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Abstract—Outsourcing data processing and storage to the
cloud is a persistent trend in the last years. Cloud computing
offers many advantages like flexibility in resource allocation,
cost reduction and high availability. However, when sensitive
information is handed to a third party, security questions are
raised since the cloud provider and his employees are not
fully trusted. Standard security mechanisms like transport
encryption and regular audits alone cannot solve the issue
of insider attacks. Additional cryptographic techniques are
required. In this paper, we build upon an existing proxy
for secure database outsourcing. We address potential side-
channels and weaknesses, which are later analyzed and mit-
igated. Furthermore, we take a look at trusted execution
environments (TEEs) like Intel Software Guard Extensions
(SGX) and show how they can be applied to allow for secure
execution in the secure database outsourcing case.
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Trusted Execution, SGX

I. INTRODUCTION

The usage of cloud services for processing and storing
large amounts of data has reshaped the IT industry in the last
years. Adaptive use of resources, cost-efficiency and high
scalability are among the major benefits of cloud computing.
Especially for small and medium enterprises, this has high
potential since such companies usually are not in a position
to build and maintain their own computing centers.

Despite the aforementioned advantages of cloud computing,
it must be clear that security concerns are a huge drawback.
Because some employees – mainly system administrators –
have high privileges, there is a high risk of a so-called insider
attack. As a consequence, in particular personal data must
be protected from curious cloud providers. Depending on the
scenario, it is even impossible to outsource sensitive data to
the cloud at all while still complying with the law. Fortunately,
these concerns can be addressed using cryptographic methods.

Therefore, there is a need for an entity that secures
the outsourced data and handles the cryptographic that
methods transparently to the application. This work addresses
an existing database outsourcing scheme and points out
security issues as well as mitigation techniques. The entity
considered, called the database proxy (DB proxy), provides

a practical, reasonable trade-off between performance, SQL
expressiveness and security.

Furthermore, we consider possible applications of trusted
execution environments (TEEs) at the example of Intel’s
implementation SGX. TEEs allow an untrusted remote
machine to execute instructions on sensitive data in a secure
way so that data privacy is guaranteed and the code is not
altered. Due to the huge amounts of data that have to be
handled and implementation limitations, it is currently not
possible to move the whole DBMS (database management
system) into a trusted execution environment.

Our contribution is two-fold: We analyze side-channel
attacks and show how they can be countered with both
conceptual adaptations and TEEs.

This work is structured as follows: Section I-A gives
an overview of existing database outsourcing schemes and
trusted execution environments. The DB proxy where this
work mainly builds upon is described in detail in Section II.
Side-channel attacks and countermeasures against the DB
proxy are discussed in Section III. Sections IV, V and VI
introduce TEEs and SGX technology and show they can
be applied to increase the DB proxy’s security. Finally,
Section VII concludes and gives an outlook on future research
directions.

A. Related Work

With respect to secure database outsourcing, there are cur-
rently three Horizon 2020 programs called Secure Enclaves
for Reactive Cloud Applications (SERECA)1, SecureCloud2

and PaaSword3 (see Section II). While SERECA intends
to “build a platform able to protect the confidentiality and
integrity of applications and services executed in the cloud”,
especially considering reactive applications, SecureCloud
“aims to remove technical impediments to dependable cloud
computing, i.e., SecureCloud will ensure the confidentiality,
integrity, availability and security of applications and their
data” with the focus on secure and efficient data processing.

Both projects make use of trusted hardware, namely
SGX. Of particular interest is SGX-MySQL [1], which is
a partitioned version of MySQL that executes parts of the

1https://www.serecaproject.eu
2https://www.securecloudproject.eu/
3https://www.paasword.eu



Figure 1. Deployment of the DB proxy between user/app and cloud.

DBMS in a secure enclave, providing data confidentiality
and result integrity while minimizing the trusted computing
base (TCB), i.e. the amount of software inside the enclave.

Secure Linux Containers with Intel SGX (SCONE) [2]
is a mechanism to deploy Docker containers within SGX
enclaves by providing a small-footprint C standard library
supporting transparent encryption and decryption of input
and output, keeping the overhead and the TCB small.

VC3 [3] is a framework for securely running MapReduce
algorithms with SGX. By only running the core algorithms
inside the enclave and other parts like the operation system
and the Hadoop framework outside, the performance overhead
is minimized.

II. ARCHITECTURE AND DB PROXY OVERVIEW

As illustrated in Figure 1, we consider the case of database
outsourcing with a trusted entity (the database proxy) that is
located between the user and the untrusted cloud provider and
transparently handles encryption and decryption. With respect
to data encryption, there are basically two alternatives: While
fully homomorphic encryption (FHE) allows performing
arbitrary queries on the encrypted data in the cloud provider’s
realm and decrypting the result locally, its overhead in the
order of 107 [4] makes it unsuitable for practical use. Another
approach could be to download all data, decrypt it, perform
the operations and encrypt it before finally uploading it again.
However, this is also not applicable because it requires all
data to be transferred for every query, reducing the concept
of outsourcing ad absurdum.

The chosen approach for the DB proxy is somewhat similar
to the last one, with the goal to transfer as little data as
possible. Therefore, we use additional data structures to
determine which data segments seem relevant to the query,
relying on the relational model of structured data. A simple
version of the DB proxy presented here was created within
the research project MimoSecco [5], which had the goal to
enable the secure use of cloud services. In the PaaSword
project, the DB proxy [6] was redesigned and adapted to be

Row Name Surname Condition
1 Claire Jones Diabetes
2 Emilia Jones Hypertonia
3 Phil Connor Hypertonia

Table I
ORIGINAL DATA BEFORE THE TRANSFORMATION.

Row Encrypted Data
1 Enc(Claire‖Jones‖Diabetes)
2 Enc(Emilia‖Jones‖Hypertonia)
3 Enc(Phil‖Connor‖Hypertonia)

Table II
ENCRYPTED DATA TABLE AFTER THE TRANSFORMATION.

able to handle more complex, realistic SQL queries while
providing higher performance and better security.

Consider a simple SQL select query, e.g. SELECT * FROM
customers WHERE customer id = 12345. In a nutshell, the
DB proxy executes the following steps for this query:

1) Query analysis Determine which parts of the tables
are affected and how the query is to be processed.

2) Retrieval of relevant data Download and decryption
of only the relevant data fraction from the cloud.

3) Query execution Data is temporarily inserted into an
empty local database and queried there to return the
result to the user application.

If a query is highly selective like in the example above
(. . . customer id = 12345) this is a huge improvement
compared to the naı̈ve approach where all data is downloaded.
In order to find out which parts of the cloud database are
needed to process the query we use index tables that rely on
a reverse index for the attributes.

The aim is that the application is left untouched and always
handles the database as if it were not encrypted or distributed.
All encryption, decryption, distribution and composition is
done by the DB proxy. This makes the security measures
transparent to the application.

To understand how data is manipulated before upload
we give an example of the PaaSword transformation [6].
Consider a simple table as depicted in Table II that needs to be
protected because it contains personal identifiable information.
This table represents the application’s view on the data and
obviously cannot be outsourced that way. We outsource two
different classes of tables instead: encrypted data tables,
which hold all information in encrypted form and index
tables for faster look-up of relevant data.

The encrypted data table as depicted in Table II is
identical to the original table but uses probabilistic row-
based encryption. Only the ID column is in plain text. The
attributes in each row are concatenated (indicated by the
symbol ‖) before encryption.

The index tables as depicted in Table II represent a reverse
index for each attribute. The first column contains each
attribute once while the second column is a probabilistically
encrypted list of all the rows where the specific attribute is
found for a given column. Each entry in this list is the ID



Keyword Rowlist Keyword Rowlist
Phil Enc(3) Jones Enc(1‖2)
Claire Enc(1) Connor Enc(3)
Emilia Enc(2)

Table III
INDEX TABLES AFTER THE TRANSFORMATION.

where the corresponding row is found in the encrypted data
table.

The described encryption and distribution mechanisms
make the outsourced data reveal less information to the
honest-but-curious cloud provider.

III. SIDE-CHANNEL ATTACKS AND COUNTER-MEASURES

The security notion that is achieved by this technique
is called Ind-ICP (indistinguishability under independent
column permutation) [7]. It guarantees that that only single
attributes are leaked but not the correlation among them.
There is, however, data that is sensitive even without
association to other attributes. Credit card numbers are such
an example and need to be protected by other means as
described in the next section. The intuition is that after
the transformation is applied, the cloud provider cannot
distinguish between the original and a permuted database.
The permutation is applied to each column independently,
thus destroying the association between attributes in every
row of the original table. For more information and a security
proof that the proposed transformation achieves this security
notion, see [7]. Ind-ICP, however, is not sufficient to provide
real-world security because of attacks outside the security
model. Such issues emerge due to real-world deployments
and are considered as side-channels that can be exploited to
gain additional information. Side-channel attacks against the
DB proxy haven been addressed before [8]. The fact that
our proposed scheme and implementation are vulnerable to
those kinds of attacks is not a specific issue but one that
applies to secure outsourcing schemes in general.

A. Side-Channel Attacks

The following observations can be used by the cloud
provider to infer non-trivial information about the dataset.

1) Background Knowledge: An adversary with background
knowledge can attack any scheme that stores some meta data
in the plain. Consider a database that only contains people
that suffer from a rare disease and live in a small town. If
the adversary observes that someone with a rare first or last
name occurs in the dataset it can be inferred that this person
probably has this disease. As mentioned before this attack
is not an inherent problem of our scheme. Our scheme is
vulnerable to this attack but it can be prevented by counter-
measures like deterministic index encryption or distributing
the index tables to different (non-communicating) servers.
Notice that the security notion Ind-ICP requires that the
adversary has no background knowledge.

Keyword Rowlist Keyword Rowlist
Phil Enc(3) Jones Enc(1‖2)
Claire Enc(1) Connor Enc(3)
Emilia Enc(2)

Table IV
INDEX TABLES BEFORE OPERATION.

Keyword Rowlist Keyword Rowlist
Claire Enc(1) Jones Enc(1‖2)
Emilia Enc(2)

Table V
INDEX TABLES AFTER OPERATION.

2) Observing Database Operations: If metadata (like
index entries in our case) is not encrypted, an adversary
can gain additional information by looking at differences in
the tables.

Consider the following set of index tables depicted in
Table IV and those in Table V. Assume the adversary observes
the state represented in Table IV and notices that a DELETE
query was performed. After comparing with the new state
represented in Table V it is clear that the attributes Phil
and Connor are associated. Notice that this is also possible
if a new row is inserted that has unique attributes. Thus,
INSERT and UPDATE queries can leak information as well.
To mitigate this vulnerability our recommendation is – as in
the above mentioned case – index encryption or distribution.

3) Access Statistics and Order on Physical Storage De-
vices: Sometimes a database is not constantly queried but
query groups can be separated by looking at the time.
Consider once again a state as depicted in Table IV and
two queries that are issues with only little delay:

• SELECT * FROM index1 WHERE keyword = ’Phil’
• SELECT * FROM index2 WHERE keyword = ’Connor’
The adversary can at least assume that there could be a

correlation. He can be certain if he can register access to
the encrypted data table and an (encrypted) result is returned
meaning that the query has a non-empty response. Of course
this attack only works if the query is highly selective.

Similarly an adversary can correlate index table rows even
if not two states but a single one is observed. It is safe to
assume that real-word database systems store new records
at the end of the existing data structures. This does not
necessarily hold for tree-based data types but often at some
level unique ascending IDs are inserted. This is the case for
our implementation that uses PostgreSQL.

Because these attacks are similar to the one mentioned
before, the same mitigation techniques apply as well.

B. Countermeasures

This section will introduce techniques that can be used to
mitigate the aforementioned side-channel attacks.

1) Index Encryption: Notice that an index table has two
columns. The left column holds all the keywords that can be
looked up. The second column is a probabilistically encrypted
list of rows. Since there is little to gain from observing a



ciphertext except the plaintext’s length, the main issue is the
first column. As pointed out in the previous section, there is
a need to enable for index encryption which means to apply
deterministic encryption to the first column. This is done
separately for every cell.

Instead of searching for a specific keyword SELECT *
FROM index1 WHERE keyword = ’Connor’ we compute the
ciphertext Enc(’Connor’) first. Then we query SELECT *
FROM index2 WHERE keyword = Enc(’Connor’). Because
of the deterministic encryption, all exact-match statements
can be easily transformed that way.

There are, however, some issues with this approach.
First, wildcard searches such as SQL’s LIKE query are not
supported. Second, performance will be heavily degraded if
a binary search on the keywords is required.

2) Data Distribution Using Privacy Constraints: Some of
the aforementioned side-channel attacks rely on associating
rows from different index tables. This is not possible if the
index tables are located on different non-communicating
servers. This could be achieved by using different cloud
providers. Further details can be found in [9].

3) Shuffling Modifications: The goal of this technique
is to limit the adversary’s ability to associate database
rows, especially among index entries. For this purpose write
operations are put into a queue. If the dependencies on other
queries allow, the queue items are shuffled and thus executed
in a random order. Furthermore, it is possible to execute
them with random delays or all at once if the queue size
reaches a desired number.

IV. PRACTICAL LIMITATIONS OF THE CURRENT
APPROACH

As outlined above, there are many things to consider to
securely deploy the DB proxy and the index servers. In
particular, the DB proxy is entrusted with the database keys
and sees the decrypted query results, precluding the proxy
from being deployed in a public could or being part of a
PaaS package. As a consequence, this may lead to higher
costs due to the local deployment and higher access times
due to the distance between proxy, index servers and the
encrypted database.

As data (such as phone numbers) might be considered
sensitive on its own even when not linked to other infor-
mation, it is highly desirable to encrypt indexes containing
such sensitive data. While deterministic encryption allows
for efficient exact-match queries even on encrypted indexes,
it is often necessary to decrypt the whole index for other
query types such as comparisons, leading to performance
degradation.

Under the assumption that different cloud providers do
not co-operate, distributing index sets with non-sensitive
data over multiple providers provides security against linking
attacks. However, it also incurs possibly higher costs and

administrative overhead because providers must be chosen
in a way that the privacy constraints are enforced.

In the following, we consider how these limitations of the
current PaaSword DB proxy can be alleviated by using TEEs
such as SGX.

V. TRUSTED EXECUTION ENVIRONMENTS AND SGX
After giving a short introduction to trusted execution

environments and Intel’s implementation SGX, roughly
following [10] and [11], we show how these tools can be
used to efficiently solve the aforementioned problems.

A. Trusted Execution Environments

In short, a trusted execution environment implemented in
hardware allows the execution of software isolated from the
remaining system like the operating system, BIOS, EFI or
management engine (ME). Using keys bound to the hardware
which are usually certified by a public-key infrastructure,
the trusted execution environment can attest the running
software by creating signatures of the loaded program before,
during and after execution, allowing a third party to verify
the execution’s integrity, e.g. before deploying sensitive
encryption keys.

B. SGX: An Implementation

Starting with the Skylake microarchitecture, many Intel
processors support an instruction set extension called Soft-
ware Guard Extensions (SGX), which aim to provide a trusted
execution environment on the processor. Conceptually, the
trusted execution environment is implemented by a dedicated
memory region called processor reserved memory (PRM),
which is protected from outside access. Part of the PRM is the
so-called enclave page cache (EPC) which holds the enclave-
internal memory. Currently, the EPC size is limited to 128
MB, which can be extended by paging (which is performed
by the host operating system) at the cost of performance
loss as pages evicted from the EPC have to be encrypted
and authenticated by the memory controller before they are
stored inside the normal system memory. While SGX protects
from outside memory access, it does not protect from timing
attacks with respect to the processor caches (which are shared
between enclave and non-enclave memory) and memory
access. Using services provided by Intel, remote attestation
and subsequent deployment of sensitive information to
the enclave is possible. We consider SGX in this paper
due to its general availability, its features (in contrast to
e.g. ARM TrustZone which does not feature attestation
or memory encryption) and its popularity in cryptography-
related research. However, our results are generally applicable
to other TEEs with comparable features as well.

VI. USING TRUSTED EXECUTION ENVIRONMENTS FOR
SECURE DATABASE OUTSOURCING

At first glance, the reasonable solution to database out-
sourcing would be to run the whole DBMS inside a secure



enclave. However, current implementations such as Intel SGX
suffer from practical problems such as limited enclave page
cache [2], which severely impact performance in realistic
deployment scenarios. Thus, we focus on the problems
mentioned in Section IV in order to improve the PaaSword
secure database outsourcing scheme by running only parts
inside attested trusted execution environments. In particular,
we are interested in the following scenarios:

1) Running the DB proxy inside an enclave
2) Storing the index in the clear inside the enclave in

contrast to encrypting each row individually

A. Adversarial Model

In order to discuss possible advantages and drawbacks
when using trusted execution environment, the adversarial
model has to be properly defined. In the following, we
consider three disjoint classes of adversaries:

1) The party controlling the root of trust, usually the
hardware manufacturer who controls the public key
infrastructure, master keys and possibly hardware-
specific keys. A compromised root of trust can result
in false attestations, convincing other parties that the
execution environments runs some program which it
actually does not. Compromised keys can, for example,
break the confidentiality of stored or communicated
data or enable a malicious enclave to fake a different
identity. Furthermore, if the implementation of the
trusted execution environment were broken, data could
be leaked to outside programs. While trusting the
manufacturer seems like a very strong assumption
to make, we implicitly trust the manufacturer when
running software outside of trusted enclaves, too (for
example to not involuntarily send sensitive data over
the network).

2) Apart from the manufacturer, the cloud provider (and
other tenants that run software on the same hardware),
could be considered adversarial. We assume that the
cloud provider is honest but curious, meaning that he
adheres to the protocol but uses available information
he gets by observing the communication and machine
state. With respect to other tenants, timing cache and
memory access could leak information about memory
access of programs running in an enclave as the proces-
sor cache is shared. If programs running in the enclave
are not data-oblivious, memory access patterns could
possibly leak information about sensitive data. While
such attacks have been successfully demonstrated for
SGX [12], we consider them out of scope for this
paper, as they are not inherent to TEEs in general.

3) In addition, we have to consider (possibly active)
adversaries that are separate from the aforementioned
two, which, for example, try to tamper with the
communication. Assuming a correct implementation of
the trusted execution environment and a small trusted

computing base, the isolation property of the trusted
execution environment can protect the enclave from
untrusted and possibly malicious code running on the
host system. In case of SGX, the enclave is also
protected from BIOS, EFI and ME. Using counters,
nonces and CCA-secure encryption, attacks on the
communication can be prevented.

B. Running the DB proxy Inside the Enclave

In the original model as outlined above, the DB proxy
locally stores sensitive data and encryption keys in the clear,
which requires the proxy to be set up on a trusted system,
precluding it from being outsourced.

However, when using a trusted execution environment,
trusting the underlying system is no longer necessary. The
consequences are two-fold: A DB proxy instance running
inside an enclave is isolated from the host system, which
greatly enhances security as certain classes of attacks (such as
cold boot attacks to extract encryption keys or vulnerabilities
at the operating system level) are mitigated. Furthermore,
the proxy application can be set up at a possibly untrusted
third party such as a public cloud provider, which can
cryptographically attest to the tenant that the enclave runs
the desired program before he deploys his encryption keys.

In contrast to running the whole DBMS inside an enclave,
which would be impractical in SGX due to the small enclave
page cache and the associated performance overhead of
random memory access which is the typical access pattern
in databases, the DB proxy is well-suited for the execution
inside an enclave: As only the results of the current query
are needed, memory consumption is a function of the result
size and not the whole database.

Being able to run the DB proxy in proximity of the
index and data servers has the potential to greatly benefit
performance due to the reduced communication latency.
Furthermore, a PaaS provider is then able to run multiple
DB proxy instances on the same physical server while still
guaranteeing tenant isolation.

The feasibility of running a DBMS (SQLite [2] and a
partitioned version of MySQL [1]) inside SGX has been
successfully demonstrated.

Even when not trusting the manufacturer (and thus the
attestability, integrity and confidentiality of the trusted
execution environment), running the DB proxy at least
partially within an enclave can still be beneficial when
considering adversaries which are distinct from the party
controlling the trust anchor as explained above.

C. Storing Index Tables Unencryptedly Inside the Enclave

In order to protect sensitive data, our DB proxy architecture
allows to employ encrypted indexes, which is a sensible
measure when the index data is sensitive as-is (cf. Section III).
In the current implementation, the keywords are encrypted
as single ciphertexts, leading to both a high performance and



space overhead due to the necessary padding and encoding.
While using deterministic encryption schemes allows for
efficient execution of exact-match queries, other query types
such as comparisons cannot be efficiently performed and
require the decryption of the whole index table at the proxy,
incurring computation and communication overhead.

Fortunately, modern DBMS allow encryption to be per-
formed at their persistency layer. When running the DBMS
inside an enclave, we can make use of this feature by storing
the data outside the enclave encrypted with a key that is
never exposed to the untrusted host system and only deployed
after the enclave content has been attested. While we still
potentially suffer from the limited enclave page cache and
the resulting penalty for random memory access, the index-
related queries can be performed very efficiently due to
the use of b-tree data structures used in database systems:
To access an element in a sorted set of n elements, only
O(log(n)) memory queries are necessary, which allows us to
establish an upper limit of the possible page faults. For many
query types, the correct database row(s) can be found using
the memory-efficient index data structures of the DBMS.
Furthermore, the query can always be fully evaluated on the
index server instead of having to transfer the whole index
table in the worst case.

Depending on the nature of the data, this setting might even
be interesting if the hardware manufacturer is not completely
trusted. For example, phone numbers might be interesting to
criminals but not to Intel. In contrast, genomic data might
be considered so sensitive that it should not even be possibly
exposed to the manufacturer or any co-operating party.

VII. CONCLUSION AND OUTLOOK

We have shown how to address major limitations, namely
the necessity to host the DB proxy at a trusted location
and the performance degradation for some query types
associated with encrypted indexes. In principle, they can
be alleviated using attestable trusted execution environments
such as Intel SGX. In order to show the practical feasibility,
our ideas would have to implemented, possibly re-using
existing approaches such as SCONE [2] or SGX-MySQL [1]
together with the existing DB proxy implementation.

While we expect that implementation limitations such as
the limited enclave page cache size with Intel SGX will
be removed in future processor generations or competing
solutions, questions regarding the trustworthiness of the trust
anchor (usually the manufacturer like Intel) will prevail,
making it necessary to keep using distributed approached like
the one presented in PaaSword for highly sensitive data due
to privacy concerns. Thus, our findings are still of relevance
even when running whole DBMS without size limitations
inside trusted execution environments becomes feasible.
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