in better performance.) Then, the Compressed Sparse Row
(CSR [5]) format can replace the array containing the row indexes
with a pointer to the beginning of the distinct rows. While this
reduces the data volume, the CSR format requires extra processing
to determine the row location of a certain element.

On SIMD architectures, a performance-relevant aspect is to have
uniform operations across the SIMD unit. This makes the ELL
format [7] attractive for these architectures: In this format, each
row is compressed to contain only the nonzero entries and some
explicit zeros that are used for padding to enforce an equal length
for all rows. The resulting value matrix is accompanied with a
column index matrix which stores the column position of each
entry in the compressed matrix. While typically increasing the
storage cost compared to the CSR format, this removes the need
for explicitly storing the row pointers. Furthermore, the column
indexes (and values) in the distinct rows can be processed in SIMD
fashion. Coalescent (SIMD-friendly) memory access is enabled if
the value and column index matrices are stored in column-major
order.

To reduce the memory overhead, the ELL format can be truncated
to a version where only row-blocks with the height of the SIMD-
length are padded to the same number of nonzero elements, but
the rows in distinct blocks can differ in the number of nonzero
elements. This “sliced ELL” (SELL-p [10]) format can be viewed
as splitting the matrix into row-blocks and storing each block in
ELL format. The formats discussed in this section are visualized in
Figure 2.

Aside from these basic formats, there exist variants which arise as
combinations of these basic formats: e.g., the hybrid format which
stores the matrix partly in ELL and partly in CSR or COO.

2.2 SpMV on manycore architectures

Related to the storage format is the question of how to process
the multiplication with a vector in parallel. The main challenges
in this context are: 1) balancing the workload among the distinct
cores/threads; and 2) allowing for efficient access to the matrix
entries and the vector values. The second aspect is relevant in par-
ticular on NVIDIA GPUs where each memory access reads 128
contiguous bytes of memory [13]. In case of fine-grained paral-
lelism, balancing the workload naturally results in multiple threads
computing partial sums for one row, which requires careful syn-
chronization when writing the resulting vector entry back into
main memory.

The standard approach of parallelizing the CSR, ELL and SELL-p
formats is to distribute the rows among distinct threads (or groups
of threads) [7, 12]. For the CSR format, this works fair well for
balanced sparsity patterns, but it can lead to severe load imbalance
otherwise. Recently, a strategy for a load balanced CSR SpMV was
proposed that parallelizes across the nonzero elements instead the
rows [9]. The SpMV kernel we present in this paper is based on the
COO format, which comes with the advantage of the row index of
an element being readily available.

3 DESIGN OF THE C00 SPMV GPU KERNEL
The specific SpMV operation we target in this paperisy := A-x +y,
for A € R™* ", x € R", y € R™. This routine updates the vector y
by adding the product of the sparse matrix A and the vector x, and
allows for flexibility in terms of scaling y prior to the operation (i.e.
scaling y with 0 to compute y = A-x). It comprises 2 nnz arithmetic
operations (with nnz being the number of nonzero elements in A).
In the rest of this section we describe the design of the C00
SpMV kernel we propose for manycore architectures. Subsection 3.1
presents the general algorithmic idea, without introducing hardware-
specific optimizations. There, we only assume the target device to
be a shared memory architecture, with a relatively large number of
computational elements (cores) and support for atomic addition of
floating point values. The last assumption is required to resolve race
conditions which can occur if multiple computational elements are
assigned to the same matrix row, i.e. contribute to the computation
of the same entry in the output vector. Furthermore, we assume
that the memory design favours data locality over random data
access, which is true for virtually all modern hardware. Subsec-
tion 3.2 describes the hardware-specific optimizations we employ



when realizing the COO SpMV algorithm on NVIDIA GPUs using the
CUDA programming model.

3.1 CO00 SpMV

The most natural approach to exploit hardware concurrency in an
SpMV routine based on the COO format is to parallelize the loop
traversing the nonzero elements in the matrix (line 7 in Figure 1) by
splitting the workload into similar-sized subsets, and distributing
those among the parallel resources. This corresponds to assigning a
contiguous “chunk” of the array containing the matrix values (along
with the corresponding chunks of column and row index arrays),
to each computational element. While it is possible to use non-
contiguous chunks (e.g., distribute the data in round-robin fashion)
this could break data locality, resulting in performance loss. To
ensure load balancing among different computational elements, all
chunks should be of similar size. In addition, to reduce the number of
memory transactions from main memory, it is important to aim for
aligned memory access and to use every data element brought into
cache. This is crucial when implementing the memory-bound SpMV
kernel as its performance is largely dependent on the data access
efficiency. Therefore, assuming that all three arrays describing the
matrix in COO format are aligned in memory, each chunk should
start at a cache line boundary, and ideally comprise an integer
number of cache lines.

In summary, efficient data access and optimal load balancing
imposes two restrictions on chunk sizes: 1) each chunk should be
an integer multiple of the cache line size, and 2) the sizes of any
two chunks should differ by at most one cache line.

While the above strategy yields a perfect distribution of the input
matrix A, which typically comprises the majority of the data, it has
several implications we discuss next.

The core operation (line 8 in Figure 1) of CO0 SpMV is composed
of a (fused) multiply-add between an element of A, and elements of
x and y, indexed by the values in arrays rowidx and colidx. The
element of y is then updated with the result of this operation. Since
multiple computational elements can operate on matrix elements
which have the same rowidx values (which corresponds to matrix
elements located in the same row), this update is prone to race
conditions. To resolve write conflicts, the (fused) multiply-add can
be replaced by multiplication, followed by an atomic addition of the
result into the correct position of vector y. This, however, requires
more arithmetic instructions than the original approach, and uses
a large number of expensive atomic operations, which may cause
significant overhead in case of atomic collisions (i.e. multiple atomic
operations requesting the same data entity at the same time). To
alleviate the problem, we accumulate the results of several itera-
tions of the for loop with the same update destination in registers
private to the computational element. If the rowidx value of the
next data element is different to what was processed previously,
the accumulated results are written back to main memory using an
atomic addition.

In this strategy, to decrease the number of atomic operations,
(and increase the amount of computation handled in registers,) the
three arrays comprising the matrix data should be sorted with re-
spect to the increasing rowidx values. This will ensure that each
computational element performs only one atomic operation per

rowidx value, while also ensuring data locality for vector y (which
can be beneficial on hardware that implements atomic operations
in a shared cache file, like used in NVIDIA and AMD GPUs). Fi-
nally, a good heuristic to improve the access pattern to the input
vector x is to additionally sort each set of matrix elements with the
same rowidx value with respect to increasing colidx value. The
effectiveness of this approach is highly sensitive to the sparsity
pattern of the matrix, but this is a common problem of virtually all
SpMV formats and algorithms. (The only exception to this problem
known to the authors is the CSC format, where structured access
to the vector x is ensured at the price of complicated access to the
vector y.)

3.2 CUDA realization of C00 SpMV

We realize the specific implementation of the general approach de-
scribed in the previous subsection using the CUDA programming
model. This model has all of the features required by the intro-
ductory paragraph of this section, with atomic instructions being
the only critical component. While older generations of NVIDIA
GPUs emulate double precision atomics in software (by using 64-bit
atomic CAS), the new Pascal architecture offers native support for
double precision atomics.

A naive implementation assigns one chunk of memory to each
CUDA thread. This, however, inevitably results in non-coalescent
reads to the matrix A, which is detrimental to performance. To en-
sure coalescent memory access, each chunk should be assigned to
one warp (a group of 32 threads), and a thread i of the warp should
read elements at positions 32j + i, j = 0,1, . .. of the chunk. (This
is the motivation to use a more platform-agnostic term “computa-
tional element” in the previous subsection, as the terms “thread”
or “core” may have different meanings in distinct programming
models and/or hardware.)

The main problem with this “warp-level approach” is the use
of atomic operations. If each thread in the warp attempts to is-
sue an atomic addition whenever it progresses to the next row,
this will cause a large number of atomic collisions, since all the
threads in a warp execute in lockstep (i.e. perfectly synchronized).
A workaround is to conclude each iteration of the loop (line 7-9
in Figure 1) with a “warp vote function” in which all threads in a
warp decide whether there is at least one of them that needs to
write its results into global memory. If such a thread is identified,
all threads collectively execute a warp-level segmented scan op-
eration on their private registers, with segments defined by the
distinct values of the rowidx array currently processed by the warp.
The segmented scan (as opposed to a simple reduction) is required
to ensure correct operation if the warp handles multiple rows of
the matrix. For each of the handled rowidx values, the segmented
scan determines the thread with the lowest thread index among
all the threads that operate on this row. Then, these threads ac-
cumulate the partial sums present in their registers, and each of
the threads with the lowest index will issue a global atomic addi-
tion before it progresses to a different rowidx value. This strategy
avoids atomic collisions between threads of the same warp. Atomic
collisions between threads of distinct warps are still possible, but
these are unlikely as 1) threads of distinct warps operate on distinct
data chunks (so the number of overlapping rows is limited) and
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Figure 3: Nonzero count vs. size for the considered test ma-
trices. For convenience we added density baselines for 3
nnz/row, 10 nnz/row, and 50 nnz/row.

2) distinct warps are not perfectly synchronized. The segmented
scan approach radically reduces the number of atomic collisions,
however increases the number of arithmetic operations in the al-
gorithm. As the SpMV kernel is heavily memory bound, it can be
expected that additional arithmetic operations rarely impact the
overall performance, as long as they can be overlapped with mem-
ory operations. For completeness, we mention that this approach
of avoiding intra-warp atomic collisions was also used to construct
a balanced CSR SpMV kernel in Flegar et al. [9].

An additional optimization on NVIDIA GPUs is related to the
choice of the number of chunks. In contrast to the classical latency-
minimizing CPU hardware, enabled by sophisticated cache hier-
archy, NVIDIA GPUs use a latency-hiding approach where the
computational units are oversubscribed with warps. The intention
of having a larger number of warps active is to quickly switch
in-between them to cover memory latency [2]. If threads in a warp
issue a memory operation, those threads will stall while waiting
for the memory transaction to complete. To combat this, rather
than allowing the hardware to stall, the warp scheduler may find a
warp that is not waiting for a memory operation to complete, and
issue the execution of this warp instead. This constant juggling of
active warps allows the GPU to tolerate the high memory latency
and keep the compute cores occupied. To enable latency hiding, the
number of generated chunks on this hardware should be higher
than the amount of parallel processing resources. On the other hand,
a high number of chunks increases the chance of atomic collisions
as more chunks may contain data located in the same matrix row.
We introduce an “oversubscribing” parameter o that determines
the number of threads allocated per each physical core (e.g., w = 2
means that the number of threads is two times larger than the num-
ber of physical cores, while w = 4 means that there are four threads
assigned to each physical core). The oversubscribing parameter is
subject to hardware- and problem-specific optimization, and we
experimentally identify reasonable choices in Section 4.
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Figure 4: Histogram for the (standard deviation/ avg) of the
nonzero-per-row metric. Few problems have a higher stan-
dard deviation than 102.

4 PERFORMANCE ASSESSMENT
4.1 Test matrices

For the experimental performance analysis, we use a set of 400
matrices from the SuiteSparse matrix collection [8]. This collection
comprises a large number of matrices that differ in the algebraic
field (real, complex, pattern), the shape (square, rectangular), and
matrix-specific characteristics such as size and nonzero pattern. For
the performance assessment we focus on real, square matrices that
have a pairwise different nonzero pattern. In Figure 3 we visualize
the size and nonzero count of the chosen test matrices. In order
to quantify the imbalance of the nonzero distribution of a matrix,
we use the standard deviation of the nonzero-per-row metric, see
Figure 4.

4.2 Experiment setup

All experiments were conducted on the GPU-accelerated compute
nodes of the PizDaint supercomputer at the Swiss National Com-
puting Centre (CSCS). Although irrelevant for the performance
analysis, we mention that the host composes of an Intel E5-2690 v3
processor (codename Haswell) with 12 cores running at 2.6 GHz.
All computations are executed by the NVIDIA Tesla P100 GPU
(compute capability 6.0) for which NVIDIA lists a double precision
peak performance of 5.3 TFLOPs (10'2 floating point operations
per second). We use double precision in all experiments. The P100
is equipped with 16 GB main memory, which is accessed at a theo-
retical bandwidth of 732 GB/s. Using the bandwidth test that ships
with CUDA 8.0 (and that puts equal pressure on memory reads and
memory writes) we were able to achieve 497 GB/s. Using NVIDIA’s
CUDA toolkit version 8.0, we design the COO kernel to integrate into
the MAGMA-sparse software library [4]. MAGMA-sparse is also
used as experiment ecosystem, and provided the SpMV reference
implementations. Specifically, the reference implementations are:
CSR The CSR-based SpMV kernel we consider is part of NVIDIA’s
cuSPARSE library.
CSR5 The CSR5 SpMV kernel is based on modifying the CSR format
for achieving higher performance. The implementation is
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part of the MAGMA-sparse software stack, details about the
kernel are presented in Liu et al. [11].

The design of the CSRI SpMV kernel is very similar to the
CO0 kernel we propose. It tries to enable load balancing for
unbalanced matrices stored in CSR by using atomic addition
operations [9].

The hybrid SpMV kernel we consider combines the ELL for-
mat for the regular (balanced) part of the matrix with the
COO format for the irregular part of the matrix. We use the
implementation available in NVIDIA’s cuSPARSE library.
The SELL-p kernel is also part of the MAGMA-sparse soft-
ware ecosystem, and has proven to be very efficient for bal-
anced problems [12].

CSRI

HYB

SELLP

4.3

In a first experiment, we analyze the effect of the oversubscribing-
parameter o on the performance of the COO kernel. In Figure 5
we order the matrices for increasing nonzero count, and report
the performance for the w-values 2, 4, 8, 16, 32, 64, and 128. We
notice that the performance differences increase with the nonzero
count. For small nonzero counts, the differences are negligible. The
optimal choice for the w parameter then takes turns: Moderate

Experimental results

oversubscribing with w = 8/w = 16 is the performance winner for
systems with about 10° nonzeros, w = 32/w = 64 is superior for
systems with about 10® nonzeros, and w = 128 seems to be the
best parameter choice beyond that. The nonzero count of a matrix
is one of the characteristics known prior to the SpMV invocation.
Hence, a straight-forward optimization step for the CO0 kernel is
given by choosing » on a heuristic derived from Figure 5. In the
rest of the paper we define the COO as the kernel that chooses

8 for nnz < 105,
w=14 32 for 10° < nnz < 10°,
128 for 10° < nnz.

Next, we compare the COO kernel with the reference kernels
previously listed. In Figure 6 we order the test matrices according
to increasing nonzero count, and visualize the performance of all
SpMV kernels we consider in this analysis.

Independent of the SpMV kernel, the performance linearly in-
creases with the nonzero count of the problems until it stagnates
around 90 GFLOPs.

Furthermore, the visualization suggests that the COO kernel is
the fastest kernel for almost all test matrices with less than 2 - 10°
nonzero elements. For problems containing more nonzero elements
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it is difficult to identify an overall winner. This is partly because
multiple performance indicators are covering each other, and dis-
tinct problems, although different in sparsity pattern, may have
the same nonzero count, and are therefore arranged in the same
place on the x-axis. Overall, it is difficult to extract from this figure
for how many problems a specific kernel is the fastest. We answer
this question in Figure 7 where we report for how many problems
a certain kernel was the performance winner (blue bar) and for
how many problems a certain kernel gave the worst performance
(red bar). If the kernel was neither the fastest nor the slowest for
a certain problem, it is counted as “ballpark.” In the end, for each
kernel we get a bar of the same length split into three colors; the
sum of all blue parts and the sum of all red parts equals the number
of test cases, respectively.

Overall, the COO kernel wins most cases, and it is followed by
the SELLP SpMV. CSR, CSRI, and HYB win only few cases, CSR5 not a
single one. On the other hand, CSR5 and CSR are rarely the slowest
kernels, while CO0, CSRI, SELLP, and HYB lose significantly more
cases.

Looking at the complete test suite containing all 400 matrices, we
include problems that are “small” with respect to the computational
workload of the SpMV. For those, even the winning kernel in Figure 7

Kernel min max average median standard-dev.

(6(0]0] 2429 64.32 38.86 37.24 9.16
CSR 0.07 87.43 32.77 30.43 20.07
CSR5 9.66 75.56 31.79 27.15 15.58
CSRI 13.47 81.21 31.85 26.84 14.44
HYB 6.64 82.43 27.98 18.74 20.22
SELLP 0.06 82.62 36.42 38.64 22.46

Table 1: Statistical information on the GFLOPs metric of the
SpMV kernel for the 248 matrices containing more than 2-10°
nonzero elements.

achieves only low execution performance. In scientific applications,
these “easy” problems are typically rather handled via a direct
solver than an iteration method based on the SpMV kernel. As we
are in particular interested in the performance for problems that
are the characteristic target we limit the further analysis to the 248
problems containing more than 2 - 10° nonzero elements.

In Figure 8 we compare the distinct SpMV kernels in the GFLOPs
metric for the problems containing more than 2 - 10°> nonzero ele-
ments. We accompany this graph with some numeric information in
Table 1 where we additionally list the average performance. For this
metric, the COO format turns out to be the overall winner with an
average 38.86 GFLOPs. Looking at the median, the SELLP and COO
kernels achieve the highest execution rate (38.64 GFLOPs and 37.24
GFLOPs, respectively). They outperform the closest competitor CSR
by about 25%. The lowest median performance of 18.74 GFLOPs
is achieved by the HYB kernel. At the same time, the HYB kernel
achieves significantly higher performance (up to 82.43 GFLOPs) for
specific test cases, see Table 1. Only the SELLP and the CSR kernel
achieve higher performance for balanced and regular problems
(82.62 GFLOPs and 87.43 GFLOPs, respectively).

Most noticeable in Figure 8 is the variation of the CO0 perfor-
mance being radically smaller than for any of the other formats:
50% of the performance numbers are within a 6 GFLOP/s range
from the median, the standard deviation is 9.16. The lowest per-
formance number for the COO kernel is 24 GFLOPs. Only the CSRI
kernel is competitive in handling unbalanced problems, with 50%
of the performance numbers between 20 GFLOPs and 60 GFLOPs, a
standard deviation of 14.44, and the lowest performance being 13.47
GFLOPs (see Table 1). For SELLP and CSR, the performance values
spread across a large range. In particular, the lowest performance
numbers (0.06 GFLOPs for SELLP and 0.07 GFLOPs for CSR) are
far from the median. The central box (upper/lower quantiles) are
for these kernels a multiple of those for C00. Also the upper and
lower whiskers are significantly further apart. For SELLP, this is
expected as, for unbalanced matrices, the nonzero padding to a
block-uniform nonzero count introduces significant performance-
detrimental overhead, as well as load imbalance in-between the
matrix blocks. Load imbalance is also the culprit for CSR’s poor
performance. Hence, the formats delivering the best performance
for balanced test matrices are not suitable for irregular unbalances
problems. The COO format, although achieving only 64.32 GFLOPs
for the best case, proves to handle irregular problems well, with the
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overhead. Only test matrices with more than 2 - 10° nonzero elements are considered.

highest average performance, a competitive median, the smallest
variation, and the highest minimal performance.

Finally, we want to assess the performance penalty of choosing
one specific kernel vs. choosing the problem-specific best kernel.
Obviously, the problem-specific best format is unknown a priori,
and one would have to test all kernels prior to the the performance-
relevant run, or use machine learning techniques for making a good
guess. Again, we focus on the problems containing more than 2-10°
nonzero elements. In the analysis we identify the optimal format
for each test matrix, and scale the performance of all kernels to this
baseline. We then sort the matrices with increasing overhead for
every kernel individually, and visualize this characteristic curve
in Figure 9. Hence, the order of the matrices is different for each
kernel, but the overheads are increasing in all datasets. The ob-
jective of minimizing the slowdown corresponds to minimizing
the area below the curve. The longer a curve stays at 1, the more
test cases a certain kernel wins. We notice that the overhead stays
low particularly for COO, CSRI, and CSR5. For SELLP and CSR, the
initially moderate overhead for balanced problems quickly grows
for irregular problems. HYB deals better with these cases, however
it already starts of with a larger overhead than CO0 and the CSR
variants. Overall, COO has a radically lower overhead than any of the
competitors. Another key observation is that (ignoring two outliers)
the COO kernel never exhibits a slowdown factor larger than two.
This implies that choosing the COO format results in an SpMV kernel
which is in the worst case two times slower than the (unknown)
optimal choice. This clearly makes CO0 the overall winner in this
metric as well.

5 SUMMARY AND OUTLOOK

We addressed the challenge of overcoming the load-imbalance in the
sparse matrix vector product for irregular matrices. We developed
and implemented an SpMV kernel for GPUs that is based on the
COO format. Using a large collection of test matrices we compared
the performance of the new kernel to the (up to our knowledge) best
SpMYV kernels available: the CSR and hybrid kernels which are part
of NVIDIA’s cuSPARSE library, the SELL-P and CSR5 kernels part

of the MAGMA-sparse software library, and the CSRI kernel, which
balances the workload via atomic operations. We used different
metrics to quantify the performance: median absolute performance
in GFLOPs and its variation, kernel winning most test cases, and
smallest overhead compared to the best kernel included in the
test suite. For the chosen test suite containing 400 matrices, the
proposed COO-based SpMV performs radically better on irregular
matrix structures, and ultimately wins all considered performance
metrics.

In the future we want to focus on multi-GPU architectures and
optimize the developed kernel for hybrid (Multicore+Manycore)
execution. Furthermore, we are convinced that the strategies re-
ducing the impact of global write conflicts via warp-vote functions
and introducing additional operations are also applicable to other
computational problems of irregular nature.
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